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ABSTRACT 

 

AGE-DEPENDENT DECLINE IN Kv4 CHANNELS, UNDERLYING MOLECULAR 

MECHANISMS, AND POTENTIAL CONSEQUENCES FOR COORDINATED MOTOR 

FUNCTION 

 

The voltage-gated potassium channel, Kv4, is widely expressed in the central nervous 

system and it is responsible for a highly conserved rapidly inactivating A-type K+ current. Kv4 

channels play a role in the regulation of membrane excitability, contributing to learning/memory 

and coordinated motor function. Indeed, recent genetic and electrophysiological studies in 

Drosophila have linked Kv4 A-type currents to repetitive rhythmic behaviors. Because a 

deterioration in locomotor performance is a hallmark of aging in all organisms, we were interested 

in examining the effects of age on Kv4/Shal channel protein. 

In this dissertation, I use Drosophila as a model organism to characterize an age-dependent 

decline in Kv4/Shal protein levels that contributes to the decline in coordinated motor performance 

in aging flies. Our findings suggest that accumulation of hydrogen peroxide (H2O2) is amongst the 

molecular mechanisms that contribute to the age-dependent decline of Kv4/Shal. We show that an 

acute in vivo H2O2 exposure to young flies leads to a decline of Kv4/Shal protein levels, and that 

expression of Catalase in older flies results in an increase in levels of Kv4/Shal and improved 

locomotor performance. We also found that the scaffolding protein SIDL plays a role in 

maintaining Kv4/Shal protein levels and that SIDL mRNA declines with age, suggesting that an 

age-dependent loss of SIDL may also lead to Kv4/Shal loss. In behavioral studies, we found that a 

knockdown of SIDL resulted in a lethal phenotype, leading to a large decline in Drosophila 
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eclosion rates, an event that requires coordinated peristaltic motions. Expression of SIDL or 

Kv4/Shal in this SIDL knockdown genetic background resulted in a partial rescue; these results are 

consistent with a model in which SIDL and Kv4/Shal play a role in coordinated peristaltic motions 

and are required for successful eclosion. 

The results presented in this dissertation provide new insight into the possible molecular 

mechanisms that underlie an age-dependent decline in Kv4/Shal protein. We identify two 

contributing factors: 1) ROS accumulation, and 2) the interacting protein SIDL. Our data also 

suggests that this age-dependent decline in Kv4/Shal levels is likely to be conserved across species, 

at least in some brain regions. Because Kv4/Shal channels have been implicated in the regulation 

of long-term potentiation and in repetitive rhythmic behaviors, the loss of Kv4/Shal may contribute 

to the age-related decline in learning/memory and motor function. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Overview 

As a species, the average human lifespan is 85 years of age. Life expectancy, however, has 

risen from the mid-40s to the mid-70s just during this past century1,2. Along with a rising number 

of individuals surpassing 65 years, there has been an associated increase in chronic brain-related 

ailments affecting the population3–5. The topic of aging is quite broad. Research areas include 

understanding cognitive abilities, anatomy, physiology, cellular regulation, and molecular changes 

with the goal of understanding the effects of aging on an organism6–10. During aging, there are a 

series of physiological changes that lead to brain-related conditions including sarcopenia, 

age-related dementia, Parkinson’s, and Alzheimer’s diseases7,9. Together, these age-related 

ailments affect locomotion, learning, and memory performances at the organismal level. These 

diseases are typically attributed to changes in the brain, both structural and functional2. Ion 

channels and receptors choreograph brain synaptic activity through the movement of ions. In this 

chapter, I provide background on the effects of age on locomotor performance and on cellular 

function, and the consequences of age-related intracellular oxidation. I provide background on a 

series of ion channels that undergo age-related effects in protein levels and modulation. I also 

present a historical perspective on voltage-gated potassium currents, and I introduce Kv4 channels, 

which are the proteins I examined during aging in this dissertation. 

 

1.2 Age-Effects on Locomotor Performance 

The age-dependent decline in locomotor performance is a phenomenon that is 

well-established across species11. Age-driven changes in the neuromuscular system have been 
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described to be, in part, the culprit. In humans, the nervous system experiences age-related effects 

that result in a decline of neuronal and motor nerve fiber densities, which contributes to a decrease 

in the effectiveness of neurotransmitter signaling and slower nerve conduction velocities12. Rhesus 

monkeys have shown an age-dependent decline in walking and jumping13. In laboratory rodents, 

age-dependent decline in physical activity is well-known11. More specifically, 2-year old mice 

were found to have significantly less locomotor performance than 1-year old mice in wheel 

running experiments14. In rats, a 50% reduction in locomotor performance has been measured 

between 6 and 32 months of age while testing exploratory activities13. In other laboratory rodent 

aging studies, the Mongolian gerbil and the deer mouse have been found to also have decreased 

locomotor performances in wheel-running and home-cage activity experiments, respectively15,16. 

In the invertebrate world, an age-dependent decline in locomotor movement has been observed in 

nematodes, houseflies, and fruit flies17–21. More specifically, in a comparative Drosophila study, 

researchers found that adult flies from two different populations – Congo and France – had a 

decline in walking speed when measured between 2 and 13 days of age22. This decline in motor 

function is likely to be triggered by a decrease in nervous system function, which can contribute 

to a possible loss of muscle density. Indeed, in a recent study measuring motor activity in C. 

elegans, researchers found that a progressive decline in motor neuron function contributed to the 

age-dependent loss of motor function even before any loss of muscle mass could be measured23. 

 

1.3 Cellular Functions Impacted by Age 

Cellular DNA mutations accumulate during aging. DNA mutations in germ cells are the 

basis for the evolutionary process and mutations in somatic cells can lead to detrimental effects on 

the function of the organism. Some mutations can occur during DNA replication where errors are 
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accidentally made by the molecular machinery24. Other mutations can arise from external sources 

such as UV radiation and chemical exposure25. In general, these endogenous and exogenous factors 

can lead to a wide variety of DNA damages including point mutations, single- and double-strand 

breaks, epigenetic alterations, genomic transpositions, chromosomal aberrations, and telomere 

shortening, all of which can affect cellular performance26. The accumulation of DNA damage to 

the point where repair is unsustainable is, in part, a hallmark of aging25–27. 

Gene expression is affected throughout development and aging. The variations in 

expression display themselves in the form of phenotypic changes that occur in organisms as they 

reach adulthood and as they reach old age. Particularly, gene expression can increase, decrease, or 

stay unchanged28. Researchers have performed comparative analyses from cDNA libraries derived 

from mRNA of young and old rats to identify genes that are upregulated or downregulated 

throughout aging28. Studies in rats have shown that the amount of mRNA molecules transported 

from the nucleus to the cytoplasm is negatively impacted by age, probably due to decreased mRNA 

synthesis, a lack of proper polyadenylation of mRNA, and errors in the trafficking of mRNA from 

the nucleus through the nuclear pore29–31. Furthermore, an increase in transcriptional noise – a 

process that yields a heterogeneous transcriptional response across cells of the same genetic 

composition to the same stimulus – increases with age leading to a wider variety of transcriptional 

responses which might be detrimental to an organism26,32,33. Two highly conserved signaling 

pathways play an important role in aging: Insulin/IFG-1 Signaling (IIS) and target of rapamycin 

(TOR). These pathways are responsible for regulating gene expression through aging in response 

to stress and nutrient availability34,35.  

Proteostasis is a term used to describe the maintenance of properly functioning protein. 

Protein turnover is critical for proper proteostasis36. A decline in proteostasis during aging is 
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characterized by the emergence of protein aggregates due to a disruption in the proteostasis 

network which includes the machinery for translation, chaperone proteins, and the principal 

protein degradation systems – proteasome and lyzosome37. Chaperone proteins, most of them from 

the heat-shock family of proteins (HSP), are at the vanguard of monitoring and ensuring proper 

protein folding. One important role of chaperone proteins is to aid other proteins to achieve a 

proper functional conformation, with the goal of counteracting aggregation of nascent protein38,39. 

There is also evidence of protein refolding by chaperones when misfolding occurs40. When a 

protein has been misfolded or incorrectly modified, and cannot be refolded, it is the role of 

chaperones to target the non-functional protein for degradation41,42. Unfortunately, both the 

ubiquitin-proteasome and autophagy-lysosome systems experience an age-dependent decline in 

activity43–45.  

Age-dependent mitochondrial dysfunction has also been described. The “mitochondrial 

damage-energy loss” hypothesis of aging was described by Medvedev in 199046. In this 

hypothesis, age-dependent cellular injury by reactive oxygen species (ROS) occurs on the 

mitochondrial membrane and DNA, and it occurs especially in neurons47. This would lead to a 

decline in properly functioning mitochondria, and a decrease in readily available ATP molecules. 

With an increase in age, there is a reduction in mitochondria biogenesis as muscle studies have 

demonstrated in comparisons between young and 50-year plus men47. In a rat study, the enzymatic 

activity of heart mitochondrial oxidase was measured and found to be significantly diminished in 

older subjects48. Analyses of primate neocortex enzymatic activity of mitochondrial complex I and 

IV have shown that they also decline in activity with age49. These studies on the enzymatic activity 

of mitochondrial complexes were confirmed in mice, in which the activity of complex V – ATP 

synthase – was also found to decrease with age47. The age-dependent decrease in activity of 
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multiple critical mitochondrial enzymes is likely what leads to its dysfunction. Furthermore, in a 

recent study, Takihara and coworkers (2015) used mouse retinal ganglion cells (RGCs) as a model 

for measuring mitochondrial axonal transport in the central nervous system (CNS)50. Their 

findings reveal that mitochondrial axonal transport decreases with age; suggesting that loss of 

proper mitochondrial transport in CNS might be involved in the age-dependent dysfunction of 

mitochondria. 

 

1.4 Oxidation During Aging 

1.4.1 ROS effects on nucleic acids 

DNA base damage was first proposed as the root of aging in 196751. As an organism ages, 

there is an accumulation of DNA damage that is both exogenous and endogenous in origin, and 

that this damage is likely to interfere with transcription52. Internal sources of this damage include 

genome reorganization53, genomic instability24, and improper DNA repair25. ROS have been 

largely considered a principal source of general DNA damage during aging. The primary site of 

ROS production is the mitochondria, where ROS are a byproduct of oxidative phosphorylation, 

even though other sources, such as from peroxisomes and cytochrome p450 enzymes, have also 

been described54–56. Because mitochondrial DNA (mtDNA) is closest to the source of ROS, it is 

thought that mtDNA damage occurs at faster rates than nuclear DNA damage, leading to the 

age-dependent mitochondrial dysfunction which causes a decline in ATP synthesis47,55,57,58. This 

is not to say, however, that nuclear genomic DNA does not undergo any oxidative damage, which 

was originally proposed in 1956 by Harman and experimentally confirmed in 2004 by Hartman et 

al.56,59. Indeed, 30 genes involved in synaptic plasticity, ranging from ion channels to calcium-

binding proteins to vesicular/protein transport60,61, were studied during human brain aging by Lu 
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and coworkers (2004). Their results show that, although there is some minor damage to exons, 

DNA damage had a higher occurrence in the promoter region of many of the genes expressed in 

the prefrontal cortex after 40 years of age, and was greatest in the promoter region of all measured 

brain genes after 70 years of age, leading to an age-dependent decrease in mRNA levels58 . This 

age-dependent decline in mRNA levels of various genes is conserved across species. In a 

microarray analysis of over 6,000 mouse genes, Lee and coworkers (2000) found that 10-15% of 

those in neocortex and cerebellum have lower mRNA levels with age62.  

Moreover, results showing that some mRNAs increase with age have been published. In a 

study of over 11,000 genes focusing in the hypothalamus and cerebral cortex where researchers 

found that there is indeed an alteration in the expression levels of many genes with an increase in 

age; while mRNA coding for DNA-repair related proteins decreased with age, mRNA coding for 

protein degradation increased with age63. Their results also suggest that a measured increase in 

mRNA coding for mitochondrial enzymes involved in ATP production in the hypothalamus leads 

to an increase in ROS and, therefore, a greater effect of oxidative stress on the cells. In 

hippocampal studies, Blalock and coworkers (2003) found, in rat microarray analyses correlating 

gene expression to memory-related task performance, that almost half of the measured genes 

decreased with age, while the other half increased with age and negatively impacted memory 

performance64.  

 

1.4.2 ROS effects on protein 

 The age-dependent increase in ROS, likely caused by a deteriorating mitochondrial 

electron transfer, also leads to an increase in the probability of protein oxidation. This, along with 

the aforementioned decline in activity of the protein degradation machinery, results in an 
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accumulation of oxidized protein with age. Carney and coworkers (1991) were the first to observe 

an accumulation of oxidized protein in the cortex of gerbils. They administered a daily dosage of 

the spin-trapping chemical N-tert-butyl-a-phenylnitrone, a short-lived free radical interactor, with 

the goal of decreasing the amount of oxidized protein in the brain of aged gerbils. They observed 

a decline in the amounts of oxidized protein along with an increase in temporal and spatial memory 

performance in aged animals65. Today, it is well known that the age-dependent increase in ROS 

lead to oxidation of proteins which can cause them to become dysfunctional. Typical oxidative 

effects involve peptide bond cleavage catalyzed by free hydroxyl radical interaction with the 

carbonyl carbon, amino acid residue side chain oxidative modifications such as carbonylation, and 

disulfide bridge interactions via cysteine sulfhydryl group oxidation, leading to protein 

misinteraction and aggregation66. The accumulation of these aggregates leads to an increase in the 

cellular stress response and likely degradation of the toxic structures from protein aggregates. 

Unfortunately, as mentioned above, both proteolytic – proteasome and lysosome – systems 

become dysfunctional with age43–45. 

Indeed, work published by Friguet and colleagues (2000) has shown that the age-dependent 

decline in proteasome activity is, in part, due to oxidative modifications67–69. In neuronal studies, 

Keller et al. (2000) have described how chemically increasing oxidative damage on the spinal cord 

of young rats triggers a decline in proteasome activity similar to that measured in normal aging 

rats. Their results support the idea that the decline in proteolytic activity due to ROS exposure 

leads to its dysfunction, and possibly also contributes to neuronal cell death70. In regards to the 

lysosome, it was almost 50 years ago that it was first described that the lysosomal membrane is 

quite sensitive to oxidative damage71. Truly, these age-dependent oxidative effects are likely to 

cause changes in the pH within lysosomes affecting their stability and activity72. Kurz and 
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coworkers (2008) described how many of the proteins degraded by the lysosome are 

iron-containing. Iron, being highly susceptible to oxidation from the highly diffusible ROS, leads 

to the slow formation of lipofuscin – non-degradable pigment granules which increase in volume 

with age. This age-dependent lysosomal saturation with lipofuscin compromises the activity of the 

degradative activity of the machinery73.  

 

1.4.3 Regulation of intracellular ROS levels 

 There are a variety of enzymes that play a critical role in the regulation of reactive oxygen 

species (ROS) described in the literature. Superoxide dismutase 1 & 2, and catalase participate in 

ROS degradation while nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 

generate ROS. 

 Superoxide dismutase (SOD) was first described in the late 1930s as a copper-containing 

protein. While attempting to gain an understanding of the role of copper in erythrocytes, Mann and 

Keilin (1939) found that a copper-containing protein was present in blood74. It was not until 20 

years later that Markowitz and colleagues (1959) were able to isolate and purify this 

copper-containing protein75. A decade after, McCord and Fridovich (1968, 1969) published two 

reports characterizing this copper-containing protein. They described that the enzyme can catalyze 

the dismutation superoxide anion radicals into molecular oxygen and hydrogen peroxide (H2O2), 

and re-named this enzyme superoxide dismutase76,77. 

Today, we know of three members that comprise the family of SOD enzymes. SOD1 is a 

copper and zinc containing enzyme that is found in the cytosol of cells, SOD2 is a manganese 

containing enzyme that is found in the mitochondria of cells, and SOD3 is a copper and zinc 

containing enzyme that is exclusively targeted extracellularly and which is the least studied thus 
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far78,79. Studies in Saccharomyces cerevisiae have shown that a mutation in either or both 

SOD1/SOD2 causes a significant decrease in cell viability80. In Drosophila, a SOD1-null mutant 

(cSODn108) was observed to have impaired performance in metabolizing superoxide anion, which 

correlated with reduced longevity81. In another report, Kirby et al. (2002) used the 

daughterless-GAL4 driver to express SOD2-RNAi, which resulted in undetectable levels of SOD2 

in immunoblot experiments using whole adult males. It was described that this successful RNA 

interference caused high levels of mitochondrial oxidative stress and an enhanced onset of adult 

fly mortality82. A SOD2 missense mutant, named SOD2bewildered, has also been characterized in 

flies that results in detrimental effects during neurodevelopment and an anomalous brain 

morphology, and a reduced lifespan83. Overexpression of both SOD1 and SOD2 under the control 

of the constitutive actin5C promoter also resulted in a decreased life-span84. In contrasting studies, 

the overexpression of human SOD1 in, specifically, motor neurons lead to an increase in fly life 

span by 40%85. The results of these studies reflect the importance of this family of enzymes 

organismal viability and suggests that an age-dependent increase in ROS levels may have 

detrimental effects. 

 Catalase was first recognized as a ubiquitous enzyme by Loew as early as 190086. The role 

of catalase is to dismutate harmful H2O2 into water and molecular oxygen87. While these enzymes’ 

role is to reduce the levels of intracellular ROS, there are other enzymes that produce ROS as a 

by-product or for purposes of intracellular signaling. 

The role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 

family of enzymes is to produce ROS. NOX-dependent ROS production is quite varied and still 

under study; though originally thought to be only damaging, ROS are just beginning to be 

understood as a group of highly reactive molecules that are also involved in cellular signaling. The 
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NOX family is comprised of at least 7 different members identified so far: NOX1-5 and DUOX1-2. 

Much of what is currently known comes from studies using mouse knockout models of NOX 

protein function where different phenotypes such as loss of balance and hypothyroidism were 

described88. More specifically, NOX2 has been described to contribute to antimicrobial activity 

during phagocytosis89, while NOX3 has been shown to be essential for proper development of 

components in the vestibular system90–92. DUOX has also been described to play a role in defense 

from microbial defenses, but in the airway epithelium; it has been characterized as necessary for 

the production of hydrogen peroxide which is used for iodination of the thyroid hormone as well88.  

The expression of the various oxidases from the NOX family in a variety of tissues, allows 

for them to play an important role in the upkeep of the vascular system from angiogenesis to tone93. 

In neuronal in vitro studies, researchers have made use of N-acetylcysteine, a ROS scavenger, to 

measure the effects of a decrease of ROS on a variety of neuronal development signaling pathways. 

Their results suggest that ROS generated by NADPH oxidases might play a role in neuronal cell 

differentiation94–96. In a study targeting NOX directly, Nitti and colleagues (2010) used the 

chemical DPI to block NOX activity to demonstrate that the product of the enzyme, possibly 

hydrogen peroxide, is involved in neuroblastoma cell differentiation97. In vivo mouse studies have 

reported that ROS produced by NADPH oxidases are present in the hippocampus and their 

localization responds to stimulation of hippocampal slices, suggesting that the ROS produced by 

these enzymes plays a role in LTP induction98. More specifically, NOX has been recently 

described to act as a regulator of the cytoskeletal organization in the hippocampus, by maintaining 

ROS physiological levels in vivo; this organization is critical for maintaining neuronal polarity and 

proper axonal length99. In Drosophila, a recent report published by the Landgraf laboratory (2017) 

uses the neuromuscular junction (NMJ) of larvae as a model to understand the role of H2O2 in 
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neuronal structural plasticity. Their results suggest a direct relationship between ROS levels and 

signaling involved in synaptic terminal growth at the NMJ100. 

 

1.4.4 ROS effects at the organismal level 

Physiological ROS levels must be maintained as they play an important role in learning 

and memory, lifespan, and locomotor performance. An excess or a scarcity of these molecules can 

have a detrimental effect in any of the aforementioned behavioral functions. Indeed, in their recent 

paper, Haddadi et al. (2014) measured an increase in Drosophila ROS with age which correlated 

to an age-dependent loss of memory retention in adult flies. They suggested that this increase in 

ROS is possibly due to a decrease in the enzymatic activity of the antioxidant enzymes catalase 

and superoxide dismutase101. In addition, in vitro studies in mammalian hippocampus treated with 

superoxide scavenging molecules or with overexpression of SOD have shown impairments in LTP 

induction suggesting that it is the superoxide anion that is involved in processes related to learning 

and memory102–105. 

In mice, one study has been published where a Catalase knockout mouse was generated. 

The researchers reported that, though this mouse has no evident health problems up to 1 year of 

age and shows no apparent signs of clinical acatalasemia, they are highly susceptible to oxidative 

tissue injury, including deficiencies in oxidative phosphorylation after brain trauma106. Contrasting 

studies in which transgenic mice overexpressed Catalase showed increased lifespan; researchers 

also reported that the onset of cardiac and visual age-related diseases were also delayed107,108. 

Earlier studies on the effects of ROS on Drosophila lifespan have mostly focused on the 

detrimental oxidative effects of ROS at the organismal level and usually go in hand with the 

free-radical theory of aging109–112. In Drosophila, a study isolating and characterizing Catalase 
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mutant flies reported that, when  catalase activity is decreased by 97%, lifespan is significantly 

reduced113. Interestingly, though overexpression of Catalase confers greater resistance to oxidative 

stress, and showed increased lifespan in mice, increased lifespan in Drosophila occurs only if 

catalase is co-expressed with SOD114–116. Research has suggested that, in tandem with SOD 

enzymes, the role of catalase is to catalyze the peroxide from SOD reactions into harmless 

products. Moreover, when both enzymes are co-expressed in motor neurons to above wildtype 

levels, there is typically an increase in life-span117,118. Some contradicting reports, however, have 

been recently published. Sanz and coworkers (2010) noticed that, though an increase in 

mitochondrial ROS (mtROS) correlates to a decreased lifespan, it does not necessarily affect fly 

longevity directly. In their report, they expressed the enzyme alternative oxidase from the 

urochordate Ciona intestinalis to decrease mtROS but they were unable to measure an increase in 

lifespan119. In a similar study, Scialò et al. (2016) determined that Drosophila expression of NDI1 

dehydrogenase leads to an enhanced reduction of coenzyme-Q which causes a reverse electron 

transport in complex I of the mitochondria, culminating in increased levels of mtROS. Their results 

show that increased mtROS production via complex I causes an increase in Drosophila lifespan120. 

 ROS have also been described to influence Drosophila locomotor performance. Long and 

colleagues (2009) fed an antioxidant containing grape extract to flies to determine how ROS play 

a role in a Drosophila model for Parkinson’s disease. In their report, the extract improved the loss 

of locomotor performance of the model, suggesting that ROS are probably involved in this 

neurodegenerative disease121. In another study, Jimenez-del-Rio and coworkers (2010) restored 

Drosophila locomotor performance, in flies with high paraquat-induced ROS levels, by 

administering polyphenol antioxidants122. In a more recent study, a genetic screen was carried out 

to identify candidate genes linked to oxidative stress and locomotor phenotypes. Researchers used 
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the molecule menadione sodium bisulfite (MSB) which, unlike paraquat or H2O2, is a milder yet 

persistent inducer of chronic oxidative stress. Though their goal was to identify genes, their 

procedure led to the confirmation that oxidative stress in Drosophila leads to their loss of 

locomotor performance123. Taken altogether, the age-dependent increase in ROS has detrimental 

effects on Drosophila physiology and reports suggest that administration of neuroprotectant 

antioxidants ameliorate the reduced locomotor performance. I propose that ROS have an effect on 

Kv4 which, in turn, may have an effect on Drosophila locomotion. Chapter 4 of this dissertation 

describes the effects of ROS on Kv4 protein levels and describes the involvement of the enzyme 

catalase on Kv4 protein levels and an amelioration of locomotor performance in older flies. 

 

1.5. Channel Proteins Affected by Age 

1.5.1. AMPA and NMDA ionotropic glutamate receptors are affected with age 

AMPA (-amino-3-hydroxy-5-methyl-4-isoxazole propionate) and NMDA 

(N-methyl-D-aspartate) receptors respond to pre-synaptic vesicle release of the amino acid 

L-glutamate by opening and allowing post-synaptic cation permeability124,125. Functionally, 

AMPA receptors typically allow for the influx of the monovalent cation Na+ into the cell which 

causes localized depolarization. In response to this depolarization, the Mg2+ ion blocking the 

channel of neighboring NMDA receptors is dislodged, permitting influx of Ca2+ 125–127. These two 

channels control the majority of mammalian neuronal excitatory transmission and have been found 

to decline in levels with age58,128–133. 

