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ABSTRACT 

 

GAIN-SATURATED REPETETIVE SOFT X-RAY LASERS WITH 

 WAVELENGTHS SPANNING 9-30 NM AND LASING DOWN TO 7.4 NM 

 

This dissertation describes the development of table-top soft X-ray lasers with 

wavelengths ranging from 30 nm to 7.4 nm. The laser transisitons occur within 

collisionally excited states of nickel-like and neon-like ions which are created from laser 

ablation of solid targets.  A Nd:glass slab laser system was developed to provide 20J (and 

then upgraded to 40J) of laser light at 527 nm for pumping a table-top chirped pulse 

amplification Ti:sapphire laser. With this increase in pump energy, the Ti:sapphire 

system is capable of producing 12J uncompressed laser pulses at a 1Hz repetition rate.  

Stretched and compressed pulses from this Ti:sapphire laser system operating near 800 

nm are used to both ionize the material to a high degree and heat the free electrons in 

these plasmas to temperatures required for high gain. Simulations from a 1.5D 

hydrodynamic/atomic model indicate a peak gain of 90 cm-1 for the 8.8 nm laser 

transition in nickel-like lanthanum is reached with an electron temperature of ~850 eV 

and a density of 6×1020 cm-3. By using the grazing incidence pumping geometry, gain 

saturated operation was demonstrated in the 2p53p1S0→2p53s1P1 transition of neon-like 

titanium (λ = 32.6 nm) and vanadium (λ = 30.4 nm), as well as in the 3d94d1S0→3d94p1P1 

transition in nickel-like tellurium (λ = 10.9 nm) and lanthanum (λ = 8.8 nm). Strong 
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lasing was also demonstrated in the same neon-like transition in chromium (λ = 28.6 nm), 

as well as the same nickel-like transition in cerium (λ = 8.5 nm), praseodymium (λ = 8.2 

nm), neodymium (λ = 7.9 nm) and samarium (λ = 7.4 nm). This is the first demonstration 

of the generation of bright gain-saturated sub-9-nm wavelengths with a table-top laser 

operating at 1-Hz repetition rate. The short wavelength, microjoule pulse energy, 

picosecond pulse duration and repetitive operation of these lasers will enable new 

applications such as sequential imaging of ultrafast nano-scale dynamic phenomena to be 

realized on a table top.  
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CHAPTER 1 

INTRODUCTION 

 

1.1) Motivation 

There has been great interest in the development of coherent soft x-ray (SXR) 

radiation for a vast array of applications since before the demonstration of the first SXR 

lasers in 1985 [1.1,1.2]. Recognition of the unique properties of coherent x-ray radiation 

has motivated the construction of numerous multi-user synchrotron facilities and a few 

free electron laser facilities worldwide [1.3]. However, the limited beamtime and high 

cost of these user facilities limit the use of coherent SXR light. The development of 

compact sources would make coherent soft x-ray light more widely accessible.  

Figure 1.1 (from Attwood [1.3]) illustrates the extent of soft x-ray radiation in the 

electromagnetic spectrum. Herein both extreme ultraviolet (EUV) and soft x-ray (SXR) 

regions will be referred to as soft x-ray radiation. Early applications of coherent x-ray 

 

Figure 1.1:  Illustration of various regions of the electromagnetic spectrum including: infrared 
(IR), visible, ultraviolet (UV), vacuum ultraviolet (VUV), extreme ultraviolet (EUV), soft X-
rays (SXR), and hard X-rays.  (From Attwood [1.3]) 
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light were demonstrated using spatially filtered synchrotron light [1.4-1.7] as well as 

large, low repetition rate SXR laser facilities [1.3] and have motivated the development 

of smaller scale sources.  

 High harmonic generation (HHG) is an attractive method for generating coherent 

SXR light on a table-top due to the availability of femtosecond drive lasers. Sources with 

wavelengths as short as 13 nm have recently been made available commercially [1.8]. 

HHG is typically carried out by focusing a femtosecond duration Ti:Sapphire laser into a 

gas cell, gas jet, or waveguide. The tunnel ionization, acceleration, deceleration and 

recombination of electrons result in the generation of light at high order harmonic 

wavelengths. Recent advances in development of HHG have enabled table-top 

applications with wavelengths in the 13-30 nm range [1.9-1.13]. However the highest 

pulse energy reported to date below 10 nm is ~1 nJ (λ = 9.8 nm) [1.14].  

Collisional SXR lasers, which are the subject of this dissertation, are capable of 

reaching higher pulse energies and higher average flux than HHG sources. For example, 

laser pulse energies up to 10 μJ have been generated in the 13 nm spectral regions by a 

table-top laser operating at 2.5Hz [1.15]. In addition, Chapter 5 describes a table-top 

collisionally pumped laser at 8.8 nm producing 2.7 μJ per pulse, an energy that is more 

than three orders of magnitude than reported using HHG at nearby wavelengths. Future 

advances in diode-pumped chirped pulse amplification (CPA) pump lasers [1.16-1.18] 

that have already reached 1 J energy output at 10-Hz repetition rate [1.16], promise to 

lead to the realization of high average power table-top lasers.  There are various 

applications which require the high pulse energy or high average flux offered by SXR 

lasers. A few selected table-top applications are described below. 
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1.1.1) High Density Plasma Interferometry 

Laser interferometry has been used for decades to obtain multi-dimensional 

electron density maps of a variety of plasmas [1.19, 1.20]. For this application, high 

brightness and a large pulse energy are needed to overcome bright plasma radiation. The 

density of the plasma being studied is limited by the wavelength of the laser used in the 

measurement due to refraction and absorption effects. The use of SXR lasers for plasma 

interferometry can allow for diagnostics of thicker, and higher density plasmas than 

visible and UV lasers. This makes SXR lasers an ideal source for the study of very high 

density plasmas, in particular those relevant to the fields of fusion and astrophysics.  

However this technique requires probing a plasma with a single, coherent, high-energy 

SXR light pulse with a duration shorter than the time scales of interest, making 

collisional SXR lasers a nearly ideal source. 

High density plasma diagnostics using SXR laser interferometry was first 

demonstrated at Lawrence Livermore National Laboratory (LLNL) using the 15.5 nm 

Ne-like yttrium laser line pumped by the NOVA laser [1.21], and subsequently extended 

to experiments using the very compact capillary discharge laser [1.22-1.26] and the 

COMET laser [1.27, 1.28].  

Figure 1.2a shows the experimental setup of the amplitude division interferometer 

used for studying dense plasmas with a compact SXR laser [1.22, 1.29]. In this 

interferometer the SXR laser impinges onto a diffraction grating where most of the  
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a) 

c) b) 

Figure 1.2: (a) Schematic diagram of the soft-x-ray amplitude-division grating interferometer and 
plasma diagnostics setup. The plasma to be studied is placed along one of the arms of the modified 
Mach-Zehnder interferometer. (from Filevich et al. [1.25]). (b) Soft x-ray laser interferrogram taken 
2.6 ns after the peak of a 120 ps laser pulse incident from the right side. The large number of fringe 
shifts close to the axis of the groove is indicative of a high-density region created by the converging 
plasma (c) Measured electron density maps of the aluminum plasma corresponding to the 
interferograms of (b). (b and c from Purvis et al. [1.26] ) 

 

energy is split equally between the first and zero diffraction orders. The plasma to be 

studied is placed in one arm of the interferometer before the beams are re-combined with 

a second grating. The interference pattern between the reference and probe beam is 
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imaged onto a MCP-CCD detector using near-normal incidence multilayer mirrors. 

Recent studies of index of refraction in highly ionized plasmas [1.28], colliding plasmas 

[1.24], and laboratory plasma jets [1.25, 1.26] have been done using table-top SXR 

lasers. Figure 1.2b shows a SXR laser interferrogram taken of a semi-cylindrical colliding 

plasma created by ablation of a 120 ps duration Ti:sapphire laser.  The electron density 

map (figure 1.2c), determined from the displacement of the fringes, shows a high density 

region at the axis from a colliding plasma. Purvis et al. compared these results with 2D 

hydrodynamic simulations and showed that the combination of experimental data and 

simulations can be a powerful tool in studying dynamics of dense plasmas [1.24-1.26].  

Development of high energy, shorter wavelength SXR lasers will allow for the study of 

longer length and higher density plasmas.  

 

1.1.2) Nano-scale Imaging and Patterning 

Applications in nanoscience and nanotechnology demand nanometer-scale spatial 

resolution imaging tools [1.30]. As the resolution of photon based imaging systems scales 

linearly with the source wavelength, reducing the wavelengths into the SXR region can 

enable imaging with nanoscale resolution. Several coherent and incoherent short 

wavelength sources have enabled imaging experiments [1.30-1.40].  Imaging with 

Fresnel zone plates and synchrotron radiation as shown in Figure 1.3 has achieved a 

record resolution of 15nm [1.41]. In this setup synchrotron radiation is spectrally filtered 

and focused onto the sample with a condenser zone plate, where a pinhole is used to 

spatially filter the source. An objective zone plate images the transmitted light from the 

sample onto a SXR sensitive CCD. In spite of the short wavelengths available with the 
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synchrotron source, the resolution of this system is limited in this case by the width of the 

outer-most zone of the objective zone plate. Recent progress has been made towards sub-

10 nm imaging with the development of a new nanofabrication process for producing 

zone plates with smaller outer zone widths [1.42].  

Figure 1.3:  Soft X-Ray microscope (XM1) at the Advanced Light Source in Berkeley. (from Chao et 
al. [1.41])  

 

 The recent development of plasma-based table-top SXR laser sources 

[1.15,1.43,1.44] can make nano-scale microscopy more widely available. These sources 

also have the potential to capture events that occur on a picosecond time scale in a single-

shot, which is not possible with incoherent sources. Record resolution (<38 nm) with a 

table-top source was obtained in 2006 with a 13.2 nm table-top SXR laser [1.30], a 

wavelength of interest for extreme ultraviolet lithography (EUVL). This experiment used 

the same setup as shown in Figure 1.3 where the source was a table-top SXR laser and 

the pinhole removed. The advantage of SXR lasers is the ability to take single shot 

images with zone plate optics. Recently single shot imaging of nanostructures with 

wavelength resolution [1.40] and imaging of nanoscale dynamics [1.45] were both 

demonstrated with a compact capillary discharge laser operating at 46.9 nm.  
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Microscopy with resolution of tens of nanometers will greatly benefit 

semiconductor manufacturing. Global semiconductor device sales exceeded $300 billion 

in the year 2010. The International Technology Roadmap for Semiconductors (ITRS) is 

aiming for introducing EUVL for the production of integrated circuits at the 22 nm node 

by 2013-2015 [1.46] and EUV/SXR sources are a critical component for enabling EUVL. 

The EUVL process uses an incoherent light source at the 13.5 nm reflection peak of 

Mo/Si multilayer mirrors to project light from a mask on to a photoresist. Testing of 

prototype EUVL mirrors has been done with at-wavelength interferometry using coherent 

13.5 nm synchrotron radiation at the Advanced Light Source (ALS) Microfield Exposure 

Tool (MET) [1.47, 1.48]. Sub 15 nm resolution imaging of lithography masks was 

demonstrated at the Advanced Light Source (ALS) facility in Berkeley with synchrotron 

radiation and zone plate optics [1.41]. The current state of the art in zone plate 

manufacturing can produce outer most zone width of ~10 nm. While synchrotron 

radiation has been used to EUV image masks, the development of compact SXR light 

sources near 13.5 nm such as collisional SXR lasers will be necessary for in-situ 

inspection of these masks.  

