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Abstract. In this paper the process of unsaturated aquifer recharge from a river channel 

and its flood plain laterally confined with fully penetrating barriers is investigated. The 

same basic methodology described previously by the authors [Morel Seytoux et al., 1988] 

for the cases of recharging areas in a homogeneous medium is applied here in case of 

heterogeneities due to damming. An approximate solution is obtained by matching two 

one-dimensional flows, a vertical and a horizontal one. The formulation leads to an 

integro-differential equation, which can be solved numerically. The results show the 

effectiveness of the barrier and its dependency upon project parameters. 

1. Introduction 

  “Groundwater barriers” are often called different structures, like subsurface 

dams and storage dams. They can be made of artificial material, such as concrete, 

or of more or less impermeable natural material like sand or silt.  Damming ground 

water for conservation purposes is certainly not a new concept. Groundwater dams 

were constructed on Sardinia in Roman times and damming of ground water was 

practised by ancient civilisations in North Africa. In the last century they have 

been developed and applied in many parts of the world, notably in arid region as a 

method of overcoming water storage. More recently groundwater barriers have 

been considered for river management purposes. In the last few years their use for 

aquifer protection in river restoration projects has given this method renewed 

attention. The use of groundwater barriers is of increasing interest since they allow 

the storage of the infiltration water below the river bed and drastically reduce the 

lateral spreading of the percolating water. Thus the possibility of interaction 

between the surface water and the lateral aquifer outside the barriers is definitely 

reduced. 

2. Aim of the research 

 Aim of the present study is to develop a conceptual model and a mathematical 

code for the development of the water table rise under stationary and unsaturated 

recharge conditions below the flood plain of a river in case the lateral spreading of 

the mound is limited by the presence of a barrier made of soil of known 

characteristics. The scope of practical interest for engineering projects is to define 

the effectiveness of the barrier and its dependency upon project parameters.  

3. Description of the problem 

 The aquifer is assumed to be homogeneous, anisotropic, unconfined and has a 

finite depth. The geometry of the problem is shown in Fig.1. 

In the case of low and medium water levels, the river flows within its current bed, 

which shows a smaller permeability due to the clogging process. In this case the 
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recharge rate below the river channel is negligible and the water table level is 

horizontal. The groundwater level is initially the same at both sides of the barrier. 

                                 

 

Figure 1. The geometry of the problem 

 In the case of high water levels, the river channel fills up its flood plain, which 

has a higher permeability than the clogged layer in the current bed. Thus it is 

realistic to assume that the recharge rate below the flood plain is significant, but 

still not big enough to ensure saturated conditions. The unsaturated descending 

front reaches the water table and at this time the reflected front rises filling the 

empty pore space in the unsaturated aquifer below the flood plain. In this case the 

rising mound is almost flat and can be approximated as an upward horizontal front. 

The hydraulic head drop within the barrier is the difference between the level of 

the reflected front and the water table level on the external side of the barrier. The 

water table level laterally keeps decreasing and at infinity reaches conditions at 

rest. 

4. Basic approach 

 Clearly the flow phenomenon following the arrival of the percolation flux at the 

initial location of the water table is two-dimensional in nature. Following a general 

methodology previously applied in stream-aquifer interaction modelling and 

aquifer recharge [Morel-Seytoux H.J. and C. Miracapillo, 1988] the two-

dimensional nature of the flow process is approximated by the matching (linking 

and coupling) of a dimensional vertical flow process and an horizontal one (Fig.2). 

In this manner the complexity due to the higher dimensions is avoided. The 

justification for the approximation is that, except in the barrier, where a relevant 
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hydraulic head drop happens along a short flow path, in the rest of the aquifer the 

vertical velocity is negligible and Dupuit assumptions still hold. The major 

difficulty in the procedure is the development of the matching condition which 

leads ultimately to an integral equation formulation. A discretized form of the 

integral equation can be solved easily to provide numerical answers to a specific 

problem.  

 

 

                              CONCEPTUAL MODEL 

  

 

Figure 2. Conceptual Model 

5. Mathematical formulation of the problem 

The mathematical formulation presented in this paper is not the most general 

because it is based on several assumptions which are related to the geometry and to 

the physics of the problem, namely: 

• the width of the  river  channel is much smaller than the width of the flood plain 

• the thickness of the barrier is much less than the width of the river bed 

• the barriers are located at the external limits of the flood plain 
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• the geometry of the problem has an axis of symmetry in the centre of the river 

bed 

• the bottom of the aquifer is horizontal 

• the initial water table profile is horizontal everywhere (condition at rest) 

• the infiltration rate below the flood plain is less than the vertical hydraulic 

conductivity 

• due to the clogged layer at the bottom of the river bed, the infiltration rate  

below the river channel is negligible  

• the descending flux below the flood plain is unsaturated 

• infiltration in the unsaturated zone occurs under steady conditions 

 In this situation it is realistic to assume that when the unsaturated front hits the 

water table, the infiltration flux will split into two parts, one reflected (filling 

upward the residual pore space still available after the passage of the descending 

unsaturated front) and one transmitted outside the barrier (into the aquifer not 

overlain by the recharge area).  

