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ABSTRACT

SCALABLE AND DATA EFFICIENT DEEP REINFORCEMENT LEARNING METHODS

FOR HEALTHCARE APPLICATIONS

Artificial intelligence driven medical devices have created the potential for significant break-

throughs in healthcare technology. Healthcare applications using reinforcement learning are still

very sparse as the medical domain is very complex and decision making requires domain exper-

tise. High volumes of data generated from medical devices – a key input for delivering on the

promise of AI, suffers from both noise and lack of ground truth. The cost of data increases as it

is cleaned and annotated. Unlike other data sets, medical data annotation, which is critical for ac-

curate ground truth, requires medical domain expertise for a high-quality patient outcome. While

accurate recommendation of decisions is vital in this context, making them in near real-time on

devices with computational resource constraint requires that we build efficient, compact represen-

tations of models such as deep neural networks.

While deeper and wider neural networks are designed for complex healthcare applications,

model compression can be an effective way to deploy networks on medical devices that often

have hardware and speed constraints. Most state-of-the-art model compression techniques require

a resource centric manual process that explores a large model architecture space to find a trade-

off solution between model size and accuracy. Recently, reinforcement learning (RL) approaches

are proposed to automate such a hand-crafted process. However, most RL model compression

algorithms are model-free which require longer time with no assumptions of the model. On the

contrary, model-based (MB) approaches are data driven; have faster convergence but are sensitive

to the bias in the model.

In this work, we report on the use of reinforcement learning to mimic the decision-making

process of annotators for medical events, to automate annotation and labelling. The reinforce-
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ment agent learns to annotate alarm data based on annotations done by an expert. Our method

shows promising results on medical alarm data sets. We trained deep Q-network and advantage

actor-critic agents using the data from monitoring devices that are annotated by an expert. Initial

results from these RL agents learning the expert-annotated behavior are encouraging and promis-

ing. The advantage actor-critic agent performs better in terms of learning the sparse events in a

given state, thereby choosing more right actions compared to deep Q-network agent. To the best

of our knowledge, this is the first reinforcement learning application for the automation of medical

events annotation, which has far-reaching practical use.

In addition, a data-driven model-based algorithm is developed, which integrates seamlessly

with model-free RL approaches for automation of deep neural network model compression. We

evaluate our algorithm on a variety of imaging data from dermoscopy to X-ray on different popular

and public model architectures. Compared to model-free RL approaches, our approach achieves

faster convergence; exhibits better generalization across different data sets; and preserves compa-

rable model performance. The new RL methods’ application to healthcare domain from this work

for both false alarm detection and model compression is generic and can be applied to any domain

where sequential decision making is partially random and practically controlled by the decision

maker.
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Chapter 1

Introduction

The healthcare domain has seen a dramatic shift in machine learning and computational meth-

ods in recent years with the rise in availability of deep learning and medical data. The need for

lowering costs and improving quality in healthcare is imperative worldwide. Operating room (OR)

costs represent one significant portion of the hospital’s costs. Many sequential decision-making

steps are involved in the OR functioning. Examples of OR decisions include transferring patients

to post-anesthesia care units (PACU), scheduling staff for PACU, determining surgery end, esti-

mating emergence phase, estimating time to extubate, and setting critical event alarms. A need and

opportunity exist to develop novel, practical applications of reinforcement learning in such clini-

cal scenarios, taking advantage of the advanced deep learning methods on one hand and enhanced

data availability on the other. Below are two example healthcare use cases in which we could apply

Artificial Intelligence (AI) at multiple stages of the medical intervention process.

1.1 Use-case Scenarios

John Doe, a 44-year-old patient, was taken to an emergency room (ER) after being involved in

a multiple-vehicle collision. The trauma team in the ER must urgently prepare multiple procedures

for trauma resuscitation of John Doe. The two most critical life threats to John Doe that should

be ruled out are massive hemorrhage and critical airway compromise [1]. The trauma team might

recommend a computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound (US)

to detect any internal bleeding. The airway compromise (obstruction to breathing) can be detected

through multiple visible symptoms and a chest X-ray for critical conditions such as pneumothorax

(PTX), a collapsed lung condition in which the air leaks into the chest cavity, exerting pressure

on the lung. Once the life threats are evaluated and managed, hemodynamic monitoring begins

to check the function of the heart to verify the blood pressure in arteries, veins, and the heart.

Interventions such as intubation to induce breathing, chest compression to resuscitate heart func-
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tioning, and pelvic binding to address any fractures, among others, are performed before John Doe

is moved to the intensive care unit (ICU) or operation room or further procedures or continued

monitoring of the resuscitation. Rapid yet accurate response throughout this process is critical for

John Doe’s survival.

Jane Doe, a 35-year-old patient who is 30 weeks pregnant, was brought into ER after experi-

encing a shortness of breath and chest pain. The pregnant patient’s vital signs, laboratory results,

and presence of fetus makes the case challenging in terms of interventions, therapies, and imaging

choices, unlike other ER cases [2]. Jane’s vitals such as heart rate, respiratory rate, and blood pres-

sure would be different than those of a non-pregnant patient complaining of shortness of breath

and chest pain. Various reasons (such as pulmonary embolus [PE], peri-partum cardiomyopathy,

myocardial infraction, or aortic dissection, among others) could explain why Jane is experiencing

chest pain or shortness of breath that the ER team must diagnose. Jane might display indications of

heart murmurs, electrocardiogram (ECG) changes, and chest X-ray abnormalities such as elevated

hemidiaphragm or plural effusion. A differential diagnosis might be recommended by her ER team

to diagnose the cause of her chest pain and then treat her.

In the previously described use cases, medical professionals must interface with many test re-

sults, software programs, and medical devices in a short time span to achieve a high-quality and

accurate patient outcome, usually on an emergency footing. Artificial intelligence (AI) and com-

putational methods would help to improve the productivity of medical professionals in such critical

scenarios. Deep learning (DL) methods compared with traditional machine learning are scalable

and efficient in learning the data patterns when provided sufficient data. Data is the fundamental

currency for solving many healthcare problems that use computational methods. While volumes

of medical data are becoming increasingly available, such big data has its own unique challenges.

1.2 Brief Background

In all such scenarios, generating alarms and alerts regarding the required procedures, actions,

and decisions is central to the success of the entire clinical workflow. Alarm fatigue is a well-
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known issue generated by bedside monitoring systems that is a concern for medical professionals

and patients [2, 3]. Patients and their families become anxious when alarms indicate a change in

the patients’ health and a need for medical attention. False alarms are a source of “crying wolf”

behavior and tend to become silenced when repeated false alarms are output by the devices. To

build smart alarm systems and use AI algorithms in practice, we must address the issue of false

alarms, which require a significant volume of correctly annotated data. Medical data suffers from

data privacy, sparsity, noise, quality, missing data, heterogeneity, and ground truth availability

[4–7]. It is expensive and time consuming, and it requires domain expertise to obtain trustworthy

annotations of medical monitoring data [2].

Medical devices such as anesthesia machines, ventilators, and monitoring systems are a rich

source of data that help in processing, identifying, and alerting events that in turn serve as the

basis for optimal decision making. Similarly, smart medical devices enabled by deep neural net-

works (DNN) for runtime decision making increase the efficiency of medical professionals, thereby

improving the quality of care and lowering the healthcare costs. Medical devices have varied con-

figurations and computational speeds. Deep and wide state-of-the-art neural networks developed

in research settings might not be practical for real-world heterogenous device configurations. The

need for building smaller and faster deep neural networks models within the constrained speed

limits and limited computational hardware resources is imperative. Designing smaller and faster

models requires domain expertise and significant manual effort to reach the optimal network to

achieve desirable model performance. Recent reinforcement learning (RL) approaches, network-

to-network compression (N2N), and AutoML for model compression (AMC) have paved the way

for automated neural network compression methods [8, 9]. These automated compression tech-

niques are time consuming and process intensive.

A brief introduction to RL and its advancements in recent years will be covered in the next two

paragraphs. Reinforcement learning is implemented via two main approaches: model-free (MF)

and model-based (MB) approaches. The MF method is a direct approach based on the trial and

error of experiences. An MB method is based on a model representation of the environment, such
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that an agent can predict the next state and/or reward based on previous experiences. Planning is

a problem-solving method for determining an optimal policy given the model of the environment.

Applications of RL and journal articles are on the rise for the MF method, in which there are no

assumptions of the environment or prior knowledge of the domain or when the historical data is

needed. Model-based RL applications are still sparse, as the dynamics of the environment must be

accurately modeled to achieve an efficient MB RL model. Model-free approaches are often flexible

and effectively learn complex policies but require many trials and training time for convergence.

In contrast, MB approaches require many data samples and less training time to converge more

quickly. Though practically efficient, MB approaches are sensitive to biases.

Many RL approaches have been recently seen in clinical outcome decision making based on

estimating the value, given the state of the patient. In recent years, many applications of RL can be

seen in hospital settings. The data generated from various health systems are yet to be tapped for

their full potential. Many traditional approaches have been used to detect false alarms that depend

on feature engineering and the availability of ground truth (labeled) data [3, 10, 11]. Although tra-

ditional approaches of false alarm detection have reasonable model performance, they have many

limitations, such as a narrow focus on one alarm/signal type (e.g., arrhythmia) that cannot scale and

generalize for various alarm types. Distant supervision methods in natural language understanding

for extracting relations in sentences and generate ground truth data comes with a high cost of false

positives. These methods do alleviate the ground truth problem but are limited to entity relation

classification tasks in language modeling [2]. Applications of learning from experience via deci-

sion making using RL such as ventilation-weaning protocols and customized drug administration

strategies have proven to be effective [12–15]. The application of RL to complex real-world exam-

ples in which the state and action spaces are highly dimensional and serve as a generalization of

the resulting learning to new experiences is highly process intensive and challenging.

