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ABSTRACT 
 

 

 
OPTIMAL SENSOR PLACEMENT FOR SEWER CAPACITY RISK MANAGEMENT 

 
 
 

Complex linear assets, such as those found in transportation and utilities, are 

vital to economies, and in some cases, to public health. Wastewater collection systems 

in the United States are vital to both. Yet effective approaches to remediating failures in 

these systems remains an unresolved shortfall for system operators. This shortfall is 

evident in the estimated 850 billion gallons of untreated sewage that escapes combined 

sewer pipes each year (US EPA 2004a) and the estimated 40,000 sanitary sewer 

overflows and 400,000 backups of untreated sewage into basements (US EPA 2001). 

Failures in wastewater collection systems can be prevented if they can be detected in 

time to apply intervention strategies such as pipe maintenance, repair, or rehabilitation. 

This is the essence of a risk management process. 

The International Council on Systems Engineering recommends that risks be 

prioritized as a function of severity and occurrence and that criteria be established for 

acceptable and unacceptable risks (INCOSE 2007). A significant impediment to 

applying generally accepted risk models to wastewater collection systems is the 

difficulty of quantifying risk likelihoods. These difficulties stem from the size and 

complexity of the systems, the lack of data and statistics characterizing the distribution 

of risk, the high cost of evaluating even a small number of components, and the lack of 

methods to quantify risk. 
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This research investigates new methods to assess risk likelihood of failure 

through a novel approach to placement of sensors in wastewater collection systems. 

The hypothesis is that iterative movement of water level sensors, directed by a 

specialized metaheuristic search technique, can improve the efficiency of discovering 

locations of unacceptable risk. An agent-based simulation is constructed to validate the 

performance of this technique along with testing its sensitivity to varying environments. 

The results demonstrated that a multi-phase search strategy, with a varying number of 

sensors deployed in each phase, could efficiently discover locations of unacceptable 

risk that could be managed via a perpetual monitoring, analysis, and remediation 

process. A number of promising well-defined future research opportunities also 

emerged from the performance of this research. 
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OVERVIEW OF THE RESEARCH 
 
 
 

1.1 The application 

1.1.1 The nature of risk in collection system management 

The overall objective of this research is to investigate improvements in risk 

management for linear infrastructure principally by minimizing the cost of finding the few 

components requiring active risk management through new methods of sensor 

placement. A major objective is to provide a holistic risk management framework for the 

prevention or mitigation of the threats posed by the loss of sewer pipe conveyance 

capacity, with an emphasis on preventable failures that are related to pipe blockage.  

The consequences of not detecting and intervening in time to prevent wastewater 

collection system failures is well documented and is the subject of section 2.1. To state 

it succinctly, sewers literally save lives (Kesztenbaum and Rosenthal 2017). The U.S. 

government recognized the importance of sewer systems in the landmark Clean Water 

Act of 1972, setting a goal of zero water pollution discharge by 1985. This goal has not 

been met, with more than 50% of the river and stream miles in the United States failing 

to meet water pollution standards (Keiser et al. 2019). 

1.1.2 The general structure of the problem 

Managing the risk of failure in collection systems represents a case of a general 

problem structure applicable to other types of complex linear assets, such as water 

distribution systems, roads, railways, electrical distribution, etc. The principal challenge 

is to find the relatively few components, in this case pipe locations, that justify active risk 

management due to a risk of failure that is judged to be unacceptable. This is illustrated 
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by the map in figure (1-1), where the gray lines indicate pipes not warranting active risk 

management and red lines indicate those that do. 

 

Figure 1-1: Distribution of pipe locations warranting risk management 
 

Finding these components is a combinatorial optimization problem that is a case 

of the sensor placement problem. It has the following five identifying characteristics: 

1.1.2.1 A combinatorial optimization objective function 

The objective function corresponding to the research goal is to discover a 

number of locations meeting the criteria for “unacceptable risk” as efficiently as 

possible. The exact number of such locations is usually supplied by the stakeholders; 

and is driven by factors such as a capacity limit on the number of locations that can be 
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actively managed. This objective of minimizing the cost of finding a number of locations 

exceeding a threshold risk may be formulated generally as shown in figure (1-2): 

 
Figure 1-2: Objective function for minimizing the cost 

This objective will be restated in terms that are specific to the wastewater 

collection system case presented in chapter 4 where the search cost function can be 

stated as a function of the unit cost and quantities of the resources deployed in the 

search. 

1.1.2.2 It is not practical to evaluate all possible solutions 

A moderate case of the wastewater collection system application would involve 

selecting T = 300 locations from a system of n = 11,700 candidate locations. In this 

case, there would be 1.953 x 10604 possible solutions. Evaluating each solution has a 

non-trivial cost, especially as it involves assessing risk probabilities and consequences 

that are not known a priori. A feature of the problem under study is that the range of 

available assessment technologies limits the sensing range to no more than 3-5 

locations, making system-wide sensing unfeasible and limiting evaluation to only a very 

small fraction of possible solutions. 

  

Variables: Xi representing all n locations in the system indexed by integer i in the range 
0<i<=n 

 
Domains: {0,1}  
where Xi = 0 indicates the location is not actively managed and Xi = 1 indicates the 
location is actively managed 

 
Constraints: |{Xi∈X|Xi=1}| >= T 
where “T” is the number of locations that can be actively managed 

 
Goal:  Minimize the search cost function 



4 

1.1.2.3 The solution space can be represented in a 2-dimensional Euclidean space 

The candidate solutions are sets of locations that can be represented on a 2-

dimensional map with locations defined by cartesian coordinates. The implication of this 

characteristic is that each location can be assigned to a neighborhood by a function, 

such as distance or nearness to a point. This property lends the problem to classes of 

solutions that employ neighborhood search techniques. It also lends the problem to 

spatial analysis, for instance cluster analysis based on distance. 

1.1.2.4 The shape of the solution space is unknown 

The probability of failure for candidate locations is unknown in advance of 

assessment. In addition, little is known about the underlying factors contributing to 

failure which makes prediction unreliable. This unreliability, combined with the difficulty 

of evaluating all solutions, favors metaheuristic search solutions. At each stage of the 

search only a small segment of the solution space is revealed, which will be shown to 

be a useful input into successive stages of a search. 

1.1.2.5 The system is dynamic 

Collection systems are in a constant state of change, as is the case with most 

complex linear assets. This contributes to the difficulty of risk management as each 

location can transition from fully functional, to potential failure, to functional failure over 

an unpredictable interval. One implication of a dynamic system is that the search for 

failures must be ongoing, either through perpetual search, or through a system of 

continuous monitoring. 
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1.2 Contributions to the state-of-the-art 

This research study enables insights and provides methods for addressing the 

challenges presented by the problem. 

1.2.1 A guiding risk management framework 

This research produced a framework for managing risk that meets the 

International Council on Systems Engineering (INCOSE) recommendations for risk 

management. Although the application of Failure Modes and Effects Analysis (FMEA) is 

found in prior literature, it has not been adapted to complex linear asset failure in the 

manner suggested by this research. Most importantly, the problem of producing risk 

occurrence scores has hindered the use of FMEA. This problem was overcome in this 

research. Other important adaptations include the treatment of risks as either 

acceptable or unacceptable, in contrast to ranking based on RPN values, and a 

proposed rubric for risk severity scores based on satellite imagery review. 

1.2.2 A strategy of iterative sensor movements 

Iterative sensor movements can provide an efficient approach to assessing risk 

in wastewater collection systems. This research evaluated several alternative search 

techniques that were applied to portable continuous monitoring devices. This is a novel 

technique as sensors have not been utilized in this way in prior research nor practice. 

Traditionally, wastewater collection system sensors have been placed based on 

terminal nodes of drainage basins or in known “hot spots” where failures had been 

observed. Another approach found in potable water distribution systems is the “lift and 

shift” concept for leak detection, which is a sequential search technique. This was found 

to be an inefficient approach in this research. 
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1.2.3 A novel method to estimate the likelihood of failure  

Another important contribution from this research is a methodology of producing 

risk occurrence scores based on limited continuous monitoring data. To pursue the goal 

of minimizing the cost of searching for risky locations, the monitoring periods in each 

search iteration must be small. This required new methods for estimating the likelihood 

of failure and translating them into risk occurrence scores on a 1-10 scale for a FMEA. 

This is accomplished in this research by developing a binary logistic regression model 

combined with a Morgan-Mercer-Flodin growth model to predict pipe failures based 

upon depth-duration frequencies. The depth-duration frequencies are constructed from 

time-series data available from level monitors. 

1.2.4 Sensor movement based on a metaheuristic algorithm 

This research proposes the allocation and movement of sensors within the 

sewage networks directed by a metaheuristic search algorithm. The category of 

metaheuristic search algorithms termed “trajectory methods” is found appropriate for the 

structure of the problem. Specifically, simulated annealing presented several attractive 

properties that made it the preferred base algorithm. Three adaptations of simulated 

annealing were analyzed in this research for determining optimal parameters and 

comparing head-to-head search efficiency. A sequential search and greedy algorithm 

were also tested for comparison. The recommended algorithm, termed “enhanced 

simulated annealing” (ESA) is an adaptation of base simulated annealing that takes 

advantage of the prior knowledge of risk consequences. ESA modifies the base 

simulated annealing algorithm by performing preliminary iterations using a varying 

number of monitors in each iteration to gain approximate knowledge of the search 
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space. An additional research advance is the incorporation of a unique adaptative 

neighborhood function dependent upon the risk priorities of locations monitored in prior 

iterations and utilization of a neighborhood function that depends on a nearest given 

number of candidate locations rather than distance. 

1.2.5 The development of an agent-based simulation 

No models nor field techniques were found in research nor practice to test the 

performance of search techniques for the exploration of failure risk in complex linear 

assets. This research demonstrates that an agent-based simulation can model the 

distribution of risk across a wastewater network and simulate the movement of sensors 

in accordance with metaheuristic search algorithms. A considerable amount of effort of 

this research was expended in creating this simulation model. Various algorithms were 

tested in the simulated environment using Design of Experiments (DOE) methodology. 

Screening and optimization experiments were conducted on the various search 

algorithms to find the best combination of search parameters across a variety of 

environments, including stochastic distributions of risk across the search space. 

Moreover, a sensitivity analysis was conducted using the simulation with multiple 

parameters capable of modifying the environment. 
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SCOPE OF THE RESEARCH 
 
 
 

2.1 Research context  

Sewers are a necessary foundation of our modern civilization as they are a 

critical infrastructure component for both the human health and the water environment. 

This importance was highlighted by the readers of the British Medical Journal in January 

2007 as over 11,000 of them chose “the sanitary revolution”, connecting people’s 

homes both to clean piped water and to sewers in order to dispose of their waste, as the 

most important medical milestone since 1840. They even thought it was more important 

than antibiotics, vaccination or the discovery of the structure of DNA (Ferriman 2007). 

For example, in October 1764, fifty percent of the deaths in London occurred among 

children under five years old, a situation worse than the one found in the poorest 

nations of our world today. Moreover, life expectancy at birth in the industrialized towns 

of England in 1840 was only 17 years due to the high prevalence of diseases as a result 

of lack of clean water and sanitation, inadequate personal hygiene, poor housing and 

malnutrition (Rautanen et al. 2010).  

Reliable sanitation remains a challenge. In the U.S., the condition of wastewater 

collection systems is unacceptable and trending worse. One third of the waterways 

covered by the Clean Water Act fail to meet their intended usage. In the 2004 EPA 

Report to Congress on the Impacts and Controls of CSOs and SSOs, the agency 

reported that 850 billion gallons of sewage discharged to the environment from 

combined sewer overflows, and as much as 10 billion gallons from separate sanitary 

sewers (US EPA 2004b). Furthermore, as seen in figure (2-1), the same report 
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identified that blockages were the main cause for sanitary sewer overflow (SSO) events 

with 48% followed by wet weather & I/I, which are forms of rain and groundwater 

intrusion, with 26% of the total number of SSO events (US EPA 2004b). Sanitary 

sewers are the focus of this research due to their high proportion of overflows caused 

by blockage. Blockage issues can commonly be remediated through pipe cleaning or 

root removal, which can be performed quickly and at relatively low cost. Combined 

sewer overflows caused by wet weather require more expensive and time-consuming 

risk interventions. Although there is very little summarized data on the number of 

overflows since the 2004 report, estimates show little change in the last decade. 

 
Figure 2-1: Causes of SSO events (U.S. EPA 2004)  

The 2017 American Society of Civil Engineers Report Card on Infrastructure 

gave the country’s wastewater infrastructure a grade of D+. According to that report, a 

total of $271 billion will be needed over the next 20 years just to maintain the existing 

assets (ASCE 2017b). Similarly, downstream indicators are no better. EPA’s National 

Rivers and Streams Assessment reported that nearly half of the nation’s rivers and 

streams are in poor condition and that the amount of stream length in good quality for 

macroinvertebrate condition decreased from 36.7% in 2004 to 27.8% in 2009 (U.S. EPA 

2016). 
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In addition to the environmental and human health consequences of sewer 

failures, there are regulatory consequences. Reducing the unpermitted discharge of 

sewage is one of EPA’s six national enforcement initiatives (US EPA 2019). The Clean 

Water Act imposes fines for up to $32,500 per day of unpermitted discharge. While this 

maximum fine is rarely imposed, the cost of consent decrees to avoid fines is 

substantial and can require decades of remediation. For example, the cost of sewer 

system remediation in Indianapolis, IN is $3.5 billion which is the largest civil project in 

the city’s history (Pumphrey and Neilson 2009). 

The primary dilemma faced by the wastewater systems’ manager is that he or 

she must operate a system that complies with the EPA regulations while the system 

deteriorates at a rate faster than what the available funds can restore. These economic 

constraints motivate optimal decisions on when and where to intervene in order to 

preserve the capacity of the existing pipelines. As a result, there is a pressing need for 

new research in the area of sewage systems’ decision-support tools to help local 

municipalities in reducing the risk of sewage systems failures while meeting their 

budgetary constraints. These tools should be capable of: 1) providing a framework for 

the perpetual management of the risk of system failure; 2) identifying where risk 

assessment activities should be prioritized within budget constraints; 3) providing a 

method for perpetual risk assessment in complex dynamic systems. Consequently, this 

research aims to meet these requirements for decision support. 

2.2 Problem statement 

To develop the above-mentioned tool, the central problem that needs to be 

solved by the collection systems’ manager is to minimize the cost of locating and 
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managing risks considered unacceptable. This objective is constrained by municipal 

budgets and often by time. 

2.2.1 Definition of failure 

The first step in solving this problem is to define what is the functional failure of a 

sewage system. According to the INCOSE Systems Engineering Handbook, failure is 

defined as the event when one or more parts of a system does not perform according to 

its specification (INCOSE 2007). In the context of sewage systems, a sewer pipe is 

designed to maintain free capacity to accommodate future service demands and 

provide a contingent capacity to convey peak volume during storm events (Washington 

Suburban Sanitation Commission 2017). There are other failure modes for sewers, 

including structural failure and odors, which are outside the scope of this research.  

For the purposes of this research, a failure is defined as the condition where the 

water level in a pipe exceeds the pipe height. The ratio of water level to pipe height is 

commonly referred to as the depth-to-diameter ratio, or d/D ratio. Therefore, a failure in 

the sewage pipe is the condition where the d/D ratio is greater than 1 and the pipe has 

no free capacity for conveyance. This state is also referred to as “surcharge”, which is 

defined by Yen, Chie, and Nicholas  as “the situation in which the sewer entrance and 

exit are submerged, and the pipe is flowing full and under pressure” (1980). Failures are 

most evident when wastewater escapes the system. One of the most obvious signs of 

failure is surcharge or flooding at specific manholes in the system (Thorndahl and 

Willems 2008). A less obvious sign of failure is the flooding of subsurface structures, 

such as basements, which is possible without experiencing surface flooding (Schmitt, 

Thomas, and Ettrich 2004). 
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2.2.2 Solution requirements 

The central challenge with sewage system’s risk management is how to select 

the set of locations to assess failure states. One solution to the problem of system-wide 

risk assessment would be to place sensors in every manhole of the sewer system so 

that every hydraulic anomaly (potential failure) could be detected at all times. 