In Fig.1 the position of the water table at time t  is indicated. For reasons of 

symmetry only one half of the system is considered and displayed. The profile is 

approximated between the two barriers by a plateau at a distance rfz  above the 

initial water table level and by a profile ),( txh  laterally outside the barriers. The 

origin for the x  axis is the external side of the barrier.  Within the barrier the water 

table is approximated by a straight line connecting the aquifer elevations at the two 

sides, namely rfz  and ),0( th . Thus the hydraulic head drop in the barrier 

is ),0()( thtzrf . 

In the following mathematical formulation the change of the water content in the 

barrier due to the development of the mound is not considered. It is assumed that 

this quantity is negligible compared to the change of water storage in the 

neighbouring part of the aquifer.  

5.1. Determination of the mound height ),( txh  

The evolution of the mound ),( txh  height is governed by the linear form of 

the one-dimensional Boussinesq equation: 
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where t  is time, HK  is fully saturated hydraulic conductivity in the horizontal 
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In eq. (2) ),(, txK qh  is the mound height response to a unit step excitation of 

lateral flux (also known as the unit step response of height due to excitation of 

boundary flux). When the boundary flux varies with time it is known from linear 

system theory [e.g. Dooge, 1973; Morel-Seytoux, 1979; Morel-Seytoux H.J. et al., 

1988] that the response ),( txh  is related to the boundary flux )(tq  (a discharge per 

unit length of strip, thus of dimension area per time) by the convolution equation: 
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where )0(q  is the value of )(tq  at time zero. In particular at 0=x  the value ofh   

is: 
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because the value of  ),(, txK qh  for 0=x , as deduced from eq. (2), is: 
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5.2. Determination of the position of the reflected front 

It is known from the theory of multiphase flow in porous media [e.g. 

Morel-Seytoux, 1969, 1973, 1987] that the velocity of propagation, fV  of a front 

of water contents is given by the expression: 
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where ++ ,wv  and ,wv  are the respective values of water velocities (Darcy 

velocities) and water contents on both sides of the front. 

Application of eq. (5) to the problem at hand yields the result: 
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where o  is the uniform and steady water content in the unsaturated zone under the 

flood plain (above the rising water table), 
~

 is the water content at saturation and 

i  is the initial water content under the river channel. 

In this case the water storage in the barrier and its change during the rise of the 

water table are neglected. This is justified by the fact that the water storage under 

the flood plain equal to  
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is much bigger than the water storage in the barrier, which is equal to  

dhzrfdid ))((
2

1
 

where d  and di  are respectively the water content at saturation and the initial 

water content in the barrier and d is the thickness of the barrier.  

 

5.3. Determination of the transmitted flux (matching equation) 

 Using the flow net approach [e.g., Morel Seytoux and Miracapillo 1988; Morel-

Seytoux et al., 1990] the recharge rate )(tq  can be expressed by Darcy’s law as: 
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where A  is the average cross-sectional area of the flow tubes, H is the 

piezometric head drop, VK  and HK  are the values of the horizontal and vertical 

hydraulic conductivities, VL and HL are the average lengths of the flow tubes in 

the horizontal and vertical directions which carry water away from the infiltration 

area to the lateral boundary ( 0=x ) across the aquifer underneath the flood plain 

and across the barrier. 

Thus  VdVoV LLL +=   

and  HdHoH LLL +=  

where the subscript o  and d  refer to the aquifer and to the barrier. 

The average length of the flow lines is obtained by the arithmetic mean of the 

boundary flow lines, namely: 
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Similarly, the average area of the flow per unit length is  

[ ]),((5.0 toheBA ++=  

)(tH  in eq. (8) is the hydraulic head drop from the recharge surface along the 

flow pathline to the boundary at x=0.  
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Since the water table mound under the flooding plane is approximated with                 

a horizontal “plateau”, the piezometer head can only drop within the barrier from 

the value of )(tzrf to the value of ),0( th . 

Thus   ),0()()( thtztH rf=   

Substitution of the above written equations in eq.(7) gives  

[ ]),0()()()( thtztKtq rfeq=        (8) 

where eqK in the next general case is 
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where  =  HoVo KK /  and Hod KK /= . 

If rfz  remains during the rise of the water table much smaller than e  (and 

consequently h  too),  
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and if )( hzrf  is much smaller than d (for instance for little values of t ) the 

expression for eqK  simplifies to: 
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and in this case the dependence of eqK  on the time is eliminated. 

5.4. Coupling of the various components 

 The horizontal flow )(tq , which spreads laterally out of the barrier is given by 

eq.(8), with a constant eqK . 

