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ABSTRACT

VISIBLE & THERMAL IMAGING AND DEEP LEARNING BASED APPROACH FOR

AUTOMATED ROBUST DETECTION OF POTHOLES TO PRIORITIZE HIGHWAY

MAINTENANCE

Potholes are a primary pavement distress that can compromise safety and cause expensive

damage claims. Potholes are results of deterioration of pavements due to aging, weather and

traffic overloads and are common problems across the U.S. Potholes are even more common in the

Mountain Plains region due to the snow and freeze/thaw effect. Identifying and repairing potholes

is one critical aspect of highway maintenance. Accurate, robust and fast detection of potholes is

critical to enabling timely and cost-effective pavement maintenance.

Recently, there has been growing interest and research in using machine learning techniques

for pothole detection using different views of visible images. However, quality of potholes de-

tection using only visible images may be significantly compromised due to poor lighting, weather

conditions, low contract to surrounding pavement. On the other hand, thermal images are more

robust to lighting and weather conditions. Although thermal images may lack the texture details

of visible images, they can offer additional unique features compared to visible images, e.g., tem-

perature difference between pothole and surrounding pavement, which can be potentially used for

pothole detection. However, so far, the great potential and effectiveness of integrating both visible

and thermal images as well as using fused images to enable accurate and robust pothole detection

have not been investigated.

This research aims to develop an automated deep learning based pothole detection and mapping

tool for highway maintenance using the fusion of visible and thermal images. First, a unique and

valuable database of geotagged and labeled trios of visible, thermal and fused images is established

for training pothole detection algorithms. This is done through collecting pothole images using a
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low-cost FLIR ONE thermal camera connected to a smart phone. These data are used to train

the machine learning algorithms for pothole detection. To establish an accurate pothole detection

algorithm, we proposed and compared the performances of three machine learning algorithms, i.e.,

Anisotropic Diffusion Fusion (ADF) + Mask R-CNN, RTFNet, and RTFNet with Enhancement

Parameters (EPs). These algorithms differ in how the visible and thermal images are fused and

used for pothole detection. We achieved the best F1-score of 93.7% in the daytime scenario by the

RTFNet method and 90.9% in the nighttime scenario by the RTFNet with EPs method. To best

leverage the information from the thermal images, in the end we developed a Bright-Dark detector

to determine the lighting conditions of candidate testing images, and then feed the images to the

respective algorithms for pothole detection. For images with potholes detected, we also developed

a mapping tool to map the location of the pothole using GPS information of the images. In the end,

the trained overall algorithm is packaged as a tool with graphical user interface (GUI) to facilitate

its adoption by highway maintenance team. As more images are collected, the overall algorithm

can be continuously improved to further increase the pothole detection accuracy.
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Chapter 1

Introduction

1.1 Background

Roads contribute significantly to the development of the region and the growth of the popu-

lation. Concrete and asphalt are the most commonly used materials for road paving nowadays.

Potholes are primary pavement distress that can compromise safety and cause expensive damage

claims (see Figure 1.1). Potholes are the results of deterioration of pavements due to aging, weather

and traffic overloads and are common problems across the U.S. The dim light at night or puddles

after rain caused potholes to be hard to discover. According to a study by American Automobile

Association (AAA) in 2016, U.S. motorists suffer repair costs of 3 billion dollars annually from

damage caused by potholes. Drivers average spend 300 dollars for vehicle damage from potholes

(AAA 2016).

Figure 1.1: Samples of potholes.
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Figure 1.2 shows an example of the number of potholes reported and repaired in Seattle. The

number of potholes increases because of the storm passing every winter (Bergerson 2022). Pot-

holes are even more common in the Mountain Plains region due to the snow and freeze/thaw effect.

Thus identifying and repairing potholes is one critical aspect of highway maintenance because it

will form larger potholes from traffic and heavy vehicles such as trucks and buses if potholes aren’t

repaired in time.

Figure 1.2: The number of new pothole locations reported by the public per week in Seattle (Bergerson

2022).

According to a report from the United States Department of Transportation, there are over

820,519 miles of roads in the United States (USDT 2022). It is time- and cost-consuming to track

every road condition by only using manpower. Therefore, accurate, robust, and fast detection of

potholes is critical to enabling timely and cost-effective pavement maintenance.

Currently, there are some studies that have used deep learning algorithms for pothole detection.

For example, Maeda et al. (2018) used deep neural networks with smartphone images to do road

damage detection and classification. Arjapure & Kalbande (2021) developed deep learning model

for pothole detection and area computation. However, there are some challenges that still need to

be overcome. Most of the developed models so far focused on using visible (RGB) images for the

detection. However, when there is insufficient lighting or low contrast with surroundings (e.g., if it
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is dark or in poor weather conditions such as cloudy, rain, fog), the detection based on only visible

images may not perform well. Despite the fact that thermal images contain fewer texture details

than visible images, they can provide the temperature difference between potholes and surrounding

pavement. Recently, Bhatia et al. (2019) developed a deep learning model for pothole detection

using thermal images, showing the promise of using thermal images to improve pothole detection.

The fusion of both visible and thermal images potentially integrates features from both. However,

there is still a lot of research that needs to be done to fully explore and leverage the advantages

of integrating information from both visible and thermal images to improve pothole detection. To

train machine learning algorithms for pothole detection, training data/images are needed. However,

so far there is no existing dataset that contains labeled visible and thermal images of potholes.

Besides, the use of image fusion algorithms for the purpose of pothole detection has not been

investigated. Also, tools are needed to facilitate the automated pothole detection and mapping and

use by stakeholders.

1.2 Research objectives

The goal of this research is to develop visible and thermal imaging and a deep learning-based

approach for automated and robust detection of potholes to enable timely and cost-effective main-

tenance of highways. The following major objectives are designed to meet this goal:

1. Create a unique and valuable database of geotagged and labeled trios of visible, thermal, and

fused images for training pothole detection algorithms.

2. Develop deep learning algorithms for automated and robust pothole detection based on visi-

ble, thermal, and fused images.

3. Test the hypothesis that the incorporation of thermal and fused images could lead to more

accurate and robust pothole detection by comparing the detection performances for different

cases.

4. Develop automated tools for pothole detection, pothole mapping and updating.
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1.3 Research method

To address the above goals, this research proposes the integration of both visible and thermal

images captured by a visible & thermal dual camera and the use of deep learning to enable robust,

accurate and automated detection of potholes to help prioritize highway maintenance. An overview

of the proposed research is shown in Figure 1.3. Instead of relying only on visible images, both

visible and thermal images, as well as the fused images with salient features from both visible and

thermal images, will be used to improve the accuracy and robustness of pothole detection.

Figure 1.3: Overview of the proposed research.
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Firstly, a unique database of geotagged and labeled trios of visible, thermal, and fused images

will be created for training pothole detection algorithms. This will be achieved by using visible and

thermal FLIR one camera mounted on cars to take pictures of the same road surfaces. The images

will include pavements with and without potholes. To include images under different lighting

conditions and weather conditions in the image database, images will be collected for the same

road segments during different times of the day and also under different weather conditions. Based

on the collected visible and thermal images, image fusion techniques will be used to extract features

from these images to establish corresponding fused images (Hou et al. 2021). The collected images

will be geotagged using GPS information. To standardize the images, some preprocessing (e.g.,

cropping, resizing) will be applied to the images. Then, using tools such as LabelMe, these images

will be manually labeled as with potholes or not, and for those with potholes, the potholes will be

annotated. The annotation will be applied to all three types of images. Out of all the images, three

sets will be created, including a training set, validation set, and testing set, with each set including

corresponding visible, thermal, and fused images for positive cases (i.e., with potholes) as well as

corresponding annotations.