Interestingly, scientists initially attempted to understand the effects of age on the levels of 

the amino acid L-glutamate rather than the levels of receptors themselves. Reports showed 

controversial results. Indeed, while some papers indicated an age-dependent decline of this amino 
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acid by ~12-17% in different regions of Fisher 344 rats134,135, others reported that L-glutamate does 

not change in level with age as measured in different brain regions of both Wistar rats and 

post-mortem human brain tissue136,137. To test the effects of age on cerebral cortex mRNA, 

Carpenter and coworkers (1992) injected mRNA from either 24 or 3-month old rats into Xenopus 

oocytes and measured voltage-gated currents to determine if there were any changes associated 

with mRNA from different aged rats. They found decreased L-glutamate induced currents in those 

oocytes with older mRNA, suggesting that mRNA from older rats coding for these channels might 

lead to lower expression of neurotransmitter receptors in the cortex128. In human studies, Lu and 

others (2004) used DNA microarray analyses on the prefrontal cortex of 30 post-mortem 

individuals, aged between 26 and 106 years, to compare mRNA levels of 12,000 genes; they 

reported that mRNA coding for the GluR1 AMPA subunit and R2A NMDA subunit both show a 

2-fold decrease in subjects 40 years of age or older58. 

Studies attempting to understand the effects of age on AMPA receptors in different 

mammalian model systems were later published. In a recent review, Henley and Wilkinson (2013) 

suggest that the age-related decline in AMPA receptors could be caused by an age associated defect 

in receptor trafficking, and that this may have an effect on long-term potentiation (LTP) and 

depression (LTD) in the hippocampus, which are involved in learning and memory138. In rat 

hippocampal studies, a report showed that, though GluR-1 mRNA levels were not affected by age, 

the levels of the GluR-1 subunit of AMPA receptors decline with age as measured in 24-month 

old animals130. Also in the hippocampus, but using mice as a model organism, Magnusson and 

Cotman (1993) used autoradiographic density analyses of AMPA receptors ligand binding and 

reported that levels of AMPA receptors decrease with age in BALB/c and C57B1 mice strains139. 

Bahr et al. (1992) reported that in the brain telencephalon of BALB/c mice there is an 
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age-dependent decline in GluR AMPA subunit levels when compared to mice at 3 and 25 months 

of age129.  

Most of what is known about the effects of age on L-glutamate-dependent ionotropic 

channels, however, has been studied with NMDA receptors. In rodents, early reports described an 

age-dependent decline in NMDA receptors in different brain regions as a reason for age-related 

cognitive impairments140,141. Magnuson and coworkers (2002) later found that both NR1 and NR2B 

transcripts showed decreased levels in aged mice. They expanded these results by also measuring 

protein levels of NMDA subunits NR1, NR2A and NR2B, and found that they all had lower levels 

in the cerebral cortex of older C57B1/6 mice, while only NR1 and NR2B subunits were decreased 

in the hippocampus131. Other studies have shown that age has a negative effect on the levels of the 

obligatory NR1 and NR2B subunits of the NMDA receptors in the hippocampus which results in 

a decline of spatial memory abilities in older rats142–144. Even in the brain of primates, a decline in 

NMDA has been measured; Wenk and coworkers (1991) described an age-dependent decrease in 

NMDA levels between young (~7-year old) and aged (~30-year old) monkeys132. Regarding motor 

function, Ossowska and coworkers reported that the age-dependent decline in NMDA receptors 

leads to a loss in muscle tone of rat leg muscles. Their data suggest that this loss in muscle tone is 

a reason for the poor performance of rats in their T-maze experiments133. 

 

1.5.2. Effects of age on GABAA ionotropic receptors 

 In the developed brain, -aminobutyric acid (GABA) is the major inhibitory 

neurotransmitter145. This neurotransmitter acts on GABA receptors, GABAA and GABAB. Here, I 

describe the known effects of age on GABAA ionotropic receptor levels. Originally, measurements 

of GABAA receptor levels have been contradicting. While some studies reported a decline in 
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detectable GABAA in different brain regions of aged rats, others reported that GABAA remained 

unchanged in similar or other regions of the rat brain during aging132,146–148. Soon after, 

transcriptional studies in Fisher rats revealed that GABAA receptor subunit mRNA levels 

decreased by 70% in the cerebral cortex when comparing 6 month and 24-month old animals149. 

This report led Gutiérrez and coworkers (1994) to perform further testing on mRNA and protein 

levels of different subunits of the GABAA receptors. They reported that in the inferior colliculus 

of Sprague-Dawley and Fisher 344 rat brain both mRNA and protein levels of 2, 3, 2S, 2L, and 

1 subunits declined with age150. Further testing in the same rats revealed no mRNA changes in 

the cerebral cortex 151, and that, though there are no changes in protein expression levels of 1, 2, 

or 3 subunits, mRNA levels coding for these three subunits decrease with age in the cerebral 

cortex152. 

 

1.5.3. Decline in Ca2+-activated K+ channels during aging in myocytes 

 In the heart, Ca2+-activated K+ channels play a critical role in regulating membrane 

potential and regulating muscle contractility by intracellular free Ca2+ 153. Although, not much has 

been done to understand the effects of age on these channels in myocytes, Marijic et al. (2001) 

reported that these channels, in both Fisher 344 rats and humans, decreases with age in coronary 

smooth muscle which could be an explanation for some heart problems in the aging population154. 

Another group, using 2 year old Fisher 344 rats, reported that low-intensity exercise training can 

partially reinstate the levels of Ca2+-activated K+ channels155. 
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1.6. Voltage-Gated Potassium Channels Known To Be Affected By Age 

1.6.1. Historical perspective on voltage-gated K+ currents 

Voltage-dependent K+ currents were first described by Hodgkin and Huxley in 1952 in 

Loligo giant axons. The purpose of these delayed-rectifier K+ currents is to restore the membrane 

to resting potential so the cell is able to propagate another action potential156. Almost a decade 

later, Hagiwara and coworkers (1961) were the first group to define a third conductance during 

action potentials; they described this conductance as very transient, hyperpolarizing, and not a part 

of delayed membrane rectification, an event that lasts much longer157. This third conductance was 

later characterized first by Connor and Stevens (1971) in marine gastropod Anisodoris’ neuronal 

cell bodies and named the current A-type (IA). They described the activation potential of this 

transient outward current to occur when the membrane potential changes from its resting state of 

-70mV to the range of -35 to -50 mV at lower temperatures158. This current was measured in cell 

bodies of snail neurons and recorded to lasts ~200-400 milliseconds159. Pharmacologically, a 

hallmark characteristic of transiently activating potassium channels is that they are sensitive to 

4-aminopyridine (4-AP) and generally unresponsive to tetraethylammonium (TEA), unlike other 

potassium channels160,161.  

The first K+ gene identified was from a mutant fly that exhibited a leg shaking phenotype 

under mild ether anesthesia, and was named Drosophila Kv1/Shaker162–164. Three research groups 

reported the cloning of this channel in Drosophila165–167 and, soon after, Tempel et al. (1988) 

successfully cloned the first mammalian version168. These discoveries led to a series of other 

studies that resulted in the identification of three more Drosophila Shaker-like Kv genes: Kv2/Shab, 

Kv3/Shaw, and Kv4/Shal169–171. The series of cloning studies in mammals and other systems 

revealed that, these genes, each represented a distinct family of ion channels conserved across 
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species172–177. Today there are 12 known subfamilies of Kv channels: Kv1-12178–189. In this 

dissertation, I focus on Kv4 channels. 

 

1.6.2. Structural characteristics of Kv channels 

Voltage-gated potassium channels (Kv) are the largest family of all ion channels and are 

coded by 40 genes in humans182,189,190. Phylogenetically, these families are subdivided into four 

major family groups: a) Kv1-Kv4, b) Kv5, Kv6, Kv8, Kv9, c) Kv7, d) Kv10-Kv12189. The functional 

Kv channel is assembled in the ER membrane in which four nascent -subunits of the same family 

form a tetramer by interacting via an N-terminal T1 tetramerization domain of ~130 amino 

acids191–197. Below, I focus on the structural characteristics of the channels Kv1-Kv4 family of 

channels. 

Originally, in an attempt to describe the secondary and tertiary protein structure of the 

opening of voltage-dependent channels, Guy and Seetharamulu (1986) performed computational 

models to identify what today is known as the S5-S6 linker and the P-loop198, Figure 1.1. With 

these modeling results, scientists focused on mutational analyses of the pore region in an attempt 

to characterize the P-loop of voltage-gated K+ channels. MacKinnon and Miller (1989) published 

the first report, in which the pore-blocker peptide inhibitor charybdotoxin (CTX) from the scorpion 

Leiurus quinquestriatus was used to determine if the amino acid glutamate at position 422 was 

near the conduction pathway of Kv1199. Soon after, MacKinnon and Yellen (1990), by the use of 

CTX and the open-channel interactor chemical TEA, reported that residues 431 and 449 were 

likely involved in the ion permeation properties of Kv1, as previously proposed by the earlier 

computer model from Guy and Seetharamulu (1986)198,200. MacKinnon and coworkers (1990) then 

further characterized this region and identified other amino acid residues that altered toxin 
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interaction to determine that the region connecting the S5-S6 linker also matched the proposed 

computational model representing the pore region201. Yool and Schwarz (1991), performed 

additional site-directed mutagenesis and functional studies in this showing that, indeed, this region 

allows for passage of K+ ions202. To confirm this, Hartmann and colleagues (1991) then created a 

chimera, in which the 21-amino acid pore region was transplanted into another potassium channel 

with different conductance and TEA sensitivity. Their results showed that this 21-amino acid 

replacement gave their channel the higher conductance and higher affinity to TEA, indicating that 

this 21-amino acid span controls the biophysical properties of the pore in these Shaker-like 

channels203. Further experiments by Yellen and colleagues (1991), using site-directed mutagenesis 

and internal TEA blocking, revealed that residues 431-449 are part of a reentrant loop between the 

S5-P-loop-S6 region204,205. Work by Heginbotham and coworkers (1992, 1994) later showed that 

the highly conserved 19-amino acid stretch is critical for the high K+ selectivity of these 

channels206,207.  All these discoveries were subsequently confirmed by crystallographic evidence 

(see below). 

Today, we know that the general structure of a single -subunit of the Shaker-like Kv1-Kv4 

channels have both hydrophilic N- and C- termini located in the intracellular space. These termini 

flank the core region – an area of the -subunit that has about 40% identity between Kv1-Kv4, 

which is composed of 6 -helical transmembrane segments (S1-S6) with a potassium-selective 

pore (P) between S5 and S6182,191,208–210, Figure 1.1. The tertiary structure of the selectivity filter 

has been confirmed through studies on KcsA, a prokaryotic potassium channel that has a similar 

amino acid sequence to the S5-P-loop-S6 region of Shaker-like subfamilies of channels211,212. 

These prokaryotic channels have been described to have a high structural similarity to the 

eukaryotic version, suggesting that the potassium selectivity pore structure and function are quite 
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conserved213–215. When closed, the structure of this pore forms a funnel-like structure with a 

diameter of 12 Å in the outer area constricting to 4 Å, the equivalent of a van der Waals interacting 

distance between two interacting atoms, at the most inner region of the pore. When open, allosteric 

interactions between the -helices increase the inner region diameter to 12 Å215. The amino acid 

sequence of the selectivity filter is Gly-Tyr-Gly, a sequence highly conserved amongst Kv 

channels189,206,216–219. Four, linearly arranged, coordinating interactions occur in the selectivity 

filter with the carbonyl oxygens of the pore side chain; here, K+ enter in an alternating fashion with 

water molecules. More specifically, Zhou and coworkers (2001) were able to use X-ray 

crystallography to show that at lower concentrations of K+, the conformation of the selectivity 

filter appears to be in a closed state with ions being absent at positions 2 and 3218, Figure 1.2. The 

coordination chemistry of these carbonyl oxygens at the pore mimics that of the hydration shell of 

K+ in solution, allowing for K+ to diffuse freely through the pore. The coordination chemistry with 

Na+ is not the same with the constrictions of the pore, making the selectivity for K+ 1000-fold 

higher220. 

In Kv channels, the pore opens in response to a membrane voltage change. The S4 

transmembrane domain was first identified as the key voltage sensor of Shaker-like Kv channels, 

and the movement of this domain led to conformational changes that opened the pore. The original 

reasoning was that this domain contained basic residues such as lysine and arginine at every third 

position, with non-polar amino acids in-between, that provide it with an overall positive charge 

allowing it to detect changes in membrane potential that are below the action potential 

threshold208,219,221–224. The structure of S4 was found to be highly conserved across all 

voltage-gated channels in different species and it was a collection of studies in different types of 

voltage-gated ion channels that led to the understanding of the membrane potential detecting 
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capabilities of this domain. Stühmer and coworkers (1989) were the first to investigate the role of 

these positive charges in membrane potential sensing by experimenting with rat voltage-gated 

sodium channels in Xenopus oocytes; by replacing the positively charged amino acids in S4 by 

neutral or negatively charged ones, they were able to modify the activation potential of a voltage-

gated sodium channel. Their results showed that the removal of positive charges results in a 

decrease of the slope for voltage-dependent activation225. Surprisingly, a similar study by Auld et 

al. (1990) demonstrated that the positively charged amino acids were not the only ones responsible 

for the selective gating of the channel. Indeed, by mutating the non-polar amino acid leucine, at 

position 860, they measured a shift in activation of the channel to more positive potentials226. Soon 

after, analogous experiments were performed on Kv1/Shaker channels in Drosophila227,228, and 

mammalian Kv1.1 channels229. These results confirmed that the highly conserved S4 domain has 

voltage sensing capabilities and that modifications to polar or non-polar amino acids lead to shifts 

in the voltage-sensing and gating of voltage-gated ion channels. 

Later, it was found that the transmembrane domain S2 was also involved in the 

voltage-sensing capabilities through an acidic residue, in contrast to the basic amino acids from 

S4; this presented the idea that negatively charged residues interacting with S4 could also play a 

role in voltage sensing230–232. Indeed, the work of Li-Smerin and coworkers (1998) showed that a 

tarantula toxin consistently interacts with S2-S4 regions of different voltage-gated ion channels 

which resulted in changes on their voltage-gating properties. Moreover, Lu and colleagues (2001) 

created a chimera by fusing Shaker S1-S4 to KcsA which resulted in KcsA gaining voltage-sensing 

capabilities. Altogether, these studies suggested that S1-S4 might be involved in the voltage-

sensing. Although S4 performs most of the voltage-sensing, S1-S4 seems to be a voltage-sensing 

module224,231–235. Campos and coworkers (2007) used a mutagenesis approach to uncover a 
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relationship between the S1-S4 and the S2-S4 domains. They replaced three isoleucine residues  

with cysteine (I241C, I287C and R362C) to allow the formation of disulfide bridges between 

I241C or I287C with the S4 residue R362C which constrained the closed-state position of the S4 

segment; their data suggests that there are stabilizing hydrophobic interactions given by I241 and 

I287 in the channel’s closed state236. When the module detects a change of +10 mM, the voltage-

sensor undergoes conformational changes which results in the movement of the S6 domain, that 

possesses the conserved Pro-Val-Pro sequence allowing for segment mobility, leading to the 

opening of the pore231,235,237–242.  

Shaker-like Kv channels are responsible for a wide variety of currents which include 

currents that are rapidly inactivating, non-inactivating, and slowly inactivating171. These A-type 

currents have since been described to play a physiological role in various types both non-excitable, 

such as epithelia, and excitable cells182,219,243–251. 

Fast inactivation of A-type Kv channels is critical for modulating action potential firing in 

neurons. There are multiple of inactivation that have been described for Shaker-like channels252–

255. The N-type, or ball-and-chain, inactivation occurs in the millisecond scale via a domain that 

interacts with the intracellular portion of the open pore256–258. This amino acid sequence may be 

present in the N-terminal domain of the channel or in an interacting -subunit259–261. Both positive 

electrostatic charges and van der Waals contacts have been described to play a direct role in the 

interaction of this blocking amino acid sequence and the open pore blocking K+ conduction262,263. 

C-type inactivation is generally a slower process that likely involves a structural change 

culminating in the pinching of the pore and is independent from N-type inactivation; the exact 

mechanisms that lead to C-type inactivation are still not fully understood252,253,255,264,265. The 

overall mode of inactivation has been proposed to involve allosteric mechanisms that couple both  
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Figure 1.1. Structure of Kv channels. There are six transmembrane domains (S1-6, 
green)) area flanked by both cytosolic N- and C-termini (red and blue, respectively). The 
P-loop ion selectivity filter is located between S5 and S6 (purple). The T1 tetramerization 
domain is situated in the N-terminal end of the polypeptide. S4 contains positively 
charged residues giving it the voltage-sensing capabilities. 
 
 
 
 

 

Figure 1.2. K+ pore and selectivity filter.  Left, homologous domain of KcsA 
representing the equivalent S5-P-S6 motif from two of the four interacting -subunits is 
shown. Pore helices are in red and selectivity filter in yellow. Circles in blue mesh 
represent the electron density of ions entering through the filter. EC and IC are 
extracellular and intracellular domains, respectively. Right, enlarged section of the 
selectivity filter shows alternating K+ (green, positions 1 and 3) and H2O (red, positions 
2 and 4) ions as they enter the cell when the channel is open (adapted from MacKinnon 
2003 with permission from John Wiley and Sons, License 4490440979830)220. 
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N- and C-type inactivation processes. This was first noticed when Hoshi and coworkers found that 

a domain in the N-terminal of Shaker interacted directly with the open channel260. Along with this 

idea, Baukrowitz and Yellen have also described how N-type inactivation positively modulates 

C-type inactivation266. 

. 

1.6.3. Age-related decline in Kv1/Shaker levels 

  Kv1 is a voltage-gated potassium channel that is highly conserved across species with 70% 

identity between Drosophila and mice267. While in mammals there are at least twelve variants of 

Kv1 genes identified, there is only 1 representative of the Kv1 family in Drosophila178,267 and it is 

found in both muscles and neurons268,269. In mammals, variants Kv1.1, Kv1.2, and Kv1.5 have been 

reported to play a role in myogenic control270,271, while variants Kv1.4 and also Kv1.2 have been 

described to specifically localize to axons and nerve terminals221. The axonal localization of Kv1 

in CNS is important for its function, where it likely plays a role in regulating neurotransmitter 

release221. 

The first publication reporting any effects of age on Kv1 channels surfaced in 2001. In this 

report, age was described to affect expression Kv1.1 and Kv1.2 in rat cerebellum. Levels of these 

two proteins were found to be increased in the cell bodies of cerebellar output neurons in 

~20-months old rats when compared to ~5-month old rats272, suggesting that changes in cerebellum 

function occur with age. These results were interesting as age-dependent effects on the functional 

activation and morphology have been reported, more recently in humans, to lead to a decline in 

locomotor performance273–275. Hearing loss is another ailment that is prevalent in the aging 

population and Kv1 has been described to undergo changes in the cochlear nuclei of rats. 

Specifically, Kv1.1 protein was found to be enriched with age, as it was previously described when 

studies were carried in the cerebellum272,276. In cardiac studies, mRNA and protein experiments 
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show that changes in Kv1 levels are not constant. Indeed, while transcriptional studies show that 

Kv1.4 increases significantly with age277, immunoblot analyses of ventricular tissue revealed that 

the levels of Kv1.2 decrease significantly in 2-year old mice when compared to 3-month old 

mice278. More recently, a study in rats reported that Kv1.3 mRNA levels undergo an age-dependent 

increase. This transcriptional increase led to an upregulation of Kv1.3 protein levels which 

correlated to the measured age-dependent spontaneous increase in rat hypertension279. 

 

1.6.4. Age-related decline in Kv2/Shab levels 

 While there is only one representative of the Kv2/Shab family of channels in Drosophila, 

there are two known members in mammals, Kv2.1 and Kv2.2267,280,281. In mouse cardiomyocytes, 

Kv2.1 localization and mobility has been reported to be responsible for the slow potassium currents 

responsible for regulating the QT interval282,283. In neurons, though Kv2 channels were originally 

thought to only localize to the soma and proximal dendrites284–286, reports have described Kv2 to 

also localize to the axon initial segment of cortical and hippocampal pyramidal neurons287. These 

channels are responsible for the slowly inactivating current in Drosophila embryonic neurons171 

and the delayed-rectifier voltage-gated potassium currents in mammalian cortical and hippocampal 

pyramidal neurons281. Kv2/Shab also plays a role in regulating myogenic response in cerebral 

arteries288. Kv2.1 has been reported to be present at high levels in mammalian central neurons and 

a major contributor to the delayed-rectifier potassium currents responsible for regulating action 

potential firing frequency and backpropagation of action potentials287,289–292. Because of this, it has 

been proposed that, at least in CA1 hippocampal neurons, the Kv2.1 localization in proximal 

dendrites works as a resistor and has the function of depressing neuronal intrinsic excitability281 
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 Mammalian Kv2.1 channels have been described to be modified by the age-related increase 

in oxidant species. Indeed, Sesti and coworkers have published a series of papers over the past six 

years describing how the age-dependent increase in ROS lead to oxidation of the Kv2.1 channel 

which results in neurodegenerative diseases293–296. In transgenic mouse models of Alzheimer’s 

disease, a neuropathy condition partially characterized by the age-dependent increased levels of 

oxidative stress, Kv2.1 was found to have high levels of oxidative damage which resulted in its 

aggregation, initiating apoptosis296. Interestingly, they also described that mutating a highly 

conserved oxidation-prone cysteine to alanine lead to neuroprotection in a mouse Alzheimer’s 

model and also in C. elegans expressing the same mutation in their Kv2.1 homologue in presence 

of A1-42 
295. When studying the oxidation-dependent importance of this highly conserved cysteine 

residue, Sesti and colleagues found that its oxidation caused oligomerization of Kv2.1 subunits via 

disulfide bridges formed by these cysteines. They suggested that this sulfhydryl-dependent Kv2.1 

subunit interaction caused a decline in Kv2.1 internalization resulting in Kv2.1 membrane 

accumulation; these aggregates disrupted the neuronal lipid raft membrane structure which led to 

cell apoptosis and a decline in brain neuronal density296. Traumatic brain injuries lead to a 

significant increase in ROS levels in the affected area. Sesti and Coworkers (2016) showed that 

mice expressing the oxidation-resistant Kv2.1 cysteine-to-alanine mutation resulted in mice with 

better locomotor performance than those expressing wildtype Kv2.1294. Altogether, their reports 

suggest that there is an age-dependent oxidative disruption of Kv2.1 channel homeostasis which 

can contribute to neuropathies such as Alzheimer’s disease.  
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1.6.5. Age-related decline in Kv3/Shaw levels 

Four members make up the mammalian voltage-gated potassium family of Kv3/Shaw 

channels: Kv3.1, Kv3.2, Kv3.3, and Kv3.4267,297,298. In Drosophila, there is one representative of the 

Kv3/Shaw family of channels which has 55% identity with its mammalian counterpart267. In 

Drosophila, Kv3/Shaw channels have been described to have low voltage sensitivity and single 

channels open for a relatively short periods of time in embryonic neurons171. In mammals, 

Kv3/Shaw subunits localize mostly to the central nervous system, though its presence in skeletal 

muscle was also described, and it is responsible for enabling neurons to fire action potentials at 

high frequency298,299. 

Some reports have described opposing effects of age on Kv3 channel levels in different 

areas relating to the auditory system. In situ hybridization studies have revealed that Kv3.1 channel 

mRNA levels increase during the development granule cells in the cerebellum300, an area of the 

brain which receives input from the auditory system301. On the other hand, Jung and colleagues 

(2005) reported that Kv3.1 channel levels underwent an age-dependent decline in the posterior 

ventral cochlear nucleus of the rat auditory nuclei; they suggested that, because Kv3.1 levels 

decrease in the cochlea, this could be a reason to the age-dependent deterioration of hearing276. 

Moreover, the b-subtype Kv3.1 (Kv3.1b) was described to undergo an age dependent decline in the 

mouse medial olivocochlear feedback system, a component of the auditory system302. 

In an Alzheimer’s related study, Boda and colleagues (2012) reported that, during aging, 

the levels of Kv3 transcript were unchanged in several different brain regions of mice – olfactory 

bulb, septum, neocortex, hippocampus, brainstem and cerebellum – with the exception of Kv3.1 

and Kv3.4. They reported that, while Kv3.1 increased in the olfactory bulb, Kv3.4 decreased in the 

septum and neocortex. Interestingly, when they measured levels of Kv3 mRNA in their 
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Alzheimer’s mouse model, their results showed that transcript and protein levels for Kv3.1 

decreased significantly by 12 months of age in the neocortex and the hippocampus, suggesting that 

this age-related disease leads to a decline in Kv3.1 levels which causes a neuronal impairment in 

repetitive action potential firing303. 

