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ABSTRACT

The potential for application of canonical correlation analysis to hydrologic problems is demonstrated by
two problems in long-range hydrologic prediction: (1) forecast of monthly precipitation of three large areas

of the West Coast of the United States, and (2) forecast of seasonal snowmelt runoff for three gaging stations
in the Flathead River Basin in Montana.

Canonical correlation analysis is found to be effective in investigating linear correlation between two or
more three-dimensional hydrologic processes, in which the set of time series of each process are mutually cor-
related, in addition to a relatively high correlation between the processes themselves. The main advantages of
using this technique concern the significance testing of the linear correlation between the processes, the re-
duced effort in the correlation analysis, and particularly for the prediction problem as it concerns the con-
struction of a confidence region of the simultaneous predicted values. Though not demonstrated in the examples,
caronical correlation analysis can also be used for selecting significant data observation stations for use in
tue correlation analysis.

A set of forecasts is made for each prediction problem by using the canonical correlation analysis of the
historical data. Results of these forecasts indicate that the precipitation prediction is not reliable, while
the runoff due to seasonal snowmelt can be well predicted.

PREFACE

In hydrology, most realistic relationships in- Engineering, Graduate and Research Hydrology and Water
volve a large number of random variables, since a pro- Resources Program. One research aspect of this pro-
cess in three or four dimensions must often be related ject is an inquiry into the predictability of large
to one or more processes in three or more dimensions. continental droughts. Because droughts are slowly
As a consequence, the multivariate distributions and evolving natural disasters, long range prediction in
analyses of sets of hydrologic random variables repre- hydrology, say over several months or years, seems not
sent the best approach in deriving hydrologic rela- to, be feasible except in the case of snow and water
tionships of a probabilistic type. There are several already accumulated on the ground. Large continental
types of multivariate analyses that may be suitable droughts of long duration, given severity and large
for deriving these relations. Currently, the techni- areal coverage fall into the category of deterministi-
que most used in hydrology is the multiple regression cally unpredictable hydrologic phenomena, except in
and correlation analysis, mainly for prediction pur- exceptional cases of already accumulated snow, under-
poses. Many cases of application of principal compon- ground and/or surface water in river basins. Appli-
ents analysis in treating multivariate hydrologic pro- cation of canonical correlation analysis in this study
blems are also available in the literature. Multivar- represents an attempt not only to analyze the poten-
iate factor analysis has been tried on several pro- tial of this technique, but also to obtain information
blems with a relatively 1limited success. When a set on long-range hydrologic prediction as it is related
of mutually correlated variables must be related to to droughts. There is a need to throw more light on
another set of mutually dependent random variables, whether large droughts are a predictable or an unpre-
analysis by canonical correlation seems to represent dictable phenomenon, in the classical sense of deter-
the most suitable multivariate technique. ministic hydrologic predictions.

The Ph.D. dissertation by Padoong Torranin ex- It is expected that this study will give an im-
plores the feasibility of using canonical correlation petus to other trials and a fair chance for the fur-
analysis to establish relationships between two sets ther application of canonical correlation analysis in
of random variables which are not only correlated hydrology. This analytical method needs to be tested
among the sets, but also dependent within each set. in various hydrologic problems for which the relation-
This case occurs frequently in hydrology. Although ships of mutually dependent sets of random variables
the two examples selected for this study treat only are required.
problems of the prediction type, the potential appli-
cation of canonical correlation in hydrology trans- Vujica Yevjevich
cends the application for forecasting purposes. The Professor-in-Charge of
results of the study show that a good potential exists Hydrology and Water
for this technique to be applied in various areas of Resources Program
hydrology. Department of Civil

Engineering

The study has been carried out under the research Colorado State University
project "Large Continental Droughts," sponsored by the Fort Collins, Colorado
U. §. National Science Foundation, Grant No. GK-11564,
at Colorado State University, Department of Civil October 1972
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CHAPTER I

INTRODUCTION

This chapter briefly explains different forms of
multivariate analysis and their uses in hydrology.
Potential of applications of canonical correlation
analysis in hydrology are reviewed. Objective of this
study is described along with general approach to ac-

complish it.

1.1 Application of Multivariate Analysis in Hydrology

Multivariate analysis as a statistical approach
for the investigation of the relation within a set (or
among several sets) of random variables is not a new
development. In fact, one such method was originated
in the early 1900s in the form of principal components
analysis by Karl Pearson. However, an attempt at more
effective application of the multivariate analysis to
hydrology was made by W. M. Snyder in 1962 (Synder
(1962)). He singled out some properties of multi-
variate analysis which may be advantageously used in
hydrology. Besides the favorable statistical prop-
erties associated with various forms of multivariate
analysis, one very useful property is that they allow
an investigation of a hydrologic phenomenon simultan-
eously at many locations. Regional investigation of a
hydrologic phenomenon, or finding relationship among
hydrologic phenomena on a regional basis, can be made
conveniently by the multivariate analysis approach,.

Most of multivariate analysis may be considered
counterparts of univariate statistical methods common-
ly used in hydrology. The mean and variance of a sin-
gle random variable in univariate analysis are re-
placed by a vector of means and a matrix of covari-
ances of the corresponding vector of random variables
in multivariate analysis. Besides the well used multi-
ple correlation analysis, three other multivariate
analyses are applied in hydrology with varying degrees
of frequency and/or success. These include principal
components analysis, factor analysis, and canonical
correlation analysis. Basically, each of these ana-
lyses involves a linear transformation of the original
set or sets of random variables into new ones such
that the transformed variables have certain required
properties.

In the principal components analysis the trans-
formed variables, called the principal components, are
mutually linearly uncorrelated. Each of these vari-
ables has a maximized variance, arranged from highest
to lowest. Compared to the number of original vari-
ables, fewer of the principal components explain a
high percentage, say 90 to 95 percent, of the vari-
ances of original variables.

Instead of maximizing the variance of each set of
components, the canonical analysis linearly transforms
the two sets of random variables, where the variables
in each set may be mutually correlated, into the two
sets of transformed variables, called canonical vari-
ables, in such a way that pairwise linear correlations
between certain pairs of the two sets of canonical
variables are maximized. By those transformations,
the canonical variables of each set become mutually
uncorrelated, while each of them becomes uncorrelated
with all the canonical variables of other set except

for the one
correlation.

variable with which it has a maximized

The principal components and factor analysis are
somewhat related because one may be considered as an
approach to the problem in the opposite direction of
the other. In order to avoid the problem of physical
interpretations of the derived principal components, a
factor analysis may be used. A small number of physi-
cal factors related to the set of random variables are
proposed such that each random variable can be expres-
sed as a function of these factors. If the factors
are selected arbitrarily from the physical properties
of a problem, the factor analysis is usually consider-
ed as a subjective approach. However, the principal
components analysis has been used in assisting with
the identification of factors in a method of factor
analysis called Varimax, proposed by Kaiser (1958).
This method modifies the derived principal components
into factors in such a way that each factor is uncor-
related with the others, and is highly related to only
a few of the original random variables. Each of these
factors expressed only some particular attribute of
the set of original random variables. Therefore, they
perform the function which the proposed subjective
factors were set out to do, that is, to physically re-
present some joint properties of the original set of
random variables.

Since the introduction of the multivariate ana-
lysis to hydrology most of the applications involve
the use of the principal components and factor ana-

lysis. The purpose of most of the applications was to
use the analysis to arrive at a new set of random
variables which has some required statistical pro-

perties suitable for further analysis. One such appli-
cation would be to find a new set of mutually uncor-
related random variables to be used as a set of inde-
pendent variables in a multiple correlation analysis
(Snyder (1962), Anderson and Westl (1965), Eiselstein
(1967), Diaz, Sewell, and Shelton (1968), Marsden and
Davis (1968), Veitch and Shepherd (1971)). Another
application is in economizing the analysis concerned
with a large number of random variables that are mu-
tually correlated. The principal components or factor
analysis are used to derive a smaller number of trans-
formed random variables which have a high percentage
of the variation of the set of original random vari-
ables (Dawdy and Feth (1967), Nimmannit and Morel-
Seytoux (1969)). Another interesting field of appli-
cation of principal components is to make use of some
pertinent statistical properties of the principal com-
ponents analysis in generating series of a hydrologic
process for such a purpose like investigating droughts
on an areal basis.

Although canonical correlation analysis is pot-
entially as useful as the other multivariate analysis,
so far this type of analysis has been applied infre-
quently in hydrology. Its applications in other fields
such as psychology, economics, and education are no
less than the applications of other multivariate ana-
lysis. Some of the applications are given as examples
in Kendall (1957) in the form of canonical correlation
analysis between reading tests and arithematic tests



of school children, between
and hogs and meat consumption for the United States,
between qualities of Canadian Hard Red Spring wheat
and the flour made from it, etc. In hydrology, Rice
(1967) proposed the use of canonical analvsis in esti-
mating parameters of storm hyvdrographs, Nimmannit and
Morel-Seyvtoux (1969) used this analysis in a study of
the effects of weather modification on runoff on a re-
gional basis,

the prices of beef steers

Canonical correlation analysis often results in
high linear correlation between pairs of canonical
variables which are linear transformations of the ori-
ginal variables. Therefore, a qualitative description
of the two types of random variables can be reliably
made. In hydrology, however, the numerical values of
the original variables are required, and not the
values of canonical variables. Since this information
is not readily given by the canonical analysis, this
may be one reason for its infrequent use in hydrology.

1.2 Relevance of Canonical
Hvdrologic Investigation

Correlation Analysis in

Most of the processes involved in hydrologic in-

vestigations can be considered to be three-dimensional.

They wvary along x and y coordinates as well as
along a time axis. For example, the sea surface tem-
perature of the Pacific Ocean varies with latitude and
longitude and it varies with time. The same is true
for the monthly precipitation of the U.S, West Coast.
When correlation analysis is made between a pair of
the three-dimensional hydrologic processes, each pro-
cess is usually divided into many time series at sub-
areas, then the correlation analysis is applied be-
tween the two sets of time series of the processes.

A set of hydrologic variables observed at points
in an area, or at nearby areas which are hydrologi-
cally similar, are usually related. Examples of such
correlated sets are snow water equivalent observed at
points in a river basin, runoffs from nearby basins,
precipitation of adjacent areas, etc. Therefore, when
a set of hydrologic variables affects one variable in
another set, it is very likely that it also affects
other variables in that set as well. Hence, the cor-
relation analysis between two hydrologic processes
usually becomes the correlation analysis between two
sets of wvariables which are mutually correlated in
cach set as well as between the sets.

One approach to this problem of correlation ana-
lysis is to use the multiple correlation analysis be-
tween each individual variable in the set of dependent
variables and all variables in the set of independent
variables. This approach has two drawbacks: the num-
ber of analyses used 1is as many as the number of the
dependent variables; and the sampling distribution of
the correlation coefficient generally used for the
significance testing of the coefficient cannot be used
due to the mutual correlation of the set of independ-
ent variables.

Another approach which can be used effectively
for this problem 1is canonical correlation analysis,
especially when independent variables for each of the
dependent variables are more or less the same. For
cxample, snowmelt runoffs of watersheds which are
hydrolegically similar and close together may depend
on the same set of indices representing inflow of
wiater into the basins, wetness of the basins, etc. In
this case, the correlation analysis between the two
sets of variables can be made with only one applica-
tion of the canonical correlation analysis. The test
ot sipnificance of the correlation coefficient between

the two sets of variables is not affected by the mu-
tual correlation of each set of variables.

A5 concerns the economic aspect of the canonical
correlation analysis in data observation of the hvdro-
logic variables used in the analysis, the technique
can be used to select only small number of independent
variables which make significant contribution to the
correlation between the two sets of variables. As des-
cribed previously, the hydrologic variables of the set
of independent variables usually used in the analysis
are mutually correlated. If all the variables are
used, some of them may be considered as redundant vari-
ables which cause unnecessary reduction in the degree
of freedom of the correlation analysis. The contri-
bution of each independent variable may be judged from
the magnitude of the coefficient of the linear combi-
nation of that variable (an element of the matrix Y3
of Eq. 2.25) which is used for computing the canoni-
cal variables which are highly significantly corre-
lated with the canonical variable of the set of depen-
dent variables. If the magnitude of the coefficient
is very small compared with those of the other inde-
pendent variables, that variable may be omitted from
the analysis. This usually reduces the number of the
independent variables significantly, so expense of
maintaining observation stations which make only small
contributions to the analysis can be reduced, or real-
located to improve the quality of the data from the
more significant stations.

Since a correlation matrix of the set of depend-
ent variables is used in the canonical correlation
analysis, the values of the variables computed from
the set of the independent variables by using the ca-
nonical correlation analysis relate among themselves
in such a manner as to preserve the characteristic of
their correlations as observed in the historical data.

Because of the maximized correlation between the
first pair of the computed canonical variables, the
linear relationship between the pair is very reliable.
It has been shown by Rice (1969) that the values of
the set of dependent variables computed by using all
possible pairs of the canonical variables (with a
transformation technique which is described later) are
mathematically the same as the results of a multiple
correlation analysis for each of the dependent vari-
ables. Therefore, with a much reduced effort of ana-
lysis the canonical correlation analysis gives results
that have the same accuracy as those of multiple cor-
relation analysis.