Secondly, based on the labeled images, deep learning algorithms (Mask R-CNN and RTFNet)

will be trained to classify the images as with or without potholes and also for those with potholes

further identify the pothole through detection and segmentation. Data augmentation (including

flip, rotation, and shifting) will first be applied to increase the size of the training sets. To address

the requirement of large, annotated image datasets by deep convolution neural network, transfer

learning will be used, where deep convolution neural network pre-trained on other existing large-

scale image datasets will be fine-tuned through the collected images (Gopalakrishnan et al. 2017).

This way the required number of labeled images can be reduced. Different deep-learning algo-

rithms will be investigated. The performance of the trained candidate deep neural networks will be

compared in terms of accuracy and efficiency. The impacts of additionally incorporating thermal

and fused images for pothole detection and segmentation on the pothole detection performance
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will be investigated. The results will provide guidance on how to best make use of images from

different sensors.

Thirdly, develop automated tools for pothole detection, pothole mapping and updating. The

established deep neural network models with the best performance will be used for automated

pothole detection when new images are collected and need to be processed. The location and

picture of the potholes will be shown on maps using the GPS information for the images. The

functionality of the tool in terms of detection of the pothole and marking the potholes by their

location will be provided to facilitate prioritization of pavement maintenance.

1.4 Thesis organization

This research is organized as follow: In chapter 2, deep learning algorithms are introduced

for pothole detection. Chapter 3 proposes three methods for pothole detection with the fusion

of visible and thermal images. Chapter 4 introduces the procedure of establishing the proposed

dataset. Chapter 5 explains results of proposed methods. In chapter 6, the development of the

automated pothole detection tool will be provided. Finally, conclusions and future directions are

provided in Chapter 7.
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Chapter 2

Pothole Detection with Machine Learning

This chapter provides an overview of some of the commonly used machine learning (ML)

algorithms for object detection and for pothole detection.

2.1 Overview of Convolutional Neural Network (CNN)

Machine learning algorithm for object detection is typically divided into two categories: Con-

volutional Neural Networks (CNN) and Region-based Convolutional Neural Networks (R-CNN).

A typical CNN is mainly used for image classification. However, it cannot tell the position of

the detection object in the image. R-CNN is based on CNN combined with region proposal while

using the Selective Search (SS) method to extract the features of candidate regions, thereby achiev-

ing the goal of target detection and regional positioning. This section provides a brief overview of

CNN and R-CNN.

2.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is the simplest and most widely used deep learning

method in image detection and classification (Alzubaidi et al. 2021). Figure 2.1 shows the pro-

cedure of CNN. CNN is composed of three parts: convolutional layers, pooling layers, and fully-

connected layers. The convolutional layer can be considered as a filter that can extract image

features and then use the pooling layer to reduce image dimension. It can not only increase the

training speed but avoid overfitting as well. The result is eventually generated by the fully con-

nected layer. Different from simply using full images for computation, CNN has the ability to

find characteristics of candidate images and focus on analyzing interested areas, which can enor-

mously improve computing efficiency and accuracy. Convolutional neural networks have been

used in many scenarios in recent years, such as image classification, voice recognition and face

recognition (Albawi et al. 2017).
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Figure 2.1: The procedure of the Convolutional Neural Network (CNN).

2.1.2 Region-based Convolutional Neural Networks (R-CNN)

The Region-based Convolutional Neural Network (R-CNN) was proposed by Girshick et al.

(2014). Different from CNN, R-CNN first uses the Selective Search method to generate thousands

of region proposals and substitutes those regions into the original convolutional neural network

after crop and warp instead of substituting each region proposal respectively (Girshick et al. 2014).

Note that the Selective Search is an algorithm to locate possible objects with boxes in different

scales. We refer readers to the Selective Search paper (Uijlings et al. 2013) for more details.

Figure 2.2: The architecture of Fast R-CNN.
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However, proposing thousands of regions by only R-CNN and bringing them into the CNN

operation at once are time-consuming processes. Hence, the Fast R-CNN method was proposed

by Girshick (2015) to address the shortcomings of R-CNN. Figure 2.2 shows the image process-

ing procedure of the Fast R-CNN. The main difference from the R-CNN is that the Fast R-CNN

inputs entire images into CNN, extracts feature maps as regions of interest (RoIs), and maps the

corresponding region proposal to output feature maps. Then, RoI pooling is used to convert the

RoI area into a feature map with fixed and integer edges to facilitate the segmentation of the re-

gion proposal. At the end of Fast R-CNN, the Softmax loss will be applied for classifying and

calculating the probability and outputting the corresponding bounding boxes (Girshick 2015).

Figure 2.3: The architecture of Faster R-CNN.

Though the Fast R-CNN includes the concept of RoI, both R-CNN and Fast R-CNN are still us-

ing a Selective Search method to extract region proposals before passing to the convolution layers,

which still spends too much time on image processing. Therefore, new object detection algorithms,

Faster R-CNN, were proposed by Ren et al. (2015). Figure 2.3 shows the architecture of the Faster

R-CNN. Instead of randomly creating RoI regions before convolution layers, Faster R-CNN ex-

tracts RoI regions directly from feature maps by generating different sizes of anchor boxes through

Region Proposal Network (RPN), which is designed for predicting object bounds and objectness

scores at each position simultaneously. Ultimately, similar to Fast R-CNN, the RoI pooling layers
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are applied for reshaping the predicted region proposals. It helps the network classify objects and

predict offset values of the bounding box in the Fully Connected layers. In Faster R-CNN, the

speed of generating RoI is accelerated because of the replacement of the Selective Search by RPN.

2.2 Mask Regions with Convolutional Neural Network (Mask

R-CNN)

The results from Faster R-CNN are only predictions with boundary boxed. There is no object

mask created from the previous R-CNN we introduced before. Therefore, the Mask Regions with

Convolutional Neural Network (Mask R-CNN) was proposed by He et al. (2017). Figure 2.4 shows

the architecture of Mask R-CNN. As can be seen, the architecture of Mask R-CNN is similar to

that of the Faster R-CNN but with an additional branch for instance segmentation. The image

features after RoI Align will go through the additional fully convolutional network for instance

segmentation. In this section, we focus on discussing the two major parts that differ from the

Faster R-CNN: Feature Pyramid Network (FPN) and RoI Align.

Figure 2.4: The architecture of Mask R-CNN.
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2.2.1 Feature Pyramid Network (FPN)

The regular feature pyramid uses only the last layer of feature maps for object prediction.

It is widely used in image recognition models, such as ImageNet and most of the CNN structural

models. However, the shortcoming is that it is hard to detect small objects due to the low resolution

of the feature map in the last layer, resulting in predictions with low accuracy. Hence, in order to

make complete usage of the feature maps from CNN output as well as to preserve or enhance each

feature in the pyramid, the Feature Pyramid Network (FPN) had been proposed (Lin et al. 2017)),

which became the main feature extractor in Mask R-CNN. Figure 2.5 shows how FPN processes

feature maps. FPN first upsamples in the top-down pathway to coarse feature map. Then the

FPN leverages the information of small objects passed from top to bottom to increase the feature

resolution for small objects. Because the FPN fuses the feature maps from the bottom layer to the

higher layer in the fully convolutional method so that the features in each stage can be thoroughly

extracted.

Figure 2.5: The data flow of Feature Pyramid Network. Feature maps are indicated by blue outlines and

thicker outlines denote semantically stronger features (Lin et al. 2017).

2.2.2 RoI Align

The role of RoI pooling is to pool the corresponding region into a fixed-size bin in the feature

map according to the position coordinates of the preselected box for subsequent classification

and regression. In the process of RoI pooling, the boundary of the bin will be converted into an
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Figure 2.6: RoIAlign samples the float coordinate (He et al. 2017).

integer so the position of the prediction will deviate from the actual classification, which is called

"Misalignment" (He et al. 2017).

