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ABSTRACT OF THESIS 

VELOCITY DISTRIBUTIONS IN THE SEP ARA TED FLOW 

BEHIND A WEDGE SHAPED MODEL HILL 

A portion of t he velocity distributions in an incompressible 

turbulent separated flow behind a two-dimensional model hill is 

investigated experimentally. A 2 11 x 211 wedge is used as a model 

hill. The mixing region investigated lies between the crest of the 

hill where the flow separated, and the reattachment point where the 

separated flow reattaches itself to the floor. 

Gortler's half-jet mixing theory is used to analyze the 

separated flow which is curved by the action of the pressure gradient 

across the separated flow. The width of the mixing region was found 

to spread linearly with the distance as expressed by the half-jet 

theory. If a suitable similarity parameter is chosen, the theoretical 

velocity distribution of half-jet agrees satisfactorily with the experi-

ments, except in the region near the floor and directly behind the 

hill. However, it was found that the similarity parameter is not a 

constant, but is proportional to th e one-half power of the distance 
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downstream from the hill. Corrections were applied to account for 

the effects of the initial boundary layer thickness and for the 

curvature. The corrections are based on Sawyer's first order 

theory and Kirk's approximation, but the results indicate that these 

effects should be investigated further. 
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Chapter I 

INTRODUCTION 

When air flows along a flat plate, it develops a boundary 

layer with a thickness that increases with distance. If the air flow 

encounters an abrupt obstacle, such as a sharp crested hill, the flow 

field is distorted. The flow separates at the crest of hill and standing 

eddies appear in front and behind the hill. The separation streamline 

reattaches to the floor at the reattachment point downstream from the 

hill . As shown in Fig. 1 , the flow field between the crest of the hill 

and the reattachment point can be divided roughly into three regions 

overlaying each other: the separation bubble, the separation region 

in the neighborhood of the separation streamline, and the free stream 

region. Within the separation bubble, the velocity is very small and 

may be considered as being almost zero. In the separation region the 

velocity varies rapidly from zero to the free stream velocity. 

It is the objective of this thesis to investigate this separation 

region and to determine if it is possible to use an analysis based on 

the half-jet model of free turbulent shear flow for the velocity 

distribution in the separation region. The air flow is two dimensional, 

turbulent and incompressible. The hill is simulated by a constant 
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cross section wedge 2 x 2 in. placed perpendicular t o the flow 

direction on a wind tunnel floor. 

The separated flow can be looked upon as a free turbulent 

shear flow similar to wakes, jets or half-jets, because both the 

separated flow and the free turbulent shear flow are similarly 

characterized by two regions with different velocities and a mixing 

layer within which the velocity difference is smoothed out. An 

examination of the characteristic of each type of free turbulent shear 

flow indicates that the half-jet is the most l ogical model. The ob-

jection to the jet model can be seen from the decrease of the maximum 

jet velocity with distance, while the maximum velocity in the sepa-

rated flow is nearly constant. The wake model is not desirable either 

because the velocity difference between the wake and the free stream 

diminishes with distance which is not true for the separated flow. 

Besides, the large downstream distance required by available wake 

analysis can not be obtained in separated flow. However, the above 

objections vanish when the half-jet analysis is used. Consequently, 

the turbulent half-jet mixing flow is employed in this thesis as the 

model of the separated flow behind a two-dimensional hill and 

Gortler' s half-jet theory is applied to the analysis. 

The turbulent half-jet mixing flow has been studied by many 

investigators. A review of work on the turbulent half-jet problem is 
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given in Chapter II. However, it is only in recent years that the half-

jet mixing layer was employed as the model of separated flow by 

Chapman (2) and Korst (7) . Since then a considerable amount of work 

concerning the separated flow in supersonic flow have been based on 

this model. Such investigations have dealt princip_ally with the base 

pressure behind blunt bodies and the pressure rise at the reattachment 

point in supersonic flow. Little has been done t o study the half-jet 

model itself in the analysis of separated flow. 

With this in view, this study investigates the nature of the 

separated flow compared to the half-jet and the half-jet model is 

verified as usuable for analysis of the separated flow region. In 

addition, the flow separating at the crest of a model hill exhibits 

certain features different from conditions found in classical half-jet . 

The presence of the lower boundary gives rise to a boundary layer 

into which the obstacle is immersed. The separation phenomenon 

results in a pressure gradient both in the axial direction and perpen-

dicular to the half-jet flow . An attempt will be made to account for 

these effects by pointing out possible corrections. A reasonable 

consistent model is developed whose numerical coefficients are 

obtained from the experimental results. 
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Chapter II 

REVIEW OF LITERATURE 

The purpose of this chapter is to present available information 

concerning the half-jet mixing of turbulent, incompressible flow and 

the contributions of various investigators to half-jet analysis. To 

grasp the full half-jet mixing concept, which is one of the free tur-

bulent shear flow, it is felt that free turbulent shear flow should be 

discussed first. 

A. Free Turbulent Shear Flow 

Free turbulent shear flows occur when there is no direct 

influence of a solid boundary. The effect of viscosity is very small 

and the flow spreads laterally into the ambient fluid. It has been found 

that free turbulent shear flow has a nature similar to a boundary 

layer. This means that: 

1. The mean flow velocity transverse to the main flow is very 

small when compared with the main flow velocity. 

2. Changes of quantities in the direction of the main flow are 

correspondingly slow with respect to those in the trans-

verse direction. 
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3. The mean pressure variation across the flow region in the 

transverse direction is small. 

Consequently, the equation of motion for a boundary layer, can be 

used to analyze a two-dimensional free turbulent flow of an incom-

pressible fluid . For the steady case, the equation is 

- OU 
u + ox 

B. 

-
; ou =-.!_ op + 

oy p ox 
1 OT 
p oy 

W. Tollmien' s Analysis and Kuethe' s Extention 

( 2- 1) 

Many investigations have been carried out in an attempt to gain 

a knowl edge concerning the behavior of turbulent mixing in an incom-

pressible fluid. In 1926, W. Tollmien ( 26) was the first to succeed in 

the analyzing of a turbulent mixing flow. He worked out three 

different types of mixing: half-jet, plane jet and axially symmetric 

jet. The half-jet is a parallel stream mixing with the adjacent fluid 

at res t . A plane jet is formed by a two-dimensional jet issuing from 

a narrow opening into a fluid at rest. In his analysis of the turbulent 

half-jet with zero pressure gradient, W. Tollmien employed the 

mixing length theory and showed that the width of the turbulent jet 

increased linearly with x . He then used the equation: 

-- ou 
u + ox 

- OU 
V = oy ( 2-2) 
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in which the mixing length £ is assumed to be proportional to the 

distance .e = ex, c is a constant to be determined from experi-

ments. By introducing a stream function r/J = J ~ dy and new vari-

ables successively 

rt 
1 

( 2c 2 )3 
rt = 'i... 

X 

he obtained the solution u = u 1 F' (rt) where the prime denotes 

difforentiation with respect to rt and 

With application of boundary conditions 

at the inner edge rt = rt 1 

at the outer edge rt = rt 2 

coefficients in the solution were 

di = -0. 0062 

rt"~ = o. 981 1 

d = 0. 987 
2 

rt*2 = -2. 04 

u= ui F' = 1 

OU 0 - = ay F" = O 

v= 0 

u= 0 F' = O 

-au 0 -- F" = 0 ay 

d3 = o. 577 

( 2-3) 

( 2-4) 
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c was found from experiment to be 0. 0174 . 

Toll mien's solution has been verified by Liepmann and 

Laufer ( 9) , who measured the mean velocity distribution in a 

half-jet. Good agreement was found between theory and measure-

ments. For plane jet analysis W. Toll mien expressed his solution as: 

- 1 
u = - F' (n) -{x 

z (n) = t'(rJ) 

~og ('/z+ I) - log ,/(z - -{z+ 1) 

-1 +,{3 tan f 2~ - I)/ 

( 2-5) 

This theoretical solution gave a zero radius of curvature at the axis 

of the jet, n,:, = O, which is a defect in Tollmien's solution. Later 

analysis such as Gortler's results improved this point. Forthmann (4) 

made an experimental measurement of a plane jet which showed good 

agreement between measured velocity profiles and Tollmien' s solu-

tion, except near the axis of the jet. There are several noteworthy 

assumptions in Tollmien' s analysis: 

1. The ambient fluid is at rest. 

2. Prandtle's mixing length theory is employed. 
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T = -p u 1v 1 

- I -
= p,2 au 

1

, au 
P ay ay 

the mixing length .R, is assumed constant across the width 

of mixing region and proportional to the distance ;, = ex 

3. The pressure gradient in the main stream direction is 

assumed to be zero !~ = 0 . 