The first advancement in deep RL combined reinforcement learning and deep neural networks

to achieve a complex state-action space, such as Atari 2600 games reaching professional human

level scores without any prior domain knowledge of the game [3]. The deep Q-network (DQN)
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algorithm combined reinforcement learning with a deep neural network to achieve a novel agent

that can learn a complex state-action space that achieves highly accurate outcomes. The challenge

of divergence due to using nonlinear function approximators such as neural networks is addressed

in this approach via two methods. The first is by using experience replay, which randomizes

the data and thereby removes correlations of sequential data (following i.i.d—independently and

identically distributed). The second method involves updating the Q function at regular intervals

rather than at every time step, as was the case in previous works. More recent RL work, the

advantage actor-critic (A2C), learns the approximation of both policy and value functions, and the

agent critically uses the value function to update the actions policy [16, 17]. The advantage value

in A2C determines the value of a specific action compared with an average action value at a given

state.

1.3 Overview and Contributions

In this work, we report on the use of reinforcement learning to address two challenges explained

above: i) to mimic the decision-making process of annotators for medical events to automate an-

notation and labeling, and ii) to develop a model-based compression model to automate the RL

model compression for faster conversion. Improvements in these two key areas together carry the

promise of improving both the accuracy and efficiency of performance (i.e., computational agility)

of the algorithms involved in generating alerts and alarms in ER. Toward solving the first problem,

the reinforcement agent learns to annotate alarm data based on annotations performed by an expert.

Our method demonstrates promising results on medical alarm data sets. We report on a compara-

tive training and evaluation of DQN and A2C agents using the data from monitoring devices that

is annotated by an expert. The initial results of the RL agents learning expert annotation behavior

are promising. The A2C agent performs better in terms of learning the sparse events in a given

state and thereby selects more correct actions compared with the DQN agent.

To address the second problem, we developed an RL model based on the data generated from

the MF approach to predict the reward value. The neural network compression can be a long,
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process-intensive task depending on the model size. A model predicting the reward value would

reduce the search space of exploring different network architectures, thereby shortening the train-

ing time. We have seen training times cut by more than 65%, which significantly saves on opera-

tional costs of AI model development. Although this model-based compression can be extended to

other domains, our experiments were primarily focused on medical imaging data of neural network

compression.

1.4 Overarching Thesis Statements

Across the dissertation, we follow the three-primary guiding principles:

1. T1-Data and sample efficient methods: By training models with different downsampling

of data, we can get insights into the effect on the model performance.

2. T2-Model generalization: By generalizing models to generic annotator behavior, we can

extend this work to any events annotation.

3. T3-Scalable models and algorithms: By designing the models to be domain agonistic, we

can scale the same model design and algorithms to broader healthcare applications.

At the end of the dissertation, we will review how the models and algorithms support these

theses. Together, this work represents one of the first attempts to combine innovative RL and AI

methods based on deep learning of precious data sets from actual clinical practice to address the

two challenging problems involved in the application of AI in healthcare settings.

1.5 Dissertation Outline

The remainder of this dissertation is organized as described in this section. In Chapter 2,

we present the summarized state-of-the-art literature for the current approaches in detecting false

alarms and neural network compression techniques. The applications of RL to the healthcare

domain are still sparse in the literature and practical applications. The limitations of the current
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approaches and challenges encountered are presented along with the AI opportunities to improve

patient outcomes and lower healthcare costs.

In Chapter 3, we describe the methods that detail the approaches of the RL algorithm used

in this work for detecting false alarms. We developed a DQN and A2C algorithm for detecting

false alarms using real ER data. In Chapter 4, we detail the methods for network compression.

In healthcare, medical devices have varied hardware configurations and computational limitations.

Our data-driven MB approach helps to automate the network compression and reduce training

time.

In Chapter 5, we present the experiments and results of this work. In addition, we discuss the

significance of the results. Using modest data sets, we were able to achieve promising results. In

Chapter 6, we summarize the thesis contributions, limitations of our work, and outline the future

directions.
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Chapter 2

Background

As with recent advancements in AI, innovation in the biological domain has experienced rapid

growth. Biological structures such as neural networks have historically provided excellent inspi-

ration for the development of corresponding AI methods. In this chapter, we will broadly discuss

the related work in biological domain, supervised and deep learning work in healthcare settings,

background work for false alarm detection, deep learning applications for model compression and

advancements in deep RL in the following sections.

2.1 Machine Learning Applications in Biological Domain

Reinforcement learning (RL) has become one of the core learning methods in recent applica-

tions of artificial intelligence (AI). Reinforcement learning is a prominent branch of AI, centered

around an environment that senses, observes, and interacts with an agent in the environment. The

environment, in turn, either rewards or penalizes the agent based on special conditions to attain

a specific goal. Applications of MF RL in omics (such as genomics and proteomics) are seen in

examples such as predicting operon in the bacterial genome, improving the accuracy of genome

sequence annotation, and assembling DNA fragments (reconstructing a DNA sequence using frag-

ments), and protein interaction networks. Hybrid RL of MF and MB approaches is applied in

medical imaging for initial detection/diagnosis of prostate cancer using transrectal ultrasound im-

ages [18]. In recent years, many applications of RL have been seen in hospital settings.

Clinical outcomes such as hospital readmissions, sepsis, length of stay, and dementia, among

others, have been predicted using AI methods [19]. Customized drug administration strategies

using deep learning and reinforcement learning have proven to be effective [13–15]. Supervised

learning prediction models of ventilation-weaning work has been developed in the past [20–22].

Niranjani et al. (2017) have introduced an off-policy RL approach to determine an optimal weaning

policy based on historical data [12]. There are several challenges with the historical data, such as
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its sparsity, noise due to artifacts, and interval censoring in which there is an interval range rather

than an absolute observation. The authors noted interval censoring to be one challenge in learning

a policy and its evaluation. The time to extubate is only available as upper bound, not the exact

time. Many RL approaches were recently reported in clinical outcome decision making based

on estimating the value given the patient’s state. Many supervised learning methods are cited for

ventilator-weaning prediction using logistic regression, naïve Bayes, and neural networks [20–22].

2.2 Machine Learning Applications in Healthcare Domain

Another important sub-domain of biological systems, Electronic health record (EHR) and elec-

tronic medical record (EMR) based healthcare systems, have matured over the past decades. The

volumes of data generated from various healthcare systems are rich sources for AI applications.

Many traditional supervised approaches have been used for detecting false alarms that depend on

feature engineering and the availability of ground truth (labeled) data [3, 10, 11, 23–25]. Wang

et al. 3 used a three-step approach of feature extraction, selection, and classification using arterial

blood pressure (ABP) and electrocardiogram (ECG) signals for detecting false alarms. The authors

found that direct raw signals yield poor results due to noise and unstable voltages. In response,

they extracted features using statistical methods that result in improved performance. A support

vector machine (SVM) is used for classifying the alarms into true and false categories. While this

work presents considerable performance, the results are limited to ECG arrhythmia alarms and

require significant feature engineering.

Although traditional approaches of false alarm detection have reasonable model performance,

they have many limitations, such as a narrow focus on one alarm/signal type (e.g., arrhythmia)

that cannot scale and is not generalized for various alarm types. Distant supervision is mapping of

entity relations from a known knowledgebase to a dataset that has unlabeled data used in natural

language processing [26]. Distant supervision methods alleviate the limited ground truth problem

but fall short of achieving high accuracies and generalizing to a wide variety of tasks [2]. Schwab

et al. [2] use a multitask network architecture to select auxiliary tasks and detect false alarms via
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distant supervision. Distantly supervised learning methods achieved promising results when the

labeled samples were less than 100 compared with the supervised approaches. This work is limited

only to false alarm detection caused by technical errors or artifacts. Another limitation of this work

is that it requires data sets that have multiple auxiliary tasks. Recent advances in deep learning and

its applications, which are beginning to emerge in reinforcement learning, hold a great promise in

this regard.

2.3 Deep Learning Applications in Model Compression

Embedding multiple intelligent models for healthcare applications on various medical devices

is a challenge and great opportunity for automation. Medical devices such as X-ray, MR, CT, and

ultrasound span a range of CPU/GPU configurations and varied inferencing speed requirements.

With hardware limitations and speed constraints, reducing the size of neural networks in medical

devices is becoming increasingly critical. In model compression, there is a trade-off between

compression ratio and model accuracy. Over the past years, researchers have developed model

compression techniques so that carefully hand-designed smaller architectures can achieve accuracy

similar to that of the original model. The largest problem of these approaches is that they require

manually designed network architecture, and it is a long, non-trivial manual process that often

requires domain experts. Moreover, it is difficult to determine whether the hand-crafted network is

designed optimally since the design space is typically large.

Automation of model compression techniques using reinforcement learning has been on the

rise during the past two years. Several conventional ways exist for compressing a neural network,

such as channel pruning [27], quantization [28], and knowledge distillation [29]. Pruning-based

approaches remove redundant weights and keep only the weights that contribute to the final output

[24]. Researchers have recently begun to use channel pruning, in which redundant channels are

eliminated from feature maps [27, 30, 31]. Quantization is another approach that constrains the

input from a large continuous set of values to output values in a countable or smaller set. By

quantizing network weights, such as through rounding and truncation, the sizes of the resulting
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networks are automatically decreased [28, 32]. The concept of knowledge distillation is employed

to train a given smaller network with respect to the input teacher network so that the performance

of two models is comparable [29,33,34]. However, these methods require manually selecting a list

of layers to be removed or shrunk. As the structures of the hidden layers are often unknown, such

manual processes are non-trivial.

Reinforcement learning approaches have been recently developed to automate the network

compression process. Ashok et al. [8] proposed an N2N learning, and He et al. [9] used an

AMC engine to reduce neural network sizes. However, most of these are model-free (MF) RL

approaches, which are time consuming and require the RL agent to explore a large space. Com-

pared with MF methods, model-based (MB) approaches require much less training time, but it is

difficult to build a model with little information about the environment [35]. Dyna architecture

[ [36] combines MF and MB by integrating planning, acting, and learning. Under such architec-

ture, a model learns from experience or from samples generated by MF and predicts rewards/state

values that are used in value functions or policy. In the meantime, MF RL iteratively updates

value/policy through trial and error. By including a learned model, Dyna RL accelerates the over-

all training time, since the learned model exploits the environment. The original papers on the

Dyna structure use a lookup table, known also as a Q-table, to represent the states, which are less

applicable to larger problems [36]. For exploring large space problems, the Q-learning approach

falls short due to performance constraints of the lookup table; instead, robust functional approxi-

mation approaches are more appropriate. We use an actor and critic algorithm that combines policy

search and value function estimation. Any similar functional approximation approach can be used

within this framework. To reduce the RL training time while producing comparable model com-

pression results, we developed a scalable automated network compression pipeline, particularly

for healthcare medical devices, as part of our production pipeline.