In order to keep floating numbers instead of converting them into integers to solve the problem

of deviation from RoI pooling, He et al. (2017) proposed RoI Align, which is a method of regional

feature aggregation proposed in the Mask R-CNN. It has improved the accuracy of the detection

model by replacing the RoI pooling in the previous R-CNN model. Shown as Fig. 2.6, the solid

lines represent RoI while dashed lines show a feature map. Four dots are sampling points in each

bin. Instead of using quantization, RoI Align uses Bilinear Interpolation to calculate the value of

four sampling points from the feature map. Finally, the result of RoI Align can be obtained by max

pooling four sampling points in each bin.

2.3 Pothole detection using deep machine learning

In the context of pothole detection, with recent advances in deep learning, several methods have

been proposed and used for pothole detection and localization. Kulkarni et al. (2014) proposed

a pothole detection system with a neural network technique using the Accelerometer Sensor of
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Android smartphone and the GPS information for detecting and plotting the pothole. They named

this system "Encog" which can obtain an accuracy of 95%. Song et al. (2018) proposed a CNN

method with the utilization of Inception V3 and Transfer Learning to detect potholes. The model

can correctly recognize all instances of pothole. Maeda et al. (2018) leveraged a deep learning

model to train on a self-developed dataset, which was divided into nine categories according to

different types of road damage. The dataset has been published as Road Damage Dataset (RDD-

2018), which contains road damage images from several different countries. With the use of the

RDD-2018, Arya et al. (2021) evaluated 16 deep neural network models trained with different

combinations of datasets from different countries. This research showed that the road damage

detection model for a country can be trained with the dataset developed with the local data mixed

with the data from another country. Majidifard et al. (2020) implemented two object detection

models YOLO-v2 and Faster R-CNN for detecting potholes. They used the road damage datasets

with a top-down view and a wide view of the pavement segment to train the deep learning network,

with the aim of automated pavement rating. Arjapure & Kalbande (2021) implemented Mask R-

CNN to detect and predict potholes and calculated their area. They achieved an accuracy of 90%

for predicting the area of pothole. Fan et al. (2019) presented a robust pothole detection algorithm

based on stereo vision with the 3D road database. The algorithm utilized the difference of disparity

maps between the modeled and the actual to detect potholes. By using this technique, they achieved

a successful detection accuracy of 98.7% and overall pixel-level accuracy of 99.6%. Ahmed (2021)

compared the performances of 10 CNN models for pothole detection including YOLOv5, YOLOR

and Faster R-CNN. They achieved the highest precision of 91.9% from Faster R-CNN with the

backbone of ResNet50 while the fastest prediction model from the Small YOLOv5.

The above mentioned works all use visible images for pothole detection. Recently, the self-built

convolutional neural model for pothole detection based on thermal images had been established by

Bhatia et al. (2019). This is the first application of thermal images for pothole detection and

they achieved the best accuracy of 97.08%. Gupta et al. (2020) also used thermal images for

pothole detection. By utilizing deep neural networks and bounding boxes, they proposed a novel
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method of pothole localization from thermal images. Their model is based on a modification of

the ResNet50-RetinaNet model. Overall, they achieved a precision of 91.15%. Another model for

pothole detection with thermal images is proposed by (Sathya & Saleena 2022), combining CNN

and aquilla optimization (AO) algorithm. The model overcame the limitations of CNN model and

reduced the processing time of detection. The precision and recall obtained from this model are

96.6% and 97.2%, respectively.

These literature reviews show that deep learning algorithms have been gaining popularity in

pothole detection using either visible images or thermal images with a good amount of accuracy

and performance. However, there are some challenges that still need to be overcome. Most of

the developed models so far focused on using visible (RGB) images for the detection. However,

when there is insufficient lighting or low contrast with surroundings (e.g., if it is dark or in poor

weather conditions such as cloudy, rain, fog), the detection based on only visible images may not

perform well. On the other hand, relying only on thermal images may potentially lead to low

accuracy. While the fusion of both visible and thermal images shows promises, there is still a

lot of research that needs to be done to fully explore and leverage the advantages of integrating

information from both visible and thermal images to improve pothole detection. This thesis tries

to combine information from visible and thermal images by image fusion algorithms in order to

develop a pothole detection tool suitable for both daytime and nighttime conditions.
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Chapter 3

Proposed Approach for Pothole Detection Using

Visible & Thermal Images

3.1 Introduction

The aim of this research is to develop machine learning algorithms for accurate and robust

pothole detection using both visible and thermal images through image fusion. However, from

the previous chapter, we know that the Mask R-CNN network uses visible images and does not

include the image fusion algorithm. For this reason, we need to first fuse images independently

before going through the Mask R-CNN process. Apart from adding a separate fusion algorithm,

the development of the data-fused semantic segmentation model is also growing (e.g., MFNet (Ha

et al. 2017), FuseNet (Hazirbas et al. 2017)). Essentially, it combines the fusion and segmentation

processes to enable an end-to-end model structure. This section will first introduce an algorithm for

image fusion known as Anisotropic Diffusion Fusion (ADF) to perform before the Mask R-CNN.

This section will then introduce the RGB-Thermal Fusion Network (RTFNet), which is an end-to-

end data-fused semantic segmentation model based on the fusion of visible and thermal images. In

the end, we propose three methods with different combinations of algorithms for pothole detection,

and their performances will be evaluated later in Chapter 5.

3.2 Image fusion algorithms

3.2.1 Anisotropic Diffusion Fusion (ADF)

Anisotropic Diffusion is a method that reduces noise and smooths the given images by using a

partial differential equation (PDE) without reducing the presence of image features such as edges

and lines (Perona & Malik 1990). The equations of Anisotropic Diffusion of a grayscale image It
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is given as:

It+1 (x, y) = It + ct (x, y) · ∇It (3.1)

ct (x, y) = g(|∇It (x, y) |) =
1

1 + (∇I/K)2
(3.2)

where ∇ is the gradient operator with respect to the space variables. ct (x, y) is the diffusion

coefficient, which can simply be known as the rate of diffusion. K is a constant value to control

the sensitivity to the boundaries. ct (x, y) equals to 1 when ∇It = 0. It can be also considered as

there is a edge or boundary. Therefore, It will be diffused in Eq. (3.1); otherwise, the features will

be kept in the original image while ct (x, y) equals to 0.

Similar to the Gaussian blur, Anisotropic Diffusion has a diffusion coefficient. The difference

is that the coefficient in Gaussian blur is fixed and it will blur boundaries during the diffusion. In

Perona & Malik (1990) model, the diffusion coefficient is determined according to the boundary

detection, so the edges in the input image can be preserved after diffusion.

Based on the development of Anisotropic Diffusion, the Anisotropic Diffusion Fusion (ADF)

method has been proposed for fusing visible and thermal images to get a new edge preserving

image (Bavirisetti & Dhuli 2015). Figure 3.1 illustrates the process of the ADF method. We use

the ADF method to extract the information of visible and thermal images into detail layers and base

layers and then fused both images respectively. Images fuse with Karhunen-Loève Transform (KL-

transform) in the detail layers fusion section, which can highlight the differences by eliminating the

correlation between features of images. Images have been fused together with respective weights

in the base layers fusion section. In the final part, detail layers and base layers are fused with a

simple combination.
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Figure 3.1: Illustration of Anisotropic Diffusion Fusion (Bavirisetti & Dhuli 2015).