  A recent increase in table-top SXR laser energy near 13 nm was demonstrated at 

CSU as part of work done related to this dissertation.  A 13.2 nm SXR laser with several 

microwatts average power was demonstrated by laser ablation of a solid cadmium target 

with a high energy, 2.5 Hz repetition rate Ti:Sapphire laser. The Nd:glass slab laser 

system in section 2.2 provided the energy to pump the final amplification stage of this 

laser system. The high average power SXR laser was used in table-top actinic metrology 

of an EUVL mask using reflection mode setup of Figure 1.4a [1.49]. The SXR laser beam 

 7



is directed through a condenser zone plate to focus the light onto the EUVL mask. The 

reflected light is imaged onto a SXR sensitive CCD with the objective zone plate. Figure 

1.4b shows the SXR image of a 180 nm half pitch absorption elbow in a bright field, 

showing the source intensity profile on the sample.  The uniformity of the source was of 

high enough quality to allow for line edge roughness measurements of 175 nm half pitch 

gratings.  

There have also been recent advances in imaging without zone plate optics 

(lensless imaging). This technique requires a coherent source as well as phase 

reconstruction algorithms. Recently lensless coherent imaging using a 29 nm HHG 

source generated with a table-top laser was demonstrated [1.50], and techniques have 

been developed to increase resolution capability [1.51] and determine 3D structure from a 

single view [1.52]. Single shot diffractive imaging was demonstrated using a HHG source 

at 32 nm and produced reconstructed images with a resolution of 119 nm [1.53]. Imaging 

with wavelengths below 13 nm in a single shot using HHG will require a significant 

increase in the pulse energy currently available. The high energy per pulse available from 

table-top collisional plasmas has enabled single-shot nano-scale holography at 13.9 nm 

[1.55], and has the potential to be demonstrated with shorter wavelengths.  
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Figure 1.4:  (a) Diagram of the microscope setup. The light from the laser is guided by a Mo/Si 
turning mirror onto a condenser zone plate which focuses the light onto the EUVL mask. The 
light reflected off the mask is collected by an off-axis zone plate which projects a magnified 
image onto an SXR-sensitive CCD. (b) SXR image of a 180 nm half-pitch absorption elbow 
pattern in a bright field obtained with an exposure of 90 seconds (From Brizuela et al. [1.49]) 

a) 

b) 
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High average power coherent SXR light can also be used for generating periodic 

nano-structures. Inteferrometric techniques utilize the coherence of the source light to 

generate nano-scale intensity patterns onto photosensitive chemical resists [1.7, 1.56-

1.59].  Figure 1.5a shows a SXR laser directed onto a Lloyd’s mirror interferometer 

creating a sinusoidal illumination pattern in the sample plane. The period of the intensity 

pattern (d) is determined by the wavelength of the light source (λ) and the angle with 

respect to the Lloyd’s mirror (θ) by the equation d = λ/(2*sinθ). Nanoscale structures can 

be made by exposing a sample coated with a photosensitive resist such as poly-methyl 

methacrylate (PMMA) and chemically developing the exposed sample. Light from a 

synchrotron source has been used to print 38 nm period gratings onto PMMA [1.7]. More 

recently a technique to use second diffraction orders has been used to print 17.5 nm half-

period gratings [1.56] and has the potential to scale to smaller half-periods. 

While the process of using photolithography for high volume manufacturing of 

integrated circuits uses hundreds of watts of incoherent light, the development of 

coherent high average flux compact SXR sources can be used as a tool to for fabrication 

of low-cost custom manufactured nano-patterns.  Recent progress has been made in 

coherent nano-patterning using compact SXR laser sources.  Using a compact capillary 

discharge laser at 46.9 nm, gratings with a period of 55 nm were printed on 

PMMA[1.57]. Nano-pillers (Figure 1.5b) with 60 nm FWHM size and nano-holes were 

made with a Lloyd’s mirror interferometer and making a second exposure with the 

sample rotated 90º [1.58]. Printing of periodic structures of arbitrary shape has been 

demonstrated with the 46.9 nm capillary discharge laser using the Talbot effect [1.59]. 

The feature size of these nanostructures is inherently limited by the source wavelength, so 
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the development of coherent shorter wavelength high average flux table-top SXR laser 

sources is of interest for printing smaller nanostructures. 

 

 

 

b) 

a) 

Figure 1.5: (a) Lloyd’s mirror setup for printing lines, from Capeluto et al. [1.57]. (b) arrays of 
cone-shaped nano-dots patterned in PMMA by double exposure with a Lloyd’s mirror 
configuration, from Wachulak et al.  [1.58] 
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1.2) Previous Work in Collisional SXR Lasers 

Collisional lasers are laser based on the generation of population inversion in 

atoms or ions excited by electron impact collisions. The argon ion laser [1.60, 1.61]  is a 

common example, where a λ = 514 nm and a λ = 488 nm laser transition occurs in the 

Ar+ state and requires a plasma with electron temperature of ~5eV and a density of ~1014 

cm-3 for significant gain. This plasma is created typically with an electrical discharge 

through an argon filled tube. The discharge tube is placed between two mirrors that form 

a stable optical resonator cavity. It was proposed in the 1980’s that SXR wavelengths 

could be reached in dense, highly ionized Ne-like ions excited by collisions [1.62-1.68].  

The first demonstration of a collisionally excited SXR laser was done in a large 

aspect ratio selenium plasma ionized to the neon-like state with a kilojoule laser in 1984 

[1.1].  A single laser pulse was used to both generate a plasma with a significant fraction 

of Se ions in the Ne-like state (Se+24) and heats the free electrons to temperatures suitable 

for exciting ions to the laser upper level through collisions. The λ = 21 nm laser 

transitions occurs between the 3p and 3s states where the laser upper level is populated 

by monopole excitation from the Ne-like ground state as well as from collisional de-

excitation from higher excited states. The laser lower level is depopulated by fast 

radiative decay to the ground state.  

In the first experiment, the plasma conditions (Te ~ 1.0 keV, Ne ~ 1x1021 cm-3 

[1.1]) allows for a population inversion to occur as a result of efficient pumping of 

electrons to the laser upper level and fast depletion of the laser lower level through rapid 
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radiative decay. The laser upper level population is not rapidly depleted due to the dipole 

forbidden nature of the (2p5
1/2 3p3/2)2→(2s2

0 2p6
0)0 transition.  

After the Ne-like Se SXR laser experiment, SXR lasing in Ni-like Eu (λ = 

6.58nm, λ = 7.1nm), Yb (λ = 5.03, λ = 5.61) Ta (λ = 4.48) and W (λ = 4.32) plasmas was 

demonstrated [1.69, 1.70]. These experiments were also done with ~1ns duration pulses 

with kilojoule energy using the NOVA laser resulting in gains of 1-3 cm-1.  Figure 1.6 

shows the energy level diagram for Ne-like Eu showing laser transitions at 6.58nm, 

7.1nm, 10nm and 10.5nm. Collision rates to the laser upper levels are shown for plasma 

with a density of 2x1020 cm-3 and an electron temperature of 600eV. The upper levels 

have a potential energy of ~1.2keV (shown in parenthesis)  above the ground state and 

the spontaneous emission rates are also shown in parenthesis.  

Figure 1.6:  Simplified level diagram for Eu+35 showing the transitions of interest. The collision 
rates are given for ne = 2x1020 cm-3 and Te = 600 eV. Level energies and spontaneous emission 
rates are in parenthesis.  (Figure from Macgowan et al. [1.69]) 
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Investigation into SXR lasers in Ni-like ions followed from the recognition that 

using this sequence, shorter laser wavelengths could be accessed using plasmas with 

lower degree of ionization than the Ne-like sequence. Figure 1.7 shows the wavelengths 

of the 3p1S0→3s1P1 transition in Ne-like ions and the 4d1S0→4p1P1 transition in selected 

Ni-like ions. For example the Ne-like laser transition in Ru results in a laser transition at 

13.3 nm requiring a large percentage of the ions to be in the +34 state. However, reaching 

the wavelength of ~13.2 nm using the Ni-like series only requires ionizing cadmium only 

20 times due to the larger quantum efficiency of this transition. This reduction in the 

required degree of ionization corresponds to a significant reduction in pump energy.  

Figure 1.7:  Soft X-ray laser wavelengths vs ion charge for the 3p1S0 → 3s1P1 transitions in Ne-like 
ions (red) and the 4d1S0 → 4p1P1 transition in Ni-like ions (blue). Materials in which SXR lasers 
have been demonstrated at CSU are labeled.  

 

 Lasing in Ni-like Ag, Te, La, Ce, Pr, Nd, Nd, Sm, Gd, Tb, and Dy ions was 

demonstrated using a multiple pulse pump scheme resulting in both a reduction of laser 
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pu nergy and an increase in the gain-length product to ~8 [1.71, 1.72]. The initial 

pulses heat the plasma and allow for expansion and reduction of the density gradients in 

the region of optimal gain. This reduced density gradient results in less refraction of the 

amplified beam out of the gain region. Irregularities in the gain region can be smeared out 

by the plasma expansion [1.72]. Both of these effects can lead to higher gain-length 

product. 

 Gain-saturated lasing at wavelengths below 10 nm was achieved at 7.36 nm in a 

Ni-like Sm

mp e

 plasma and at 5.9 nm in a Ni-like Dy plasma using 150J of pump laser energy 

 duration of the pump pulse as compared to the 

upper l

with a 75 ps duration from the VULCAN Nd:glass laser system in a two-target 

configuration [1.73, 1.74]. The SXR laser efficiency was increased by introducing a low 

intensity pre-pulse that was allowed to cool and expand on a timescale > 2 ns. The delay 

between the pre-pulse and main pulse results in lower density gradients in the gain region 

reducing refraction of the SXR laser. The reduced refraction allows for longer 

amplification lengths up to saturation.  

These early demonstrations of SXR lasers were in the quasi-steady state regime as 

a result of the long (0.075-1 ns) pulse

evel lifetime (1-5 ps). Consequently, lasing occurs as long as optimal plasma 

conditions exist. Afanasiev and Shlyaptsev [1.75] recognized that gain coefficients are 1-

2 orders of magnitude larger than those obtained for the same transition in the quasi-

steady state regime can be produced for a short period of time by heating the plasma at a 

rate faster than the relaxation rate of the excited states [1.76]. Using this transient 

collisional scheme, gain-length products of 16.7 in Ne-like Te (λ = 32.6 nm) [1.77] and 

18 in Ni-like Pd (λ = 14.7nm) [1.78] were demonstrated using chirped-pulse 
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amplification lasers capable of producing  pump pulse durations of 0.5-8 ps and energies 

of 5-7J at a repetition rate of 1 shot every several minutes. However, widespread use of 

coherent x-ray light in numerous areas of science and technology remained relatively 

unexploited and requires the development of smaller scale sources capable of operating at 

higher repetition rates.  

Motivated by the demonstrated and potential applications of SXR lasers 

significant effort has been placed in the development of compact high repetition rate SXR 

lasers [1.79-1.84]. Fast discharge excitation of capillary plasmas has produced extremely 

compact saturated SXR lasers emitting at 46.9 nm in Ne-like Ar at repetition rates of up 

to 10Hz [1.79]. Lasing was also achieved in Ne-like Cl at 53 nm [1.80]. Laser-driven 

optical field ionization lasers have produced saturated operation at 41.8 nm and 32.8 nm 

in Pd-like Xe and in Ni-like Kr, respectively [1.81, 1.82]. A remaining challenge is the 

demonstration of saturated high repetition rate table-top lasers at a variety of wavelengths 

with sufficient average power for applications. Different pumping configurations have 

recently been investigated to reduce the necessary pumping energy and enable operation 

at multi-hertz repetition rate. Transverse excitation of a Mo target with 150 fs, 300 mJ 

pulses impinging at 60° from normal incidence resulted in the appearance of the 18.9 and 

22.6 nm laser lines of Ni-like Mo [1.85] however, gain saturated operation was not 

achieved. Longitudinal pumping at 10 Hz repetition rate produced non-saturated 

amplification at 18.9 nm in Ni-like Mo [1.86]. As described next, heating of plasmas with 

a picoseconds pulse, impinging at grazing incidence resulted in the demonstration of 

lasing [1.87] and the achievement of gain saturation using significantly reduced pump 

energy [1.43, 1.88, 1.89]. 
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1.3) Efficient Pumping Using Grazing Incidence Geometry  

The efficiency of transient laser pumped SXR lasers can be further improved by 

spect to the target [1.87- 

1.89]. T

the heating pulse is absorbed near the critical density, which 

generat

directing the pump pulse at a grazing incidence angle with re

his pumping geometry takes advantage of the refraction of the pump beam in the 

electron density gradient of the precreated plasma to efficiently deposit energy into a 

plasma density region with optimum conditions for amplification. The process for 

creating the SXR lasers in the experiments using the grazing incidence pumping (GRIP) 

geometry consists in forming a plasma by typically directing a pulse at normal incidence 

onto a metal target (Figure 1.8a). The plasma undergoes expansion (Figure 1.8b) and  

subsequently is heated by a picosecond pulse directed at grazing incidence (Figure 1.8c). 