 

1.6.6. Age-related effects on KCNQ/Kv7-type Channels 

The KCNQ/Kv7 family of voltage-gated potassium channels is composed of five members 

– Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.5. While Kv7.1 is mostly present in cardiac myocytes, 

Kv7.2-Kv7.5 are primarily expressed in neuronal cells. Kv7 channels have been described to 

co-localize with sodium channels in the axon initial segment and at nodes of Ranvier to regulate 

action potential threshold, hence dampening neuronal excitability304,305. Its dysfunction has been 

reported to generate a variety of diseases including short and long QT syndrome, familial atrial 

fibrillation, benign familial neonatal seizures and autosomal dominant type 2 deafness305. 

Age-related dysfunctions of Kv7 channels have been described to be associated with some 

of the diseases mentioned above. Okada and coworkers (2003) investigated the connection 

between hippocampal Kv7 channels and benign familial neonatal convulsions in a rat model. They 

found that, within the first seven days of life, Kv7 channels strongly regulate action potential firing 

in rat hippocampal CA1 regions, while in mature neurons Kv7 channels were excluded from this 

role, likely through a decline in Kv7 current density306. However, in other studies, researchers 

reported an increase in Kv7 mRNA levels during the first week of life307,308. No reports, however, 

on protein levels of Kv7 in this system are available to help in determining how age impacts this 

channel. Ocorr and colleagues (2007) performed an analysis of the Drosophila Kv7 channel in flies 

with the goal of understanding its role in the age-dependent arrhythmias of fly hearts. Their results 
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show that heart Kv7 mRNA levels decrease with age which correlated to the age-related increase 

in Drosophila arrhythmias. When they studied a Kv7 mutant fly, young flies displayed an early 

onset of arrhythmia, suggesting that the Kv7 mediated K+ current influences fly heart 

repolarization309. In auditory studies, Lv et al. (2010) performed electrophysiological studies in 

2-week and 17-month old mice to determine the differences in Kv7-mediated currents in cochlear 

spiral ganglion neurons (SGN). They found that the K+ current contribution by Kv7 was higher in 

17-month old mice when compared to 2-week old ones in both apical and basal SGN310. Their 

results suggest that, with increasing age, Kv7 dependent currents required for proper function of 

the cochlear SGN play an increasingly more important role. In memory-related studies, Cavaliere 

et al. (2013) reported that Drosophila Kv7 mRNA levels undergo a progressive age-dependent 

decline which correlates to a decline in short term memory abilities. They also tested short term 

memory in Kv7-null flies and found that their short-term memory abilities were eradicated. Their 

data suggests that the age-dependent decline in Kv7 channels plays an important role in the age-

dependent memory impairment measured in flies311. Altogether, these studies show various age-

related effects on Kv7 mRNA levels. Though levels of Kv7 mRNA increase or decrease in different 

organ systems with age, these reports illustrate the importance of maintaining proper ion channel 

levels in different cell types. 

 

1.7. Kv4/Shal Channels 

1.7.1. Kv4/Shal expression 

Kv4/Shal is a voltage-gated potassium ion channel whose sequence and function is 

conserved from jellyfish to humans312,313. Soon after the first cloning of these channels in 

Drosophila in 1990173, the mammalian versions were also cloned: Kv4.1312, Kv4.2174,177, and 
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Kv4.3314. Since then, general studies on Kv4 channels have focused on its role in cellular 

excitability in the heart315–321, smooth muscle322–325 and lungs326,327, as well as in mammalian and 

Drosophila neurons171,191,221,267,328–331. The mammalian Kv4 family of channels shares about 80% 

identity with Drosophila Kv4 (Shal), the only representative of Kv4 channels in fruit 

flies173,174,191,267,312,332. In the fly, the Shal gene contains two splice variants, Shal1 and Shal2, 

where the latter has a shorter C-terminus173.  

Much of the work performed characterizing expression of Kv4 channels in neurons has 

been performed in mammalian systems, and most neuron-related expression studies have focused 

on Kv4.2 and Kv4.3 channels which show strong expression levels in the mammalian 

brain300,330,333–340. In 1998, Serôdio and Rudy (1998) reported a thorough examination of Kv4.1, 

Kv4.2, Kv4.3 mRNA levels and localization in the rat brain. Kv4.1 was found to have very low 

levels of transcript and protein expression in the central nervous system (CNS). Interestingly, when 

comparing expression of Kv4.2 and Kv4.3, they seem to have differing expression patterns in 

separate areas of the brain. Kv4.2 was found to be present at high levels in the granule cells of the 

olfactory bulb, in most of the basal ganglia, CA1 pyramidal and granule cells of the hippocampus, 

the paraventricular nucleus of the thalamus, the granular cell layer of the cerebellum, and in the 

pontine nucleus of the brain stem. Kv4.3 was measured to have high levels of expression in the 

neocortex, in stratum interneurons and granule cells of the hippocampus, in the ventroposterior 

complex and laterodorsal nuclei of the thalamus, in Purkinje cells of the cerebellum, and in the 

substantia nigra and superior colliculi of the brain stem330. In Drosophila, Tsunoda and Salkoff 

(1995) determined that Kv4/Shal currents made up virtually all of the A-type currents present in 

the soma of embryonic neurons171. 
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1.7.2. Kv4/Shal neuronal subcellular localization and trafficking 

The somato-dendritic localization of Kv4 was first described over 25 years ago in the rat 

hippocampus338. Early immunohistochemical experiments showed that Kv4.2 localizes in the 

granule cell layer, specifically in the soma of these cells in the cerebellum, while being absent in 

the axons. In these same studies, Kv4.2 was found to have high immunoreactivity in the soma of 

CA1 and CA3 pyramidal cells of the hippocampus while absent in axonal regions. These results 

supported the idea that the Kv4 A-type currents play a role in the regulation of post-synaptic 

membrane excitability338. Maletic-Savatic and coworkers (1995) extended these results by 

determining that Kv4.2 channels localize, not only to the soma, but also to distal dendrites of CA1 

and CA3 pyramidal neurons341. Hoffman et al. (1997) later reported that in the soma and apical 

dendrites of rat CA1 hippocampal pyramidal cells there is a high density of transient outward 

currents that have fast activation and inactivation components. Single channel data revealed that 

their current reversed near the equilibrium potential of K+, supporting the theory that Kv4 channel 

somato-dendritic localization has a critical role in the regulation of dendritic excitability342. Alonso 

and Widmer (1997) used immunoelectron microscopy and immunohistochemistry to elucidate the 

exact localization of Kv4.2 channels in the CNS. They were the first to report that Kv4.2 

localization involves the clustering of the channel on post-synaptic membranes343. In Drosophila, 

Tsunoda and Salkoff (1995) genetically identified Kv4/Shal A-type currents in embryonic neurons 

which suggested that somatic localization of this channel was conserved on the fly171. In later 

studies, Diao et al. (2010) drove expression of a GFP-tagged Kv4/Shal protein (GFP-Kv4/Shal) in 

projection neurons of adult fly antennal lobe to examine the compartmentalization of Kv4/Shal. 

GFP-Kv4/Shal was found, not only to consistently localize to somato-dendritic compartments, but 

also to be present in the proximal segment of the antennal lobe inner antennocerebral tract axons, 
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suggesting that Kv4/Shal compartmentalized localization likely includes the axon initial 

segment344. In a recent publication using the same GFP-Kv4/Shal expressing fly, Jegla and 

colleagues (2016) showed that GFP-Kv4/Shal signal was also enriched in the axon initial segment 

(AIS)345, supporting the idea that the subcellular neuronal localization of Kv4/Shal includes the 

proximal axon near the soma. 

Amongst different types of conserved amino acid motifs used by neurons to maintain a 

polarized distribution, diverse forms of acidic di-leucine motifs have been reported to play a role 

in the sorting of ion channels towards compartmentalized targeting within these cells346. These 

motifs have been described as sufficient for basolateral membrane localization in epithelial cells 

lining the intestine347 , for neuronal axonal targeting348, and for neuronal somato-dendritic 

targeting349. The somato-dendritic targeting of Kv4 channels is mediated by a C-terminal di-leucine 

motif that is highly conserved from C. elegans to humans221,349,350. A comparison between the 

sequences of rat Kv4.2 and lobster Kv4 exposed this C-terminal conserved di-leucine motif. In the 

rat, the 16 amino acid sequence corresponds to residues 474-489 of the Kv4.2 polypeptide. While 

14 residues are conserved in lobster, 13 are conserved in all the known Kv4 proteins in both 

vertebrates and invertebrates349,350, Figure 1.3. Rivera and coworkers (2003) used a series of 

chimeric proteins containing the C-terminal Kv4 to identify the 16 amino-acid di-leucine motif that 

results in dendritic targeting349. They transfected these chimeric proteins into rat cortical slices and 

measured content of their proteins in dendrites and axons. Their results showed that this 16 

amino-acid di-leucine motif is necessary and sufficient for dendritic targeting of Kv4.2. They 

extended their results by testing chimeras of axonal channels containing the C-terminal of Kv4.2 

and found that these channels now localized to dendrites. Even adding the C-terminal of Kv4.2 to 
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the transmembrane protein CD8 lead to its dendritic localization while deletion of the motif, or 

mutating the leucine to the smaller alanine amino acids, lead to a ubiquitous localization349. 

While looking for an interacting protein that may interact with this highly conserved 

di-leucine motif of Kv4, Chu et al. (2006) observed that the kinesin isoform Kif17 motor protein 

interacts with the C-terminus of Kv4 and contributes to the dendritic localization of the ion 

channel351. They used a system in which they replaced the motor domain of several kinesin 

isoforms with GFP or YFP to create a dominant negative version of the motor protein isoforms. 

Specifically, they looked at dominant negatives of Kif17 and Kif5B since these had been 

previously described as motor proteins responsible for the trafficking of dendritic ion channels 

NMDA receptor subunit NR2B and AMPA receptor subunit GluR2352,353. Chu and coworkers 

found that Kv4.2 and Kif17 co-immunoprecipitated and that they co-localized in dissociated 

cortical cultures. Their results indicate that Kif17 interacts either directly or indirectly with the 

outermost region of the C-terminus, but not with the di-leucine motif351. 

 

Figure 1.3. The 16 amino acid di-leucine motif is conserved across species. Protein 
sequence alignment of the C-terminal tail of Kv4 from various species uncovers a 
conserved 16 amino acid sequence centered between 2 leucine residues. In parentheses, the 
residue number of the polypeptide representing the first amino acid of the beginning of the 
16 amino acid di-leucine motif. In red with grey background, amino acids that are identical. 
In blue, partial amino acid similarity across the examined species (adapted from Jerng et 

al. 2004 with permission from Elsevier, License 4490441153653)221. 
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It was not until 2010 that, in Drosophila, a protein that interacts with the highly conserved 

16 amino-acid di-leucine motif was discovered.  Diao et al. (2010) used the entire 166 amino acid 

C-terminal tail of Kv4/Shal, which includes the highly conserved di-leucine motif as “bait”, and a 

cDNA library to screen the interacting “prey”. From this experiment, SIDL (Shal/Kv4 Interactor 

of Di-Leucine) was identified. SIDL is a 4.1 kb gene that is located on the 3rd chromosome of 

Drosophila and its expression produces a ~130KDa protein. This same yeast-two-hybrid system 

was also employed to expand on their findings by demonstrating that SIDL can interact with 

both C-termini of Kv4/Shal1 and Kv4/Shal2, with the di-leucine motif alone, and even with the 

mouse version Kv4.2. When the di-leucine motif was removed from the C-terminal tail, SIDL did 

not interact. They also performed GST-pull-down assays on various constructs, expressed and 

purified from BL21 cells, to validate this interaction. Through this approach, they confirmed that 

the C-terminal tail of SIDL interacts with the C-terminal tail of Kv4/Shal1 and Kv4/Shal2, but not 

with a C-terminal tail of Kv4/Shal2 containing a partial deletion of the di-leucine motif. They also 

performed the reverse experiment, this time using Drosophila embryo membrane extract, and 

showed that the C-terminal of SIDL pulls-down Kv4/Shal protein. Tagged-SIDL was also found 

to co-localize with GFP-Kv4/Shal in Drosophila primary neuronal cultures. In their report, they 

confirmed that removal of the di-leucine motif from Kv4/Shal lead to mislocalization of the 

dendritic channel in a subset of neurons344. A recent paper describes the mechanism for the axon 

initial segment localization of Kv4/Shal. Jegla and coworkers (2016) showed that the AIS 

localization of GFP-Kv4/Shal is mediated by the N-terminal Ankyrin repeat region and dependent 

on Ank2 expression345. The polarized neuronal localization of Kv4 channels is important since they 

have been shown to participate in regulating the backpropagation of action potentials and synaptic 

integration by regulating membrane excitability in dendrites191,342,354–356. 
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1.7.3. Kv4/Shal channel function 

In vitro expression studies have shown that Kv4 is responsible for a highly conserved fast 

recovering and inactivating A-type transient current that can be measured at subthreshold 

membrane potentials174,312,314,330,357,358. The first study to genetically identify Kv4 K+ currents in 

neurons was performed by Tsunoda and Salkoff (1995) in Drosophila embryonic neurons. Since 

there is only one representative of the Kv4 family of channels in Drosophila, they used a genetic 

deletion of Kv4/Shal to show that this channel encodes almost all fast inactivating A-type K+ 

currents in the cell body; they also reported that, in this mutant fly, slowly or noninactivating K+ 

currents remained. Because wildtype currents that were eliminated by this Kv4/Shal deficiency 

had showed variable time constants of inactivation, Tsunoda and Salkoff (1995) also explored 

Kv4/Shal single-channel currents. They found that the Kv4/Shal gene encodes a 4 pS channel, and 

that this channel exhibits two modes of gating, likely underlying the variation in whole-cell 

inactivation rates observed171. 

A dominant negative Kv4 (DNKv4) subunit, in which a conserved tryptophan in the 

selectivity pore is substituted by phenylalanine317, was used to examine the role of Kv4 in vivo. 

Ping and coworkers (2011) reported that expression of DNKv4 completely removed A-type 

currents in Drosophila neurons. Loss of this current resulted in the eradication of the latency for 

the first action potential firing, broadening of action potentials, a deficit in afterhyperpolarizations, 

and a lower threshold for inducing repetitive action potential firing. Their results also showed that 

Kv4 repolarizes the membrane during prolonged stimuli making this channel required for 

maintaining neuronal cell excitability during repetitive action potentials firing. When DNKv4 was 

expressed in motor neurons, similar defects in repetitive firing were measured, suggesting that 

repetitive rhythmic behaviors that require proper motor function might be affected. In behavioral 
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analyses, loss of Kv4 A-type currents in motor neurons resulted in defects in larval and adult 

locomotion and fly grooming359. 

Mammalian studies to understand the role of Kv4 in neurons have been more extensive 

than in Drosophila, and a variety of neuron types have been used to perform them. Voltage-clamp 

studies in rat sympathetic neurons using a dominant negative form of Kv4.2 showed that knocking 

out function of the channel leads to a loss of the fast outward K+ current component, indicating 

that Kv4 encodes the A-type current in these neurons360. Similar experiments in developing granule 

cells demonstrated that transient Kv4-specific K+ currents are involved in their first action potential 

spike, an event required for granule cell maturation initiation300,361. Tests in rat primary visual 

cortex neurons also revealed that Kv4 encodes the same A-type current. When function is 

eliminated using DNKv4.2, there is a hyperpolarization of the action potential threshold, a 

broadening of action potentials, and a detrimental effect on repetitive firing362. Regardless of 

species and neuron type, Kv4 channels encode A-type K+ currents suggesting that these channels 

have a conserved neuronal function, Figure 1.4. 

Hoffman et al. (1997) investigated the role of Kv4 A-type currents in dendrites during 

action potential firing. In their experimental procedures, they examine how this regulation occurs 

in CA1 hippocampal neurons. A-type current density was described to be directly related to an 

increase in the distance from the some through dendrites. Their findings that there is a higher 

density of A-type potassium channels in dendrites were the first to support three key ideas: 1) 

backpropagation of action potentials into distal dendrites is controlled by A-type currents, 2) 

A-type currents inhibit action potentials from initiating in dendrites, 3) A-type currents are strongly 

involved in the regulation of excitatory post-synaptic current (EPSC) amplitude342. 
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The backpropagation of action potentials was first described in the late 1950s as an action 

potential initiated in the soma and propagated in a retrograde manner towards the dendritic tree363, 

and confirmed by others and tested in different neurons364–366. Additional experiments on 

hippocampal CA1 pyramidal neurons demonstrated that this backpropagation of action potentials 

is maintained by axonal voltage-gated Na+ channels and allows for voltage regulation at dendritic 

locations to control the permissive voltage for Ca2+ influx367. Computational models have been 

used to help establish that a transient K+ dendritic conductance could play a role in modulating the 

interaction between a synaptic input and a backpropagating action potential368. Through the use of 

genetic knockouts, Kv4.2 A-type currents were identified as important modulators of the 

backpropagation of action potentials which also play an important role in synaptic plasticity356,369. 

 

Figure 1.4. The function of Kv4 channels is conserved across species. Voltage-clamp 
experiments where currents were elicited from holding potential at -100 mV, with 10 mV 
step-wise increases from -80 to 20mV312. Left, voltage-sensitive response in mouse Kv4 
(mShal). Right, voltage-sensitive response in Drosophila Kv4 (fShal). In both species, the 
A-type current shows a rapid rise and fast inactivation (adapted from Salkoff et al. 1992 
with permission from Elsevier, License 4490441300619)267. 
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Kv4 has also been shown to be involved in the regulation of EPSCs. Indeed, the work by Ping and 

others (2011) showed that a loss of  Kv4 channel current resulted in broadening of action potentials, 

a loss of afterhyperpolarization, and defects in repetitive firing; their results suggest that Kv4 plays 

a critical role in modulation of EPSCs and integration of post-synaptic potentials359. 

 

1.7.4. Physiological roles of Kv4/Shal channels 

Kv4/Shal channels have been described to play a role in learning and memory formation, 

and to be required for proper neuronal function during rhythmic behaviors such as locomotion. 

Most of our current knowledge on how the brain stores information by using both long-term 

potentiation (LTP) and long-term depression (LTD) has been from decades of experiments 

studying AMPA/NMDA receptors60,370–374. The modulation of action potential backpropagation is 

critical in LTP and LTD, events that also depends on pre-synaptic stimulation and lead to synaptic 

strengthening or weakening and plasticity which is the paradigm of learning and memory375–379. 

Frick et al. (2004) described how induction of LTP produced an increase in dendritic excitability 

by allowing an increase of backpropagation of action potentials to this neuronal region. Their tests 

showed that a downregulation in A-type currents results in increased dendritic excitability380. 

Indeed, more recent studies using Kv4.2 knockouts in hippocampal CA1 pyramidal cells have 

shown that the lack of this channel allows for increased excitability in their dendrites, in turn 

leading to a lower threshold for induction of LTP356,381–383. These results suggested that functional 

levels of membrane-expressed Kv4.2 channels play a role in LTP. It was also found that 

internalization of Kv4.2 is involved in response to LTP in presence of high intracellular calcium 

concentrations in CA1 neurons384. Behavioral studies have expanded the in vitro findings and 

included behavioral responses to the knockout of Kv4.2 in mice which have been described to have 
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deficits in hippocampal-dependent learning and memory381,385,386. Kv4.3 is a form of the channel 

found in high levels in pyramidal neurons. In cortical pyramidal neurons, Kv4.3 has been found to 

regulate membrane attributes that play a role in the repetitive firing of action potentials but not on 

the threshold for firing387. Nevertheless, a recent study finding a mutation on the voltage sensor of 

Kv4.3 leading to a shift in its voltage-dependence shows that this mutant causes intellectual 

disability which in turn can affect memory performance388,389.  

Kv4 channels are implicated in homeostatic synaptic plasticity. In their report 

demonstrating that synaptic homeostasis is conserved across species in the central nervous system, 

Ping and Tsunoda (2012) showed that Kv4/Shal channel expression is increased in response to 

prolonged inhibition of nicotinic acetylcholine receptors (nAChRs). They reported that blocking 

synaptic activity for 24 hours, in different types of Drosophila motor neurons and projection 

neurons, resulted in increased mini excitatory post-synaptic current (mEPSC) amplitude and 

frequency, suggesting a likely increase in nAChRs in the post-synaptic cell. Further examination 

yielded that an increase in, specifically, D7 subunit levels was responsible for the rise in mEPSC 

amplitude and frequency. While investigating cellular changes resulting from synaptic 

homeostasis, they found Kv4/Shal A-type K+ currents (IA) to considerably increase following 

inhibition of nAChRs; this surge in IA was found to be the result of an increase in Kv4/Shal 

channels in the fly brain, suggesting that Kv4/Shal may be playing a role in downregulating the 

response. Altogether, they reported a molecular mechanism, in which synaptic inactivity by 

nAChR blockage caused D7 protein synthesis which resulted in an increase in transcription and 

translation of Kv4/Shal channels390. 

Kv4/Shal channels have also been described to play a role in movement. Repetitive 

rhythmic behaviors (i.e. feeding, eye blinking, locomotion, etc.) require the repetitive rhythmic 
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firing of neurons. As early as the 1970s, Connor and Stevens (1971) had described that potassium 

currents were likely involved in repetitive firing391. During the 1990s, reports were published, in 

which A-type currents were found to play a role in rhythmic patterns. An analysis using 

4-aminopyridine, a potassium channel blocker, in the lobster stomatogastric ganglion showed 

decreased A-type currents that lead to a decline in the pyloric motor rhythm392. Studies in Xenopus 

embryos reported that a decrease in potassium currents has a detrimental effect on the motor 

activity of the swimming circuitry, similar to the effect seen when K+ channels were blocked 

pharmacologically393–396. Pharmacological examination of the lamprey locomotor network 

neurons revealed that the transient A-type potassium current is involved in locomotor burst 

frequency397. Altogether, these results suggested that A-type currents, like those encoded by Kv4, 

play a role in repetitive movements and proper locomotor function. 

Two decades later, the first report indicating that Kv4 channels are responsible for these 

A-type currents in rhythmic behaviors in Drosophila was published. Ping and coworkers (2011) 

generated a transgenic fly expressing DNKv4 to knockout function of the channel without affecting 

other potassium currents. They found that the initiation of action potential firing is regulated by 

Kv4/Shal, and that this regulation is critical for continuous firing during sustained neuronal 

stimulus359. In nematodes, a recent report using a knockout of their Kv4 channel orthologue, 

SHL-1, showed a disturbed effect in turning behaviors398. In mice, a study using RNA-interference 

to acutely knockdown Kv4.1 levels in vivo showed that Kv4.1 contributes to the A-type currents 

found in the suprachiasmatic nucleus (SCN), the circadian pacemaker. The knockdown of these 

Kv4.1-dependent A-type currents led to shortened daily periods of wheel-running399. Moreover, 

Kv4.2 and Kv4.3 knockouts have also been used to test if their transient A-type currents have a role 

in modulating excitability of neurons in the SCN. The researchers found that the lack of Kv4.2, but 
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not Kv4.3, subunits caused mice to have a decreased period of locomotor activity caused by shorter 

circadian rhythm firing patterns on SCN neurons400. In other studies, however, Kv4.2 knockout 

mice did not display changes in locomotor behaviors, such as swimming or entries into the arms 

of an elevated plus maze386,401, suggesting that some behaviors are not affected by shorter circadian 

rhythm firing patterns. 

 

1.7.5. Kv4/Shal accessory proteins 

Kv4 channels have been shown to be modulated by many different accessory proteins. 

Amongst the most prominent ones are Kv, KChIP, DPP, SKIP3, PSD-95, Na1, and SIDL. Below 

I provide a general summary on the relevance of these accessory proteins and then I introduce the 

scaffolding protein SIDL which is of significant interest in this dissertation. 

The first discovered and the most characterized ancillary subunits are the family of 

Kv-subunits. Kv are soluble proteins that lack a transmembrane domain and, at least in 

heterologous systems, modulate the voltage by which Kv4 is activated191,402. Kv-subunits playing 

a role in Kv4 expression and inactivation were first observed by electrophysiology in experiments 

injecting low molecular weight fractions of rodent brain poly-(A) transcripts (2-4 kb) and cRNA 

encoding mouse Kv4. These experiments shed light, for the first time, on the idea that there are 

low molecular weight regulatory polypeptides that modulate gating of A-type potassium 

channels403. Experiments by Serôdio and colleagues (1994, 1996) confirmed this idea using rat 

mRNA. They injected rat Kv4.2 or Kv4.3 mRNA into Xenopus oocytes and measured currents that 

have slower inactivation kinetics and recover more slowly from inactivation than when measured 

in the brain. They also co-injected Kv4 channels along with the low molecular weight fractions of 

poly-(A) brain transcripts (2-4 kb), which code for polypeptides that do not exhibit K+ 
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conductance. They reported that this co-injection resulted a fast inactivating A-type current, 

suggesting that a polypeptide coded by the low molecular weight fraction was modulating Kv4 

channels314,358. 