Applying RL to complex real-world examples in which the state and action spaces are highly

dimensional and generalizing the resulting learning to new experiences is process intensive and

challenging. In the reviewed literature, many traditional regression approaches or MF RL ap-
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proaches are applied. Model-based methods are seen rarely, as it is difficult to build an accurate

model of the environment and its dynamics. Per our proposed data-driven RL approach, the MB

component can be built based on available historical data sets and explores the MF approach as the

new data come in to improve the efficiency of the RL agent. The advantages of such hybrid RL

approaches include learning from the available historical data and building an efficient algorithm

combining the strengths of both MB and MF to learn a better policy. Model-free approaches are

often flexible and effectively learn complex policies, but their global convergence requires many

trials, resulting in high computational costs and training time. On the contrary, MB techniques

have a strong theoretical basis and generalize better if the dynamics of the system are known as

reported in the closed-loop control of Propofol [15]. Though practically efficient, model-based

approaches are sensitive to biases in the model. In addition, it is difficult to know the model’s

dynamics. Thus, both aforementioned approaches have their own advantages and limitations.

2.4 Deep Reinforcement Learning Advancements

Deep convolution networks are one of the approaches used as function approximators to eval-

uate the optimal action-value function in DQN. The challenge of divergence from using nonlinear

function approximators such as neural networks is addressed in this approach via two methods:

primarily by using experience replay, which randomizes the data and thereby removes correlations

of sequential data (following i.i.d—independently and identically distributed) and additionally by

updating the Q-function at regular intervals rather than at every time step, as was the case in pre-

vious works. The DQN agent is evaluated using an Atari 2600 platform that has approximately

49 varied tasks and compared the results against professional game tester scores. The results indi-

cate that the DQN agent outperformed the best existing RL methods on 43 of the games without

including any prior knowledge of Atari games used by other previous approaches [37]. The DQN

algorithm demonstrates that experience replay and convolutional function approximator applied to

an RL algorithm has achieved generalization-learning intelligence for varied tasks.
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Q-learning algorithms have the challenge of overestimation and sometimes learn unrealistically

high action values, as the algorithm includes a maximization step of overestimated action values,

which tends to prefer overestimated to underestimated values [38]. The max operator used in Q-

learning and DQN uses both same values to select and evaluate, thereby causing overestimates

of the values and resulting in overoptimistic value estimates. Decoupling the estimation function

into two components as action selection and action evaluation is the key difference between DQN

and double DQN 38. The actor-critic (A2C) learns the approximation of both policy and value

functions, and the agent critically uses the value function to update the actions policy [16, 17].

The advantage value in A2C determines the value of a specific action compared with an average

action value at a given state. In our current work, we report on a generic data-driven AI-assisted

annotation RL framework that can be applied for any medical event.

The scope of this research is to study the effects of an RL-based approach for detecting medi-

cal events using time-series data generated from medical machines such as anesthesia, ventilators,

and monitoring systems. Domain expertise for annotating is both time consuming and expensive.

Supervised and semi-supervised approaches of false alarm detection require feature engineering

and domain expertise to scale and generalize, which is data intensive and expensive. In this work,

we propose an RL approach to mimic medical domain expertise to annotate critical alarms and

automate such annotation work with high accuracy. A renewed interest exists in the broad applica-

tion of AI in clinical settings to realize its true potential. Reinforcement learning methods that can

capture the essential advantages of both MB and MF methods while containing their respective

disadvantages are crucial. In this context, the proposed RL methods would serve as a valuable

contribution to the state of the science of RL applications. Furthermore, such methods could soon

pave the way toward practical clinical applications for improved outcomes, which the healthcare

industry is anticipating with much anticipation.
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Chapter 3

Methods for Detecting False Alarms

Healthcare data suffers from both noise and lack of ground truth. The cost of data increases as

it is cleaned and annotated in healthcare. Unlike other data sets, medical data annotation, which is

critical for achieving accurate ground truth, requires medical domain expertise for an improved pa-

tient outcome. In this work, we report on the use of reinforcement learning to mimic the decision-

making process of annotators for medical events to automate annotation and labeling. The rein-

forcement agent learns to annotate alarm data based on annotations performed by an expert. Our

method reveals promising results regarding medical alarm data sets. We trained deep Q-network

(DQN) and advantage actor-critic (A2C) agents using the data from monitoring devices that is an-

notated by an expert. The initial results of these RL agents learning expert annotation behavior are

promising. The A2C agent performs better in terms of learning the sparse events in a given state,

thereby choosing more correct actions compared with the DQN agent.

To keep the RL problem space simple, we merged all the ground truths into alarms (clinically

significant, emergent, and urgent) and non-alarms (no clinical significance, and indeterminate)

annotated by an expert. We trained simple DQN and A2C agents to learn the alarms as either

true alarms or non-alarms based on the state represented by the patient’s physiological signals

generated by monitoring devices, as seen in Figure 3.1. Our proposed RL approach can learn

from the decision making of the domain expert without any assumptions of the system or domain

expertise. Once the RL agent achieves reasonable performance, we can replace the human expert

with the RL agent to annotate the data and have a human involved to validate the annotations output

by the RL agent.

3.1 Datasets

High-quality data sets containing annotations are critical to the development of deep learning

models. We used the data from the multi-phasic Push Electronic Relay for Smart Alarms for End
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Figure 3.1: Overview of data-driven RL annotation framework for medical events

User Situational Awareness (PERSEUS) program hosted by Brown University’s digital archive.

This data was generated from an adult emergency department (ED) for a regional referral medical

facility and level I trauma center using patient monitoring devices for a 15-bed urgent care area in

the ED. The PERSEUS data set, containing 12 months of data, is in its original .json format, is

de-identified, and is publicly available [39]. Each monitoring device data for a 24-hour period is

recorded in a single file. The following signals are recorded in each file:

• Electrocardiogram waveform (single lead EKG , Lead II) at 250 Hz

• Pulse oximetry waveform (PPG) at 125 Hz

• Vital signs (heart rate [HR], respiratory rate [RR], systolic blood pressure [SBP], diastolic

blood pressure [DBP], mean arterial blood pressure [MAP], and peripheral capillary oxygen

saturation [SPO2])

• Alarm messages (institution-specified alarms)

Kobayashi et al. (2018), as part of the PERSEUS program, developed subsets with annotation

for experimental (non-clinical) research known as Adjudicated/Annotated Telemetry signals for

Medically Important and Clinically Significant Events [ATOMICS], which are used in this research

[39]. Three non-consecutive weeks of critical alarm data are annotated by Kobayashi et al. (2018)

for clinical significance and severity, as observable below.

• Clinical significance
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– Alarm messages (Clinically significant [improvement or deterioration])

– No clinical significance

– Indeterminate clinical significance

• Clinical severity

– Emergent

– Urgent

– Non-urgent

– Indeterminate

The annotations of red alarms are based on EKG, PPG/SPO2, and BP signals from the monitoring

devices. The subset data streams consist of 10-minute slices surrounding the individual alarm

event, with 5 minutes of data prior to and 5 minutes of data after the alarm. We used the ATOMICS-

1 data set for training various RL agents and the ATOMICS-2 data set for testing the RL agents

developed as part of this research.

3.2 Preprocessing data

All the data is preprocessed and resampled in seconds and milliseconds. The data is im-

puted using the mean value of the resampled window to forward fill the data. The ATOMICS-1

and ATOMICS-2 data sets for 15 bedside monitors with vitals, annotations, and alarms are pre-

processed. The alarms and annotations are converted to one-hot encoding for processing. The

annotations are divided into two categories of actions (alarms/non-alarms) to simplify the prob-

lem space. The clinically significant and severe alarms (emergent, urgent) are categorized as

alarms, while the indeterminate and non-urgent events are categorized as non-alarms. The three

pre-processed data sets—vitals, alarms, and annotations—are then merged. The merge is per-

formed in two stages. In the first stage, alarms and annotations are merged by an inner join where

in, for each row of alarm there is a matching row of annotation. In the second stage, all rows
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from the vitals data are merged with matching annotated alarms data from the first stage. All rows

that matched from second merge stage are alarms and rows with no match are non-alarms. The

resulting rows are in a flattened file structure for use during training.

The data is highly imbalanced and sparse for critical clinically significant alarm events. Each

critical alarm is surrounded by 600 non-alarm events before and after. This results in an imbalance

ratio of 1:1,200; thus, for every alarm, there are 1,200 non-alarms. To rectify this imbalance,

we used the following downsampling techniques: n-0, n-1, n-3, n-5, n-10, and mixed. In n-0

downsampling, we retain only alarm data. In n-1, we retain 1 non-alarm before and after an alarm.

Similarly, in n-3, n-5, and n-10, we retain 3, 5, and 10 surrounding non-alarms, respectively. Mixed

(0,1,3,5,10) is a random sampling of these strategies combined.

3.3 Problem formulation

We define the RL problem formulation in this section. A Markov decision process (MDP) for

our alarm annotation RL problem is defined as follows:

• A finite state space S at each time step t for which the environment transitions to the next

state st ∈ S. st is a vector of six physiological variables described above at a given time t.

• An action space A where an agent takes an action at ∈ A at each time ste,p and the state is

changed to st+1. We are using historical data to mimic the environment. In our experiments,

when an agent takes the right action, the state transitions to the next state. In future work,

for real use-case scenarios of a hospital setting, there is medical intervention required once

the real alarm goes off, and the medical staff re-sets the alarm once the patient state reaches

normalcy. The actions are alarm and non-alarm (1,0)

• A scalar reward value of 1 for a non-alarm, 10 for an alarm, and zero for an incorrect choice.