The expression for )(tzrf  can be obtained from integration of eq. (6), with the 

result: 
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The water table height at x=0, )0(h , is obtained from eq.(4) in case 0)0( =q  since 

0)0()0( == hzrf , yielding: 
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Substitution of the expressions for rfz  and h  from eqs.(10) and (11) into eq.(8) 

leads to an integro-differential equation for the unknown )(tq , specifically: 
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which can be rewritten  
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5.5. Solution of the equation 

 Equation (12) is a linear integral equation which can be solved in principle 

using for example the Laplace transform technique (e.g. Abdulrazzak and Morel-

Seytoux, 1983).  However in this case complex integration is required and 

successive integrals of special functions would appear. It is easier to solve eq. (12) 

numerically by discretizing it in the form: 
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rnBBK ieq )(=  

for Nn ......3,2,1=      

where )(nq  is the value of )(tq  at discrete integer values of a selected period of 

time and N  is the total time horizon of interest. The parameter  is analogous to 

the time weight used in finite differences schemes. A value of 1 indicates a fully 

implicit scheme, a value of 0.5 indicates a Crank-Nicolson scheme and a value of 

zero indicates an explicit scheme. For stability reasons it is sometimes necessary to 

use    a value of  in the range 0.5 <   1. 

In this case, where time is measured from the moment when the descending 

wetting front hits the water table, q(0) is zero. In eq. (13) a particular “integrated 

discrete kernel” is defined as [e.g. Morel Seytoux and Miracapillo, 1988]: 
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 The discretization leads to an explicit linear system of algebraic equations in the 

unknowns )(),2(),1( nqqq  the ordinates of )(nq  at discrete intervals of time. 

The most general expression for linear system of algebraic equations is 

BAq =  

where q and B  are vectors and A  is the matrix of coefficients. 

In this case A  is a lower triangular matrix and the solution of the linear equations 

system can be obtained by forward substitution. 

The single terms are 
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6. Results 

The model evaluates the effectiveness of a vertical barrier to prevent 

contaminated infiltrated water from entering the clean surrounding aquifer. The 

vertical barrier reduces the lateral recharge rate into the aquifer. The reduction 
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depends on the characteristics of the barrier, namely its thickness and its 

permeability. The mathematical code is implemented and some numerical results 

are shown. The evolution of the lateral recharge rate outside the barrier (not below 

the flood plain) is shown for different values of the thickness of the barrier (Fig.3) 

and for different values of the hydraulic conductivity of the barrier (Fig.4). 

Input parameters are: width of the flood plain=40m, width of the current bed=10m, 

water content of saturation=25%, initial water content=5%, water content of the 

descending front=20%, vertical hydraulic conductivity of the aquifer=0.01m/hour, 

horizontal hydraulic conductivity of the aquifer=0.05m/hours, recharge rate 

=0.0025m/hour, thickness of the aquifer=20m, number of time steps=60. 
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Figure 3.  Evolution of the lateral recharge rate into the aquifer outside the barriers for a 

given value of the hydraulic conductivity of the barrier (Kd=0.001m/hour) and different 

values of the thickness of the barrier (d=0.5m, 1m, 1.5m).  
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Figure 4.  Evolution of the lateral recharge rate into the aquifer outside the barriers for a 

given value of the thickness of the barrier (d=1m) and different values of the hydraulic 

conductivity of the barrier (Kd=0.0.001m/hours, 0.0001m/hours, 0.00001m/hours).  

 

7. Conclusion 

This study is based on a methodology previously applied and already tested 

in different cases, namely: 

- saturated aquifer recharge from a river channel in an homogeneous aquifer 

Abdulrazzak, M.J. and H.J. Morel-Seytoux, 1983) 

- unsaturated aquifer recharge in an homogeneous anisotropic aquifer 

(Morel-Seytoux H.J. et al., 1990) 

- unsaturated aquifer recharge from a circular spreading basin in an homogeneous 

anisotropic aquifer 

(Morel-Seytoux, H.J. and C. Miracapillo, 1988)  

In this study the previous methodology is extended to the case of a flood 

plain laterally confined with fully penetrating barriers. 

The procedure based on the matching of unidirectional flows, a vertical and               

a horizontal one, allows the determination of integrated characteristics, such as the 

overall discharge through the barriers and the water stored under the flood plain 

between the barriers. These integrated quantities are important because they enable 

to determine the effectiveness of the barriers. This knowledge can be very useful, 

for instance, in the planning and design of measures for groundwater protection 

purposes. 

This procedure has also additional advantages. Firstly, it accounts for 

different values for the specific yield in the aquifer below the river channel, below 

the flooding plane and away from it. In fact the fillable pore space depends on the 

water stored in the unsaturated zone above the rising water table. Secondly, it can 

also account in a simply way for anisotropy between the horizontal and the vertical 
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directions. This is a useful feature since significant anisotropy is the rule rather 

than the exception. 
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