Kv−subunits are ~39 kDa in size, have high hydrophilicity, and lack transmembrane 

domains, suggesting that these Kv accessory subunits are likely located in the cytoplasmic side of 

the cell membrane404. To date, there are three known Kv genes in mammals – KCNAB1, KCNAB2, 

and KCNAB3 – that can be alternatively spliced to produce variants within three different families 

of auxiliary subunits – Kv1 Kv2 Kv3259,405–409. A high resolution 2.1 Å crystal structure of the 

T1-tetramerization containing N-terminal domain of Kv interacting with the cytoplasmic -subunit 

revealed that a symmetric complex is formed with these - and - subunits410. Scott and colleagues 

(1994) were the first to suggest that this family of -subunits was likely to extend the diversity of 

K+ channel function404. This was confirmed by Rettig and coworkers (1994) when they 

co-expressed rat -subunit with the -subunit of Kv1.1 or Kv1.4, giving Kv1 rapid A-type 

inactivation properties259. Kv also exhibits a strong biochemical interaction with Kv4 

-subunits411. Molecular interactions between Kv4 and distinct splice-forms of different Kv 

families lead to Kv functional diversity. For example, Kv1 alone can provide oxidative sensing to 

Kv4.2, whereas either Kv1 and Kv2 can increase Kv4.4 current density and expression, while 

Kv3 slows both Kv4.3 activation and inactivation kinetics leading to a slower recovery from 

inactivation412–414. In Drosophila, the homolog gene of Kv is called Hyperkinetic and has been 

shown to interact with Kv1/Shaker and Kv4/Shal channels162,411,415. 

K+ channel interacting proteins (KChIP) are a family of calcium-binding proteins found to 

interact with the N-terminus of Kv4 channels.  KChIP1-3 were first identified in yeast-to-hybrid 

experiments using the Kv4.3 N-terminus as bait416, and KChIP4 was later discovered in co-
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immunoprecipitation experiments when researchers identified it to interact with Kv4.2417. KChIP1, 

KChIP2, and KChIP3 have been described to be involved in increasing Kv4.2 surface expression 

and modulating recovery from fast inactivation in mammalian systems416,418,419. These accessory 

subunits also play a role in Kv4.2 trafficking from the endoplasmic reticulum to the cell membrane, 

as well as in stabilizing membrane forms of the channel, as measured by increases in Kv4 current 

density studies191,402. While characterizing Ciona intestinalis KChIP and its role in Kv4 function 

modulation, Salvador-Recatalà and colleagues (2006) reported that in their bioinformatics 

analysis, they had found a KChIP-like gene in Drosophila420. In a recent study, Chen and 

coworkers (2015) found that, in C. elegans, KChIP-like subunits regulate the expression of the 

Kv4 channel orthologue SHL-1398. 

Dipeptidyl peptidase-like proteins (DPPX) are another family of Kv4 channel related 

accessory proteins. DPP4, also known as CD26, was the first of the family to be originally 

identified in mammalian brain tissue and it is thought to participate in the modulation of synaptic 

plasticity421–423. While DPP6 has been described to be involved in the trafficking and membrane 

targeting of Kv4 channels, DPP10 has been reported to modulate inactivation of Kv4 

channels402,424,425. Some other DPPs have a histidine-rich extracellular domain which, possibly, 

provides Kv4 channels with better stability in presence of variable extracellular pH levels402. In a 

recent report, Shiina and coworkers (2016) identified the fly DPP10 ortholog that interacts with 

rat Kv4.3 and can modulate Kv4 currents426. 

Shal/Kv4 K+ channel interacting protein-3 (SKIP3) was identified using yeast-two-hybrid 

with the C-terminus of Drosophila Kv4/Shal by Diao and colleagues (2009). SKIP3 was found to 

be specific for Kv4/Shal and as it did not interact with the C-terminal tail of Drosophila 

Kv1/Shaker, Kv2/Shab or Kv3/Shaw in yeast-two-hybrid experiments. SKIP3 has been described 
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to play a role in Kv4 activity, in Drosophila, by modulating Kv4 current inactivation427. While 

looking for SKIP3 isoforms in various databases, Diao and colleagues (2009) identified SKIP 

which codes for two potential proteins, SKIP1 and SKIP2. Through the use of reverse-transcriptase 

experiments, they confirmed that SKIP3 is a true Drosophila isoform expressed in the fly 

embryo427. 

Post-synaptic density protein 95 (PSD-95) is a scaffolding protein that interacts with the 

C-terminal Val-Ser-Ala-Leu sequence of Kv4.2 as reported by Wong et al. (2002). In their report, 

they show that co-transfection of PSD-95 with Kv4.2 resulted in increased expression and 

clustering of Kv4.2 protein in CHO cells428. In later studies, Wong and coworkers (2004) found 

that PSD-95 can recruit a portion of Kv4.2 containing vesicles into lipid rafts429. In Drosophila, 

the PSD-95 homolog is known as Discs Large-1 (dlg), and dlg protein has been reported to be 

required for normal morphology of synaptic buttons in Drosophila larva neuromuscular 

junctions430,431. 

Nav1 has been recently described as a Kv4 protein stabilizer in HEK-293 cells432. Through 

chimeric and mutational studies, Nguyen and colleagues (2012) identified Kv4 segments S1 and 

S5 as the molecular interaction sites of Nav1433. This voltage-gated sodium channel accessory 

subunit stabilizes cytoplasmic vesicle-bound Kv4 which, in turn, increases pools of the channel 

readily available for cell-surface expression432,434. In Drosophila, there are no genes with 

homology to mammalian Nav1, although tipE has been described to encode an auxiliary subunit 

that controls expression and function of the Drosophila Nav channel, Para435,436.  

 The scaffolding protein SIDL (Shal/Kv4-interactor of di-leucine) has been found to directly 

interact with the highly conserved LL-motif of Kv4 (also see page 35), which is necessary and 

sufficient for the channel somato-dendritic localization, in vitro344,349. SIDL is expressed 
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throughout the life of the fly and it is present in neurons. A transgene containing a GFP-tagged 

Kv4 protein was found to mislocalize from cell bodies to axons in larval  and adult CNS studies 

when the LL-motif was deleted in the GFP-tagged transgene344. Altogether, this leads to the 

possibility that SIDL may play a role in the localization of Kv4 proteins via interaction with its 

C-terminal LL-motif. Because mislocalized proteins are typically targeted for degradation437, it is 

of interest to test if age has any impact on SIDL protein or mRNA. If SIDL protein or transcript 

declines with age, this may lead to mislocalization of Kv4 and targeting of this channel for 

degradation. 

 

1.7.6. Age-related pathophysiology of Kv4/Shal 

There are a wide variety of disorders attributed to a dysfunction of Kv4/Shal channels. 

Indeed, as described by Hille (2001), voltage-gated potassium channels are involved in the proper 

regulation of membrane excitability224; any changes to its balance may have detrimental changes 

to the organism. The studies reviewed below report pathophysiological effects, similar to those 

that occur during aging, from truncation, knockdown, knockout, mutation, or loss of function in 

Kv4 channels. Though most of the work published on Kv4 has been performed in excitable cells, 

Kv4 has also been reported to play roles in cell-cycle control in non-excitable cells. 

Cancer is a disease that substantially affects people over 65 years of age438. During cancer, 

there is a dysregulation of cell division, and Kv channels have been described to be partially 

involved in the mechanisms that regulate proper cell-cycle control in non-excitable cells439. Jang 

and colleagues (2009) described how transfection of siRNA targeting Kv4.1 in tumorigenic 

mammalian epithelial cells resulted in a suppression of cell proliferation. They also measured 

levels of Kv4.1 mRNA in human breast cancer tissue and found that Kv4.1 mRNA levels were 
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increased in certain cell developmental stages when compared to wildtype243. Kim and coworkers 

(2010) reported that, in cancerous human gastric cells, transfection of siRNA targeting Kv4.1 

resulted in an inhibition of cancer cell proliferation251. Though the molecular mechanisms by 

which Kv channels regulate tumor progression remains uncertain440, these publications suggest that 

Kv4 channels play a role in the progression and proliferation of cancer. 

In the heart, the QT interval has been described to be prolonged with aging441, and an 

increase in the QT interval is known to be coupled to arrhythmias, disease, and sudden cardiac 

death442. Barry and colleagues (1998) created a Kv4.2 functional knockout by expressing a 

dominant negative Kv4 -subunit with a pore mutation (tryptophan to phenylalanine) which, when 

interacting with three wildtype Kv4 -subunits to make a tetramer, it produces a non-conducting 

channel in mouse ventricular myocytes. Their mice experiments showed that Kv4 channels 

underlie Ito currents in the heart, and that this functional knockout lead to longer durations of action 

potentials and increased QT intervals317. It is important to note, however, that though mice and 

rats have been shown to express mRNA coding for both Kv4.2 and Kv4.3 channels in heart 

ventricles315, in human ventricles only mRNA coding for Kv4.3 is found443. 

In aging studies, Hauser (1997) reported that ~50% of elderly patients with no previous 

history of seizures suddenly began exhibiting them444, suggesting that epilepsy may be considered 

an age-related disease. The onset of age-related epilepsy is typically attributed to stroke and 

neuronal degenerative diseases445. In their 2006 review, Leppik and colleagues (2006) brought 

attention to the lack of publications that correlate aging and epilepsy445. Indeed, one clinical study 

has described a patient having temporal lobe epilepsy at a young age, a medical effect that has 

been defined to be more prevalent in older populations. The cause was found to be a 44-amino-acid 

C-terminal truncation of Kv4.2446,447. Although clinical studies are lacking, in their review, 
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D’Adamo and colleagues (2013) report a wide variety of studies on K+ channel dysfunction that 

have been associated to epileptic phenotypes448. 

Memory is a cognitive ability that has been extensively studied at many different levels, 

from molecule to behavior. While short-term memory remains typically unaffected by age, 

long-term memory is where most differences between young and old are observed449. Indeed, the 

elderly have been shown to have a decline in recalling information from long-term memory450. 

This age-related decline in cognitive function is, in part, attributed to molecular modifications that 

are directly involved with neuronal plasticity451. Kv4 channels have been described to play a role 

in neuronal synaptic plasticity. Simkin and coworkers (2015) have described an increase in 

membrane-bound Kv4.2/Kv4.3 in the hippocampus during aging, suggesting that Kv4 influences 

the hyperexcitability of CA3 neurons at an older age339. A publication by Smets and colleagues 

(2015) reported that a de novo mutation of Kv4.3 was the source of an early onset of cerebellar 

ataxia, a condition that is predominantly caused by age-dependent cerebrovascular disease, in a 

3-year old patient388,452,453. 

In Alzheimer’s disease studies, Ping et al. (2015) used a Drosophila Alzheimer’s model to 

uncover the effects of an accumulation of human A42 on the channel Kv4/Shal. This channel 

protein was found to be degraded while mRNA levels remained intact during the time of testing. 

With this decline in Kv4/Shal, many of the Alzheimer’s ailments developed in the fly, including 

learning and locomotor defects, and neurodegeneration in the mushroom body. The loss of 

Kv4/Shal also lead to shortened lifespan in Drosophila. They demonstrated that overexpression of 

Kv4/Shal to near-wildtype levels restored all the dysfunctions mentioned above, slowed 

A42-induced neurodegeneration, and partially restored lifespan454. In recent report, Feng and 

colleagues (2018) showed that accumulation of A42 contributed to an age-dependent decline in 
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short-term memory using a courtship memory assay. Their studies highlight the importance of 

Kv4/Shal channels located in the fly mushroom body and projection neurons for courtship 

short-term memory455. In mammalian studies, overexpression of A protein in hippocampal CA1 

neurons resulted in a large decrease of Kv4.2 protein levels, which led to increased dendritic 

hyperexcitability456. In similar studies where A was, instead, delivered intracellularly, Scala and 

coworkers (2015) measured a decline in A-type K+ currents457. They also found that mechanisms 

regulating the decrease in these currents involve the activation of caspases and glycogen synthase 

kinase 3 (GSK-3). GSK-3 was found to phosphorylate Kv4.2 at residue 616 which was suggested 

to play a role in the reduction of A-type K+ currents. 

In Parkinson’s disease, signaling from the substantia nigra to the stratum, the brain 

structure directly involved in decision-making, significantly decreases. Aidi-knani and colleagues 

(2015) report that, at the onset of this disease, Kv4 dependent A-type currents decline in medium 

spiny neurons (MSN) of the striatum as a homeostatic response to the ensuing nigrostriatal 

dopamine depletion458. They used the selective Kv4 toxin AmmTX3 to test the hypothesis that a 

further decline in Kv4 A-type currents would enhance the response of MSN, and assuage the 

symptoms attributed to this disease. They found that this drug treatment reduced Parkinsonian 

emotional, cognitive, and motor symptoms. It is important to note that these results are 

contradictory to other reports where a loss of Kv4 function resulted in no anxiety- or depression-

related phenotypes in mice401, a decline in mouse freezing behaviors during Pavlovian fear 

conditioning386,  a decline in cognition while traveling the Lashley maze385, and, in Drosophila, a 

decline in rhythmic behaviors such as locomotor performance and grooming359. 
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1.8. Overview of this dissertation 

 With the growing number of individuals surpassing 60 years of age, the incidence of 

age-related problems will also increase. Indeed, it is known that aging results in detrimental effects 

to several aspects of life, including a decline in cognitive and motor abilities. In a study involving 

over 2,000 people of similar health and education, Salthouse and colleagues (2009) reported an 

age-related decline in cognition; they found that reasoning and memory both decreased with age 

in humans459. Lee and co-workers (2017) later reported a decline in functional performance, such 

as gait speed, during aging in humans460. These hallmarks of aging have also been reported to 

occur in Drosophila. Indeed, in their 2014 report, Haddadi et al. measured the effects of age on 

Drosophila short, medium, and long-term memory101. They trained flies to associate a smell with 

an electric shock and found that all measured types of memory decreased by ~50% when 

comparing young (5 days) and old flies (50 days). Drosophila motor abilities also decrease during 

aging. Indeed, I present below that locomotor performance declines as a function of age in 

Drosophila. 

 Ion channels have been described to play a role in cognition and coordinated motor 

movement. From our lab, Ping and others (2011) used a Kv4 dominant negative expressing fly to 

study the effects of loss of functional Kv4 channels359. A transgene expressing point mutation 

(W362) in the Kv4 -subunit was expressed in flies. Flies expressing this dominant negative Kv4 

subunit (DNKv4) form tetramers with endogenous -subunits resulting in non-functional Kv4 

channels. Neuronal expression of DNKv4 resulted in a loss of Kv4 current, loss of the delay to the 

first action potential firing, and loss of repetitive rhythmic firing. When examining behavioral 

effects, they found that a loss of Kv4 function resulted in decreased larval crawling, and in deficits 

of adult fly grooming, locomotor performance, and learning and memory. Their results showed 
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that Kv4 is involved in functions that decline with age. In this dissertation, my aim was to 

understand what happens to Kv4 during. 

 

Chapter 3: In this chapter, I characterized the age-dependent decline in Drosophila locomotor 

performance and the age-dependent decline in Kv4 protein levels. I found that the age-related 

decline in Kv4 protein levels is specific to Kv4 and not a general phenomenon that occurs to all 

potassium channels. I also tested the hypothesis that the decrease in Kv4 proteins is conserved 

across species. 

 

Chapter 4: In this chapter, I tested the hypothesis that reactive oxygen species (ROS) play a role 

in the age-dependent decline of Kv4 protein levels. I tested the hypothesis that exposure of 

hydrogen peroxide (H2O2) to Drosophila in vivo and to Drosophila primary culture neurons in 

vitro results in changes to Kv4 protein levels or qualitative changes in tagged Kv4, respectively. I 

also tested the hypothesis that overexpression of enzymes that regulate intracellular ROS have an 

effect on levels of Kv4 protein and fly locomotor performance at different ages. 

 

Chapter 5: In this chapter, I tested the hypothesis that an age-dependent decline of the scaffolding 

protein SIDL (Shal interactor of di-leucine) contributes to the age-dependent decrease in Kv4 

protein levels. We used a Drosophila line expressing SIDL-RNAi in neurons to test the hypothesis 

that a decline in SIDL mRNA results in a decline in Kv4 protein levels. We then tested the 

hypothesis that Kv4 and SIDL are implicated in Drosophila eclosion. 
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CHAPTER 2. MATERIALS AND METHODS 

 

2.1. Drosophila strains 

 The flies used involve wildtype, transgenics, and genetic deficiencies (Df): Canton-S  

(Bloomington Drosophila Stock Center, Stock 64349), SK-/-
 (obtained from Dr. Patrick Dolph, 

Dartmouth College, NH)461, Df(Shaker) (obtained from Dr. Kyunghee Koh, Thomas Jefferson 

University, Philadelphia, PA)462, UAS-DNKv4
359, UAS-Kv4/Shal454, UAS-Kv1/Shaker (obtained 

from Dr. William Joiner, University of California, San Diego), UAS-SOD1463, UAS-SOD2464, 

UAS-Catalase463, UAS-NOX-RNAi, and UAS-DUOX-RNAi (these last five stocks obtained from 

Dr. Matthias Landgraf, University of Cambridge, UK)465, UAS-SIDL-RNAi (Vienna Drosophila 

Resource Center, Stock 40390), UAS- SIDL344, UAS-CD8-GFP466, UAS-GFP-Kv4/Shal344, and 

UAS-mCherry-pHluorin-Kv4/Shal467–469. We used the following lines that drive expression of 

UAS-genes in neurons: elav-gal4, elav-gal4;gal80TS, and elav-gal4,UAS-Dcr2 (all obtained from 

the Bloomington Drosophila Stock Center). elav-gal4 was used as pan-neuronal driver for 

constitutive expression. elav-gal80TS was used for conditional temperature-sensitive expression. 

elav-gal4,UAS-Dcr2 was used for constitutive pan-neuronal expression with a double-stranded 

RNA-specific endonuclease. 

 

2.2. Immunoblotting 

 All immunoblotting experimental samples were separated by size using electrophoresis in 

10% acrylamide bisphosphate SDS-PAGE gel. Each gel containing separated proteins was then 

transferred, by wet electroblotting, into a 0.45 m nitrocellulose membrane (Bio-Rad, Hercules, 

CA). Membranes were then blocked in a solution containing 5% dry milk in 1X PBS (phosphate 
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buffered saline) with 0.05% Tween-20 (Sigma-Aldrich, St. Louis, MO) for at least 20 minutes on 

a table-top rocker.  Blots were then incubated in 1° antibody diluted in block solution with 0.02% 

sodium azide (J.T. Baker Chemical Co., Phillipsburg, NJ) overnight at room temperature. Blots 

were then washed 4 times in 1X PBS and 0.05% Tween-20. After wash, blots were incubated for 

60 minutes in 1:2500 2° antibody (Goat -rabbit or Goat -mouse) conjugated to horseradish 

peroxidase, HRP (Jackson ImmunoResearch Inc., West Grove, PA). Blots were then washed 4 

times as described above. Then, each blot was incubated for 30-60 seconds in 5 mL 1:500 

SuperSignal West Pico PLUS Chemiluminescent Substrate (ThermoFisher Scientific, Waltham, 

MA). Chemiluminescence signal was detected using an Epichemi3 Darkroom and the Labworks 

Imaging Software (UVP BioImaging, Upland, CA). Each chemiluminescent band was quantified 

using densitometric analysis with the software Fiji, an image processing distribution of ImageJ470 

and each value transferred to Microsoft Excel for data analysis. All data obtained from each 

antibody in each lane was normalized to its corresponding loading control (Actin or Syntaxin). 

Dixon’s Q-test was used to identify experimental outliers which were excluded from statistical 

analyses. Unless otherwise indicated, statistical evaluations were carried using the Student’s t-test. 

All immunoblotting representative graphs in this dissertation were made in Sigma Plot and edited 

in Adobe Photoshop. 

For Drosophila immunoblot analyses, each sample was prepared by sonicating 5 

Drosophila heads in 20 L 2X SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) sample buffer (100 mM Tris-HCL, pH 6.8, 200 mM dithiothreitol or 10% 

-mercaptoethanol, 4% sodium dodecyl sulfate, 25% glycerol, and 0.2% bromophenol blue) in a 

sonifier (Branson Ultrasonics, Danbury, CT). Once in blots, proteins were probed with different 

1˚ antibodies. -Kv4/Shal antibody was affinity purified from rabbit serum which was bled from 
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rabbits previously injected with the peptide CGIELDDNYRD that is present on the C-terminus of 

both dShal1 and dShal2427. -Kv4/Shal was used at 1:50-1:100 dilution depending on the 

purification stock. -dSK antibody (kindly provided by Dr. Patrick Dolph, Dartmouth College, 

NH)461 was verified with the use of a dSK-/- mutant (also provided by Dr. Patrick Dolph) using 

1:100 dilution. Kv1/Shaker antibody (Abcam, Cambridge, MA) was verified with the use of a 

Kv1/Shaker Drosophila deficiency (kindly provided by Dr. Kyunghee Koh, Thomas Jefferson 

University, Philadelphia, PA)462 using a 1:500 dilution. As controls, I used -Actin (Clone C4, 

MilliporeSigma, MA) and -Syntaxin (DHSB, University of Iowa, IA) antibodies at 1:2500 and 

1:50, respectively. 

 

2.3. Mouse Brain Experiments 

2.3.1. Mouse caring and sample storage 

Mouse caring and brain dissections were carried by Dr. Mario Oyola, a post-doctoral 

associate in Dr. Bob Handa’s laboratory at Colorado State University. He ordered 10 young (6-wk 

old) and 10 old (8-month-old) mice, strain C57BL/6 from Charles River Laboratories. Young 

mice, once they arrived, were kept in their new cages for 14 days so they could acclimate to their 

new environment (2-3 mice per cage). Old mice arrived at 8 months of age. They were housed 

independently until the age of 13 months. Dr. Oyola anesthetized mice with isoflurane prior to 

decapitation and brain extraction. Sections of the brain were separated with razor blades: 1) 

Cerebellum, 2) Hippocampus, 3) Motor Cortex, and 4) Olfactory Bulb. Material was submerged 

in 2 mL buffer (30 mM NaCl, 20 mM HEPES, 5 mM EDTA, pH 7.59, filtered sterile) and flash 

frozen in N2(l), then stored at -80°C. Note: not all mice survived; extractions were from 8-10 mice 

depending on age.  
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2.3.2. Sample preparation and immunoblot 

I received all frozen samples from Dr. Oyola. Prior to each experiment, samples were 

thawed on ice. Protease Inhibitors (100X HALT, EDTA free, ThermoFisher Scientific, Waltham, 

MA) were then added to 1X concentration. Tissue was homogenized using a tissue mincer electric 

homogenizer. Homogenate was then transferred to a 15mL conical vial and spun at 1000x g for 10 

minutes at 4°C – to pellet connective tissue and nuclear material. Supernatant was transferred to a 

Falcon tube, then spun at 20,000x g for 15 minutes at 4°C to pellet membrane fraction. Supernatant 

was removed and pellet re-suspended in 150-300 L buffer + 1% Triton-X100. Quantification of 

the protein sample was performed using the BCA system from Pierce and a UV/Visible 

spectrophotometer (Model DU730, Beckman Coulter, Brea, CA).  

Each sample was prepared with 15 g protein in 2X SDS-PAGE buffer, and each gel was 

loaded such that one sample from each young and old brain would be present (7 young and 7 old). 

Sample protein separation was performed using electrophoresis as described above. Different 1° 

antibodies used: -Kv4.1 (Alomone) at 1:400, -Kv4.2 (gift from Dr. Michael Tamkun, Colorado 

State University) at 1:500, -Kv4.3 (Neuromab) at 1:500, and -mActin (Clone AC-40, 

Sigma-Aldrich, St. Louis, MO) at 1:1000.  

 

2.3.3. Data collection and statistical analysis 

Each experiment was carried at least 5 times. Seven young and seven old (total 14) brain 

extracts were loaded into a single SDS-PAGE gel each time. Once immunoblot results were 

obtained, we used densitometric analysis as described above to quantify the data representing 

Kv4.1, Kv4.2, Kv4.3 and the control mActin. For each lane, I normalized the Kv4 data to that of its 

corresponding mActin. I identified and removed outliers using Dixon’s Q-test, as described above. 
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Then, I divided all values by the average of all 6-week (young mice) results – effective 

normalization to 1. 