This rapidly heats the plasma to higher temperatures, resulting in significant gain and 

ASE laser output. The GRIP geometry results in saturated lasing at significantly reduced 

energies with respect to the normal incidence excitation scheme. It also overcomes the 

limitation in the maximum plasma length available for amplification that is associated 

with longitudinal pumping.  

In the case of SXR laser plasmas heated by transverse normal incidence pumping, 

the majority of the energy of 

es gain in a plasma region with strong refraction from a high density gradient as 

discussed below. This strong refraction ejects the amplified rays out of the gain medium 

[1.90]. Due to this refraction, effective amplification occurs at significantly lower 

densities, where the reduced density gradients allow for longer propagation lengths. 

However, in the normal incidence pumping geometry the low density plasma region is 
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inefficiently heated because its relatively low electron density only absorbs a small 

fraction of the pump radiation.  

Figure 1.8: Illustration of grazing incidence pumping geometry with (a) normal incidence pre-pulse 
heating a solid target, (b) plasma expansion and (c) grazing incidence pump pulse with SXR laser 
output. Also shown with illustration of (d) refraction of pump beam into the gain region with (e) 
relaxed electron density gradient. 

 

n 10% of the laser pump energy is deposited in the Typically only less tha

amplification region and as a result a large amount of laser pump energy is required to 

heat the plasma to the high temperatures necessary for lasing. In contrast, the grazing 

incidence configuration takes advantage of the refraction of the pump beam to efficiently 
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deposit the energy of the pump beam into a region of the plasma with preselected 

electron density where the conditions are optimum for SXR amplification. In this 

preselected gain region the electron density and temperature are sufficiently high for the 

generation of a large  population inversion by transient collisional excitation, yet the 

density gradient is small enough to allow for effective amplification of the soft x-rays 

thorough the entire length of the gain column. A remarkable property of refraction is that 

this electron density ( en ) is strictly defined by only two parameters, the grazing incidence 

angle (θ) and the laser pump wavelength (λ):  

 cp

e

n
n

=θsin
 

 

where  is the maximum electron density within the amplification region and is the 

ritica nsity at the wavelength of the pump. The critical density is the electro nsity
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en

l de
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n dec  

at which the electron plasma frequency pω  equals the laser frequencyω : 
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n o ≈=

where  is the electron mass, is the electron charge, and

)2(  

m e oε is the permittivity of free 

ace. nce, when the grazi  angle is changed, different parts of the density profile sp  He ng

formed by the pre-pulse are preferentially heated. For examp , directing a λ = 800 nm 

pump laser at a grazing incidence angle of 23 degrees results in en  = 2.7×1020 cm-3, and a 

grazing incidence angle of 35 degrees results in n  = 5.7×1020 cm-3. At a given incidence 

angle the pump beam is reflected at the point where it encounters the corresponding 

selected density according to (1) (Figure 1.4d), significantly increasing the path length of 

the pump beam and therefore its absorption in the gain region. Hence, a large fraction of 

le

e
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the pump energy (typically 20% – 50%) can be selectively deposited into the gain region. 

In addition, the grazing incidence pumping configuration has the advantage of 

intrinsically providing a traveling wave for a range of incidence angles of interest, a fact 

that simplifies the experimental set up. The optimization of the amplification along the 

entire length of the medium requires that: a) refraction of the SXR laser radiation is 

minimized, and b) the mismatch between the traveling wave pump speed and the SXR 

laser photon speed is kept small compared to the gain lifetime. When the initial grazing 

angle is small, e.g., o20<θ , this mismatch ~(L/c)×[1-cos(θ)] is also negligibly small. 

However, for larger angles it could reach substantial values. For example with a plasma 

column length of L = 1 cm and θ = 45° the mismatch is 10 ps, which could be 

comparable to transient gain lifetime which can be in the range 3–15 ps depending on the 

maximum electron density achieved (determined by the grazing angle) and the pump 

laser duration.  

An example of the advantages of the GRIP scheme is illustrated in Fig. 1.9 by 

model simulation re the specific case of the 14.7 nm Ni-like Pd laser [1.91]. 

These 

 

sults for 

results were obtained using a 1.5D hydrodynamic/atomic physics code with 

multicell radiation transport and beam refraction developed by our group at Colorado 

State University [1.92]. The simulation compares the gain at normal incidence to the gain 

created by a 20º grazing incidence pump pulse. The plasma is created by a 350 mJ pre-

pulse of 120 ps duration focused into an intensity of 2.4×1012 Wcm-2 impinging at normal 

incidence onto a 4 mm long target. The plasma is subsequently heated by a 1 J pulse 8 ps 

in duration focused to an intensity of 8×1013 Wcm-2. In the case of normal incidence  

 20
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Figure 1.9: Simulated gain and electron density for a Ni-like Pd 14.7 nm laser at the moment of 
peak gain for: a)  gain coefficient for normal incidence irradiation, b) gain coefficient for 20 degree 
grazing incidence irradiation c) lineout of the electron density profile at the time of the peak of the 
short pulse. At normal incidence the region of large gain coefficient coincides with large density 
gradients that rapidly refract the beam out of the narrow gain region. For a pump angle of 20 
degrees the beam heats the plasma where ne = 2 x 1020 cm-3, creating large gain in a region where 
reduced refraction allows the beam to effectively propagate and amplify. The plasma is assumed to 
be created by a 120 ps normal incidence pre-pulse with an intensity of 2.4 x 1012 W cm-2, and heated 
after a 400 ps delay by a 8 ps duration, 800 nm wavelength, 1 J pulse focused to an intensity of  8 x 
1013 W cm-2, both line foci are 30 µm × 4 mm FWHM. (From Luther et al. [1.91]) 

a) 

b) 

c) 

b) 



pumping the picosecond pulse rapidly heats the region near the critical density, 

generating a transient gain with a peak gain coefficient of about 200 cm-1 at a distance of 

10 µm from the target, where the value of the electron density is close to 2×1021 cm-3. 

However in this region the amplified soft X-rays refract out of the high gain region in 

only a few hundred micrometers, inhibiting amplification to large intensities. In contrast, 

at 20° grazing incidence angle  the pump beam energy is coupled into the region of the 

plasma with ne = 2.0×1020 , where the peak small signal gain is computed to be 80 

cm-1 and the refraction length (Lr) is larger than the 4 mm target length, allowing 

amplification to intensities that exceed the gain saturation intensity.   

The simulations show that for the case of the grazing incidence pumped lasers the 

fraction of the pump energy deposited into the gain region is of the order of 20% – 30%, 

significantly greater than the 5% – 8% corresponding to the normal incidence pumping 

case. This significantly reduces the amount of pump energy required for lasing in the 

gain-saturated regime, making possible the development of high repetition rate table-top 

lasers.  

Several high repetition rate SXR lasers have been demonstrated with the grazing 

incidence pumping geometry. Pumping of the 18.9 nm line of Ni-like Mo with 150 mJ of 

total pumping energy from a 10 Hz laser was reported to generate a gain length product 

of ~ 14 [1.87]. In work related to this dissertation, the use of 1 J heating pulses resulted in 

5 H , 

14 , 

1.9 e 

1.1 o  

cm-3

z operation of Ni-like Mo, Ru, Pd, Ag and Cd at wavelengths of 18.9 nm, 16.5 nm

.7 nm, 13.9 nm, 13.2 nm in the gain-saturated regime [1.43, 1.44, 1.88, 1.89, 1.91

3] with amplification at wavelengths as low as 10.9 nm in Ni-like Te [1.43] (figur

0). This geometry was also applied to the Ne-like isoelectronic sequence t
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Figure 1.10:  On axis spectra showing SXR lasers in the Ni-like 4d S0 – 4p P1  isoelectronic 
sequence pumped by a picosecond 1J grazing incidence 800nm laser pulse.  

1 1
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demonstrate saturated amplification of Ti (32.6nm) and V (30.4) at a 5 Hz repetition rate 

as well as lasing in nearby Cr (28.6 nm) [1.89] (figure 1.11).  This reduction in required 

pump energy to obtain gain-saturated lasing in this wavelength range has led to the 

demonstration of several similar lasers at other facilities [1.94-1.98].  

 

As discussed in subsequent chapters recent progress in table-top SXR lasers has 

been made at CSU using an increase of Ti:sapphire pump energy from the installation of 

the frequency doubled Nd:glass slab laser systems described in section 2.2 and 2.3 as 

well as a novel grazing incidence line focusing system that allows for more uniform 

pumping along the target length (section 5.5). This upgrade has resulted in demonstration 

of a [1.15]. 

Figure 1.12 shows a single shot on-axis spectrum of this laser as well as shot-to-shot 

pulse energy fluctuation while being operated at 2.5 Hz, with a short pulse pump energy 

Figure 1.11:  Single shot on-axis spectra of 4 mm long line focus plasmas showing lasing in the 
2p5 3p1S0→2p5 3s1P1 transition of Ne-like Ti, V and Cr ions. 

 significant increase in energy and average power of a 13.9 nm SXR laser 
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of ~2.7 J directed at a 23 deg grazing incidence angle onto a pre-created Ag plasma. The 

resulting average power was ~20 μW, where single shot operation reached energies of 10 

μJ. Applying these same pumping conditions to cadmium targets resulted in sufficient 

flux to demonstrate table-top EUV mask metrology in reflection mode [1.49], a process 

previously was only performed using synchrotron light. Demonstration and 

characterization of SXR lasers from 10.9nm down to 7.4 nm are presented in Chapters 3 

and 4 of this dissertation.  

 

 

 

 

 

Figure 1.12:  (a) Spectra of the Ni-like Ag plasma amplifier, showing highly monochromatic 
laser emission at =13.9 nm. (b) Spectrally resolved CCD image of the laser output. (c) Laser 
output pulse energy of the =13.9 nm laser operating at 0.5 Hz and (d) 2.5 Hz SXR laser operation 
with an average energy of 7.4 μJ with a shot-to-shot laser pulse energy variation of σ =7%. 
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1.4) Phase Coherent Injection Seeded Collisional Soft X-ray Lasers 

The beams produced by amplified spontaneous emission in these amplifiers are 

characterized by relatively large beam divergence (5–15 mrad) [1.43, 1.44, 1.96, 1.98, 

1.99], highly speckled patterns (Fig. 1.13(a) and [1.83]), and limited spatial [1.100] and 

temporal coherence [1.101, 1.102]. Previous work by Tanaka et al. demonstrated a 

significantly reduced far-field divergence and increased spatial coherence using an 

injection technique scheme that makes use of two SXR plasma amplifiers [1.103]. 