4. A uniform initial velocity distribution before mixing is 

assumed, so that the initial boundary layer thickness is 

not considered. 

5. The width of the mixing region increases linearly with 

distance. 

6. Similarity of velocity is assumed. 

If any one of the above assumptions is changed, a new solution will be 

required. Hence, the introduction of new boundary conditions; such as 

the surrounding fluid being in motion, or the application of a new tur-

bulent shearing stress hypothesis, or consideration of an initial 

boundary layer ; form the core of subsequent development in the tur-

bulent mixing flow. 

In 1935, Kuethe (8) extended Tollmien' s solution to a general 

case of the mixing of two parallel streams of different velocities . The 

differential equation and its solutions are the same as Tollmien's 

half-jet analysis. Two different boundary conditions were introduced 

( 1) u = .;; 2 at r, = r, 2 , corresponding to an ambient fluid with a 
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velocity u 2 and ( 2) (suggested by Von Karman) u 1 v 1 = -u2 v 2 

This corresponds to the assumption that no external forces perpen-

dicular to the main flow are acting on the total flu id system. Kuethe 

-found that the effect of the boundary condition change from u 2 = 0 

-
to u 2 :t O is very small. Neither the mixing region width nor the 

velocity profiles were affected. The effect can be seen only from a 

slight displacement in the position of the edge. In 1944, Squire and 

Trouncer ( 25) worked out the case of the axially symmetrical jet 

issuing into a uniform stream. 

C. Reichardt I s Inductive Theory and Gortler I s Analysis 

One common feature seen in all turbulent studies is that a 

suitable assumption must be made for the unknown relation between 

the turbulent shear stress and the mean motion. The results based on 

these assumptions are then checked by a final comparison with 

experimental results. It turned out that the results obtained from 

each turbulence theory did not differ t o any great extent. This 

indicates that the mean velocity distribution is insensitive to the 

form assumed for the turbulent shear stress. Reichardt ( 18) in 1941, 

therefore, suggested an inductive theory. Instead of beginning with a 

hypothesis on the mixing length or shear stress, he critically 

examined the voluminous experimental data on free turbulent shear 

flows, and discovered that the velocity profiles under consideration 
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could be approximated very successfully by the error function or 

Gauss's function . He also found empirically that if there was a 

-2 

relation such as uv = -A (x) :; , then an eq1~ation describing 

the velocity distribution in the free turbulent flow c an be obtained 

( 2-6) 

Here A (x) has the dimension of a length and must be determined 

experimentally . This equation for free turbulence is identical to the 

well known one-dimensional heat conduction equation, which yields 

the error or Gauss function as a solution. Thus, an analogy was 

found between turbulent transfer and heat conduction . The empirical 

relation uv = 011 2 

-A -ay is then an expression of the law of momentum 

transfer which states that the flux of -~he x-component of momentum, 

which is transferred in a tr ansverse o.irection, is proportional to the 

transverse gradient of momentum. According to Fourier's law of 

heat conduction, the heat flux is proportional to the temperature 

gradient. A (x) is then analogous to the heat conductivity and might 

be termed as a momentum transfer length. As a consequence, the 

differential equation of heat conduction can be applied to turbulent 

transfer of momentum. This hy pothesis essentially means that the 

exchange coefficient E is constant across each section of the tur-

bulent mixing region ( 14) . The turb ulent exchange coefficient E is 
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defined as E = -£v 1 • Prandtl suggested that whe n using this hypothe-

sis E = kb ( U - U . ) where b is the width of the mixing zone, max min 

and k is a dimensionless proportional factor. The new hypothesis 

of cons t ant exchange coefficient was employed by H . Gortler ( 23) in 

1942 to re-examine Tollmien's problem. A much simpler mathe-

matical solution to the half-jet case was obtained with a first order 

approximation, which showed good agreement with the experiments 

of H. Reichardt. For a uniform stream mixing with a fluid at rest, 

his analysis provided a velocity distribution expressed by t he error 

function 

where 

u = -2
1 ( 1 + erf s) 

u1 

s = CJ' Y and CJ' is a constant of proportionality . 
X 

( 2-7) 

Because of its simplicity, this e quation has been used widely in the 

analysis of separation flow ( 11) and in the analysis of base pressure 

problems ( 2) . The zero radius of curvature of velocity profile as 

expressed in Toll mien's analysis of plane jet is improved when 

Eq. (2-7) is employed . However, the theoretical mean velocity near 

the edge of the mixing layer is higher than the experimental valu·e . 
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D. Dimensional Argument 

Most analyses of free turbulent flows are based on some 

hypothesis for the mechanism of turbulence, such as constant mixing 

length, or constant exchange coefficient. However, these assump-

tions are not always in agreement with measurements. In 1947, 

Liepmann and Laufer (9) made an experimental inves tigation of free 

turbulent mixing in a half-jet. They measured turbulent shearing 

stress and the mean velocity profiles across the width of a mixing 

region. Then, the mixing length and the exchange coefficients were 

computed across the width. Liepmann and Laufer found that both the 

mixing length and the exchange coefficient were not constant, but 

varied across the mixing region. Consequently, they concluded that 

Tollmien and Gortler's theory were based on invalid assumptions . 

For many years, there has been a growing realization that 

dimensional analysis can furnish practically all the results of any 

mixing theories . C. B. Millikan ( 12) and Squire ( 24) all have 

expressed this point of view. 

In 1945, Squire has shown that all the results about the mean 

quantities in free turbulent shear flow can be deduced by means of a 

dimensional analysis, without introducing any hypothesis for the tur-

bulent mechanism. Two assumptions were made in his analysis. 

First, the distribution of velocity and shearing stress are similar at 
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all sections. Second, the shearing stress is proportional to the square 

of the maximum difference in velocity across a section and is inde-

pendent of viscosity. 

Liepmann and Laufer (9) , in their investigation of a half-j et, 

tried to describe the behavior of turbulent mixing by means of the 

energy and momentum integral for the mean and fluctuating motion. 

They reached the same conclusion as Squire, and once more demon-

strated that a complete understanding of the physical aspects of tur -

bulent motion is not necessary for the analysis of the free tu rbulent 

shear flow. Dimensional reasoning allows investigators to obtain 

the overall characteristic of the turbulent mixing process. 

E. Torda's Analysis and Kirk's Approximation 

Previous investigations always assumed a linear variation of 

the mixing region width with x and a uniform velocity distribution 

in the stream before mixing without considering the influence of the 

upstream boundary layer. Besides, the approaches always used the 

transformation from the x, y-plane into an YJ-plane, where rJ is 

proportional to y_. The boundaries of the mixing region correspond-x 

ing to the constant values of rJ turned out to be straight lines owing 

to the transformation used. In order to consider the effect of upstream 

boundary layer, Torda ( 27) in 1953 used an alternate approach in his 

analysis of symmetric turbulent mixing of two parallel streams. Both 
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streams, which were separated by an infinite thin plate before 

mixi.ng, had the same velocity distribution with the boundary layer 

existing . Torda used a quartic polynomial, which satisfied all the 

boundary conditions, as an approximation of the velocity profile 

in the mixing zone. 

u = a(r/ - 1) 2 
- (r, 2 

- 2) r, 2 ( 2-8) 

u 0 where y_ y= 
ri = a= 

X 
is a non-dimensional velocity along 

u1 

the x-axis . Boundary conditions are 

y = ±6 

-
y = 0 

ou 
oy 0 

-
OU= O 
oy 

Then the integral equation for the momentum and energy equation 

was appl,ied . The constant exchange coefficient was also used for 

the turbulent shear stress. With the application of boundary con-

ditions , the following equations were obtained. 

rr 2 cty - u 1 dx u dy = 0 ( 2-9) 
0 0 
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2 dx 

/6 
0 

-2 
ui d .;;3 dy - --
2 dx 

15 

-
u dy + 

+ kb(x) u1 (1-a) [
0 r::)' dy = 0 

Substitut ing Eq. (2-8) into Eq. (2-9) and Eq. (2-10) yields the 

thickness of the mixing region as a function of x . 