A Linear Mixed Effects Model was then used to analyze the effects of age on protein levels 

of Kv4 proteins. Because I wanted to determine the effects of age across many blots and multiple 

mice, in this model I used “age” as a fixed effect, and added “Experimental-Immunoblot” and 

“Mouse-Brain-Section” as random effects. In the mathematical expression, “age” (syntax: Age) 

represents the statistical test answering the question “do levels of the measured Kv4 protein (Kv4.1, 

Kv4.2, or Kv4.3) change with age?” “Experimental-Immunoblot” (syntax: Experiment) was 

defined as a variable effect which represents the error across experimental procedures, while 

“Mouse-Brain-Section” (syntax: Brain) is another variable that represents the measurable 

differences of the same Kv4 across different mouse brains. I fitted this model (syntax: model1) 

using the Maximum Likelihood of the “lmer” function in lme4 package471 of the R statistical 

software using RStudio472, setting REML to FALSE (this option is used when comparing different 

fixed effects which in this case was Age – 6 week and 1 year were fixed). The p-values were 

calculated from the fixed effects t-values obtained by the “lmer” function using my data (syntax: 

datavalues) as a function of age. 

Software syntax for the mathematical expression: 

model1 <- lmer(Data ~ Age + (1|Experiment) + (1|Brain), data = “datavalues”, REML = FALSE) 

 

2.4 RT-qPCR 

2.4.1. RNA extraction 

 TRIzol reagent (300 L) was used for homogenization of 10 fly heads for RNA extraction 

and storage at -80˚C. Chloroform (60 L) was added to precipitate protein with vigorous vortexing 
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for 60 seconds before centrifuging samples at maximum speed  (15,000 RPM) on a table top 

centrifuge at 4˚C. The supernatant was transferred into a new RNAse free microfuge tube 

containing 150 L of 2-propanol and 10 L glycogen and then incubated for 60 minutes at -20˚C 

to allow RNA to precipitate. After cold incubation, the sample was spun at maximum speed at 4˚C 

for 15 minutes. The supernatant was discarded, and the pellet washed at least 3 times with 500 L 

of 70% ethanol/DEPC-treated water and spun at maximum speed at 4˚C to remake pellet each 

time. After washes, all ethanol/DEPC was removed by pipetting and the pellet was allowed to dry 

on the bench for 15-20 minutes prior to pellet resuspension in 15 L DEPS-treated water. 0.5 L 

of sample was used for gel electrophoresis to determine RNA integrity. Remaining sample was 

used for reverse transcriptase polymerase chain reaction (RT-PCR).  

 

2.4.2. Reverse Transcription 

 Sample RNA concentration and purity was measured using a NanoDrop 

spectrophotometer. RNA purity limit for young and old fly samples were kept at ≥1.88 and ≥1.75, 

respectively. Samples that had proper RNA integrity and purity were used for RT reaction. 700 g 

RNA for each sample was added to RNA-free PCR tube with 1 Unit DNAse I (ThermoFisher 

Scientific, Waltham, MA) and incubated at 37˚C for 15 minutes. DNAse inactivation was carried 

with addition of 1 L 50 mM EDTA and incubation at 65˚C for 10 minutes, and then immediately 

placed on ice. 1 L 0.5 g/L Oligo(dT)12-18 primer (ThermoFisher Scientific, Waltham, MA) was 

added to each sample along with 1 L 10 mM dNTP (ThermoFisher Scientific, Waltham, MA). 

The RT reaction was prepared with Superscript II Rnase H (ThermoFisher Scientific, Waltham, 

MA) and RNAse OUT (ThermoFisher Scientific, Waltham, MA). Sample was incubated at 42˚C 

to allow for primer binding to mRNA template before adding the reverse transcriptase. RT reaction 
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was carried for 50 minutes at 42˚C for elongation, and at 70˚C for 15 minutes for enzyme 

inactivation. cDNA was used immediately for qPCR. 

 

2.4.3. qPCR 

 Samples were diluted 1:5 with autoclaved nanopure water. Each sample was tested in 

triplicates, 5 L of diluted samples were added to 3 different wells of 96-well white qPCR plates 

(Roche, Switzerland) for each qPCR reaction. Each well also contained 3.8 L of PCR grade H2O, 

0.4 L of 20 M forward primer, 0.4 L of 20 M reverse primer, 0.4 L of 10 M Probe from 

Universal Probe Library (UPL), and 10 L LightCycler® 480 Probes Master Mix (Roche, 

Switzerland). Once all samples were loaded, a transparent plastic sheet (Roche, Switzerland) was 

used to seal the plates. Plates were spun for 2 minutes in a plate-centrifuge and loaded into a 

LightCycler® 480 Instrument II (Roche, Switzerland) for measurements using the UPL 96-well 

predefined program option. 

 Pimers for Kv4/Shal – which recognizes all 3 transcripts – using UPL Probe 66: 

GCTAACGAAAGGAGGAACG (forward) and TGAACTTATTGCTGTCATTTTGC (reverse). 

Primers for SIDL using UPL Probe 125: GTACAAGCAGGGTGACTGGAG (forward) and 

GATCGTGGCTTTGTAGGTGTC (reverse). For reference genes, we were unable to find genes 

that would be stable at all ages that we tested. For this reason, we selected RpS20 and eIF1A; we 

used RpS20 as a reference gene for measurements between 3 and 10 days, and we used eIF1A as 

a reference gene for measurements between 3 and 40 days, and 10 and 40 days. Primers for RpS20 

using UPL Probe 66: CGACCAGGGAAATTGCTAAA (forward) and 

CGACATGGGGCTTCTCAATA (reverse). Primers for eIF1A using UPL Probe 147: 

TCGTCTGGAGGCAATGTG (forward) and GCCCTGGTTAATCCACACC (reverse).  
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To verify primer amplification efficiency, we prepared enough cDNA samples using an 

equal combination of 3 and 40 day old fly heads so that we would have a large enough volume to 

perform test dilutions: undiluted, 1:5, 1:10, 1:15, 1:20, 1:25, and 1:35. Samples were loaded, in 

triplicates, into a 96-well white qPCR plates and loaded into the LightCycler® 480. The measured 

Ct values for each dilution were graphed as a function of the Log dilution factor in Microsoft Excel 

and fitted with a linear regression curve (R2 ≥ 0.95). The efficiency was dictated by the slope of 

the regression line (m = -3.32 for 100% primer efficiency). Because a perfect amplification is not 

always possible, we allowed for a slope range, -2.95 ≤ m ≤ -3.91 (80 to 120% primer efficiency, 

an acceptable range473). We measured primer efficiency for Kv4/Shal (m = -3.68), SIDL (m 

= -3.62), eIF1A (m = -3.60), and RpS20 (m = -3.33). Although our results show Ct values that fall 

within the range of our dilutions, if future testing results in Ct values outside of this range, the tests 

for primer efficiency should be expanded to include dilutions to that range. 

To verify product amplification, we loaded amplified samples from the 96-well qPCR 

plates into an agarose gel and separated them by electrophoresis. Every amplification from each 

primer pair yielded only 1 band at the correct molecular weight for each pair of primers tested 

which was then gel-extracted (GeneJET™, ThermoFisher Scientific, Waltham, MA) and 

sequenced (Proteomics, Metabolomics Facility, Colorado State University, CO) to confirm that 

the amplicon matches the predicted PCR amplification. 

 For data analysis, all Ct values were obtained using the Roche software on default options 

and exported into MS Excel. To be considered usable data, all triplicates needed to have a standard 

deviation of ≤0.15. If triplicates were ≥0.16, the Dixon’s Q-test was applied to remove an outlier. 

If no outlier was found, the triplicate was discarded. The average of triplicates was used for the 

next data analysis step. Ct averages were pulled together, and the standard deviation was measured. 
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For reference genes, this had to be true for data across experiments (e.g. together, 3d and 40d fly 

Ct values needed to show a standard deviation of ≤ 1.0 which would indicate the reference gene is 

stable for these experiments). In addition, a student’s t-test was performed on experimental Ct 

value groups to establish that there is no difference in the distributions (e.g. there should not be a 

difference between 3d and 40d data distributions). Ct values were then further analyzed using the 

2-Ct method473 and a Student’s t-test was performed to determine differences across experimental 

tests. 

 

2.5. ROS Fluorescence Detection 

 A fresh stock of 2’,7’-dichlorodihydrofluorescein diacetate, H2DCFDA (Invitrogen, 

Walthman, MA) was made each time at 1 mM concentration in dimethyl sulfoxide, DMSO 

(Sigma-Aldrich, St. Louis, MO). To calibrate fluorescence gain of each experiment, 1 L of the 

H2DCFDA stock was mixed with 1 pM, 1 nM, 1 M, or 1 mM H2O2 (Sigma-Aldrich, St. Louis, 

MO) in separate wells. Samples were prepared by homogenizing 25 heads into 500 L of 0.4 M 

Tris-HCL, pH 7.4, filtered sterile buffer by the use of a clean pestle in a microfuge tube and 

centrifuged at 5,000 RPM in top table centrifuge to pellet chitin. 100 L samples were loaded into 

single wells (4 samples per each 500 L extraction, with at least 5 extractions were performed per 

experiment) and 1 L of 1 mM DCFDA was added to each well making sure it was done at random 

each time since the fluorophore begins reacting immediately and this could add a bias to the 

experiment. All data from 3 experiments was pulled for analysis and treated as an individual 

reading to include experimental variations. The Dixon’s Q-test was performed on both control and 

experimental results to remove outliers. Both data groups were normalized to the control 
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experiment and a student’s t-test was carried to determine if there is a significant difference in 

ROS levels between control and test. 

 

2.6. Drosophila locomotor activity assay 

 35-40 adult males were collected at the bottom of a 12.4 cm test tube (VWR, Radnor, PA) 

and were allowed to climb for 30 seconds into a second inverted tube on top. The process was 

repeated and flies that arrived to the second tube were allowed to climb for another 30 seconds 

into an inverted third tube. This was performed on a total of 10 tubes and the population was 

fractioned by countercurrent distribution474. Each fly was given a score of 0.5 per each tube that 

they fully climbed to enter the next tube (e.g. score of 0.5 on first tube, 1.0 on second tube, 1.5 on 

third tube, etc.), as similarly performed by Xu et al475. and by Ping et al454., and this was taken into 

a total score which is defined as the “locomotor performance”. This experiment was tested on at 

least 10 different groups of male flies for each genotype. 

 

2.7. Drosophila longevity testing  

 To measure lifespan, 10 newly-eclosed adult males were collected into each of a total of 

20 tubes which were kept at 25˚C and 60% humidity. Flies were transferred into new fresh food 

vials every 2-3 days and the number of living and dead were counted each time. We used GraphPad 

Prism 6 (GraphPad Software, Inc., La Jolla, CA) to graph survival curves and a log-rank analysis 

to determine differences, if any, in life span. 
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2.8. Immunocytochemistry 

2.8.1. Embryonic Neuronal Culture Preparation 

 Single Drosophila embryos aged 1-2 hours were collected incubated at 25℃ for 5-6 hours. 

Double-sided scotch tape was used to dechorionated single embryos which were then covered with 

halocarbon oil. Embryos were staged and stage 9-10 were used. A microelectrode with a broken 

tip was used to perforate the embryo and remove all the contents which were dissociated in a 20 

L drop of cultured medium of 18% fetal bovine serum, FBS (Invitrogen, Waltham, MA), 1% 

penicillin-streptomycin and Schneider’s Medium (Gibco, Scotland, UK) on a 22x22 mm glass 

coverslip (VWR, Radnor, PA) placed inside a 35x10 mm culture dish (ThermoFisher, Waltham, 

MA). Cultures were then allowed to grow in a humidified chamber at room temperature overnight. 

After growth, coverslips were transferred into modified culture dishes for microscopy experiments. 

 Because we were working with an upright microscope, we needed to place the coverslip 

with neurons underneath the dishes. To modify these dishes, we took culture dishes of size 35x10 

mm (Cellstar, Bioexpress) and drilled in the middle at a diameter twice the size of the 20 L culture 

medium. Coverslips with cultures were adhered underneath these dishes with SYLGARD (World 

Precision Instruments, Sarasota, FL) so the culture-containing drop is situated in the middle of the 

drilled hole. Once cured, dish was flooded with 2 mL culture media and allowed to sit for 5 minutes 

to test for leaks. If no leaks, plate was placed into the inverted microscope for visualization. 

 

2.8.2. Testing Different Experimental Conditions 

 Neuronal cultures mounted in floodable culture dishes filled with 2 mL culture media were 

visualized with a Carl Zeiss inverted microscope equipped with an ApoTome unit, for optical 

sectioning, and an EC Plan-Neofluar 40x/0.75 objective lens. All images of optical sections 
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through clusters of neuronal cell bodies were recorded with an Axiocam 503 and the Zen Blue 

Edition software (Carl Zeiss, Oberkochen, Germany). Drosophila embryos expressing CD8-GFP 

and GFP-Kv4/Shal were first used to determine if photobleaching was going to be a factor in the 

long exposure times needed for ApoTome microscopy. Depending on fluorescence signal 

intensity, we acquired images using exposure times between 700 milliseconds and 5 seconds. For 

GFP and mCherry signals, we used an eGFP filter block with excitation wavelength at 488 nm and 

emission wavelength at 509 nm. For mCherry signal, we used an AF568 filter block with excitation 

wavelength at 577 nm and emission wavelength at 603 nm. For testing the effects of exposure of 

ROS to neuronal cultures, H2O2 (Sigma-Aldrich, St. Louis, MO) diluted with nanopure water was 

directly added to the 2 mL of media in the embryonic culture dish to final concentrations of 100 

M, 1 mM, or 5 mM making sure the volume increase would not be more than 1% of the 2 mL.  
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CHAPTER 3. AGE-DEPENDENT CHANGES IN KV4 CHANNEL LEVELS AND THEIR 

CONTRIBUTION TO LOCOMOTOR PERFORMANCE 

 

3.1. Overview 

 It is well-established that aging results in a decline in functional performance12. This 

decline is likely due to age-related modifications in the neuronal networks of the brain. Ion 

channels play a critical role in brain function and have been reported to be affected by age. Due to 

its relatively short life-span, wide genetic tool kit, general understanding of ion channel function, 

and the ability to perform population studies, Drosophila presents us with an ideal model system. 

We use Drosophila to characterize age-dependent decline in locomotor function and to uncover 

age-related molecular mechanisms that affect ion channels that may lead to this decline in 

locomotor behaviors. In this chapter, we characterized the decrease in Drosophila locomotor 

performance with age and found that there is an age-dependent decline in locomotor performance 

that begins at 30 days of age. We found that the ion channel Kv4, which has been reported to play 

a role in Drosophila rhythmic behaviors including locomotion359, also undergoes an age-dependent 

decline in protein levels. Our data suggest that this progressive loss of Kv4 channels seems to be 

specific for Kv4, and not a general phenomenon occurring to all voltage-gated potassium ion 

channels. We also found that overexpression of Kv4 increased locomotor performance in flies at 

each tested age. To determine if the age-dependent loss of Kv4 channels is also seen in a 

mammalian system, we measured Kv4.1, Kv4.2, and Kv4.3 protein levels in different regions of the 

mouse brain. Though some levels of channels increase with age in different brain regions, we 

found that Kv4.2 decreases with age in the hippocampus of the mouse brain. 
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3.2. Age-Dependent Decline in Locomotor Performance In Drosophila  

 The age-dependent decline in locomotor ability is a well-known phenomenon affecting all 

species, from nematodes to humans13,23,476–478. In Drosophila, the half-life of the organism has 

been characterized extensively and has been defined at ~75 days of age117,479–487. To determine the 

onset of this age-dependent decline, we measured locomotor performance in Drosophila at 3, 10, 

20, 30, 40, 50, and 60 days of age. We found that, between 3 and 20 days of age, there were no 

significant effects on performance (Figure 3.1). By 30 days, however, there was a 20% decline in 

locomotor performance compared to 20 days. Every subsequent measurement, after 30 days 

through 60 days of age, showed significant decreases in locomotor performance. When compared 

to 3 days, locomotion decreased by 30%, 60%, 70%, and 75% at 30, 40, 50, and 60 days, 

respectively, Figure 3.1. These results show that the onset of the age-dependent decline in 

locomotor performance occurs at 30 days of age in wildtype Drosophila. 

In a previous study, expression of the dominant negative Kv4 subunit (DNKv4) led to a loss 

of Kv4 function and reduced locomotor abilities in Drosophila359. We used the UAS/GAL4 system 

to express UAS-Kv4 with the goal of testing if an overexpression of this channel would lead to a 

gain in performance and, if so, whether this gain in performance could delay the onset of the 

age-dependent decline in locomotor abilities. We first verified that UAS-Kv4 could be 

overexpressed in Drosophila at different ages. We overexpressed UAS-Kv4 pan-neuronally and 

measured Kv4 levels at 3 and 10 days post-eclosion and found that there is a significant increase 

in Kv4 protein levels at both time-points, Figure 3.2. Next, we performed locomotor performance 

measurements on these flies. We collected 35-40 adult males at the bottom of test tube 1 and 

allowed them to climb for 30 seconds into test tube 2. We performed this for a total of 10 tubes 

and the population of each tube was given a weighed score. 
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Though the onset of the decline in locomotion was not delayed, we detected a significant 

increase in locomotor performance at all ages, except at 60 days, Figure 3.2. To test the effects of 

overexpression of another A-type potassium channel on Drosophila locomotor performance, we 

expressed UAS-Kv1. The age-dependent decline in locomotor performance was exacerbated with 

UAS-Kv1 overexpression at every age, Figure 3.2. These results suggest that the Kv4 A-type 

channel specifically plays a role in locomotor performance, and that loss of Kv4 cannot be 

compensated for by another K+ channel. 

Because a previous study reported that neuronal expression of DNKv4 also led to a shortened 

lifespan in Drosophila359, we tested the effects of constitutive expression of UAS-Kv4 on longevity. 

We performed this experiment twice and in neither case were we able to detect any change in 

Drosophila lifespan, Figure 3.2, top-right panel. These results show that overexpression of Kv4  

                                

Figure 3.1. There is an age-dependent decline in Drosophila locomotor performance. 
Behavioral experiments measuring locomotor performance of adult flies during aging. 
Locomotor performance exhibits an age-dependent decline that begins to show a 
significant difference at 30 days of age. Each marked significance is compared to the 
previous day measurement (35-40 flies per sample, n=10 per day measured, ** p≤0.01, 
*** p≤0.001, Student’s t-test). 
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Figure 3.2. Constitutive overexpression of Kv4 increases locomotor performance at 

every age tested but has no effect on longevity. Top-Left, immunoblot experiments show 
that Kv4 channel levels have a significant increase with pan-neuronal overexpression of Kv4 
at 3d and 10d of age, using Actin as a control (5 heads per sample, n=20, 6 blots, * p≤0.05, 
*** p≤0.001, Student’s t-test). Top-Right, this constitutive expression of Kv4 does not 
increase lifespan in the fly (samples were 10 flies/vial, 20 vials per genotype, Log-rank 
statistical analysis). Bottom-Left, constitutive Kv4 overexpression significantly increases 
locomotor performance at each tested age up to 50 days of age – “ctrl1” represent wildtype 
control Canton-S flies, “ctrl2” represents UAS-Kv4 genetic background flies, and “Kv4” 
represents flies constitutively expressing Kv4 channels (35-40 flies per sample, n=10 per 
genotype per day tested, * p≤0.05, ** p≤0.01, *** p≤0.001, Student’s t-test between Kv4 
and ctrl2). Bottom-Right, constitutive expression of Kv1 channels significantly decreases 
locomotor performance at all tested ages – “ctrl1” represents UAS-Kv1 genetic background 
flies, “Kv1” represents flies overexpressing Kv1 channels (35-40 flies per sample, n=10 per 
genotype per day tested, ** p≤0.01, *** p≤0.001, Student’s t-test). 
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does not increase the lifespan of the fly. These data suggest that, while increasing Kv4 does not 

increase longevity, it does enhance locomotor performance. 

 

3.3. Age-Dependent Decrease In Drosophila Kv4 Channels 

 Because wildtype locomotor performance declined with age and an overexpression of Kv4 

led to increased locomotor performance with age, we performed immunoblot experiments 

measuring Kv4 protein levels from wildtype Drosophila heads during aging. We first prepared 

adult fly head homogenates using -mercaptoethanol as the reducing agent. We detected a signal 

with our -Kv4 antibody in the high-molecular weight region of the resolving portion of the gel, 

Figure 3.3. When we used the stronger reducing compound dithiothreitol, this high-molecular 

weight signal was eliminated, Figure 3.3. This allowed us to more confidently quantify total Kv4 

protein, eliminating possible high-molecular weight aggregations of the channel. We measured 

levels of Kv4 protein at 3, 10, 14, 20, 30, and 40 days of age. We found that Kv4 protein levels 

 

Figure 3.3. Choosing the right reducing agent for sample preparation. Immunoblot 
experiments labeling with -Kv4 and -Syntaxin as control (5 heads per sample, 4 blots 
per experiment). Left, resolving SDS-PAGE gel showing protein extract treated with the 
reducing agent -mercaptoethanol shows an age-dependent decline in Kv4 signal between 
fly eclosion and 20 days post-eclosion. There is also immunoreactivity of high molecular 
weight which could, potentially, represent protein aggregation of Kv4. Middle, resolving 
SDS-PAGE showing protein extract treated with the stronger reducing agent dithiothreitol 
also shows an age-dependent decline in Kv4 protein levels but without the high-molecular 
weight species between newly eclosed and 40-day old flies. Right, immunoblot showing 
both resolving and stacking gels to confirm that no high-molecular weight signal is present 
even in the stacking portion of the gel. 
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undergo a decline characterized by an initial decrease of 50% in Kv4 protein levels between 3 and 

10 days of age, followed by a more gradual yet progressive decline from 10 to 40 days of age, 

Figure 3.4. This protein decline, especially the more gradual decline after 10 days, might contribute 

to the age-dependent decline in locomotor performance observed. 

3.4. The Decline In Kv4 protein Is Likely Specific For Kv4 

To test if this progressive age-dependent decline in Kv4 channel protein levels is specific 

to Kv4, and not a consequence for all potassium channels, we measured protein levels in two other 

structurally-similar potassium channels in young and aged flies – dSK and Kv1, Figure 3.5. We 

first measured the levels of the Drosophila calcium-activated potassium channel dSK immediately 

post-eclosion (0d) and at 40 days of age. We detected no significant differences in dSK protein 

levels between newly eclosed and 40-day old flies, suggesting that dSK channels do not undergo 

an age-dependent decline in protein level. We found, however, a 30% decline in Kv1 protein from 

 

Figure 3.4. Kv4 protein levels undergo a progressive age-dependent decline. 
Immunoblot experiments labeling with -Kv4 and -Actin as control (5 heads per sample, 
n=7, 7 blots, ** p≤0.01, *** p≤0.001, Student’s t-test). Protein levels undergo an age-
dependent progressive decline with age. There is ~50% decline in Kv4 proteins levels 
between 3d and 10d of age in adult flies. There is a 70% decrease in levels between 10d 
and the much older 40d flies.  
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3 to 40 days of age. When we examined additional ages, we found that this protein decrease mostly 

occurs between 30 and 40 days of age; Kv1 protein levels remain unchanged, for example, between  

3 and 30 days of age. Interestingly, we also found that there is a transient increase in Kv1 levels 

between 3 and 10 days of age, which returns to baseline levels by 20 days of age. Bergquist et al. 

(2010) had described a mutual relationship between Kv1 and Kv4, and our data showed both 

consistent and inconsistent results to those reported by them. In their report, their Kv4/Shal 

knockout fly, Shal495, resulted in increased Kv1/Shaker mRNA levels. They also reported that 

   

 

Figure 3.5. The age-dependent decline in Kv4 channel protein levels is likely not a 

general characteristic of all potassium channels. Left, immunoblot experiments 
measuring dSK and Syntaxin levels, using a dSK-/- as control. There is no significant 
difference in dSK protein levels between young newly eclosed flies and those at 40 days 
of age (5 heads per sample, n=10, 4 blots, n.s. denotes no significant difference, 
Student’s t-test). Right, immunoblot experiments measuring Kv1 and Actin levels, using 
Df(Kv1) as control. There is a transient significant increase in Kv1 protein levels between 
by 10d of age which reverts to original levels by 20 days of age, and a significant decline 
in Kv1 levels by 40 days of age (5 heads per sample, n=11, 11 blots, n.s. indicates no 
significant difference, * p≤0.05, ** p≤0.01, *** p≤0.001Student’s t-test). 
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either on a Kv1 functional mutant (Shaker14) or with expression of neuronal Kv1/Shaker-RNAi, 

Kv4/Shal mRNA levels increased. Because their report indicated that that Kv4 and Kv1 were 

reciprocally transcriptionally coupled488, one possibility is that the decline in Kv4 protein resulted 

in an increase in Kv1 protein levels at 10 days of age. Consistent with their report, we found that 

the functional knockout, DNKv4, led to increased Kv1 protein levels by 40% and 30% in 3 and 

14-day old flies, respectively, suggesting that Kv4 function likely plays a role in expression of Kv1 

and that this increase is not necessarily dependent on age, Figure 3.6. We also tested levels of Kv4 

channels in a Kv1-deficient fly – Df(Kv1) – and the levels of Kv1 channels in a Kv4-functional 

knockout. We found that total Kv4 protein levels still undergo an age-dependent decrease in a fly 

that does not express Kv1 – Df(Kv1) – suggesting that the progressive decline in Kv4 protein does  

not depend on expression of Kv1 channels, Figure 3.6. 