3.2.2 RGB-Thermal Fusion Network (RTFNet)

RGB-Thermal Fusion Network (RTFNet) is a deep learning algorithm for semantic segmen-

tation in urban scenes with the fusion of visible and thermal images (Sun et al. 2019). Similar

to SegNet and MFNet, RTFNet adopted the encoder-decoder architecture, which can let the fu-

sion and training process become an end-to-end process. The architecture of RTFNet is shown in

Figure 3.2. The blue and yellow sections are the encoder and decoder, respectively. In the en-

coder part, both RGB and thermal images are encoded respectively and feature maps are extracted

from both images. Different from other image fusion networks, RTFNet applys ResNet to be the

backbone of the feature extractor. However, the author removed the average pooling and the fully

connected layers of ResNet not only to prevent excessive loss from the feature map but to reduce

the input size to simplify computation. In order to reduce the resolution to simplify the extraction

of the feature maps, a max pooling layer and four residual layers are sequentially employed as

encoder layers following the initial block. In each encoder layer, feature maps extracted from the

thermal image are fused into RGB features through element-wise summation and taken as input

for the decoder.

The decoder section is used to recover the size of the images to make the predictions. Two

Upception blocks are applied for adding up feature maps. There are five decoder layers employed
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Figure 3.2: Illustration of the architecture of RGB-Thermal Fusion Network(RTFNet) (Sun et al. 2019).

in the decoder section, each decoder layer contains Upception block A and Upception block B,

which can be considered as a block for add-up the input and the feature map element-wisely. In

the final part of RTFNet, the Softmax layer is added for results predictions.

3.2.3 RTFNet with enhancement parameters (EPs)

The advantage of the RTFNet model is its capability to extract the features from visible and

thermal images and fuse both information in a deep neural network. However, the fused weight

of the RGB and thermal images in the original RTFNet structure are both equal to 1. In some

circumstances, the thermal or RGB image may be more informative than the other, and fusing

images with the same weight under different cases may affect the detection results. For example,

thermal images would be more informative for pothole features in the nighttime scenario. Giving

higher weight to more informative images would benefit the detection. In order to adjust the level

of importance of information in thermal images, we add five new parameters in every encoder layer

in the RTFNet. We term these parameters as Enhancement Parameters (EPs) because it enhances

features in thermal images. Figure 3.3 displays the information extracted from thermal images that

will multiply by each EP to enhance the thermal feature maps respectively before fusing those into

visible image feature maps. The RTFNet with enhancement parameters (EPs) that we proposed

here will later be used in the proposed methods for pothole detection.
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Figure 3.3: Adding Enhancement Parameters (EP) into the encoder of the RTFNet.

3.3 Proposed methods for pothole detection with images fusion

This research uses the Mask R-CNN and the RTFNet for pothole detection and segmentation.

Three methods are proposed for accurate and robust pothole detection by building on and modify-

ing the Mask R-CNN and the RTFNet. Figure 3.4 shows three proposed methods. The first method

is the combination of the anisotropic diffusion fusion and the Mask R-CNN; the second method

directly uses the RTFNet proposed by Sun et al. (2019) for pothole detection; for the third method,

we add a Bright-Dark detector that we have developed into the RTFNet to determine which input

needs to be enhanced for the thermal image by EPs. In this section, we will discuss in detail each

method and the process of establishing the corresponding network.
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Figure 3.4: Three proposed methods for image fusion and pothole detection.

3.3.1 Method 1: ADF + Mask R-CNN

Mask R-CNN is an instance segmentation framework for object classification and detection.

However, image fusion is not included in this model. For this reason, we decided to fuse our inputs

(i.e., visible and thermal images) with Anisotropic Diffusion Fusion (ADF) as a data preprocessing

step. ADF is used because the characteristic of this fusion method is to emphasize and maximize

the features from visible and thermal images. Details of ADF have been introduced in the previous

section. After fusing the images, the visible and thermal images become a 3-channel RGB fused

image. Then we utilize these processed images as input to the Mask R-CNN model for pothole

detection.

3.3.2 Method 2: RTFNet

Different from Method 1, the RTFNet is already an end-to-end data-fuse network for semantic

segmentation. The feature maps of visible and thermal images are fused by the element-wise

summation and the semantic segmentation is used for pothole detection. Details of RTFNet have

been introduced in the previous section.
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3.3.3 Method 3: Modified RTFNet with Bright-Dark detector

In Method 3, we add an enhancement parameter in each encoder layer in the RTFNet encoder

to increase the ratio or weight of the information in thermal feature maps. More details on the

enhancement can be found in the previous section. It is expected that for dark images, the en-

hancement of thermal features could be beneficial, while for bright images probably there is less

or no need to use the EPs to enhance the thermal features. In order to decide whether the EPs

need to be used in thermal feature maps, the brightness of the visible image is used as a reference.

Hence, we developed a Bright-Dark detector to help determine the lightning condition of images.

In the Bright-Dark detector, the RGB image will be transformed into a grayscale image. Pixels in

the image will be converted to numbers from 0 to 225. We define that pixels with numbers below

40 would be considered dark pixels. Lastly, we calculate the percentage of dark pixels in the whole

image. If the percentage of dark pixels is higher than 0.75, then we regard this image as a dark im-

age, otherwise as a bright image. In the dark image case, the corresponding thermal feature maps

will multiply by the corresponding EP in each encoder layer in the RTFNet to strengthen infor-

mation of thermal images. In the bright image case, the EPs will all be set as 1, which essentially

means there is no enhancement.
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Chapter 4

Data Collection, Pre-processing, and Augmentation

4.1 Introduction

In this chapter, we will introduce the procedure for establishing the annotated fused image

dataset, including the data collection, pre-processing, annotation, and augmentation. Figure 4.1

shows the workflow and the details are presented in the following sections. The established dataset

will be later used to train and compare the proposed pothole detection algorithms.

Figure 4.1: Workflow to establish the annotated fused image dataset.
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4.2 Data collection

In this research, we used the FLIR ONE Pro LT thermal camera to collect our data. The

FLIR one camera has the capability to capture both visible and thermal images with the same

angle, which helps avoid the process of aligning both images. The FLIR camera can connect to

a smartphone, and the captured images will automatically synchronize to the cloud drive. The

visible and thermal images are merged by multi-spectral dynamic (MSX) technology through the

FLIR ONE mobile app.

Figure 4.2: FLIR thermal camera setup.

The FLIR ONE camera was connected to a smartphone that was attached to the rear windshield

by using the suction cup and smartphone holder (shown in Figure 4.2). Instead of attaching to the

front windshield, attaching it to the rear windshield can prevent the camera from being blocked by

the front of the car. To make sure both visible and thermal images were obtained well, we attached
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the smartphone outside the car to avoid the windshield blocking the conduction of thermal infrared.

When the proposed algorithm is deployed, we expect this setup would enable efficient collection

of images for large number of roads and over large distances as well.

In order to establish a comprehensive dataset that includes different circumstances/conditions,

the dataset had been collected in three conditions: daytime, cloudy, and nighttime. The samples of

visible and thermal images in three conditions are shown in Figure 4.3. This dataset consisted of

224 daytime images, 222 nighttime images and 232 cloudy images.

Figure 4.3: Samples of visible images (left column) and thermal images (right column) in three different

conditions. (a) daytime, (b) cloudy, (c) nighttime.
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4.3 Data pre-processing and annotation

The resolution of visible images and thermal images captured from FLIR one camera was

1440x1080 and 640x480, respectively. The area of thermal image is the center part of visible

image. A illustration of overlapping both images is shown in Fig 4.4. Therefore, we first need

to crop the pixels around the visible image to match the size of the thermal image. Secondly, the

images’ size needs to be a multiple of 64 to satisfy the limitation of dataset in the Mask R-CNN

model. Therefore, we resized visible images and thermal images to 640x448 with the least impact

on the image scale.

Figure 4.4: Thermal image overlay on visible image to illustrate differences between both areas.

Because we used supervised machine learning as our network, the images have to be annotated

manually to relate potholes with the ground truth. We did the image annotation along with the

JSON format by using LabelMe, which is an open-source software available on GitHub. For

this research, a pothole is the only class that has been marked. Figure 4.5 shows two annotated

sample images, and both one pothole and muti-potholes in a single image are acceptable. Instead

of labeling by a rectangular box, we used polygons to enable the dataset to distinguish features

between potholes and backgrounds properly.