However the pulses did not have full temporal coherence. Injection seeding of SXR 

amplifiers with high harmonic (HH) pulses is a promising technique for improving the 

characteristics of SXR lasers that has additional advantages [1.104-1.111]. Figure 1.13a 

shows the experimental setup used by Wang [1.108]. The plasma amplifier is generated 

with a normal incidence pre-pulse and a grazing incidence short pulse. Part of the 

Ti:Sapphire pump laser is compressed, in a separate grating compressor, to a 50 fs pulse 

duration and focused into a gas cell with a 5m focal length lens. A toroidal mirror images 

the HHG beam onto a ~100 μm spot on the SXR plasma amplifier.  Two BK7 substrates 

are placed at a grazing angle of 9º to attenuate the transmitted visible light and transmit 

the SXR beam. The seeded SXR beam is directed onto a spectrometer, where a double 

slit hows a 

com

laser. In addition to a reduced beam divergence [1.107, 1.110] and providing full spatial 

e can generate intense SXR laser pulses 

[1.54], shorter pulse width [1.109], and defined polarization  

 is placed in the beam to measure spatial coherence. Figure 1.13b-c s

i-like Ag parison of the far field beam profiles for an unseeded and seeded 13.9 nm N

coherence (Figure 1.13d) [1.107], this techniqu

with full temporal coherence 
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Figure 1.13:  (a) Setup for injection seeding of a solid target plasma amplifier with a HHG beam. 
Comparison of the far field from (b) an unseeded 13:9 nm Ni-like Ag amplifier and (c) the same 
amplifier seeded by HHG pulses. Injection seeding results in an ~10× decrease of the beam 
divergence. The circular aperture in (b) is from a filter frame. (d) Degree of coherence as a 

is important to note that the laser beam diameters at this location are 80–100 mm and  ~1 mm for 

a) 

c) b) 

function of slit separation for the injection-seeded (solid line) and unseeded (dashed line) laser. It 

the seeded and unseeded lasers, respectively, as presented by Wang et al. [1.108] 

d) 
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[1.105]. The seeding of broad bandwidth solid-target SXR laser amplifiers with HHG  

pulses has the potential of generating femtosecond SXR laser pulses [1.105, 1.109]. 

Simulations predict that seeding of the Ni-like lanthanum laser (λ = 8.8 nm) described in 

Chapter 5 would result in pulse durations of 500-700 fs, and energies of ~100 nJ.  
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CHAPTER 2 

SLAB-PUMPED TI:SAPPHIRE LASER PUMP SYSTEM  
FOR GENERATING SOFT X-RAY LASERS 

 

 

2.1) Ti:Sapphire Laser System 

The experiments were conducted using a Ti:sapphire pump laser system (shown 

in Figure 2.1) consisting of a mode-locked oscillator and three to four stages of chirped-

pulse amplification. The oscillator (Kapteyn-Murnane Labs model TS) is Kerr lens mode 

locked and operates at 86 MHz with an output of 5-6 nJ per pulse, a pulse duration of 30 

fs and a center wavelength of 800 nm. This crystal is pumped continuously with a 5 W, 

diode pumped, single longitudinal mode, frequency doubled, Nd:YVO4 laser (Coherent 

Inc Verdi) operating at 532 nm. The output of the oscillator is chirped by a grating pulse 

stretcher resulting in pulse broadening to 210 ps and it is then electro-optically sampled at 

10Hz with a pockels cell and polarizer. The stretched beam is then amplified to 2 mJ with 

the first stage 8 pass amplifier. The 1st stage amplifier Ti:Sapphire crystal (10 mm 

diameter cut at Brewster angle) is pumped by 130 mW from an 8 W, q-switched, 

frequency  Doubled Nd:YAG laser (Spectra Physics QuantaRay PRO 270) operating at 

10 Hz. 
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The 1st stage output is then spatially filtered and the spurious pre-pulse is removed by a 

pockels cell and polarizer combination. The laser is then amplified to ~280 mJ with a 2nd 

stage 5 pass Ti:Sapphire (15 mm diameter) bowtie amplifier. Each side of the amplifier is 

pumped by the remaining 7 W (390 mJ/pulse) of the 8 W doubled Nd:YAG laser. Figure 

2.2 shows a cross correlation of the 2nd stage laser pulse fit to a gaussian shape with a 140 

ps FWHM rising edge and a 240 ps FWHM falling edge. Following the 2nd stage 

amplifier, the laser is again spatially filtered and any pre-pulse is removed with a pockels 

cell and polarizer set.  

Figure 2.2: Cross correlation (data points) of the 2nd stage amplified uncompressed laser 
pulse fit to a gaussian shape (line) with a 140ps FWHM rising edge and a 240ps FWHM 
falling edge 

 

The 3rd stage amplifier consists of a Ti:Sapphire crystal pumped at normal 

incidence on both faces by a frequency doubled Nd:glass laser system. In the experiments 
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obtaining saturated operation of a 10.9 nm Ni-like Te laser at 1Hz (Chapter 3)  the 3rd 

stage is the final amplifier stage and is pumped by two 10 J beams (λ = 527 nm) from a 

Q-switched frequency doubled Nd:glass slab laser system described in section 2.2. Using 

this pump laser system, this Ti:Sapphire laser is capable of producing an uncompressed 

energy of ~7.5 J with a beam diameter of ~30 mm.  An additional upgrade was completed 

for obtaining saturated operation of an 8.8 nm laser and observation of lasing down to 

7.36 nm (Chapter 4). In this upgrade the 3rd and 4th stage amplifiers were pumped by a 

total of four 10 J (λ = 527 nm) beams from a Q-switched frequency doubled Nd:glass 

slab laser system described in section 2.3. Using this latest increase in pump energy, the 

Ti:Sapphire laser system can produce uncompressed laser pulses with ~12 J of energy at 

a 1 Hz repetition rate.  

To conduct the SXR laser experiments, part of the uncompressed Ti:sapphire 

beam was directed to the pre-pulse arm with a beam splitter and the remaining energy 

was expanded to a beam diameter of 94 mm and compressed to 1-3 ps with a 1740 

lines/mm grating compressor to form the main heating pulse. A waveplate and polarizer 

combination was added to the pre-pulse arm to divert a small fraction of the pre-pulse 

energy into an additional optional pre-pulse that precedes the main pulse by 5 ns. This 

pulse that precedes the main pre-pulse is responsible for creating the ion density profile. 

The addition of this pulse increased the 10.9 nm Ni-like Te SXR laser output, but did not 

have a significant effect on the generation of the 8.8 nm Ni-like La SXR laser.  
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2.2) 20J Slab Laser System for Pumping a Ti:Sapphire Laser 

This section describes the Nd:glass slab laser system that was developed for 

pumping the Ti:Sapphire laser described in Section 2.1.With this pump configuration the 

Ti:sapphire system had 3 amplification stages and the 20 J of pump energy from this slab 

system was used for pumping the 3rd stage amplifier. Using this pump laser resulted in 

7.5J of uncompressed laser energy which was capable of firing at a 2.5 Hz repetition rate. 

This increase in pump energy resulted in advancements in both high average power (and 

high energy) table-top SXR lasers near 13 nm and progress towards shorter wavelength 

table-top SXR lasers.  

 

The following discussion is from the journal article titled: “High-energy 13.9 nm table-

top soft-x-ray laser at 2.5 Hz repetition rate excited by a slab-pumped Ti:sapphire laser.”  

 

Published in: Optics Letters, Vol. 35, pp. 1632-1634 © 2010 Optical Society of America 

 

Author List: D. H. Martz, D. Alessi, B. M. Luther, Y. Wang, D. Kemp, M. Berrill, and J. 

J. Rocca 

 

The chirped pulse amplification Ti:sapphire system consists of a mode-locked 

oscillator and three multipass amplifiers. The third amplification stage is pumped by up 

to 20 J of 527 nm light from the frequency-doubled output of a Nd:glass zig-zag slab 
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laser developed in house. This dual-arm pump laser configuration (Fig. 2.3) was designed 

to operate at repetition rates of several hertz. It has long been recognized that the slab  

geometry has advantages that can overcome some of the limitations imposed by the more 

commonly used rod configuration [2.1,2.2]. The optical propagation along a zig-zag path, 

confined to the slab by total internal reflection, eliminates first-order thermal and stress-

induced focusing. It also reduces stress-induced birefringence and allows for high 

repetition-rate, high-average-power operation limited only by stress-induced fracture of 

the laser glass [2.3]. The slab geometry has been previously used to amplify 1.053 μm 

nanosecond pulses to energies up to 25 J [2.4, 2.5]. More recently, a picosecond chirped 

pulse amplification laser based on Nd:glass slab amplifiers has been used to pump SXR 

lasers at a repetition rate of 0.1 Hz, producing pulse energies up to ~1 µJ [2.6, 2.7].  

 

Figure 2.3: Top, block diagram of the third amplification stage of the Ti:sapphire pump laser 
system and associated slab amplifier laser system used in SXR laser experiments. Bottom, 
schematic diagram of the eight-pass Nd:glass slab amplifier. Labeled components shown are: 
spatial light modulator (SLM), serrated aperture (SA), spatial filter (SF), faraday rotator (FR), 
polarizing beam splitter (PBS), 45 degree quarts rotator (QR45), thin film polarize (TFP), 90 
degree quartz rotator (QR90), potassium dideuterium phosphate crystal (KD*P). 
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As previously discussed, in our Ti:sapphire laser system, pulses from a Kerr lens 

mode-locked oscillator are stretched to 210 ps FWHM with a grating stretcher. The first 

two amplifier stages are pumped by a commercial 10 Hz frequency-doubled 800 mJ Q-

switched Nd:YAG laser, resulting in 800 nm laser pulses with ~200 mJ energy, and the 

third multipass amplifier is pumped by the Nd:glass slab amplifiers.  

The front end of the slab laser consists of a Q-switched Nd:YLF oscillator and a 

sequence of pre-amplifier Nd:YLF rods. The oscillator cavity consists of an 80% 

reflective output coupler with a radius of curvature of 3 m and a high reflector with a 10 

m radius of curvature placed 0.58 m from the output coupler. The oscillator is q-switched 

with a pockels cell and polarizer combination. An iris is placed in the oscillator and 

closed to a diameter of about ~1 mm which prevents the preferential lasing of higher 

order spatial modes. The polarizer arrangement allows for lasing only perpendicular to 

the c-axis resulting in a central wavelength of 1053 nm. It produces 1 mJ pulses of ~19 ns 

FWHM at a 5 Hz repetition rate in a TEM00 gaussian mode.  

The pulses from the oscillator are directed through an active liquid crystal spatial 

light modulator (SLM) and are relay imaged onto a serrated aperture (SA) and then 

spatially filtered to produce a beam with a super-Gaussian intensity profile. The beam is 

then imaged into a preamplifier consisting of two 7 mm diameter Nd:YLF rods arranged 

in a double-pass configuration to yield pulse energies of ~120 mJ. The double pass 

amplification is accomplished by using a polarizing beam splitter (PBS) cube, a Faraday 

rotator (FR) and a half-wave plate λ/2 combination. The output of the preamplifier is 

imaged onto a second serrated aperture and spatial filter (SF) pair to obtain a flat-top 

beam profile. This profile is relay imaged throughout the rest of the system. The beam is 
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subsequently stretched onto an oval of 8 mm × 120 mm dimension through a pair of 

cylindrical anamorphic imaging telescopes (not shown in Fig. 2.3) to conform to the 10 

mm × 140 mm cross section of the slab amplifiers shown in figure 2.4. The resulting 

beam is split into two identical arms by a 50% beam splitter, and each beam is amplified  

Figure 2.4: Cross sectional view of slab head showing 10 x 140 x 400 mm slab, 
flashlamps, reflector cavity, and water flow channels.  

 

by eight passes through the 400 mm long slab amplifiers. The slabs were pumped by four 

Xe flashlamps, which were driven with a 300 µs electrical pulse, depositing ~700 J of 

electrical energy per lamp. Each arm operates in the following fashion. The input (S-

polarized) beam reflects off a thin film polarizer (TFP) pair and travels through a 45° 

quartz rotator (QR45)/FR combination. The beam remains S polarized and is then 

injected into an eight-pass amplifier cavity by a third TFP (TFP3). With a relay imaging 
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telescope, the pulses are directed into the slab for two passes of amplification. The same 

telescope images the beam back through a 90° quartz rotator (QR90), changing the 

polarization to P, resulting in transmission through TFP4. The beam is then reinjected 

along the path of the input beam (passing through TFP3) for an additional two passes 

through the slab. After a total of four passes the beam again passes through QR90, 

restoring the polarization to S, thereby causing it to be ejected by TFP4 to a normal 

incidence mirror. The mirror directs the beam back on itself, reversing the process for a 

total of eight passes before being sent back through the QR45/FR pair, resulting in P 

polarization and ejection by the input TFP.  