The goal of the RL agent is to maximize its expected perceived reward by using known exam-

ples to learn an optimal policy.

17



3.4 Learning an optimal policy

Learning the best mapping (Q-function) between actions and states is the essence of reinforce-

ment learning. The optimal actions are learned primarily via two methods: value-based and policy-

based methods. We use a deep neural network to approximate Q value which is more scalable and

generalizable solution using both value and policy based approaches. We modeled two functional

approximators using a DQN with experience replay (value based [37]) and Actor-Critic networks

(policy based [16, 17]) for modeling the expert behavior to annotate the critical alarm events. The

DQN network takes in the six physiological variables as described above as inputs, and it outputs

a Q-value for each action (non-alarm, alarm) as presented in Equation 3.1.The parameters are up-

dated after every 10 steps of training within each epoch, with a batch size of 8, learning rate of

0.001, and an Adam optimizer. The action (a) selection for both methods is based on ǫ-greedy with

a starting value of 1 and annealed to 0.01 with a decay factor of 0.99975.

Q̂k(st, at)← rt+1 + γmax
α∈A

Q̂k−1(st+1, a, θ) (3.1)

The optimal policy π∗ for the DQN method after k iterations is given as follows:

π∗(s) = argmaxα∈AQ̂k(s, a) (3.2)

The second method we used to train our agent is A2C, which has two networks: one for learning

the advantage value of taking an action (actor network) given a state (s) as presented in Equation

3.3 and another for learning the goodness of the action by evaluating the state value (critic network)

v(s, w) where s is the state and w is the weights of the network.

A(st, at)← rt+1 + γVv(st+1)− Vv(st) (3.3)

The optimal policy for the A2C method after k iterations is given as follows:

πθ(s, a) = P (a|s, θ) (3.4)
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Both the actor and critic networks are updated every 10 time steps during an epoch, with a

batch size of 8. The networks use an Adam optimizer with a learning rate of 0.001 for the actor

network and 0.005 for the critic network. The DQN agent is a value-based algorithm and tends

to not improve the accuracy for the same number of training epochs compared to A2C agent.

The A2C network, on the other hand, generalizes the learning across the actions and state values

independently, resulting in better performance than that of the DQN network.

3.5 Neural network architecture

The A2C architecture is implemented using a sequential dense neural network with the actor

and critic as two separate networks as displayed below in Figure 3.2. We designed a shallow neural

network for actor and critic to evaluate the alarm prediction problem. The actor network takes the

state as input for each time step t and outputs the probability of each action. In our case, we have

two actions and hence two outputs. The critic network takes in the state as the input and outputs

the value of that state.

Figure 3.2: A2C–Network architecture overview

The DQN architecture is a single sequential dense neural network as displayed in Figure 3.3.

The network has two dense layers, in which the first layer takes in the state as input, and the final
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layer outputs the action value for each action. In our case, we have two actions and hence two

outputs. The two actions are alarm and non-alarm to detect if the state is critical or normal.

Figure 3.3: DQN-Network summary

3.6 Experiment design

All experiments were run on a MacBook Air with an Intel Core i5 1.8 GHz processor and 8

GB of RAM. Training the DQN and A2C agents was performed using ATOMICS-1 data, and all

agent evaluations were conducted using ATOMICS-2 data. Table 3.1 summarizes the ground truth

of the data set used in these experiments. Standard binary classification evaluation metrics such

as F1 weighted score, precision, and recall are used. Precision measures the positive predictive

value that is true positives out of total predicted positives. Recall measures the true positive rate

that is count of true positives out of all positives. The F1 weighted score is the harmonic mean

between precision and recall that is weighted by the label (alarms and non-alarms) instances. The

F1 weighted score is used to compare the performance of various agents trained at different epochs.

Python 3.6, Keras library, Sequential model API from Keras library are used for RL code and neural

network development. The online Wilcoxon calculator [41] for statistical significance tests.
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Table 3.1: Summary of ATOMICS datasets used for training and testing.

Data subset True Alarms Non-Alarms Total Alarms

Training ATOMICS-1 437 406 843

Testing n-0 ATOMICS-2 756 468 1224

Testing n-10 ATOMICS-2 756 23035 23791

High volumes of healthcare event data generated from medical machines such as anesthesia,

ventilators, and monitoring systems serve as a rich source for AI applications. Domain expertise

is required to annotate this large volume of medical events data that is both time consuming and

expensive. We find the RL approach for detecting false alarms to be data efficient, scalable, and

generalizable for annotation tasks, which are typically costly in the healthcare domain. We are

confident our RL agent can learn better and outperform our initial results with more training data

when the agent is exposed to additional newer states.

3.7 Benchmarking methods

We used a neural network based classification experiments for the ATOMICS dataset to bench-

mark our RL based experiments. A shallow sequential dense neural network to classify alarms as

a traditional binary classification problem is developed. The six features from the physiological

signals described above are input and one output target class value for classifying alarms. Two

hidden layers with twenty and four nodes respectively are intermediate layers. The class values for

alarms are 1 for alarm and 0 for non-alarm. The neural network summary is represented as seen in

Figure 3.4. Adam as an optimizer and rectified linear unit activation function are used in training

the DNN.

Support vector machine (SVM), a supervised machine learning (ML) algorithm have been

shown to perform well for classification tasks. SVM classifiers separate the classes using hy-

perplanes. We trained our ATOMICS-1 dataset using an SVM classifier to benchmark our RL

agent results. All benchmarking experiments are trained with n-0, n-3, and n-10 downsampling
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Figure 3.4: Binary classification-Network summary
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ATOMICS-1 datasets. The ML algorithms are trained for 5000 epochs for fair comparison with

RL agent training runs.

We used scikit-learn’s sklearn.svm package, and support vector classifier (SVC) classifier for

our SVM experiments. We experimented with poly, rbf, and linear kernels. We choose linear kernel

to present our results that gave the maximum AUC and F1-weighted score. We used the default pa-

rameters of the SVC classifier - SVC(C=1.0, cachesize=200, classweight=None, coef0=0.0, deci-

sionfunctionshape=’ovr’, degree=3, gamma=’autodeprecated’, kernel=’linear’, maxiter=-1, prob-

ability=False, randomstate=None, shrinking=True, tol=0.001, verbose=False) SVM performed the

best of for n-0 downsampling and performed poorly for n-3 and n-10 downsampling datasets. DNN

performance was reasonable for n-0 and performed as poorly as SVM for n-3 and n-10 downsam-

pling datasets. More details of the benchmark comparisons are seen in Chapter 5.

23



Chapter 4

Methods for model compression

Artificial intelligence (AI)-driven medical devices have created new excitement in the health-

care sector. While deeper and wider neural networks are designed for complex healthcare appli-

cations, model compression can be effective in deploying networks on medical devices that often

have hardware and speed constraints. Most state-of-the-art model compression techniques require

a resource-centric manual process that explores a large model architecture space to find a trade-off

solution between model size and accuracy.

Reinforcement learning (RL) approaches have recently been proposed to automate such a hand-

crafted process; however, most RL model compression algorithms are model free and require

longer time with no assumptions of the model. On the contrary, model-based (MB) approaches are

data driven and have faster convergence but are sensitive to bias in the model. In this study [40],

a new data-driven model compression method is developed based on the data generated from the

model-free (MF) method, as displayed in Figure 4.1. The MB part of the framework is the contri-

bution and scope of this dissertation, while the MF part is not within the scope of this dissertation.

The α as shown in the Figure 4.1 is a configurable parameter to choose between MB and MF. When

collecting new samples, we select lower value of α to leverage MF method (where α ∈ [0, 1]). We

exploit the MB component once we have enough samples collected to generalize for our dataset,

and the MB is performing at an expected minimum mean square error of 0.01 (MSE). Python 3.6,

Keras library, Sequential model API from Keras library are used for RL code and neural network

development. The online Wilcoxon calculator [41] for statistical significance tests.

We demonstrate a novel data-driven dyna like model compression (D3MC) algorithm [40]

for healthcare-application-related network architectures. The teacher networks were trained on

multiple imaging data sets. We then compared the D3MC framework with the model-free RL in

terms of model accuracy and training speed.
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Figure 4.1: D3MC - Overview of model compression framework

Many state-of-the-art networks, such as InceptionV3, are designed for ImageNet data sets that

have 1,000 classes; hence, they are wide and deep to achieve high accuracy. Many real-world ap-

plications might not be a 1000-class problem and do not require such complex networks. Adapting

state-of-the-art networks to our problem is easily achieved by D3MC through exploring the state

space and deriving a smaller network with similar model performance.

The D3MC network compression pipeline starts with training a deep neural network based on

training datasets. Such trained network is called teacher network. A smaller and reduced network

derived from the teacher network is called the student network. After creating the teacher network,

we use RL techniques to explore different student networks and return the top k models based on

the highest reward value. The final model is then selected based on the trade-off between model

performance and the compression ratio set by the decision-maker. The trade-off decision is based

on the medical device hardware specification and the model output requirement set by the decision-

maker. We picked the top model with the highest reward value to present our results and further
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discussion. Since the state-action space is usually huge, resulting in a large number of trial and

error steps to train an RL agent, we include a model-based approach along with the model-free to

speed up the RL training.

4.1 Data sets

A summary of the data sets used for developing the D3MC algorithm is provided below.

CIFAR-10: The CIFAR-10 dataset [42] consists of 10 classes of objects and is divided into

50,000 train and 10,000 test images (32x32 pixels). This data set provides an incremental level of

difficulty over the MNIST data set, using multi-channel inputs to perform model compression.

Chest X-ray Pneumothorax: We used publicly available data sets of chest X-rays with pneu-

mothorax disease from the NIH Clinical Center [43]. The scanned images represent more than

30,000 patients. Here, we used pneumothorax disease as a classification problem.

NLM Frontal: The National Library of Medicine (NLM) frontal data set can be used in a

binary classification to group chest X-ray images into frontal or non-frontal position views [44].

This data set contained approximately 8,300 images of size 256x256.