One outstanding advantage of wusing canonical
correlation analysis is in the construction of a con-
fidence region for the computed dependent variables.
When variables within a set of hydrologic wvariables
are computed simultaneously, their variations around
the computed values to be expected are also very use-
ful information. In the case where these variables
are mutually correlated, the joint confidence region
of all the variables can be conveniently constructed
by using canonical correlation analysis.

Therefore, the correlation analysis between two
or more hydrologic processes can be effectively made
by using canonical correlation analysis. In this pro-
cedure the set of dependent variables consists of the
variables which are to be computed, while the set of
independent variables consists of the variables which
affect the wvariations of the wvariables in the former
set (which may be considered as the causes of the de-
pendent variables). Usually the set of dependent vari-
ables is from the same hydrologic process, while the
set of independent variables may be formed from many



processes selected in such a way that they affect the
dependent variables to a high degree.

1.3 Objective of the Study

The main objective of this study
strate the potential of the application of the multi-
variate canonical correlation analysis to hydrologic
problems. The field of long-range hydrologic predic-
tion is used as an example of the application by ap-
plying the analysis to two prediction problems: the
forecast of monthly precipitation of three coastal
areas of the United States as shown in Figure 1, and
the forecast of seasonal runoff from snowmelt measured
at three river gaging stations of river basins in Mon-
tana as shown in Figure 2. As far as the accuracy of
the long-range forecast is concerned, the selected
examples may be considered as extreme cases. For most
of the river basins, the forecast of snowmelt runoff
can be made with sufficient accuracy as required for
the purpose of water resources planning in the basins.
On the other hand, reliability of the long-range pre-
cipitation forecast at present is still questionable,
despite intensive study and research in this field.
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Fig. 1. Precipitation and sea

areas.

1.4 Selection of Sets of Dependent Variables for the
Two Examples of Long-range Prediction

Before applying canonical correlation analysis
to the two examples, the variables to be used in each
set of variables are selected in such a way that the
two sets of variables are significantly correlated.
The selections are based on the physical background of

each problem. The procedure for each example is as
follows.
For the long-range precipitation forecast, a

technique of lag cross correlation is used to investi-
gate a linear correlation between the coastal precipi-
tation and some ot its prior causative factors. These
factors are the sea surface temperature of the nearby
Pacific Ocean and other processes as explained in
Torranin (1972). His investigation leads to the con-
clusion that the significant lag cross correlation
exists only between the summer coastal precipitation
and the sea surface temperature of some of the 29
areas of the nearby Pacific Ocean, shown in Figure 1.

is to demon-

This cross correlation is relatively small, so that
the numerical forecast of the coastal precipitation by
the lag cross correlation with the sea surface temper-
ature as the forecasting variables is of low reli-
ability. However, this example of forecast of monthly
coastal precipitation is used in this investigation
only for the purpose of demonstrating the feasibility
of technique of canonical correlation analysis for
hydrologic predictions. .
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Fig. 2. The Flathead River Basin.

Methods wused in the seasonal snowmelt runoff
forecast are summarized in the publication "Snow Hy-
drology" prepared by the U.S5. Army Corps of Engineers.
One method which is wusually used is the index method,
in which a fixed relationship is assumed between the
volume of runoff and indices representing its causa-
tive factors; no attempt is made to evaluate the quan-
titative contribution of each causative factor. The
fixed relationship is obtained by the use of a stati-
stical technique, mostly by the multiple correlation
analysis, based on the historical records available.

Factors which affect the seasonal snowmelt Tun-
off are broadly classified as supply and loss. The
supply for a given season is comprised mainly of pre-
cipitation. The major loss is due to evaporation and
evapotranspiration from the basin. Other losses which
may be significant in a particular river basin are
those due to deep percolation and retention as soil
moisture.



The indices wusually used in forecasts of sea-
sonal snowmelt runoff are: the winter precipitation
index and/or the snow water equivalent index, which
represent the major supply to the basin; the evapo-
transpiration index, which represents the major loss,
and the antecedent moisture index which represents the
soil moisture condition of the basin. In a basin where
the significant amount of precipitation ocecurs during
the snowmelt period, an additional index of the
spring-summer precipitation may be included. The fore-
cast covers the period April through July. At the
forecast date, the spring precipitation index and the

evapotranspiration index are not known. If these two
indices are used in the forecast, their values must be
first estimated, usually by using either the means or
some percentile values, In this study, only those in-
dices that are available by the forecast date are
used, It will be shown that the accuracy of results
obtained by using this technique of forecast is still
acceptable. The indices used in this study include;
the fall precipitation index, the winter precipitation
index, and the snow water equivalent index as of
April 1.



Chapter II

MATHEMATICAL TECHNIQUES USED IN THE ANALYSIS

This chapter summarizes the mathematical tech-
niques used in the study. The summary is intended to
be concise and convenient as a rapid reference for the
presentations given in this study. For more detailed
information about the techniques used, the reader is
referred to the appropriate references given in the
bibliography at the end of this paper.

2.1 Autocorrelation Analysis

Autocorrelation is used in this study as the meth-
od for investigating dependence among the time series.
The population autocorrelation coefficient of a contin-
uous time series Xy is defined as

P Cov {xt,xt+TJ/Var Xt 3 2.1
in which Cov (X¢t, Xt4+r) 1s the covariance between
Xt and X¢4r , Var X¢ is the variance of , the

subscripts t and t + vt indicate the times at which
X 1is taken and py is the lag time. For discrete se-
ries X; the value of p, is estimated from a sample
of size N and the discrete lags k =1, 2,..., by
using the open series approach by

Cov (xi, xi+k)

2. m 2.2
k 172
(Var X; - Var X, )

b
i ) Mok [Nk N-k
[k ,Zl LT e I 'i) (igl ‘i-’k)

b LA A Nk 72 1 "E ., = -k [¥E]
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2.3

For serially uncorrelated time series, the sam-
pling distribution of 1, has an expected value Ery
and a variance Var rgx given as

Erk = -1/(N-k+1) , 2.4

and
_ -ke)® - sn-ke)? 4 4
(N-k+1)%  [(N-k+1)? - 1]

Var r 2.5

For a value of N larger than 30, the sampling
distribution of ry may be approximated by a normal
distribution. The 95 percent confidence limits of the
serially uncorrelated time series can be computed by

1/2

Tl,z{k) = Erk + 1,96 (Var rkJ 2.6

Therefore, the dependence in sequence of any time
series can be investigated by comparing the sample cor-
relogram, given as the plot of 1, versus k, of the
discrete series with the expected correlogram of seri-
ally uncorrelated time series. A time series may be
considered to be serially uncorrelated if its sample
correlogram lies within the confidence 1limits, and/or
if only a small percentage of 1, values defined by
the confidence limit probability lies outside these
limits.

2.2 Model of Sequentially Dependent Time Series

The dependent model of time series usually used
in hydrologic investigation, especially where the phe-
nomenon under investigation has a storage or carry-
over effect, are approximately of the autoregressive
or Markov linear type model. The first order linear
autoregressive model, often as the first or rough ap-
proximation, is

X X

T TR 2l
in which 6; 1s the sequentially independent stochas-
tic component, and py is the autoregressive coeffi-
cient estimated by the sample first serial correlation
coefficient ry.

The expected correlogram of the first-order
Markov model is

I=r » 2.8

A method used in this study for testing the good-
ness of fit of the first order linear Markov model is
by the "whitening" procedure. The stochastic compo-
nent &; of the fitted model is computed from the
availab}e sample, and if the &-series is not signifi-
cantly different from a sequentially independent se-
ries, the model of Eq. 2.7 and 2.8 is accepted. The
investigation of sequential independence may be also
made by wusing the correlogram technique as described
in the previous section.

2.3 Canonical Correlation Analysis

This analysis is usually used in the correlation
analysis between two sets of random variables. It
searches for a linear combination of each set of vari-
ables, such that the correlation between a linear com-

bination, called the canonical

variable, of the first

set and the linear
maximized.

combination of the

second set is

Then a second pair of canonical variables,

one from each set, is

sought in

such a way that the

correlation between them is the maximum of all corre-
lation between the linear combinations, uncorrelated
with the first pair of canonical variables. The number
of pairs of canonical variables is equal to the mini-
mum of the number of original random variables of the
two sets. Hopefully, but not necessarily, the first
pair of canonical variables will have very high corre-
lation (say 0.90). If this is the case, only the
first pair of canonical variables need be used for the
description of the correlation between the two origi-
nal sets of random variables.

The amalysis is very effective in investigating
whether there is any linear correlation between the
two sets of variables, because it maximizes the corre-
lation between linear combinations of variables in
each set. 1In using this analysis, generally, each set
of variables as a whole, not each individual member of
the set, is of interest to an investigator. However,
the analysis becomes more meaningful if the canonical
variables have some physical significance. As an ex-
ample, if the coefficients of the linear combination
of each set are all positive, it can be concluded that
a weighted averages of the two sets of random vari-
ables are highly correlated. Details of this analysis



can be found in statistical texts Such as Anderson
(1958) and Kendall (1957), and a summary of the canon-
ical analysis as given in Appendix A.

Canonical analysis has three particular proper-
ties which are of interest with respect to application
to forecasting problems. First, since the correlation
between the first pair of canonical variables is the
maximum, the maximum contribution of the set of inde-
pendent variables used in the forecast can be esti-
mated. Also, the linear regression equation derived
for the canonical variables can be used to forecast
the canonical variables of the dependent variables
with greater reliability. Second, by using this analy-
sis the forecast values have the same correlation
among themselves as those of their historical record.
Third, since pairs of the canonical variables usually
are uncorrelated, the confidence region of the fore-
cast canonical variables, as well as the forecast vari-
ables themselves, is easy to construct and is more re-
liable than using the other statistical multivariate
techniques.

Let X(I) be a column vector of dependent vari-
ables with p; components, such as the precipitation
at the three c?astal areas in the first problem stud-
jed. Let X(2) bea columm vector of independent
variables with p; components, such as the series of
causative factors of sea temperature in this problem.
For the sake of convenience in description, let py<ps.

e?s used in the canonical analysis between Xcl)
and X(2) are summarized as follows:

(1) First the covariance matrix of the matrix X,

) ]
2
| [P
X = 1{2} = x(plj 2.9
x(p,*+1)
f(P1+P22
is computed as
n ‘iz o, “1pyen) TN
. | i ~ %2, S20,01) “Sa(popp
I=]: i : § :
fo B2 ey “pytpye1) " Cry ey

Crprd2 T Teypedny Tl en) (g 1) (0 Rg) (py 0y

2.10

in which 51 is the variance of the i-th variable,

x(i) of the matrix X of Eq. 2.9, given by
g, =k Z (x,() - x())? 2.11
ii N
with xg(i) the ith value of the series of N values
of x(i),
X(i) = -— E x, (1) , 2.12
lﬂl
and c the covariance between x(i) and x(j) of

the mat%lx of Eq. 2.9.

N
A 1 . -
oy * ﬁEZI_th_fz) - X(1))(x, (1) - X(1))  2.13
with
Gij = Uji . 2.14
(2) The partition of the covariance matrix I is made
as follows:
iy
fom {3 3 2.15
In I
11 Y13 Sy
Ell = |99 Oy -+ czpl ) 2,16
N
| P1 P PPy
g o s @
1(py+1) 1(p;*+1) 1(p,*py)
= |g - 5
ha 2(p,#1)  “20pyr2)  “20pp0py) |-
’py0*1)  %py(p*2)  “py(py*p,)
2.17
- T
Iy ™ 43 » ol
Y = :
in which le is the transpose of le , with
= -
“ey0 (py*) Clp) (e “{p1+13(p1+pz)
L= (o) “opaepr) 7 ey |.
“ ) 0 Ty 02 *(py*p,) (y*7)
2.19

(3) The canonical correlations are computed by solving
the system of equations:

2.20

This system of equations is solved for the first Py
largest roots as

Aoy > A0 2 A 2 s > A
— =9y
where }j is the ith canonical correlation coef-

ficient, or the linear correlation coefficient between
the ith pair of canonical variables.



(4) Let o; and y, be the column vector of coef-
ficients for the ith pair of canonical variables which
corresponds to the canonical correlation coefficient
Aji. The column vectors aj and y; are obtained by
the solution of the following system of equations:

gt Bl W
=0 , 2:21
ban MEag) M
subjected to the conditions,
T =
e 5494 1 2.22
T -
g S0y » 1 2.23

(5) The ith pair of canonical variables are computed
by

I, % ¢ )
U, =ag X 2.24

and

_ 2ol
¥ e 2.25

in which Uj and Vj represent the ith canonical
variable of the set of dependent and independent vari-
ables, respectively.

The derivations which lead to these steps are de-
scribed in Appendix A.