Nonetheless, this solution is cost prohibitive given today’s technology. Furthermore, this 

solution will also be wasteful as much of the information would be redundant. A slightly 

less impractical solution would be to place sensors in every manhole where a potential 

failure will occur in the future. Unfortunately, it is impossible to know where failures will 

occur in the future in the absence of monitoring, making this solution unfeasible. 

Another practical but imperfect solution would be to place as many sensors as can be 

afforded into manholes that have the highest estimated probability of failure. This would 

require that monitors be relocated periodically, as risk in some pipes are reduced by 

maintenance, repair, and replacement activities while risk in other pipes is increased by 

the dynamic failure mechanisms such as pipe deterioration.  

Given the above challenges, a reasonable objective to solve this problem is to 

discover a number of locations meeting the criteria for “unacceptable risk” as efficiently 

as possible. The exact number of locations depends upon the capacity of available 

maintenance resources. The solution will be a discrete subset of sensing locations from 

a known set of candidate locations. This is often referred to in literature as the “sensor 

placement problem”. 

These problems lend themselves to combinatorial optimization solutions 

including simulated annealing, tabu search, and genetic algorithms. “These methods 
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cannot guarantee convergence to the global optima but can uncover useful local optima 

after examining a tiny percentage of all possible combinations of N locations taken M at 

a time” (Padula and Kincaid 1999 p.3). Each of the heuristic methods has its own 

advantages. Hence, this research emphasizes the importance of judicious choice of 

design variables, optimization formulation, and solution method to fit each problem. The 

remainder of this section presents the considerations for choosing an appropriate 

method to evaluate combinatorial optimization algorithms with varying parameters. 

First, the method must accommodate a wide range of sensing locations and 

available sensors. In the case of sewer networks, the solution space is very large. For 

instance, the average-size collection system contains 11,700 pipe segments which 

translates into approximately 11,700 manholes that could be selected as potential 

sensor locations. Assuming a sufficient budget for 2.5% coverage, this will lead to a 

need to select approximately 300 locations which equates to 1.953 x 10604 possible sets 

of locations of 300 monitors from among 11,700 monitor locations. 

Second, the selected method must accommodate simulation across a geospatial 

network. Unlike some other sensor placement problems where sensors may be placed 

at any point in space or on a uniform grid, the problem under consideration only allows 

sensor placement at discrete locations as defined by the map of the sewer network.  

Third, the method must accommodate varying degrees of spatial autocorrelation 

in risk. The probability of failure at any particular location is dependent in part upon the 

risk of the surrounding locations. This is intuitive given that a pipe shares physical and 

environmental characteristics with the other pipes around it. Evidence will be presented 

in this research to support this conclusion. 
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Fourth, the method must be able to rank the efficiency of various optimization 

algorithms. Since the cost of evaluating any particular solution is high, the best 

algorithms will converge quickly on a “good” solution. However, since the shape of the 

objective function is only discovered by placing sensors in a location set for a period 

sufficient to assess the probability of failure, the evaluation of each sensor combination 

is both time consuming and costly. Hence, testing alternative search strategies in pilot 

projects requires a great deal of time and money. A simulated environment overcomes 

this problem. 

Finally, the adopted method must accommodate optimization algorithms that 

allow any shape of the objective function. The rationale is that since little is known about 

the underlying factors contributing to failure, the shape of the objective function of total 

risk in each possible set of monitored locations is unknown and almost certainly non-

linear. This favors metaheuristic search techniques because they make few 

assumptions about the problem to be solved. The surface of the objective function will 

almost assuredly contain many local optima that might trap some classes of 

optimization algorithms, such as gradient search techniques.  

More specifically the evaluation method must be able to model “trajectory 

methods” of optimization. This is a classification used by Baghel, Agrawal and Silakari 

(2012) to refer to metaheuristic search techniques that solve combinatorial optimization 

problems in a single solution evolution. This contrasts with population methods that deal 

with sets of solutions, such as genetic algorithms, ant colony optimization, and particle 

swarm optimization. Popular trajectory methods are simulated annealing, tabu search, 

variable neighborhood search, and greedy randomized adaptive search procedure 
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(Baghel, Agrawal, and Silakari 2012). The argument for excluding population techniques 

is that the expense and time required deploying monitors in sets of locations and 

evolving those sets is prohibitive. 

2.2.3 Similar problems 

There are other complex networks that must be monitored at a relatively small 

subset of locations. For example, monitoring water distribution systems for the presence 

of leaks is a closely related problem. The concept of “lift and shift” of acoustic listening 

devices exists in water distribution, thus incorporating metaheuristic search algorithms 

could be a possible improvement over the exhaustive search heuristics used in lift and 

shift projects. Furthermore, the problems of risk assessment in electrical grids, natural 

gas pipelines, computer networks, rivers and streams, and traffic networks, among 

others were considered as related problems. 

2.3 Current practices and shortcomings 

The current state-of-practice in managing sewer pipe failure risk depends mainly 

on reacting to failures, limited visual inspection data, scheduled preventative 

maintenance, and, in a few utilities, continuous monitoring data. Figure 2-2 illustrates 

how various sources of data serve as inputs to maintenance decisions. 
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Figure 2-2: Sewage blockage management state-of-the-practice 

 
Reactive policies are not effective. Utilities that act only after an overflow is 

reported are exposing themselves to legal action by their environmental regulators. 

Additionally, a reactive approach compromises customer satisfaction that increases the 

risk of bad publicity and political impairment of elected officials. Moreover, allowing 

overflows also imposes a financial burden as “sewage overflows already cost billions 

every year in cleanup, emergency repair, lost tourism revenue, lost productivity, and 

medical treatment.” (Dorfman, Stoner, and Merkel 2004 p.vi). 

Complaint data is often unreliable. In 2007, a 7.5-million-gallon spill in the City of 

San Diego took 3 days to discover because the failure occurred in a pipe underneath 

the Buena Vista Lagoon (San Diego Coastkeeper 2016). A report commissioned by the 
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EPA noted that special care should be taken to inspect manholes along streams 

because they could overflow undetected for long periods (Nelson, Habbian, and 

Andrews 2000). The Environmental Integrity Project, an environmental advocacy group, 

charged that the City of Baltimore intentionally underreported sewage overflows by 

showing zero-gallon overflows in 55% of the reported incidents (Pelton et al. 2015). The 

EPA reported to congress in 2004 that those communities that report large numbers of 

SSO events are likely to be accurate because the low-volume SSO events are 

potentially unnoticed or unreported in other jurisdictions (US EPA 2004a). 

Inspection and preventive cleaning programs are inherently limited. Among the 

limitations are; 

1. Inspection frequency is too long to detect rapidly developing failure 

modes.  

2. False negatives are common (Dirksen et al. 2013).  

3. It is not possible to accurately monitor the hydraulic performance of pipes 

over time from inspection.  

4. Inspections are expensive. 

5. On-schedule maintenance, as opposed to on-condition maintenance, is 

wasteful and can shorten the useful life of pipes by subjecting them to 

excessive high-pressure cleaning. 

Continuous monitoring offers a promising alternative. It provides hydraulic 

information to detect a hydraulic phenomenon, it addresses continuous pipe 

probabilities with a continuous assessment interval, and it is not prone to errors in 

human judgement. With new tools proposed in this research, it can prioritize locations 
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based on a function of failure probability and consequences. The limitation of cost and 

resolution is addressed in this research with iterative sensor movements guided by 

metaheuristic search algorithms. 

2.4 The role for systems engineering in collection system management 

The application of systems engineering principles to linear infrastructure risk 

management can make a valuable societal contribution that is presently lacking. 

However, systems engineering is rarely observed in the literature and practice of sewer 

operations and maintenance. Applying a systems’ engineering approach to sewers is 

one novelty of this research. 

2.4.1 Sewers are complex systems 

Systems engineering concerns itself with guiding the engineering of complex 

systems (Kossiakoff et al. 2011). The systems under consideration in this research are 

wastewater collection systems consisting primarily of interconnected pipes that 

transport water by gravity to a few collection points where the water is treated and then 

discharged into the environment. Figure (2-3) below illustrates the schematic of a 

wastewater collection system. 
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 Figure 2-3: Component layout of a collection system (Hamilton Township) 

What is a very simple component list becomes a complicated system in light of 

the environment, scale and lifespan of a wastewater collection system. Consider, for 

example, that the moderate-size city of Lincoln, NE, with a population of nearly 300,000, 

contains over 1,000 miles of sanitary sewer pipe (City of Lincoln Nebraska 2013). An 

estimate of the nominal length of a pipe segment is 10 feet assuming a mix of concrete 

and plastic pipes. This, in return, would imply 528,000 pipe connections. Each of these 

connections is an interface where the piping network is most vulnerable to failure. 

Complicating matters more is the variety of pipe ages, materials, and the surrounding 

environment under which this integration must succeed. In addition, these complications 
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will increase as the user’s needs will normally change over the 50+ year useful life of 

the system. 

2.4.2 Relevant systems engineering processes 

The International Council on Systems Engineering maintains the Systems 

Engineering Handbook that serves as a guidance document for the profession (INCOSE 

2007). Among the various processes and activities that make up the practice of systems 

engineering, the following are particularly relevant to the operations and maintenance of 

collection systems. 

2.4.2.1 Maintenance process  

The purpose of the maintenance process is to sustain the system through its 

useful life. Many collection systems have passed their design life. There is a great 

benefit in extending the useful life well beyond the design life due to the high cost of 

replacing sewer pipes. Over half of the spending in the U.S. wastewater sector goes for 

operations and maintenance activities (ASCE 2017a). In the maintenance process, the 

INCOSE Handbook recommends that problems be identified based on the feedback 

from ongoing monitoring of the operational environment. An output of the maintenance 

process is reporting of failures and recommendations for action. Also recommended is 

the use of historic data and performance statistics to maintain high levels of reliability 

and availability. 

2.4.2.2 Risk and opportunity management process  

Risk management is used to understand and avoid the potential cost, schedule, 

and performance/technical risks to a system and to take a proactive and structured 

approach to anticipate and manage negative outcomes. The emphasis of this research 
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is on technical risk in terms of a collection system failing to achieve its performance 

requirements of transporting wastewater. This objective is a resource allocation that 

mitigates the most risk at the lowest cost. The INCOSE Systems Engineering Handbook 

prescribes the following elements of effective risk management. 

1. Analysis of risk severity. 

2. Analysis of risk likelihood of occurrence. 

3. Quantification of risk in a methodical way. For example, Expected 

consequence = Probability of failure (Pf)* Consequences of failure (Cf). 

4. Prioritization of risks as a function of severity and occurrence. 

5. Develop criteria for acceptable and unacceptable risk. 

6. Generate a plan of action for the unacceptable risks. 

7. Use of measurements and statistics to help manage risks. 

Nonetheless, risk management best practices have not been possible for 

wastewater collection systems in part because the second foundational item, the 

analysis of risk likelihood, has been inhibited by the lack of a method to measure risk. 

This obstacle is addressed by this research. 

2.4.2.3 Other processes and activities  

The INCOSE Systems Engineering Handbook lists other processes and activities 

relevant to the research, albeit to a lesser degree than maintenance and risk 

management. These resources include the quality process which requires 

measurement and systematic improvement. The continuous monitoring 

recommendations of this research can serve as inputs into quality management. 

Failures of the collection systems lead to flooding and environmental contamination that 
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are sources of significant dissatisfaction among customers of wastewater utilities. Also, 

sustainment engineering helps ensure that a system continues to satisfy its objective 

over its intended lifetime. The consequent recommendations of this research to 

practitioners include ongoing assessment of performance to guide intervention in order 

to extend the life of the collection system. Intervention includes life extending activities 

such as pipe lining, pipe bursting…etc. that restore a pipe’s performance to a near-new 

level. 

In addition, system modeling is a systems engineering activity used to support 

decisions in the course of system operation. A model is a simpler system that 

approximates the behavior of the system of interest in selected areas. In this research, 

a novel agent-based simulation was developed to mimic the discovery of high-risk 

locations utilizing metaheuristic search techniques. 

2.5 Research purpose and scope  

The purpose of this research is to improve the selection of locations to actively 

manage the risk of inadequate conveyance capacity. The selection of locations decision 

is a sensor placement problem that is limited by the current state-of-the-art in assessing 

risk occurrence and by the lack of simulated environments to test sensor placement 

strategies. Managing risk is constrained by those same limitations. 

This research is focused on the capacity issues arising from ineffective 

maintenance of sewage systems. Nearly half of all overflow events are due to blockage 

(US EPA 2004a), which can be easily prevented by timely maintenance. Other causes 

of overflow events, such as infiltration and inflow (I/I), are responsible for fewer 
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overflows and typically require rehabilitation actions that are more expensive and time 

consuming. 

It should be noted that the methods proposed in this research for risk 

management apply equally well to all failure modes since the decision to actively 

manage failing locations is based on the consequences and probabilities of inadequate 

capacity. Infiltration and Inflow (I/I) due to rain entering a sewer pipe, either through 

groundwater infiltration or surface inflow, is a prevalent failure mode that goes beyond 

maintenance interventions to solve. The decision to prioritize maintenance failures is 

simply the potential to rapidly influence risk occurrence through maintenance since I/I 

reduction programs can take years to plan, fund, and execute. Moreover, success in I/I 

reduction programs have been difficult to substantiate (Staufer, Scheidegger, and 

Rieckermann 2012). Therefore, all other factors held constant, an active maintenance 

program provides the best return on investment of the utilities O&M and capital budget. 

The data collected for this research was from sanitary sewers located in the 

United States. However, there is no reason that the framework for risk management 

proposed in this research would not apply to other types of sewers in other locations. 

Specific parameters, such as the formula for risk occurrence estimates and the 

parameters for the metaheuristic search algorithm, might change for different types of 

collection systems in different locations. 

2.6 Research goals and objectives  

The research objective is to investigate improvements in risk management for 

linear infrastructure principally by minimizing the cost of finding the few components 

requiring active risk management through new methods of sensor placement. The main 
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goal of this research is to investigate a framework for managing the risk of sewer failure 

due to maintenance issues. It is observed that, in practice, wastewater utilities have not 

adopted two of the major concepts of systems engineering in their maintenance 

programs that led to inefficient maintenance programs; 1) the use of continuous 

monitoring for maintenance planning, and; 2) the application of a risk model to actively 

manage the greatest threats of pipes failure. There exists a limited body of prior 

research along these topics however, the fundamental obstacles of quantifying risk 

probabilities prevent the application of these important concepts. 

Regarding the first research objective, risk prioritization based upon failure 

consequences and failure probabilities is not a new concept and has been proposed for 

risk management of sewer failures (Arthur, Crow, and Pedezert 2008). However, prior 

research has focused exclusively on the use of historical failures to predict future 

failures using mathematical models rather than identifying problems based on “ongoing 

monitoring of the operational environment” as recommended in the INCOSE handbook 

(INCOSE 2007). Furthermore, while there has been considerable research into sensor 

placement for structural health monitoring of certain classes of systems, there is no prior 

research addressing the question of where to place sensors in a sewer network for 

maintenance management. Consequently, an objective of this research is to base 

maintenance decisions on monitor data while, at the same time, recognizing that it is not 

feasible to monitor an entire sewer system due to cost constraints. Therefore, a goal of 

this research is to propose an algorithm or heuristic that could guide operators to locate 

sensors in areas that would yield the highest value information to minimize risk of pipe 

failure. 
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The apparent absence of a method to assess risk occurrence probabilities 

severely limits the application of risk management models. Without a strategy of 

locating and moving sensors, necessary data cannot be collected upon which 

assessments of risk occurrence probabilities are made. Therefore, another objective of 

this research is to develop and apply a risk model to actively manage the greatest 

threats of pipes failure, guided by data. 

In order to achieve these research objectives, several research questions need 

to be answered throughout this study. These questions are: 

1. What is the appropriate risk model that reflects the nature of sewer failures 

and can aid in managing these failures?  

2. How should differing consequences of failure be considered? For 

example, is actively managinging unpermitted discharges that have the 

highest human impact (e.g. beach closures, downtown flooding, road 

collapse) a higher priority than managing large pipes, such as the trunk 

lines of a network, that could potentially spill larger volumes if they fail? 