Ham10K: Human Against Machine (HAM) with 100,000 training images [45] contain 10,015

dermatoscopic images to classify pigmented skin lesions.

These four publicly available healthcare data sets are used in this study to automate model

compression tasks for productionizing AI models.

4.2 Problem formulation

We consider the standard RL setting in the framework (i.e., an agent interacts with an envi-

ronment over a number of time steps or trials). At each time step t, the agent receives a state st,

which is a reduced student network, and selects an action at based on its policy π. The policy π

is a mapping from st to at. at is a list of binary actions (0 to keep,1 to remove) corresponding to

each layer in the network. The agent then receives the next state st+1 as well as a reward rt. This
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iterative process continues for N time steps, where N is sufficiently large that the reward converges

(Algorithm 1). The detailed setting of RL framework is as follows:

Environment: Teacher network architectures. The environment accepts a list of layers to be

removed from the RL agent.

State: Network architecture derived from the teacher model.

Action: Remove layer or not ([1,0] for each layer).

Agent: Actor-critic based agent.

Optimization: Under actor-critic architecture, the policy is directly parameterized π(a|s; θ).

To optimize θ, the REINFORCE policy gradient algorithm from [46] is used which updates θ at

each time step t with respect to its gradient ascent on E[Rt]. Given that ∇θ log π(at|st; θ)Rt is an

unbiased estimator of∇θE(Rt), and subtracting a baseline can reduce its variances, we update the

policy parameters θ in the direction of

∇θJ(θ) = ∇θ log π(at|st; θ)(Rt − bt(st)) (4.1)

We use a learned estimate of the value function V π(st), the critic, as the baseline bt.

The MB component is a dense neural network for predicting the reward (Fig. 4.2). We use α to

weigh MF and MB components (where α ∈ [0, 1]). As the MB component generalizes, we decay

α to reduce the MF dependency. We experimented with various α (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3)

values. Based on our experiments, α of 0.3 for ResNet-18 and 0.5 for Inception-V3 gave the best

performance (highest reward) that are used for the rest of the discussion.

D3MC framework combines MF and MB approaches by integrating learning and planning.

During the RL training, we add MB step to cutdown the retrain time by predicting the reward

signal that was developed using the data samples generated by MF approach. As presented in

Figure 4.1, on the MB path, we build a simple dense neural network model to predict the reward

directly at decision time.

A decision-time planning is adapted for model based approach. We use smaller α to collect

data from the MF method for new architectures and models (see Equation 4.2), where α ∈ [0, 1]).
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As our MB becomes more generalizable, we decay α to put more emphasis on the MB RL as

a better MB model is built. We experimented with various α (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3)

values. Based on our experiments, α of 0.3 for ResNet-18 and 0.5 for Inception-V3 gave the best

performance.

D3MC =















Model-Free with probability 1− α

Model-Based with probability α

(4.2)

Model-Free Reward:

MF component learns an effective policy from rewards alone. Reward is a combination of

compression and accuracy ratio. We define MF reward [8] as :

R = C(2− C) ·
Accstudent

Accteacher

(4.3)

where C ∈ [0, 1) is the compression ratio defined as C = 1−
#paramstudent

#paramteacher

. Acc is the accuracy

of the model for evaluation set. Ashok et al. [8] use c(2-c) a non-linear compression function to

bias the policy to maintain accuracy while optimizing for compression.

Model-Based Reward:

The MB reward value is computed as a function of layer description as presented in Equation

4.4 using a four-layer dense deep neural network as shown in Figure 4.2.

R = f(xt) (4.4)

where xt = (at, l, k, ks, s, p, n), at ∈ {0, 1}(L1−1)×1 is the action list, l is the layer type, k is the

number of kernels, ks is the kernel size, s is stride, p is padding, and n is trainable parameters. The

MB model is developed for given network architecture, and the action list for a given architecture is

constant. Each input sample is a characterization of the architecture with the presence and absence

of layers. When there are no layers, the relevant features are zeros. Action 1 is to remove and 0
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to keep the layer. For example, if a network architecture has three layers, the action list for one

sample is [0,1,0], which results in a student architecture with the second layer removed.

The MB training loss is the mean squared error (MSE), and we use cross-validation to evaluate

the model. We trained the MB model for the desired output of MSE=0.01. We used 10-fold

cross-validation, which is a model validation technique that divides the data into ten subsets and

repeatedly trains on nine subsets retaining one holdout set for validation set until convergence.

Since there are no assumed distributions, such as Gaussian distribution, this function f is driven

by the data, which is more representative of the heuristic data structure.

Due to the various needs from different medical devices, we can output top k (k ≤ 30) com-

pressed models as well as their corresponding model sizes and accuracy. The framework gives

more flexibility to choose the ”best” compressed model based on the device requirements and

constraints.

4.3 Neural network architecture

The MB architecture is implemented using a sequential dense neural network. A shallow net-

work architecture is designed to evaluate the network’s ability to learn the reward prediction. The

summary of the neural network is displayed in Figure 4.2. The input to the network can be any

network architecture model properties, as described above for xt. Each input sample is a charac-

terization of the architecture with the presence and absence of layers. When there are no layers

the relevant layer features are zeros. The model has two hidden layers with 80 and 20 nodes,

respectively. The model estimates the reward value which is input to the agent for updating the

policy.

4.4 Training time comparison

To perform a fair comparison, all the experiments were trained on Tesla V100 GPUs. In the

RL training, we used an Adam optimizer with a learning rate of 0.001. Based on our experiments,

an α of 0.3 for Resnet-18 and 0.5 for InceptionV3 produced the best performance. We set the same
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Figure 4.2: MB - Model network summary

training steps for MF RL and D3MC to avoid bias. For the same numbers of training epochs, our

D3MC exhibits higher reward values than the MF method with relatively lower training time.

The goal of our D3MC method is to search and find the smallest possible network architecture

from a given pre-trained teacher network architecture, while producing the best accuracy possible.

We demonstrate that our method performs well on a variety of healthcare data sets and model

architectures. The training time of our hybrid algorithm is significantly less for both the ResNet-

18 and InceptionV3 architectures compared with MF RL. For example, it took over 120 hours (five

days) to train InceptionV3 using the MF-only approach, while our algorithms shortened this time

by approximately 60%, thus requiring only two days with the integration of MB component that

predicts the reward to update the policy instead of re-training the student network. It is clear that

our hybrid data-driven approach is more efficient than the MF RL approaches. Development and

integration of the MB component is the scope of this dissertation work.
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Algorithm 1 Algorithm of D3MC

1: s0 ← Teacher model

2: for i = 1, ...N do

3: for t = 1, ..L1 do

4: at ∼ πremove(st−1; θremove,i−1)
5: st ← T (st−1, at)
6: Sample u∗ ∼ Uniform(0, 1)
7: if u∗ > α then ⊲ Model-Free

8: R← r(sL1
)

9: else ⊲ Model-Based

10: R← f(at, l, k, ks, s, p, n)

11: θremove,i ← ∇θremove,i−1
J(θremove,i−1)

12: Output: Student model.
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Chapter 5

Results and discussion

We present the results from the implementations of enhanced RL models for the two previously

defined challenges faced in healthcare AI applications: i) annotation of healthcare data by a do-

main expert is expensive and ii) medical devices have varied hardware configurations and limited

computing resources. The results are presented and discussed in detail in this chapter.

5.1 AI assisted annotator using RL

As detailed in Chapter 1, the purpose of an AI-assisted annotator is to mimic the expert-

annotated behavior. We trained DQN and A2C agents using the data from monitoring devices,

annotated by an expert. More than 1,000 simulations were conducted using Python. The initial

results of these RL agents learning expert-annotated behavior are discussed in detail in the follow-

ing sections. The A2C agent performs better in terms of learning the sparse events in a given state,

thereby choosing more correct actions compared with the DQN agent. The following sections

detail the experimental results from this study.

5.1.1 Comparing the optimizers Adam and RMSProp

The performance of various agents trained at different epochs was evaluated and compared for

DQN and A2C using F1-weighted scores, as seen in Figure 5.1. The x-axis in Figure 5.1 represents

the training epochs at which the agent was saved and evaluated with respect to the test data set. The

y-axis is the F1 weighted score, which is the harmonic mean between precision and recall that is

weighted by the label (alarms and non-alarms) instances. F1-score is used in binary classification

to compute the combined metric of precision and recall. For example, if the classifier is randomly

making choices the f1-score would be 0.5, and if the classifier is only predicting alarms always,

then the f1-score would be 0.33. We used n-3 downsampling (three non-alarms surrounding an

alarm) for training and tested on ATOMICS-2 dataset.
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As can be seen from Figure 5.1, the Adam optimizer was found to be more stable than RM-

SProp with n-mixed downsampling. The RMSProp in red and yellow lines fluctuate resulting in

low F1 scores, whereas Adam in blue and green seems steadier in terms of F1 score. While both

Adam and RMSProp are learning rate adaptive methods, we see Adam has smaller fluctuations

compared to RMSProp. We therefore continued with Adam for the rest of the experiments.
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Figure 5.1: Comparison of Adam and RMSProp optimizers for the DQN and A2C networks.

5.1.2 Comparison of results of agents from downsampling ranges

As described in the methods section, the alarms data is highly imbalanced, and we have experi-

mented with various downsampling ranges, such as n-0, n-1, n-3, n-5, n-10, and mixed. We trained

A2C agents with the various downsampling ranges data and evaluated the agents saved after the

first 1,000 epochs. The agents’ performance is compared for the various ranges, as displayed in

Figure 5.2, using an F1 weighted score against an n-10 test data set to determine how well the

agents generalize for non-alarm data.
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Figure 5.2: Comparison of agents trained on downsampling sample ranges against an F1 score tested on

n-10 sampling alarms, excluding n-10 trained agents (10 non-alarms surrounding each alarm).

The A2C agents generalize better when the training data has mixed downsampling ranges com-

pared with a single downsampling, as displayed in Figure 5.2 for the first 1,000 epochs. The agents

trained on n-0, n-1, and n-3 sampling ranges perform poorly when tested with n-10 downsampling

dataset. The agents trained on n-5 and n-mixed downsampling datasets perform better when tested

with n-10 sampling.