Ci 
6( x) = 16 a 2 -

(2-10) 

(2-11) 

where a is the function of x , which can be evaluated graphically 

from the following integration: 

a 

I 
0 

640a4 
- 880a3 - 119a 2 + 478a - 39 da= k 

572(a-1) 3 (16a 2 - 11a - 5) 2 ~ (x + c2) 

(2-12) 

in which c 1 and c 2 are constants to be determined from experi-

ments . Thus , from Eq. (2-11) , the boundaries of the mixing zone 

are no longer straight lines but are curved and the curvature starts 

in the region immediately behind the plate . However, far downstream 

the velocity profiles in the mixing zone tend to become similar and 

the boundaries of the turbulent mixing zone tend to be straight lines 

as is expected. 
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In 1959, Kirk ( 6) suggested an approximate method to include 

the effect of the initial boundary layer thickness in his study of base 

pressure in supersonic flow. He displaced the origin of the mixing 

region upstream to a virtual origin and assumed that the turbulent 

mixing started to develop from the virtual origin instead of the true 

origin. He was then able to obtain a similar profile in the mixing 

region. 

F. Sabin's Analysis 

The analyses of turbulent mixing discussed above were all 

based on the assumption that no pressure gradient exists in the main 

stream. In practice this is not exactly true. In 1963, C. M. Sabin (20) 

took a pressure gradient in the x -direction into consideration, while 

he studied th e free turbulent mixing between two parallel streams 

with different velocities. Sabin did not assume a press ure gradient 

across the mixing region in the transverse direction. Realizing that 

different hypotheses of turbulent shearing stress always lead to a 

different form of solution, Sabin intended to derive a general 

solution for any turbulent shear stress hypothesis as well as for 

arbitrary pressure gradient in the main stream direction. For this 

purpose he used a series of coordinate transformations to absorb 

the effect of the pressure gradient !~ and the apparent kinematic 



17 

viscosity E • He began with the equation of motion 

- - - 2 -

U- au + v- au =-..!.. a p + a u 
n n n E ~y uX uy p uX u 

then introduced the following transformations: 

- 1 - 2 P = p(x) - p + - p u o 2 

X y_ x= - y= L L 

1 
E - .:I!_ [_l_(P + p )] 2 E = - i/J = U= UL UL p 1 2 

~=Ix E( t) I\ 
dt i/J = i/J 

0 

(2-13) 

Where i/J is the stream function, U is reference velocity, 

L is reference length, 
-
p is datum pressure and P is total 

0 

pressure; subscript 1 refers to the upper free stream and 2 

corresponds to the lower free stream. The equation of motion was 

finally reduced to a simplified form 

oP ( 2-14) 
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In which both the pressure gradient and apparent kinematic viscosity 

disappeared. A solution which is self-similar was obtained for the 

first order approximation 

where 

"" r/J rJ = ---------,-
2 (cp + cp )1/2 

0 

cp = 

cp is an integral constant~ 
0 

{2-15) 

This solution is independent of the particular choice of either the 

pressure gradient or apparent kinematic viscosity. The dimension-

less velocity profile in the mixing region is found to be a function 

of the velocity ratio of two parallel streams only. Velocity profile 

obtained by this theory was compared with those obtained by the 

Gortler's theory for the case of a zero pressure gradient. Satis-

factory agreement is obtained when the velocity ratio of the slow 

stream to the fast stream is greater than 0. 5 . However, if the 
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velocity ratio is small, lower than 0. 4, the agreement can not be 

expected, because the simplifications that were introduced in the 

process of comparison are no longer permissible. An interesting 

note in Sabin's analysis is that the apparent kinematic viscosity is 

insensitive to the pressure gradient in main stream direction. Sabin 

concluded that Prandtl's hypothesis E = kb(~ - ~ . ) is max min 

adequate also for a free jet flow with an arbitrary longitudinal 

pressure gradient. 

G. Sawyer's First Order Theory 

In 1960, Sawyer (21) conducted an investigation of a curved 

two-dimensional turbulent jet discharging parallel to a flat plate 

at some distance from the plate. He found that the measured velocity 

profiles of the jet as it curved toward the plat e, were nearly sym-

metrical; although there was a pressure difference across the jet. 

The total rate of jet spread was almost identical to that of a plane 

jet. It seemed that the curvature had only a small effect on the 

velocity distribution in the jet. In order to get a deeper insight into 

this effect, Sawyer ( 22) extended the mixing length concept to 

include the effect of the curvature, and derived a first order theory 

for turbulent shearing stress. 
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(2-16) 

where e:, is the apparent kinematic viscosity for zero curvature 

and R is the radius of curvature. 

The first order mixing length theory indicates that the 

curvature has a considerable effect on the rates of entrainment, but 

this need not necessarily be accompanied by a marked deviation in 

the jet velocity profile from that of a plane jet, since there exists a 

corresponding flow across the locus of the maximum profile velocity, 

which balanced the effect of different entrainment rates. 

H. Chapman and Korst's Analysis 

Another theory similar to Torda's, which deals with the 

effects of the initial boundary layer on the mixi ng wit hin a half-jet, 

was derived by A . J . Chapman and H. H. Korst in 1954 (1) . Their 

basic approach followed the Pai analysis of jet mixing of a com-

pressible fluid. The one exception to this approach was that they 

included the initial boundary layer. Pai (15) in 1949, proposed a 

small perturbation method to linearize the equation of motion within 

the mixing region. Thus, the equation of motion was simplified to a 

form identical to that of t he h e at conduction equation. 
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= (2-17) 

where I; = 
n + 1 

X n lies between o and 1 and the exact 
0 (n+1)Ln 

value of n depends on the condition of mixing. 

E is the empirical constant determined from experiments 
0 

L is character length. 

Pai also proposed a representation of apparent kinematic viscosity in 

n 
(-XL) the form E = E 

0 
. This simplified equation of motion was 

applied by Chapman and Korst to the problem of the half-jet, with the 

following boundary conditions. 

X = 0 u 0 for -oo < y < 0 - = 

u1 

= f ( }
0

) for O < y < 6 
0 

= 1 for 6 < y < CX) (2-18) 
0 

u --:> 0 for y --:> - oo X :" X -
u1 

u --:> 1 for y --:> + ro -
u1 
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where 6 is the initial boundary lay er thickness. They obtained the 
0 

following solution: 

u -= 1 [ . - 1 + erf ( r, - rJ ) ' 
2 O J 

in which the dimensionless variables r, and r,
0 

are written as 

1 

n = Y ( 4::sJ 2 

rJ = 0 
0 0 

1 
2 

(2-19) 

If the thickness of the initial boundary layer is very thin when 

compared with the length of the wake, then r, = 0 . The solution 
0 

reduced to 
u 1 

= 2 ( 1 + erf n) (2-20) 

This sol ution is identical to that obtained by Gortler using the 

alternative approach, for a half-jet with no initial boundary layer, 

Equation ( 2-20) was adopted in various studies related to the free 

turbulent shear flow. Korst (7) , in his investigation of base pressure 
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in transonic and supersonic flow, applied this equation to describe 

the motion of a half-j et mixing and succeeded in establishing a 

criterion for the reattachment press ure rise in terms of the total 

pressure developed along the separation streamline. Mueller ( 13) 

and McDonald ( 11) , also used this distribution of velocity in their 

investigations of turbulent separation flow, and achieved satisfactory 

results. In view of the successful applications made by pre vious 

investigators, the same equation is em ployed throughout this 

investigation of velocity profiles along the separation region. 
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Chapter III 

THEORETICAL BACKGROUND 

This thesis employes a turbulent half-jet mixing flow as a 

model of the flow along the separation region behind a two-

dimensional hill. It is the purpose of this chapter to present a 

theoretical review of half-jet analysis following the work of Gortler. 

Suppose two parallel streams of different velocities, u 1 
-and u 2 , are separated by a thin plate along the negative x-axis and 

come into contact at x = 0 (s ee Fig. 2) . Downstream from this 

point a turbulent mixing region will occur. The velocity of upper 

- -
stream is u 1 which is larger than the lower stream velocity u 2 

The equation of motion for free turbulent shear flow in 

steady state is 

- - -- ou - ou u-+ v- = ox oy 
_ .!.. op + 1 oT 

p ax p oy ( 3-1) 

The pressure gradient in x-direction is assumed negligible and 

Prandtl' s hypothesis of constant exchange coefficient is used for 

turbulent shear stress T = 
-OU 

pE-oy 

E = kb (U - U . ) = kb (u 1 - u 2) max min 
( 3-2) 
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where b is the width of the mixing region and k is the constant. 