3. How should the probability and location of occurrence of failure be 

assessed and what is the most easily achievable methods to detect the 

occurrence of failure in advance? 

4. How should the sensor placement decision be made, both initially and 

over time? 

5. How should the various sensor placement algorithms be simulated to 

assess their effectiveness in addressing the sewer failure problem? 
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6. Is there a need to develop new algorithms or can the existing placement 

algorithms be enhanced for this problem? 

Through answering these questions, this research will be able to contribute new 

methods to help solve the sewer failure problem.  

2.7 Research methodology 

In order to achieve the above-mentioned research objectives, the research 

methodology is divided into five main research tasks as follows and illustrated in figure 

(2-4): 1) Conduct a comprehensive literature review of the latest research studies in the 

fields of sewer systems maintenance and optimization modeling; 2) Select an 

appropriate risk model for the sewage systems failure problem; 3) Develop a realistic 

simulation to test location selection techniques; 4) Develop an algorithm to select a 

search technique and determine the optimum placement of sensors; and 5) Design 

experiments to implement and validate the developed tool. 

 
Figure 2-4: Research methodology  

Each of the above five tasks will serve its role in achieving the research 

objectives as follows. 

Task 1 (Literature Review): The goals of the literature review task are to: 1) 

explore the state-of-the-art for managing the specific risks of sewer systems failure due 



27 

to maintenance; 2) research the state-of-the-art for sensor placement in problems with a 

similar structure; 3) understand of the state-of-the-art for created simulated 

environments for problems with a similar structure.  

Task 2 (Risk Model Selection): The basic problem examined in this research can 

be considered an application of risk management. The best practices for risk 

management in systems engineering employ risk models (Haimes 2015). Of the various 

risk models to choose from, none is perfect but to cite the well-known quote from 

mathematician George Box, "essentially, all models are wrong, but some are useful" 

(Box and Draper 1987). Model selection itself can be a complex decision made more 

difficult by poor information and competing objectives (Karimiazari et al. 2011). 

Task 3 (Simulation): Since field testing of various sensor placement algorithms 

over a sufficient variety of environments, and in a research project timeframe, is not 

practical in terms of both time and cost, a realistic simulation will be used as a key 

enabling technology of this research. In this research, three major categories of 

simulation were considered - discrete event, systems dynamics, and agent-based. 

Task 4 (Optimization): Another enabling body of knowledge leading to efficient 

methods of locating sensors in order to best manage the risk of sewer failure is the field 

of optimization. By recognizing the problem as a combinatorial optimization problem, 

initial boundaries were placed on the choice of optimization techniques. Consequently, 

among the optimization techniques under consideration in this research were gradient 

methods, evolution algorithms, and heuristic search algorithms. 

Task 5 (Experimentation): The implementation of search algorithms in a 

simulated environment allowed experiments to be conducted. The purpose of 
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experimentation was not only to select a useful optimization technique for risk 

management, but also to learn how various parameters within the selected optimization 

algorithm affect the search efficiency. 

2.8 Research significance 

This research study proposes an algorithm or heuristic that will guide wastewater 

collection systems operators to locate sensors in areas that would yield the highest 

value information to minimize the risk of pipe failure. Through this research, wastewater 

utility operators will have access to a complete risk management framework that will 

improve the prevention and mitigation practices of environmental contamination due to 

sewer failures. The research conducted in this study is expected to provide benefits to 

the different stakeholders associated with waste water management. These 

stakeholders involve: 

The public. The results of this study will both improve the public’s health and 

economic benefits. Regarding the former, public health will be improved through 

reducing the frequency and severity of contamination incidents resulting from sewer 

failures. The public will reap economic benefits from avoiding the regulatory and 

cleanup costs associated with sewer spills, and from the better allocation of the existing 

budgets which will reduce the pressure to increase the utility’s rates. 

Wastewater utilities and local governments. These stakeholders will benefit from 

fewer and less severe sewer failures, prevention of highly publicized environmental 

contamination events, and elimination of the negative political and economic impacts 

associated with the regulatory enforcement actions.  



29 

Researchers in the field of risk management for complex systems. This research 

is expected to enrich the current literature on the application of well-established risk 

models as no prior research has either considered the use of monitoring data to assess 

risk occurrence probabilities or recognized an objective function based upon the 

efficient discovery of a minimum number of unacceptable risks. This research will also 

benefit researchers involved in exploring sensor placement problems with the particular 

defining characteristics of this research, namely: 

1. The cost of evaluating each sensor combination is high. 

2. The spatial resolution of each sensor combination is poor. 

3. The search space is a geospatial network. 

4. The shape of the objective function is unknown. 

2.9 Research assumptions and limitations 

In consideration of the foregoing rationale, several choices were made to 

potentially better meet the goals and objectives of this research. These choices are: 

1. A global search algorithm will produce better sensor placement sets than 

informed intuition. 

2. This approach is better than reactive high-frequency cleaning, i.e. waiting 

for someone to report an overflow and cleaning the “hot spots” more 

frequently. 

3. The number of overflow events prevented will provide a sufficient ROI for 

utilities to continue to invest in this monitoring strategy. 

There are several aspects of the sewage systems maintenance that were not 

considered in this study and were identified as opportunities for enhancing future 
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research on these types of problems. First, the research exploits failures that are 

spatially autocorrelated due to underlying causes related to the local environment of the 

pipe or due to characteristics shared by neighboring pipes. Isolated failures, which may 

pose unacceptable risks, need further exploration for risk assessment. An example of 

this is pump station failures. Second, validation of this methodology was only possible in 

a simulated environment with static conditions. The methodology may require 

adaptations for long time periods in sewer systems to account for phenomenon such as 

the emergence of new clusters of failing pipes. Finally, this research is only aimed at 

detecting the surcharge type of failure in sewer pipes. Other types of failures may not be 

detected and maintained using the developed tool. For example, odors and structural 

failure. 

2.10 Dissertation organization 

This research is organized into six main chapters each contributing to the overall 

goals. 

Chapter 1: Introduction to the general structure of the problem under study and a 

brief overview of the contributions made to the state-of-the-art in addressing the general 

problem. 

Chapter 2: Context of the research topic, including the gap in the knowledge and 

the need for this research. In addition, the problem statement, the research goals and 

objectives, together with their respective research questions, are outlined. This chapter 

also provides a brief overview of the research methodology to be adopted in this 

research.  
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Chapter 3: This chapter is devoted to providing a comprehensive review of the 

existing literature concerned with the scope of this research. The chapter will examine 

the literature concerned with previous studies aimed at solving the sewer failure 

problem, pinpoint their strengths and weaknesses, and highlight the advancement in the 

risk management state-of-the-art that will be achieved through this research study. 

Chapter 4: This chapter will elaborate on the adopted research methodology that 

is most suitable for conducting the primary analysis. This chapter will be dedicated to 

the different tasks of the adopted methodology which are: establishing a risk 

management framework, adaptations of FMEA, developing the search techniques, 

determining the appropriate methods for designing and calibrating the simulations, and 

design the experiments that will be used to validate this research.  

Chapter 5: This chapter will present the results obtained from this research study 

and highlight significant conclusions. This will be followed by a discussion of these 

conclusions and how they enhanced the solution for the sewer failure problem. 

Chapter 6: This chapter will summarize the conducted research and presents its 

conclusions and recommendations. The chapter outlines the various contributions of the 

conducted research to the body of knowledge, including recommendations for future 

research. 
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LITERATURE REVIEW 
 
 
 

3.1. The use of statistical modeling with historical data 

Several researchers have sought to construct predictive statistical models of 

where blockages are likely to form using the pipe and/or environmental characteristics, 

such as surface loads and soil types. The notion of combining available historical data 

with system characteristics data is very appealing because it is a preventative approach 

that could avoid the high cost of continuous monitoring. For this reason, the following 

section will provide a thorough discussion of predictive modeling and its techniques. 

3.1.1 Research on blockage prediction modeling 

There are several research studies that aimed at developing prediction models 

for sewage, or pipe, blockage in general. Fenner and Sweeting (1999) made one of the 

earliest investigations into classifying squares within a grid of a sewer network ranked 

by the need for intervention. They utilized a Bayesian technique that calculated which 

grid squares were at most risk from sewer failure based upon records of past failures. 

More importantly, they also attempted to incorporate the consequences of failure in their 

final rankings and concluded that the total number of past failures was the best predictor 

of future failures. The rationale behind this conclusion was that the physical 

characteristics that caused the blockage to form were not remediated by reactive 

maintenance, typically a simple cleaning. The researchers also recommended that 

geographic areas with high incidents of blockage reported should be inspected. When 

blockages are discovered, they recommended acting to remove the cause of the 
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blockage, not just the symptom, so that blockages would not reoccur (Fenner and 

Sweeting 1999). 

Baur and Herz (2002) constructed a model to predict physical deterioration of 

pipes for the purpose of prioritizing inspections. The authors analyzed data from the city 

of Dresden, concluding that sewer inspection dates, prioritized by critical condition, 

could be forecasted as a function of the pipe’s material, period of construction, location, 

type of wastewater conveyed, profile, diameter, and gradient (Baur and Herz 2002). 

Although not directly applied to blockage, this technique of scheduling inspections 

based on predictor variables could be extended to blockage failure modes. Moreover, it 

established a relationship between pipe deterioration and blockage as pipe defects 

reinforce the formation of blockages. 

Another study that attempted to design prediction models for blockage is the one 

conducted by Savic et al. (2006). In this study, the researchers considered the failure 

modes of collapse and blockages in a study of historical records for a large sewerage 

system in the United Kingdom. The objective was to prioritize inspections using the 

technique of evolutionary polynomial regression. They were able to produce a model 

identifying the most important variables and a classification scheme. However, in their 

conclusions, the researchers highlighted that continuous monitoring is required in order 

to make the appropriate intervention decisions at the optimal time. The authors also 

concluded that the service life of sewers could not be forecasted without reliable pipe 

condition information. It is also important to note that the researchers found that 

blockages depend on both the structural conditions and the hydraulic behavior of the 
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fluid, which implies that structural conditions data alone would be incomplete (Savić et 

al. 2006). 

Rodriguez et al. (2012) studied data centered approaches to prevent blockages 

due to sediment accumulation in Bogota, Columbia. Citing the evolutionary polynomial 

regression (EPR) method applied by Savic et al. (2006), Rodriguez et al. arrived to a 

similar conclusion as other researchers that the explanatory variables for blockage 

varied between sewer systems. One solution for this problem was to average EPR-

based models over numerous systems (Savic, Giustolisi, and Laucelli 2009). Lastly, 

Ugarelli et al. (2009) developed an EPR model that predicted pipe blockages in Oslo 

using pipe age, diameter, slope, and total length as explanatory variables. 

3.1.2 Limitations to statistical models of blockage 

Despite the successes documented in past research studies, there are some 

limitations of failure modeling approaches based on historical data that make them 

unsuitable for practical use. These were highlighted through the numerous in-person 

interviews that were conducted with collection system operators in the United States 

and led to the observation that there were no cases found where predictive statistical 

models were in use for any purpose in managing blockage. 

One of these limitations is that the consequences and likelihood of failure are 

rarely considered together through this type of modeling which are of a great 

importance to collection system operators (Arthur et al. 2009). For example, in the 

United Kingdom, potential overflow locations are classified as either “critical” or “non-

critical” based on the economic consequences of failure (Fenner and Sweeting 1999). 

The State of California recognizes three categories of sewer overflows based on volume 
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and whether or not the overflow reaches a surface water body, with greater 

investigation burden given to the highest volume overflows (State of California Water 

Resources Control Board 2013). In addition, another challenge to modeling the future 

blockage based on historical data is the poor quality of customer complaint and 

maintenance intervention data (Arthur et al. 2009). 

A second limitation of this modeling technique is the time and human resources 

required to transform the raw data into a useful predictive model. In a study of complaint 

data in Edinburgh, Scotland, the researchers ran into numerous roadblocks in 

developing a predictive model. One significant roadblock was the manual effort required 

to collect and analyze the data which limited the application of their method to small 

catchments only (Arthur et al. 2009). Baily et al. (2015) investigated the use of decisions 

trees to predict blockages in Dŵr Cymru Welsh Water. The research required an 

elaborate set of data conditioning activities including removing duplicate records in 

historical data, removing or estimating values for data that appeared suspicious, 

development of a consistent spatial reference for linking historical data to the sewer 

network, interpolation of missing sewer gradient data, derivation of property density, and 

derivation of the concentration of food producers. In the absence of hydraulic 

information, the researchers estimated flow velocity using the Manning formula while 

assuming normal depth to estimate the sediment’s buildup risk. This elaborate 

combination of data cleansing and estimation is not only time consuming, but also 

results in a model that is dependent upon assumptions that are known to be violated in 

the dynamic environment of sewer networks. Fontecha et al. (2016) discovered that 

nearly 45% of sediment related complaints were ineffective, repeated, or wrongly 
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classified. Fenner and Sweeting (1999) recognized these issues and concluded that in 

order for sewer failure to be correctly attributed to a specific pipe length, the lack of 

connectivity between the asset and event databases need to be overcome first, and 

second, the analysis must be able to handle missing data and information without 

recourse in order to substitute extensive quantities of default values which would distort 

the results and mislead their subsequent interpretation. 

A third limitation of the statistical modeling technique is that the predictor 

variables for blockage likelihood are complex and vary between collection systems 

(Fenner and Sweeting 1999). This reality means that models must be constructed 

uniquely for every system and that the predictive power may also vary between 

systems. Marlow et al. (2011) conducted a survey of collection systems experts in 

Australia to gather their opinion on the causes of sewer blockages. The purpose of this 

study was to assess whether it was fair to judge water companies’ performances based 

on blockage rates and it was concluded that it was not fair because of the city-unique 

circumstances leading to blockages, some of which are outside of management’s 

control. Rodriguez et al. (2012) best summarized the prior research on predicting 

blockages by noting that there were various, and sometimes contradictory, explanatory 

variables for blockage in prior research, and that there was no consensus on the 

physical properties of pipes to explain blockage. After reviewing these models, the 

conclusion is that “…blockages often appear random with differences in blockage rates 

between catchments often inexplicable” (Rodríguez et al. 2012 p.4375). 

Some investigators have concluded that there are inherent limitations in 

attempting to apply static models to the dynamic environment of sewers. For instance, 
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Fenner and Sweeting (1999) reasoned that deterministic models for predicting sediment 

accumulation were questionable and likely to produce misleading results. Moreover, 

Rodriguez et al. (2012) concluded that sufficient data was not available and that all 

previous research highlights the complexity and randomness in sewer blockages. 

Hence to be able to accurately model the observed blockage rate, more explanatory 

variables should be taken into consideration. These variables include structural 

conditions, high resolution spatially distributed rainfall data, and water consumption 

rates, which are not presently available. 

3.2 State of the art in sensor placement 

Continuous monitoring would be ideal if 100% of the sewer system could be 

monitored with sufficient warning to react economically. However, cost constraints limit 

the number of sensors that can be deployed to only a fraction of the potential monitoring 

locations. The next best approach is to employ a method for prioritizing the placement 

of monitors amongst all potential monitoring locations. Nevertheless, there are no 

published research that addresses the question of where to place sensors within a 

collection system in order to best minimize the effects of sewer overflows due to 

blockage. The few utilities with documented programs of blockage monitoring have 

developed heuristics based on historical failures and/or areas of highest consequences 

should an overflow occur, for example the City of San Antonio, TX (Haby et al. 2015). 

Therefore, in order to examine the state-of-the-art in sensor placement, research that 

used sensor placement for fault detection in other applications, such as leaks in drinking 

water distribution systems, provides helpful analogies in advancing this area in sewage 

systems. See section 3.2.2, for example. 
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3.2.1 Sensor placement based on historical failures 

The City of Atlanta, Georgia has reported success in utilizing continuous 

monitoring to prevent overflows. Operators place monitors in locations that have a high-

priority of being a repeat spill areas (Macrina and Woodall 2016). Furthermore, the City 

of San Antonio, Texas has been successful in deploying level monitors as a result of 

root cause analysis of historical overflows (Haby 2013). This approach is consistent with 

the research by Fenner and Sweeting (1999) that demonstrated that the past events in 

a geographic grid are the best predictors of future failures. There are two main 

shortcomings to this approach, which are: 1) it ignores locations with unreported 

overflows, and 2) a significant proportion of overflows appear randomly. Nonetheless, 

these shortcomings do not invalidate the importance of considering historical failures 

when choosing sensor locations as the successes in the cities of Atlanta, San Antonio, 

Murfreesboro, and elsewhere are solid evidences that many blockages will reoccur in 

the same locations, particularly if the underlying mechanisms that cause the blockage 

are not addressed.  