25



Figure 4.5: Visible images annotation using LabelMe, (a) single pothole, (b) muti-potholes.

4.4 Data fuse and merge

To ensure the visible and thermal images are transformed in the same way during augmenta-

tions, we need to process the images differently for the three methods. In Method 1, we implement

ADF to fuse images before training the Mask R-CNN. Figure 4.6 shows the workflow of the data

processing in the first method. The characteristic features of visible and thermal images such as

edges are emphasized by the ADF, and the image will become a 3-channel fused image. 3-channel

images from ADF will be the training data for the Mask R-CNN.

Figure 4.6: The dataset fusion process for Method 1.
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Figure 4.7 shows the data processing for the RTFNet. A 3-channel visible image and a 1-

channel grayscale thermal image are merged into a 4-channel image. The first three layers of a

4-channel image are from a visible image while the last layer is from a thermal image. This dataset

can be used in our proposed Method 2 and Method 3.

Figure 4.7: The dataset fusion process for methods 2 and 3.

4.5 Data augmentation

The original dataset includes a total of 678 images in the daytime, nighttime and cloudy con-

ditions. However, the dataset is not sufficient to get the best results in model training because the

limited size can lead to over-fitting. Thus, data augmentations through image transformations are

implemented to increase the size of our dataset before training the ML models. The transforma-

tions included the combination of augmentations of left-right flip, up-down flip, random rotation

with a probability of 0.5, and random shifting of 0.5. Examples of images augmented and used in

the training model are shown in Figure 4.8. After the data augmentation, we increase our dataset to

1200 of daytime images, 1200 of cloudy images, and 1160 of nighttime images. Table 4.1 shows

the numbers of images in the collected dataset before and after augmentations in the daytime,

cloudy and nighttime scenarios.
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Figure 4.8: The samples of data augmentations. (a) original image, (b) left-right flip, (c) rotation.

Table 4.1: The numbers of images in three different conditions before and after image augmentation.

Daytime Cloudy Nighttime Total

Before Augmentation 224 222 232 678

After Augmentation 1200 1200 1160 3560
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Chapter 5

Training, Validation, and Comparison of Proposed

Pothole Detection Methods

5.1 Algorithm environment setup

In this experiment, TensorFlow and PyTorch were used as the main frameworks in the Mask

R-CNN and RTFNet, respectively. All experiments ran on the same equipment with the following

hardware and software configurations:

1. CPU: AMD Ryzen 7 1700X (8-core)

2. GPU: NVIDIA GeForce RTX 3060 (12GB)

3. Compiled language:

• Mask-RCNN: Python 3.6 with TensorFlow 1.15.0 and Keras 2.4.3

• RTFNet: Python 3.8 with PyTorch 1.11.0, CUDA 11.3.0 and cuDNN 7.0 libraries

5.2 Performance evaluation metrics

5.2.1 Introduction

In order to evaluate the performances of machine learning algorithms for classification, the

Confusion Matrix is commonly used to present the situation between the true state and model

prediction. Table 5.1 shows four different combinations of actual and predicted values in the

Confusion Matrix.
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Table 5.1: Confusion Matrix.

Predicted Values

Positive Negative

A
ct

u
al

V
al

u
es

Positive TP FN

Negative FP TN

In the Confusion Matrix, TP (True Positive) represents actual positive samples predicted as positive

samples, FP (False Positive) represents actual negative samples predicted as positive samples, FN

(False Negative) represents actual positive samples predicted as negative samples, and TN (True

Negative) represents actual negative samples predicted as negative samples. In our research, the

predicted samples are thousands of region proposals generated by Selective Search. The overlap

between actual object area and the generated region proposal is the standard for obtaining each part

of the Confusion Matrix, which is known as Intersection over Union (IoU). Figure 5.1 illustrates

the idea of IoU, which is a ratio that specifies the amount of overlap between the ground truth and

predicted bounding box defined as Eq. (5.1). In our research, the red box represents the actual

pothole we labeled, while the blue box is one of the region proposals generated by the Region

Proposal Network (RPN). It commonly measures the ground truth with an IoU threshold of 0.5. If

the IoU is larger than the threshold, the detection would be considered as TP, otherwise as FP.

Figure 5.1: Illustration of Intersection over Union (IoU).

30



IoU =
Area of Overlap

Area of Union
=

TP

FN + TP + FP
(5.1)

5.2.2 Performance evaluation metrics

Precision and recall are two commonly used metrics to evaluate the performance of machine

learning algorithms. They are defined with the following equations:

Precision (P ) =
TP

TP + FP
(5.2)

Recall (R) =
TP

TP + FN
(5.3)

The precision is the ratio of true positives to all predicted positives. In our research, the preci-

sion for each image is a percentage of the region proposals that we properly identify the potholes

out of all region proposals in the image. The recall is a measurement of the model’s ability to ac-

curately identify the true positives. Take our research for example, for all the images with potholes

in our dataset, the recall represents the percentage correctly identified as having potholes. Thus,

the higher the recall, the higher the probability of predicting the actual pothole.

In general, the purpose of training a model is to maximize both precision and recall. However,

it is difficult to compare the performances of models when the precision and recall conflict. For

example, we cannot tell which model is the best if the precision of model A is higher than that of

model B while the recall of model B is higher than that of model A. Therefore, the idea of the F1-

score is to provide a sensitive indicator regarded as the harmonic mean of precision and recall. On

the other hand, the F1-score can also be used as a composite metric to determine the performance

of the model. A higher F1 score represents a better performance of the model. Eq. (5.4) is the

definition of F1-score:

F1 = 2×
Precision×Recall

Precision+Recall
(5.4)
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5.3 Model training and testing

5.3.1 Training details

We conducted the training, validation, and testing with our collected dataset. We randomly

divided the dataset into a training set, validation set, and testing set with a ratio of 7:2:1. There-

fore, the training dataset includes 2492 images, while the validation dataset includes 712 images.

Table 5.2 shows the number of images in each of the three datasets.

Table 5.2: Numbers of images in training, validation, and testing dataset.

Daytime Cloudy Nighttime Total %

Training 840 840 812 2492 70

Validation 240 240 232 712 20

Testing 120 120 116 356 10

Total 1200 1200 1160 3560 100

In Method 1, we trained the Mask R-CNN model with a batch size of 4. The initial learning

rate is set to 0.001 with a learning rate decay of 0.0001. In Method 2, we trained the RTFNet with a

batch size of 2 (maximum batch size within the memory of our GPU). The starting learning rate is

set to 0.01 with a learning rate decay of 0.0005, which is refer to the original RTFNet. In Method 3,

we reduce the learning rate to 0.005 with a learning rate decay of 0.0005 to decrease the magnitude

of the convergence to avoid gradient explosion. In all methods, the training datasets were shuffled

before each epoch. Lastly, the training of the models stops when the loss has converged.

5.3.2 Transfer learning

Transfer learning was utilized in all models in this research to improve the training speed and

performance. Using this method, the pre-trained weights from the previous tasks can be reused in
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related works, and those weights provide a good starting point for training the machine learning

models.

In the Mask R-CNN, we used the pre-trained weights based on the COCO dataset. The COCO

dataset is created with the goal of image recognition. It includes 80 categories (person, cars, etc)

with over 200,000 images of the total 330,000 images labeled. In the RTFNet, we referred to the

transfer learning method from Sun et al. (2019). Likewise, we also used transfer learning in the

RTFNet. The pre-trained weight we used to train the model is the weight of ResNet provided by

PyTorch, which refer to the Sun et al. (2019) paper.