                        

Figure 3.6. Kv4 protein levels do not depend on Kv1 protein expression, instead Kv1 

levels are, in part, controlled by Kv4 function. Left, immunoblot experiments 
measuring Kv4 and Actin, as control, protein levels in 3d and 14d-old wildtype or Df(Kv1) 
flies. There is a significant decrease in Kv4 protein levels with age regardless of Kv1 
channel presence (5 heads per sample, n=12, 6 blots, *** p≤0.001, Student’s t-test). 
Right, immunoblot experiments measuring Kv1 protein levels in 3d and 14d-old wildtype 
or DNKv4-expressing flies. The loss of Kv4 function leads to an increase in Kv1 levels at 
3d and 14d post-eclosion (5 heads per sample, n=18, 8 blots, * p≤0.05, ** p≤0.01, 
Student’s t-test) 
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3.5. Age-Effects On Mouse Kv4 Protein Levels 

 To determine if the effects of age on Kv4 channels is a phenomenon that is conserved across 

species, we measured the levels of Kv4.1, Kv4.2, and Kv4.3 in different regions of the mouse brain 

where Kv4 channels are required for proper function: hippocampus, olfactory bulb, cerebellum, 

and motor cortex300,330,338,361,386,387,489. Dr. Mario Oyola, a post-doctoral associate in Dr. Bob 

Handa’s laboratory at Colorado State University extracted tissue from a total of 14 mice – seven 

at 6 weeks of age and seven at 13 months of age – and provided frozen samples to me for 

immunoblot analyses. 

In the hippocampus, we were not able to reliably detect Kv4.1. It is possible that Kv4.1 is 

not expressed at high enough levels in this brain region. Because we collected data from many 

different blots and multiple mice, we performed a Linear Mixed Model (LMM) statistical analysis 

to compare Kv4.2 or Kv4.3 protein levels between 6 week and 1-year old mouse groups. Unlike 

the Student’s t-test which compares two normal distributions, the LMM takes into account more 

variables and is compatible with distributions that have no normality. In our case, the comparison 

was protein levels between young and old mice, and with this mathematical function we were able 

to include the variability of protein concentrations across different mice and the variability across 

experiments into the equation, Figures 3.7-3.10. We were able to measure a ~20% age-dependent 

decline in Kv4.2 protein level between 6-week and 1-year old mice in the hippocampus, Figure 

3.7. The levels of Kv4.3 protein, however, increased by ~50% with age, possibly as a compensatory 

mechanism because of the age-dependent loss of Kv4.2 channels. Alternatively, the levels of Kv4.2 

might have decreased as a compensatory response to the large increase in Kv4.3 proteins. 

 Next, we looked at the concentration of Kv4 channels in the olfactory bulb. Here, we were 

able to measure the protein levels of all three Kv4 channel types, Figure 3.8. We were not able to 



72 

detect any significant differences in Kv4.1, Kv4.2, or Kv4.3 channel levels between 6-week and 

1-year old mice. The protein across the different brain extractions is also quite varied.  

In the cerebellum, the levels of Kv4.1 were very low; however, we were able to measure 

protein levels of Kv4.2 and Kv4.3 successfully, Figure 3.9. There was no change in Kv4.2 protein 

levels with age. Levels of Kv4.3, however, were significantly increased by ~40% in 1-year old 

mice when compared to 6-week old mice. 

In the motor cortex, we did not measure significant differences in Kv4.1 or Kv4.2 protein 

levels, Figure 3.10. For Kv4.3 measurements, however, we noticed a ~30% increase in channel 

levels. Altogether, these results indicate that the effects of age on Kv4 protein are more complex 

in mammals. Indeed, though Kv4.3 was found to increase with age in the hippocampus, cerebellum, 

and motor cortex, levels of Kv4.2 decreased in the hippocampus, an area of the brain involved in 

learning and memory which has been described to decline with age490. 
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Figure 3.7. Kv4.2 and Kv4.3 protein levels decrease and increase with age, respectively, 

in the hippocampus of mouse brain. Black bars represent 6-week (6wk) old mice and 
grey bars represent 13-month (1yr) old mice (samples were obtained from individual 
hippocampus extractions from 7-6wk and 7-1yr brains, 15g total protein per sample from 
homogenate loaded into each SDS-PAGE well, n=35, 5 blots, * p≤0.05, ** p≤0.01, Linear 
Mixed Model statistical analysis). Top, immunoblot experiments show that there is a 
significant decline in Kv4.2 protein levels in the hippocampus between 6-week old and 
1- year old mice. The levels of Kv4.2 across different mice brains is not constant, as results 
show that they vary across each brain tested. Bottom, immunoblot experiments show that 
there is a significant increase in Kv4.3 protein levels in the hippocampus between 6wk and 
1yr old mice. Kv4.1 signal was too low to perform any reliable data analysis. 
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Figure 3.8. Kv4.2 and Kv4.3 protein levels remain unchanged with age in the olfactory 

bulb of mouse brain. Black bars represent 6-week (6wk) old mice and grey bars represent 
13 month (1yr) old mice (samples were obtained from individual hippocampus extractions 
from 7-6wk and 7-1yr brains, 15g total protein per sample from homogenate loaded into 
each SDS-PAGE well, n=35, 5 blots, n.s. indicates no significant difference, Linear Mixed 
Model statistical analysis). Top, immunoblot experiments show that there is no significant 
difference in Kv4.1 levels between 6wk and 1yr mice. Middle, immunoblot experiments 
show that there are no significant changes in Kv4.2 protein levels in the olfactory bulb 
between 6 week-old and 1 year-old mice. Bottom, immunoblot experiments show that there 
is no change in Kv4.3 protein levels in the olfactory bulb between 6wk and 1yr old mice. 
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Figure 3.9. Levels of Kv4.3, but not Kv4.2, protein increase with age in the cerebellum 

of mouse brain. Black bars represent 6-week (6wk) old mice and grey bars represent 13 
month (1yr) old mice (samples were obtained from individual hippocampus extractions 
from 7-6wk and 7-1yr brains, 15g total protein per sample from homogenate loaded into 
each SDS-PAGE well, n=35, 5 blots, n.s. indicates no significant difference,   * p≤0.05, 
Linear Mixed Model statistical analysis). Top, immunoblot experiments show that there is 
no significant difference in Kv4.2 protein levels between 6wk and 1yr mice. Bottom, 
immunoblot experiments reveal that there is a significant increase in Kv4.3 protein levels 
between 6wk and 1yr mice. Kv4.1 signal was too dim to perform any honest data analysis. 
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Figure 3.10. Levels of Kv4.3, but not Kv4.1 or Kv4.2, protein increase with age in the 

motor cortex of mouse brain. Black bars represent 6-week (6wk) old mice and grey bars 
represent 13 month (1yr) old mice (samples were obtained from individual hippocampus 
extractions from 7-6wk and 6-1yr brains, 15g total protein per sample from homogenate 
loaded into each SDS-PAGE well, n=16-35, 3-5 blots, n.s. indicates no significant 
difference, * p≤0.05, Linear Mixed Model statistical analysis). Top, immunoblot 
experiments show that there is no significant difference in Kv4.2 levels between both young 
and old mice. Bottom, there is a significant increase in Kv4.3 levels in 1yr mice when 
compare to 6wk ones.  
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CHAPTER 4. EFFECTS OF ROS ON Kv4 ION CHANNEL LEVELS 

 

4.1 Overview 

 The age-dependent accumulation of ROS is a well-established phenomenon that occurs in 

cells491 and has been termed the “mitochondrial free radical theory of aging”56. Oxidative damage 

can cause proteins to become nonfunctional which typically triggers them to be targeted for 

degradation. We hypothesized that ROS may play a role in the age-dependent decline of Kv4 

channels. In this chapter, I present the effects of acute exposure of H2O2 in vivo and in vitro on 

Kv4 channel levels. We found that, though H2O2 exposure did not cause any qualitative changes 

in tagged-Kv4 (GFP-Kv4 or mCherry-pHluorin-Kv4) in neuronal cultures, Kv4 protein levels were 

affected by H2O2 in whole flies. We then confirmed that ROS levels increase in Drosophila with 

age and examined the effects of expressing superoxide dismutase 1 and 2 (SOD1 and SOD2), and 

catalase, enzymes that regulate intracellular ROS, on levels of Kv4 protein at different ages of the 

adult fly. We found that Catalase expression in 40-day flies, but not SOD1 or SOD2, ameliorates 

the decline in Kv4 levels. This Catalase expression in 4-day old flies resulted in lower ROS levels 

when compared to wildtype. I also make use of RNAi to knockdown expression of two ROS 

producing enzymes, NOX and DUOX, and test their effects on Kv4 channel levels. We found that 

a knockdown of NOX, but not DUOX, causes increased levels of Kv4. Because flies that expressed 

either Catalase or NOX-RNAi resulted in increased levels of Kv4, we tested their locomotor 

performance. We found that with expression of Catalase, but not NOX, Drosophila locomotor 

performance is improved. 
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4.2 Effects of exposing Drosophila to H2O2 

 To test if ROS have an effect at the organismal levels that leads to a decline in Kv4 

channels, we exposed live Drosophila to H2O2 and tested the effects of this exposure on Kv4 

protein levels. We placed 30-35 flies in scintillation vials and included a round paper filter with 

100 L of 30% (8.82 M) H2O2, Figure 4.1. After a 4-hour incubation, we transferred the flies into 

regular food vials for recovery at room temperature. We measured Kv4 levels immediately after 

H2O2 exposure (0 hours), and after 4, 24, and 48 hours recovery. Though there were no significant 

differences in Kv4 protein levels for at least 4 hours after H2O2 exposure (data not shown), we 

measured a ~20% decrease in Kv4 levels 24 hours after H2O2 exposure, Figure 4.1. These results 

show that a short 4-hour exposure to H2O2 has a detrimental effect on Kv4 channel protein levels 

                                  

Figure 4.1. Acute exposure to hydrogen peroxide leads to decreased Kv4 protein levels 

in Drosophila. Left, cartoon depicting Drosophila in a closed scintillation vial with a paper 
filter containing 100 L H2O2 for 4 hours and 24 hours recovery in a regular Drosophila 
food vial at room temperature. Right, immunoblot experiments showing a decrease in Kv4 
protein levels, using Actin as a control, upon 4 hour H2O2 exposure with 24 hours recovery 
– “ctrl” represents the experiment where H2O was added to the paper filter, “H2O2” 
represents the experiment where H2O2 was added to the paper filter (5 heads per sample, 
n=15, 15 blots, *** p≤0.001, Student’s t-test). 
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in living flies. One possibility is that it takes 4 hours for H2O2 to overwhelm cellular antioxidant 

defenses in Drosophila and cause enough oxidative damage to Kv4 which could then be targeted 

for degradation. Recovery of channel levels likely depends on the time required for Kv4 protein 

turnover. After 48 hours recovery from a 4 hours H2O2 exposure, Kv4 levels were restored, 

suggesting that damaged Kv4 protein were replaced by newly synthesized channels. We 

hypothesized that accumulation of ROS with age might contribute to the progressive 

age-dependent decline of Kv4 channels we measured previously, Chapter 3, Figure 3.4 

 

4.3. Effects of Exposing Cultured Neurons To H2O2 

We next tested the effects of H2O2 on Kv4 channels in primary Drosophila cultured 

neurons. We took advantage of the UAS/GAL4 system492 and used elav-GAL4 to pan-neuronally 

express UAS-GFP-Kv4 or UAS-mCherry-pHluorin-Kv4 in embryonic cultures.  

 Neuronal clusters are loosely attached to the glass coverslips and obtaining still images 

over 30 minutes or more was difficult. To solve this problem, I took note of the location of the 

neuronal cluster of interest using 20X and 40X objective lenses, so I could remove the plate, place 

it in the humidifier for the allotted incubation time, and then return it in the microscope to identify 

the same cluster over time. Once this system was implemented, I developed a systematic approach 

for repeatedly re-focus to the same focal plane. To do this, I selected a cell that was on the edge of 

the cluster in the focal plane. I focused on the edge of this cell and scanned an image for reference.  

 Preliminarily, we tested increasing concentrations, from 1 pM to 5 mM, of H2O2 on 

neuronal cultures to determine the maximum amount of H2O2 that could be added without grossly 

affecting neuronal morphology (data not shown). We determined that at 1 mM H2O2, a value well 

beyond physiological concentrations, neuronal morphology appeared relatively normal. To test 
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whether the addition of H2O2 would have any effects on GFP itself, we expressed CD8-GFP, a 

GFP-tagged non-specific transmembrane protein, in neurons and exposed them to 1 mM H2O2 for 

1 hour. We used Zeiss ApoTome microscopy to visualize the GFP signal. In comparison to 

standard fluorescent microscopy, the ApoTome delivers enhanced optical resolution with much 

better contrast while allowing to visualize images with depth discrimination493. We visualized 

samples in an optical section through 10 neuronal clusters from different culture preparations, 

Figure 4.2. We noticed no qualitative difference in GFP signal from CD8-GFP expressing neurons 

between pre- and post- treatment with H2O2 after 1-hour incubation, suggesting that exposure to 

H2O2 likely has no effects on GFP fluorescence, Figure 4.2. 

 

 

Figure 4.2. Acute exposure of H2O2 to CD8-GFP shows no qualitative changes in GFP 

signal intensity. Representative neuronal cluster section showing GFP signal from flies 
expressing UAS-CD8-GFP using ApoTome microscopy, using 40X objective lens. 
Sections correspond to a cross-section of the cluster pre-treatment or exposed to 1 mM 
H2O2 for 1 hour. Neuronal cluster morphology was unaffected with H2O2 exposure. CD8-
GFP is non-specific and therefore expressed all throughout the cell membranes. There are 
no apparent changes in GFP signal after acute exposure to 1 mM H2O2 for 1 hour (10 
clusters from different culture preparations). 
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We then tested the hypothesis than an acute 1-hour exposure to H2O2 would lead to a 

decrease or re-localization of the GFP signal in neurons expressing GFP-Kv4. We visualized 

GFP-Kv4 in an optical section through 7 neuronal clusters from different culture preparations. The 

GFP signal appears “moon-shaped”, suggesting that these channels do not localize uniformly as 

did CD8-GFP. Upon addition of 1 mM H2O2 and incubation for 1 hour, morphology of the cells 

remained relatively unaffected, Figure 4.3. The GFP signal from GFP-Kv4 did not qualitatively 

decrease in intensity or show any gross re-distribution. Overall, our data shows that a 1-hour 

incubation with H2O2 had no effect on GFP signal in neurons expressing GFP-Kv4, Figure 4.3. 

                                    

Figure 4.3. Acute exposure of H2O2 shows no effects on GFP-Kv4 localization and 

qualitative signal intensity in neuronal cultures. Representative neuronal cluster section 
using ApoTome microscopy. Sections correspond to a middle region of the cluster. These 
clusters were used to measure GFP-Kv4 signal with and without H2O2. Neuronal cluster 
morphology looks relatively normal between pre-treatment (control) and those exposed for 
1 hour to H2O2. The GFP signal in GFP-Kv4 appears moon-shaped and seems to localize 
to or near the membrane of cells in cluster. There are no evident changes in GFP signal 
after acute exposure to 1 mM H2O2 (7 clusters from different culture preparations). 
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We then performed similar experiments using a mCherry-pHluorin-Kv4 expressing 

Drosophila transgenic line to test the hypothesis that Kv4 might be internalized into low pH 

compartments such as lysosomes and multivesicular bodies, and possibly targeted for degradation. 

Developed by Miesenböck (1998) and colleagues, the pH-sensitive GFP protein tag (pHluorin) 

has been useful in fluorescent microscopy studies that aim to monitor internalization of proteins 

into low pH environments468. A mutant of GFP, pHluorin shows a strong fluorescence signal in 

neutral pH environments and the signal is quenched in lower pH environments such as the inside 

of a vesicle or lysosome. This tag has been successfully expressed and used to monitor vesicle 

exocytosis and recycling in mammalian and Drosophila cell systems468,494. In Drosophila, Pankiv 

and coworkers (2007) further developed this pH-sensitive tag by adding mCherry to its sequence. 

The tandem fusion of the acid-insensitive mCherry with the pH-sensitive typically detected in both 

red (mCherry) and green (pHluorin) channels when present in a non-acidic environment. Upon 

internalization, the only signal that can be detected is mCherry. Since then, the mCherry-pHluorin 

tag has been used in studies that aim to understand pHluorin allowed them to monitor proteins p62 

and LC3 being targeted for lysosomal degradation467. They described that when the double tagged 

proteins are protein internalization and vesicular trafficking for degradation in Drosophila 

neurons495,496.  

The N-terminus of Kv4 localizes to the cytosol when the channel is in the plasma 

membrane, and the channel was N-terminally tagged with mCherry-pHluorin. Upon 

internalization of tagged Kv4 channels into vesicles, the mCherry-pHluorin tag will still be present 

in the cytosol and both fluorescent signals will be detected. When the vesicle is internalized into, 

likely, multivesicular bodies (MVB) and further into the lysosome, the pHluorin signal is expected 

to be quenched and, at this point, we would then only detect mCherry fluorescence. A collaborative 
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experiment with the laboratory of Dr. Andrew Bean at the University Of Texas Health Science 

Center in Houston provided us with some evidence that Kv4 channels are likely sorted into MVB 

during turnover. I prepared an expression construct of Kv4 with a C-terminal V5 tag. Monica 

Gireud, in Dr. Bean’s laboratory, used this construct in their cell-free reconstitution of MVB cargo 

sorting system497,498 and found that Kv4-V5 recycles through MVB, data not shown. 

We cultured primary Drosophila neurons and allowed them to grow for 3 days at room 

temperature in a humidified chamber. We then visualized optical sections through clusters of 

neurons and were able to detect both mCherry and pHluorin signals. Both signals qualitatively 

co-localized to or near the cell membrane of neurons, Figure 4.4. We also noticed the absence of 

Figure 4.4. There are no distinct differences in internalization of Kv4 into low pH 

compartments within neurons on cells acutely exposed to 1mM H2O2 for 24 hours. 
Both pre- and post- treatment of H2O2 are shown. No substantial changes in morphology 
upon exposure of 3-day-old cultures to 1 mM H2O2 for 24 hours. pH-sensitive GFP 
signal showing localization of Kv4 not in a low pH environment. mCherry signal depicts 
the complete neuronal localization of Kv4. There is no evident decline in GFP signal, 
suggesting that exposure to H2O2 does not produce a relocalization of Kv4 into a lower 
pH environment such as a vesicle (5 clusters from different culture preparations). 
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any mCherry-positive puncta suggesting that 3-day old cultures do not exhibit detectable 

mCherry-pHluorin-Kv4 in acidic compartments. In 7 to 9-day old cultures, we were also able to 

detect co-localized mCherry and pHluorin signal. In these older cultures, however, we additionally 

observed mCherry-positive puncta that did not express pHluorin, Figure 4.5. This qualitative data 

suggests that after a week, neurons exhibit detectable Kv4 protein turnover.  

To test the hypothesis that Kv4 internalization would be detected with H2O2 exposure, we 

performed a 24-hour 1 mM H2O2 exposure on 3-day old neuronal cultures and checked for red 

puncta formation, Figure 4.4. We did not observe formation of any mCherry-labeled puncta in 

 

Figure 4.5. There are no distinct changes on Kv4 internalization in 7-day old cultured 

neurons expressing mCherry-pHluorin-Kv4. Pre-treatment, and 1 and 5 hours 
post-treatment with 1 mM H2O2 on Drosophila cultured neurons that are 7 to 9-days old. 
pH-sensitive GFP signal shows localization of Kv4 in the plasma membrane. mCherry 
corresponds to the pan-neuronal presence of Kv4. Red puncta likely represent 
internalization of Kv4 into low pH compartments. There is no apparent increase in the 
number of intracellular red puncta after 1 or even 5 hours incubation in 1 mM H2O2 (4 
clusters from different culture preparations). 
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these cells, suggesting that a 24-hour exposure to 1 mM H2O2 does not lead to targeting Kv4 for 

internalization into low pH compartments such as lysosomes or multivesicular bodies. Next, to 

test the hypothesis that Kv4 internalization is enhanced with H2O2 exposure in 7 to 9-day old 

neuronal cultures, we subjected these cells to 1 mM H2O2, Figure 4.5. We did not observe any 

qualitative increase in mCherry-labeled puncta at either time point. Altogether, these results 

suggest that direct exposure of 1 mM H2O2 to neuronal cell cultures do not lead to changes in Kv4 

expression or subcellular localization. 

 

4.4. ROS Levels Increase With Age In Drosophila 

 ROS levels have been previously described to increase by 10% in 50 -day old flies 

compared to 5-day old flies101. To verify this finding in our system, we measured ROS levels in 3 

and 40-day old flies. We used the reduced form of the ROS reporter 

2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) to measure ROS levels in young (3d) and 

old (40d) flies. DCFDA is oxidized by ROS into 2’,7’-dichlorofluorescein (DCF). DCF, now a 

fluorescent compound, was measured using fluorescence spectrophotometry. We found a 10% 

increase in ROS-related fluorescent signal in 40-day old flies when compared to 3-day old flies, 

 

Figure 4.6. ROS increase with age in wildtype flies. Spectrofluorimetry experiments 
measuring fluorescence changes with the ROS sensitive DCFDA compound. There is a 
significant increase in ROS levels between 3 and 40 day old flies (25 heads per extraction, 
5 extractions per experiment with 4 technical replicates each, a total of 3 experiments were 
performed, *** p≤0.001, Student’s t-test). 
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Figure 4.6. Although we do not know the source of ROS, these results support the idea that ROS 

increase with age in the adult fly.  

 

4.5. Overexpression And Knockdown Of Enzymes That Regulate ROS Levels 

 Superoxide dismutase (SOD) 1 and 2, and catalase are enzymes that actively participate in 

ROS damage control within cells. The role of SOD is to convert superoxide anions to H2O2, while 

catalase converts H2O2 to H2O and O2
78. Our previous results showed that half-life of Drosophila 

is 75-80 days and that population numbers do not begin to decrease exponentially until ~50 to 

60-day old flies, Figure 3.2. A recent publication reported that Drosophila SOD and catalase show 

decreased enzymatic activity by 50 days of age101 which is likely a reason for the higher 

concentrations of ROS measured in older flies. This and our previous results showing that live fly 

exposure to H2O2 causes a decline in Kv4 levels suggest a model in which increasing ROS levels 

play a role in the progressive decline in Kv4 channel levels.  

We next tested whether overexpression of SOD or catalase, which should decrease ROS levels, 

would reduce the loss Kv4 protein. We used the UAS/GAL4 system to constitutively overexpress 

SOD1, SOD2, or Catalase in neurons using the genetic driver elav-GAL4 and measured the effects 

of expression of these genes on levels of Kv4 protein in 20-day old (mid-age) flies. We measured 

no significant changes in Kv4 protein levels with constitutive expression of any of these enzymes, 

Figure 4.7. One possible explanation is that there is not enough ROS accumulation at 20 days for 

SOD or catalase to make any difference in ROS-affected Kv4 levels.  

Since we measured a significant increase in ROS at 40 days, Figure 4.6, we next performed 

the same experiment on 40-day old flies to allow for ROS accumulation. We did not detect a 

significant difference with overexpression of SOD1 or SOD2. Expression of catalase, however,  
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significantly increased levels of Kv4 by ~30% when compared to elav-GAL4 and by ~60% when 

compared to its genetic background UAS-Catalase, Figure 4.8.  

 Because catalase expression led to an increase in Kv4 levels at 40 days of age, we 

measured in vivo levels of ROS to test whether ROS were indeed decreased with overexpression 

of this enzyme. We performed these experiments using two different genetic controls, elav-GAL4 

and UAS-Catalase. We found that expression of Catalase led to a significant decline in ROS levels; 

we measured a 20% decline when compared to the control elav-GAL4, and a 50% decline when 

compared to the genetic background UAS-Catalase, Figure 4.9. Altogether, these results suggest 

that the age-related accumulation of H2O2 contributes to the age-dependent decrease of Kv4 protein 

levels in older flies. 