Eq. (3-1) reduces to 

( 3-3) 

The equation of continuity is 

- -
au+ av O 
ax ay ( 3-4) 

The required boundary conditions are 

y = + 00 
( 3-5) 

y = - 00 

Introduction of the stream function r/J will eliminate the continuity 

equation, and transform Eq. (3-3) into 

putting 

and 

where 

t hen 

ar/J a 2 r/J 
ay axay 

I; = (Ty 
X 

a- is an arbitrary constant 

( 3-6) 
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Equation ( 3-6) leads to the following differential equation for f( s) 

u - u 
f{s) f"(s) + 2 kCTb 1 2 £''' (s) = o 

X - -
ui + u2 

( 3-7) 

let 

and assume that the mixing region width is proportional to distance 

b = ex 

where c is a proportional constant. 

Equation (3-7) finally takes the form of 

f '" (s) + 2CTf (s) f'' (s) = o 

with 

The new boundary conditions correspondingly are 

s-:>+ oo 

g-~ -0) 

CT f' (s) = 1 + A 

CT f, ( s) = 1 - A 

{ 3-8) 

{ 3-9) 

(3-10) 

The different ial Eq. ( 3-9) is identical to the Blasius equation for a 

flat plate at zero incidence, with different boundary conditions. 
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H. Gortler solved Eq. (3-9) by assuming a power series expension 

of the form . 

(3-11) 

with f (s) = s. Substituting Eq. (3-11) into Eq. (3-9) and rear-o 

ranging the result into ascending powers of A, yields a system of 

differential e quation. The solution leads to the following recurrent 

formulas: 

etc. 

The approximate first order equation and the corresponding 

boundary conditions now become 

f '" (s) + 2 s f " (s) = o 
1 1 

S --:> + 00 

g-:>-oo 

f I ( S) = 1 
1 

f I ( S) = - 1 
1 

( 3-1 2) 

Equation ( 3-12) is an ordinary differential equation, which can be 

solved with the application of the boundary conditions. The solution 
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is given by the error function 

(3-13) 

in which the boundary conditions have been utilized. Now the velocity 

distribut ion across the mixing region for the first order approxima:- . 

tion can be written as 

u = ( 3 -14) 

-
If it is assumed that u 2 = 0 , which corresponds to the case of a 

uniform free stream mixing with a fluid at rest, then Eq. ( 3-14) 

reduces to 

where 

u 1 
- = - ( 1 + erf ~) 

2 

~ = rr Y.. 
X 

(3-15) 

The paramet er rr is a constant which must be determined experi-

mentally to give the best agreeme nt between theory and measure-

ments. Eq. (3-15) is the basic equation for a half-jet mixing region, 

and is used t o analyze the separated flow in this investigation. When 

deriving Eq. (3-15) it was assumed that there was no initial boundary 
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layer thickness, and no pressure gradient across the mixing region 

in the direction normal to the main stream. 

When considering the effect of the initial boundary layer 

thickness, the approximation method suggested by Kirk ( 6) can be 

adopted by displacing the origin of a half-jet from the crest of the 

model hill to a virtual origin with a distance x upstream of the 
0 

original origin. Thus, the half-jet was assumed to have developed 

from the virtual origin instead of from the hill crest. Let er be 
0 

the similarity parameter for the case of the virtual origin, then the 

velocity profiles in the mixing region are represented as 

u 
= 

1 
2 

From Eq. (3-15) and Eq. (3-16), the relation between er and 

is obtained 

er = 
er 

0 

1 + 
X 

0 

X 

( 3-16) 

er 
0 

(3-17) 

Equation (3-17) indicates that er will increase with distance x if 

er is constant. A normal pressure gradient across the mixing 
0 

region always causes the flow field to curve. The effect of this 

curvature on the turbulent shearing stress has been discussed by 
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Sawyer ( 21) who introduced a first order theory which accounts for 

the effect of this curvature. He expressed the turbulent shearing 

stress as 

(3-18) 

where R is the radius of the curvature, E* is the apparent 

kinematic viscosity for the zero curvature, and m is an empirical 

constant which Sawyer found as 5 . Equation (3-18) can be re-

written as 

T = p € ~~ m ~ _1 ] au= 
R - ay au 

ay 

au 
p E-ay 

The effect of a curvature is seen in the apparent kinematic viscosity 

E = E~' ( 1 - mQ) 

u 1 
where Q = R _ 

au 
ay 

From Eq. (3-2) and Eq. (3-8) , it yields 

E = kcx ( ~ - u . ) max min 

(3-19) 
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and recall that in Eq. ( 3-9) , it is assumed 

1 
er = 

1 
= if >t = 1 

For the case of the zero curvature it will become 

E':' = (kc)'~ X (U - U ) max min 

1 

Therefore er = er~' 1 
~1-mQ 

(3-20) 

where o- ,:, is the similarity parameter corresponding to conditions 

of zero curvature, which is usually taken as 12 for half-jet mixing. 

The effect of curvature on the similarity parameter is contained in 

1 
the factor -Y1 _ mQ . 

If the effects due to curvature and initial boundary layer 

thickness are combined, the similarity parameter er':' with zero 

curvature and zero initial boundary layer thickness will be modified 

by Eq. (3-17) as well as by Eq. (3-20) . From Eq. (3-20), the 

similarity parameter er with curvature but without initial boundary 
0 

layer thickness, is obtained. 
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1 
(J" = a- i.< --==-------

0 yr:-rriQ (3-21) 

which is again modified by Eq. ( 3-1 7) to include the effect of the 

initial boundary layer thickness expressed in terms of the virtual 

origin displacement x 
0 

(J" 1 (J"~~ 0 
(J" = = . -y1 X X - mQ 

1 + 0 1 + 0 

(3-22) 

X X 

This equation indicates how the curvature and the initial boundary 

layer thickness affect the similarity parameter a- • The error law, 

Equation (3-15), for describing the velocity distributions in the 

separated flow region shall be tested and Eq. (3-22) will also be 

checked whether it suffices to account for the effect of the trans-

verse pressure gradient and of the initial boundary layer. 
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Chapter IV 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

Experiments were performed in a low speed wind tunnel at 

the Fluid Dynamic and Diffusion Laboratory at Colorado State 

University. Measured quantities consisted of mean velocity profiles, 

static pressures, turbulent velocity components and the location of 

reattachment. The following paragraphs will provide concise infor-

mation about the equipment and procedures. 

A. Wind Tunnel 

Experiments were conducted in a closed circulating type 

wind tunnel as shown in Fig. 3 . The wind tunnel has a test section 

with a usable length of 30 ft, and a cross sectional area of 6 x 6 ft 2
• 

Damping screens, located in the 4 : 1 contraction area, yield a free 

~ stream turbulence level - of less than 2% . A turbulent boundary 
um 

layer was created by a strip of 1 / 4 in. gravel 14 in. long preceded 

by a trip fence of 1/2 in. saw teeth. These obstructions were placed 

at the tunnel's entrance. The hill model, a 2 x 2 in. wedge shown in 

Fig. 4 , was placed on the floor 14 ft downstream from the wind 

tunnel entrance . 
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Wind speed in the low speed wind tunnel was controlled with 

an axial fan, with 16 blades, which is driven at constant speed by a 

7 5 hp motor. The velocity range of the tunnel is about 5 to 7 5 fps 

and is adjusted by remotely setting the variable pitch blades of the 

fan. Experiments were carried out at speeds of 45 and 30 fps. The 

pressure gradient along the center line of the wind tunnel before the 

hill model was installed is approximately zero at 30 .. fps. No pres-

sure corrections were made after the installation of the models, 

because of the small obstruction which the model offered to the flow. 

Static pressure along the floor was measured by means of pressure 

taps embedded along the center line of the wind tunnel floor. The 

arrangement of the pressure taps can be seen in Fig. 3 . 

B. Carriage 

Vertical velocity or pressure profiles are obtained by a pitot 

tube or a hot -wire probe mounted on a remotely controlled position-

ing carriage. Components comprising the positioning system are a 

28 V. D. C. motor, a potentiometer, a screw drive, a probe holder, 

a guide bar and a control box which is used to control the speed and 

direction of the motor. The D. C. motor drives the screw drive, 

which in turn moves the probe up and down. A probe is attached t o 

the guide bar by means of prob e holder which allows the probe to 

be moved a distance of 19 inches. A potentiometer is fixed on the 
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probe holder and geared to the guide bar. As the probe holder 

moves, a voltage drop corresponding to the distance travelled by 

the probe holder is produced across the potentiometer. This voltage 

is then transmitted to the x-axis of a X-Y plotter to give the 

position of the pitot tube. 