Each slab amplifier arm generates pulses with an energy of up to 18 J that are 

frequency doubled in a pair of KD*P crystals to produce up to 10 J of λ =527 nm light in 

each arm. Both beams are reshaped to 30 mm diameter and imaged into the 30-mm-thick 

third-stage Ti:sapphire amplifier rod. A near flat-top pump beam is achieved by adjusting 

the input beam’s intensity profile by using the SLM. Three-pass amplification of the 

λ=800 nm 200 mJ laser pulses through the third stage Ti:sapphire amplifier produces 

pulse energies up to 7.5 J at a 2.5 Hz repetition rate with a typical spatial profile shown in 

Fig. 2.5(b). Figure 2.5(a) shows a series of consecutive laser shots acquired while 

operating the amplifier at 1 Hz repetition rate. The shot-to-shot energy variation was 

measured to be ~1%. 
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Figure 2.5: (a) Shot-to-shot variation of amplified λ=800 nm Ti:sapphire laser pulse energy 
measured at a 1 Hz repetition rate. The average laser pulse energy is 7.4 J, and the standard 
deviation σ=1%. (b) Typical intensity profile of the amplified λ =800 nm beam.  

 

 

2.3) 40J Slab Laser System for Pumping a Ti:Sapphire Laser 

 To make further progress in the development of shorter wavelength table-top soft 

x-ray lasers, considerably more excitation laser energy is needed due to the steep scaling 

as a function of shorter wavelength. This increase in Ti:sapphire laser energy was 

accomplished by adding a 4th amplification stage and developing a flashlamp Nd:glass 

slab laser system capable of producing both 5 J to pump the third stage amplifier and 35 J 

(@ 527 nm) to pump the 4th stage amplifier. This Nd:glass laser system is similar to the 

one described in Chapter 2.2. The most significant difference between the two systems is 

the use of a slab pre-amplifier and the replacement of the 8-pass slab amplification 

scheme with a double-pass arrangement. Figure 2.6 shows the output pulse energy 

resulting from double pass amplification through one of the Nd:glass slab as a function of 

seed energy. Seeding a single slab with a 1.75 J beam results in a double pass output of 

12 J. The resulting beam was split into four equal 3J beams to seed each of the two pass 4 

slab amplifiers. This resulted in four 18 J beam. This arrangement has several advantages.  

Thermal and stress induced aberrations from the slab and spherical aberrations from 
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multiple passes through a relay image telescope are reduced resulting in an increase in 

doubling efficiency and a more uniformly distributed pump profile. The double-pass 

arrangement does not allow for an unintentional laser cavity to be formed as in the 8-pass 

system which can result in an increase of inter-cavity energy. The double-pass system is 

easier to align which reduces the chance of edge diffraction in the high energy laser 

beam, facilitating its day-to-day use. The double-pass system does not require the 

extensive use of expensive, custom large-area optics such as the faraday rotators, thin 

film polarizers and 7” diameter achromat lenses.  

Figure 2.6: Double-pass output energy of a flashlamp pumped Nd:glass amplifier as a 
function of seed energy 

 

 The front end of the 40 J slab system consists of an Nd:YLF oscillator (identical 

to that used in Chapter 2.2) and a sequence of pre-amplifier Nd:YLF rods shown in figure 

2.7. Pulses from the oscillator with an energy of 5 mJ are relay imaged and expanded 
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onto a serrated aperture and spatial filter combination to produce super-gaussian spatial 

profile pulses of 280 mJ after amplification in two passes through two 7 mm diameter 

Nd:YLF rods. A pockels cell and polarizer are placed between the 1st and 2nd passes to 

reduce ASE. The pulses pass through an optical isolator consisting of a polarizer, faraday 

rotator, waveplate and additional polarizer to prevent back reflections from travelling 

through the system. 

To Slab Amplifiers 

Figure 2.7: Diagram of Nd:YLF oscillator front end and and pre-amplifiers for the slab 
laser system. Labeled components are: serrated aperture (SA), spatial filter (SF), 
polarizing beam splitter (PBS), faraday rotator (FR), pockels cell (PC),  

 

After relay imaging and single pass amplification in two 9mm diameter Nd:YLF rods the 

pulses reach an energy of 1.1 J. The pulses are relay imaged and amplified by a single 

pass through a 15 mm diameter Nd:YLF rod reaching an energy of 2.5 J. An anamorphic 

telescope expands the beam to an 8 mm x 120 mm oval to fit the 10 mm x 140 mm 

aperture of the same slab amplifiers used in Chapter 2.2. A serrated edge and horizontal 

slit aperture (in vacuum) are used in this up telescope to allow for defining the 8mm 

width of the beam and allowing for slight adjustment to prevent clipping by the edges of 

the slab faces.  
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 The pre-amplified pulses are injected into the slab amplification system shown in 

figure 2.8. Seed pulses are double-passed through a single Nd:glass slab reaching 12 J 

energy per pulse.  The beam is subsequently relay-imaged and split into four 3 J beams, 

each used to seed additional double-pass slabs resulting in four 18J beams. To limit 

depolarization of the beam thin film polarizing mirrors are used after each slab, but are 

not necessary between the first and second passes. Four KD*P doubling crystal pairs 

similar to those used in the pump laser described in section 2.2 are used in this system 

with a doubling efficiency of ~ 55% to produce four 10 J beams at the 2nd harmonic 

wavelength of 527 nm. Half of the energy of one arm (~5 J) is directed to the 3rd stage 

Ti:sapphire amplifier to produce Ti:Sapphire pulses of  1.9 J and the remaining 30-35 J is 

used for pumping of the 4th stage amplifier. Figure 2.9(a) shows the output energy of the 

fourth Ti:sapphire stage as a function of pump energy. Uncompressed laser pulses with 

up to 12 J of energy are obtained at a 1 Hz repetition rate with a good quality spatial 

profile (Figure 2.9b) when the 4th stage is pumped with ~34 J. 

From Front End

 

Figure 2.8: Diagram of Nd:glass slab amplifier system consisting of a double-passed seed 
slab and four double pass slabs producing a total of four 10 J, λ = 527 nm laser pulses. 
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b) 

a) 

Figure 2.9: (a) Output of the 4th stage of the Ti:Sapphire laser system as a function of green 
pump laser energy. (b) Spatial profile and cuts of a 12J uncompressed Ti:Sapphire  laser 
pulse.  
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CHAPTER 3 

HIGH REPETITION RATE OPERATION OF SATURATED TABLETOP 

SOFT X-RAY LASERS IN TRANSITIONS OF NEON-LIKE IONS NEAR 30 NM 

 

This chapter presents the first demonstration of grazing incidence laser pumping 

in  Ne-like SXR lasers. Average powers exceeding 1 microwatt in laser transitions of Ne-

like ions at wavelengths near 30 nm were demonstrated. Gain-saturated operation was 

obtained at a repetition rate of 5 Hz by exciting solid targets with Ti:sapphire pump 

pulses of ~1 J energy and 8 ps duration impinging at grazing incidence of 20 degrees. 

Gain-length products of about 20 were obtained in the 30.4 nm and 32.6 nm transitions of 

Ne-like V and Ne-like Ti respectively. Strong lasing was also observed in Ne-like Cr at 

28.6 nm and in the 30.1 nm line of Ne-like Ti. This average power makes these table-top 

sources suitable for applications. 
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3.1) Introduction 

There is much interest in the development of compact soft x-ray lasers capable of 

generating high average powers for applications. This requires operation of the soft x-ray 

amplifiers in the gain-saturated regime at high repetition rate. The first soft x-ray lasers to 

achieve high average powers used collisional electron impact excitation of Ne-like ions in 

a capillary discharge plasma [3.1,3.2]. Capillary discharge excitation has produced 

average powers of a few mW in the 46.9 nm line of Ne-like Ar. Collisional optical-field-

ionization lasers operating at 10 Hz repetition rate in Pd-like Xe at 41.8 nm [3.3,3.4] and 

in Ni-like Kr at 32.8 nm [3.5] have also been reported to reach gain saturation. Saturated 

soft x-ray amplification in transitions of Nelike and Ni-like ions excited by transient 

collisional electron excitation was also obtained but only at repetition rates of one shot 

every several minutes in plasmas heated by picoseconds duration pulses of 3-7 J energy 

[3.6-3.8]. In recent work the energy necessary to pump transient collisional soft x-ray 

lasers has been significantly reduced using a grazing incidence pumping geometry that 

increases the absorption of the pump beam in the gain region [3.9-3.12]. This pumping 

geometry significantly increases the energy deposition efficiency of the pump beam into 

the gain region by taking advantage of refraction to increase the path length of the pump 

rays through this region of the plasma. Excitation of Mo plasmas at a grazing incidence 

angle has resulted in gain saturated operation in the 18.9 nm line of Ni-like Mo at 5-10 

Hz repetition rate [3.9-3.11]. Most recently saturated laser operation at 5 Hz repetition 

rate was obtained in several transitions of Ni-like ions with wavelengths ranging from 

16.4 nm to 13.9 nm by grazing incidence heating of plasmas with 8 picosecond pulses of 
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1 J energy [3.12]. It is of significant interest to extend these results to other isoelectronic 

sequences, as different applications require access to different wavelengths. For example, 

the characterization of extreme ultraviolet optics for solar coronal studies would 

significantly benefit from compact high repetition lasers with wavelengths between 30 

and 37 nm that includes both the HeII 30.4 nm line and strong lines of FeXI-XVI [3.13]. 

Herein we report the extension of gain saturated high repetition rate laser-pumped 

transient soft x-ray lasers to transitions in Ne-like ions using grazing incidence pumping. 

High average power soft x-ray laser operation was obtained for the first time to our 

knowledge in the 2p53p1S0→2p53s1P1 transitions of Ne-like Ti and V at 32.6 nm and 30.4 

nm respectively. We also observed strong lasing in the corresponding line in Ne-like Cr 

at 28.6 nm, and in the 30.1 nm 2p53d1P1→2p53p1P1 line of Ne-like Ti which inversion 

relies on strong re-absorption of the 2.335 nm resonant transition linking the 3d1P1 laser 

upper level to the ion ground state [3.14]. 

 

3.2) Experimental Setup 

The pump beam geometry is similar to the one used in recent experiments with 

Ni-like ions [3.10-3.12]. The targets were 4 mm wide polished slabs with a thickness of 2 

mm for Ti and V and 1mm for Cr. They were irradiated with pulses from a Ti:sapphire 

laser system operating at a center wavelength of 800 nm consisting of a mode-locked 

oscillator and three stages of chirped-pulse amplification. A beam splitter was placed at 

the exit of the third amplifier stage to direct a fraction of the energy of the uncompressed 

laser pulses (120 ps duration) into the pre-pulse arm. The rest of the laser energy was 

compressed to 8 ps to form the main heating pulse. Pre-pulses of 0.35 J for Ti and 0.5 J 
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for V and Cr, were used to form a plasma by irradiating the target at normal incidence. 

This pre-pulse was preceded by a 10 mJ pre-pulse about 5 ns before. The pre-pulses were 

focused into a 4.1 mm long × 30 μm wide line using the combination of a spherical and a 

cylindrical lens. The plasma was allowed to expand to reduce the density gradient and it 

was subsequently rapidly heated by the 8 ps duration pulse with ~ 1 J of energy 

impinging at a selected grazing incidence angle onto the target. The short pulse was 

focused into a line of the same size utilizing an f = 76.2 cm parabolic mirror placed at 7 

degrees from normal incidence. The normal to the target surface was tilted from the axis 

defined by the pre-pulse beam to form grazing incidence angles of 17, 20 or 23 degrees 

with respect to the axis of the short pulse beam. The plasma emission was attenuated with 

calibrated Al filters and a set of metallic meshes of measured transmissivity. The soft x-

ray laser beam was monitored using a flat field spectrograph composed of a 1200 l/mm 

gold coated variably spaced spherical grating and a 1 square inch back-illuminated CCD 

detector array placed in the image plane of the grating. 