These results reveal that exposing the agents to newer and more number of states improve

the performance and generalize better with higher sampling dataset. The blue line indicates agents

trained on only alarms data and tested on n-10 (10 non-alarms surrounding an alarm) downsampled

data display an F1-score of 0.1. In contrast, when agents are trained with n-mixed downsampling,

we see that the black line improves over the training epochs. We chose to use mixed downsampling

for the section’s remaining experiments, as it can scale to any data sampling strategy. In the future,

when we extend this work to predictions, for real-time monitoring scenarios, we will encounter

both non-alarm data and alarm data.
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5.1.3 Comparing the results of A2C and DQN agents

The A2C agent performs better than DQN in our initial results comparing the sensitivity. In

analyzing the DQN agent’s results, the sparse critical alarm events are not detected, and the agent

settles in a local minimum of maximizing the rewards. In the following section, Table 5.1 displays

the results, summarizing the performance metrics for the top three agents for the A2C and DQN

algorithms. An agent is saved after every 100 epochs. Top three agents results from 50 agents

are summarized as seen in the Table 5.1. We ran the experiments for 5,000 epochs. The Table

5.1 columns summarizing the agents performance are defined as TP-true positive; FN-false nega-

tive; FP-false positive; TN-true negative and AUC-area under the curve. F1-score is the harmonic

mean between precision and recall. Sensitivity is the true positive rate as seen in Equation 5.1

and specificity is the true negative rate Equation 5.2. All the performance metrics of RL agent

(TP, FN,FP,TN) are treated equally. The top three agents’ results based on the highest AUC and

sensitivity are displayed in tables for further discussion.

sensitivity =
TP

TP + FN
(5.1)

specificity =
TN

TN + FP
(5.2)

The significance of the results, as presented in Table 5.1, is as follows. The A2C consistently

have higher sensitivity scores, greater than 0.774 and with a high of 0.896. This indicates that

the A2C agent can detect 90% of the true alarms, whereas the DQN agent can detect only 76%

true alarms. The DQN agent has low false positives which might reduce the alarm fatigue at a

cost of missing many critical alarms. It can be seen that overall, A2C performs better in terms of

sensitivity, which is important in detecting critical alarms.

The DQN agent consistently performs better on the specificity, so it detects the non-alarms

more accurately, which is the secondary objective in terms of model performance. We cannot miss
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any critical alarms in the healthcare domain. We emphasize high sensitivity, which means fewer

critical alarms are missed.

Table 5.1: Comparing the results of A2C and DQN agents with n-mixed downsampling and milliseconds

as sampling period tested on ATOMICS-2 alarms dataset. The top three agents’ results are listed per group.

Best results are highlighted in bold.

Agent TP FN FP TN AUC F1-score Sensitivity Specificity

A2C

586 171 192 276 0.681 0.702 0.774 0.589

599 158 210 258 0.671 0.695 0.791 0.551

679 78 268 200 0.662 0.697 0.896 0.427

DQN

576 181 165 303 0.704 0.718 0.760 0.647

348 409 63 405 0.662 0.609 0.459 0.865

254 503 38 430 0.627 0.533 0.335 0.918

5.1.4 Statistical significance tests for A2C and DQN performance results

We used the Wilcoxon rank-sum test to measure the median population difference between the

two sample groups (A2C, DQN). The A2C and DQN agents are generated by saving the model

for every 100 training epochs of 5,000 total epochs. We tested these 50 agent samples against the

ATOMICS-2 data set to generate AUC values. The AUC summary statistics for A2C and DQN

are described in Table 5.2. The hypothesis tests if there is significant difference between the two

agent’s AUC values for 50 agents. Our hypothesis is presented below in Equation 5.3:

H0 = Median(Difference) ≤ 0

Ha = Median(Difference) > 0

(5.3)
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Table 5.2: Summary statistics of A2C and DQN agents.

Agent Samples Mean STDev

A2C 50 0.578 0.069

DQN 50 0.521 0.043

The significance level is α = 0.05, and the p-value is p = 0. Since it is observed that p = 0 <

0.05, we reject the null hypothesis. Therefore, we conclude that there is enough evidence to claim

the population median of differences is greater than 0, at the 0.05 significance level which means

A2C has higher median AUC than DQN for the 50 samples.

5.1.5 A2C Agents training curves and reward signals

All results discussed in this section are based on A2C agents, as they perform better than DQN

agents as seen in Table 5.1. The training curves for the first 200 epochs in Figure 5.3 a) displays

the average score per epoch during training using n-1 downsampling (one non-alarm surround-

ing a real alarm). Figure 5.3 b) displays the average score per episode during training using n-5

downsampling (five non-alarms surrounding a real alarm). Figure 5.3 c) displays the average score

per episode during training using n-10 downsampling (10 non-alarms surrounding a real alarm).

Figure 5.3 d) displays the average score per episode during training using n-mixed downsampling

(1,3,5, or 10 non-alarms surrounding a real alarm).

The score is a cumulative average reward gained by the agent at the end of each epoch. The

agent is learning to choose better actions steadily. The scalar rewards are different for each of the

figures due to the different number of non-alarms in each data set.

5.1.6 Performance metrics for the best A2C agents

In the following section, Table ??table:a2cresults displays the best agents trained on the ATOMICS-

1 data set and tested on the ATOMICS-2 data set for only alarms data. The results are displayed for

n-1 and n-mixed downsampling. Although n-1 samples appear to perform reasonably compared
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Figure 5.3: Four examples of the A2C training curves tracking the agent’s average score. (a) Average score

per episode using n-1 downsampling. (b) Average score per episode using n-5 downsampling. (c) Average

score per episode using n-10 downsampling. (d) Average score per episode using n-mixed downsampling.
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with n-10, when we test our n-1 agents against n-10 (i.e., exposing them to many non-alarms), they

perform poorly (blue line of Figure 5.1). All our experiments in the following sections use only

n-mixed downsampling with a sampling period in milliseconds.

In our work, we focus on learning the decision making of an expert annotator to discern non-

alarms from critical alarms. Our initial results reveal that we can achieve a 72.9% F1-score perfor-

mance level compared with an expert annotator. Agents perform better when they are exposed to

many new states. We see the agents perform best with mixed event downsampling and a sampling

period of milliseconds. It can be seen from the results in Table 5.3 that the results of n-mixed

downsampling with a sampling period of milliseconds perform the best. The two best performing

agents’ receiver operating characteristic (ROC) are displayed in Figure 5.4. The decision maker

will choose the operating point based on the business application using these ROC curves.
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Figure 5.4: Top two agents ROC curves. (a) Agent with 0.8 sensitivity. (b) Agent with 0.88 sensitivity.

5.1.7 Reward signal of A2C agents for different discount factors

The discount factor in reinforcement learning considers the relative importance of the future

rewards, where a 0 value indicates that the agent learns only immediate rewards as opposed to a

value of 1, for which it considers future actions. Figure 5.5 a, b, and c illustrate the training curve

examples of the average score for the three discount factor values 0.0, 0.5, and 0.9, respectively,

for the first 200 training epochs.
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Table 5.3: Summary of results for various agents tested on ATOMICS-2 alarms dataset. The top three

agents’ results are listed per group. Best results are highlighted in bold

Training

sample
range

Sampling

period TP FN FP TN AUC F1-score Sensitivity Specificity

n-1
(1 non-alarm
surrounding

alarm)

milli
seconds

599 158 215 253 0.665 0.691 0.791 0.540

602 155 233 251 0.665 0.691 0.795 0.536

599 158 217 251 0.663 0.689 0.791 0.536

seconds

659 97 220 248 0.700 0.731 0.871 0.529

612 144 197 271 0.694 0.717 0.809 0.579

617 139 206 262 0.687 0.713 0.816 0.559

n-mixed
(0,1,3,5,10
non-alarm

surrounding

alarm)

milli
seconds

670 87 256 212 0.669 0.703 0.885 0.452

606 151 196 272 0.690 0.713 0.800 0.581

594 163 168 300 0.712 0.729 0.784 0.641

seconds

625 131 274 194 0.620 0.653 0.826 0.414

595 161 199 269 0.680 0.703 0.787 0.574

586 170 178 290 0.697 0.715 0.775 0.619
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The y-axis values vary as we use n-mixed downsampling with a sampling period of millisec-

onds. The average cumulative score received by the agent is the same across the three discount

factor values for the first 200 training epochs. The significance of these training curves is that the

RL agent steadily learns the reinforcement signal and therefore the correct action. Training curve

in Figure 5.5 a with a discount factor of 0.0, considers immediate reward only and does not take

future rewards into account. The agents with discount factor 0.0 are called myopic.
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Figure 5.5: Three examples of the A2C training curves tracking the agent’s average score for different

discount factors using n-mixed downsampling. (a) Average score per episode with 0.0 discount factor of

future rewards. (b) Average score per episode with 0.5 as discount factor. (c) Average score per episode

with 0.9 as discount factor.

5.1.8 Performance metrics of A2C agents for different discount factors

In the following section, Table 5.4 displays the performance metrics for the best trained agents

for the three different discount factors. The discount factor of 0.5 has the highest true positives and

sensitivity compared with the 0.0 and 0.9 values. The discount factor is determined by the decision

maker of the application regarding how much importance should be given to future reward signals.

We do observe a significant difference in the choice of the discount factor. We see that the

discount factor of 0.5 results in the best sensitivity of 89.6% but has relatively low specificity,

which results in high false alarm rate. The trade-off between specificity and sensitivity is performed

by the decision maker for the application. We provide the range of options in the results for the

decision maker to make an informed decision.
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Table 5.4: Summary of A2C agents results for various discount factors with n-mixed downsampling and

milliseconds as sampling period tested on ATOMICS-2 dataset. The top three agents’ results are listed per

group. Best results are highlighted in bold.