 

Figure 4.7. Constitutive overexpression of SOD1, SOD2, or Catalase do not influence 

Kv4 protein levels in 20d old flies. From left to right, there is no significant difference 
with overexpression of neither SOD1, SOD2, nor Catalase, respectively – “ctrl” represents 
the UAS-SOD1, UAS-SOD2, or UAS-Catalase genetic backgrounds, respectively (5 heads 
per sample, n=18, 6 blots, n.s. denotes no significant difference, Student’s t-test). 
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 To further test the idea that ROS play a role in Kv4 channel levels, we investigated the role 

of two ROS-generating enzymes in Drosophila, NOX and DUOX. While the structure of NOX is 

homologous to that of phagocyte oxidase (phox), DUOX enzymes are composed of a phox 

catalytic subunit that includes an N-terminal extracellular peroxidase-homology domain499,500. We 

made use of two Drosophila transgenic lines that knockdown these ROS-generating enzymes by 

~60%, DUOX-RNAi and NOX-RNAi501. We measured levels of Kv4 in both transgenics in 40-day 

old flies. We found that, although a DUOX knockdown does not lead to a significant change in 

Kv4 expression, a NOX knockdown leads to a 40% increase in Kv4 protein levels, Figure 4.10. 

 

 

Figure 4.8. Constitutive overexpression of Catalase, but not SOD1 or SOD2, leads 

to increased Kv4 levels in 40d old flies. Left and middle, there is no significant 
difference with overexpression of neither SOD1 nor SOD2, respectively – “ctrl” 
represents the UAS-SOD1 or UAS-SOD2 genetic backgrounds, respectively. Right, 
overexpression of Catalase significantly increases levels of Kv4 protein in 40d old flies 
– “ctrl1” and “ctlr2” represent the genetic backgrounds elav-gal4 and UAS-Catalase, 
respectively (5 heads per sample, n=18, 6 blots, n.s. indicates no significant difference, 
** p≤0.01, *** p≤0.001, Student’s t-test). 
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Because a transcriptional knockdown of NOX and an overexpression of Catalase both 

resulted in increased Kv4 channel levels at 40 days of age, we tested the hypothesis that expression 

of UAS-NOX-RNAi or UAS-Catalase would lead to increased locomotor performance in 40-day 

old flies. We found that the transcriptional NOX knockdown led to a decline in locomotor 

performance in Drosophila, Figure 4.11. Since NOX is an important enzyme that participates in 

many signaling pathways in the cell, effects on general health may have been a confounding factor. 

Conversely, expression of Catalase resulted in significantly increased levels of locomotor 

performance by 50%, Figure 4.11. Altogether, our results support the idea that there is an 

accumulation of ROS during aging, and that the accumulation of H2O2 contributes to a decrease 

in Kv4 protein levels in older flies (40 days) which, in turn, results in locomotor problems. 

 

                             

Figure 4.9. The age-related accumulation of ROS levels can be reduced with catalase 

overexpression. Catalase overexpression leads to a significant decrease in detectable 
ROS-dependent DFC fluorescence when compared to two different genetic controls – 
“ctrl1” and “ctrl2” represent elav-GAL4 and UAS-Catalase, respectively (25 heads per 
extraction, 5 extractions per experiment with 4 technical replicates each, a total of 3 
experiments were performed, *** p≤0.001, Student’s t-test). 



90 

 

 

Figure 4.10. Genetic knockdown of two ROS generating enzymes in Drosophila. Left, 
immunoblot experiment shows that there are no significant changes in Kv4 protein levels 
in 40-day old flies with expression of RNAi targeting DUOX – “ctrl” represents the genetic 
background UAS-DUOX-RNAi (5 heads per sample, n=27, 10 blots, n.s. denotes no 
significant difference, Student’s t-test). Right, transcriptional knockdown of the NOX 
enzyme leads to increased levels of Kv4 proteins in 40-day old flies – “ctrl” corresponds to 
the genetic background UAS-NOX-RNAi (5 heads per sample, n=26, 10 blots, ** p≤0.01, 
Student’s t-test). 
 
 

                              

Figure 4.11. Catalase expression, but not a transcriptional knockdown of NOX, 

increase locomotor performance in Drosophila. Left, there is a significant decrease in 
locomotor performance of flies expressing NOX-RNAi at 40d of age (35-40 flies per 
sample, n=10 per day measured, * p≤0.05, Student’s t-test). Right, expression of Catalase 
significantly increases locomotor performance in 40d flies – “ctrl” represents the genetic 
background UAS-Catalase (35-40 flies per sample, n=10 per day measured, *** p≤0.001, 
Student’s t-test). 
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CHAPTER 5. ROLE OF THE SCAFFOLDING PROTEIN SIDL ON Kv4 LEVELS DURING 

AGING, AND ITS CONTRIBUTION ON DROSOPHILA ECLOSION 

 

5.1. Overview 

 The loss of a scaffolding protein may lead to destabilization and possible degradation of 

its protein associates502. The scaffolding protein SIDL has been previously described to interact 

with the highly conserved C-terminal di-leucine motif of Kv4 and to co-localize with Kv4 in 

Drosophila primary neuronal cultures344. This project aims to understand the importance of the 

scaffolding protein SIDL for Kv4 channels in vivo. We found that SIDL mRNA levels decline with 

age. To test the hypothesis that a decline in SIDL mRNA influences the stability of Kv4 protein, 

we conditionally expressed SIDL-RNAi in adult flies post-eclosion. We found that after 6 days of 

SIDL knockdown, levels of Kv4 were decreased. When we extended the knockdown period, Kv4 

levels decreased even more, suggesting that the expression of SIDL plays a role in maintaining 

levels of Kv4 protein. Next, we examined the effects of a SIDL-dependent loss of Kv4 on 

Drosophila eclosion rates (exiting the pupal case to become an adult) which requires a rhythmic 

peristaltic movement. Because Kv4 channels have been reported to be required for  rhythmic 

behaviors359, we knocked-down SIDL during development and measured percent of successful 

eclosion. Flies expressing SIDL-RNAi had a 15% success of eclosion, which is significantly 

decreased from the 80% observed in wildtype flies. We were able to partially rescue this phenotype 

by overexpressing SIDL or Kv4 in the SIDL-RNAi line. We also measured eclosion rates of flies 

that only overexpressed SIDL, Kv4, or CD8-GFP. Eclosion rates were enhanced in flies expressing 

SIDL or Kv4, but not CD8-GFP, consistent with the model that SIDL plays a role in stabilizing 

Kv4 protein which, in turn, enhances coordinated motor function. 
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5.2. SIDL mRNA declines with age 

 In the absence of a SIDL-specific antibody, we measured if levels of SIDL mRNA change 

with age. We used RT-qPCR to compare mRNA levels of SIDL at 3d, 10d, and 40d. We were not 

able to find one reference gene that would be stable at all ages tested; instead, we made use of two 

different reference genes, RpS20 and eIF1A. We first measured SIDL mRNA levels at 3 and 

40--days post-eclosion. We found that SIDL mRNA levels decrease by 20% between 3 and 40-day 

old flies, Figure 5.1. Next, to determine if SIDL mRNA levels might play some role in the 50% 

Kv4 protein decline we found between 3 and 10-days post-eclosion, we measured SIDL mRNA 

levels at these time points. We found no significant differences in SIDL mRNA levels between 3 

and 10 days of age, Figure 5.1, suggesting that the decline in Kv4 protein levels between 3 and 10 

days of age likely does not involve a Kv4 destabilization by a decline in SIDL protein. We next 

tested if SIDL might be involved in the gradual decline of Kv4 protein we measured between 10 

and 40 days of age. We found that there is a 10% decline in SIDL mRNA levels, Figure 5.1. These 

 

Figure 5.1. SIDL mRNA levels undergo an age-dependent decline. Three bar graphs 
with RT-qPCR measurements of SIDL mRNA, relative to RpS20 or eIF1A, show that there 
is a significant age-dependent decline in SIDL transcript between 10d and 40d, and between 
3d and 40d flies, but not between 3d and 10d (each sample was prepared from 700 ng RNA 
extracted from 10 heads, n = 17-24, n.s. represents no significant difference, ** p≤0.01, 
*** p≤0.001, Student’s t-test). 
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results show that SIDL transcript begins to decline after 10 days of age in Drosophila and suggest 

that a decline in SIDL protein after 10 days of age may play a role in the stability of Kv4 protein 

levels. 

 

5.3. SIDL plays a role in Kv4 protein stabilization 

 Because SIDL protein interacts with Kv4344, and we found that both Kv4 protein and SIDL 

mRNA levels decline with age, we tested the hypothesis that SIDL plays a role in maintaining 

steady-state levels of Kv4. We made use of a fly containing an RNAi construct that targets SIDL, 

UAS-SIDL-RNAi, and conditionally expressed it in Drosophila using the UAS/GAL4 system. To 

conditionally express UAS-SIDL-RNAi in adult Drosophila neurons, we used the 

temperature-sensitive GAL80 molecule to suppress the pan-neuronal promoter elav-GAL4. At 

18˚C, GAL80 binds to the C-terminal 30 amino acids of GAL4, inhibiting GAL4 interaction with 

the upstream activating sequence of transgenes. At 30˚C, GAL80 decreases its GAL4-binding 

affinity allowing GAL4-mediated transcription activation503. We collected 1-day old adult 

Drosophila and placed them at the permissive expression temperature of 30℃ for several days. 

After incubation for 6 days, we performed immunoblot experiments to measure levels of the 

channel Kv4. We detected a 35% reduction in Kv4 protein levels with SIDL knockdown, Figure 

5.2. To test if a longer knockdown of SIDL would lead to further loss of Kv4 protein, we allowed 

conditional expression of UAS-SIDL-RNAi for 10 days and found a 55% decrease in Kv4 protein 

levels when compared to control, Figure 5.2. These results suggest that the scaffold protein SIDL 

might play a role in regulating steady-state levels of Kv4 protein. Altogether, these data suggest 

that after 10 days of age, the decline in SIDL mRNA levels might lead to a decrease in the scaffold 

protein SIDL which likely results in Kv4 protein instability and loss.  
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5.4. Kv4 and SIDL are implicated in Drosophila eclosion 

The peristaltic process Drosophila performs to successfully eclose from the pupal case to become 

an adult fly is a process that requires maintained rhythmic contractions of the abdomen504,505. 

Because Kv4 channels are required for maintaining excitability during repetitive firing in 

Drosophila neurons359, and we found that a knockdown of SIDL resulted in decreased Kv4 levels, 

we tested the hypothesis that knockdown of SIDL during development might affect successful 

eclosion. We used the UAS/GAL4 system to constitutively express UAS-SIDL-RNAi 

pan-neuronally using the driver elav-GAL4 to perform these studies. With the help of Timothy 

Vernier, while he was an undergraduate at Colorado State University, we collected ten Drosophila 

3rd instar larva at a time and transferred them to new food vials. We followed these flies until 

pupation and counted the number of success or failure to eclose; we examined 15-17 total vials 

per genotype. We found that 80% of wildtype flies eclosed, Figure 5.3. We then measured eclosion 

events of flies expressing UAS-SIDL-RNAi. Successful eclosion rates significantly decreased to 

 

Figure 5.2. Knockdown of SIDL leads to decreased levels of Kv4 channel in vivo. 

Immunoblot experiments after conditional expression of UAS-SIDL-RNAi for 6d and 10d 
post-eclosion. Left, expression of RNAi targeting SIDL for 6 days shows a ~35% decline 
in Kv4 channels (5 heads per sample, n=5, 2 blots, * p≤0.05, Student’s t-test). Right, 
extended expression of RNAi targeting SIDL for 10 days decreases Kv4 protein levels even 
more, to ~55% from control (5 heads per sample, n=8, 2 blots, *** p≤0.001, Student’s t-
test). 
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~15%, Figure 5.3. We next tested for a rescue by co-expressing UAS-SIDL-RNAi with UAS-SIDL. 

Drosophila significantly increased successful eclosion rates to 60% supporting the idea that SIDL  

 is required for successful the eclosion.  

 Because we previously measured decreased Kv4 protein levels with a knockdown of SIDL, 

we tested if unsuccessful eclosion in SIDL-RNAi flies is due to loss of Kv4. We co-expressed 

UAS-SIDL-RNAi with UAS-Kv4 to increase Kv4 levels in the SIDL knockdown background. 

Increasing Kv4 expression indeed increased successful eclosion to 55%. As a control, we 

co-expressed UAS-SIDL-RNAi with the non-specific transmembrane protein CD8-GFP. We 

measured no significant difference between UAS-SIDL-RNAi and the co-expression with 

UAS-CD8-GFP. Because a SIDL knockdown led to a decline in Kv4 protein levels in adult flies, 

                                  

Figure 5.3. The decline in successful eclosion rates by constitutive expression of 

UAS-SIDL-RNAi is partially rescued by co-expression with SIDL or Kv4, but not with 

CD8-GFP. From 100% total tested flies, black bar represents larvae developing to pupal 
stage and successfully eclosing, grey bar represents larvae that arrived at the pupal stage 
and were unable to eclose. There is a ~80% successful eclosion rate in wildtype flies. 
Knockdown of SIDL throughout development is characterized by a significant decrease in 
successful eclosion rates to less than 20%. This partial lethal phenotype was ameliorated 
with co-expression of UAS-SIDL or UAS-Kv4, but not with UAS-CD8-GFP (10 flies per 
vial, 15-17 vials per genotype, n=135-167, n.s. denotes no significant difference, *** 
p≤0.001, Analysis of Proportions). 
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Figure 5.2, and caused a decrease in successful eclosion rates from pupating flies, these results 

support the idea that SIDL and Kv4 interact in vivo and suggest that stabilization of Kv4 channels 

by SIDL is required for successful eclosion. 

 We also tested whether overexpression of SIDL or Kv4 alone would increase eclosion 

rates. We measured 90% successful eclosion with either UAS-SIDL or UAS-Kv4 overexpression; 

this did not occur with UAS-CD8-GFP, Figure 5.4. Altogether, these data suggest that Kv4 channel 

levels are involved rhythmic behaviors, such as the peristaltic process required for pupal eclosion, 

and that the scaffolding protein SIDL is required for maintaining required levels of Kv4. 

 

 

 

                                  
 

Figure 5.4. Overexpression of SIDL or Kv4, but not CD8-GFP, increases successful 

eclosion rates. From 100% total tested flies, black bar represents larvae developing to 
pupal stage and successfully eclosing, grey bar represents larvae that arrived at the pupal 
stage and were unable to eclose. Overexpression of SIDL or Kv4 significantly increase 
eclosion rates to above 90% success when compared to wildtype. Overexpression of CD8-

GFP has no significant effects when compared to wildtype (10 flies per vial, 15-17 vials 
per genotype, n=115-142, n.s. denotes no significant difference, ** p≤0.01, *** p≤0.001, 
Analysis of Proportions). 
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CHAPTER 6. DISCUSSION 

 

6.1. Overview 

The age-dependent decline in motor abilities is a well characterized phenomenon11–13. This 

is partially due to an overall loss of neuronal density and age-related neuronal modifications of the 

dendritic arborization, a neuronal region implicated in signal integration506. Though age-dependent 

dendritic morphological changes have been described and comprehensively reviewed506–509, little 

is known about the molecular mechanisms that may alter dendritic functional properties during 

aging. The somato-dendritic voltage-gated A-type Kv4 channel191,344 has been previously 

described to play an important role in repetitive rhythmic behaviors359,397,454,455,510. In this study, 

we showed that Kv4 channels undergo an age-dependent decline in protein levels which contributes 

to the loss of Drosophila locomotor performance throughout aging. We measured an increase in 

ROS levels with age, and we also found that Kv4 channel levels in young Drosophila decline with 

in vivo exposure to H2O2. Overexpression of Catalase, not only decreased levels of ROS in older 

flies, but it also resulted in increased levels of Kv4 protein and ameliorated locomotor performance 

in older flies, suggesting that the age-related increase in levels of H2O2 contributes to the decline 

in Kv4 protein levels. Another mechanism that we uncovered was the age-dependent decline in 

mRNA levels of SIDL, a scaffolding protein that plays a role in regulating the levels of Kv4 in 

vivo. We also measured a decline in mouse hippocampal Kv4.2 protein levels suggesting that this 

age-dependent decline of Kv4 is likely to be conserved across species, at least in some brain 

regions. Since Kv4 channels have been implicated in regulation of long-term potentiation, 

age-dependent loss of Kv4.2 in the hippocampus may also contribute to aging effects on learning 

and memory, and susceptibility to neurodegenerative diseases. 
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6.2. Kv4 Channels Are Implicated In Locomotor Performance During Aging 

The age-dependent decline in Drosophila locomotor performance is likely due, in part, to 

a decrease in Kv4 protein levels. We measured a decline in Drosophila locomotion that began by 

30 days of age and became progressively reduced; by 60 days of age flies were quite inactive. 

Although we did not measure levels of functional Kv4 channels in neurons, we did detect a 

decrease in total Kv4 protein levels; this locomotor performance decline correlated with a loss of 

Kv4 protein levels which, at 30 days of age, is ~25% of the total we measured at 3 days of age. 

Remarkably, when we pan-neuronally expressed Kv4, locomotor performance was increased by 

~50% at all tested ages, except at 60 days of age. Altogether these results suggest that total Kv4 

protein levels in neurons participate in motor function and that the variability in Kv4 channel levels 

may have direct consequences on the density of A-type currents. 

Because the levels of Kv4 channel protein decline during aging, one possibility for the 

decline in locomotor performance is that the density of Kv4 somato-dendritic A-type currents also 

decreases with age in neurons that participate in locomotor abilities, such as sensory neurons, 

central patter generators (CPG), and motorneurons511. Indeed, the role of somato-dendritic A-type 

currents in motor neuron function was described as early as 1979 when Byrne and coworkers were 

studying the control of ink release in Aplysia512. Pharmacological experiments by Choi and 

coworkers (2004) using the A-type current blocker 4-aminopyridine (4-AP)513 later showed that 

somato-dendritic A-type currents play a role in firing of the first action potential and regulating 

repetitive firing in Drosophila 3rd instar larva motor neurons, suggesting that a somato-dendritic 

A-type channel, likely Kv4, is involved in the regulation of motor neuron action potential firing514. 

To test the hypothesis that Kv4 channel A-type currents in neuronal firing patterns and rhythmic 

behaviors, such as locomotion, Ping and colleagues (2011) introduced a functional knockout of 
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Kv4 (DNKv4) to motor neurons in Drosophila. They measured a loss in the delay to the first action 

potential firing and a loss of neuronal excitability for repetitive action potential firing. These 

electrophysiological effects led to defects in locomotor performance in larvae and adult flies359, 

suggesting that Kv4-regulated neuronal function is required for proper motor output.  

To test the possibility that the age-dependent decline in Kv4 channel levels leads to a 

decrease in A-type current density in neurons, electrophysiological experiments on adult 

Drosophila during aging are needed. Ping and colleagues (2015) measured the current of 

mushroom body neurons in intact adult fly brains at 3 and 8 days of age and found these currents 

to be similar454, suggesting that  if there is a change in A-type current density it must occur after 8 

days. Older brains, however, are more difficult to dissect and maintaining viability is more of a 

challenge (personal communication: Dr. Yong Ping). 

With the goal of determining the effects of a loss of Kv4 function on Drosophila, Ping and 

colleagues (2011) used DNKv4 to knockout Kv4 function in either the whole nervous system, 

motor neurons, or sensory neurons, and measured larval motor function. They found that loss of 

Kv4 function in all three resulted in decreased locomotor performance for larvae. When they 

knocked out Kv4 function in the whole nervous system or only motor neurons, adult flies showed 

decreased locomotor performance359. Although Ping and colleagues (2011) did not measure 

Drosophila grooming with aging, the expression of DNKv4 resulted in defects in other repetitive 

behaviors, such as grooming. In our experiments, however, we measured total Kv4 protein levels 

from fly heads which do not contain motor or sensory neurons. Along with our results, this would 

suggest that the age-dependent decline in Kv4 channels results in an age-dependent decline in 

A-type currents, possibly in central pattern generator neurons, leading to a decrease in proper 
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motor coordination. Other coordinated behaviors, such as proboscis extension could also be 

examined as a model.  

It would be interesting to test whether Kv4 protein also declines in the peripheral nervous 

system (PNS). Because CPG neurons in the central nervous system (CNS) receive input from the 

PNS515, another possibility underlying the age-dependent decline in locomotion is that the density 

of the somato-dendritic A-type currents required for signal integration in these sensory neurons 

declines after 30 days of age. Indeed, in Drosophila, when multiple dendritic (MD) sensory 

neurons of the PNS were conditionally silenced, larvae exhibited peristaltic locomotion 

impairment516. When subsets of MD neurons were analyzed, two classes of CNS feedback 

proprioceptor neurons, bipolar dendrites and class I MDs, were identified as necessary for this 

peristaltic locomotor movement517. Larval locomotion speed also declined when the functional 

knockout of Kv4 was introduced and expressed in MD neurons359. In our SIDL knockdown 

experiments which resulted in lower Kv4 levels, we suggested that this decline in Kv4 might play 

a role in the possible loss of peristaltic movement required for eclosion. One possibility is that 

lower levels of Kv4 in this subset of MD neurons resulted in the loss of peristalsis required for 

Drosophila eclosion. To test which subsets of sensory or motor neurons where an age-dependent 

decline in Kv4 protein might affect peristalsis, experiments could be performed in which DNKv4 

is expressed in identified subsets of neurons.  

Brigui and coworkers (1990) reported that Drosophila proboscis extension, in response to 

sensing sucrose, needs higher concentrations of sucrose with an increase in age518, suggesting that 

sugar sensing capabilities undergo an age-related decline. Similar experiments testing proboscis 

extension could be performed with overexpression of either DNKv4 or Kv4 in sensory or motor 

neurons. A decrease in Drosophila proboscis extension response in young flies expressing DNKv4 
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would support the model that Kv4 protein levels decrease in these neurons during aging. In 

contrast, an improvement proboscis extension response in aged Drosophila overexpressing Kv4 

would support the idea that a decline in Kv4 channels in these types of neurons is occurring with 

age. Indeed, Kv4 might play a role in either sensation or motor response, or both. 

 

6.3. Age-Related Kv4 Protein Decline Effects On Learning And Memory 

Aging is characterized by a decline in cognition which includes the ability to learn and 

remember519. In Drosophila, we found that Kv4 levels decrease with age in the CNS and that this 

age-related decrease in Kv4 protein may influence the age-related decline in learning and memory. 

Indeed, in transgenic flies expressing DNKv4 in which Kv4 channel function has been knocked out 

in the entire CNS or selectively in mushroom body (MB) neurons454, the center for learning and 

memory of the fly, larval olfactory associative learning was negatively affected. 520. 

Alzheimer’s disease is more prevalent in the aged population and ultimately leads to a loss 

of learning and memory508. Because Kv4 channels have been described to play a role in learning 

and memory, one possibility is that an accumulation of A42 in Alzheimer’s disease may lead to a 

loss of Kv4 protein. Ping and colleagues (2015) neuronally expressed the human A42 protein 

which resulted in decreased Kv4 A-type currents in MB neurons of the brain. They found that the 

accumulation of A42 induced a decline in Kv4 protein which resulted in a lower density of 

somato-dendritic A-type currents which, in turn, led to larvae associative learning and memory 

defects. Remarkably, expression of Kv4 in this Drosophila Alzheimer’s model resulted in a rescue 

of the learning and memory defects454.  

In vertebrates, the hippocampus is the primary center for learning and memory, and 

changes in synaptic strength in neurons within this brain region has been described to be necessary 
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for memory formation521,522. Long-term potentiation (LTP) leads to synaptic strengthening and has 

been measured to occur in the hippocampus, and mouse Kv4.2 knockout studies have shown that 

Kv4 channel A-type currents have been shown alter synaptic properties thought to be involved in 

the regulation of LTP induction in the hippocampus356,369,386,521. Chen and coworkers (2006) used 

a Kv4.2 knockout mouse to demonstrate that deletion of the Kv4.2 gene results in an increase of 

backpropagation of action potentials to the dendrites resulting in an increase in Ca2+ influx leading 

to a lower threshold for the induction of LTP in hippocampal neurons356. It is important to note 

that Kv4.2 is internalized as a normal response to LTP induction384, and not that LTP is induced 

because of a decline in membrane-bound Kv4.2. Lugo and colleagues (2012) later subjected Kv4.2 

knockout mice to a battery of behavioral tests386. They found that mice lacking Kv4.2 have deficits 

in learning and memory, behavioral events that are dependent on a proper functioning 

hippocampus. An age-dependent decrease in the levels of Kv4.2 protein would lead to an increase 

in backpropagation of action potentials and likely allow for easier dendritic depolarizations. 