3.2.2 Sensor placement research in related applications 

Sensor placement has received attention recently within the topics of structural 

health monitoring and fault detection and isolation. While none of the approaches has 

been studied to detect failures in collection systems, the methods employed were 

examined for their potential applicability to the blockage problem. The structure of the 

problem of sensor placement for blockage detection provides boundaries for suitable 

algorithms. Lynch (2007) used the sensor monitoring technique to detect structural 

damage to bridges resulting from excess loads. In this study, a first generation of 
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structural monitoring systems was composed of sensors installed within structures that 

communicated raw data by wire to repositories where they were stored and post-

processed to understand the vibrational characteristics, validate models, and 

understand nonlinear responses to loads. In addition, a case study was presented from 

the Alamosa Canyon Bridge in New Mexico where the wireless sensors accurately 

recorded vibrations induced by hammering on the bridge. Nevertheless, wireless 

systems have a disadvantage in that they are battery powered and the communications 

modules consume most of its power. Also, the computational efficiency of algorithms, 

such as FFT, affect battery life. Tradeoffs may be necessary in precision and temporal 

scale in order to achieve longer battery life. Another disadvantage of wireless systems 

is the lack of a common clock. The clocks on the numerous local systems will tend to 

drift, therefore a method is needed to synchronize the data in time (Lynch 2007). Finally, 

the author concludes that wireless structural health monitoring is still in its infancy and 

there is more research needed. 

Perhaps the most related application to sewage networks is sensor placement in 

water distribution systems. The focus of research in water distribution has been to 

detect either contamination of the water supply or leakage. Like collection systems, 

water distribution networks are large-scale linear assets with discrete monitoring 

locations which lends itself to combinatorial optimization techniques. Moreover, the 

underlying mechanisms of failure are usually not well understood nor is the shape of the 

objective function. 

The state-of-the-art in research of the placement of sensors in water distribution 

systems involves the use of various optimization algorithms to detect simulated failures 
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in models of the actual system. Krause et al. (2008), utilized an EPANET model and 

compared various optimization techniques including simulated annealing. Yassine et al. 

(2008) approached the general problem of sensor placement for fault detection utilizing 

a structural model of a physical system. In addition, Aral et al. (2009) proposed a 

progressive genetic algorithm to locate sensors in an EPANET model that detected 

contamination. Finally, Casillas et al. (2013) employed a genetic algorithm to place 

sensors in locations that best measured the difference between water pressure in no-

leak scenarios versus multiple leak scenarios. 

Common to the research of sensor placement in water distribution systems is a 

hydraulic model of the system that can simulate various failure scenarios. Sufficiently 

precise and system-wide models may not be available for many wastewater utilities. 

Even if models are available, the techniques applied to water distribution networks do 

not take into account the spatial auto-correlation of failures and thus overlook an 

important attribute for finding clusters of defects. This is less important in the case of 

pressurized distribution systems where pressure sensing has a much greater range and 

a full system sensing is practical. However, in the researcher’s practical experience of 

25 years in the wastewater monitoring industry, in the case of open channel level 

meters, the sensing range is very short making their optimal placement highly sensitive 

to the actual spatial distribution of failures. Model-based sensor placement techniques 

are not suitable in the case of wastewater collection systems both due to the 

inconsistent availability and quality of hydraulic models in wastewater utilities, and the 

necessity of developing an understanding of the probable failure scenarios through 

iterative field measurements. 
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3.2.3 The use of metaheuristics in sensor placement 

Based on the structure of the problem investigated in this research study, the 

class of algorithms that fits the structure of the problem under investigation are 

metaheuristic search techniques that solve combinatorial optimization problems in a 

single solution evolution. These are classified as “trajectory methods” (Baghel et al. 

2012) in which the authors identify five algorithms - Simulated Annealing, Tabu Search, 

Greedy Randomized Adaptive Search Procedure (GRASP), Variable Neighborhood 

Search, and Local Search – Basic, Iterated, and Guided. 

Although there is prior research on the use of trajectory methods to solve the 

sensor placement problem, the applications in literature are not suited for sensors 

placed in linear assets like a wastewater collection system without important 

adaptations. Lin et al. (2005) studied the application of simulated annealing to sensor 

placement. They studied the class of problems where grid-based placement is suitable, 

such as in discriminating targets for aircraft. The simulating annealing algorithm was 

successful in efficient identification of a near-optimal sensor placement; however, the 

problem is not adaptable to collection systems. Representing a collection system as a 

grid ignores the important spatial autocorrelation in pipe failures, as well as, the 

constraint that sensors may only be placed in very defined spaces in the network (e.g. a 

manhole). Second, the work by Lin et al. (2005) did not have a high cost of assessing 

candidate solutions since it was done by computer simulation without regard to the time 

and expense of sensor movement iterations in practice. 
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3.3 Research on risk management models 

Another important question to be answered in this research is what is the 

appropriate risk model that reflects the nature of sewer failures and offers a framework 

for managing failures towards some objectives. To answer this question, the different 

risk models need to be explored. Smith and Merritt (2002) proposes two objectives of a 

model of risk. The first objective is to provide a means of comparison between risks in 

order to select those to manage. The second is to point towards the root causes for 

resolving risks. Additional benefits of a risk model include communicating the nature of 

risk and understanding the chain of events that lead to an impact of a risk event (Smith 

and Merritt 2002). 

3.3.1 Risk model alternatives 

It is common among the literature on risk management to acknowledge that a 

certain degree of expert judgement is involved in assessing risks (Project Management 

Institute 2013). It is also recognized that the best practice includes quantitative 

assessment of risk in a structured way which is particularly true for the field of systems 

engineering (INCOSE 2007). To quantify risk accurately, different risk models combine 

the risk’s probability and its impact which is the methodology recognized by the 2009 

International Standard on Risk Management, ISO 31000:2009. The standard calls for 

consequences and likelihood of risk to be combined and expressed in a way tailored for 

the purpose of the risk management process (Purdy 2010). 

Smith and Merritt (2002) proposed four alternatives for risk models - the 

Standard Model, Simple Model, Cascade Model, and Ishikawa Model. All these models 

share the elements of the probability of the risk event, the impact of risk event, and the 
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drivers of each. The models are general purpose and do not address specifics such as 

the units-of-measure for quantifying a risk’s impact. In the following sub-sections, a brief 

description about each of these models will be provided. In addition, other risk 

identification and quantification models include the Analytical Hierarchy Process, Fault 

Tree Analysis, and Failure Modes and Effects Analysis.  

3.3.1.1 Standard risk model 

The Standard Risk Model combines the elements of the probability of risk events, 

probability of the impact of the risk, and estimated total loss as numeric inputs to risk 

events and their impacts. The events and their impacts each can have multiple drivers 

that help explain their causes. This process produces an “expected loss”, which is the 

product of elements (Pe * Pi *Li), as shown in figure (3-1). This parameter becomes the 

quantity to rank the risk (Smith and Merritt 2002). 

 
Figure 3-1: Standard risk model (Smith and Merritt 2002) 

 
The Standard Risk Model is adaptable to a wide range of problems across 

industries, regardless of the size or nature of the industry (Leitch 2010). Relevant to the 

topic under study, Rihar (2018) successfully applied the Standard Risk model to large 

infrastructure construction projects. Another advantageous feature of the Standard Risk 

Model is a “risk map” that separates the risks that are considered critical from those 

considered to be non-critical. The goal of the process is to apply management actions to 
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all critical risks until they are classified below the “threshold line” which connects points 

of equal expected loss. An example of a risk map is shown in figure (3-2) (Rihar et al. 

2018). Other advantages of the Standard Risk Model include the identification of drivers 

for both events and impacts, which helps in prioritizing management actions to those 

causes that contribute most to the expected loss (Sturdivant 2017). Another advantage 

is that separating events from impacts develops a valuable understanding of cause and 

effect relationships (Smith and Merritt 2002). On the other hand, a drawback of the 

Standard Risk Model is that it does not support the selection of risk strategies (Gericke, 

Klimentew, and Blessing 2009). Based on the researcher’s experience with the 

Standard Risk Model, it would not be practical for this study due to the large number of 

risk events, over 14,000, that would require evaluation. 

 
Figure 3-2: Risk map example (Rihar et al. 2018) 

3.3.1.2 Simple risk model 

The Simple Risk Model is a simplification of the Standard Risk Model in which 

the probability and drivers of the risk events and impacts are combined as illustrated in 

figure (3-3) (Smith and Merritt 2002). The main advantage to this model is its simplicity, 

as well as, the benefits of calculating an expected loss for purposes of risk ranking and 



45 

an understanding of risk drivers. A criticism of the model is that it sacrifices flexibility for 

simplicity as separating probabilities of events and their impact can be critically 

insightful, particularly in the case of low probabilities and catastrophic impacts 

(Sturdivant 2017).  

 
Figure 3-3: Simple risk model (Smith and Merritt 2002) 

 

3.3.1.3 Cascade risk model 

The Cascade Risk Model is similar to the Standard Risk Model with the addition 

of intermediate consequences associated with a probability of consequence and a set of 

drivers for each. This model is appropriate when failures occur in a sequence i.e. chain 

reaction, that culminates in a loss as illustrated in figure (3-4) (Smith and Merritt 2002). 

The Cascade model was applied in various fields. For instance, Zhai et al. (2017) 

applied the Cascade Model to power systems failures. Korkali et al. (2017) used the 

model to show the effects of the loss of the power grid on other critical infrastructure, 

like communication networks. Daqing et al. (2015) generalized the applications to all 

types of networks (Daqing et al. 2015). However, Smith and Merritt (2002) identify the 

difficulty of calculating probabilities as a drawback to the Cascade Model because risks 

may become so specific that they become improbable. They recommended the use of 

this model only to deconstruct complex risks.  
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Figure 3-4: Cascade risk model (Smith and Merritt 2002) 

 

3.3.1.4 Ishikawa risk model 

Kaoru Ishikawa popularized cause-and-effect diagrams in the 1960’s following 

the concept of Five Whys. This tool is a graphical illustration between an outcome and 

all of the factors that cause it, with the ultimate goal of identifying the root causes 

(Suárez-Barraza and Rodríguez-González 2018) as shown in figure (3-5). The Ishikawa 

Risk Model is appropriate when it is important to understand why a risk occurred (Smith 

and Merritt 2002). Jen (2010) proposed using this model to visualize risk in a technique 

called “Visual Ishikawa Risk Technique (VIRT)” by utilizing the Risk Breakdown 

Structure as a basis for events and drivers. Ilie and Ciocoiu (2010) recommend the 

Cascade model for events with multiple causes, arguing that an advantage is to focus 

the treatment on the most impactful causes. Nonetheless, many people find the 

Ishikawa technique overly complicated and it is recommended to use it to understand 

why risks occur but not for managing them (Smith and Merritt 2002). Thus, it was 

judged to be inappropriate for this research due to reasons of complexity and the lack of 

a mechanism to rank risks. 
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Figure 3-5: Ishikawa risk model (Smith and Merritt 2002) 

 
3.3.1.5 Analytical Hierarchy Process 

The Analytic Hierarchy Process (AHP) was developed by Thomas Saaty in the 

late 1970’s to quantitatively assess qualitative criteria in the decision-making process. 

AHP utilizes a unique method of pairwise comparisons of alternatives with respect to a 

decision criterion to produce the quantities for ranking alternatives (Thibadeau 2007). 

Saaty advocated AHP for decision making when a complexity of goals and criteria are 

involved (Saaty 1991). One of the applications of AHP was conducted by Zayed, Amer 

and Pan (2008) who used the AHP as a component of risk management for a high-risk 

road construction project. In addition, Millet and Wedley (2002) surveyed prior research 

applying AHP in risk management and found applications in forestry and knowledge 

engineering, due to its strength in modeling uncertainty and deriving scales where 

measures ordinarily do not exist. Nevertheless, the paired comparison procedure of the 

AHP is not practical for the problem under study, or any application when there are 

many alternatives, since each alternative must be compared to all the other ones. In 

addition, the AHP process is inefficient in dealing with risks that can be ranked 
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objectively, such as the expected loss in the Standard Risk Model or the RPN in FMEA. 

The process flow for AHP is shown in figure (3-6). 

 
Figure 3-6: AHP process flow (S. Liu et al. 2013) 

 

3.3.1.6 Fault Tree Analysis 

Similar to the AHP, Fault Tree Analysis (FTA) seeks to quantitatively evaluate 

qualitative risk characteristics. In this model, each tree depicts a failure mode as 

interrelated gates with inputs at the bottom of the tree, passing upwards to outputs at 

the top of the tree. The symbols used to construct the trees are basic logic gate symbols 

that are understood in some disciplines such as electrical design (Vesely et al. 1981). 

FTA has been used in a variety of applications, including those in the aerospace 

(Stamatelatos et al. 2002), defense and automotive (Kabir 2017), nuclear power (Vesely 

et al. 1981), and tunneling (Hyun et al. 2015). One advantage of the FTA is that the 

probability computations involved in this model can take into account common causes 

of multiple failure modes (Stamatelatos et al. 2002). Furthermore, the use of “cut sets” 



49 

can reveal the critical few components that contribute to vulnerabilities (Ruijters and 

Stoelinga 2015). On the other hand, Kabir (2017) notes two drawbacks of FTA. The first 

is that it applies only to static systems because it lacks structure for a time element. The 

second is that it is a manual process that is time consuming and expensive. 

Consequently, this drawback makes FTA impractical for the project under study as it will 

require an analysis of the cause and effect of blockages which are not universally 

agreed upon. An example of a fault tree applied to a medical risk is depicted in figure (3-

7). 

 

Figure 3-7: Example of a fault tree (S. Liu et al. 2013) 
 

3.3.1.7 Failure Modes and Effects Analysis 

Another commonly used model is the Failure Modes and Effects Analysis 

(FMEA) model. This model combines the risk probabilities and impacts into a single 

expected value number termed the “Risk Priority Number” (RPN). Selvik and Aven 
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(2011) suggest FMEA, or its variants, as an appropriate model in implementing the 

concepts of Reliability Centered Maintenance. Meanwhile, Liu et al. (2013) reviewed 75 

papers on the subject of FMEA in an effort to summarize its shortcomings. They found 

that the most frequent shortcoming was the combination of risk rankings and 

occurrence rankings to produce a single RPN. The authors concluded that modifications 

to the traditional RPN calculation were effective, however, they added to the complexity 

of the model. FMEA is recommended as an appropriate risk model for the problem 

under study. A more exhaustive explanation of the FMEA methodology is provided in 

Section 4.1. 

In conclusion, there is no single risk model that best fits every application and 

every organization must select the best model based on their needs. Karimiazari et al. 

(2011) named this process the “risk assessment model selection problem” and 

proposed a multi-criteria decision-making approach to select the best model. 

3.3.2 Risk assessment of sewer systems 

Several studies have approached the risk management of sewer pipe failure from 

the standpoint of expert judgement and pipe deterioration models. For instance, 

Mancuso et al. (2016) proposed a specific technique for prioritizing pipe inspections by 

utilizing expert judgement of the risks of failure and their severity. Johansen et al. (2007) 

proposed a similar technique by collecting expert opinions regarding the characteristics 

that lead to pipe failure. Another research effort that studied the risk of failure due to 

pipe deterioration was conducted by Salman (2010). In this research, the risk of failure 

due to pipe deterioration was assessed by utilizing the opinions of experts to qualify the 

consequences of failure combined with statistical deterioration modeling to quantify the 
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probability of failure (Salman 2010). Furthermore, Salman’s research cited 12 other 

studies using various methods and parameters to model sewer pipe deterioration. One 

of the cited studies is the one conducted by Sinha and McKim in 2007 who proposed a 

pipeline management system consisting of a standard pipeline rating system, a 

Markovian prediction model to forecast pipeline deterioration as a function of time, and 

a process to prioritize maintenance and rehabilitation based on cost. Salman also cites 

Ruwanpura and Ariaratnam (2003) who applied a rule-based Monte-Carlo simulation to 

predictive models of pipe structural conditions by using present condition, pipe age, type 

of material, and length of the pipe as inputs. 