Discount
factor TP FN FP TN AUC F1-score Sensitivity Specificity

0

599 158 192 276 0.690 0.712 0.791 0.589

602 155 200 268 0.683 0.707 0.795 0.572

457 300 123 345 0.670 0.659 0.603 0.737

0.5

586 171 192 276 0.681 0.702 0.774 0.589

599 158 210 258 0.671 0.695 0.791 0.551

679 78 268 200 0.662 0.697 0.896 0.427

0.9

670 87 256 212 0.669 0.703 0.885 0.452

606 151 196 272 0.690 0.713 0.800 0.581

594 163 168 300 0.712 0.729 0.784 0.641
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5.1.9 Comparison of agents with rewards only and TD option

The A2C algorithm of Equations 3.1 and 3.3 have temporal difference (TD) error components

that contribute to the transition probabilities when time steps are involved in the environment.

Since our data samples are i.i.d and not correlated, we experimented in removing the TD error

component. In this section, Table 5.5 displays the performance summary results for the two ap-

proaches. IIt can be seen that both approaches have similar AUC and F1-score and do not have

a significant difference. In such cases we can go with the original A2C with a TD error, which

performs better with a higher sensitivity of 89.6%. The reward-only approach appears to perform

reasonably well but not as well as the original approach with the TD component. The reward-only

approach and the discount factor of 0.0 are equivalent. When the TD component is multiplied by

discount factor of 0.0, it results in a reward only option.

Table 5.5: Comparing the results of A2C agents with only reward and with reward + TD error tested on

ATOMICS-2 dataset. The top three agents’ results are listed per group. Best results are highlighted in bold.

Approach TP FN FP TN AUC F1-score Sensitivity Specificity

Reward
only

589 168 190 278 0.686 0.706 0.778 0.594

548 209 160 308 0.691 0.701 0.723 0.658

523 234 147 321 0.688 0.692 0.690 0.685

Reward +
TD error

586 171 192 276 0.681 0.702 0.774 0.589

599 158 210 258 0.671 0.695 0.791 0.551

679 78 268 200 0.662 0.697 0.896 0.427
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5.1.10 Statistical significance tests with rewards + TD error and rewards

We used the Wilcoxon rank-sum test to measure the difference between the sample groups

(reward + TD error, rewards only) of the two populations. The two groups of agents are generated

by saving the model for every 100 training epochs for a total of 5,000 epochs. We tested these

50 agent samples against the ATOMICS-2 data set to generate AUC values. Our hypothesis is

presented below:

H0 = Median(Difference) ≤ 0

Ha = Median(Difference) > 0

(5.4)

The significance level is α = 0.05, and the p-value is p = 0.986. Since it is observed that

p = 0.986 ≮ 0.05, we fail to reject the null hypothesis Ho. Therefore, we conclude that there is

not enough evidence to claim that the population median of differences is greater than 0, at the

0.05 significance level which means the agent is not learning much from the TD error component

in this case.

5.1.11 Testing model generalizability

The results of the agent trained on a single sample range of n-1 and tested on n-10 downsam-

pling using ATOMICS-2 dataset are displayed in Table 5.6. are promising compared to traditional

classification approaches seen in Table 5.7 group n-10.

Table 5.6: The results of A2C agents trained on n-1 downsampling and tested on n-10 downsampling

ATOMICS-2 dataset. The top three agents’ results are listed per group. Best results are highlighted in bold.

TP FN FP TN AUC F1-score Sensitivity Specificity

594 163 13430 10609 0.613 0.593 0.784 0.441

481 276 10592 13447 0.597 0.692 0.635 0.559

547 210 12747 11292 0.596 0.618 0.722 0.469
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5.1.12 Model interpretability

Healthcare domain demands model interpretability as it involves human safety. In the recent

years, many techniques such as saliency maps, activation heat maps and visualization techniques

have been developed to explain model predictions to gain users trust. Neural network learning is

represented in terms of the weights learned by the network per each layer. Figure 5.6 displays the

weights of the six physiological signals across the twenty-four nodes of the layer contributing to the

Q-value prediction. We see all the input signals have weights greater than zero, thereby indicating

influence on the detection of alarms outcome. We see the EKG ( blue line), and the SpO2Pleth

(orange line) signals have more influence than the other input features. The two waveform signals

(EKG, SpO2Pleth) capture more information at a lower temporal granularity (millisecond) than

the other features that are captured at higher temporal granularity (second).
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Figure 5.6: A2C neural network model weights.

45



5.1.13 Q plots

In this section, we show four examples of the Q plots with PPG waveform signals. The best

A2C RL agent is used to infer alarms for a single bed monitor data that has alarms and false

alarms. We picked 200 milliseconds window slices to plot these results. The x-axis is the time

steps in milliseconds. The y-axis is the normalized value of the PPG waveform signal in blue and

the Q-values of alarms predicted by the RL agent are in red. The green value is the ground truth as

annotated by the expert. The annotations are provided only for events that occur at the trigger of

an alarm and are not continuous values as shown in the plot. We represented our actions as 0 for

non-alarm and 1 for alarm. The other five variables (EKG, HR, SpO2, SBP, and DBP ) do not vary

much across the 200 millisecond window and thus not represented in these plots.

The Q-values are probabilities that the RL agent learns during the training for each action.

Figure 5.7 a) displays the plot for the true positive example, where the Q-value varies along with

the varying PPG signal with a high average Q-value indicating an alarm. In Figure 5.7 b), for the

true negative example we do see a lower Q-value. Figure 5.7 c) displays an average Q-value around

0.5 suppressing the false alarm. Figure 5.7 displays the false positive example where the Q-value

has a higher average than 0.5. The default threshold of 0.5 is used to discuss the results. In reality,

this threshold is decided by the decision-maker and the type of problem.

The Q-values are learnt from the state representation of all the six physiological signals. The Q-

plot in Figure 5.7 a) displays the Q-values trending upward towards the alarm event by estimating

the future reward, which is the significant value of using RL approach in alarm detection problem.

The preliminary experimental results show promising results. The action taken by the agent will

get medical attention and intervention in a real use-case scenario. In this research work, we use

historical data for the agent to learn the state transitions, and we see the change in q-values as

shown in the Q-plot after the alarm to go down, indicating there is a state change to the non-alarm

state.
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Figure 5.7: Four examples of the alarm Q plots with pulse oximetry (PPG) waveform signals (SpO2Pleth).

(a) True positive example. (b) True negative example. (c) False alarm suppressed example. (d) False positive

example.
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5.2 Benchmarking RL and ML results

We benchmarked our top A2C agent results against DNN and SVM binary classification results

for the ATOMICS dataset. We visualized the data using a correlation matrix before training the

ML classifiers (DNN and SVM). The correlation heatmap is displayed in Figure 5.8. Correlation

heatmaps are one of the visualization technique that helps to see the association between the vari-

ables. The SpO2 feature is strongly correlated with the class variable as seen in the heatmap. The

DNN is a shallow four-layer network with two hidden layers and an output layer to predict alarm

and non-alarm. We used SVM with a linear kernel and default parameters in the svm library.
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Figure 5.8: Correlation heatmap.

The benchmarking experiments are trained on n-0, n-3, and n-10 downsampling ATOMICS-

1 dataset and tested on the ATOMICS-2 alarms dataset. The results are presented in Table 5.7.

SVM performs the best for the n-0 sampling range compared to the RL A2C and DNN methods.

SVM is a well-known ML non-probabilistic classifier and predominant classification method in
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ML literature. For a simple classification task, SVM is probably the best option as seen from the

n-0 group results. If we want to scale the problem, meaning if we have more data with non-alarm

as seen in n-3, and n-10, SVM performs poorly, indicating that SVM cannot generalize better on

newer datasets. A2C performs better as the sample range is increased and learns the new state space

and action mapping. We found that the n-mixed downsampling approach with different, randomly

selected ranges gives the best results as seen in the last row of the Table 5.7. The correlation

heatmap for A2C agent results is displayed in Figure 5.9. The SpO2 feature is strongly correlated

with the Q-value of the alarms as seen in the heatmap.

A2C agent with n-mixed downsampling has the highest sensitivity, which is critical in medical

domain while keeping the false positives low. A2C agent detects true alarms with 88.5% sensitivity

and 45.2% specificity. SVM is a non-probabilistic binary linear classifier that separates the two

classes based on the trained examples. A2C methods use a probabilistic approach with a non-

linear neural network representation of the feature space. From the initial results we see A2C does

much better when we increase the sampling ranges as shown in Table 5.7.

We analyzed our best agent performance with high sensitivity as a target and measured the

reduction of false alarms. IIn summary, our promising results for the best agent with a sensitivity

of 88.5% is able to reduce the false alarms rate to 45.2%, as seen in Table 5.7. We conclude

this RL application of AI-assisted annotation results and discuss our second challenge of model

compression.

5.3 Model compression results for model-based approach

Model compression techniques facilitating an efficient deep neural network on hardware and

speed constraint devices have more demand and opportunities in the healthcare industry. In this

study, we introduced a hybrid RL model compression framework that trains a reinforcement learn-

ing agent, iteratively collects samples/experience, and integrates the MB and MF approaches. This

automated compression algorithm significantly reduces RL training time and outputs optimal com-

pressed models. The scope of this dissertation is limited to the MB methods employed in this study.
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Table 5.7: Comparing the performance results of RL and ML methods tested on ATOMICS-2 dataset. The

top three agents’ results are listed per group (n-0,n-1,n-10). Best results are highlighted in bold.

Sample
range Network TP FN FP TN AUC F1-score Sensitivity Specificity

n-0

A2C 627 130 255 213 0.641 0.673 0.828 0.455

DNN 505 252 125 343 0.70 0.696 0.801 0.516

SVM 657 100 193 275 0.727 0.754 0.867 0.587

n-3

A2C 403 354 98 370 0.661 0.633 0.532 0.790

DNN 8 749 7 461 0.497 0.222 0.101 0.985

SVM 0 757 0 468 0.5 0.211 0.00 1.00

n-10

A2C 108 649 17 451 0.553 0.371 0.142 0.963

DNN 8 749 7 461 0.497 0.222 0.101 0.985

SVM 0 757 0 468 0.5 0.211 0.00 1.00

n-mixed
proposed

A2C 670 87 256 212 0.669 0.703 0.885 0.452
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5.3.1 Training time comparisons

We benchmarked our data-driven dyna-like model compression (D3MC) to MF RL on ResNet-

18 and InceptionV3. The training time comparison is displayed in Figure 5.10.