If X is multivariate normally distributed, then
U; and V; of Eqs. 2.24 and 2.25 are also normally
distributed. Since the linear correlation between Uj
and Vj, for i =j, is maximized, the values of V;
computed from the observed values of the group of inde-
pendent variables, X(2), by using Eq.2.25 can be used
for the forecast of Uj by the linear regression equa-
tion between U; and Vj. The use of the linear re-
gression equation becomes now more reliable because of
the maximized correlation thus obtained.

Let 0; be a forecast value of U; from the lig-
ear regression equation between U; and V;, and ef
be the variance of a single forecast of Uj; for the
value of V; wused, i.e. the square of the error.

Therefore, for each observed value of
ro-

2.26

the forecast value ﬁ §

=»
]
[ 8]
-

2,27

is made with the variance of a single forecast E,

Equations 2.26, 2.27 and 2.28 are equivalent to
the following statements:

2 2.29

P

b -

is multivariate normally distributed with a mean ma-

trix U,
u11vl
0= YV, |, 2.30
u_ v
Py P
and with a covariance matrix E,
-2 -
Bl 0 0...0
2
E = 0 82 0 ... 0 2.5
0 & e
Py

in which the symbol U;|V; means the value of U
given Vj. Equation 2.31 is realistic because Uj
and Vj are uncorrelated for i # j.

These properties of the canonical analysis make
possible the construction of a joint confidence region
for the forecast value of U, as well as for the de-
pendent variables themselves.

From Eq. 2.24,

U= olx® 2.32
in which
a= [ul Ay wee upl] . 2.33
Therefore,
-1
e v, 2.34
T -1 T
in which (a) is the inverse of the matrix a .



Equation 2.34 can be ysed to transform the
canonical variable, U, to the
variables. If

forecast
original dependent

u ~ N[0, E] , 2.35

the symbol - means "distributed as," and N[ﬁ, E] means
"multivariate normal distribution with a mean vector

U and a covariance matrix E." Then, the quadractic
form Q(U),

QW = w - HTE e - 2.36

is distributed as the chi-square distribution with p

degree of freedom. The proof of Eq. 2.36 is shown in
Appendix A.
Equation 2.36 can be used to construct a confi-

dence region for the forecast value u,
spheriod in p; dimensional space.

which is a

Also, since U ~ N[ﬁ, E], it is shown in Anderson
(1958, p. 19) that

-1 -1

T
F -1
U~ N[

x@) = T U, @) EeDH 11,

or
W LN, By 2.37

Therefore, the quadratic form Q*(X) .,

T
e = @M Cumy @ gy, 2038

is distributed as the chi-square distribution with P1
degree of freedom.

Equation 2.38 can be used to construct a confi-
dence region for the forecast value of the original
dependent variables, X(1), which are transformed back
from the forecasted canonical variables U.

=
For the case that X %)
al distribution, Anderson

has a multivariate norm-
(1958) presented a joint

probability distribution of the square of the p; ca-
nonical correlation coefficients when the population
values are zero (Eq. A-31 in Appendix A). The marginal
cumulative distribution of the square of the ith sam-
ple canonical correlation coefficient is derived from
the joint probability distribution, as shown in Appen-

dix A; for i =1, 2 and 3, The marginal cumulative
distributions for p; =3, N =63, pp =13, 14, 15
and for pz = 3, and N = 30 are shown in Fig. 3, a

to d, respectively. These curves can be used for
testing the significance of the computed sample canon-
ical correlation coefficients.

The computer routine BMDX75M of the Biomedical
Computer Program is used in this study for the canon-
ical correlation analysis; detailed explanations are
given in the programs manual (Dixon, 1970).
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Fig. 3 Sampling distribution of the square of canon-
ical correlation coefficients, Rg , With
(1) First canonical correlation coefficient;
(2) Second canonical correlation coefficient;
(3) Third canonical correlation coefficient



CHAPTER 111

ASSEMBLY AND PROPERTIES OF DATA

This chapter treats in detail the data used in
this study, and particularly concerning their source,
length of record, computation, representativeness, and
some of their physical and statistical properties.

Monthly time series of variables used in this
study are mostly of the periodic-stochastic type. The
periodic component is the result of astronomic cycles.
The stochastic component, the occurrence of which is
governed by the laws of chance, results from many ran-
dom processes in nature, especially the atmospheric
random processes. The monthly series of these pro-
cesses, therefore, are not stationary; their proper-
ties change from month to month, According to Roesner
and Yevjevich (1966), the values of each of the 12
calendar months can be considered as those coming from
different populations, each with its population mean,
ur, and its population standard deviation, or, and
with 1 varying from 1 to 12 representing January
through December. Second-order stationary time series
means that the mean and covariance of the series do
not vary with time and approach their population
values with a probability unity when time goes to in-
finity. The second-order stationary components of
these monthly series can be computed from values of
the original non-stationary time series by

ep’T - (Kp’f - mT)/sT " 3.1

in which =1, 2,..., 12;
is the value of the original
of the year p, N

pm Ly 2yaia,; Ny X =
series for the monthP’I
is the number of years of data, and

m, and s, are the sample estimates of p; and o,
respectively. The values of m, and s, are esti-
mated from a sample by
L 3
O - X s 3.2
T N p=l p,T
and
1 § 2 i
5. o (X -m_) 3.3
T N p£1 P,T T

a better, unbiased esti-
1/N in Eq.
series may also be regard-

For a small sample size N,
mate of o, can be computed by replacing
3.3 by 1/(N-1). This ep ¢
ed as a standardized series.

The second-order stationary monthly series as
computed by Eq. 3.1 may be a sequentially time depend-
ent or time independent series, which results from
characteristics of processes producing each series.
By fitting a proper sequentially dependent model to
€p ¢ - series as described in Chapter II, a sequen-
tially independent time series ép,r can be computed
from the ¢ - series.

P,T

In this study the following notation for the
different time series is used: xp,T(-) is the ori-
ginal series, which in most cases is the non-
stationary time series because of periodicity in para-

meters, with the dot in the parenthesis denoting the
kind of data (for example, XE'T(P} is the value of
the original series of precipitation for the month =
of the year p), €p .(:) represents the second-order
stationary series agier periodicities are removed in
u and o, and &y ; the series of residuals of the
€y ¢(+) after fitging a sequentially dependent model,
Wwith & v approximately an independent in sequence
second-order stationary random variable.

3.1 Data for the Analysis of Precipitation Forecast

Precipitation. The West Coast region of the
United States is divided into three areas as shown in
Fig. 4. These areas, as proposed by Klein (1964), are
topographically and meteorologically nearly homogene-
ous. The criterion used for data consistency of a pre-
cipitation station is that the changes of station lo-
cation during the period of observation are less than
one mile in the horizontal direction and less than 100
feet in elevation. Data of consistent monthly preci-
pitation of 83 stations, uniformly distributed over
the three coastal areas (17, 39, and 27 stations for
coastal area 1, 2, and 3, respectively) are selected
from "Climatological Data" published by the Weather
Bureau, U. S. Department of Commerce. The locations
of the selected stations are shown in Fig. 4 by dots.
Their names and coordinates are given in Appendix B.
The length of data is from January 1948 through Sept-
ember 1971.

35K

. L) 1
® ® * ® 2
L) L) L] L] L)

308, a ) & Ll ) [} L] L} L] L}

E x x L3 1 n L] 1 1 I

. T L] T i L) 1 1 1 T
AR L) X L) Ll L] L L] 1 L .

x z B ® ¥ L] L] L] i z
40N, 1 ) n n x [} " 1 ) L

1 b = L] L) L L] 1 L] T L3

] i . . *a 0 " 1] x ® 3
BN

* 1 L b 1 1) LS . . L] T

) T = T L) n L] L] x 1 1
0N L) L) L . ] Ll u L) ) L) . L]

Ll L3 L] L3 L] i . 1) L] i Ll L]

x z L] L3 1 1) 1 ] T 1 £ x T L
Lo . : x T x . [ ® ® t ® x x

[ x ' x 0 0 Y " L t ' ' "
20Nn x . [ ] i ] i ] i i T i ® .

IBOW. ITSW. (TOW. IBSW IGOW. ISSW (SOW. |45W 40w, (35W 30W Z5W 20W |I5W
Fig. 4. U.S. coastal precipitation stations, and data

points of sea surface temperature, used in
this study for precipitation forecast.

A representative time series of monthly preci-
pitation for each area is taken as a simple average of
the monthly values of precipitation of all stations in
the area. These periodic-stochastic time series,
Xp t(P), for the three areas are shown in Fig. 5a.

The parameters m_ and s for
are computed by wusing Eq. 3.2 and 3.3,
These values are shown in Fig., 5b, together with the
coefficient of variation s;/m; for each of the three
areas. The twelve values of s./m; for each of the

oA e SR . 1R
respectively.



X EENEN T XP) ] |
20 ERE )
T | LT Pt 2 -
oG [0 i e T
: - el [ . [ | |
12 - MEMITN
{a) ] i T H LI |||
[ ] I - Py JI 1 -
' 4 I /
0 N o N oo "
° 80 160 240 300 2 80 160 240 300 0 80 160 240 300
2 2 [F
5 "ﬂf.sf.s‘-!mr o mnsns,-lm.r | My, Sp S/ mye
10 1 )
l‘ {
L] T 8 1 8
At [ My i
(b) € 7 Mr 1 & + s
! N ! A
Ll =% T Sp A=Y 7 4
2 \l\! / ’{ 251’}\—«\ ,97- 2 g m Bl
L7 (5 /my I g Se/my = Ty
o = 0 0 i
0 2 4 & & WOR T 0 2 4 & 8 10 12 T 0 2 4 6 8 10 2T
4.0
3.0 [ETPT 40 ETR) ] [Elm I I :
L y |
20 1 3.0/P,T : 30P)T :
4
o L | Ll : 20 | i [
{e) © Lo . Lo, ®
-1.0 - Ly 0
3 f I ! -1.0
2.0 it 1.0
.30 11 W -aoLLlLL1T] Cn e N
[} 80 160 240 300 [ B0 160 240 300 o 80 160 240 300
.0 11} o
L T [ 7
08 a8 o8
06 os 06
(d) 04 - oa
02 a2 oz
A 4 - &
[+] N 'l'\ Fa u_u = A [+7+] -y
-02 -02 -02
° 8 16 24 K o 8 s 24 K [} 8 s 24 K
(n (2) (3)

LEGEND

(1),(2),(3) The Three Coastal Regions of Fig. 4.

(a) The Original Series, X T(P}, in Inches, N = Month Number.

(b) The Periodic Parameters’m; and st, in Inches, and the
Approximate Constant Coefficient of Variation, s./m.

(c) The Independent Stochastic Second-Order Stationary
Component, ep T P).

(d) Correlogram ot sp,t(P}-Serias with 95% Confidence Limits

of a Serially Uncorrelated Series.

Fig. 5. Coastal precipitation data.

three areas are not statistically significantly dif-
ferent from a constant. The mean annual precipitations
are 66.9, 39.8, and 15.0 inches for areas number 1, 2,
and 3, respectively.

The ¢ ’,(P] series for area 1 is serially un-
correlated, and is standard normally distributed. For
areas 2 and 3, EP,T[P] series are also serially un-
correlated, but are lognormally distributed with three
parameters. In other words, loge[EP'T[P) + 1.710] of
area 2 is normally distributed with mean 0.343 and
standard deviation 0.699. Similarly, loge[ep (P) +
1.288] of area 3 is normally distributed witg' mean
-.040 and standard deviation 0.811.

The second-order stationary time series, +(P),
for the three areas are computed by using Eq. 3.1, and
are shown in Fig. 5c. The correlograms of <(P)
series are shown in Fig. 5d, which indicate that all
three cp'?[P) series are practically independent in

sequence time series. The standard normal transform of e, .(P) of
area 2, the 'y (P) series, is computed E§
The ep ¢(P) - components are fitted by a normal ’
and a lognormal probability distribution with three
parameters, and are tested for the goodness of fit by g! (P) = {log [e (P) + 1.710] - 0.343}/0.699.
a chi-square test using ten equal probability classes. BT e p,T
The results are shown in Table 1. 3.4

10



TABLE 1
FITTING PROBABILITY FUNCTIONS TO PRECIPITATION DATA

Ao normal lognormal
humber: 2 2 2 2
X .95x"cr Result Mean Std Dev ¥ .95x"cr Result Lower Bound Mean Std Dev
1 6.39 15.5 Accept 0.0 1.0 52.0 14.1 Reject -2.579 . 846 .532
2 50.45 15.5 Reject 0.0 1.0 13.8 14.1 Accept -1.710 L343 .699
3 110.1 weD Reject 0.0 1.0 10.5 14.1 Accept -1.288 -.040 .811
For area 3, the ' _(P) is computed by The sea surface temperature data, in degrees

LWL {loggle, (P) + 1.288] + 0.040}/0.811

3.5
(P).

e' (P) is the same as €

For area 1, the n: P,

Sea surface temperature of the Pacific Ocean.
Variations of sea surface temperature depend on many
factors such as insolation or exposure to the sunm,
evaporation from the sea, convective transfer of heat,
mixing of deep and surface water, transport by cur-
rents, upwelling (the rising of water toward the sur-
face from subsurface lavers), and convergence and di-

vergence of sea water. The exposure to the sun de-
pends on the cloudiness of the atmosphere. Evapora-
tion is controlled by the vapor pressure gradient of

the layer of air near the sea surface and by wind ve-
locities. The convective transfer of heat depends on
the difference in the sea and air temperatures and on
wind velocity. Deviations of sea surface temperature
from the means are the indicators of heat surplus or
deficit of the surface layer of the sea. They are
strongly related to the mix-layer depths, e.g., the
depth of relatively constant temperature extending
from surface to the top of the thermocline. This is
the reason for the relative persistence of large-scale
deviations through winter, during which the mixed-
layer depth is much greater than during the other sea-
son., According to Laevastu and Hubert (1970), the sea
surface temperature deviations are relatively persis-
tent through any given winter or summer season, but
can change rapidly in spring and fall. The deviations
are of the order of 1.5° to 2.5° C with an extreme of
4.5° C observed during late summer.