  

3.3) Experimental Results 

Figure 3.1 shows on-axis spectra corresponding to 4 mm long plasmas of Ti, V 

and Cr irradiated at a grazing incidence angle of 20 degrees. In the Ti experiment the 

energy of the picosecond pulse was 1 J. In the V and Cr experiments the energy of the 

main pre-pulse was increased to 0.52 J at expense of the energy of the picosecond pulse, 

which in these cases was ~ 0.9 J. In all cases, the 3p1S0→3s1P1 line of the Ne-like ions is 

observed to clearly dominate the spectra. In the case of Ti, lasing was also observed in 
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the 30.1 nm 3d1P1→3p1P1 line of the Ne-like ion, but its intensity of was weaker for the 

range of pump parameters investigated. 

 

Figure 3.1: Single shot on-axis spectra of 4 mm long line focus plasmas showing lasing in 
the 2p53p1S0-2p53s1P1 transition of Ne-like Ti, V and Cr ions. In all three cases, this laser-
line dominates the spectrum. 

Figure 3.2 shows the variation of the soft x-ray laser output intensity as a function 

of the angle of incidence of the short pulse beam for all three lasers. At an incidence 

angle of 17 degrees lasing was observed for the 3p1S0-3s1P1 lines of the Ne-like ions of 

all three species (see Fig. 3.2). However, at this angle the pump beam is deposited in a 

region where the electron density is lower than the optimum value for maximum soft x-

ray laser output intensity. The output intensity of all three lasers was observed to increase 

significantly for an angle of 20 degrees, for which refraction helps to couple the pump 

beam into a region of higher electron density (2x1020 cm-3). At the steeper angle of 

incidence of 23 degrees a significant fraction of the beam energy is absorbed in a higher 

density region where the electron density gradients are too steep for optimum 
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amplification. Also contributing to a lower laser output at this angle is the shorter 

duration of the gain and the increased mismatch between the velocity of the traveling 

wave of the pump and the speed of light in the plasma. 

 

Figure 3.2: Variation of output laser intensity as a function of grazing incidence angle for Ne-
like Ti, V and Cr. Each point represents the mean of 15 or more consecutive laser shots. In all 
three cases the laser operates best at 20 degrees. At this angle the standard deviation of each 
data set ranges from 14% to 38% of the mean. 

Figure 3.3 shows the output intensity of the 30.4 nm line of Ne-like V as a 

function of time delay between the main pre-pulse and the short pulse for a grazing 

incidence angle of 20 degrees. Strong lasing was observed to occur over a wide range of 

time delays. The optimum delays were observed to be approximately 600 ps for Ne-like 

Ti and 450 ps for Ne-like V and Cr. This result, which follows the same trend observed 

for lasing in Ni-like ion transitions [3.12], is related to the fact that a more highly ionized 

pre-plasma is required for lasing at higher Z, allowing less time for plasma cooling 

during expansion and recombination. The maximum intensity of the 30.1 nm line of Ne-
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like Ti occurs at a delay of 520 ps, an earlier time than the optimum for the 32.6 nm line. 

At this delay the intensity of the 30.1 nm line is typically half that of the 32.6 nm line. 

 

Figure 3.3: Laser output intensity of the 30.4 nm line of Ne-like V as a function of time delay 
between the main pre-pulse and the short pulse. Lasing is strong for delays ranging from 400 
ps to 600 ps. Each point is the average of 10 or more laser shots; the error bars correspond to 
± the standard deviation of the set. 

Figure 3.4 shows the variation of the laser intensity of the 30.4 nm line of the Ne-

like V as a function of plasma length. The solid line represents a fit of the data with the 

expression derived by Tallents et al. for the variation of the laser intensity with plasma 

length taking into account gain saturation [3.15]. 

For short plasma lengths the laser output intensity is observed to increase 

exponentially with a small signal gain coefficient of g = 72 cm-1, until saturation is 

reached. The gain-length product reaches 21.7 for a 4 mm target, which exceeds the gain-

length product value of ~ 15 at which most collisionally excited soft x-ray lasers have 

been observed to reach gain saturation. A similar measurement for the 32.6 nm line of 
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Figure 3.4: Intensity of the 30.4 nm line of Ne-like V as a function of plasma length. 
Each point is the average of 10 or more shots. A fit of the data results in a gain 
coefficient of 72 cm-1 and a gain-length product of 21.7. Each point is the average of 
10 or more laser shots; the error bars correspond to ± the standard deviation of the set. 

 

 Ne-like Ti yielded a comparable gain-length product, gxl= 18.4. The gain-length product 

for the 28.6 nm line of Ne-like Cr was not measured, but the laser output intensity was 

lower than for the other two elements. 

Operation at 5 Hz repetition rate was demonstrated for both Ne-like Ti and V 

moving the targets at a constant velocity of 40 μm per shot. Figure 3.5 illustrates a series 

of 250 contiguous laser shots at this repetition rate for the 30.4 nm line of Ne-like V. The 

250 consecutive shots have a distribution characterized by a standard deviation which is 

35% of the mean. Operation at 5 Hz repetition rate yielded laser pulses with an energy of 

up to 540 nJ, estimated from the counts on the CCD taking into account the quantum 

efficiency of the detector and the losses. The average pulse energy was 300 nJ 

corresponding to an average output power of about 1.5 μW. For the 32.6 nm line of Ne-
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like Ti the maximum soft x-ray laser pulse energy observed was estimated to be 780 nJ. 

The average energy for this line was 530 nJ, corresponding to an average output power of 

about 2.6 μW. This is to our knowledge the first report of laser average powers in excess 

of 1 microwatt in this region of the spectrum. 

 

Figure 3.5: Shot-to-shot variation of the intensity of the 30.4 nm Ne-like V laser line at 5 Hz 
repetition rate. The 250 consecutive shots have a distribution characterized by a standard 
deviation which is 35% of the mean. 

 

3.4 Conclusions 

In summary, microwatt average power laser-pumped Ne-like ion lasers were 

demonstrated for the first time to our knowledge. This demonstration of saturated high 

repetition rate table-top lasers in Ne-like Ti and Ne-like V and its possible extension to 

other isoelectronic lines will significantly increase the diversity of soft x-ray laser 

wavelengths available for applications requiring high average powers. 
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CHAPTER 4 

GAIN-SATURATED 10.9 NM TABLETOP LASER  

OPERATING AT 1 HZ REPETITION RATE 

 

 This chapter discusses the demonstration of a gain-saturated 10.9 nm table-top 

soft x-ray laser operating at 1 Hz repetition rate. Lasing occurs by collisional electron 

impact excitation in the 4d1S0→4p1P1 transition of nickel-like Te in a line-focus plasma 

heated by a chirped pulse amplification Ti:sapphire laser. With an average power of 1 

microwatt and pulse energy up to ~2 microjoules this laser extended the ability to 

conduct table-top laser experiments to a shorter wavelength. These results were obtained 

using the Ti:sapphire pump system described in section 2.2. 
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4.1) Introduction 

There is great interest in extending tabletop soft x-ray lasers to shorter 

wavelengths for applications. Of particular interest is the development of gain-saturated 

lasers that can be fired repetitively, producing the average power required for many 

applications. Both capillary discharges and laser-created plasmas have been successfully 

used to demonstrate gain-saturated collisionally excited tabletop lasers that operate at 

wavelengths between 46.9 and 13.2 nm at repetition rates of several hertz [4.1-4.10]. 

However, the steep wavelength scaling of the energy necessary to pump such lasers 

imposes a challenge to the demonstration of gain-saturated high-repetitionrate lasers at 

shorter wavelengths. As a result, the use of tabletop soft x-ray lasers in applications has 

been limited to wavelengths above 13 nm. The shortest wavelength tabletop laser used in 

applications is a gain-saturated 13.2 nm nickel-like Cd laser that enabled the 

implementation of broad area microscopes with spatial resolution down to 38 nm [4.11]. 

Herein we report the demonstration of a gain saturated tabletop 10.9 nm laser in 

the 4d 1S0->4p 1P1 transition of nickel-like Te that operates at 1 Hz repetition rate. Lasing 

in nickel-like Te was first demonstrated using 520 J of laser pump energy to heat a 

collisionally pumped plasma [4.12]. More recently gain in this transition was obtained in 

a tabletop setup using 1 J pulses of 8 ps duration impinging at a grazing angle of 23 deg 

to heat a precreated plasma [4.4]. However, the output laser intensity was weak and far 

from saturation, producing an insufficient photon flux for applications. Model 

computations conducted using a 1.5 dimension hydrodynamic/atomic physics code 

developed in house [4.13] suggest that gain-saturated lasing in the λ=10.9 nm 

4d1S0→4p1P1 transition of nickel-like Te can be generated by irradiation of a solid Te 
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target with a sequence of pulses from a chirped pulse amplification laser with a total 

energy of less than 4 J. Figure 4.1 shows the simulated evolution of the plasma 

parameters and resulting gain coefficient for the 10.9 nm laser line. The plasma is 

assumed to be created by a sequence of two 210 ps duration prepulses with intensities of 

4.8x1010 Wcm-2 and 1.8x1012 Wcm-2 separated by 5.6 ns, and to be subsequently 

transiently heated with a 5 ps FWHM duration pulse with an intensity of 9.8x1013 Wcm-2 

impinging at 30 deg grazing incidence. This pumping geometry, which is inherently a 

traveling wave, takes advantage of the refraction of the pump beam in the electron  

 

Figure 4.1: Simulated evolution of (a) electron temperature, (b) electron density, (c) 
mean degree of ionization, and (d) λ=10.9 nm gain coefficient for a Te plasma 
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density gradient of the pre-created plasma to efficiently deposit energy into a plasma 

density region with optimum conditions for amplification [4.3-4.6, 4.8-4.10, 4.14]. The 

first laser pulse is responsible for creating the ion density profile, and the second laser 

pulse heats the plasma, ionizing 40% of the ions into the nickel-like state over a relatively 

broad region [Fig. 4.1(c)]. A dip in the degree of ionization develops between the outer 

region where the prepulse energy is absorbed and the target region dominated by pressure 

ionization. The short pulse energy is coupled by refraction into a region where the 

electron density is ~4x1020 cm−3 and rapidly increases the electron temperature to ~600 

eV [Fig. 4.1(a)]. This is computed to generate a transient inversion resulting in a peak 

gain of ~120 cm−1 with a FWHM duration of ~9 ps [Fig. 4.1(d)]. A 3-D post-processor 

ray-tracing code [4.13] predicts a spatially integrated gain of 64 cm−1. The experiments 

described below used similar excitation conditions to demonstrate a λ=10.9 nm tabletop 

nickel-like Te laser operating at a repetition rate of 1 Hz with an average power of ~1 

µW. 

 

4.2) Experimental Setup 

 The experiment was conducted by rapidly heating a 5-mm-wide solid Te slab 

target at the irradiation conditions described above using a chirped-pulse amplification 

Ti:sapphire laser system. Three stages of amplification were used to amplify λ =800 nm 

pulses to energies up to 5.5 J before compression. After the third amplification stage the 

stretched pulses have a duration of 210 ps. A beam splitter placed after the final 

amplification stage was used to redirect 40% of the energy into a prepulse arm used to 

create a plasma with relatively smooth density gradients. About 2% of the energy was 
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split to create an initial plasma that was subsequently ionized to the nickellike ionization 

stage by the second 210 ps duration pulse. The two prepulses, separated by 5.6 ns, were 

focused into a 30 µm x 5 mm FWHM line onto the target. The remaining 60% of the 

laser energy was compressed into a 5 ps FWHM pulse in a vacuum grating compressor 

constructed using dielectric diffraction gratings [4.15] and focused into an overlapping 

line of the same dimension. The plasma emission was filtered by a 0.3-µm-thick Al foil 

and a 0.3-µm-thick Zr foil both with parylene support and was directed onto a grazing 

incidence spectrometer consisting of a 1200 lines/mm variable-line-spaced grating and a 

back-illuminated CCD detector. 