5.4 Detection results and comparison

5.4.1 Overall results

First, we trained the model using full dataset (including daytime, cloudy, and nighttime), and

test the performance of this model in each condition.Table 5.3 shows the precision, recall, and

F1-score of this model performed in daytime, cloudy and nighttime conditions. We tested the

Mask-RCNN model only trained with visible images to compare the performances with/without

thermal image fusion. We named it RGB in the table to represent that this model is trained by

using only visible images of the dataset. ADF in this table represents the results from our proposed

Method 1 (Mask R-CNN+ADF), while RTFNet represents the results from proposed Method 2.

Table 5.3: Performance comparison of three types of models in three scenarios (%).

Daytime Cloudy Nighttime

RGB ADF RTFNet RGB ADF RTFNet RGB ADF RTFNet

Precision (P) 95.0 75.4 97.3 81.4 72.7 96.8 51.7 88.8 96.5

Recall (R) 92.5 71.7 94.3 75.5 70.0 90.5 85.0 88.3 63.2

F1-score 93.7 73.5 95.8 78.3 71.3 93.6 64.3 88.5 76.3
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For daytime images, we achieved better performances from RGB and RTFNet than those from

ADF. It is mainly because the visible images in the daytime already have enough information for

accurate pothole detection. On the other hand, for ADF the redundant fusion of visible and thermal

images could blur and increase noises of the pothole features. For RTFNet, the model is originally

designed end-to-end for object detection, even the image fusion happened for daytime images, the

RTFNet can still find the optimal results.

For cloudy images, the performances from RGB and ADF are worse than those from RTFNet.

It is because puddles caused by non-potholes could be mistaken as potholes, and also emphasize

more the importance of non-pothole boundaries in the RGB and ADF, thereby affecting the pre-

diction.

For nighttime images, thermal images provide more information than visible images. The ADF

can enhance features from thermal images more than visible images because only thermal images

provide information about pothole edges in the nighttime. However, because of the equal fusion

weights of visible and thermal images in Method 2, the fusion of the less informative visible images

leads to low recall, which means the potholes in nighttime hard to be recognized. Therefore, the

ADF performs the best in the nighttime with the highest F1-score. It is because the ADF method

can preserve the pothole edge information of thermal images.

Figure 5.2 shows sample results for RGB, ADF, and RTFNet in different scenarios. Column

1 shows images in daytime condition. The result shows that the potholes could not be detected

completely using ADF. In addition, the masks cover more fully of the potholes in RTFNet than

others. Column 2 shows a sample in cloudy condition. Closer potholes could be predicted in all

models. However, only RTFNet could identify potholes far away from the camera (e.g., those

located close to edges of the image) and be masked completely. Column 3 displays the samples

in the nighttime condition. There are actually two potholes in this sample. The potholes can be

detected in both ADF and RTFNet, while the performance of ADF is more accurate in this sample.
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Figure 5.2: (a) Visible images, (b) Thermal images, (c) RGB, (d) ADF, (e) RTFNet.
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5.4.2 RTFNet + constant EPs

According to the results above, we found that RTFNet was more suitable for relatively bright

scenarios than other models. The reason is that the weights for visible and thermal images in the

RTFNet are the same, so the importance of the thermal features could not be highlighted in the

nighttime. Therefore, a major problem of the RTFNet is how to find out the best enhancement

parameters (EP) to optimally emphasize the features in the thermal images. To evaluate the impact

of different level of enhancement on the performance of the RTFNet model, we tested different

values for the EPs. In this case, for an already trained RTFNet, we directly set the EPs for all

the encoder layers in RTFNet as the same constant, while keeping other weights in the RTFNet

unchanged. Then we use the model to do predictions. So in this case, there is no training or

retraining involved. Note that we only tested for the nighttime condition.

Table 5.4: Impact of different level of enhancement (i.e., different EP values) on the performances of

RTFNet under nighttime condition (%). Note that the RTFNet is trained under EP=1.

EP = 1 EP = 1.5 EP = 2 EP = 2.2

Precision (P) 96.8 90.2 80.2 77.3

Recall (R) 66.7 71.4 77.5 76.5

F1-score 78.9 79.7 78.8 76.9

Table 5.4 shows the testing results. The F1-score performs the best when EPs = 1.5. As EPs

increase beyond 1.5, the F1-score was getting worse. Figure 5.3 displays the sample results with

different EPs. When EPs=1, some area of the pothole can be predicted. The prediction of the

pothole became clear and complete when increasing EPs up to 1.5. However, the thermal image

was over-emphasized when continuously increasing EPs. The edge of predictions became rougher,

and the locations of pothole became inaccurate as well.
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Figure 5.3: Sample results in nighttime for RTFNet with different EPs (a) EPs=1, (b) EPs=1.5, (c) EPs=2,

(d) EPs=2.2.
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Therefore, these initial investigations showed that the values of EPs in the RTFNet could affect

the prediction performance, and it is important to select optimal EPs in the RTFNet to optimally

enhance the thermal features to improve the performance of the RTFNet in pothole detection.

5.4.3 RTFNet trained with constant EPs

In the previous case, the weights used in the RTFNet model were essentially trained for EPs=1

(i.e., without any enhancement). The performance variations for different EPs may be because we

did not use the corresponding optimal weights for different EPs. Therefore, to gain more insights

on how the EPs affect the performance of the RTFNet model, here we consider another case. In

this case, we first set the EP values, and then train the model to find the corresponding optimal

weights for other parameters in the RTFNet model, and use the established model for prediction.

Here we trained the RTFNet with EPs equal to the constant of 1, 1.2, and 1.5 to test which EPs

are the best for the nighttime scenario. In addition, we trained two RTFNet models. One was only

changing the EP in the first encoder layer while keeping EPs at other layers as 1. The other was

setting the EPs in all encoder layers as the same constant (i.e., 1, 1.2, 1.5). The reason for this was

to observe whether the latter would over-enhance the thermal images. During the training process,

we used Bright-Dark detector to classify the bright and dark images. If the detector determined

the training data as the dark images (e.g., nighttime image), then constant EPs would be involved;

otherwise, all EPs would be set to 1.

Table 5.5 shows the results. The overall performances of changing EPs in all layers are better

than only changing EP in the first layer. When looking at the case of EP=1.5, the improvement in

recall is particularly significant. Figure 5.4 shows some sample pothole detection results. In visible

images, the light dims from left column to right column. The predictions in case (b) are more

accurate than in case (a). The dimmer the light, the more significant the difference in prediction

completeness between (a) and (b), which can more clearly show that the recall of case (b) is higher

than that of case (a).
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Table 5.5: Impact of different levels of enhancement (i.e., different EP values) on the performances of

RTFNet under nighttime condition (%). Note that the RTFNet is trained under corresponding EPs.

First layer All layers

EP = 1 EP = 1.2 EP = 1.5 EP = 1 EP = 1.2 EP = 1.5

Precision (P) 96.3 95.8 95.7 96.3 92.7 83.3

Recall (R) 71.2 70.8 63.1 71.2 76.5 79.9

F1-score 81.9 81.5 76.1 81.9 83.8 81.6

Figure 5.4: Sample results in nighttime for RTFNet, shown for the EP=1.2. (a) EP=1.2 in the first layer, (b)

EP=1.2 in all layers.
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5.4.4 RTFNet trained with variable EPs for each layer

Based on the results from previous sections, if the pothole detection only focuses on the night-

time scenario, the following insights can be obtained:

1. Adding EPs to enhance the thermal feature for nighttime images can positively affect the

prediction of potholes.

2. Training the RTFNet model with their corresponding EPs can increase the recall, which

means it is easier to detect the presence of potholes.

3. It seems that the optimal value for EPs is somewhere between 1 to 1.5 for considering EPs

in all encoder layers in the RTFNet.