Because long records of data are not available,
areal coverage of the sea surface temperature of
Pacific Ocean, used in this study, is limited to
the area east of 175° W longitude, between 20° N to
56° N latitude, as shown in Fig. 4. Two sources of
data are used. The monthly data for the period Jan-
uary 1949 through December 1962 was obtained from the
National Center for Atmospheyic Research (NCAR) in
Boulder, Colorado. This set of data was originally
prepared by Dr. Sette's group at the Bureau of Com-
mercial Fisheries from records of sea surface tempera-
ture of ships operating in the area. More than two
million observations were used, and an intensive edit-
ing procedure was applied to data. The procedure is
explained in Circular 258 of the Bureau of Commercial
Fisheries. The data are finally reduced to values at
grid points of the two degree square latitude and
longitude over the area. However, the data obtained
from NCAR are at the grid points of a rectangular ar-
ray. Formulas for computing the latitude and longi-
tude of the grid points of the array were given.

the
the

11

centigrade at grid points of two degrees latitude by
five degrees longitude, are computed from the data at
the grid points of rectangular array by simple inter-
polation. The locations of the 2° x 5° grid points
are shown as crosses in Fig. 4. The time series of
sea surface temperature for the period from January
1949 through December 1962 at these grid points are
used as basic data in this study.

A second period of data from January 1963 through
October 1971 was obtained from the monthly publication
"Fishing Information" of the Fishery-Oceanography
Center, NOAA, United States Department of Commerce.
The monthly values, in degrees Fahrenheit, at the same
2% x 5° grid points as used in the first period of
data are read from the publication,

These two sources of data provide the basic sur-
face temperature data for the period January 1949
through October 1971.

The surface of the Pacific Ocean under investi-
gation is divided into 28 grid areas that are 10 de-
grees longitude by 6 degrees latitude, and one that is
10 degrees longitude by 4 degrees latitude, as shown
in Fig. 6. A representative value for a particular
grid area is computed for each month from all the data
points in the area. Each datum point is considered to
be representative of the area of a rectangle having
sides at distances halfway between two data points.
As shown in Fig. 6, the value at datum point 12 re-
presents the values within the dashed area.

The representative values of temperature for each
of the 28 grid areas are computed. Using area number
17 as an example, the representative value is computed
as

) G P 3 6 8
SHORS 3 CNOR M OR M OR WO

P 4 5 7 9
+ E(XP,T(T]+KP’T[T]+XP'T(T)+XP,T(T)+XP'T(T) “
10 11 12
L0 M)+ X mex® )] 3.6
Similarly, for area number 2 this value is
_1.1.a c e g
X, M = 3 [0 (M (M (D] M) +
1,.b d £ h
+ FOO M0 M, (Mg M)+
3.7

i
*XP,T{T]] »
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Fig. 6. Sea surface temperature areas used in this
study, showing points for defining the for-
mula for the computation of a representative

value of the temperature of an area.

where xp (T) is the temperature for the month t of
the year p at the grid point j.

The values of m, and s, are computed for all
29 areas by using Eqs. 3.2 and 3.3, which are shown in
Fig. 7, together with the coefficients of variation,
s¢/my as they change along 7. Note that the areas
shown in each row in the
tude, The range of variation
mean temperatures is as

of the twelve monthly
low as 4° C at the low lati-
tudes, and this range increases with latitude to be-
come as high as 8° C for areas of high latitudes. The
standard deviations are small compared to the means,
resulting in the low and relatively constant values of
51/n7'

Correlograms of the ¢ T(‘T} - series, computed
by Eq. 3.1 for each of the 29’areas, are shown in Fig.
8a, again the areas in each row are at the same lati-
tude, These correlograms show that the ¢, ; - series
of all 29 areas are highly dependent in sequence. The
areas at low latitudes have higher autocorrelation co-
efficients and longer lag times than the areas at high

latitudes. Also, the areas closer to the coast have
somewhat longer "memory'" than the areas farther from
the coast.

The first-order Markov model is fitted to the
’r{TJ - series, and the series of the residuals of
the model as the &, .(T) series are camputed. Cor-
relograms of the gﬁ (T) - series are shown in Fig.
8b. They indicate these series to be practically se-
quentially independent time series for all areas.
Therefore, the standardized series of deviations of
sea surface temperature are sequentially dependent
time series with the dependence approximated by the
first-order Markov linear model.

Normal probability distribution functions are
fitted to all &p (T) - series by using the same
technique as for the The results

ep. 1 (P) - series.
are shown in Table 2 Tﬁey indicate the Gﬁ,t(T) -
series to be all normally distributed, with their
means and variances given in that table.

3.2 Data for the Analysis of Snowmelt Runoff Forecast

Snowmelt runoff. Monthly mean discharges for 30
years at the three gaging stations, shown in Fig. 2 by

figure are at the same lati-

dots and described in Table 3, from the water year
1939-40 through the water year 1968-69, are obtained
from the U. S. Geological Survey Water Supply Papers.
The monthly values of South Fork Flathead River near
Columbia Falls and Flathead River at Columbia Falis
are adjusted for the changes in content of the Hungry
Horse reservoir. Based on the period of data used,
the characteristics of the runoffs of the three sta-
tions are shown in Table 4.

The seasonal flow in Table 4 is the summation
of the monthly mean values of April through July, in-
clusive. The mean seasonal flow for each station ac-
counted for nearly 80 percent of its mean annual flow.
The first- and the second-order autocorrelation coef-
ficients for all three stations are not significantly
different from those of a sequentially independent
time series.

Monthly base flows of each gaging station are es-
timated by

-kt
Q = Qe , 3.8

in which Q; is an estimated base flow of the month
i, Qy is the base flow of the month o which is t
months before the month o, k 1is a recession con-
stant and e is the natural base of logarithm.

Using Eq. 3.8, total volume of base flows during
the period of April through July are estimated for the
three gaging stations and shown in Table 4, The esti-
mated volume of baseflow during the snowmelt season is
very small compared to the volume of the seasonal
flow. Therefore, no adjustment for the baseflow is
made, and the observed flow during the snowmelt season
is used as the dependent variable in this study.

The sample cumulative distribution function of
the 30 values of seasonal runoff for each station is
computed by using the plotting position method m/(N +
1). These distribution functions for the three sta-
tions are plotted on normal probability paper, Fig.
9, Based on Smirnov-Kolmogorov test, the distribution
functions at the three stations are not significantly
different from the normal probability distribution at
95 percent level of confidence,

Therefore, the time series of seasonal runoff of
the three stations are sequentially independent norm-
ally distributed processes, with the estimated means
and standard deviation as shown in Table 4,

Method of computation of indices of snowmelt run-
off. Most of the indices used in the correlation ana-
Iysis for the forecast of snownmelt runoff are computed
from the observed values at different times of the
season, Two steps are usually used in computing the
indices. For each month the effective monthly values
are computed as the weighted average of data at the
locations selected. Then the indices are computed
from the obtained effective monthly values as the
weighted average of all months of the season. Many
criteria are used in assigning the weights. The sta-
tion weights may be assigned proportionally to the
Thiessen area of each station or proporticnally to the
variance of the data observed at each station. Some-
times, station weights are assigned according to the
correlation between the data at each station and the
seasonal runoff. Since the observed snow water equi-
valent highly depends on the elevation of the snow
course, the elevation of each course is usually con-
sidered in assigning weights to snow courses. Work,
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Fig. 7. Monthly means and monthly standard deviations of
sea surface temperature data, in °C.
TABLE 2

FITTING PROBABILITY FUNCTIONS TO SEA SURFACE TEMPERATURE DATA TABLE 3

Normal Distribution STREAM GAGING STATIONS

Area 3 2 3rd
No. x .95x"er Accept Mean Std Dev Variance Moment
Station Name of *Erainag;*
1 6.55 IS5 Yes 0 0.6584 0,435 - 037  Number SEARLON ipsatisn .
2 .12 15.5 Yes 0 0.7010 0.491 0.070
3. 7.21 15.5 Yes o 0.6617 0.438 =-0.009 3585 The Middle Fork Flat- 48" 29' 43" N - 114° 00' 33" W 1128
4 4.41 15.5 Yes 0 0.6656 0.443 -0.046 head River ncar West
- 10.85 15.5 Yes 0 0.6377 0.406 -0.049 Glacier, Mont.
6 8.50 15.5 Yes o 0.6344 0.402 0.047
7 4.48 15.5 Yes 0 0.5926 0.351 0.049 3625 The South Fork Flat- 48° 21' 24" N - 114° 02' 12" W 1663
8 9.18 15.5 Yes 0 0.6399 0.409 0.032 head River near
9 4,561 15.5 Yes 0 0.7058 0.498 -0.003 Columbia Falls, Mont.
10 15.35 15.5 Yes 0 0.693z 0.480 0.059
11 4.11 15.5 Yes [} 0.6481 0.420 -0,022 3630 The Flathead River 48" 21" 43" N - 114" 11' Q2" W 4464
12 5.47 15.5 Yes 0 0.6148 0.378 0.026 at Colusbia Falls,
13 4.86 15.5 Yes 0 0.6202 0.385 0.052 Mont.
14 7.74 15.5 Yes 0 0.7493 0.561 -0,026
15 8.88 15.5 Yes 0 0.6519 0.425 -0,004
16 3.42 15,5 Yos 0 0.7094  0.503  -0.034 TABLE 4
17 6.08 15.5 Yes ] 0.6728 0.453 0.030
18 6.83 15.5 Yes o 0.6895 0.475 0.030
19 7.67 15.5 Yes 0 0.5679 0.322 0.003 QUARACFERISTICS OF STREANFLON. DATA
20 lo0.02 15.5 Yes 0 0.6923 0.429 0.019
21 4.86 15.5 Yes 0 0.6704 0.449 =0.006
22 8.35 155 Yes 0 0,753  0.570  -0,055 Anuwal Flow, Seagousl Flow,
23 4.18 15.5 Yes [ 0.7802 0.609 -0.152 IOSAF 105 AP Autocorrelation Estimated Base
24 9.41 15.5 Yes ] 0.6995 0.489 0.030 Station . Flov % of kean
25  14.56 15.5 Yes 0 0.7499 0.562 0.105 Number Meam Std Dov Mean Std Dev 1 st 2 nd Annual Flow
26 9.86 15.5 Yes o 0.6869 0.472 0.068
27 6.08 155 Yes 0 0.7427  0.552 0.020 3585 21,122 4,414 16.645 3,614 0,105 -0.038 2.3
28 11,76 15.5 Yes 0 0.8279 0.685 0.090
29 4,11 15.5 Yes 0 0.7251 0.526 ~0.006 3625 26.261 5.790 20.914 4.678 0.026 -0.078 2.9
3630 71.609 15.086 56.061 12.057 0.150 -0.038 3.2

Remarks: Number of classes is 10. Data from January 1949
through December 1970, 22 years or 264 monthly
values.
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functions to frequency distributions of snow-
melt runoff data,

Beaumont, and Davis (1962) found that a more accurate
forecast is obtained by using different forecast rela-
tions for different ratios of the snow water equiva-
lent observed at high and low elevation. The monthly
weights for indices used are usually assigned accord-
ing to the estimated relative effects of each month
on the runoff.

The method currently used in assigning weights
for computing an index, say the index of winter pre-
cipitation, is to perform a multiple correlation ana-
lysis between the seasonal runoff and the precipita-
tion in winter months at the selected stations. The
stations weights are then assigned by using the mul-
tiple regression coefficients obtained, and taking in-
to account other considerations as previously describ-
ed. The effective monthly value for each month is
then computed as the weighted average of values at the
stations for that month. Using the effective precipi-
tation for all of the winter months as independent
variables, a multiple correlation analysis is again
applied, with the seascnal runoff as a dependent vari-
able. The weight for each month is assigned by using
the multiple regression coefficients. The winter pre-
cipitation index is then computed as the weighted ave-
rage of the effective precipitation of the winter mon-
ths. There is no set rule regarding the magnitude of
weights, but it is customary to make the sum of sta-
tion weights as well as of monthly weights equal to
unity. Normally, the highest weighting factor is not
greater than three times the lowest.