C. Pitot Tube, X-Y Plotter, and Electronic Manometer 

A pitot tube was used to measure mean flow velocity. The 

hot-wire anenometer, which will be discussed later, is used to 

measure the fluctuating components of velocity. Outside diameter 

of the pitot tube was 3/16 in. Plastic tubing was used to connect the 

pitot tube to a Transonic Equibar Type 120 electronic manometer, 

which has 8 ranges of pressure from 0. 01 mm Hg to 30 mm Hg 

with a de-output of 30 mv for each full scale reading. The electric 

manometer can detect pressure changes of 0. 0002 mm Hg. Output 

of the electronic manometer was transmitted to the y-axis of a 

X-Y plotter, Moseley Type 135 . A voltage corresponding to the 

position of pitot tube was applied to the x-axis of the X-Y plotter. 

In this manner it was possible to plot out a continuous profile of 

the dynamic pressure or static pressure directly. 
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D. Mean Velocity Measurement 

Mean velocity was measured with a pitot tube, which was 

mounted on the carriage. The free stream velocity was set at 45 

and 30 fps. It was measured by placing the pitot tube 2 ft above the 

floor, upstream of the hill model. Vertical velocity profiles were 

measured from the floor to a height of 19 inches and from the 

model's crest to a distance of 60 inches downstream . Measurements 

were taken at various stations behind the model along the tunnel's 

center line. Air flow two -dimensionality was verified by velocity 

profiles taken at a few stations located on either side of the center 

line. These profiles were within one percent agreement as shown 

in Fig. 5 . Air temperatures and barometric pressure were also 

recorded during test runs. 

The mean velocity measured with a pitot tube is calculated 

from the corresponding reading of the transonic manometer from 

- ' fFS" the relation u = 2. 36 y P . h is the transonic reading (in mm Hg) 

corresponding to the dynamic head, p is the density of air ( in 

lb - sec 2 

ft 4 and u is the velocity ( in fps ) . 

A dynamic pressure is defined as the difference of the tot al 

pressure and th e static pressure at the same point . However, for 

the pitot tube used, the total pressure and the static pressure are 
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not measured at the same point, but at points one-inch apart as 

shown in Fig. 6. If H , represents the total pressure at point 1 , 

- -
and if p 1 and p 2 represent the static pressure at point 1 and 

point 2 respectively, th en the velocity at point 1 , in terms of 

dynamic pressure should be: 

However, the dynamic pressure measured with the pitot tube is 

1 -2 - p u = 
2 m 

where u corresponding to the velocity measured with the pitot m 

tube. The theoretical value and t h e measured value can be related as 

1 -2 --pu = Hi - p + P2 - p 2 2 1 

-
1 -2 ( op .6. x = -pu + 
2 m ox ! 1 

I 

The error of velocity due t o pitot tube measurement is 

-
.6.u = 

u 

u - u 
___ m_ = 1 

u 

u m 

u 
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{ 1:t) ,;J ½ I - ) op ~ 
u 1 ( OX 1 X m 

1 + ! J 1 = = - -
1 - 2 2 1 - 2 u l 2 p um -pu 2 m 

- 1 ( :tl ,;x 
~u 

= 2 1 -2 u -pu 2 m 

If the dynamic pressure is expressed in terms of the pressure 

transducer reading h , then the error takes the form 

-
~u = 

u 
( 4-1) 

where y is the specific weight of air, and ( :t ) 
1 

,;x is approxi-

mated by the pressure difference, i.e. , op - -( - ) ox 
1 

~ x = P2 - p 1 · If 

there is no pressure gradient in the x-direction, the pitot tube gives 

the true value of velocity . Further, if the difference of pressure 

~p is small when compared with pitot tube reading h , the error 

would be very small and the velocity calculated directly from pitot 

tube reading is still within the accuracy required. In this investi-

gation, the maximum error of velocity with the free stream velocity 

as reference is within 1. 5% , so no effort was made to correct the 

pitot tube readings. 
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Liepmann and Laufer ( 9) have used both pi tot tube and the 

hot-wire to measure the same mean velocity distribution separately, 

to see if there was any discrepancy existing between the results. 

They found both methods gave satisfactory agreement. 

E. Static Pressure Measurement 

Only the static hole of the pitot tube was us ed when measur-

ing static pressure. Measuring instruments (s een in Fig. 7) were 

arranged in the same manner as for the measurements of the veloc-

ity measuring device, except that another pi tot tube was used to 

give the static reference pressure. Throughout the experiment, the 

reference pitot tube was fastened to a slender bar located upstream 

from the hill model. The bar was suspended from the tunnel's 

ceiling and extended approximately 20 in. into the ambient stream. 

Static pressures were measured around the hill, along the center 

line of the floor. Pressures around the hill were measured by 

means of 1~ in . pressure taps around the model. (s ee Fig. 4) 

Static pressures along the floor were measured through pressure 

taps embedded in the floor. These pressure taps were connected 

successively through plastic tubing to the electronic manometer, 

where they were measured against the reference static pressure. 

Vertical static pressure distributions were measured in the same 

way as the mean velocity profiles, except that only the static hole 
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was used, Some fluctuation of static pressure was observed through-

out the measurements. The largest amounts of fluctuation were 

found in the mixing region. 

F. Turbulent Measurement 

Turbulent quantities ? , u 'v' and 7 were 

evaluated by using a constant temperature hot-wire anemometer. 

The fluctuating velocity component in the main stream direction 

? was measured with a single wire probe. A cross wire was 

used in place of the single probe when measuring u 'v' and 7 . 

Turbulent quantities were measured with the probe mounted on the 

positioning carriage. A platinum wire; which had a diameter of 

0 . 0001 in . , a length of 0. 1 in. and a cold resistance of approxi-

mately 5 ohms; was used as a sensor. This wire was mounted on a 

hot-wire probe made by DISA Company. The hot-wire probe was 

operated by a constant temperature type servo amplifier, Hubbard 

3A, from which the A. C. output was fed into a true rms-meter, 

Type BRUEL and KJ AER 2409 . This instrument had been modified 

to give an output voltage proportional to the meter reading. Output 

voltage from the rms-meter and the voltage proportional to the 

probe position were then applied to the two axes of an X-Y plotter, 

thus yielding continuous turbulent profiles. Instrument arrangement 

is shown in Fig. 8 . The output voltage of the Hubbard amplifier is 
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a linear function of velocity . From measurements with pitot tube 

and hot-wire, the free stream velocity is calibrated against the 

output reading of the hot-w ire anemometer. A straight line cali-

bration curve was obtained. Fig. 9 gives an example of this cali-

bration curve . With the slope of the calibration curve determined, 

the turbulent quantities are obtained by conversion from the reading 

of the plotted profiles. 

Turbulent velocity measurement made with a hot-wire 

anemometer are based on the principle that the heat loss per unit 

time is equal to the heat generated per unit time by an electric cur-

rent passing through the wire. Heat loss is generally heat conduc-

tion, radiation, free and forced convection. In practice the effects 

of radiation and free convection are negligible. By King ' s law, the 

empirical relation between the heat loss and the mass flow can be 

written as 

R -R = B + rryu:- ( 4-2) 
w a 

Where R is the wire resistance while in operation, R is the 
w a 

wire resistance at air temperature and B and D are constants. 

For constant temperature operation, the resistance is kept 

constant , the fluctuat ion of the velocity component will give rise t o 

a fluctuation of heating current. If fluctuations of velocity and 
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current are both small compared with the mean values, then 

2IR 
w 

R -R 
w a 

dl = I' 

du= u' 

dl = D 
2 y u 

du 

The relation between the fluctuation of velocity and that of current 

is then determined as 

I' = Su' ( 4-3) 

where S is the sensitivity of the hot-wire anemometer. In the 

instrument used, Hubbard Type 3A , the current (in milliampere). 

is passing through a resistor of 50, 000 ohms, across which the 

output voltage is measured. The output voltage e' (in volts) is 

then related to the fluctuating current through 

e' = 50 I' 

and to the fluctuating velocity 

e' 
50 

Therefore 

I'= Su' 

( 4-4) 

( 4-5) 
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where 7 is the mean square reading of the voltage output, and 

A = ½ = ~~ . The inverse of the sensitivity S is defined as the 

calibration constant A , which is obtained from the calibration 

curve of the mean velocity plotted agains t the mean current. A 

linearing circuit designed into the instrument is responsible for the 

straight line calibration curve in Fig . 9 . A is then determined by 

measuring the slope of the calibration curve. As a result, the tur-

bulent quantities ~ can be obtained from Eq. (4-5) . 