At the same time, few studies have explored the issue of modeling sewer pipe 

failure due to maintenance issues. The most conceptually similar study to the content of 

this research, albeit with different methodology, was the one conducted by Anbari et al. 

in 2017. After a comprehensive citing of prior research in sewer pipe failure the authors 

noted that the risk assessment procedure has not included the computation of the 

probability of failure (Anbari, Tabesh, and Roozbahani 2017). Another important study in 

this field was the one conducted by Arthur et al. in 2009 in which they recognized the 

importance of hydraulic failure, specifically blockage, in implementing a FMEA-based 

approach to risk prioritization. Finally, Berardi et al. (2009) included blockages as one 

objective in a three-objective optimization approach for risk assessment in sewer 

networks. 

3.3.3 Risk threshold concept 

One of the important constructs stressed by the Project Management Institute 

(PMI) is that an organization’s risk attitude has a critical influence on how it responds to 
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risks (Project Management Institute 2013). This attitude encompasses the 

organization’s risk appetite, risk tolerance, and the idea of a risk threshold that is 

adopted in this research. The PMI defines the risk threshold as a level of uncertainty or 

impact below which an organization will accept the risk and above which it will not 

tolerate the risk (Project Management Institute 2013). 

Lempert and Collins (2007) viewed risk thresholds in three different concepts. 

The most straightforward concept is the use of optimum expected utility when 

uncertainty is well characterized and the cause-effect relationship is well understood. 

The second concept is the concept of precaution, which seeks to eliminate any risk 

above a threshold level. The third concept requires the understanding of the full range 

of uncertain outcomes with the probabilities associated with each and attempts to make 

decisions that are robust across all possible outcomes. 

3.3.4 Multi-objective risk rankings 

Other studies favored a multi-objective decision objective over the risk threshold 

concept. For example, Hafskjold et al. (2002) developed the Computer Aided 

Rehabilitation of Sewer Networks software application (CARE-S) to rank pipe 

rehabilitation candidates using multi-objective criteria. Furthermore, Berardi et al. (2009) 

set an objective of balancing economic, technical, and management objectives with a 

prioritization based on the number of times a particular pipe appeared in a multi-

objective solution.  

3.3.5 The role of monitoring and review 

The 2009 International Standards Organization (ISO) document recognized the 

importance of ongoing monitoring and review in risk management which involves taking 
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on new information about changing environments and understanding changes in the 

organizations’ attitudes towards risk (Purdy 2010). In addition, Srinivasan and Parlikad 

(2013) recognized the value of condition monitoring to the general class of civil 

infrastructure. They advocated for the increased use of sensors to estimate condition 

and probability of failure of the sensors while cautioning that the key questions of what 

sensors to deploy, what value will the sensors provide, and how to use sensor data to 

make decisions must be answered. 

Monitoring has been shown to be effective in similar applications. For example, 

the installation of continuous monitors in the grease disposal system at Children’s 

Hospital in St.Petersburg, FL eliminated regulatory action and customer complaints, 

while also produced cost savings (Russell 2002). Another similar application was 

published by Montserrat et al. (2015) who analyzed data from continuous monitors 

placed in combined sewer overflows (CSO). The remote monitor data reported active 

CSO locations, which avoided the cost of sending inspectors to every overflow location 

after every rain event. 

3.3.6 Common elements of modern risk management 

A well-developed body of knowledge for risk management exists through the 

work of organizations such as PMI, ISO, and INCOSE. The common elements of 

modern risk management are the combination of risk probabilities and risk 

consequences into a framework that prioritizes or categorizes risk events for 

management attention. Modern risk management also incorporates the concept of a risk 

threshold by separating actively managed risks from acceptable risks and recognizes 

the important role of ongoing monitoring and review. 
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In the application of risk management to sewer pipe failure, the focus of 

researchers has been on finding methods to assess the probabilities of pipe failure, 

particularly structural failure modes. These methods rely on expert opinions and/or 

statistical models of pipe failure to predict future failure potential. In some cases, 

artificial neural networks have been employed to predict failure based on the different 

characteristics of the pipes and their environment (Moteleb and Salem 2010). 

3.4 Conclusion 

This chapter has investigated the state-of-the-art for managing sewage overflows 

due to blockage both in practice and in research. Preventative actions based on 

continuous monitoring is shown to be both more effective and more efficient than the 

prevailing practices of intervention based on complaint data, intervention based on 

inspection data, and interventions based on time since last intervention. Furthermore, 

the research in statistical models to predict blockage has not produced generally 

accepted techniques that are effective to be used across utilities. At best, the statistical 

models have predictive power within the collection systems that they were fit to. This 

leaves open the possibility that statistical models could be developed alongside 

continuous monitoring within particular collection systems. In addition, research into 

optimal sensor placement has not been applied to continuous monitoring for sewer 

blockage. In the fields where it has been applied, model-based approaches have been 

utilized to detect hypothetical failure scenarios. The limitations of sewer models and the 

lack of knowledge of actual failure scenarios make current research in sensor 

placement unsuitable for continuous monitoring in sewers. Based on the structure of the 

problem, a more promising approach is to apply one of the trajectory methods of 
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metaheuristic search techniques with the goal of near-optimal placement of sewer level 

monitors. Finally, regarding risk management models, there has been no methodology 

proposed for ongoing monitoring as required by ISO 31000:2009 in relation to the 

problem of sewer blockages. Prior research has focused on predicting failures based on 

mathematical relationships between the pipe’s characteristics and its environment. 

Furthermore, no prior research has attempted to assess the probabilities of failure using 

continuous monitoring, nor has any prior research dealt with the problem of where to 

place sensors to optimize risk assessment. 
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METHODOLOGY & RESULTS 
 
 
 
The main objective of this chapter is to present the methodology implemented in 

this research to accomplish the goals and objectives. The implemented methodology 

comprises a number of different tasks, namely; 1) selecting an appropriate risk model 

for the sewage systems failure problem; 2) developing a realistic simulation to test 

location selection techniques through the adaptation of FMEA; 3) developing an 

algorithm to select a search technique and determine the optimum placement of 

sensors; and 4) design experiments to implement and validate the developed tool. In 

the following sections, the four tasks, together with how they were conducted, and the 

results obtained from them will be presented in detail. 

4.1 Establishing a risk management framework   

4.1.1 Selecting an appropriate risk model 

The first goal of selecting a risk model is to choose the model that is, as Albert 

Einstein famously wrote, “as simple as possible and not simpler”. The simplest useful 

model would involve only the three common elements of a risk model, which are event 

probability, event consequences, and a measure combining the two. Other elements, 

such as risk drivers or risk probability distributions, were also considered in this 

research based on the potential extra value that they might add. 

The second goal in selecting a risk model is to choose the one that is appropriate 

for the structure of the problem to be solved. Relative to risk management in other 

industries, such as construction, new product development, or financial portfolio 

management, the issues studied in this research are relatively straightforward. Since, in 



57 

this research, the risk management principles are applied to a question of infrastructure 

asset maintenance, it is not necessary to identify a wide range of risk drivers, such as 

the people risk, process risk, product risk, and performance risk incorporated in the 

Ishikawa risk model (Smith and Merritt 2002). Moreover, it is not particularly valuable to 

examine possible outcomes on the full spectrum of possible risk probabilities and 

consequences, such as methods employing Monte Carlo simulation (Project 

Management Institute 2013). 

Failure Modes and Effects Analysis (FMEA) was determined to meet the above 

criteria for simplicity and suitability to the problem at hand. In the variant proposed, 

FMEA utilizes only the three common risk model components. Furthermore, prior 

research has documented the successful application of FMEA to manage preventative 

maintenance activities (Braaksma, Klingenberg and Veldman 2013). 

It should be noted that the risk assessment techniques presented in this research 

do not necessarily depend on the risk model selected. The application of metaheuristic 

search techniques to select efficient locations for continuous monitoring can serve as 

risk probability inputs to a variety of risk management models. 

4.1.2 Implementation of Failure Modes and Effects Analysis 

FMEA was first developed as a tool for product design in the aerospace industry 

in the 1960’s where reliability and safety were critical design priorities (Bowles and 

Enrique Peldez 1995). The procedure first involves identifying all potential failure modes 

of a system or process. Then, for each potential failure, a risk priority number (RPN) is 

calculated as the product of a risk occurrence rating (O), a risk severity rating (S) and a 

rating for detectability (D). 
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RPN = O*S*D                   (4-1) 

In traditional FMEA, the ratings for each element of the RPN is normalized on a 

scale of 1-10, where the interpretation of the numbers of the scale are left open to 

assignment by the practitioner and do not have to be linear. For example, a risk 

occurrence rating of 8 does not necessarily mean a quantified risk that is double that of 

a risk occurrence rating of 4. Moreover, ratings for O, S, and D can be qualitative or 

quantitative. This is particularly common for severity ratings where a rank of 1 might 

indicate “no ill effect” and 10 might indicate “failure is hazardous and occurs without 

warning”. Ratings for detectability are also commonly qualitative, ranging from low ranks 

that indicate that the detection is “almost certain”, to high ranks indicating that the 

detection is “absolutely uncertain”. 

This method produces RPN values ranging from 1 to 1,000. In the case of the 

latter occurrence, severity and detectability will all be at their maximum value of 10. 

Consequently, higher RPN number indicates higher risk, thus demanding the highest 

attention (Liu et al. 2013). 

4.1.3 Adaptations of traditional FMEA in this research 

4.1.3.1 Estimating risk severity score 

Although it is not the purpose of this research to develop a severity scoring 

methodology nor is a novel methodology necessary for the framework proposed in this 

research, the only necessary condition required for this research is that the evaluator 

assign severity scores that can be standardized on a scale between 1 and 10. To 

achieve this standardization, a method was defined that involved creating a scoring 

rubric and assigning these scores to sewer pipe locations through a satellite imagery 
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analysis procedure. This method is consistent with EPA guidance which took into 

consideration several factors that were simple to implement. 

The factors that were considered before designing this method came mainly from 

two sources: the EPA combined sewer overflows guidance for screening and ranking, 

and the EPA report to Congress on the impacts and controls of CSO’s and SSO’s. 

Regarding the former, EPA prioritizes controlling overflows to sensitive areas. These 

areas include designated Outstanding National Resource Waters, National Marine 

Sanctuaries, waters with threatened and endangered species and their habitat, waters 

with primary contact recreation, pubic drinking water intakes or their designated 

protection areas, and shellfish beds. Figure (4-1) is a compilation of the ranking criteria 

in the EPA’s report organized by risk severity scores assigned by the author. The 

scores are based on standardizing the EPA point scale of 0-250 to a 10-point scale and 

are rounded to the nearest integer. Shaded boxes were used for cross reference to the 

EPA scoring system. Unshaded boxes were considered but not used as input for the 

study methodology due to the difficulty in obtaining information on the scale of a 

sanitary sewer system. 
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Figure 4-1: Standardized consequence rating based on point assignments 

 
Regarding the latter source, this report divided the impacts into two broad 

categories: environmental impacts and human health impacts. Although a scoring scale 

was not provided (US EPA 2004a), it can be inferred that the foundation of a severity 

scoring process would be based on the five designated water uses potentially 

compromised by sewer failure and the impact of human health. The five designated 

uses that are potentially impacted by sewer overflows are: 

1. Aquatic life support 

2. Drinking water supply 

3. Fish consumption 

4. Shellfish harvesting 

5. Recreation (e.g. swimming, boating) 

This report influenced the severity ratings used in this research by assigning the 

highest severity scores to potential overflow locations (manholes) that were near 

waterways. Higher severity ratings were also assigned in this research to locations 
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where overflows present higher jeopardy for humans to come into contact with 

wastewater and thus risk human health. 

Two other notable sources contributed to the development of this method. 

Bowles & Enrique-Peldez (1995) reserved the lowest scores for failures that are so 

minor that they may not be noticed, mid-range scores for failures that produce customer 

dissatisfaction and noticeable impaired performance, and highest severity scores for 

those that affect safety or violate government regulations. Arthur et al. (2009) attempted 

to evaluate the overflow consequences based on the following factors: 

1. The level of deprivation of the population affected by the overflow. 

2. Recurrence of the overflows. 

3. Land use: The highest severity ratings were for protected land areas and 

urbanized land areas. Waterways were assigned the next highest ratings 

followed by industrial land areas. Particularly vulnerable areas, such as 

schools and hospitals, were assigned higher severity ratings, while 

shopping areas also received special consideration. 

4. Road usage.  

4.1.3.1.1 Create a scoring rubric 

The scoring rubric created for this research is shown in table (4-1). Scores were 

scaled from 1 to 10, consistent with FMEA. In the first column of the table, FMEA 

qualitative terms are included, ranging from “minor” to “highest” severity. The second 

column contains a qualitative description of the worst consequence that could 

reasonably occur if a failure were to happen at a location. The concept of “worst 

consequence” is discussed below. The third column, GIS Indicators, are the visible 
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indicators of areas that are prone to the consequences of each line in the rubric. This 

linkage simplified the rating process to an analysis of satellite imagery. The last column 

cross references each rating to EPA guidance to support the relative rankings. The 

intention of this cross reference was to be as consistent as possible at least with the 

rank order of potential impacts. 

Table 4-1: Risk severity scoring rubric 
Score/FMEA 
Description 

The worst 
consequence in 
case of overflow 

GIS Indicators Cross Reference to 
EPA Guidance 

1 Minor Overflow unlikely to 
be noticed or to 
cause ecological 
damage 

Unpopulated/untraveled 
areas such as forests 
and fields 

Discharge to rapidly 
mixing ocean 
offshore 10 

2 Minor + Loss of enjoyment 
due to odor or 
visible sewage – low 
population density 

In the vicinity of 
populated areas but not 
in direct contact with 
the public. In areas 
where sewage could be 
visible such as beside 
roadways. 

Discharge to 
medium mixing 
ocean offshore 15 

3 Low Loss of enjoyment 
due to odor or 
visible sewage – 
high population 
density 

In the vicinity of 
populated areas but not 
in direct contact with 
the public. In areas 
where sewage could be 
visible such as beside 
roadways. 

Discharge to 
streams, rivers, and 
near-shore oceanic 
40-60 

4 Low + Traffic disruption Near roadways where 
street flooding is 
possible 

Discharge to 
estuarine and 
wetland, lakes, and 
ponds. Tourism 
affected. 100 

5 Moderate Aquatic life support 
compromised - 
minor 

Near minor estuaries, 
wetlands, lakes, ponds 

Discharge to 
estuarine and 
wetland, lakes, and 
ponds. Tourism 
affected. 100 

6 Moderate + Aquatic life support 
compromised - 
major 

Near major estuaries, 
wetlands, lakes, ponds 

Discharges to 
national resource 
waters, sanctuaries, 
threatening 
endangered species. 
-200/Aquatic life 
support, meaning 
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Score/FMEA 
Description 

The worst 
consequence in 
case of overflow 

GIS Indicators Cross Reference to 
EPA Guidance 

the water provides 
suitable habitat for 
the protection and 
propagation of 
desirable fish, 
shellfish, and other 
aquatic organisms. 

7 High Public health 
compromised 
through drinking 
water or 
consumable fish 
supplies 

Near public drinking 
water intakes or 
fishable bodies of water 
including shellfish beds 

Discharges to public 
drinking water 
intakes, or shellfish 
beds -200 /Drinking 
water supply, 
meaning the water 
can supply safe 
drinking water with 
conventional 
treatment…Fish 
consumption, 
meaning the water 
supports fish free 
from contamination 
that could pose a 
significant human 
health 
risk…Shellfish 
harvesting, meaning 
the water supports a 
population of 
shellfish free from 
toxics and 
pathogens that could 
pose a significant 
health risk to 
consumers. 