 

4.3) Experimental Results 

 

Figure 4.2 shows the measured λ=10.9 nm laser intensity as a function of time 

delay between the peaks of the main prepulse and the short pulse. Strong soft x-ray lasing 

was observed to take place over a relatively narrow range of excitation delays centered at 

200 ps. Lasing is observed to cease when the delay is increased to 400 ps. However, 

further increase of the delay results in weak lasing around 550 ps. This late laser pulse 

was predicted by the simulations. It occurs when Co-like ions recombine into Ni-like 

ions, indicating that the plasma is slightly over-ionized at the time of peak laser gain. 

 

77 
 



Figure 4.2: Measured λ=10.9 nm laser intensity as a function of delay between the 
prepulse and short pulse. 

 

Figure 4.3(a) shows a series of on-axis single-shot spectra and their corresponding 

vertical integrations for plasmas of different lengths between L=1.8 and 5 mm. The total 

pump energy on the target was fixed at 3.4 J. For a target length of 1.8 mm the 10.9 nm 

laser line is very weak and has an intensity similar to that of other plasma lines. The soft 

x-ray laser intensity rapidly grows with target length to dominate the entire spectra, 

eventually reaching saturation. From these spectra it was determined that for the 5 mm 

target the soft x-ray laser beam divergence in the direction parallel to the target is 8.5±1 

mrad. The measured soft x-ray laser intensity as a function of target length is shown in 

Fig. 4.3(b). The line is a fit of the data with an equation by Tallents et al. [4.16] that takes 

into account gain saturation. The fit shows a small signal gain of g0=45.3 cm−1 and an  
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Figure 4.3: (a) On-axis single-shot spectra from the Te plasma for increasing plasma 
column lengths from 1.8 to 5 mm. Strong lasing is observed at 10.9 nm. (b) Measured 
laser line intensity as a function of plasma column length. Each data point is an average 
of eight laser shots, and error bars correspond to one standard deviation.  
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integrated gain length product of 14.1 at 5 mm. At about 3 mm, the intensity starts to 

show signs of saturation. 

Results of the variation of the soft x-ray laser pulse energy at a laser repetition 

rate of 1 Hz are shown in Fig. 4.4. These data were obtained pumping a 6-mm-wide Te 

target with 4.2 J of total laser pump energy on target. The target was continually moved 

at a speed of 200 m per second to renew the surface irradiated by each shot. The soft x-

ray laser average power obtained was ~1 µW. The shot-to-shot energy variation is 

characterized by a standard deviation of 36%. This large variation can be explained by 

the brittle nature of the tellurium target, which often fractures locally near the edges when 

irradiated with the high-energy pulses used in this experiment, affecting the subsequent 

laser shot. In comparison, in a similar experiment conducted with a Ag target that does 

not fracture we measured a λ=13.9 nm output pulse laser energy variation characterized 

by an 8% standard deviation. An increase in the speed at which the Te target is moved 

should decrease the shot-toshot fluctuation in soft x-ray laser pulse energy. The energy of 

the most intense laser pulses was estimated to be ~2 µJ from the CCD counts, taking into 

account the attenuation of the filters, the grating efficiency, and the quantum efficiency of 

the detector. Assuming a laser pulse duration of 4–5 ps and a near-field laser spot of ~15 

µm diameter, both resulting from the 3-D postprocessor ray-trace simulation, the laser 

beam intensity is estimated to reach ~2.5 x 1011 W cm−2. This exceeds the 0.6–1.4 x 1010 

Wcm-2 computed saturation intensity of this line for the plasma conditions of the 

experiment.  

80 
 



Figure 4.4: Sequence of λ=10.9 nm laser shots acquired at 1 Hz repetition rate 
achieving an average power of ~1 µW.  

 

 4.4 Conclusions 

In summary, we have extended gain-saturated tabletop soft x-ray lasers down to 

10.9 nm by transient excitation of a nickel-like Te plasma. To our knowledge, this is the 

shortest wavelength gain saturated tabletop laser reported to date. With an average power 

of ~1 µW and pulse energies of up to 2 µJ, this laser will enable applications of tabletop 

lasers at shorter wavelengths.  
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CHAPTER 5 

 

EFFICIENT EXCITATION OF GAIN-SATURATED SUB-9 NM WAVELENGTH 

TABLE-TOP SOFT X-RAY LASERS AND LASING DOWN TO 7.36 NM 

 

This chapter discusses the efficient generation of sub-9-nm wavelength 

picosecond laser pulses of microjoule energy at 1-Hz repetition rate by a table-top laser. 

Gain-saturated lasing was obtained at 8.85-nm by collisional excitation of nickel-like 

lanthanum ions using a picosecond optical laser pulse of only 4-J energy to heat a pre-

created plasma. Furthermore, isoelectronic scaling resulted in lasing at wavelengths as 

short as 7.36-nm.  Simulations show that the collisionally broadened atomic transitions in 

these dense plasmas can support the amplification of sub-picosecond SXRL pulses.  

 

This chapter was also submitted to Physical Review X in 2011. 
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5.1) Introduction 

The high demand for bright soft x-ray laser (SXRL) pulses greatly exceeds the 

beam time available at a few single-user free electron laser facilities [5.1, 5.2]. This 

motivates the development of more compact and widely accessible SXRLs for a broad 

range of experiments in small laboratory settings. Significant progress has been achieved 

in the past several years in the development of compact plasma-based soft x-ray lasers 

[5.3-5.10] (SXRL).  However, repetitive operation of table-top SXRLs has been limited 

to wavelengths above 10.9 nm [5.10]. At lower wavelengths the large pump energy 

required has limited the repetition rate to typically a shot per hour [5.11-5.15]. Soft x-ray 

lasing at sub-10 nm wavelengths in lanthanide ions was first demonstrated using several 

hundred joules of optical laser pump energy [5.12, 5.13]. Lasing in nickel-like lanthanum 

at 8.85 nm was latter obtained using 18 J pulses from a chirped pulse amplification 

(CPA) laser to achieve transient excitation, but with a gain-length product (g×l=7.7) 

remained insufficient to reach gain-saturation [5.15]. Progress towards saturated lasing in 

this transition has been recently reported [5.16, 5.17]. In turn, lasing at 7.36 nm in nickel-

like Sm was initially demonstrated using 130 J pump pulses [5.12] and latter gain-
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saturation was reached using a ~40 J picosecond pump pulse added to a pre-pulse of 

similar energy [5.14].  Also recently the lasing threshold in this line was reached using 36 

J of total optical pump pulse energy [5.18]. However, the practical realization of high 

repetition rate table-top lasers at sub-10 nm wavelengths requires obtaining gain-

saturated lasing at significantly lower pump energies. We report the generation of gain-

saturated picosecond SXRL pulses at 8.85 nm wavelength at 1 Hz repetition rate.  The 

result was obtained using picosecond pump pulse with an unprecedentedly low energy of 

4 J and a total optical pump energy of 7.5 J, that will make possible operation at high 

repetition rates. Furthermore, using the same pump energy we have also observed lasing 

at wavelengths down to 7.36 nm in transitions of higher Z nickel-like lanthanide ions, 

opening the prospect of practical gain-saturated table-top lasers at shorter wavelengths. 

Modeling suggests that these dense plasma amplifiers have the bandwidth necessary to 

sustain the amplification of sub-ps SXRL pulses.  

We conducted hydrodynamic/atomic physics modeling and 3-dimensional ray 

trace simulations for an axially uniform plasma column of a constant width, 30 μm. This 

model is coupled with a complete atomic code that is capable of solving for the atomic 

populations of all ion species in the relevant energy levels using a fully transient solution, 

including full radiation transport. The results suggest gain-saturated amplification in the λ 

= 8.85 nm 4d1S0→4p1P1 line of nickel-like lanthanum can be achieved using a total pump 

energy of only 4 J.  While the experimental realization can be expected to require larger 

pump energy to compensate for factors not considered in the model, such as processes 

that decrease absorption at high irradiation intensities [5.19], imperfections in the plasma 

column uniformity and target oxide layer, its magnitude is likely to remain in the range 
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that allows for high repetition rate SXRL operation. A peak gain of ~90 cm-1 with a 

duration of ~5 ps is computed to result from the irradiation of a solid lanthanum target 

with a sequence of a 3.3x1012 Wcm-2 pre-pulse 210 ps FWHM in duration followed by 

traveling wave excitation with a 2x1014 Wcm-2, 3 ps FWHM duration pulse impinging a 

35º grazing incidence. The short pulse is computed to rapidly heat the region of the pre-

created plasma where the electron density is ~6x1020 cm-3 to an electron temperature 

~850 eV. Ray-trace simulations predict the SXRL pulse duration progressively shortens 

to reach 1.5-2 ps just before gain-saturation.  As the pulse intensity continues to increase 

by an additional order of magnitude above saturation the laser pulse duration is computed 

to re-broaden to ~2.5 ps. 

 

5.2) Experimental Setup 

The SXRL results were obtained irradiating 1-2 mm thick solid slab targets with a 

sequence of two laser pulses from a λ = 800 nm Ti:sapphire CPA laser consisting of a 

normal incidence pre-pulse followed by a main picosecond pulse impinging at a grazing 

incidence angle of 35º with a traveling wave velocity of ~(1.04±0.03) c. The pump laser 

has four stages of amplification, of which the last two are pumped with the frequency 

doubled output of Nd-glass slab amplifiers designed to operate at repetition rates of up to 

4 Hz [5.20]. The plasmas were created by normal incidence irradiation at I = 6x1012 

Wcm-2 with a  pre-pulse of 210 ps duration that is focused onto the target to form a ~30 

µm × 6.4 mm FWHM line focus using the combination of a spherical and a cylindrical 

lens.  The plasma created by this pre-pulse is allowed to expand to reduce the density 

gradient and is subsequently rapidly heated by irradiation at I = 6x1014 Wcm-2 with a 4 J 
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pulse of 1-3 ps duration shaped into a line-focus of the same dimension.  The target 

surface was tilted with respect to the axis of the short pulse to define a grazing incidence 

angle of θ = 35° for efficient heating [5.3, 5.4]. At this angle of incidence refraction 

couples the pump beam energy into the plasma region where ne = 5.7×1020 cm-3.  To 

assist in achieving efficient pumping we developed a new focusing geometry designed to 

create a plasma column of constant width along the target (Figure 5.1a).  In the 

conventional implementations of grazing incidence pumping in which a parabolic or 

spherical mirror is used to focus the beam [5.3-5.5, 5.9, 5.10], the tilted target intercepts 

the short pulse pump beam at different distances from the beam waist.  This creates a 

“butterfly” shape line-focus on target that  

 

Figure 5.1: Schematic representation of the set up used in the sub-9 nm SXRL experiments. 
(a) A pair of cylindrical mirrors focuses the short pulse beam at 35º grazing incidence on 
target creating a line-focus of uniform width. A reflection echelon is used to obtain quasi-
traveling wave excitation. (b) Raytrace simulation of the line-focus on target. All rays fall 
within the line width defined by diffraction (red lines).
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for small f-number systems can deposit part of the pump energy outside the useful gain 

column, decreasing the gain. To overcome this limitation we focused the short pulse 

beam with a pair of cylindrical mirrors designed to create a line-focus of constant width 

along a target irradiated at grazing incidence.  The beam first impinges on a cylindrical 

mirror of f = 6.5 m that is used to generate a 6.4 mm long line.  The beam is subsequently 

made to impinge onto a second cylindrical mirror of f = 2.8 m that generates a 30 μm 

wide vertical focus. Each segment of the converging beam impinging on the vertical 

focus mirror has a unique focal length f = R/(2cosθ) and a unique path length to the tilted 

target. The difference between path length and focal length is brought below the 

diffraction limit using an incidence angle of 54° on the vertical mirror (see raytrace 

simulations results in Fig. 5.1b).  