Turbulent quantities u 'v' and 7 were measured with a 

cross wire probe. The two wires comprising this probe were in-

clined at angles a and {3 to the main stream direction as indicated 

in Fig. 10 . For this wire arrangement, the relations between 

fluctuations of currents and of velocities become 

A 1 I~ = u' cos a + v' sin a for wire 1 

A 2I2 = u' cos {3 - v' sin {3 for wire 2 

Square and then take the time-average 

( A501 )2 7 =? cos 2 a + 2u'v' sin a cos a + 7 sin 2 a 1 
( 4-6) 
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= ? cos 2 /3 - 2 u 1v 1 sin,B cos/3 + 7 sin 2 /3 
( 4-7) 

For the experiments presented in this study the angles were a = 38°, 

f3 = 43 ° and the calibration curve was given by the equation 

u = 43 I+ 7 . 5, where A 1 = A 2 = 43 . With these values, sub-

tracting Eq. (4-7) from Eq. (4-6) yields 

- (7 - e' 2
) = ? (cos 2a - cos 2{3) + u'v' (sin2a + sin2{3)+ ( 

43 ) 
2 

50 1 2 

which yields u'v' = 0 376 ( 7- ?) . 1 2 ( 4-8) 

Further, adding Eq. ( 4-6) and Eq. ( 4-7) leads to 

- (?+ "°?) = ? ( cos 2cl' + cos 2 /3) + u ' v' ( sin2a - sin2B) + ( 
43 ) 

2 

50 1 2 

or 7 = 0. 877 (~+ e~2
) - 1. 37 ~ ( 4-9) 

From Eq. ( 4-8) and Eq. ( 4-9) , 7 and u'v' can be calculated. 



45 

G. Measurement of Reattachment Point 

A special technique was developed ( 16) to measure the 

reattachment point. Two hot wires of exactly the same length and 

resistance were placed parallel and as close as possible without 

touching in the separated region. Each one was operated by one 

channel of the two-channel Hubbard hot-wire anemometer amplifier. 

The outputs of the hot-wire amplifiers were fed into a special dis-

criminating circuit, designed by Mr. Calvin Finn. This discrimi-

nating circuit provides a train of 100, 000 pulses per second as long 

as the input to one preset discriminator channel ( channel A) is 

larger than the input to the other channel ( channel B) . If the input 

to channel B is larger then no signal is generated by the circuit. 

Now if the two-wire probe is placed at some suitable distance 

above the floor with the plane through the axes of the wires parallel 

to the floor, thep, when the flow velocity is parallel to the floor, the 

downstream wire is in the wake of the upstream wire and conse-

quently does not get cooled as much as the upstream wire. Under 

these conditions the feedback amplifier would give a larger current 

output for the wire located upstream than for the downstream wire, 

If the signals from the two wires are fed into the discriminating 

circuit it yields an output which when transferred to a pulse counter 

(Hewlett Packard Type 522) , indicates the percent of time one wire 
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yields a larger signal than the other. The reattachment point was 

defined as that location where the individual direction of flow is 

equal in both directions ( a 50% reading on the discriminator) . The 

reattachment point was thus found at 25. 5 in. downstream from the 

hill when the free stream velocity was 45 fps. The equipment is 

shown in Fig. 11 . 
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Chapter V 

ANALYSIS AND DISCUSSION 

The flow along the separation region behind a hill is similar 

to a half-jet mixing with the ambient fluid at rest. Therefore, the 

velocity profiles along the separation region can be described by 

Equation {3-15) which was obtained for a half-jet 

u 1 
= 2 ( 1 + erf I;) 

where I; = er X. and cr is a constant. 
X 

In this equation, x and y are the coordinates of an intrinsic 

coordinate system in the flow. The relation between the intrinsic 

coordinate and the reference coordinate system can be derived 

from Eq. (3-15), as will be discussed below. 

A. Free Stream Velocity 

When air flows over the hill, a separation bubble forms 

directly behind the hill. Inside the bubble there exists a vortex 

region where the velocity is very small and may be considered as 

b eing almost equal to zero. Betw een the bubble and the free stream 



48 

there is a mixing layer across which the velocity increases rapidly 

from zero to the free stream velocity. Influence of the hill causes 

the velocity in the separation region above the bubble to rise to a 

peak value near the crest of the hill, and then decrease gradually 

over a distance to reach an equilibrium value . The amount of this 

velocity decrease is about 5% to 8% of the maximum value. Maxi-

mum velocity is then defined as free stream velocity u 1 . Mean 

velocity profiles behind the hill are shown in Fig. 12 . The veloci-

ties near the floor are left out because there is a reversed flow 

near the floor, which is hard to measure correctly with the pitot 

tube. The locus of the points which correspond to the maximum 

velocity is then defined as the upper boundary of the half-jet mixing 

region, which is a small gradient curve seen in Fig. 13 . With the 

free stream velocity determined, the ratio of local velocity to the 

free stream velocity is only a function of local position as described 

by Eq. (3- 15) . 

Figure 14 presents the velocity variation along the upper 

u boundary where = 1 , and along the central velocity line 
u1 

= 
1 
2 ' that is, the jet-axis. The velocity was made dimension-

less by dividing by the corresponding velocity at the crest of the 

hill. A small variation of the half-jet free stream velocity was 

observed along the distance downstream. At first, the velocity 
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increases, then it decreases and tends to approach a constant value 

downstream near the end of the separation region. The pressure 

gradient in the x-direction, which is implied in the variation of the 

free stream velocity, was shown by Sabin (20) as making only a 

small contribution to the turbulent shear stress. If the variation of 

free stream velocity is neglected, which means the pressure gra-

dient in the x-direction is assumed to be zero, the analysis is 

simplified and the error introduced would not have a significant 

effect on the end results. This has been done in this analysis. 

B. Transformation of Coordinates 

An intrinsic coordinate system, x and y , is used in half-

jet analysis, refer to Eq. ( 3-15) . Measurements use a fixed 

reference coordinate system. This system consists of X and Y-axis 

which originated at the front edge of the hill model. The X-axis 

appears along the floor with a positive downstream direction. The 

Y-axis is normal to the floor with a positive direction upward. The 

relation between the coordinate system can be obtained from Eq. 

(3-15) 

Location of the X-axis can be found from the experimental 

data according to the following procedure. If the velocity distribution 



is given by 

u 1 
= -2 ( 1 + erf s) 

u1 

where s = c, 'i.. 
X 

then it follows that 

if y = 0 then s = 0 

and the velocity ratio becomes 

u 1 
= 

50 

This means that the x-axis coincides with central velocity line 

u where = 
1 
2 . Since the free stream velocity u 1 has been 

determined as the maximum velocity, the x-axis can be found easily 

from the measured velocity profile by locating the points where 

u 1 
= 2 . Fig. 13 illustrates an x-axis obtained in the foregoing 

manner. This x-axis was observed to curve up from the crest of 

the hill and soon approach a straight line parallel to the floor. The 

angle between the y-axis and the Y-axis due to the curvature of the 

x-axis is so small as to be negligible. Therefore, the y-axis is 

assumed to coincide approximately with the Y-axis. Let Y 
C 
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represent the Y-coordinate of the central velocity line, namely, the 

x-axis, then a relation between y and Y can be established as 

y= Y - Y shown in Fig. 15 . 
C 

The initial curvature section of the x-axis is rather short. 

Thus, the distance along the x-axis is approximated by the distance 

along the X-axis, i.e., by the distance parallel to the floor. The 

error introduced by such an approximation is small at large distance. 