8 High + Public health 
compromised 
through surface 
contact – suburban 

Near occupied 
structures or public 
outdoor areas including 
residential, industrial, 
and commercial 
buildings and public 
parks in areas such as 
sub-divisions, highway 
rest areas, small 
industrial parks 

Discharge in streets 
or basements -250 
(direct contact with 
public) 

9 Very High Public health 
compromised 

Near occupied 
structures or public 
outdoor areas including 

Discharge in streets 
or basements -250 
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Score/FMEA 
Description 

The worst 
consequence in 
case of overflow 

GIS Indicators Cross Reference to 
EPA Guidance 

through surface 
contact - urban 

residential, industrial, 
and commercial 
buildings and public 
parks in densely 
populated areas with 
multi-family dwellings, 
schools, hospitals, 
shopping malls 

(direct contact with 
public) 

10 Highest Public health 
compromised 
through water 
contact 

Near swimmable 
waters 

Discharges to 
waters experiencing 
beach closings or 
where there is 
significant risk to 
public health from 
direct contact with 
pollutants – 250 
(Note: Normalized -
250 to 
10)//Recreation, 
meaning water-
based activities 
(e.g., swimming, 
boating) can be 
performed without 
risk of adverse 
human health effects 

 

4.1.3.1.2. Satellite imagery analysis procedure 

The use of GIS indicators allowed the severity scores to be easily assigned using 

a GIS database containing the location of sewer pipes and manholes, overlaid on a 

base map of satellite imagery or aerial photography. Pipes were selected by drawing 

polygons around areas of equal severity rating in accordance with the scoring rubric. A 

severity field was created in the GIS database to store the ratings. 

An example of a small section of aerial photography is shown in figure (4-2) 

below. Pipes colored green are low severity scores in the range of 1-3 because they are 

in unoccupied land areas not near waterways, pipes colored yellow are of a severity 
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score of 8 because they are in neighborhoods, while pipes colored red are of a severity 

score of 9 because they are near more densely populated structures in an industrial 

park. 

 

Figure 4-2: Example of the satellite imagery analysis procedure 
 

4.1.3.1.3 Limitations of severity ratings based on total loss assessments 

The severity rating method used in this research assigned severity scores based 

on a worst outcome scenario. The standard risk model and FMEA do not provide a 

mechanism for probabilistic impacts of risk events. For example, a failed pipe, defined in 

this study as a surcharged pipe, may not result in any measurable impact if the 

surcharge wastewater volume is contained within the collection system (e.g. within 

manholes). Similarly, a short-duration overflow would result in less severe impacts than 

a very long one, all other variables being equal. No data currently exists to formulate 

probability distributions for failure consequences. This is another potential benefit of the 
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data that would be obtained through systematic level monitoring as proposed in this 

research. 

4.1.3.2 Estimating risk occurrence score 

The first step of this estimating the risk occurrence score was to consolidate and 

organize depth-duration frequency data which was then followed by an exploratory data 

analysis. This analysis led to the choice of a binary logistic regression approach. Based 

on diagnostic data from this regression, a further step was introduced to associate the 

output of binary logistic regression with the observed probability of pipe surcharge. 

4.1.3.2.1 Source of data 

The data came from a sample of level sensor data from 456 monitoring sites 

(manholes) from seven different sewer systems in the United States. Sensors 

containing ultrasonic level and pressure depth transducers were installed inside the 

upstream pipes of manholes at the locations. The sensors were connected to battery 

powered monitor units with wireless telemetry. The monitor acquired and stored 

measurements on 5-15-minute sample rates. Data was transmitted to a central 

database at least once each day. The configuration of a typical installation is shown 

figure (4-3). 
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Figure 4-3: Configuration of a typical monitor installation 
 

The data encompassed the period from 1 September 2017 to 1 October 2017. 

The sample data is from a wide range of pipe sizes with the smallest being a 4-inch 

diameter pipe and the largest being a 120-inch pipe. The plot in figure (4-4) shows the 

distribution of the 456 sites by pipe height. 
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Figure 4-4: Distribution of sites by pipe height 
 

4.1.3.2.1 Construction of depth-duration frequencies 

The 456 sampled sites were divided into two sets: a set of 416 sites was selected 

for model fitting and a set of 40 sites was used as a test data set. There were 59 sites 

that surcharged in the training data set (14.2%) whereas five sites surcharged in the test 

data set (12.5%). A hypothesis test of the two surcharge proportions shows a high 

possibility that the differences in the proportions between the two sets are due to 

chance (p-value of 0.76). Therefore, we fail to reject the null hypothesis that the two 

surcharge proportions are the same. 

An R-script was written to consolidate the time series data consisting of time-

stamped level measurements. Most sites were sampled every 5 minutes for a total of 

1,994,713 individual time-stamped measurements in the data set. Each measurement 

was then divided by its pipe diameter to normalize the water level measurement to a 
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proportion of full pipe, commonly referred to as the d/D (depth-to-diameter) ratio. The 

calculated d/D was rounded to the nearest tenth with all d/D values greater than or 

equal to 1 rounded down to 1. This produced 11 unique values of d/D for each location 

in the range 0.0, 0.1, 0.2 …1.0. A binary categorical variable was created to tag all sites 

that experienced surcharge (d/D >= 1) at least once during the sample period. 

Next, the proportion of readings observed at each d/D value bin for each site was 

calculated. From this it was possible to construct d/D frequency polygons for each site. 

The selection of frequency polygons as a graphical device was due to their ability to 

facilitate the comparison of multiple distributions on a single chart. From the frequency 

polygons, cumulative frequency polygons (ogives) could be easily created. An Ogive 

Graph from 5 monitoring sites from the database is shown in figure (4-5). The lines are 

interpreted as the proportion of observations (measurements) at or below the d/D bin on 

the x-axis. 
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Figure 4-5: Ogive graph from 5 monitoring sites 
 

The building blocks of the d/D frequency polygons are the same as those used to 

construct depth-duration curves commonly used in hydrology to depict the proportion of 

time a stream exceeds certain flow rates or water levels. In the case of sewer pipes, a 

case can be made that available capacity is of greater importance than the flow rate or 

water level since any flow quantity is acceptable so long as it can be accommodated by 

pipe capacity. This is another motivation for selecting ogives as the default visualization 

of flow properties. 

4.1.3.2.2 Exploratory data analysis of d/D frequencies 

An exploratory data analysis was performed on the data comparing sites that 

experienced surcharge with those that did not. The interval plot in figure (4-6) shows 

that the differences in the mean of surcharge versus non-surcharged sites are 

statistically significant (alpha = 0.05) in the smallest and largest d/D bins. The mean 
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frequency of readings of non-surcharged sites is significantly above that of surcharged 

sites in the 0.0 d/D, 0.1 d/D, and 0.2 d/D bins. Conversely, the mean frequency of 

readings in surcharged sites is significantly above that of non-surcharged sites in the 

0.7 d/D, 0.8 d/D, and 0.9 d/D bins. The case of 1.0 d/D is special because, by definition, 

any readings at this level are classified as surcharge. The mean frequency of readings 

is not statistically different in the middle range of bins above 0.2 d/D and below 0.7 d/D. 

An inference from this analysis is that a comparison of depth-duration frequency data in 

the lowest and highest d/D ranges might be predictive of whether or not a site will go 

into surcharge. 

 

Figure 4-6: Interval plot 
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4.1.3.2.3 Statistical model development and diagnostics 

Since the objective of this study is to predict which pipes will enter a surcharge 

state based on data obtained when the pipe is in a non-surcharged state (e.g. free 

carrying capacity > 0) the 1.0 d/D bin was excluded from consideration as a predictor. 

4.1.3.2.3.1 Binary logistic regression 

The problem presented has a simple structure that lends itself well to a binary 

logistic regression model. The ten d/D bins are predictor variables. Each predictor takes 

on a value between 0 and 1 representing a proportion and the sum of these proportions 

must equal 1 for each observation (each monitored location). The surcharge state is the 

lone dependent variable. There are only two possible states. Thus, it is straightforward 

to assign a value of 0 to observations where no instances of surcharge were recorded 

and 1 to observations that entered the surcharge state 1 or more times. 

Consequently, since binary logistic regression is a statistical model designed for 

this type of problem with continuous predictor variables and a binary response variable, 

the model is stated in terms of the probability that the response variable, Y, is equal to 

1, given predictor variables X in the form: 

Prob{Y=1|X} = [1+exp(−βX)]−1     (4-2) 

where βX = β0+β1X1+β2X2+…+βkXk 

The regression parameters β are estimated by the method of maximum likelihood 

(Harrell 2015). At each stage of modelling, the model was analyzed to assure that it met 

the assumptions of binary logistic regression as outlined in the Laerd Statistics guidance 

through the use of the following criteria (Laerd Statistics 2017): 
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1. The dependent variable should consist of two categorical, independent 

groups (i.e., a dichotomous variable). This assumption was met by the 

dependent variable being a state variable represented by 0 and 1. 

2. There exists one or more independent variables that are continuous or 

nominal. This assumption was met by the fact that all of the independent 

variables are continuous across the range of 0-1. In the final model there 

were two predictor variables and one constant. 

3. The observations are independent. The observations were selected from 

monitoring sites chosen in 7 different systems in geographically separated 

locations. The independence of the observations was tested with a cross 

correlation test described in assumption #4 below. 

4. There should be no collinearity between independent variables. Cross 

correlation was tested between all possible independent variables. In 

some cases, this analysis indicated the potential for collinearity. Hence, 

highly correlated variables were excluded from the final model. The 

Pearson correlation of the two independent variables in the final model 

was 0.086 and 0.079. An alpha level of 0.10 was used to accept the 

independence of the variables. 

5. There is a linear relationship between the continuous independent 

variables and the logit transformation of the dependent variable. This was 

tested by conducting a least-squares linear regression using a logit 

transformation of the binary dependent variable (surcharge) and the 

untransformed values of the 0.7 d/D and 0.1 d/D continuous independent 
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variables. The p-value of the regression was 0.000 which indicated that 

the regression coefficients were significantly different from zero and 

therefore a linear relationship was justified. 

6. There should be no outliers, high leverage values or highly influential 

observations that would skew the regression model. The graphs of outliers 

based on probability and leverage indicated 2 outliers in the data as 

shown in figure (4-7). The model was tested by removing the outliers from 

the data set and recalculating the regression. The test showed that the 

model did not materially change. Therefore, the observations were 

allowed to remain. 

 

Figure 4-7: Probability & leverage graphs 
 

4.1.3.2.3.1.1 Fitting the binary logistic regression model 

Binary logistic models were developed using a generalized linear model. Three 

link functions were explored - the inverse of the cumulative logistic distribution function 

(logit), the inverse of the cumulative standard normal distribution function (normit), and 

the inverse of the Gompertz distribution function (gompit). The three functions produced 

near identical goodness-of-fit statistics. The logit link function had one significant benefit 
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in providing estimates of the odds ratio for each predictor in the model. Therefore, the 

logit link function was selected for use in both software applications.  

In the first iterations of model development, all ten predictors from 0.0 d/D to 0.9 

d/D were available. The state variable, whether or not the site was observed in 

surcharge in the sample period, took on a value of either zero (no surcharge) or 1 (at 

least one observation in surcharge conditions). Collinearity was a problem when 

including all predictor variables. Hence, terms were systematically removed from the 

model one at a time based on the p-value of the coefficients in the regression output 

until all terms were at a p-value below the alpha level of 0.05.  

After constructing a model using the frequencies of observations in each depth 

bin, another model was constructed using cumulative frequency data in each bin. The 

model based on cumulative data produced slightly better diagnostic data with a log-

likelihood of -139 versus -140 for the non-cumulative data and a Somers D measure of 

0.58 versus 0.57. In a few cases the cumulative data model yielded predicted event 

probabilities that seemed more reasonable than the non-cumulative model. Based on 

these slight differences the cumulative data model was chosen. In practical terms the 

two models produced indistinguishable results and the use of either would be equally 

valid. 

Finally, the final binary logistics regression model was tested against the six 

assumptions of binary logistic regression to insure none of them were violated. 

Moreover, the addition of an interaction term to the final model was tested, but this did 

not improve the goodness-of-fit. Consequently, it was removed. 
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4.1.3.2.3.1.2 Estimating FMEA failure probabilities from binary logistic regression 

predicted event probabilities 

The event probability in the context of this study is the likelihood that a monitor 

location would enter a surcharged state at least once in a 30-day period given the data 

observed in the 0.1 d/D and 0.7 d/D bins. In general, the greater proportion of 

measurements in the bins above 0.7, the greater the chance of surcharge.  

FMEA requires an assessment of failure occurrence probabilities on a 1-10 risk 

scale. While general guidelines exist for the risk ranking scales, the principle is that it is 

important to tailor the risk ranking scales to organization-specific applications (H.-C. Liu, 

Liu, and Liu 2013). Thus, for this study, the organization-specific application was to 

devise a risk scale that reflected the observed frequency of surcharge in the available 

data. For example, a risk rank score of 10 would suggests a near 100% chance of 

surcharge, a 9 would suggest approximately 90% chance of surcharge…etc. 

Consequently, to calibrate the binary logistic regression event probabilities to 

FMEA risk ranking, all 456 monitoring locations were considered. For each location, the 

binary logistic regression event probabilities were calculated, and the data was then 

summarized to two significant digits of the event probabilities and compared to the 

actual proportion of surcharged locations. A curve was fit using the prediction 

probabilities as the independent variable and the observed probabilities as the 

dependent variable. Finally, outliers were removed from the data where there were very 

few observations at particular event probabilities. 

Based on the above, a Morgan-Mercer-Flodin growth model provided a 

reasonable approximation of observed surcharge proportions based on binary logistic 
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regression event probability inputs. The approximated surcharged proportions were 

then multiplied by 10 to arrive at the 1-10 risk scale appropriate for FMEA risk rankings. 

4.1.3.2.3.2 Statistical modeling results 

Results are presented for the binary logistic model, the MMF growth model, and 

the consolidation of the two models. 

4.1.3.2.3.2.1 Binary logistic regression model equation 

Selected output from the binary logistic regression is shown in table (4-2) below. 

Table 4-2: Selected output from the binary logistic regression 
 

 
Since the logit link function was employed the equation for the model is in the 

form: 

ln ቀ ௣

ଵି௣
ቁ ൌ 24.4413 െ 1.59969ሺ0.1𝑑𝐷ሻ െ 26.1789ሺ0.7𝑑𝐷ሻ, which is: 

 Probability of event, 𝑝 ൌ ௘మర.రరభయషభ.ఱవవలవሺబ.భ೏ವሻషమల.భళఴవሺబ.ళ೏ವሻ

ଵା௘మర.రరభయషభ.ఱవవలవሺబ.భ೏ವሻషమల.భళఴవሺబ.ళ೏ವሻ where,  (4-3) 

1. An “event” is a monitor location where a pipe surcharge was recorded at 
least once during the 30-day sample of level measurements. 

2. 0.1dD and 0.7dD are the cumulative proportion of sensor measurements 
at the 0.1 depth/diameter bin and the 0.7 depth/diameter bin. 

 
4.1.3.2.3.2.2 Statistical significance 

The p-value for the test that all slopes are zero is less than the chosen alpha 

value of 0.05 indicating there is a significant association between at least one predictor 

variable and the response. Likewise, the p-values for the three predictors are less than 

Predictor Coefficient P-Value Odds 
Ratio 

Constant 24.4413 0.026  
0.1dD -1.59969 0.007 0.20 
0.7dD -26.1789 0.017 0.00 

Test that all slopes are zero p-value: 0.000 
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0.05 indicating that each of them has a statistically significant association with the 

binary outcome variable (e.g. surcharge).  

4.1.3.2.3.2.3 Interpretation 

Since both predictors are continuous variables, the coefficients are the estimated 

change in the natural log of the odds for the event for each unit increase in the 

predictor. Because the 0.1dD and 0.7dD predictors are proportions ranging from 0 to 1, 

a unit increase would be a predictor value increasing from 0 (no observations at that 

depth or below) to 1 (all observations at that depth or below). Table (4-3) shows the 

changes in the log odds and probabilities of the surcharge event for 1-unit changes in 

the predictors. Increases in either the 0.1dD or the 0.7dD proportions result in lower 

probabilities of surcharge. 