The indices of forecast used in this study are
similar to those used by the Water Management Sub-
committee, Columbia Basin Inter-Agency Committee, u.s.
Bureau of Reclamation (1964). The report describes
the forecasting procedure for inflow into the Hungry
Horse Reservoir. Both the station weights and month-
1y weights of these indices used in this study are
mostly those given in the report. The exception is
that they are scaled in such a way that the sums of
station weights as well as of monthly weights are uni-
ties. Although the weights given in the report were
derived especially for the South Fork Flathead River
as the indicators of the potential of runoff from the
basin, it is shown in Chapter IV that they may be used
effectively as indices of the potential runoff of ad«-
jacent basins as well.

Fall and winter precipitation index. Locations
of the five precipitation stations used in this study
are shown in Fig. 2 as circles. The information about
the stations is given in Table 5. These stations were
selected because of their long records and a good cor-

relation with the runoff of the South Fork Flathead
River Basin.

Monthly total precipitation series of the five
stations from January 1939 through September 1971 are
obtained from the Climatological Data published by the
U.S. Weather Bureau.

TABLE 5

PRECIPITATION STATIONS

Station Elevation Station
Number Station Name Location Ft Weight
4328 Hungry Horse Dam 48" 201" N - 114° 00" W 3160 0.28
6302 Ovando 47 01' N - 113° 09" W 4100 0.14
7448 Seeley Lake Ranger Sta. 47" 13' N - 113" 31' W 4100 0,32
7978 Summit 48" 19" N - 113" 21' W 5213 0.12
8809 West Glacier 48% 30" N - 113° 59* ¥ 3154 0.14
For fall precipitation indices, the monthly

weights for August, September, and October are 0.21,
0.32, and 0.47, respectively. Station weights are
first assigned proportionally to the variance of the
data of each individual station, then a trial-and-
error procedure in adjusting the weights is made to
obtain the best correlation between the fall precipi-
tation index and the runoff. The station weights are
shown in Table 5.

For winter precipitation indices, the monthly
weights for November, December, January, February, and
March are the same and equal to 0.20. The statiom
weights are the same as those of the fall precipita-
tion index.

Using the values of the weights as described, 30
years of fall precipitation indices, August-October
for 1939 through 1968, and 30 years of winter precipi-
tation indices, November-March for 1940 through 1969,
are computed. The sample cumulative distribution func-
tions of both indices are plotted on normal probabili-
ty paper, Fig. 10. Based on the Smirnov-Kolmogorov
test at 95 percent level of confidence, the distribu-
tion of fall precipitation index is not significantly
different from the normal probability function, with
the mean 1.972 and the variance 0.627, while the dis-
tribution of the winter precipitation index is not
significantly different from the normal probability
function, with the mean 2.166 and the variance 0.258.

Snow water equivalent index. Out of all the snow
courses in and near the basin, five were selected for
computing the snow water equivalent index for fore-
ca§ting the seasonal inflow into Hungry Horse Reser-
voir. These snow courses are chosen based on five
criteria of desirable features: length of record, good
individual plots against runoff, good correlation in
multiple correlation analysis with runoff, consistent
double mass plots and good areal distribution. One
more snow course near the Canadian border, Kishenehn
is added in this study to obtain a better areal cover:
age of the basin. The data of snow water equivalents
as of April 1 for the six now courses used are ob-
tained from the Water Management Subcommittee Report
and from the publication ''Water Supply Outlook and
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function to frequency distributions of pre-
cipitation and snow index.

Federal - State - Private Cooperative Snow Surveys for
Montana' of the Soil Conservation Service. The loca-
tions of the six snow courses are shown in Fig. 2 by
squares. Some salient features of the snow courses are
given in Table 6.

Weights of the five courses used by the Water
Management Subcommittee are assigned proportiocnally to
the variance of the observed data at each course. They
were modified in such a way that the best correlation
between the computed April 1 snow water equivalent in-
dex and the seasonal runoff was obtained. The weight
of the added Kishenehn is assigned to be equal to the
minimum weight of the five courses due to its small

variance and low elevation. Weights of the six snow
courses are given in Table 6.

TABLE €

SNOW COURSES
Elevation

1D No. Name Location Pt Weight
1287  Goat Mountain 47° 39' N - 112° §5' W 7000 0.17
1342 Desert Mountain 48" 26' N - 113° 58' W 5600 0.19
13A5M  Marias Pass 48° 19.5' N - 113® 21.5' W 5250 0.15
1583 Big Creek 47° 40.5' N - 113° §7.5' W 6750 0.15
1387  North Fork Jocko 47° 15.5' N - 113° 46' W 6330 0.19
14A6  Kishench: 48° SB' N - 114° 25' W 3886 0.15

A sample cumulative distribution function of 30
values of the April 1 snow water equivalent index,
from 1940 through 1969, are plotted on normal prob-
ability paper, Fig. 10. Again, based on the Smirnov-
Kolmogorov test, at 95 percent confidence level, the
distribution of the snow water equivalent index is not
significantly different from a normal distribution,
with the mean 23.77 and the variance 29.65.
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Chapter IV

APPLICATION OF CANONICAL CORRELATION

This chapter presents results of correlation The linear correlation analysis between each of
analyses of historical data, assembled as described in the three pairs of the canonical variables, computed
Chapter III. Using these results, the canonical corre- by Eqs. 2.24 and 2.25, gives the following results.

lation analysis is applied in the two examples of long- The first pair of canonical variables gives R.=0.778,
range forecasts. and

4.1 Results of Analyses of Historical Data

U1 = -0.062 + 0.775 Vl . 4.3

Since the main purpose of this study is to demon-
strate the potential of application of the canonical The unbiased standard error of estimate is 0.628, the
correlation analysis for hydrologic problems, only the mean of U; is -0.038, the variance of U} is 1.000,
results of correlation analyses for selecting the prop- the mean of V) is 0.031 and the variance of V; is
per set of independent variables for each example of 1.000.
the long-range prediction are presented. The detailed
discussion of the correlation analyses are presented The second pair of canonical variables gives R
elsewhere, Torranin (1972). = 0.752, and

Coastal precipitation forecast. The monthly
e'p,z(P) - series of the three coastal areas are used
as dependent variables, the independent variables be-
ing the monthly GP'T(T) - series of the 29 sea surface The unbiased standard error of estimate is 0.660, the
temperature areas shown in Fig, 6. The data of the mean of Up 1is -0.014, the variance of U; is 1.000,
6p,t(T) - series are for the period January 1949 the mean of V; is 0.0156 and the variance of V3 is
tﬁraugh December 1969, or 21 years. The sample size 1.000.
for each season of precipitation is therefore 21 x 3
= 63. The third pair of canonical variables gives R,

= 0.409, and

U2 = -0.026 + 0.7516 VZ . 4.4

Results of correlation analysis, Torranin (1972),
show that the use of sea surface temperature for fore- = i
casting the coastal precipitation by the lag cross cor- US BR80T DA08N VS ' %=
relation method results in a border case of signifi-
cance. For the purpose of demonstrating the applica- The unbiased standard error of estimate is 0.912, the
tion of canonical analysis, the forecast of the summer mean of Us is -.069, the variance of Uz is 1.000,
precipitation is used as an example, because practi- the mean o% V3 is 0.001 and the variance of Vg3 is
cally all of the multiple correlation coefficients for 1.000.
summer precipitation proved to be significantly dif-

ferent from zero. For summer precipitation, the group From Fig. 3b, the canonical correlation coeffi-
of independent variables consists of the sea surface cient of the third pair of canonical variables is

temperature at areas 16, 1, 27, 18, 28, 23, 4, 3, and not significantly different from zero. Figures 1] a,
9 with time lag of one month and at areas 21, 27, 8, b, and ¢ show the linear relations and the 80 percent
14, and 12 with time lag of four months, a total of 14 confidence limits for a single forecast. Equations 4.3
independent variables. through 4.5 are used in the later part of this chapter

to demonstrate the application of canonical correla-
From the canonical analysis between the group of tion analysis for monthly coastal precipitation.
three precipitation series and 14 sea surface tempera-

ture series, the vectors a and y of coefficients The next section presents results of correlation
of Eq. 2.21 are: analyses for the purpose of the forecast of snowmelt
runoff at the three gaging stations as shown in Fig. 2.
o = "'ziﬁgf s 'i;g:g _1';;;:; 4.1 Snowmelt runoff forecast. The correlation analy-
a = [a; oy o] "‘27.74 '1'05020 o] sis in this part of study consists mainly of computing
i AR B ‘ - the canonical variables and of using the correlation
analysis of each pair of canonical variables. The
group of "independent" variables consists only of in-
dices that can be computed from the observed original
.20796  1.89924  1.44752] data as of April 1. These variables include the fall
-.86164 -1.54182 - .70774 precipitation index, the snow water equivalent index
.18382 -1.17142 .20635 as of April 1, and the winter precipitation index.
-.16396 86917 - .05202 This group of independent variables, with their defi-
.11814 .30801 .18512 nitions and methods of computation given in Chapter
1.05531 - .17980 .22506 111, is used in the canonical analysis with a group of
Yy = [Yl Y, ys] =|-,52306 59146 .11974| . 4.2 seasonal snowmelt runoffs at the three gaging stations.
.61735 - .55442 .07682 A linear correlation analysis between the pairs of
-.13884 .32808 - .19386 derived canonical variables gives the basic forecast-
.43695 .14030 - ,51693 ing equations of the runoff.
-.52511 - .09499 .01119
-.72409 - .12054 .40572 For this cano?ical analysis, the group of depen-
.73442 .10392 .87328 dent variables, X ) of Eq. 2.9, consists of season-
~.35567 .12199 .02133 al runoff at the gaging stations 3585, 3625, and 3630,
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Fig. 11 Linear relation between canonical variables
of precipitation, CNP, and of sea surface tem-
perature, CNT, for (a) the first pair, (b)

the second pair, and (c) the third pair.
while the group of independent variables, X(Z} of Eq.

2.9, consists of the fall precipitation index, the
snow water equivalent index, and the winter precipita-

tion index, namely
x(1)
Xcl) = [;(2)} >
x(3)

4.6
and
x(4)
X(Z) = [x(5)]| , 4.7
x(6)
in which
x(1l) = the seasonal runoff at gaging station
3585,
x(2) = the seasonal runoff at gaging station
3625,
x(3) = the seasonal runoff at gaging station
3630,

x(4) = the fall precipitation index,

x(5) = the April snow water equivalent index,
and

x(6) = the winter precipitation index.

The correlation matrix of x(1) through X(6)

is as follows.

x(1) x(2) x(3) x(4) x(5) x(6)
x(1) 1.000 0.961 0.985 0.097 0.874 0.700
x(2) 1.000 0.973 0.160 0.916 0.692
x(3) 1.000 0.200 0.897 0.699
x(4) 1.000 0.239 0.073
x(5) 1.000 0.798
x(6) 1.000

From this correlation matrix, it is evident that
the seasonal flows at the three stations are highly
correlated among themselves, as expected. For the in-
dependent variables, the snow water equivalent and the
winter precipitation index are also highly correlated.
The correlations between the snow water equivalent in-
dex and each of the seasonal flows are of the same
order of magnitude. This is also true for the winter

precipitation index, but the correlations of the flow
with the winter precipitation index are somwhat lower.
Therefore, it is justified to use the indices derived
for the flow of the South Fork Flathead River as the
indices for the flow at the other two gaging stations
of the adjacent river basins,

By using 30 years of data as discussed in Chapter
III in the canonical analysis, the matrix o and
of Eq. 2.2]1 are obtained as:

[ .09428 1,48235
-.20967 ,24715

a = [a, 6, a,] =
1T |-.02657 -.53209

-.48860
.84349 4.8

-.18342

-.20733  .03498  .24046

Y =0y, vy v5] =
L .30034 .05539 -3.31876

" .06128 -1.29588 - .28553}
4.9

The canonical correlation coefficients between
the first, the second and the third pair of canonical
variables, or Aj, X2, and Az of Eq. 2.20, are
0.9229, 0.6108, and 0.2059, respectively. From Fig.
3d and the 95 percent level of confidence, only the ca-
nonical correlation coefficient of the third pair of
canonical variables is not significantly greater than
ZeTo.

Using the value of o and y in Eqs. 4.8 and
4.9 the series of U; and Vi, i=1, 2, 3 are com-
puted by using Eqs. 2.24 and 2.25. The linear correla-
tion analysis between U; and Vj, and between U
and Vp, are performed with the following results:

U1 = -0.47040 + 0.92288 Vl '

4.10
in which the canonical correlation coefficient Rg
= 0.9229, the unbiased standard error of estimate is
0.38532, the mean of U; is -4,30675, the variance of

Uy is 1.000, the mean of V; is -4.15693, the vari-
ance of V] is 1.000; and
U2 = 0.90555 + 0.61078 VZ . 4.11

with the canonical correlation coefficient R¢=0.6108,
the unbiased standard error of estimate is 0.79228,
the mean of U; is -0.5960, the variance of U; is
1.000, the mean of V2 is -1.5802, and the variance
of Vz is 1.000.