Finally, the transformation of the intrinsic coordinate system into 

the fixed reference system is given by 

y = y - y 
C 

X = X 

( 5-1) 

At this point, it is possible to compare the measured value with the 

theoretical value obtained by Eq. (3-15) , if there is a suitable value 

for similarity parameter er • 

C. Half-Jet Boundary 

Theoretically, the velocity profiles given by Eq. (3-15) 

result in a velocity equal to the free stream velocity at an infinite 

distance from the x-axis. Therefore, the boundary line is usually 

defined at = 0. 99 to avoid this difficulty. In this investigation, 

the upper boundary is defined as the maximum velocity point in the 
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profile. The upper boundary is presented in Fig. 13 , which does 

not appear as a straight line but as a curve. This curvature is large 

directly behind the hill, but at a short distance downstream the 

curvature decreases to the point that it may be approximated by a 

straight line. This curved boundary is in contradiction to the 

classical half-jet studies. However, in an investigation of turbulent, 

incompressible, symmetrical mixing of two parallel streams, 

T. P. Torda also found a curved boundary which he attributed to 

the initial boundary layer thickness upstream of the trailing edge of 

the flat plate. In addition to the effect of initial boundary layer 

thickness, the obstruction of the hill in the flow might contribute to 

the curvature of the half-jet. The hill extended from the floor into 

the flow. Therefore, the flow upstream, below the height of the hill, 

was forced to rise as it approached the hill. As a consequence, a 

velocity component normal to the mean stream direction appeared 

near the hill. The half-jet mixing region which was slightly displaced 

by this vertical velocity component will have curved appearance. This 

normal velocity died out further downstream so that the curvature 

reduced correspondingly. 

The lower boundary for half-jet mixing, which lies within 

the vortex region in the separation bubble, was not well defined. An 

attempt was made to define this lower boundary by a constant velocity 
\ 
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u ratio line = 0. 1 , but the data are too irregular to define a 
u1 

regular curve. There is a reversal of flow within the separation 

bubble caused by the entrainment of air into the jet region. The 

pitot tube was not oriented to measure this reverse velocity. The 

large scatters in the reading may be due to the inability of pitot tube 

to read accurately the velocity in the bubbl e. 

D. Spread of Width 

In view of the difficulty in defining the lower boundary of a 

half-jet mixing region as mentioned before, the mixing region is 

divided into two zones: Zone I and Zone II . Zone I, as seen in Fig. 16, 

is the region above the x-axis up to the upper boundary line where 

u 
= 1; and Zone II is the region below the x-axis . Both the upper 

u1 

boundary and the x-axis of the half-jet are curved rather than linear. 

The distance between the two lines, which is the width of Zone I , was 

observed to vary approximately linearly over a distance of 4 to 20 

inches downstream from the model hill. Further downstream, it 

tends to approach an asymptotic value. This linear variation of the 

width with distance is in agreement with half-jet theory. 

The spread of the width of Zone I is plotted in Fig. 1 7. The 

width of Zone II is not shown because the l ow boundary of the jet is 
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poorly defined. The spread of the width of the mixing region is found 

to decrease with an increase of fre e stream velocity. The width 

when free stream velocity is 30 fps is bigger than when the velocity 

is 45 fps. 

E. Proximity of Floor 

In half-jet analysis, it is supposed that no solid boundary 

exists in the neighborhood of the mixing region. However, in this 

study of separation flow, there is a floor behind the model hill. The 

effect due to the proximity of the floor is felt in the region near the 

floor and will decrease with the distance from the floor. 

Zone I is far enough away from the floor that the effect of 

the floor is so slight as to be unnoticeable, and the separation flow 

in this region develops as a half-jet. In Zone II , which is below 

the jet-axis and near the floor, the influence of the floor on the flow 

is stronger. This influence is found from measured velocity data 

deviation from analytical results. The floor also restricts the width 

of Zone II and as a result Zone II is narrower than Zone I . 

The most important floor effect is the formation of a separa-

tion bubble which adds complexity to the problem. Jet flow near the 

outer edge of the bubble entrains the fluid from the bubble by the 

action of the shearing stress, thus causing the pressure inside the 

bubble to decreas e. This decrease in pressure forces the lower part 
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of half-jet toward the floor. The bubble also causes the half-jet 

mixing region to spread vertically as distance increases. As a 

result of this, there is a point downstream from the hill where the 

flow reattaches to the floor with an amount of the flow reversed 

back into the bubble. Mass conservation requires that the amount of 

fluid entrained from the bubble should be balanced by the amount of 

the reversed flow at reattachment. The air in the separation bubble 

is thus induced into a circulatory motion to form an eddy vortex. 

Because it is hard to use pitot tube to measure the reversed flow in 

the bubble, the velocities near the floor are left out in Fig. 5 and 

Figure 12 . However, the pitot tube is capable of measuring the 

static pressure in the reversed flow, and the pressure inside the 

bubble is found lower than the pressure outside. 

F. Pressure Gradient and Curvature 

Pressure gradients are found both in the main stream direc-

tion and in the transverse direction. Fig. 18 shows the variation of 

static pressure along the constant velocity ratio lines and Fig. 19 

shows the variation of static pressure at constant heights above the 

floor, downstream of the hill. The development of static pressure 

distribution downstream of the hill is shown in Fig. 20 . Near 

reattachment the static pressure was observed to increase over 

a large horizontal distance. Below the jet-axis the pressure is 
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nearly uniform. Most of the variation of static pressure from the 

pressure in the separation bubble to the pressure in the external 

free s tream takes place in the region above the jet axis to the outer 

jet boundary, that is, Zone I . The pressure difference across 

Zone I becomes smaller and smaller further downstream. The 

horizontal pressure gradient has been found by Sabin (20) to have 

only a slight effect on the turbulent mixing mechanism and conse-

quently was neglected in this investigation. However, transverse 

pressure gradient across the mixing region induces a curvature in 

the separated flow. 

The curvature can be seen in the equation in the cylinder 

coordinates ( 5) . Assume u is parallel to the streamlines, so that 

v = 0 . Then the equation of motion along a streamline is 

u2 
= .!_op+ OV12 + 7 

r p or or r 
1 ou'v' + r oe r ( 5-2) 

in which the viscous stress components, which are very small in 

free turbulent shear flow, are omitted. Eq. (5-2) may be rearranged 

as 

-2 u 
r 

~? 1 
u2 - u2 -~ 

o(u'v') 
oe ] = 

.!. op + o? 
p or or 

Assume the streamlines in the separated flow are parallel to each 

other, so the radius of streamline R is c onstant at each cross 
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section, i.e. , R is not a function of r . Integrating the above 

equation over r , 

~ j pu 2 
[ 1 + ~~

2 

_ ~~ 2 _ ~ ou 1v 1
] -- dr = oe 

? As shown in Fig. 21 , the turbulent quantities =-r-- , u 
7 
=-r, u 

u 1v 1 

=-r u 

are very small. Their integral are much smaller when compared 

with the integral of the term u2 
, so these turbulent quantities are 

neglected. It yields 

1 J -2 d R pu r = j op dr + JP ov' z dr 
or or 

( 5-3) 

The radial coordinate can be approximated by the y-coordinate. The 

integral is taken from the jet-axis to the outer jet boundary. Then 

1 /Y1 -2 dy = 
!YI op dy + J Y1 07 dy - pu p R oy oy 

0 0 0 

= (p + p?) - (p + p?°) y = 0 y= Y1 

-
p t:.7 = .6.p + 

-
= .6.p 
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Since p 6.-;;,r is much smaller than 6-p as can be seen in Fig. 21, 

it is neglected . . The radius of curvature is thus obtained 

dy r Y 1 -2 
p /4 u 

R =-------

-

( 5-4) 

The pressure difference 6-p decreases with x, so the radius of 

curvature R increases with x as shown in Fig. 22 . This 

relation indicates how the separated flow is bent by the action of 

the transverse pressure gradient. 

G. Similarity Parameter 

The e mperical similarity parameter o- is usually chosen 

when fitting velocity data to theory. Previous investigators have 

found various valu e s of o- • For instance, Liepmann and Laufer (9) , 

in their experiments of a two-dimensional mixing layer, found that 

the best value for presenting experimental results according to 

Tollmien' s theory was 12 , but by Gortler' s theory o- = 11 gave 

better agreements. Reichardt (18) found that o- = 13. 5 for the 

half-jet case and o- = 7. 67 for the two-dimensional jet when 

Gortler' s theory was employed. Sawyer ( 21) chose o- = 15 in his 

analysis of a two-dimensional jet issuing parallel to a flat plate. 
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The non-dimensional velocity profiles are given by Eq. (3-15) 

u 1 
= 2 ( 1 + e rf s) 

In this e quation the central velocity line where u = 
i is defined 2 ' 

on the x-axis where y = 0 implying that s = 0 . A suitable choice 

of two velocities will make it possible to calculate the similarity 

parameter er • The following method is used in this study t o find the 

first approximate value of er • 

Let Y a denote the Y coordinate of the points where ~ = a . 
1 

h is the reading of the pressure manometer which corresponds to 

the dynamic head, and subscript i refers to the free stream. 

h Similarly Y/3 corresponds to = f3 . 
hi 

u 1 Equation = 2 ( i + erf s) 
ui 

gives erf s = 2 ~ - i = 
ui 

h 
At any station x , gives a value of sa 

gives a value of s/3 . 

h and = f3 
hi 



By definition 

er 

y - y 
a C 

X 

y - y 
f3 C 

X 

60 

As er is assumed constant across the mixing region, the similarity 

parameter might be obtained by 

Therefore 

er = ~s X = 
~y y 

Ct 

X. 