Table 4-3: Changes in the log odds and probabilities of the surcharge event 
0.1dD 

Proportion 
0.7dD 

Proportion 
Log 

odds 
Estimated 

probability of 
surcharge event 

Interpretation 

0 0 24.4413 1.000 All measurements must be 
above 0.7dD therefore the 
probability of surcharge is 
very high 

0 1 -1.7376 0.150 All measurements are 0.7dD 
or below therefore 
probability of surcharge is 
low 

1 0   This is an impossible 
reading using cumulative 
data 

1 1 -3.3373 0.034 All measurements are 0.1dD 
or below therefore 
probability of surcharge is 
very low 

  -26.179 -0.8503 Change when 0.7dD moves 
from 0 to 1 

  -1.600 -0.1153 Change when 0.1dD moves 
from 0 to 1 
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The coefficients and odds ratios indicate that the probability of a surcharge event 

vary inversely with the proportion of readings at 0.1dD and 0.7dD. The estimated 

probabilities of the surcharge event are much more sensitive to changes at the 0.7dD 

level than at the 0.1dD level. 

It may seem counterintuitive that more observations at the 0.7dD level lead to a 

decrease in the probabilities of the locations experiencing surcharge. The explanation 

lies in the use of cumulative frequency data. Higher proportions of readings in the 0.7dD 

and below levels equate to fewer readings above 0.7dD. This suggests that the critical 

water level in wastewater pipes is the area above 70% full. When water levels are in this 

area even for small proportions of time, the risk of surcharge escalates rapidly. 

One explanation for the sensitivity of pipes at 0.7dD is the geometry of circular 

pipes. Once a circular pipe is past half full, the carrying capacity diminishes rapidly. At 

0.7dD the cross-sectional area of the pipe is 75% full. Its design capacity as given by 

Manning’s equation is 84% used. 

Compounding pipe geometry is empirical evidence that many pipes are not 

capable of conveying their design capacity. In a separate sample of 141 flow monitor 

sites that exhibited surcharge, only 16% of the sites carried their design capacity when 

full, with the mean of 76% of design capacity when full (see Appendix A). 

4.1.3.2.3.2.4 Goodness-of-fit of binary logistic regression model 

Five Chi-Square goodness-of-fit tests were performed to assess how well the 

binary logistic regression model predicted the actual outcomes in the data. The 

outcomes were mixed as shown in table (4-4) by the contrasted p-values of the various 
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tests. Tests with p-values below the chosen alpha value of 0.05 are considered failed 

tests. 

Table 4-4: Goodness of fit test outcomes 
Method Chi-

Square 
Deg. 

Freedom 
P-

value 
Interpretation 

Pearson 381 260 0.000 Reject 
Deviance 252 260 0.631 Do not reject 
Hosmer-Lemeshow 72 6 0.000 Reject 
Brown General 
Alternative 

5 2 0.097 Do not reject 

Brown Symmetric 
Alternative 

~0 1 0.783 Do not reject 

 

Further analysis into the goodness-of-fit indicates that there are types of large 

residuals not predicted well by the model. The weight of these outliers varies depending 

on the test. This is one explanation as to why the model is rejected by some tests and 

not others. The chart in figure (4-8) shows rounded predicted event probabilities from 

the binary logistic regression on the x-axis versus the observed proportion of sites that 

actually surcharged in the data sample. 
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Figure 4-8: Rounded predicted event probabilities 
 

The graph suggests the potential for a pattern of association in the scatterplot. 

However, it is clearly not a straight line beyond approximately 0.20 on the x-axis and 

there are obvious outliers. It is worthwhile to note that each point between 0.20 and 0.90 

on the x-axis is a proportion where the number of observations in each is less than n=5. 

The confidence intervals for observations in this range are very large. 

The conclusion regarding goodness-of-fit is that the model is clearly not a perfect 

representation of reality. This comes as no surprise given the limited number of 

predictors and short time sample. Despite being rejected by 2 of 5 tests, the binary 

logistic model can still be useful for prediction based on the measures of association 

discussed below. More importantly, the additional modeling performed to derive FMEA 

risk rankings improved the fit of the final results. 
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4.1.3.2.3.2.5 Measures of association of binary logistic regression model 

For the primary objective of this study, predicting relative risk of surcharge, the 

measures of association are the most critical diagnostics. The data from 40 monitoring 

locations was held out of the data used to calculate the binary logistic regression model 

for the purpose of testing. In these 40 sites there were 5 surcharge events. Of these 5 

sites with events, 4 were in the top 5 highest predicted event probabilities using the 

model.  

There was only one site with a false negative, a low predicted event probability 

that surcharged. This was a very unusual depth pattern where near 100% of readings 

were at the 0.2dD level and below except for very rare and short surcharge 

observations, which may be the result of erroneous data or an unusually rapid loss of 

capacity. The output of the measures of association for the training data set is shown in 

table (4-5). 

Table 4-5: Measures of association for the training data set 
Measures of Association 

(Between the Response Variable and Predicted Probabilities) 
Pairs Number Percent Summary Measures 

Concordant 15,995 77.2 Somers D 0.59 

Discordant 3,750 18.1 Goodman-Kruskal 
Gamma 

0.62 

Ties 961 4.6 Kendall’s Tau-a 0.14 

Total 20,706 100   

 
The measures of association pairs each observed surcharge location to every 

other non-surcharge location. If the surcharged location has a higher predicted 

probability, then that pair is classified as concordant. Otherwise it is discordant. Using 

the binary logistic regression model over 77% of the pairs were concordant. Somers D 
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and Goodman-Kruskal tests are simply ratios of concordant pairs to the discordant or 

total pairs calculations. Higher numbers indicate stronger predictive capability of the 

model. 

For risk priorities in FMEA these are important conclusions as to the value of the 

binary logistic regression model. The main objective of the FMEA in this study is to 

locate sensors in the highest risk locations meaning that ranking of risk is the actionable 

information, and lack of fit suggests that the model will not give realistic surcharge 

probability estimates over the full range of data, the measures of association indicate 

that it can provide appropriate rankings of risky locations with near 80% accuracy.  

4.1.3.2.4 Estimating FMEA risk rankings based on predicted event probabilities 

A final step was added for the purposes of; a) improving the fit of the model, and 

b) deriving FMEA risk rankings in the range of 1-10 that approximate the observed 

probabilities of surcharge in the data. This adds meaning to the risk ranking scores 

beyond just a relative ranking. 

An MMF growth curve proved to be a good fit between the independent variable 

of predicted event probabilities and the dependent variable of observed surcharge 

probabilities in the full data set. The fitted curve is symbolized by the gray line in figure 

(4-9) below. 
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Figure 4-9: MMF growth curve 
 

4.1.3.2.4.1 Data conditioning 

The four observations shown in grey each contain fewer than 5 observations with 

very large confidence intervals such that much better fits to the MMF curve cannot be 

ruled out with more data. Therefore, those observations were removed for the 

computation of diagnostics. 

4.1.3.2.4.2 Diagnostics 

The coefficient of determination (r2) for the MMF curve is 0.92 indicating a good 

fit. The p-value of the residuals is 0.067 which allows the conclusion that a run pattern 

of the residuals is unlikely at an alpha level of 0.10. The data, excluding points with 

small sample size, fit within the 90% prediction intervals of the fitted curve. 

The final FMEA risk rankings were computed by rounding the predicted observed 

probabilities from the MMF curve equation to the nearest integer. This resulted in risk 

scores between 1 and 10. Combining the binary logistic regression model and the MMF 
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growth model fitted curve produced a consolidated formula to calculate FMEA risk 

rankings directly from monitor data as follows where x is the 0.1dD cumulative 

frequency and y is the 0.7dD cumulative frequency. 

  (4-4) 

Two visualizations illustrate the fit of the combined models. Figure (4-10) shows 

the final scores plotted on the x-axis and the observed proportion of overflows for each 

score. No plot is shown for scores of 8 or 9 because there was only one observation of 

each in the data. The fit is very close to a straight line through the origin meaning that a 

score of 1 corresponds to a ~10% probability of surcharge, a score of 6 corresponds to 

a ~60% probability of surcharge, etc. However, the residuals around the scores of 2,3, 

and 4 are worrisome as they highlight the sensitivity of the mathematical models in this 

region. The residuals are considered acceptable since the highest risk categories 

(above 5) are the ones of most interest. The r2 value of 0.82 indicates an adequate fit. 
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Figure 4-10: The fit of the final scores 
 

The relationship of scores and the raw measurement data can be visualized in 

figure (4-11) below. The x-axis represents all of the depth bins used to record non-

surcharge data, while the y-axis depicts the proportion of observations for the given 

depth bins. This data is not cumulative to highlight the differences in shapes of the 

frequency data. 
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Figure 4-11: The relationship of scores and the raw measurement data 
 

Each line on the chart is a monitor location with a different FMEA risk ranking 

score. It is evident that higher scores are assigned to monitor locations that have more 

level measurements in the higher depths as expected. It is interesting to observe the 

highest risk score, 10, is given to a location that has zero observations in bins at or 

below 0.7 dD providing further evidence of the sensitivity of the 0.7 dD bin. 

4.1.3.2.5 Conclusions of risk occurrence rating methodology 

Useful FMEA risk rankings can be estimated using only level monitor data for 

short periods, in this case 30 days. Compromises in goodness-of-fit and association still 

permit risk prediction accuracy near 80% with only 30 days of monitoring. 

More research is needed to determine the optimal time period of data to produce 

risk rankings. The shorter the time for monitoring, the more locations that can be 
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assessed for risk within a given monitoring program budget and schedule. 

Consequently, with more locations, the odds of finding the highest risk areas are 

increased so that actions can be taken to prevent the release of sewage into the 

environment. 

4.1.3.3 Ignore detectability in RPN calculations 

The concept of detectability is important in managing risk. The purpose of the 

detection rating is to estimate how well controls that are currently in place will detect a 

failure or a potential failure after it has happened yet before the customer is affected 

(American Society for Quality 2018). In this research, risk modeling both with and 

without detectability ratings were first considered. It was concluded that the process is 

made simpler by accounting for detectability in the active management activity rather 

than in the risk assessment activity.  

For the case of sewer pipelines, controls exist if a continuous monitoring device 

is installed in a location. It is also recognizable that differing frequencies of manual 

inspection provide better levels of detectability than doing nothing. However, the best 

practice would be to replace the inspection activities with continuous monitoring. For 

simplification, and without loss of utility, detectability at any location is viewed as the 

most desirable rating of 1 if a monitor is installed in that location, and 10 if not. An 

output of the process proposed herein is a list of locations to actively manage, all of 

which will have a monitor installed. Therefore, all would receive the same detectability 

rating of 1. Multiplying every occurrence rating and severity rating by 1 adds no value, 

O*S*1 = O*S. For these reasons, detectability is ignored in RPN calculations for this 

research. 



89 

4.1.3.4 Calibration of RPN to the operator’s risk preferences 

An often-cited complaint of the base FMEA model is the assumption that a given 

RPN may represent a high probability of a low consequence event or the same RPN 

may represent a low probability of a very high consequence event. These may not be 

equivalent in the decision makers viewpoint depending on their risk tolerance. For 

instance, conservative decision makers will be sensitive to very low probabilities of 

severe failure. Hence, a calibration step to align the RPN with the operator’s utility 

function is proposed. 

The matrix below (figure 4-12) demonstrates the relationship of occurrence 

scores and severity scores in which severity scores across the horizontal axis are 

associated with qualitative labels of the potential consequences. In this example, the 

decision makers have come to consensus that the worst consequence of a failed pipe is 

the possibility of public health to be compromised through water contact which may 

spread over large areas. In addition, occurrence scores are depicted on the vertical 

axis. Under stock FMEA the occurrence score might be strictly associated with the 

failure likelihood as a score of 1 is associated with 10% likelihood of failure, 2 is 

associated with 20% likelihood…etc. 

The proposed calibration step is performed by modifying occurrence scores to 

the likelihood probabilities so that the decision makers are indifferent amongst RPN’s of 

identical value. This is done by iterative questioning. For example, consider the case in 

the matrix below (figure 4-12) of an occurrence score of 10 and a Severity score of 5 

that produces an RPN of 50, at the same time, an occurrence score of 5 combined with 

a Severity score of 10 also produces an RPN of 50. Therefore, the decision makers 
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have agreed that a 40% likelihood of “aquatic life support comprised – minor” is an 

equally acceptable risk to a 10% likelihood of “public health compromised through water 

contact”. If decision makers do not agree with this equivalence, then the failure 

likelihood is re-mapped to occurrence scores until an agreement can be reached. 

 

Figure 4-12: A matrix of the relationship between occurrence scores and severity 
scores 

 
4.2 Defining the objective 

There were two competing alternatives considered for the objective function of 

the FMEA. 

1. Maximize the sum of RPNs such that the highest risks across the piping 

network are identified and actively managed. The advantage of this 

objective is that it directs resources towards those risks that are most 

likely and most severe. In the matrix above, this would lead a search 

towards locations with a 40% or higher chance of compromising public 

health through water contact. 
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2. Identify, as efficiently as possible, a manageable set of locations that are 

classified as unacceptable risk. Given the resource constraints of 

continually searching for risks across space and time, this objective was 

adopted for this research. Furthermore, the concept of risk threshold is 

applied, separating acceptable risks from the unacceptable ones which 

must be actively managed. 

The rationale for this choice is that the iterative nature of the discovery of risk 

priorities precludes objectives that require a risk assessment of all locations. In an ideal 

but impractical world, every manhole in a collection system would be continuously 

monitored. Risk management would then be a matter of choosing the highest RPN’s 

and taking action to lower the risk likelihood and/or consequences in the order of the 

RPN values. 

Practical resource limitations allow only a relatively small number of locations to 

be monitored and, in order to get a wider perspective of system’s risk, these monitors 

must be periodically moved. Therefore, an objective of this research is to provide 

decision support tools for the number of monitors and their movement paradigm. 

The responsibility of wastewater utility operators motivates them to take action on 

high-risk situations as soon as possible. It is not acceptable to defer intervention until a 

possibly lengthy risk assessment process is completed. For example, using the matrix 

above, consider during the course of assessing locations for risk, a location is 

determined to have a 25% chance of failure (O=8) that could lead to compromising 

consumable fishing waters (S=7) for an RPN of 56. If the decision makers have 

determined that this risk to be unacceptable they will be compelled by legal, ethical, and 
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possibly political motivations to actively manage that location even though higher risks 

may be discovered in the future through additional searching. 

Funding is a constraint beyond the risk assessment phase. Funding limits the 

number of risky locations that can be actively managed. Therefore, it does little good to 

locate manholes that have a high risk which cannot be mitigated due to funding. On the 

other hand, it is of little value to have available budget to manage risk with insufficient 

budget to locate those risks in the assessment activity. Hence, in the context of this 

research study, the funding available to actively manage risk is assumed to be fixed. 

Therefore, it is a constraint of the objective function. At the same time, funding available 

to conduct the risk assessment is assumed to be variable with a goal of minimization. 

Thus, a worthy goal is to locate as many sites to actively manage as the budget will 

allow, which will result in a maximum risk reduction.  

This objective of minimizing the cost of finding a number of manholes exceeding 

a threshold RPN is a combinatorial optimization problem that may be formulated as 

such: 

Minimize cost = Min ∑ i ∗ 𝑎 ∗ 𝑐       (4-5) 

S.T. |{r∈R|r>=RT}| >= n    

Where, 
 “i” is the number of iterations before a stopping criteria is reached 
“a” is the number of agents parameter 
“c” is the cost per agent per iteration parameter 
“r” is the RPN of an individual location 
“R” is the set of all RPNs discovered  
“RT” is the threshold RPN specified as a parameter 
“n” is the number of locations that can be actively managed as a 
parameter. 
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The solution set of this constrained optimization is the combination of locations 

that should be actively managed for risk reduction at a given time. This is set as a 

minimum so that at least the desired number of locations is discovered in the 

optimization. Due to the fact that sewers are dynamic, and presumably the risk 

mitigating actions will change the RPN of actively managed sites, the set of locations 

satisfying the constraint will continuously change over time. 

It is recognized that setting the objective function as binary, e.g. a site is either 

acceptable risk or unacceptable risk, allows the possibility of higher risks going 

undiscovered. For instance, should a system operator stop at finding a set of sites that 

overflow in the streets recognizing that the possibility that some undiscovered failures 

may overflow on the beach and cause greater impact? The proposed framework in this 

research study can accommodate this dilemma through setting a very high RPN as a 

risk threshold. Decision makers may also segment the objective by allocating fixed 

resources towards finding locations of moderate to high risk and another set of fixed 

resources to the most severe risks. 