Linear relations of Eqs. 4.10 and 4.11 are
shown in Fig. 12 with the data points used. The values
of o« and y of Eqs. 4.8 and 4.9 and Egs. 4.10 and
4.11 are used in the forecast with Eqs. 2.34 and 2.38,
as described in the later part of this chapter.

Next sections show how the results of the canon-
ical analysis as obtained can be applied in hydrologic
forecasts, specifically in the coastal precipitation
forecasts and in the snowmelt runoff forecast.

4,2 Examples of Forecast by Using Canonical Correla-
tion Analysis

In general, the main steps to be used in a fore-
cast by the technique of canonical correlation analy-
sis are:

(1) The canonical variables of the set of dependent
variables (such as the monthly precipitation for the
example of coastal precipitation forecast) are predict-
ed by the canonical variables of the set of observed
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Fig. 12 Linear correlation between

(a) the first pair of canonical variables,
(b) the second pair of canonical variables,
of the snowmelt runoff, U, and the indices,
V.

independent variables (such as the monthly sea surface
temperature for the example of coastal precipitation
forecast).

(2) The predicted canonical
variables are transformed back
of dependent variables.

(3) A confidence region for the predicted values of
dependent variables is then constructed.

variables of dependent
to the predicted value

It should be noted that the data of the set of in-
dependent variables used in each of the following two
examples of forecast are not used in the analysis pre-
viously described.

Coastal precipitation forecast. The total preci-
pitation for June 1970 at the three coastal areas, as
shown in Fig. 4, are forecast simultaneously as an ex-
ample of previous developments. The group of indepen-
dent variables to be used for the forecast represent
the residuals of the first-order Markov model of stan-
dardized deviations of the sea surface temperature for
May 1970, a time lag of one month, at areas 16, 1, 27,
18, 28, 23, 4, 3, and 9, as well as the residuals of
February 1970, or a time lag of four months, at areas
21, 27, 8, 14, and 12. These 14 variables are arranged
in a column vector of independent variables as

,6373]
- .4686
- .3455
.2410
.2960
.6253

- .4071
- .4061
- .9917
- .5487
-1.1218
.4894
1.4784
- .6738]

@ .
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Introducing the value of y of Eq. 4.2 into Eq.
2.25, the canonical variables of the sea surface tem-
perature are obtained as

Vl 1.48424
V= Vz = 1-0,13905 . 4,13
V3 -1.04813
The values of IJ‘.i and U2 are estimated by Eq. 4.3
and 4.4 as:
LI1 = 1.09337, and U2 = 0.13053 .

Since the canonical correlation coefficient of the
third pair of canonical variables is not statistically
significant, the mean value of Uz is obtained as
Uz = -0.06900. Therefore, the predicted canonical
variables of precipitation for the month of June 1970
are

U 1.09337
Uus= Uz = |-0.13053 4.14
U3 -0.06900
In order to transform the canonical variables

back for Eredicting precipitation the inverse of the
matrix o' of the matrix o« in Eq. 4.1 is computed,
or
T -1 -0.9308 -0.1592 0.3745
[a'] = -0.5092 -0.2479 -0.5331 . 4.15
0.1897 -0.8993 0.0175

From the matrix of Eqs. 4.14 and 4.15, the predicted
precipitation at the three areas are obtained from Eq.

2.34 as
X -1.0288
@ [—0.48?6] ; &

0.3236

16

It should be noted that X(Z) are the predicted values
of the normal transforms of standardized deviations of
precipitation at the three areas. Equations 3.4 and
3.5 are then used to transform these three values into
the standardized deviations at each of the three areas

as
e(1) -1.0228
£(2)| = |-0.7080
e(3) -0.0387

The predicted total precipitation at each of the three
areas is computed by Eq. 3.1, by using the means and
standard deviations for the month of June. The pre-
dicted total precipitation for June 1970 is then

4.17

g =

X, () 1.238
X(P) = iztp] = 0.324] . 4.18
X, (P) 0.065

The observed standardized deviations and the total pre-
cipitation for June 1970 are:

- -1.280
€ = 782 ,
- .135

4.19



and
. [0.968
X(P) = Ll.lls 4 4,
0.056
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The forecast errors at areas 1, 2, and 3 are 28, 71,
and 16 percent of the observed values, respectively.

To construct a confidence region of the predicted

precipitation, the matrices U* and E* of Eq.2.37
are com¥uted from the matrices U, (aT]'l, E, and
{(@D)-1}T by
= 75
U= @l 0 4.21
d
. T ¥ T T
E* = (a') E{(a’) } . 4,22

The matrix E consists of the variance of a single
forecast made by using the linear regression equation
between Uj and Vj, 1=73j. The error of a single
forecast by using a linear regression equation con-
sists of the sampling error of regression and the
error resulting from the variation of an actual value
of dependent variable around the regression value. For
the forecast of U;, the variance of a single forecast

e12 , for Vy = 1.48424, is computed by
V.-V.)
2 2 1 Wyt
elia 1+ﬁ+-}-§——_--—2' 4.23
V. (1)-V.}
- 171

in which 6 is the unbiased standard error of esti-
mate of Uy by Vy, V) is the mean of V; and n
is the sample size used for the linear correlation
analysis.

to be 0.41405

2
Using Eq. 4.23, e)” is comguted
2% 1is computed to be

for Vy = 1.48424. Similarly, e
0.44251 for Vp = -.13905. Since the mean of Uz is
forecast, e.2 is the variance of Uz itself. There-
fore, for thé forecast of precipitation of June 1970
the matrix E is

0.41405 0 0
E = |0 0.44251 0 4.24
0 0 1.000
By using Eqs. 4.21 and 4.22 the matrices U* and
E* are computed as
U* (1) ~1.0228
u* = |U*(2)| = |-0.4876| , 4.25
u*(3) 0.3236
and
0.5080 0.0172 -0.0033
E* = | 0.0172 0.4142 0.0495 4.26
-0.0033 0.0495 0.3731
Note that U* is the forecast precipitation. The in-

verse of E* is computed as

' 1 1 =
. €1 ©12 ®i3 1.9718 -0.0855 0.0286
E* © = ei] eéz eés = |-0.0855 2.4565 -0.3265| 4.27
1 ' ' -
e's) €35 €33 0.0286 -0.3265 2.7240
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From Eq. 2.38,

T

e = x® CumT el x @) gy L 203

or

e}, G0 (10)% + 3, x@D-U*(2))7 + o1 (x(3)-U* (3))°
v 26l (x(1)-U* (1)) (x(2)-U* (2))
+ Zel (x(1)-U* (1)) (x(3)-U* (3))
*203, (x(2)-U* (2)) (x(3)-U* (3)) ~ x2(3),

4,28

in which x°(3) is a chi-square distribution with
three degrees of freedom. The confidence region for
x(1), x(2), and x(3) at 80 percent level of confi-

dence is obtained by Eq. 4.28 as
1) l'l 2 1 * 2 1 2
el; (x(1)-U*(1))° + 3, (x(2)-U*(2))° + e}, (x(3)-U* (3))

+ 200, (x(1)-U* (1)) (x(2)-U* (2))

+

2e] 5 (x(1)-U* (1)) (x(3)-U*(3))

+

2e}5(x(2)-U*(2)) (x(3)-U*(3) < 4.64,
4.29

in which 4.64 is the 80th percentile value of the
X2(3} distribution, and the e' are those of Eq.
4.27, and U* those of Eq. 4.25.

The interpretation of the confidence region de-
fined by Eq. 4.29 is that there is 80 percent probabil-
ity that each of x values to be observed for June
1970 will vary around the predicted values U* in
such a manner that Eq. 4.29 is satisfied. Equation
4,29 represents an ellipsoid as shown in Fig. 13. Fig-
ure 13 shows the ellipses in e'(2) - €'(3) plane,
which are the results of passing a plane through the
ellipsoid at e'(l) of -.2788, of -1.0228, and of
-1.767. Note that -1.0228 is the value of the fore-
cast €'(l), while -.2788 and -1.767 are the fore-
casts of g£'(l) which have an estimated 70th and 30th
percentile error associated with them, respectively.
This ellipsoid shows that the errors of precipitation
forecasts of the three areas are interrelated. If the
precipitation for one area is predicted with a large
error, the other two will be predicted with small er-
ror, such that there is a 80 percent probability for
the observed precipitation (normal transforms of the
standardized deviations) of these three areas to be in
this ellipsoid.

Snowmelt runoff forecast. For this example, fore-
casts of snowmelt runoff (April through July runoff)
at the three gaging stations, as shown in Fig. 2, for
the year 1970 are made. Using the observed values of
monthly totals of precipitation in the fall and winter
at the five stations, and using the observed April 1
snow water equivalent at the six snow courses, the
fall and winter precipitation indices and the snow
water equivalent index are computed by applying the
weights given in Chapter III. The three indices so com-
puted represent the observed values of a set of inde-
dent variables X(2) of Eq. 4.7, or
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€1) = -1.0228

€() = -0.2788
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Fig. 13 Confidence region of precipitation forecasts
at 80 percent confidence level.

[1.501
x® = |26.227 4.30
2.530
The wvalue of ¥y of Eq. 4.9 is used to compute
the canonical variable of these indices by using Eq.

2.25, namely

Vl = 0.06128 x 1.501 - 0.20733 x 26.227
+ 0.30034 x 2.530 = -4,5858
and
VZ = 1,29588 x 1.501 + 0.03598 x 26.227

-0.86133 .

into Egs. 4.10 and 4.11,

and Uz are U1=-4.?0254,

+ 0.05539 x 2.530

Substituting V; and Vj
the forecast values of Uy
and U2=0.3?947.

Since the canonical correlation coefficient of
the third pair of canonical variables is not statisti-
cally significant, the mean value of Uz 1is used,
namely Uz=-1.34037. Therefore, the predicted canoni-
cal variables of runoff for 1970 are

Pl [-4.70254
U= Uy = | 0.37947 4.31
-1.34037
l?s 1.3

To transform the canunical variables back for pre-
dicting runoff, the inverse of the matrix o' of the
matrix o of Eq. 4.8 is computed as

o1 [- 3.54096  0.55600 -1.04300
[o'] = |- 4.82738 0.27566 -0.09518| . 4.32
-12.10702 -0.20239 -2.95019

~ -1
From the matrix U of Eq. 4.31 and [o']  of Eq.
4.32, the predicted flows are computed by using Eq.

2.34 as

i x(1) e 18.26062

) o x| = [«'] (U] = |22.93316
x(3) 60.81130

4.33

The canonical variable U; can be predicted with
the smallest error while Uz has the largest error in
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the above matrix multiplication of Eq. 4.33. There-
fore, the error associated with x(1), x(2) and x(3)
are small if the contribution of U; to each x is
large as compared with the contribution of Uz, or if

the ratio of the magnitude of the element of the first

column to the ele?ent of the third column of all rows

of the matrix («l)”! in Eq. 4.32 is large. A study

of Eq. 4.32 reveals that such is the case for this par-
ticular problem, so that a small error in x should

be expected.

The observed values of the snowmelt runoff at the
three stations for 1970 are

B 17.54
x) o 121,28
54.64

Therefore, the errors of runoff forecast at stations
3585, 3625, and 3630 are only 4.10, 7.75, and 11.4 per-
cent of observed values, respectively.

4.34

The National Weather Service, NOAA also routinely
issues forecasts of the snowmelt runoff at these three
stations; the flows are forecast for the period April
through September. The errors of forecast made by the
agency for 1970 snowmelt runoff forecasts at stations
3585, 3625, and 3630 are 3.2, -6.4, and -5.3 percent
of the observed wvalues, respectively.

Although the number of the indices used in the
forecast involving canonical correlation analysis is
small, and despite the fact that it utilized observa-
tions only up to April 1, the error in this forecast
exceeded only slightly that of the agency forecast.
Discounting the Weather Service's long experience and
abundance of available indices, it would seem that a
forecast based on canonical correlation analysis would
be at least equally accurate and probably less expen-
sive.

Variances of a single forecast of U; and Uz,

e;” and e 2, respectively are computed by using equa-
tions similar to Eq. 4.23, as e;2 = 0.15968 and 322
= 0.68256, Since the mean of is predicted, eg?

is the variance of U; itself. Therefore, the matrix
E of Eq. 2.31 for the forecasts of the snowmelt run-
off for the year 1970 is

0.15968 0 0
E= |0 0.68256 0 4,35
0 0 1.000
Using Eqs. 4.21 and 4.22, the matrices U* and
E* of Eq. 2.37 are computed as
u* (1) 18.26062
u* = |U*(2)| = |22,93316] , 4.36
U*(3) 60.81130
and
3.2649 2.9301 9.7436
E* = |2,9301 3.7818 9.5659 4.37
9.7436 9.5659 31.8476

The forecast flows U* are the same as X(l) of Eq.

4.33. The inverse of E* is
] v 1 - -
i 511 e12 313 3.52192 -0,01338 -1.07349
- ' 1 - p "
E* = e eéz 923 = |-0.01338 1.10079 -0.32655
] 1 ] g -
€1y €35 €3q 1.03749 -0.32655 0.45791

4,38



From Eq. 4.29, the confidence region for x(1),
and x(3) at 80 percent level of confidence is

x(2),

3.52192(x(1)-18.26062)% + 1.10079(x(2)-22.93316)° + 0.45791 (x (3)-60.81130)°
+ 2(-0.01338) (x(1)-18.26062) (x(2)-22.93316) * 2(-1.07349) (x(1)-18.26062)
(x(3)-60.81130) + 2(-0.32655) (x(2)-22.93316) (x(3)-60.81130) < 4.64.