~y 
er -

X 

( 5-5) 

and s
8 

are derived theoretically from the equation while Y 
' Ct 

and Y f3 are read directly from the measurements. This method 

makes it possible to determine er from the empirical data. In this 

thesis analysis is based on a = 0. 9 , f3 = 0. 1 . Correspondingly, 

so. g = 1.15 and s0.1 = -0. 345. yo. g and yo 1 were read at 

each station. However, this approximate value of er did not yield 

the best agreement between theory and measurement. It became 

necessary to make few adjustments to improve the agreements. The 

velocity profile based on the measurements were compared with the 
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theoretical profil e given by Eq. ( 3-15) in Fig. 23 . Results of the 

comparison were in agreement, which implied that the velocity 

profile in the separation region has the same characteristic as the 

half-jet mixing layer. However, it was discovered that the simi-

larity parameter er increases with distance rather than remaining 

constant for all value of x . er was plotted against x on a logarith-

mic paper as shown in Fig. 24 . This plot showed that most of the 

points were scattered around a straight line, except those very near 

the hill and those approaching the reattachment point. A slope of 

approximate 0. 5 was found from the plot which meant that er 

increases with v x . This contradicts the assumption leading to 

Equation (3-15) in which er was assumed to be independent of x. 

De spite this discr epancy, if er is considered as a pure 

empirical factor without regard t o its physical meaning, Eq. (3-15) 

still gives a successful description of the velocity distribution along 

the separation region behind a two-dimensional hill. However, 

further insight into the characte r of the similarity parameter er 

can b e seen by considering the effects of the initial boundary layer 

thickness and curvature. With th e c onside rat ion of the initial bound-

ary layer thickness as implie d in Eq. (3-17) 1 Kirk's approximation 

of a displaced asymptotic profile will modify er into er . 
0 

cro = 
XO 

er(1+-) 
X 
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The displacement of the virtual origin x can be obtained from 

Fig. 1 7 . This can be done by extending the straight line that 

represents the linear spread of Zone I width upstream. The inter-

section of this line with the x-axis is then the virtual origin where 

it is assumed the half-jet starts to develop. The distance from the 

crest of the hill model to the virtual origin was measured and was 

found to be x = 20 inches. Fig. 25 shows the similarity para-o 

meter c, obtained by this method. Although c, is still not a 
0 0 

constant, its variation with distance is much smaller and a constant 

value is approached. 

The variation of c, with x might be attributed to the 
0 

curvature of the separated flow which is due to the transverse 

pressure gradient. This effect is implied in Eq. ( 3-20) . 

cf:C 
c,o = -.Ji - mQ 

Q u 1 
where = -

R ou -
ay 

from = 
1 
2 ( 1 + erf s) 

au 
it yields ay = 
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then ( 5-6) 

It is obvious that the value of Q varies with y . It was decided that 

the mean value of Q could represent the characteristic of the 

whole region across the separated flow. This value was obtained as 

follows : 

Qme an = 

/ Yo 9 
lo 1 Q dy 

Yo.9 - Yo.1 

= 
X 

Ro-
\ '7r 

2 
1 /F;, o.9(i+ 

./ 

F/,2 
erf F/,) e dF/, 

Ff, o: 1 

where y O. 9 and F/, 0 . 9 denote the value of y and Ff, respectively 

h 
where hi = 0. 9 , so is y 0_ 1 and Ff, o. 1 . The integration was 

carried out graphically from Ff, 0 . 1 = -- 0. 345 to F/, 0 . 9 = 1. 15 

it yields : 

2~ 
Ro-

( 5-7) 

For zero curvature of the similarity parameter a-,:, = 12 was used . 

The value of m can be then obtained from Eq. (3-21) . Sawyer used 

m = 5 in his analysis of a two-dimensional jet. However, the value 



64 

of m found in this study is not a constant as it varies from 5 to 6 

as shown in Fig. 26 . This indicates that a successful description 

of the effect of curvature on the turbulent mixing mechanism is 

necessary. 

H. Velocity Distribution in Separated Flow 

The primary purpose of this thesis is to investigate the 

velocity distribution in the separated flow behind a two-dimensional 

hill. The development of mean velocity dis tributions behind the hill 

can be seen in Fig. 12 . The velocity near the floor is not plotted 

out because it is difficult to measure the reverse velocity in the 

bubble with a pitot tube. The theoretical velocity profile for a half-

jet is given by Eq. ( 3-15) , which is used to compare with the mea-

sured velocity profiles in the separated flow. From measurements, 

free stream velocity and the x-axis can be determined as described 

previously in this chapter. A suitable value for the similarity 

parameter c, is then chosen and the measured velocity profiles are 

u plotted out non-dimensionally in Fig. 23 with against I; . 
u1 

Theoretical velocity profile is also plotted in the same figure. 

Deviations are observed in the lower part of Zone II . This deviation 

becomes larger near the floor which may be due to the presence of 

th e separation bubble and the failure of pitot tube to measure velocity 
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correctly in the bubble. However, satisfactory agreement is found 

between the half-jet theory and the measurements over most of 

separation region, especially in Zone I . 
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Chapter VI 

SUMMARY AND SUGGESTIONS 

A. Summary 

Velocity profiles in a turbulent separated flow of an incom-

pressible fluid were investigated using the concept of free turbulence. 

The flow separated at the crest of a wedge shaped model hill and 

reattached itself to the floor downstream of the hill forming a 

separation bubble. Gortler's half-jet theory to the first order 

approximation is employed in the analysis of the separated flow. 

Analysis is simplified by neglecting the initial boundary layer thick-

ness and by assuming that there is no pressure gradient in both the 

main str eam and transverse direction. Satisfactory agreements 

b etween theory and experiments were found. The following results 

were obtained: 

1. The velocity profiles in the separated flow over most 

region are successfully described by the half-jet theory; 

except those near the hill, reattachment point and the 

vortex region in the bubble. 

2. Initially the jet boundary and jet axis are curved and 
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then approach to straight lines. The width between the 

two lines varies linearly with the distance. 

3. A similarity parameter <Y is used to relate the measure-

ments and theoretical values. The parameter is not a 

constant but is proportional to the half-power of the 

distance from the crest of the model hill. 

4. The curvature of the separated flow is induced by the 

action of the pressure gradient acros s the mixing region 

in the transverse direction. This transverse pressure 

gradient is large only in a short region immediately 

behind the hill. Further downstream the pressure 

gradient becomes so small that the curvature of the 

separated flow can be neglected. 

Finally, the similarity parameter is modified by Kirk 1s 

approximation of displaced origin to include the effect of the initial 

boundary layer thickness. The effect of curvature on the similarity 

parameter is approximated by the first order theory of Sawyer. 

However, the results indicate that a better interpretation of the 

effect of curvature and a better definition of the radius of curvature 

are needed. 
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B . Suggestions for Further Study 

It is rec ommended that further studies be made : 

1. to measure the velocity inside the separation bubble . 

Since the pitot tube fails to give a reliable measurement 

of the reverse velocity in the bubble, an improved 

instrument will be needed for this purpose. 

2. to find the streamlines in the flow field behind the hill. 

These wer e not obtained in this study because no mea-

surement was made to read the reverse velocity in the 

bubble. 

3. to determine the radius of curvature of the separated 

flow in a more logical way. In this study, the radius of 

curvature is assumed constant across the separated flow 

and this is a very rough assumption. 

4. to investigate the entrainment of the fluid from the 

bubble by th e separated flow and to find out its effect 

on the velocity profile in the separation region. 

5 . to include in the analysis of the separated flow the 

pressure gradients in both the x-direction and the 

y- direction. 
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6. to make a systematic study of the effects of the shape 

and of the size of the hill on the development of the 

velocity profiles in the separated flow. 

7. to study the effect of the standing eddies appearing in 

front of the hill on the separated flow. 
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