In order to find the optimal EPs, we changed EPs from constants to trainable variables for each

encoder layer. That is, we include the EPs as parameters/weights that will be trained together with

other weights in the model. Figure 5.5 shows the graph of convergence process of each EP. The

subscript number represents the encoder layer. We initially set the start point at 1.5 because the

previous results showed that the best range of EPs might be from 1 to 1.5. However, it seems

that all five EPs are still converging when they reached 1.3 after initial training, so we reset the

start point at 1.3 to run more steps to eventually establish the converged values. The Bright-Dark

detector was used the same way as it was used when training the model with constant EPs, that

is, EPs would return to 1 when the Bright-Night detector regarded the training data as the bright

image, otherwise, the EPs would continuously keep training until convergence.

We also trained a model containing trainable EP using only the nighttime dataset trying to train

the best model for the nighttime scenario. The convergence trend of EPs is shown in Figure 5.6.

The final EPs trained with the full dataset and nighttime dataset are listed in Table 5.6. Overall, the

EP values are roughly around 1.1 with some variations between the different layers.
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Figure 5.5: Convergence of EP values trained with the full dataset.

Figure 5.6: Convergence of EP values trained with the nighttime dataset.
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Table 5.6: The results of trainable EPs.

- EP1 EP2 EP3 EP4 EP5

Train with full dataset 1.092 1.137 1.124 1.085 1.131

Train with nighttime dataset 1.116 1.086 1.043 1.113 1.119

Table 5.7 shows the performances of RTFNet trained with variable EPs. Two cases: one trained

with the full dataset, and the other trained with only nighttime dataset. In the case of training with

full dataset, the model achieves a better balance of precision and recall than those models with

constant EPs in three scenarios. In the case of training with only the nighttime dataset, the model

achieves the highest precision of 94.7% and recall of 87.4% in the nighttime scenario. However,

this model is not suitable for use in the daytime and cloudy conditions.

Figure 5.7 shows the comparison of EPs being constants 1.2 in all encoder layers and EPs being

trainable variables. The thermal images are more informative than the visible images in these

samples. We find that potholes in these samples can be completely predicted and fully masked

when EPs are trainable variables. In comparison, some potholes cannot be detected and marked

out when EPs are the constants of 1.2.

Table 5.7: Performances of RTFNet trained with variable EPs (%).

Trained with full dataset Trained with nighttime dataset

Daytime Cloudy Nighttime Daytime Cloudy Nighttime

Precision (P) 90.0 87.8 83.0 91.6 60.4 94.7

Recall (R) 84.0 79.2 84.0 56.7 50.9 87.4

F1-score 86.9 83.3 83.5 70.1 55.3 90.9
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Figure 5.7: Sample results in the nighttime condition for RTFNet trained with 2 cases, (a) EPs=1.2 trained

with full dataset in all layers, (b) EPs trained/optimized with nighttime dataset in all layers.

5.5 Summary of results

In this chapter, we experimented with three proposed methods and compare their performance

in different scenarios. Overall, the RTFNet takes advantage of the end-to-end process of image

fusion and object segmentation so that the model can optimize based on the information from

visible and thermal images. Compare to Method 1, the ADF and Mask R-CNN is two independent

algorithm so the modification and application of the subsequent model will not be as good as

RTFNet. Beside, we used a Bright-Dark detector to split the dataset into bright and dark images

based on the lighting condition. It can help RTFNet find the optimal weight in every lighting

conditions for pothole detection. It is worth noting that we trainable EPs to enhance thermal

features in dark scenario, which is proved to significantly improve the model’s performance at

nighttime according to experiments.
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In summary, we decided to use the RTFNet to be the model of the pothole detection tool. We

also added the Bright-Dark detector to classify input images as a basis for using EPs. We will

introduce the tool in detail in the next chapter.
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Chapter 6

Develop Automated Tools for Pothole Detection and

Mapping

6.1 Introduction

Figure 6.1: The procedure of the developed pothole detection and mapping tool.

After obtaining the training models in the previous chapter, we developed a pothole detection

and mapping tool with a graphical user interface (GUI) based on the RTFNet model to automati-

cally and robustly detect potholes by fusing visible and thermal images in order to prioritize road
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maintenance. Figure 6.1 shows the procedure of the developed pothole detection tool. The proce-

dure is divided into three main parts: Pre-processing, Pothole detection using RTFNet model, and

Mapping. This chapter will discuss in detail the process of the detection and mapping of potholes

with the developed tool.

6.2 Inputting data

Figure 6.2 shows the graphical user interface of the developed tool. The inputs are the folder/path

of the candidate images and the file path of the GPX file created from the GPS collector. For input

images, they are directly captured by the FLIR Visible-Thermal camera with visible and thermal

sensor data embedded in the JPG metadata. As for the GPS, because the FLIR camera doesn’t

have the ability to update the coordinates of images while shooting in different locations, the GPS

collector, which can record the coordinates, dates and times, needs to be turned on when collecting

pothole images.

Figure 6.2: The graphical user interface of the developed pothole detection tool.
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A GPX file is a GPS data file saved in the GPS Exchange format, containing position data in

longitude and latitude and time data. GPX file is an open standard used by many GPS programs,

so it is acceptable to use regardless of the type of third-party GPS collector. It is noteworthy that

the times in the GPX file are in Universal Coordinated Time (UTC), which unifies the standard

of the recording of time. Therefore, the date and time in the GPX file need to be converted to

the corresponding location of input images. For example, the time has to be minus 7 hours to

correspond to the Denver time zone where our data is collected.

After inputting the folder path of images, the file path of the GPX file, the path you want to

store the detecting and mapping results, and adjusting the UTC-time offset based on the location

of the input collection, then one can simply click the "Run" button to start the detection process.

6.3 Pre-processing process

When the display bar shows "Processing" on the top of the interface, it means the detection

has started. In the pre-processing part, we have standardized the image pre-processing process

that we used for establishing the training dataset. The size of images will be resized to 640x448

to correspond to the default size of the training dataset. Because the input images from the FLIR

camera are JPG files with thermal sensor data embedded, we need to extract thermal information

and divide it into 3-channel visible and 1-channel thermal images by the FLIR Image Extractor.

The names of the visible and thermal images are renamed according to the date and time they were

taken plus the UTC-time offset so that the shooting time of the images can be easily matched with

the corresponding coordinates in the mapping part. In the final step of pre-processing process,

the extracted visible and thermal images will be merged into 4-channel images as the input to the

RTFNet model.

6.4 RTFNet detection

Before inputting 4-channel candidate images into the RTFNet, the Bright-Dark detector is

added to distinguish bright or dark conditions and divide the images into two groups. The differen-
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tiation of bright and dark images is according to the brightness of the visible images. The detection

of bright and dark images is separated because the best weight (and hence the best model) for each

condition is different. First, the RTFNet processes bright images with the weight trained by Method

2 because the F1-score of this weight is around 95% for daytime pothole detection. This process

will be skipped if there is no input detected as bright images. Next, the RTFNet processes the dark

images with the weight established from training with only the nighttime dataset in Method 3. The

reason is that the F1-score of this weight is around 90% and is the best performance compared to

other methods. The trained Enhanced Parameters (EPs) will be involved in five encoder layers of

the RTFNet to emphasize the feature of thermal images. The values of EPs in each layer are the

converged ones shown in Table 5.6. Similarly, this process will be skipped automatically if there

is no dark image. After the detection process by the RTFNet, only images with detected potholes

will be masked and saved as the detection results.

6.5 Mapping

The FLIR mobile app has the function of recording the image’s shooting time and coordinates.

However, we found that it can only record the coordinate of the first image. In other words, the

app cannot update the coordinate when the camera is moving. Thus, we use the "Gaia GPS",

a third-party mobile app that simultaneously records the times and coordinates when using the

FLIR camera. Other GPS recorders that have the ability to export the GPX file can be used as

well. Because we have renamed the input images by their own shooting time in the pre-processing

phase, we can easily match the detected results with their shooting time from the GPX file and

match them with the corresponding coordinates.