Indeed, changes in levels of Kv4.2 have been described to directly impact synaptic remodeling by 

altering NMDA subunits composition which, in turn, lead to modifications in synaptic plasticity 

and memory523,524. Our results show that, in mice, total hippocampal Kv4.2 levels decrease with 

age which might contribute to the age-related decline in learning and memory abilities. 

Other isoforms of Kv4 may also play some roles in the hippocampus. We were unable to 

measure any levels of Kv4.1 protein in this brain region. Our results are not surprising, however, 

as Serôdio and coworkers described Kv4.1 mRNA levels to be present in very little abundance 

within this brain region330. Kv4.3, conversely, is present in abundant levels within certain regions 

of the hippocampus330,525, and we measured increased levels of Kv4.3 with age. Kv4.3 is found 

predominantly in interneurons526,527, and an increase in these neurons is likely to resulted in 
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increased hippocampal excitability. What’s more, changes to hippocampal interneurons likely 

result in hippocampal dysfunction which has been reported to contribute to bipolar disorder528. 

Rizzo and colleagues (2014) proposed a connection between the loss of cognitive function 

in bipolar disorder and aging529. One possibility for increased incidence in bipolar disorder during 

aging is an age-related dysfunction of hippocampal interneurons. Kv4.3 A-type currents are 

responsible for the rhythmic activity in hippocampal interneurons involved in learning and 

memory530,531, and we measured total Kv4.3 levels in the hippocampus to increase with age. It is 

probable that this increase in total Kv4.3 levels is a result of age-dependent effects on the channel. 

In another report, Simkin and coworkers (2015) measured Kv4.2 and Kv4.3 levels in hippocampal 

CA3 neurons and found that protein levels of these two Kv4 isoforms were increased in 30-month 

old rats. They reported that this increase in channel expression resulted in faster action potential 

repolarization in aged CA3 pyramidal neurons which resulted in increased hippocampal CA3 

neuronal excitability339,532. Although we did measure an increase in hippocampal Kv4.3 protein 

levels with age in mice, Kv4.2 levels decreased. It is important to note that we measured total 

hippocampal Kv4.2 and Kv4.3 protein levels and we cannot discern Kv4 levels between different 

regions of the hippocampus. One possibility is that the decline in Kv4.2 protein levels in other 

regions of the hippocampus is large enough to offset the increase in CA3 pyramidal neurons. In 

contrasting results, Haberman and colleagues (2011) reported that 24 to 26-month old rats with 

preserved cognition had, instead, lower levels of Kv4.2 protein in CA3 neurons533. Altogether, 

these two reports – Simkin (2015) and Haberman (2011) – suggest that levels of Kv4.2 and Kv4.3 

play a direct role in cognition, and that a decline in CA3 Kv4.2 channel levels might be a response 

to maintain cognition during aging.  
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We also measured an increase in only Kv4.3 levels in the cerebellum and the motor cortex. 

Our findings support previous publications in which high Kv4.3 mRNA levels in these regions 

have been described330,534. Though most reports on Kv4.3 function have been reported in 

myocardial cells318,335,535–538, at least in cortical pyramidal (CP) neurons, Kv4.3 has been described 

to regulate action potential duration and neuronal repetitive firing387,539. Using knockout mice 

studies, Carrasquillo et al. (2012) investigated the functional roles of Kv4.2 and Kv4.3 subunits in 

CP neurons. While Kv4.2-/- mice resulted in increased action potential firing in response to small 

depolarizing current injections, Kv4.3-/- mice resulted in increased action potential firing in 

response to large current injections, suggesting that Kv4.3 channels recover faster from 

inactivation387. Because Kv4.3 recovers faster it is possible that the age-related increase in Kv4.3 

levels we measured might be a response to maintaining neuronal excitability in the pyramidal 

neurons of the cortex. 

 

6.4. ROS Accumulation During Aging Leads To Lower Kv4 Channel Levels 

Our results show that an accumulation of reactive oxygen species (ROS) contributes to the 

age-dependent loss of Kv4 channel protein levels. A 4-hour in vivo exposure of Drosophila to H2O2 

after a 24-hour recovery led to decreased Kv4 levels, suggesting that an age-related accumulation 

of H2O2 might have an effect on the age-dependent decline of Kv4 channels and locomotor 

performance. Our results are contradictory to previously published data in which researchers 

measured an increase in Drosophila activity when they fed them H2O2, or injected H2O2 

abdominally540. Because flies were fed H2O2, it is possible that the ingested molecule oxidized 

areas of the digestive system which lead to a noxious response in the fly. In a similar manner, 

abdominal injection of H2O2 could cause a sense of burning in the fly abdomen due to the oxidative 
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properties of H2O2, which could cause the fly to have a noxious response. Noxious response may 

produce escape/avoidance behavior541, which could explain their measured increase in fly activity, 

which persisted for 6 hours540.  

Because we measured lower levels of Kv4 protein in whole heads, we tested the effects of 

H2O2 exposure on neuronal cultures expressing tagged-Kv4. Exposing Drosophila cultured 

neurons directly to H2O2, however, led to no qualitative changes in overall levels, subcellular 

localization, or vesicular internalization of tagged-Kv4 channels. In our neuronal culture 

experiments we used the pan-neuronal elav-GAL4 driver. One possibility is that the neurons we 

analyzed, which were the ones that visually had the strongest tagged-Kv4 signal, were a subset of 

neurons with greater antioxidant properties. Future experiments could investigate identified cell 

types using many specific GAL4 lines available to label particular neurons to determine if changes 

can be seen in more specific neuronal cell types. Another possibility could be that treating neuronal 

cultures with such high levels of H2O2 could have quickly damaged the autophagy degradation 

machinery. Indeed, oxidation of the lysosomal membrane proteins leading to a dysfunctional 

system has been described, in general, to occur with aging542, and oxidative damage has been 

reported to inhibit vesicular transport of both synaptophysin and synaptotagmin I in mouse 

microglial cells543. Experiments adding physiological levels of H2O2 to cultures for longer periods 

of time, possibly days, could be performed to minimize oxidative damage to other cell 

compartments and to examine effects on Kv4 channels. Since we were unable to detect any changes 

in cultured neurons, we performed follow up tests for H2O2 effects on Kv4 in the aging fly. 

 We found that neuronal overexpression of Catalase, an enzyme that degrades H2O2 

113,544,545, decreases detectable ROS levels, increases Kv4 protein levels, and ameliorates locomotor 

performance in 40-day old flies. Our results corroborate data published by Haddadi and coworkers 
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in which they measure a similar increase in ROS levels between 5 and 50-day old flies101, and with 

the general concept that ROS increase with age55,293,546. In their report, they also described catalase 

activity to be reduced by ~25%. This decline in catalase activity alone could be a reason for the 

intracellular accumulation of, specifically the H2O2 species. Another study found that when 

Catalase was expressed within the mitochondrial matrix, however, there was a decrease in the 

walking speed of Drosophila during aging547. One possibility is that, in our experiments we 

expressed Catalase with a pan-neuronal driver, the levels of H2O2 are likely decreasing more in 

the cytosol rather than within mitochondria. A specific decrease in ROS levels within the 

mitochondria could cause its dysfunction which is detrimental to the cell, and mitochondrial ROS 

has been described to be important for other cellular signaling548. Catalase expression in leg 

muscles (soleus, gastrocnemius, tibialis anterior, and extensor digitorum longus) in a muscular 

dystrophy mouse model increased locomotor performance, although the study only measured 

muscle function549, suggesting that catalase is also playing a role in muscle. Protein carbonyl 

content has been described as a method to determine the level of oxidation state of a protein550. To 

test whether H2O2 is directly affecting Kv4 protein, site-directed mutagenesis of cysteine residues 

could be performed. 

In mice, overexpression of SOD, which metabolizes superoxide into H2O2, was reported to 

increase oxidative damage and result in a decline in locomotor performance551. Although we did 

not measure locomotor performance, we did not find any changes in Drosophila Kv4 protein levels 

with expression of either SOD1 or SOD2. One possibility is that at the ages we tested, the levels 

of superoxide are not high enough to increase H2O2 intracellular concentration to detrimental 

levels. To test this hypothesis, we could measure ROS levels in 20 and 40-day old flies that 

overexpress SOD1 and SOD2. Another possibility is that endogenous levels of catalase, at 20 and 
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40 days of age, are enough to breakdown all H2O2 produced by SOD1 and SOD2 overexpression. 

An experiment to test this idea would be to overexpress SOD1 or SOD2 in a fly with a Catalase 

mutation. Altogether, this raises our interest in understanding the role of SOD1 and SOD2 in the 

age-related production of H2O2. Perhaps co-expression of both SOD1 and SOD2 would lead to 

higher levels of H2O2 for us to strengthen the model that H2O2 causes a decline in Kv4 protein 

levels. 

The two splice forms of Drosophila Kv4 channels share 25 cysteine residues in their 

polypeptide chain, and 19 residues are conserved from Drosophila to mice and rats, suggesting 

that oxidation of any of these conserved residues might have a similar effect across species. 

Selective oxidation by H2O2 has also been described to have effects on Kv function. A study testing 

the effects of addition of H2O2 to CHO cells expressing the Kv2 homologue KVS-1 channel from 

C. elegans revealed that there are changes in the electrophysiological properties of KVS-1 channel 

due to oxidation of a cysteine amino acid552. Because the Catalase expressed in our experiments 

was intracellular, one possibility is that conserved cytosolic cysteine residues might be subject to 

oxidation. I used the secondary structure prediction software TMHMM553 and found that there are 

6 potential cysteine residues located in the cytosol (3 N-terminal and 3 C-terminal). Three of these 

residues are localized in the N-terminal tail, and three others are localized in the C-terminal tail, 

Figure 6.1. If GFP signal decreases in a fly conditionally expressing GFP-Shal that has been 

exposed to H2O2 in vivo as we described above, then, an experiment that could be performed would 

involve a fly conditionally expressing GFP-Shal as a control, and as tests, flies conditionally 

expressing GFP-Shal constructs in which each of the six cysteine residues have been modified to 

alanine, similar to that described by Sesti293.  
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To test if the proteasome is involved in the decline of Kv4 levels with age, we could use 

transgenic flies that overexpress the dominant-negative 20S proteasome subunits Pros261 and 

Pros2 554,555 and expose them to H2O2 for 4 hours. After 24 hours recovery, we would measure 

Kv4/Shal protein levels. While a decrease in Kv4 levels would suggest that the proteasome is not 

involved in Kv4 degradation, no change in Kv4 protein levels would suggest that the proteasome 

plays a role in the H2O2-dependent decline in Kv4 protein. 

As described in Chapter 4, we exposed 3-day old flies to H2O2 for 4 hours and immediately 

placed them in food vials for 24 hours. After this recovery, we measured a decline in Kv4 protein 

levels which returned to baseline after 48 hours. To determine the rate of Kv4 protein turnover 

after exposing 3-day old flies to H2O2 in vivo, we could employ the use of the protein synthesis 

inhibitor cycloheximide (CHX). In our 2012 publication, we described a protocol in which we fed 

CHX to transgenic flies expressing inaD under the control of a heat-shock promoter. CHX 

successfully blocked inaD protein synthesis when flies were fed CHX for at least 30 minutes before 

induction by heat-shock, and protein synthesis inhibition could be maintained for up to 24 hours556. 

            

Figure 6.1. Conserved cytosolic cysteine residues. Shal cysteine residues 111, 132, and 133 
are localized to the N-terminus. Residues 484, 530, and 531 are present in the C-terminus of 
Shal. 
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These experiments could be used to determine if protein synthesis plays a role in returning Kv4 

levels back to baseline after 48 hours recovery from a H2O2 exposure. 

 

6.5. Oxidation And Neurodegenerative Diseases 

 Potassium channel oxidation by ROS results in oxidative modifications of channel activity 

in normal and disease states; these oxidation-based modifications might be a factor underlying 

neurodegeneration557. Because Kv4 channels have been described to be implicated in 

neurodegenerative diseases, such as Alzheimer’s454 and Parkinson’s458, an H2O2-dependent Kv4 

protein oxidative modification might considerably contribute to these diseases. Benzi  and Moretti 

(1995) proposed the idea that ROS might be involved in Alzheimer’s disease558. Indeed, some 

publications had reported that A protein aggregates in presence of ROS in a variety of 

experimental conditions, and these aggregates are even stable in high concentrations of the 

denaturing agent urea559–562. Furthermore, H2O2 has been described to potentiate A protein 

neurotoxicity, and the antioxidant Vitamin E has been reported to protect this toxicity in 

hippocampal cultures558. As it ensues with age, a mitochondrial imbalance occurs with the onset 

of Alzheimer’s disease563, and the mitochondria of mammals and insects is the principal site for 

the production of H2O2
564,565. The levels of ROS, therefore, are expected to rise with Alzheimer’s 

disease.  

 Protein oxidation contributes to changes in protein structure through oxidation-dependent 

amino acid modifications and cleavage of peptide bonds, and these structural changes may cause 

the damaged protein to be targeted for degradation566–568. To test levels of Kv4 protein oxidation, 

we could measure protein carbonyl content550 in 3, 10, and 40-day old flies that were exposed to 

H2O2 in vivo. To test if oxidized Kv4 protein is targeted for degradation, we could perform 
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proteasome or lysosome inhibition and protein synthesis inhibition studies as previously described 

in Section 6.4. Neurodegenerative diseases such as Huntington, Parkinson’s, and Alzheimer’s have 

been attributed to oxidative damage which may lead to large accumulations of damaged protein 

aggregates569–575. The common variable for these neurodegenerative diseases is that they all 

display some level of mitochondrial dysfunction576–578. One possibility is that dysfunctional 

mitochondria results in increased cellular ROS, and that this increase in ROS may have detrimental 

oxidative effects on Kv4. Indeed, Manczak and coworkers suggested, in their transgenic mice 

studies, that both human amyloid precursor protein and human A change metabolic properties of 

mouse mitochondria resulting in increased levels of H2O2 production578. In a recent publication, 

Ping et al. used a Drosophila model expressing the human A42 to show that Kv4 channels are 

targeted for degradation454. It is possible that during Alzheimer’s disease, the increase in H2O2 by 

the A42-dependent mitochondrial dysfunction causes Kv4 to be targeted for degradation. The 

current method of ROS detection using D2DCFDA has been described fairly reliable approach for 

detecting ROS579, however, D2DCFDA does not provide information regarding the identity of the 

ROS being detected. Alternatively, an older method for, specifically, measuring H2O2 was 

developed by Hyslop and Sklar (1984) in which p-hydroxyphenylacetate fluorescence is measured 

during the reaction of horseradish peroxidase and H2O2
580. This method would allow one to 

confirm if concentrations of, specifically, H2O2 are increasing in the A42 model. 

 Though oxidative damage to RNA has not been a research priority, RNA molecules are 

also vulnerable to oxidation by ROS and some studies have suggested that oxidation of RNA may 

contribute to neurodegenerative diseases. Guanosine is the predominant RNA base that becomes 

oxidized, in presence of highly reactive hydroxyl radicals, to form 8-hydroxyguanosine 

(8-OHG)581. Indeed, Abe et al. (2002) found that the levels of 8-OHG in the cerebrospinal fluid of 
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patients with early stages of Alzheimer’s disease was five times higher than that of controls 

suggesting that RNA damage may play a role on the onset of this disease582. Furthermore, mRNA 

has also been reported to undergo age-dependent oxidation. Shan and coworkers (2003) reported 

that, in postmortem brain tissue of patients with Alzheimer’s disease, there is a high level of 

oxidation on poly(A)-mRNA species that are related to Alzheimer’s disease. They reported that 

many of these genes include some that play roles in synaptic plasticity and LTP, suggesting that 

RNA oxidation is very selective, and not an arbitrary consequence583. Though we did not test the 

effects of ROS on Kv4 mRNA levels, it is possible that ROS is involved in the age-dependent 

decline of Kv4 mRNA we measured, Figure A in Appendix, and that this damage by 40 days of 

age may contribute to the decline in protein levels at this age. It would be interesting to measure 

the 8-OHG content on older flies, and on flies that were previously used in an Alzheimer’s 

model454. With a similar method as the one used by Shan et al. (2003), we could also determine 

the effects of ROS on Kv4 mRNA for both older flies and those used in the Alzheimer’s model. It 

is possible that the accumulation of ROS during aging, or in Alzheimer’s disease, not only leads 

to oxidation of the Kv4 protein but also to oxidation of Kv4 mRNA. 

 

6.6. The Scaffolding Protein SIDL Contributes To Maintaining Kv4 Levels 

 A complementary mechanism that may contribute to the age-dependent decline in Kv4 

protein levels is the expression of the scaffolding protein SIDL (Shal interactor of di-leucine). We 

found that 6 and 10 days of expression of SIDL-RNAi in young flies causes a decline by 30% and 

50% in Kv4 protein levels, respectively, and that mRNA levels of SIDL decrease by ~20% at 40 

days of age. These data suggest that the age-related decline in SIDL transcript is likely another 

mechanism involved in the age-dependent decrease of Kv4 protein levels. Kv4 contains a highly 
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conserved dileucine motif that has been described to be necessary and sufficient for proper somato-

dendritic targeting of the channel in neurons349. SIDL was the first protein identified to interact 

with this motif, to co-localize with Kv4 in Drosophila neurons and when a GFP-tagged Kv4 

carrying a deletion of the dileucine motif was expressed in Drosophila neurons, its somato-

dendritic localization was altered344.  

Because the dileucine motif is important for proper subcellular targeting of Kv4, and SIDL 

interacts with this motif, one possibility is that the age-related decline in SIDL transcript may cause 

decreased expression of the SIDL protein which, in turn, may lead to mislocalization of Kv4. 

Mislocalization of membrane proteins has been shown in other cases to cause aggregation and 

disruption of proper cell function437,584. In future studies, we could conditionally express SIDL-

RNAi in Drosophila neurons and use GFP-Kv4 or mCherry-pHluorin-Kv4 to follow the fate of Kv4 

to test if knockdown of SIDL leads to a mislocalization or internalization of Kv4. Furthermore, 

protein scaffolds have been described to be required for stability of their associated proteins. In 

Drosophila photoreceptors, the deletion of the scaffolding protein InaD contributes to the 

instability and loss of signaling proteins that associate with it502. We could make use of 

CRISPR/Cas9585 technology to create a SIDL mutation that would allow us to measure more robust 

detrimental effects on Kv4 protein levels. A report showed that the overexpression of the scaffold 

protein Galectin-3 in HEK cells led to increased levels of nanoclustering of the protein K-Ras 

GTP586. In similar experiments, we could overexpress the scaffolding protein SIDL which may 

stabilize and increase Kv4 protein levels. Altogether, the loss of SIDL likely results in Kv4 

mislocalization and instability which may result in a decline of motor function. 

 Peristalsis is a synchronized rhythmic movement required for successful Drosophila 

eclosion504,505. The repetitive firing of Drosophila neurons requires proper function, and likely 
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localization, of Kv4 channels to maintain excitability359. We found that a SIDL knockdown resulted 

in a large decrease of successful eclosion, as only 15% of flies were able to exit the pupal case to 

become adults. These results suggest that expression of SIDL-RNAi led to mislocalization and 

instability of Kv4 which resulted in defects in peristalsis and successful eclosion. Indeed, Ping and 

colleagues showed that Kv4-dependent A-type currents are required for repetitive rhythmic 

movement359. 

We were able to partially rescue the lethal phenotype of the SIDL knockdown with either 

SIDL or Kv4, but not with the transmembrane protein CD8-GFP, supporting the idea that stability 

of Kv4 protein levels is required for proper motor coordination to ensue. Further testing is needed, 

however, to determine if Kv4 is being targeted for degradation in the absence or low levels of 

SIDL, and if SIDL protein is indeed lower in 40-day old flies. We were also able to enhance 

eclosion rates with expression of SIDL or Kv4, but not with CD8-GFP. It is possible that the 

increase in SIDL levels might increase the stability of Kv4, and with this an increase in the density 

of Kv4-dependent A-type currents. Experiments measuring Kv4 levels with overexpression of 

SIDL could help determine if SIDL leads to increased expression of Kv4. 

 Although there is no known protein with high homology in mammals, transmembrane 

protein 1 (TMEM1) has been identified as one potential homolog candidate of SIDL, with 29% 

amino acid identity344. TMEM1, originally named EHOC-1 (Epilepsy, holoprosencephaly 

candidate-1), encodes a protein with two predicted transmembrane domains587. This gene has been 

mapped to the human chromosomal region 21q22.3 which has been linked to hereditary 

syndromes587. To date, only Drosophila SIDL344 and S. cerevisiae Trs130588 have been described 

as orthologs of the TMEM1 protein, and there are no present studies that report TMEM1 

expression or function. In future directions, we could express human TMEM1 in Drosophila to 
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first determine if it co-localizes with Kv4 channels in neuronal cultures. It would be of interest to 

determine if TMEM1 interacts with the C-terminal tail of Kv4, and if so, if it interacts with the 

highly conserved di-leucine motif in the C-terminal of Kv4. Another study of interest would be to 

determine if expression of human TMEM1 rescues, at all, the phenotype we measured with 

expression of SIDL-RNAi. 

 

6.7. Conclusion 

 In this dissertation my aim was to shed light on the molecular mechanisms underlying an 

age-dependent decrease in Kv4 channels which I found to correlate with a decline in coordinated 

motor function. Although there have been reports describing how age affects channel levels, 

localization, and function, little is known about the effects of age on Kv4 channel protein. I found 

this phenomenon to be specific to Kv4 and to be conserved in the hippocampus of mice where I 

measured an age-related decline in Kv4.2 levels.  

 I showed that ROS accumulate with age in Drosophila and that H2O2 contributes to the 

decline in Kv4 levels during aging, and even in young flies acutely exposed to H2O2. In my 

experiments, however, I measured steady-state levels of Kv4 protein, and much remains to be done 

to understand the effects of H2O2 accumulation during aging on Kv4 current. It will also be 

important to determine whether Kv4 A-type current is affected by age. In future experiments it will 

be of interest to determine the mode of oxidation of H2O2 and what happens to the channels once 

oxidized. Indeed, we do not know if H2O2 exposure is also modifying channel function, leading to 

aggregation by creating sulfhydryl bonds between channels, or signaling channels for 

internalization to degrade or to increase internal vesicle channel pool. Neither do we know the 

effects of H2O2 on mRNA coding for Kv4 protein.  
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Scaffolding proteins play a critical role in intracellular organization of subcellular 

components and SIDL has been described as a scaffolding protein that interacts with the highly 

conserved di-leucine motif of Kv4. Although SIDL has been previously described to likely play a 

role in Kv4 somato-dendritic localization in neurons, I found that SIDL is directly involved in the 

stability of Kv4 channels, as a knockdown of SIDL lead to a decline in steady-state levels of Kv4. 

The question of whether SIDL is required for proper localization of Kv4 still remains unanswered. 

It would be of interest, as well, to determine if SIDL is regulated by ROS. Experiments using the 

SIDL-RNAi transgenic line should be performed to determine if it leads to mislocalization of Kv4 

channels. Interestingly, our behavioral experiments studying Drosophila eclosion showed that 

overexpression of the scaffolding protein SIDL increased successful eclosion rates, as did an 

overexpression of Kv4. It would be of interest to test if the overexpression of SIDL leads to 

increased steady-state levels of Kv4. If so, we would like to know if there are increased levels of 

functional Kv4. Because Ping and colleagues (2011) described that Kv4 channels enable neurons 

to repetitively fire during prolonged input/output, these results would suggest that an 

overexpression of SIDL may increase or stabilize levels of functional Kv4 channels which may 

result in enhancing rhythmic behaviors like the peristaltic movement involved in Drosophila 

eclosion. 
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APPENDIX 

 

 

 

Figure A. Kv4 mRNA levels decline between 3d and 40d old adult wildtype flies. Left 
and middle, Kv4 relative mRNA levels do not undergo a significant change between 3d and 
10d or between 10d and 40d of age, using RpS20 or eIF1A genes as reference (700 ng 
RNA from 10 heads per sample, n=17-24, n.s. represents no significant difference, 
Student’s t-test). Right, Kv4 mRNA levels show, however, a significant age-dependent 
decline between 3d and 40d of age, using eIF1A as a gene reference (each sample was 
prepared from 700 ng RNA extracted from 10 heads, n=16-23 amongst the three 
experiments above, n.s. denotes no significant difference, *** p≤0.001, Student’s t-test). 
 