4.39

Equation 4.39 represents an ellipsoid in the
space x(1) - x(2) -x(3), with a center located at the
predicted values [x(1), x(2), x(3)]. The ellipsoid of
Eq. 4.39 is shown in Fig. 14 by three ellipses which
are the intersections of the plane x(1) = 17.49, x(1)
= 18.26, and x(1) = 18.77 with the ellipsoid. The
values of x(1) of 17.49, 18.26 and 18.77 are the pre-
dicted values of x(1) with 40th percentile error,
no error, and 60th percentile error associated with it,
respectively.

x(3) NOTE
Runoff is in 100000 Acre-feet
68l
x(1) = 17.49
66
x(1) = 1826
64l
62} x{1) = 1877
60}
| 1 e 1
20 22 24 26 28 *2)

Fig. 14.

Confidence region of streamflow forecasts at
80 percent confidence level.
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The interpretation of the confidence region of Eq.
4,39, as represented by the ellipsoid of Fig. 14, is
that there is an 80 percent probability that the ob-
served values of the flows at stations 3585, 3625 and
3630 for the year 1970, as represented by x(1)}, x(2),
and x(3), respectively, will vary around the forecast
values, 18.26, 22.93, and 60.81 in such a way that Eq.
4.39 is satisfied. In other words, the observed flows
at the three stations are represented by a point in
the three-dimensional space within the ellipsoid of
Fig. 14. The largest ellipse of Fig. 14 is the result
of the assumption that there is no error in the fore-
cast of x(l). When an error is assumed for x(l), the
ellipse becomes smaller. The area of these ellipses
or the volume of the ellipsoid, give the forecaster
some idea about the variations in the predicted values
to be expected for each set of forecasts. Intuitively,
one would like to have the forecasts with the confi-
dence region having as small a volume of the ellipsoid
as possible, because in that case the overall error of
forecast can be expected to be relatively small. The
ellipsoidal confidence region for the forecast of 1970
snowmelt runoff is quite small in comparison with the
magnitude of predicted values.

In the case of forecast of regional variables,
such as in the two problems investigated, it is unlike-
ly any predicted value will be equal to the observed

value. The expected variations of predicted values
about the observed values at the predicting times are
useful information, as far as the overall regional

forecast is concerned. The variations of individual
predicted values in a region should not be considered
separately, since they are correlated. The canonical
analysis may be used effectively to obtain this infor-
mation about the joint variation of predicted values,
as shown in this study.



CHAPTER V

CONCLUSIONS

From the results of the investigation of two pro-
blems in long-range hydrologic prediction, used to
demonstrate the potential for applying canonical cor-
relation analysis to hydrologic problems, the follow-
ing conclusions concern mainly the application of the
canonical correlation analysis, the characteristics of
the time series of the variables investigated and the
feasibilities of the two long-range prediction pro-
blems.

(1) The problem of regional simultaneous forecast
of mutually correlated dependent variables of area
locations may be solved effectively by using the ca-
nonical correlation analysis, especially in construct-
ing a confidence region for these forecasts. The con-
fidence region gives overall information about the
joint variation of predicted values. Other advantages
observed concern the significance testing of linear
correlation between the sets of dependent and indepen-
dent variables and the saving in analysis by doing
only one canonical correlation analysis instead of
three separate analyses for each problem.

(2) While the mutual correlation usually observed
in a set of time series representing a three-
dimensional hydrologic process causes other techniques
for the correlation analysis, such as the multiple
correlation analysis, to be unsuitable for use with
hydrologic data, canonical correlation analysis can be
used effectively to investigate linear correlation be-
tween two or more hydrologic processes. The technique
is very suitable for the investigation of linear re-
lationships between two sets of variables, whose vari-
ables are mutually correlated in each set, in addi-
tion to a relatively high correlation between the two
sets.

(3) The monthly periodic-stochastic time series
of the coastal precipitation, after the periodicities
in the mean and the standard deviation are removed,
produce a standardized residual series that is close
to a serially uncorrelated stationary time series. The
probability distribution of the residuals is approxi-
mately normal for the uppermost coastal area, with
mean annual precipitation of 66.9 inches. The distri-
bution of the residuals of the two lower coastal areas
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are approximately lognormal, with mean annual precipi-
tations of 39.8 and 15.0 inches, respectively.

(4) The monthly sea surface temperature of areas
of the Pacific Ocean are used as a set of independent

variables in the example of coastal precipitation
forecast. After removing the periodicity in the mean
and standard deviation in time series of the sea sur-
face temperature, the resulting standardized sto-
chastic time series are shown to be highly serially
correlated, approximately of the first-order Markov
linear model. The independent (residual) component

computed from the Markov model, GP,T(T)-series, is
normally distributed.

(5) The contribution of the river base flow to
the total snowmelt runoff during the snowmelt measured
at each of the three gaging stations is small compared
to the snowmelt runoff. The time series of snowmelt
runoff, the fall and winter precipitation indices, and
the snow water equivalent index are serially uncorre-
lated time series, with all of them having a normal
distribution.

(6) The snowmelt runoff from the river basins has
the largest correlation with the snow water equivalent
index of all the three indices investigated for the
snowmelt runoff forecast. Though the winter precipi-
tation index is highly correlated with the snow water
equivalent index, the runoff has a smaller correlation
with the winter precipitation index than with snow
water equivalent index. The canonical correlation co-
efficients between the set of the runoff dependent
variables and the set of indices as independent vari-
ables are 0.923, 0.611, and 0.206; only the third ca-
nonical correlation coefficient may be considered as
not being statistically significant.

(7) General results of the two examples of fore-
cast by canonical correlation analysis are that the
coastal precipitation forecast is not reliable, as in-
dicated by a large percentage error, while the fore-
cast of snowmelt runoff is reliable. The error of pre-
diction at each gaging station in snowmelt Tunoff
forecast is approximately of the same order of magni-
tude as the error in measuring the runoff itself.
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Appendix A

CANONICAL CORRELATION ANALYSIS

This appendix summarizes the mathematical back-
ground information for canonical correlation analysis,
stressing some particular properties pertinent to the
application of this study. Except for the derivation

and computation of marginal

cumulative distributions

of the

square of the

canonical

correlation

coeffi-

cient, most of the
Anderson (1958), and is

information is
given in this

extracted from
appendix in a

summarized form for the purpose of rapid reference.

Basic Derivation Related to Canonical Correlation Anal-
sis

Let X be a matrix of random variables

with p
components and with a covariance matrix Ipy,. For the
sake of simplicity, let its vector of mean, Ex, be
Zero.

Let the matrix X be partitioned into the two
subvectors of p; and py components each, or as
[x)7]
The covariance matrix is partitioned similarly
into Py and P, TOwS and columns, as
o
L= A-2
By, g

Let U or V be an arbitrary linear combination

of X(1), or of x(2), respectively,

U= alxttd A-3
and

V = '\'TX[ZJ A-4
in which & and y are pyxl1 and poxl column vec-
tors, respectively.

The linear combinations, U or V, having the

maximum correlation, are required in canonical cor-

relation analysis.
tween a multiple

Since this

linear correlation be-

of U and a multiple of V

is the

same as the correlation between U and V wvariables
themselves, therefore an urbitrary normalization of a
and y can be made. Let o and y be selected such
that both U and V have unit variances, or

T

T & T
B? = Btk Mg 4w QT 2 o £y

A-5
and

B = X @x@T | [Ty @"

i
YRy Iy =l

case the correlation co-

is

The covariance, or in this
efficient, between U and V

EUV = EaTX(I)KEZ)Y = YTZlZY
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The required variables U
correlation analysis

A-7 suBject to Eqs. A-5 and A-6.

and V
are obtained by maximizing Eq.

in the canonical

Put further

T Yo 1 .. T
Y =aqa 2121 - E%(a Ella-l) - Eu{y 2227~1) 5 A-8

in which ¥y and u
The maximization is obtained by
partial derivative of 1y,

a and vy ,
B v
Ba © Sya¥ - Mgy
and
T i
3y - v1g - BEggY

Multiplication of Eq. A-9 by a©

are the Lagrangian multipliers,

equating to zero the

with respect to the vectors

=0 . A-9

0. A-10

and of Eq. A-10 by

y' gives

T T -

o Elzy - Aa Ella =0, A-11
and

TaT T

Y I8 7 MY Yop L1 S A-12

; T T T

Since a Ljje = vy L2y =1, and o Ijpy = EUV = EVU
= y'Liza, then from Eqgs. A-11 and A-12 it is seen
that ‘A =y = oTfjoa . Therefore, Eqs. A-9 and A-10

may be written as

-AElla + ElZY 0, A-13
Ezlu - hzzzy =0 , A-14
or in matrix form
Wha gl (e
% =0 . A-15
| Zay Mgg| ¥
In order for a nontrivial solution to exist, the

matrix on the left side of Eq. A-15 must be singular,

or

Equation A-16 is
with p

a polynomial
roots, say with

equation of degree p

Al ¥ Az Z_As 2 > Ap



From Eq. A-11 it is seen that A aTEIZY = EUV, or
that A 1is the correlation coefficient between U
=alx(1) and v = yTx(2), when o and y satisfy Eq.
A-15 for some value of A. Since the maximum correla-
tion coefficient is required, X = Aj 1is selected.

Let a solution of Eq. A-15 for A = A} be oll), y(1),
T T
with Uy = a(1)" Xx(1) and vy = ()" x(2), Then U

and V) are the linear combinations of X(1) and x(2)!
respectively, with a maximum correlation coefficient.
A second linear K(l] and second

Sombination of

linear combination X{2) are sought next, such that,
of all possible linear combinations, uncorrelated with

U; and Vj, have the maximum correlation coefficient.

This procedure is continued until the r-th step of lin-
ear combinations, or

T T
1 1 1 2
g ea® Xy L@@
T T
= o) (1) = @) (2]
Ur o X b Vr =y X
until the corresponding correlation coefficients A[l)
= A1, ---5 A(F) = Ap of Eq. A-16 are obtained. _ The
U=aTx (1),

next steg ii to find the linear combinations
and Ve=y x( ) which have the maximum corrxelation coef-
ficient between them as compared to all the linear com-

binations uncorrelated with (U;,Vy), (Uz,V2), -+,
(Up,Vy). The conditions that U be uncorrelated with
Ui and Vi, and V uncorrelated with V; and U ,
i ®1,2; «+e T, are:

T (1) _ :

@ I =0, A-17
T 5
a zlzy(l) =0, A-18
T (1)

= A-1
AR 0, 9

Ty ) . .
¥ Ezlu 0. A-20
The correlation between Up,; and Vippp or EUpyq Vrsl

is to be maximized subject to Eqs. A-5, A-6, A-17, and

A-19, for i =1,2,3, and ..., r. Let
_ T Lople o ow  XopSh oo
¢r+l = o EIZY = i}‘ku Ella 1] ?(Y EzzY 1}
T » p 4 ¥
T (1) T (1)
* _{ vie I e + _Z 8,7 Ly, , A-21
i=] i=1
in which A, ¥, vy, «++s Vp, 81, ..., 8 are Lagrange

multipliers. By taking partial derivatives of ,..;,
with respect to o and y and equating them to zero,
it can be shown that the maximized ¢p,.; 1is obtained
when all the v and 6 multipliers are zero. The
maximum correlation coefficient is obtained for the
solution of Eq. A-16, say Ap41, when the values of «
and y come from solution of Eq. A-15 for A = i,
a = alr+l), v = y(r+1), Therefore, the (r+l)-th com-

T
bination of %1 ana x(3) o a7 401

T
and Vpu, = uir*l) K(z), respectively. The total num-
ber of pairs of combinations is then Py

are Ur+1

The results of derivation of the canonical corre-
lation may be summarized as follows: The r-th pair of
canonical variables are the linear combinations Ur
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= aEr)T x4 " ana Vp = y{rJT x(2), each with the unit
variance and uncorrelated with the first (r-1) pairs
of canonical variables and having the maximum correla-
tion of all the linear combinations uncorrelated with

the first (r-1)} - pairs. This correlation gives r-th
canonical correlation coefficient which is the r-th
The values of «(¥) and

largest root of Eq. A-16.
Y[r are the solution of Eq. A-15 which corresponds to
the value of the r-th largest root of Eq. A-16. It
should be noted that, in the derivation of the canoni-
cal correlation so far, no assumption is made regard-
ing the probability distribution function of the ma-
trix X of random variables.

Probability Distribution of a Quadratic Form

This part of Appendix A is related to the con-
struction of the confidence region of forecasts as
given in the previous text.

A quadratic form is defined as

YTAY = E w; s A-22

1,jm 1
in which ¥l (Y1,Y2 ... Yy), and A is a symmetric
matrix, A = (a33;). The matrix A and the quadratic

form are called positive definite if Y'AY>0 for all
Y ¢# 0.