Due to the short duration of the gain the mismatch between the propagation 

velocities of the pump pulse and the amplified pulse significantly reduces the 

amplification of the SXRL pulse. To overcome this limitation a reflection echelon [5.21, 

5.22] composed of five mirror segments was used to obtain a quasi-traveling wave 

excitation velocity of ~(1.04±0.03) c. Measurements at 1-Hz repetition rate were obtained 

continuously moving the target at a speed of 200 μm/s to renew the surface after each 

shot. The output of the SXRLs was analyzed using a flat field spectrometer with a 

nominally 1200 lines/mm grating set at 3° grazing incidence and a back-illuminated CCD 

detector placed at 48 cm from the target. Zirconium filters with thickness up to 2.1 μm 

were used to avoid saturating the detector and to eliminate visible plasma light.  The 

SXRL pulse energy was estimated from the CCD counts taking into account the 
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attenuation of the filters, the grating efficiency, and the quantum efficiency of the 

detector.  

 

5.3) Experimental Results 

Figure 5.2a shows a series of on-axis spectra as a function of plasma column 

length for a lanthanum plasma column created depositing 4 J of short pulse energy and a 

total of 7.5 J of optical pump energy on target at the irradiation conditions described 

above. Strong amplification is observed in the 8.85-nm 4d1S0→4p1P1 transition of Ni-like 

La. Figure 5.2b shows that the intensity grows by nearly four orders of magnitude as the 

plasma length increases from 1.7 mm to 6.2 mm.  Saturation of the intensity is observed 

to have an onset at a plasma column length of ~4 mm. A fit of the data with an expression 

that takes into account gain saturation [5.23] yields a gain coefficient of 33 cm-1 and a 

gain-length product of 14.6.  The energy of the most intense laser pulses was estimated to 

be 2.7 μJ from the CCD counts.   

Gain-saturated operation was confirmed by measuring the SXRL flux at the exit 

of the amplifier. The near field profile of the 8.85 nm laser was recorded imaging the 

output of the plasma amplifier with a f = 25 cm near-normal incidence Mo-Y multilayer 

mirror onto a back-illuminated CCD detector.  The mirror was measured at a synchrotron 

beam line to have a reflectivity of 25%.   Fig. 5.3a shows the beam pattern at the 

amplifier exit consists of a spot with ~19 µm × 30 µm FWHM dimension in the direction 

perpendicular and parallel to the target respectively, centered at 14 μm from the target 

surface.  This area defines a laser fluence of ~0.6 Jcm-2 for the most intense laser shots. 

Assuming the laser pulse duration of 2.5 ps from the simulations, the laser intensity at the  
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Figure 5.2: End-on spectra of a line focus lanthanum plasma column showing saturated 
amplification in the 8.85-nm line of Ni-like La (a).  (b)  Intensity of the 8.85-nm laser line 
as a function of plasma column length. The line is a fit of the data that yields a gain 
coefficient of 33-cm-1 and a gain-length product of 14.6. 
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amplifier exit is estimated to be 2.4x1011 Wcm-2, which significantly exceeds the 

computed saturation intensity of 1.5-3x1010 Wcm-2 calculated using a detailed atomic 

model with atomic rates from the Flexible Atomic Code [5.24]. The far field beam profile 

was recorded on a CCD by bending the beam with a 45° incidence angle narrow-band 

Mo-Y multilayer mirror that also served to filter background plasma light. Far field 

images acquired at 0.86-m from the amplifier exit, such as that illustrated in Fig. 5.3b, 

show the laser beam divergence is (5.9±0.7)×(4.7±0.7) mrad2 in the directions 

perpendicular and parallel to the target surface respectively.  

 

a) b) 

Figure 5.3:  Characteristics of the λ = 8.85-nm lanthanum laser. (a) Measured near-field 
pattern. The center of the laser beam at the amplifier exit is at 14-μm from the target.  (b) 
Measured far-field pattern at a distance of 0.83 m from the source. 

Fig. 5.4b illustrates the λ=8.8 nm laser pulse intensity variations for 10 

consecutive shots recorded at 1 Hz repetition rate moving the target 200 μm/s between 

shots. Fig. 5.4a shows maximum laser output is observed when the short pulse arrives to 

the target ~25 ps before the maximum of the 210 ps FWHM pre-pulse. This implies that 

more than half of the pre-pulse energy is not used in the laser excitation process. 

Therefore optimization of the pre-pulse should result in a further reduction of the total 
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pump energy required for saturated operation.  The combination of these results with  

future advances in diode-pumped CPA pump lasers [5.25, 5.26] that have already reached 

1 J energy output at 10 Hz repetition rate [5.25], promise to lead to the realization of high 

average power sub-9 nm lasers on a table-top (eg. 0.25 mW at 100 Hz).  

Figure 5.4:  (a) Measured laser intensity as a function of delay between the peak of the 
pre-pulse and the short pulse. (b) Measured shot-to-shot intensity variation of the 8.85-nm 
laser operating at a 1-Hz repetition rate. 
 

 

 Another significant aspect of these amplifiers is the fact that collisional SXRL 

amplification at shorter wavelengths favors higher plasma densities, resulting in 

collisionally broaden lines that can support the amplification of sub-picosecond seed 

XRL pulses, a subject of current interest [5.27-5.29]. Model simulations indicate 

amplification at 8.85 nm occurs in a plasma region where the plasma density is 5-9x1020 

cm-3 and the ion temperature ~150 eV.  At the plasma conditions for peak gain the laser 
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line profile is defined by collisional broadening (ΔνL = 1.7x1012 Hz) and Doppler 

contributions (ΔνD = 2.8x1012 Hz) that define a Voigt linewidth of Δν = 3.8x1012 Hz that 

can support the amplification of 200 fs pulses.  The variation of the bandwidth and pulse 

duration of an injected  high harmonic seed pulse as it propagates thought the lanthanum 

plasma amplifier was computed with a 3D ray-trace post processor that couples the 

amplification and ray propagation equations with a time and space depended atomic 

physics model that includes all relevant levels and stimulated emission.  The ray trace 

code is capable of fully resolving the temporal duration and bandwidth of both the 

amplified stimulated emission and the amplified seed beam.  Pulse broadening of a seed 

due to line-narrowing is included using the Fourier transform of the amplified bandwidth 

accounting for the group velocity delay caused by the gain profile.  Fig. 5.5 shows the 

computed pulsewidth variation of an injected 8.85 nm, 30 fs duration high harmonic seed  

Figure 5.5:  Computed variation of the pulse duration of an injected 30-fs high harmonic 
seed pulse as a function lanthanum plasma column length. The seed pulse duration is 
initially increased by linewidth narrowing and later by saturation broadening. The high 
harmonic seed pulse is assumed to have an energy of 0.1-nJ and the gain and plasma 
conditions are those resultin  from the simulations described in the text. g  
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pulse as it propagates thought the lanthanum plasma amplifier for plasma conditions that  

result in an ASE laser output energy similar to that obtained in the experiment.  

Simulations conducted for a range of different pumping parameters predict output pulse 

durations in the range of 500-700fs.  

The demonstration of a gain-saturated table-top laser at λ = 8.85 nm with low 

pump energy also opens the prospect for bright high repetition rate plasma-based lasers at 

shorter wavelengths.  In progress toward this goal we made use of isoelectronic scaling 

along the elements of the lanthanide series to obtain lasing in several shorter wavelength 

transitions.  The spectra of Fig. 5.6 shows that the use of similar irradiation conditions 

re .  

La e 

du ery strong, with an

sulted in lasing at 8.5 nm in Ni-like Ce, 8.2 nm in Ni-like Pr, and 7.9 nm in Ni-like Nd

sing was also observed at 7.36 nm in Ni-like Sm by reducing the main pump puls

ration to 1.1 ps.  The laser emission at 8.5 nm in Ni-like Ce is v  

output energy >1 μJ.  From comparison with the 8.85 nm amplifier measurements the 8.5 

nm laser is estimated to be operating at, or close to, gain saturation.   
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Figure 5.6: End-on spectra showing lasing at progressively shorter wavelengths in the 
4d1S0→4p1P1 line of nickel-like lanthanide ions, down to 7.36-nm in nickel-like 
samarium 
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5.4)  Conclusions 

In summary, we have demonstrated the generation of bright gain-saturated sub-9 

m wavelengths with a table-top laser operating at 1 Hz repetition rate for the first time. 

d optical laser pump with 4 J energy we have also obtained laser 

amplifi

 

n

Using a picosecon

cation at wavelengths as short as 7.36 nm. The combination of these results with 

new advances in high repetition rate diode-pumped optical lasers promises to lead to the 

generation of high average power sub-10 nm wavelength laser beams on a table-top. The 

short wavelength, microjoule pulse energy, picosecond pulse duration, and repetitive 

operation of these lasers will enable new applications such as sequential imaging of 

ultrafast nano-scale dynamic phenomena to be realized on a table top.  
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CHAPTER 6 

SUMMARY 

 

The work in this dissertation has resulted in significant progress towards high 

average power and high pulse energy table-top soft X-ray lasers at sub-11 nm 

wavelengths as well as an increase in the diversity of soft X-ray laser wavelengths 

available utilizing transitions near 30 nm.  Applying the grazing incidence pumping 

geometry to neon-like plasmas resulted in the demonstration of microwatt average power 

laser-pumped neon-like ion lasers. This occurred in transitions near 30 nm in titanium 

with lasing also demonstrated in vanadium and chromium. Gain-saturated table-top soft 

x-ray lasers were also extended down to 10.9 nm by transient excitation of nickel-like 

ions in a tellurium plasma, producing an average power of ~1 µW and pulse energies of 

up to 2 µJ.  The first demonstration of bright gain-saturated sub-9-nm wavelengths with a 

table-top laser operating at 1-Hz repetition rate was also realized. Operation of the 8.8 nm 

transisiton in nickel-like lanthanum resulted in a maximum energy per pulse of 2.7 μJ. 

Using this picosecond optical laser pump with unprecedentedly low laser energy resulted 

in amplification at wavelengths as short as 7.36-nm.  These advancements in SXR lasers 

were made possible due to the development of a high energy Nd:glass slab laser for 

pumping a Ti:Sapphire laser. With this upgrade, the Ti:sapphire laser produces 12 J 

uncompressed laser pulses at 1 Hz. This short wavelength, microjoule pulse energy, 
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picosecond pulse duration, and repetitive operation of these lasers will enable new 

applications such as sequential imaging of ultrafast nano-scale dynamic phenomena to be 

realized on a table top.  

 

 



 

 

 

APPENDIX 1 

RELATED WORK 

 

Previous chapters discuss the development of a Ti:Sapphire laser system as well 

as gain-saturated table-top repetitive soft X-ray (SXR) lasers with wavelengths near 30 

nm and 9-11 nm with lasing down to 7.4 nm.  The work done in this thesis contributed to 

the development and characterization of gain-saturated table-top repetitive SXR lasers 

with wavelengths from 13 to 19 nm, improved SXR beam properties by injection seeding 

with high harmonic generated (HHG) pulses, and imaging applications. All these results 
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J.J. Rocca, “Characteristics of a Saturated 18.9-nm Tabletop Laser Operating at 
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• B.M. Luther, Y. Wang, M.A. Larotonda, D. Alessi, M. Berrill, M.C. Marconi, J.J. 

Rocca, and V.N. Shlyaptsev, “Saturated high-repetition-rate 18.9-nm tabletop 

laser in nickellike molybdenum,” Optics Letters 30, 165 (2005) 
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and J.J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers 

with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 

nm,” Physical Review A 72, 053807 (2005) 

• J.J. Rocca, Y. Wang, M.A. Larotonda, B.M. Luthe

“Saturated 13.2 nm high-repetition-rate laser in nickellike cadmium,” Optics 
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(2010) 

 

105 
 



2) Demonstration and characterization of injection-seeded SXR lasers at 13 nm and 

19 nm 

• Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. Luther, M. Berrill, and J.J. Rocca, 

“Phase-coherent, injection-seeded, table-top soft-x-ray lasers at 18.9 nm and 
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