We use the Folium python package to map the detected potholes. The output is an HTML file,

the standard markup language for documents designed to be displayed in a web browser, stored in

the result path that has been inputted at the beginning. Figure 6.3 displays the mapping results with

± 16 ft GPS accuracy. The GPS accuracy depends on the performance of the GPS recorder. The

higher the refresh rate is, the higher the resolution will be. The locations of the detected potholes
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are marked with blue pins. Moreover, the detected pothole image shows up when clicking on the

pin.

Figure 6.3: Sample result of mapping the detected potholes.
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6.6 Applications and limitations

This tool can be used to facilitate pothole detection and pothole mapping for highway main-

tenance. The candidate images are directly obtained from the FLIR ONE camera without any

additional operations. For the GPX file, it can be generated from any GPS recorder because it

is a typical format for recording the coordinate and date/time information. Besides, this tool not

only can detect potholes in bright conditions but also in insufficient lighting conditions. Being able

to detect potholes even in conditions with insufficient lighting can be very useful for pavement

maintenance. For example, because of the traffic during the daytime, many times the pavement

maintenance is carried out during the nighttime. This tool has the ability to detect potholes in

the dark scenario so that it can also work in the nighttime or in general low lighting conditions to

facilitate road maintenance.

When implementing the tool, there are several aspects to keep in mind. First, depending on

how the camera is mounted and the camera angle, some of the potholes may be difficult to detect,

for example, potholes captured close to the edge of the images may show up as very small potholes

with distorted shape because of the view angle. We believe that this can be solved by collecting

more data and doing the data augmentation with perspective transformation to consider more pot-

hole shapes and types and account for the view angle. Second, because of the fixed frame rate of

the FLIR ONE camera (5 images per second for our data collection), some road segments may be

missed (e.g., no images collected) if driving too fast, while driving too slow may lead to multiple

images for the same road segment or pothole (which may lead to overestimation of the number of

potholes, since the same pothole may show up in multiple images). We think that this problem

can be solved by accounting for the relationship between the vehicle speed and camera frame rate

to achieve the best coverage of road surface and proper identification of the correct amount of

potholes.
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Chapter 7

Conclusions and Future Directions

7.1 Summary

In this thesis, the overall objective is to utilize machine learning algorithms for the automated

and robust detection of potholes and develop a pothole detection and mapping tool that can be used

to help prioritize highway maintenance.

Chapter 2 provided an overview of some of the commonly used machine learning (ML) algo-

rithms for objective detection and pothole detection. First, convolutional neural networks (CNN)

and region-based convolutional neural networks (R-CNN) are reviewed. Aspects related to the

structure of CNN and R-CNN, the evolution of R-CNN models, and the critical elements in the

Mask R-CNN. In addition, this chapter provides literature reviews on the use of machine learning

algorithms in pothole detection. Through the descriptions, we highlighted the improvements from

fast R-CNN to Faster R-CNN and the additional primary function to differentiate the faster R-CNN

and Mask R-CNN. The Mask R-CNN algorithm was chosen in this thesis for pothole detection and

segmentation.

Chapter 3 presented the three methods that we proposed in this research for pothole detection by

fusing visible and thermal images. First, we introduced the structure and principle of Anisotropic

Diffusion Fusion (ADF), which is an image fusion method for emphasizing the feature maps (e.g.,

edges, lines). We fused our dataset with ADF before running the Mask R-CNN model, and we

regarded this as our proposed Method 1. Moreover, we introduced the RGB-Thermal Fusion Net-

work (RTFNet), which is an end-to-end fusion and segmentation encoder-decoder model. The

utilization of the RTFNet is our proposed Method 2. In Method 3, we explicitly introduced the

enhancement parameters (EPs) in the encoder of the RTFNet to enhance the thermal feature maps.

Meanwhile, we developed a Bright-Dark detector to distinguish whether the input images are in
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the daytime or nighttime. Then depending on it is daytime or nighttime, the corresponding RTFNet

will be used for pothole detection.

Chapter 4 introduced the procedures for establishing the annotated fused image dataset. The

procedures included data collection, data pre-processing, data annotations, and data augmenta-

tions. The image fusion processes would vary depending on the requirements of the three methods

we proposed in Chapter 3.

Chapter 5 presented the training processes and compared the performances of the three pro-

posed methods. The dataset was split into training, validation, and testing datasets. We trained

models for each method where transfer learning was used to speed up the training process and im-

prove the training efficiency. We evaluated the performance of each model with the F1-score and

selected the one with better performance as the backbone of the pothole detection and mapping

tool that we developed.

Chapter 6 introduced the function, procedure, and usage of the developed pothole detection and

mapping tool. Based on performance investigations in Chapter 5, the RTFNet and RTFNet with

EPs were selected as the backbone models of this tool. A graphical user interface (GUI) for the

tool was also developed. The GUI made the tool easier and more intuitive to use. The output from

the tool was a map marked with the locations of detected potholes. Also, the photo with masked

potholes shows when clicking the location icon on the map. The map could help maintenance team

to visualize where the potholes are and to manage/plan the repair of the potholes.

7.2 Conclusion

Through this research, a unique dataset consisting of trios of visible, thermal and fused images

are established. Three methods are proposed for pothole detection using image fusion. Through

comparing the performances of the three proposed methods, comprehensive insights were obtained

on the impact of thermal images on pothole detection. Overall, it was found that fusing thermal

images can help improve the pothole detection performance of the ML algorithms, especially in the

nighttime scenario. We were able to get the F1-score value of 93% in the daytime scenario with the
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use of the Mask R-CNN and the highest F1-score value of 88.5% in the nighttime with the Mask

R-CNN + ADF model. However, we got the best performance of the F1-score value of 95.8%

and 93.6% with the RTFNet in the daytime and cloudy, respectively. In addition, we introduced

five new variables, Enhancement Parameters (EPs), to the five encoder layers in the RTFNet to

emphasize/enhance the features of thermal images, especially in the nighttime. Eventually, we got

the best F1-score value of 90.9% by the modified RTFNet when focused on only the nighttime

images.

An automated pothole detection and mapping tool with graphical user interface was developed.

The inputs to the tool are candidate images, which can be directly imported from the FLIR One vis-

ible and thermal camera, and the GPX file, which can store the time and GPS records. In addition,

the Bright-Dark detector was developed and integrated in the overall algorithm. The Bright-Dark

detector can recognize the daytime or nighttime scenarios of the candidate images. The daytime

images are predicted with the original RTFNet, while the nighttime images are predicted with the

RTFNet with EPs. The output is a map with locations of the detected potholes. When clicking on

the pin on the map, the pothole image with mask will show up.

7.3 Future directions

In the development of pothole detection by visible and thermal image fusion and the mapping

tool, there are some key recommendations that can be considered for future research work.

1. Due to the lack of potholes on Fort Collins road and highway, some pothole images in our

proposed dataset were collected from the parking lot. The difference of environment condi-

tions between highway images and parking lot images may impact the detection accuracy.

For example, traffic light and signs appear on highways while parking lots are not. Because

the tool we developed is to help highway maintenance, the pothole data can be collected only

on highway in the future to focus on the highway scenario.

2. In this research, we collected daytime, cloudy, and nighttime data for model training. How-

ever, the temperature difference between potholes and road surfaces may vary depending on
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the weather/season. Future research may look into the influence of thermal image fusion on

model prediction accuracy at varying temperature differences.

3. The computation of the pothole area had done in the work by Arjapure & Kalbande (2021).

The method they used was to calculate the error or deviation of the number of pixels between

the predicted pothole area and the actual pothole area. This method can be combined with our

developed pothole detection and mapping tool to obtain more detailed pothole information

for highway maintenance.
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