It is to be shown in this appendix that if prl
2 N(U;z] s OT

B Loew T oew
£(X)s Xpo ooes X)) = (2m) 72| Te
A-23
with [ positive definite, then
1
Q) = - £ x-w) - ) A-24

Proof.

If . 1is positive definite, there exists a non-
singular matrix B such that B & B = I. [Corollary 4,
p. 339 of Anderson (1958)]. Therefore

-1 -1 -1
tw by EETeEy P,

and

RS L A-25
Let

T

Z =8 (X-p) , A-26

Then
EZ =0 ,
£zz' = EBY (X-p) (X-u) "B

BY [E(X-u) (X-w) 1B

B IB
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Since a linear transformation of a normal random k, = l-[p2~4] = A-34
variable is also normally distributed, therefore

and
1
Z -~ N (0,1 A-27 ‘ kg = 7 (N-p,-5) . A-35
T, % 2
2=} (Zi} 4 A-28 ‘ From the joint probability distribution given by
i=1 Eq. A-32, the marginal distribution of Dj, Dy and
Dz can be obtained by integrating out Dy and D3,
2 D; and Dz, and D] and D2, respectively, as fol-
~x (@ - A-29 lows:
|
Equation A-29 can be written because the summa- gI(DI) = I I {g(DI’DZ’DS}dDZdDS}I(DS,Dlj[DZJ
tion of p squares of a standard normal random vari- %R
able is distributed as chi-square distribution with p -1 (D) & A-36
[OIDZ) a3
degree of freedom.
T in which g1(D;) is the marginal distribution of Dy,
Consider the product 22 , and I (X) 4is the indicator function of X,
(A,B)
273 = (=) TRR () I (X)) =1 for A<X<8B
(A,B)
substituting BBT from Eq. A-25, = 0 otherwise.
ZTZ = (X-u)TI'l(X-p) i A-30 Substitute g(Dl,Dz,Ds) from Eq. A-32 in Eq. A-36;
; T.-1 2 Ir 2 [k k. 1
Therefore Q(X) = (X-p) I “(X-u) = x (p), and Eq. A-24 = 24 3 5
is proved. 31fD) kl I .H Di (1 Di) (Dl Dz} I
o Li=1 o
Marginal Cumulative Distribution of Square of the Sam-
ple Canonical Correlation Coefficients kz X
3
r o E . 13
Let Dj for i=1,2, ..., pp be the squares {DS (1 DS) CDI DE}(DZ DSJdDS HO,D,}( b%
of the sample canonical correlation coefficients of L
the two sets, X(}) of p; components and X of
ps components. For the case that x(1) is of a_ mul- . dDz ]- I(D D J[DZ) s
tivariate normal distribution and X(1) and Xx(%) are FHL
independently distributed, Anderson (1958) presented
the joint probability distribution of D, to be: 1. & k2 k3
. k1[£ izl{ni (1-0,) }(Dl-DzJFIZ(Dl,Dz]dDz:r
g[Dl,DE yreay Dpl} =
k k
1 P,

A ;
=P Tiz (N=-i)] p - 2., 3.
< 1 3 2 I{DB,DI){DEJ' kIDl (1 Dl} PI{DI} 3

i=1 P[5 (8-p,-1)]T(E (p,#1-0)] Tl (p,#1-1)]

A-37
p 1 1 2y 7P : .
1 7 (py-py-1) 5 (N-p,y-p;-2) in which
ny D, = (1-D.) n (p,-0.) ,
j=1L * 3 iy + 3 R k, ks
F12{01’02}=-ro D5 (1-Dy) (1-03)(92-533403}1[0’132] (03)
A-31
W 0 A-38
in which N is the sample size, and p; < p, . [Dé'Dl){ 2
For the case p, = 3, Eq. A-31 becomes qfa
5¢ k K,y 3 1{ i
: ) F. (D)= [ $D.,%(1-D.) “(D.-D.)F.,(D,-D,)dD, 4 (D)
8(D,DyDy) =k T D2 (1-D,) 3}11 (D.-D.) , i £ 2 2 R U (05,0072
2 jepl 1 i gy 13
A-39
A-32
in which
_ 1 5 By using similar integration techniques, the fol-
X 3/2 ; Fly ®-1)] lowing are obtained.
Lo |
. 1 : 1 = 1 :
* i=1 (5 (N-p,-1)]°Tl3 (4-1)) T3 (p,*1-1)] K, K
A-33 gz[Dzj = k102 (1-D2] FZ(DZ) i A-40
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in which g,(D,) is the marginal distribution of D
and 22 2

1k k

B 2 3.
F,(D,) -g D, (1-913 o, Dszlz[Dl,Dz}leI[D2 l)(Dl) ;

i & A-41
F.,(D,,0,) =/ D 2{1 D )k3 D,-D
1% B4 Dy ti-0g) "0y 3)(92”533dD31{0,023(03)

il 0.) .
©5.0,) 2 A-42

k

k
_ 3 3
g;(0) = k;D:"(1-D) F (0,) , A-43

iEdWhiCh 23(03) is the marginal distribution of D3,

28

1k k

Jpatd 3
Fo(D,) -£ D, “(1-D,) [DI-DSJFlstnl,DS)dDII(DZ l}(n]} ,

A-44

1

k k
Fo D00 =] 72 3
8 B s B o D2 [l-DZJ [DI-DZ)(DZ—DsJ 4 dD2

I D T | D -
(05,0,) P2 (02,1)( 1 AR

Numerical integration is used to compute the cumu-
lative distributions of Dy, Dz, D3 by using Eqgs.
A-37, A-38, A-39; A-40, A-41, A-42; and A-43, A-44,
A-45, respectively. The cumulative distributions for
different values of b, and N are given in Figure 3.



Appendix B

PRECIPITATION STATIONS SELECTED

Coastal area 1

Sequence  Station

Number Number Name Latitude Longitude Coastal area 3
i 45,0176  Anacortes 48.52 122,62 Saquence  Station
2 35,0318 Astor Experimental Sta. 46.17 123.82 y -
3 45.0872 Imeﬂ:}: 47.57 122.67 Number Number Name Latitude Longitude
4 45.0945 Buckley 1 NE 47.17 122.00
5 45,1233 Cedar Lake 47.25 121,44 1 4.0606 Beaumont 33.56 116.59
& 35.1552  Cherry Grove 2 § 45.42 123.25 2 4.0790 Big Sur State Park 36.15 121.47
;) 45.1496 Clearwater 47.58 124.30 3 4.1864 Coalinga 36,15 120,35
8 45,1679  Concrete 48,55 121.77 4 4,2236 Cuyama 34,93 119.62
9 35.1817 Cottage Grove 1 § 43,47 123,04 i 4.2239  Cuyamaca 52.59 116.35
10 35,2345 Disston 1 NE layng Cr 43.72 122.75 & 4,2346 Delano 35.78 119.25
11 35,2673 Estacada 2 SE 45.16 122,19 7 4,2516  Dry Canyon Reservoir 34.48 118,53
12 35.4721  Lang Lois 42,95 124,45 s 4.4022  lollisler 36.51 121,24
13 45,4769  Longview 46.10 122.55 3 2968 Tdiba i 31 198 &
14 45.5880 New Halem 48.41 121.15
15 45,7507 Sedro Woolle 48.30 122.13 4 4:3101 1o Alamos b A
Y ¥y he ! 11 4.5215 Lytle Creek Ranger Sta, 34.20 117.45
16 45.7548  Shelton 47.12 123.06 12 45756  Mojave 35,08 11817
1 Sudil  Tide Water i 1Z5an 13 4.6006 Mount Wilson FC 338 B 34.23 118.07
14 4.6175 Newport Beach Harber 33.60 117.88
15 4.6399 Ojai 34.27 119,15
16 4.6703  Parkfield 35.88 120.43
Goosral ares 2 17 4.7077  Potterville 36.04 119.01
18 4,7253  Randburg 15,37 117.65
C——— 2 dEn M ens B LR
i 20 4.74 versi ire Sta. No . .
Number __ mbar Nome Latitude Longitude 21 4.7672 Salinas Dam 35.33 120.50
22 4,7740 San Diego NB Airport 32.44 117.10
1 4,0227 Antioach Fibreboard Ml. 58.01 121.46 23 4.7851  San Luis Danm 35.30 120.67
2 4.0383 Aubum 38.54 121.04 24 4.8839 Tejon Rancho 55.03 118,75
3 4.0693  Berkeley 37.52 122.15 25 4,8967 Topanja Patrol Sta. Fe 6 34.08 118.60
4 4,1018  Bowman Dam 39.27 120.40 26 4.9087 Tustin Irvin Ranch 33.73 117.78
5 4.1112  Brooks Farnham Ranch 38.77 122,15 27 4.9552  Wasco 35.36 119.20
6 35.1055  Brookings 42.05 124,28
7 4,1214  Burney 40. 88 121.67
8 4,1277 Calaveras Big Trees 38,28 120,32
9 4.1700 Chester 40.18 121.13
10 4.1715 Chico Experiment Sta. 39.42 121.47
11 4.1784  Clarksburg 38.42 121.53
12 35.1946 Crater Lake NP HQ 42.90 122.13
13 4.2147 Cresent City 1 N 41.77 124.20
14 4.2500 Downieville Ranger Sta. 39.57 120.83
15 4,2910 Euraka WB City 40,80 124.17
16 4.3134 Foresthill Ranger 5ta. 39.02 120.82
17 4.3136  Fort Bragg 59.57 123.48
18 35,3455  Grants Pass 42.26 123.19
19 4,3191  Fort Ross 38.31 125,15
20 4.3761  Happy Camp 41.80 123.38
21 4.5188  Los Banos 37.05 120.85
a2 4.5346 Mariposa 57.48 119.23
23 4.5449 Mc Cloud 41.16 122.08
24 4.6252 North Fork Ranger Sta. 37.25 119.50
25 4.7109 Potter Valley PH 39.37 125.13
26 35.6907 Prospect 2 SW 42.44 122,31
27 4.7292 Red BIuff WB Airport 40.15 122.25
28 4.7296 Redding Fire Sta No 2 40.58 122.40
i 4.8025 Sawyers Bar Ranger Sta. 41,30 123,13
30 4.8045  Scottia 40,29 124,06
51 4.8353  Sonora 37.59 120.23
32 4,8587 Stony Goerge Reservoir 39.58 122,53
33 4.8928 Tiger Creek PH 38.45 120,48
34 4,9035 Tulelake 41.97 121.47
35 4.9105 Twin Lakes 38.70 120.05
36 4.9490 Weaverville Ranger Sta. 40,73 122.93
37 4.9699 Willows 39.32 132,12
38 4.9814 Wrights 38.08 121.57
39 4.9855 Yosemite Park Headqtrs. 37.75 119.58

29



CNP

CNT

Appendix C

LIST OF SELECTED SYMBOLS

Bebinivion
Column vector of coefficients for the i-th ca-

nonical variable of the set of dependent vari-
able

Canonical variable of precipitation
Canonical variable

of sea surface temperature

Square of the sample canonical correlation co-
efficient

Second-order
series

stationary component of a time

The i-th canonical correlation coefficient
Recession constant

Sample mean of a hydrologic variable for the
month Tt

Population mean of a hydrologic variable for
the month <

Monthly precipitation

Population autocorrelation coefficient for <«
months time lag

River base flow of the i-th month

Quadratic form

30

Definition
Gamma function
Column vector of coefficients for the i-th ca-
nonical variable of the set of independent
variables
Canonical correlation coefficient

Sample estimate of Pr

Sample standard deviation of a hydrologic vari-
able for the month 1

Covariance matrix

Population standard deviation of a hydrologic
variable for the month t

Sea surface temperature
Time
Time lag

The i-th canonical variable of the set of de-
pendent variables

The i-th canonical variable of the set of in-
dependent variables

A sequentially independent stochastic compo-
nent of second-order stationmary time series
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ABSTRACT: The potential for application of canonical
correlation analysis to hydrologic problems is demonstrat-
ed by two problems in long-range hydrologic prediction:
1) forecast of monthly precipitation of three large areas
of the West Coast of the United States, and 2) forecast
of seasonal snowmelt runoff for three gaging stations in
the Flathead River Basin in Montana.

Canonical correlation analysis is found to be effec-
tive in investigating linear correlation between two or
more three-dimensional hydrologic processes, in which the
set of time series of each process are mutually correlat-
ed, in addition to a relatively high correlation between
the processes themselves. The main advantages of using
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this technique concern the significance testing of the
linear correlation between the processes, the reduced
effort in the correlation analysis, and particularly for
the prediction problem as it concerns the construction
of a confidence region of the simulataneous predicted
values. Though not demonstrated in the examples, ca-
nonical correlation analysis can also be used for se-
lecting significant data observation stations for use

in the correlation analysis.

A set of forecasts is made for each prediction
problem by using the canonical correlation analysis of
the historical data. Results of these forecasts indi-
cate that the precipitation prediction is not reliable,
while the runoff due to seasonal snowmelt can be well
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