InceptionV3ResNet18

Figure 5.10: Comparison of training time in hours.

The training time of hybrid RL is significantly less for both the ResNet-18 and InceptionV3

architectures compared with MF RL. For example, it required more than 120 hours (five days) to

train InceptionV3 using the MF-only approach, while our D3MC shortened this time by approxi-

mately 60% (to two days). It is clear that our D3MC is more efficient than the MF RL approaches.

5.3.2 Model compression performance

Our experimental results demonstrate comparable model performance. Table 5.8 illustrates

the network compression ratio and model accuracy of the optimal compressed networks. The MF

RL rows has an α = 1 (no MB component). The D3MC rows, α is 0.3 for ResNet18 group and
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Table 5.8: Summary of results from model compression experiments.

Archi-
tecture

Training
Data Method

MB
Training

Data

Training

Time(hrs.) Teacher Acc. ∆ Acc.

Resnet
-18

Cifar10
Model-Free − 48 86.4% 2.94%

D3MC Cifar10 17 84.4% 2.75%

Frontal
Model-Free − 53 99.5% 0.3%

D3MC Cifar10 16 99.0% 0.4%

Ham10k
Model-Free − 52 82.55% 3.29%

D3MC
Cifar10
+Frontal 14.8 81.47% 2.073%

Inception

-v3

Frontal
Model-Free − 120 99.6% 0.28%

D3MC Frontal 48 99.59% 0.21%

PTX
Model-Free − 120 82.2% 1.96%

D3MC Frontal 52 81.99% 2.85%

Ham10k
Model-Free 83 83.69% 3.16%

D3MC
Frontal
+PTX 27 81.99% 3.042%

0.5 for InceptionV3 group. Both MF RL and D3MC heavily reduced the size of ResNet-18 and

InceptionV3, with minimal impact to model performance. The differences between MF RL and

D3MC are small compared with the teacher accuracy. With a slight loss of compression ratio and

model accuracy, D3MC provides a significant gain in training time (presented in Table 5.8), faster

convergence, and improved generalization across different data sets.

We further conducted a paired Wilcoxon rank significance test of the layer removal across

the data sets. We failed to reject the null hypothesis that the paired three groups are identical,

with p-values of 0.72 (PTX versus Ham10k), 0.93 (Frontal versus PTX), and 0.74 (Frontal versus

Ham10k). This observation suggests that a common layer removal pattern exists across the tested

healthcare data sets.

Our model-based compression neural network learned to accurately predict the accuracy for a

given student architecture with an MSE of 0.01. The overall D3MC network learned that initial

layers are more critical in learning the class information and the end layers are not contributing
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to any learning. In InceptionV3 network we see the last two big blocks of layers are removed

that contribute to more than 40% of the compression factor. The D3MC approach enables us to

streamline our model development across medical devices and network architectures. A renewed

interest exists in broad application of AI in healthcare settings to realize its true potential. Rein-

forcement learning methods that can capture the essential advantages of both MB and MF methods

while containing their respective disadvantages are crucial. In this context, our promising results

can contribute to breakthroughs for many healthcare applications and contribute to the state of the

science of RL applications.
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Chapter 6

Conclusions and future direction

Key contributions of this work centered around designing and demonstrating that application

of deep reinforcement learning to healthcare domain can significantly improve the quality of real-

time decision making in care for better patient outcomes. This work serves as a step toward solving

the challenges of medical domain data, such as ground truth availability, for building deep learn-

ing models. With the increase of data availability and AI applications, deploying deep learning

models on hardware constraint medical devices can be automated with a data-driven model com-

pression framework using reinforcement learning. Our methods are data efficient, scalable, and

generalizable.

Healthcare applications using RL are still sparse, as the medical domain is highly complex and

requires domain expertise. Domain expertise is needed to annotate high volumes of medical events

data, which is both time consuming and expensive. Supervised and semi-supervised approaches

of false alarm detection require feature engineering and domain expertise to scale and generalize,

which is data intensive and expensive. In this work, we propose an RL approach to mimic medical

domain expertise to annotate critical alarms and automate such annotation work with high accu-

racy. We find the RL approach to be data efficient, scalable, and generalizable for annotation tasks,

which are typically costly in the healthcare domain.

Compared with other medical event time series data, this work is distinct, as it does not depend

on any longitudinal data. The modeled data pertains to the events at the time of hospitalization.

Supervised and semi-supervised learning approaches for identifying clinically false alarms are

significantly more difficult than those caused by artifacts and technical errors, as clinical reasoning

requires deep knowledge of a patient’s high-level physiological state and a significant amount of

domain knowledge.

We analyzed our A2C best agent performance with high sensitivity as a target and measured the

reduction of false alarms. Our promising results for the best agent with a sensitivity of 78.4% can

55



reduce the rate of false alarms by 64.1%. Furthermore, our best agent can achieve 88.5% sensitivity

in detecting true alarms and 45.2% specificity in identifying false alarms compared with domain

experts after analyzing only one week’s worth of data. We are confident that our RL agent can

learn even better and outperform our initial results with additional training data when the agent is

exposed to more newer states.

Artificial intelligence (AI)-driven medical devices have created new excitement in the health-

care sector. While deeper and wider neural networks are designed for complex healthcare appli-

cations, model compression can be effective in deploying networks on medical devices that often

have hardware and speed constraints. Most state-of-the-art model compression techniques require

a resource-centric manual process that explores a large model architecture space to find a trade-off

solution between model size and accuracy. Reinforcement learning (RL) approaches have recently

been proposed to automate such a hand-crafted process; however, most RL model compression

algorithms are model free, which require more time with no assumptions of the model. On the

contrary, model-based (MB) approaches are data driven and have faster convergence.

In conclusion, to build smart medical devices, a need exists for efficient model compression

techniques. Our experiments have demonstrated promising results on two standard networks used

for classification. In this research, we developed an MB model compression algorithm integrated

with an MF compression framework to automate such a model compression effort to production-

alize AI model development. We evaluated our algorithm on a variety of imaging data, from

dermoscopy to X-ray, on different popular and public model architectures. Compared with model-

free RL approaches, our approach achieves faster convergence, exhibits better generalization across

different data sets, and preserves comparable model performance.

We demonstrate that our data-driven framework integrates the MB and MF approaches to sig-

nificantly reduce RL training time and output optimally compressed models. We reveal that our

method performs well on a variety of healthcare data sets and model architectures. The D3MC

framework improved our compression pipeline efficiency and reduced the training time by more

than 65%. We demonstrated that our RL agent generalizes across different data sets for a given
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architecture and compresses the InceptionV3 network by more than 55% while maintaining com-

parable model performance.

6.1 Limitations and challenges

Reinforcement learning applications have been seen more advanced in the gaming community

than in real-world applications. Many RL examples exist for games, while few real-world appli-

cation examples exist. Reinforcement learning problem formulation is the most challenging task

regarding how to design an environment and agent to learn the expected behavior.

In this false alarm detection work, we are limited by two weeks of ground truth data availability.

We limited our experiments to train and test our agents to one week’s worth of data. Due to a lack

of any similar work of RL application to annotate data, we were unable to benchmark our results

with respect to any prior work. To simplify the RL problem space, we merged our critical alarms

categories into alarms and non-alarms. The results listed in Chapter 5 are on test data; the actual

results may vary on the new dataset. Domain expert annotators used duration as the key criteria

to discern the alarms. We did not include this key missing piece of information that should be

included in future work.

Similarly, in our MB model compression method, we were unable to benchmark our experi-

ments due to a lack of prior MB methods for compression. In addition, we limited our experiment

to only a few architectures and one machine learning problem, classification.

6.2 Key contributions from this work

The overarching research principles this dissertation offers is follows:

T1 - Data and sample efficient methods: We believe that the big-data generated from medical

devices can be rich source of AI healthcare applications for a high quality patient outcomes. We

demonstrate how to efficiently use the data for broader healthcare applications. Mixed downsam-

pling trained agents have superior performance metrics compared with any single downsampling
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approach in this highly imbalanced data set of false alarms. Our approach is more data efficient

and is scalable to other tasks.

T2 - Model generalization: In the past, false alarm detection has been focused on specific

alarm types requiring domain knowledge. We believe that mimicking the domain expert-annotation

behavior, our models generalize better compared to the traditional ML models. We show the agents

performance promising initial performance on a completely new set of data.

T3- Scalable models and algorithms: Throughout this dissertation, we believe it is impor-

tant to scale models and demonstrate that by analyzing the model performance results and the

significance, we can scale models and algorithms for broader applications.

Our approach is data efficient, scalable to multiple tasks, and less computationally intensive.

All experiments were run on a MAC Book air laptop. Furthermore, such methods could soon pave

the way to many practical, non-clinical applications for an improved process to lower the costs of

annotation and generate more labeled data for healthcare applications.

6.3 Future direction

Our initial results for detecting false alarms are promising, and we would like to extend this

work to specific alarm types (emergent, urgent, indeterminate) and prediction tasks in our future

work. We would like to incorporate the duration of events to achieve improved performance, as

this was the key expert annotation behavior missing from the current work. We would like to

extend this work to other data sets that are publicly available for false alarm detection. The current

research work can be applied to any event detection problem that follows the Markov decision

process.

In our model compression automation framework, to avoid potential overfitting, we intend to

incorporate early stopping in our RL algorithm. One idea is to adopt a compression ratio and/or

accuracy constraint. As healthcare projects have different requirements in terms of model sizes

and accuracies, such constraints can be used as a terminal state for early stopping. Additionally,

we will explore further individual network components that drive compression factors to improve
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the efficiency and generalization of the RL agent across various network architectures. We would

like to explore compression techniques for segmentation and other machine learning problems.

Our RL methods for both false alarm detection and model compression work are generic and can

be applied to any domain in which sequential decision making is partially random and partially

controlled by the decision maker.
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