Additionally, consideration was given in this research study to a multi-objective 

problem formulation with a goal of minimizing cost and risk simultaneously. The problem 

formulation chosen takes into consideration many factors. The qualitative consequence 

rating in FMEA takes into account the social and environmental dimensions of the 

problem while financial considerations are incorporated in the objective function. Thus, 

all components of the “triple bottom line” are considered (Slaper and Hall 2011). The 

final reason for a single objective formulation is that if offers a less complex framework 
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for risk management to an industry that values simplicity, based on interviews 

conducted during this study. 

4.3 Understanding the distribution of risk across a sewer network 

No prior research has attempted to quantify the specific distribution of RPNs 

across sewer systems. In this research, the focus is very specific in that it attempts to 

understand the distribution of risk consequences and risk probabilities due to limited 

capacity. To have a complete knowledge of the distributions of this risk would require 

continuous monitoring everywhere all of the time. This is not currently practical. 

Therefore, the methodology employed in this research analyzed available data on 

reported overflows in a medium sized sewer system in the United States. The 

development of a hypothetical distribution of RPN’s is based upon the drivers of 

blockage formation found in prior research. These two sources served as inputs to 

arrive at what is proposed to be a realistic distribution of risk. Recognizing the system-

to-system variation of risk distribution, it was important to allow this distribution to be 

modified within the simulation to test the robustness of the search techniques. 

4.3.1 Prior research 

The majority of the prior research related to the distribution of risk geographically 

across a sewer network is concerned with establishing statistical models to predict 

failure. Environmental factors as well as pipe characteristics have been used as 

predictors to construct such models. Thus, understanding the geographic distribution of 

these risk predictors provides potentially quantifiable insight into the geographic 

distribution of risks. 
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Table (4-6) below summarizes the most cited predictors for failures due to 

blockage in sewer pipes: 

Table 4-6: Most cited predictors for failures due to blockage in sewer pipes  
Predictor Class Predictor Authors 

Pipe design 
attributes 

Combined versus separate 
sewers 

(Baur and Herz 2002) 
(Ugarelli et al. 2010) 

Pipe Diameter (Baur and Herz 2002) 
(Marlow et al. 2011) 
(Ugarelli et al. 2010) 

Manholes/inspection chambers (Hafskjold et al. 2018) 
Lilywhite et al. 1978 in (Hillas 
2014) 

Pipe depth from surface Davidson and Orman 1999 
in (Marlow et al. 2011) 
(Pohls, Bailey, and May 
2004) 

Pipe material/joint type (Baur and Herz 2002) 
Littlewood 2000 in (Marlow 
et al. 2011) 
(Marlow et al. 2011) 

Pipe slope (Arthur, Crow, and Pedezert 
2008) 
(Hafskjold et al. 2018) 
(Ugarelli et al. 2010) 

Pipe aging attributes Construction period (Baur and Herz 2002) 
(Hafskjold et al. 2002) 

Pipe Age (Jin, Mukherjee, and Asce 
2017) 
(Pohls, Bailey, and May 
2004) 
(Ugarelli et al. 2010) 

Structural condition Blanksby et al. 2003 in 
(Hillas 2014) 
Roberts et al. 2006 in 
(Marlow et al. 2011) 
(Savić et al. 2006) 

Environment Presence of trees/roots Roberts et al. 2006 in 
(Marlow et al. 2011) 
(US EPA 2009) 
(WSSA 2013) 

Prevalence of food preparation 
establishments 

(Chu and Hsu 1999) 
(Husain et al. 2014) 
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Predictor Class Predictor Authors 
Soil characteristics Enfinger 2009 in (Hillas 

2014) 
(Jin and Mukherjee 2010) 
(Marlow et al. 2011) 

Other Number of past failures (Fenner and Sweeting 1999) 
(Hafskjold et al. 2018) 

 
A question examined in this research is whether or not the distribution of the 

predictors of pipe blockages shown in table 4-6 will reveal the distribution of blockages. 

Two of the researchers shed doubt on this question. Marlow et al. (2011) concluded that 

“with the available data, it was difficult to show definite causal relationships between the 

various factors considered in the analysis. Furthermore it was clear that a single factor 

could not explain the differences in blockage rate observed even within a single 

company” (Marlow et al. 2011). Moreover, Hafskjold et al. (2018) reported that “for 75% 

of blockages in a study, a clear cause could not be identified and that only 20% of 

blockages could be attributed to a sewer defect” (Hafskjold et al. 2018). In contrast to 

predictive modeling, the search methods examined in this research reveal the 

distribution of risk empirically, through the efficient collection of performance data. 

To validate the methodology of this study it was only important to show how the 

pipe failures are clustered. It was reasoned that if the causal factors behind blockage 

formation appeared in geographic clusters, then blockage formation should also appear 

clustered. An obvious example of this reasoning is root formation. In the absence of 

vegetation there cannot be blockage caused by roots, so if it could be shown that 

vegetation is clustered over the area of a sewer system, then blockage caused by roots 

should also be clustered. 
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4.3.2 Measures of spatial autocorrelation 

For the purposes of validating a simulation of risk across a sewer network, it was 

necessary to select measures of spatial autocorrelation and a particular method to 

reasonably approximate the frequency distribution of RPNs. These measures were 

used in the calibration of the simulation, and also provided parameters to modify the 

distribution of risks in the simulation to test the robustness of the search algorithms 

employed. 

The Moran’s I index was selected as the measure for spatial autocorrelation 

between features (Zhang et al. 2008). The output of the Moran’s I index includes both a 

z-score and p-value to indicate the significance of clustering. The index value is given 

as (ESRI 2018): 
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where 𝑧௜ is the deviation of an attribute for feature I from its mean 
ሺ𝑥௜ െ 𝑋തሻ, 𝑤௜,௝ is the spatial weight between feature I and j, n is equal to the 
total number of features, and 𝑆଴ is the aggregate of all the spatial weights 
given by: 
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The 𝑧ூ-score for the statistic is computed as: 

𝑍ூ ൌ  ூିாሾூሿ

ඥ௏ሾூሿ
         (4-7) 

where: 

𝐸ሾ𝐼ሿ ൌ  ିଵ

ሺ௡ିଵሻ
             

𝑉ሾ𝐼ሿ ൌ 𝐸ሾ𝐼ଶሿ െ 𝐸ሾ𝐼ሿଶ           
 
In the case of reported overflow data, the data needed to be aggregated before 

Moran’s I index could be calculated. Moran’s I index requires that the attribute of 
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interest contain a variety of values rather than a binary indicator of whether or not an 

event, such as an overflow at a particular manhole, occurred. 

Aggregation was performed by overlaying a grid on the map of the sewer pipe 

network. Grid cells were removed if there were no pipes within the extent of the cell. 

Then, for each cell, the number of locations (manholes) and reported overflows was 

counted. The density of overflow count to manhole count is depicted in the map below 

(figure 4-13). Each dot represents a reported overflow while the color of the grid cells 

represents the overflow densities. Using overflow densities per cell, the Moran’s I index 

could be calculated and the spatial autocorrelation could be tested. Areas with high 

failure density are commonly referred to as “hot spots” in the wastewater industry. 
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Figure 4-13: A map of the density of overflow count to manhole count 

 
A potential problem that could arise is that the sewer network is, by default, 

spatially autocorrelated across geographic boundaries like city limits. Hence, Moran’s I 

index could indicate clustering by the simple fact that sewer pipes are connected to 

each other in close proximity. In order to overcome this problem, two steps were taken. 

The first was the elimination of any grid cells that did not contain sewer pipes so that the 

analysis was restricted to land area containing the sewer network. The second was the 

use of overflow proportions rather than overflow counts. This normalized the spatial 

failure data to account for different grid cells containing different manhole counts. 
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4.3.3 Characteristics of reported overflows 

Defining failure as a surcharged pipe created difficulties in terms of corroborating 

historical data. Pipe surcharges most probably go undetected in the absence of a flow 

monitor, timely visual inspection of the pipe, or if the sewage is not observed nor 

reported by humans. 

Previous studies of complaint databases provide insight into the latter category. 

Rodriguez (2012) studied complaint data from customers who noticed a failure in the 

sewer system in Bogota, Columbia. One conclusion from that study was that the data 

implied that blockages come in clusters. A visual observation of the maps published by 

Rodriguez supports the clustering of blockage complaints for pipes. The study went 

further to show associations between pipe physical properties and blockage complaint 

density. 

One method employed in this study was to collect observed overflow data which 

is more readily available than surcharge or blockage data. Analyzing the spatial 

autocorrelation and frequency distribution of the overflow data was assumed to provide 

a reasonable approximation of the spatial autocorrelation and frequency distribution of 

surcharge occurrence probabilities. 

The most comprehensive data used in this research were from a sanitary sewer 

network consisting of 14,600 manholes, referred to here as “City A”. The systems 

operator provided GIS data and reported overflow data from January 2004 through April 

2017. There were 250 reported overflows during this period. The overflow data was 

cross-referenced by manhole identification numbers in order to geocode the overflow 

locations in the manhole layer of the GIS database. In the below figure (4-14), the 
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yellow circles indicate the reported overflow locations and the larger circles indicate 

areas of repeated overflows. However, the yellow dots alone represent incident data 

that is not useable for calculating the Moran’s I statistic. This was resolved using the 

fishnet grid procedure described in the previous section. The white lines depict the 

sewer pipes that are covering the full extent of the collection system.  

 

Figure 4-14: City A sewer overflow data 
 

In addition, further analysis was conducted on other collection systems where 

limited data was available. For example, overflow data was publicly available for the 

City of Sacramento, CA, however detailed GIS data was not available to calculate 

overflow proportions. Therefore, the spatial autocorrelation analysis was conducted 
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based on the overflow density within each geographic cell without normalizing for 

manhole density. Another example is the city of St. Louis, MO. Data was also available 

for this city. However, the system is designed with constructed overflow locations that 

are intentionally clustered. Data was visually examined for cases of published reported 

overflows, including the State of California, Boston, Columbus, Mobile, Hampton, 

Baltimore, San Francisco, and Louisville. Based on this examination, it was found that 

the data from other collection systems was consistent in terms of clustering with the 

findings of the collection system used to calibrate the simulation. 

4.3.4 Characteristics of hypothetical distribution of RPN 

A second method employed to estimate the failure distributions was by preparing 

an estimate of hypothetical RPN’s based on the risk factors identified in prior research. 

Specifically speaking, the available relevant data from City A used in the estimation of 

the hypothetical RPNs were: 

1. Pipe diameter 

2. Pipe material 

3. Pipe age 

4. Pipe grade 

5. Land use as indicated by city zoning maps 

6. Vegetation coverage as measured by the Normalized Difference 

Vegetation Index (NDVI) 

7. Restaurant density 

8. Failure consequence ratings  
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After identifying the risk factors, the following steps were conducted to create the 

hypothesized RPNs. 

4.3.4.1 Extract risk factor values  

The first step in this process was to extract the values of these risk factors from 

their relevant data sources as shown in table (4-7). Each pipe segment in the sewer 

system was assigned a value for each of the risk factors according to the data sources 

shown in the table below. Therefore, there was significantly more data than in the case 

of reported overflows which allowed for a denser fishnet grid of 20x20 rather than the 

10x10 used for reported overflow data. 

Table 4-7: Risk factors and their respective data sources 
Risk Factor Source of Data 

Pipe Diameter City A’s GIS pipe layer  
Pipe Material City A’s GIS pipe layer  
Pipe Age City A’s GIS pipe layer  
Pipe Grade City A’s GIS pipe layer  
Land Use City A’s GIS zoning maps 
Vegetation Coverage NDVI publicly available data 
Restaurant Density Restaurant locations from Google Maps 
Failure Consequence Rating Manual analysis of City A’s pipe layer using severity 

scoring rubric 
 
For each of these risk factors, the Moran’s I statistic was calculated to determine 

to what degree the factor appeared to be clustered. The rationale behind the degree of 

clustering is that if the drivers of risk are clustered then it is more likely that the 

symptoms of risk would also be clustered. In addition, the procedure of overlaying grids 

and computing Moran’s I for each risk factor was also utilized in this analysis.  

4.3.4.2 Standardize the values of each risk predictor 

The next step in creating the hypothesized RPNs was to standardize the values 

of each risk predictor. This standardization step was conducted by using the Min-Max 
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scaling through a linear transformation function from 0-10 (equation 4-7). However, in 

cases where higher values indicated lower risk, the standardized values were inverted 

which created some degree on non-linearity in the transformed values.  

𝑋௦௖ ൌ ௑ି௑೘೔೙

௑೘ೌೣ ି ௑೘೔೙
 . 10     (4-8) 

Due to the different nature of the values of the risk factors and their impacts on 

the overflow risk, each of these risk factors had to be standardized through a tailored 

process.  

Regarding the pipe diameter, according to Marlow et al. (2011), the smaller the 

diameter of the pipe, the higher the risk of overflow. Thus, the inverted standardization 

code was used, and the resulting values were not linear to the pipe sizes as shown in 

figure (4-15): 

 
Figure 4-15: Relationship between the pipe diameter and the risk codes 

Risk rating of the different pipe materials was based on the study conducted by Ugarelli 

in 2010 and as shown in table (4-8):  
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Table 4-8: Risk rating of different pipe materials 
Risk Category Material Risk Rating 

Low Risk Cast Iron 
Ductile Iron 
HDPE 
Reinforced Concrete 
SPL 
Verified Clay 

0.00 

Moderate Risk Hobas 
Cured in-place lining 

6.50 
7.00 

High Risk PVC 10.00 
 
At the same time, the standardization of the pipe age factor was a straightforward 

linear transformation as the risk increase with the pipe age (grouped every 10 years) 

and is evident in table (4-9): 

Table 4-9: Risk rating of the pipe age 
Age (years) Agecode Frequency 

0 0.00 902 

10 1.11 4,959 

20 2.22 3,581 
30 3.33 1,878 
40 4.44 1,281 
50 5.56 775 
60 6.67 331 
70 7.78 692 
90 10.00 204 

 
Similar to the pipe diameter, the inverted code was used to standardize the 

values of the pipe grade as higher grades produce higher liquid velocity which self-

cleans the pipe by forcing the debris, roots, and grease down the pipe, hence reducing 

the risk of blockage. This non-linear relationship is depicted in figure (4-16): 
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Figure 4-16: Relationship between the pipe grade and the risk codes 

 
Regarding the relationship between the land use and the blockage risk factor, the 

following table (table 4-10) shows the assumed relationship based on the city’s zoning 

code. 

Table 4-10: Risk rating of the different land uses 
Land Use Basis of Estimate Risk Rating 

Residential High density of service connections. 
Food prepared in homes. Flushable 
wipes disposed in homes 

10 

University Moderate service connection density, 
food preparation, and flushables. 

8 

Commercial & Parks Low density of service connections. 
Public restrooms. 

6 

Industrial Low density of connections. Expected 
low food prep. Possible chemical 
disposal. 

4 

Other  2 
 
Perhaps the most complex standardization process of all was the one conducted 

for the vegetation. This process started by extracting the vegetation indices, which are 

indicators that describe the greenness, the relative density and health of vegetation, for 

each pixel in a satellite image from the USGS database. Then, the NDVI values were 
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generated from USGS raw landsat bands from May 2017 in 30m resolution using 

ArcGIS. After generating the NDVI values, they were standardized to a range of 0-1 and 

then assigned to the nearest tenth interval. Finally, they were standardized to a range of 

0-10, in which higher numbers represent more dense vegetation, consequently with a 

higher risk of blockage due to root intrusion. This is presented in table (4-11). 

Table 4-11: Risk rating of the land vegetation 
NDVI Group NDVIcode Frequency 

0 0.00 14 
0.1 1.67 1,219 
0.2 3.33 3,335 
0.3 5.00 6,796 
0.4 6.67 2,911 
0.5 8.33 336 
0.6 10.00 7 

  
Regarding the restaurant density, a restaurant count was assigned to the 

manholes based on the number of restaurants within 1,000 ft. The standardization 

process was a linear one based on the restaurant count as the size of the restaurant 

was not taken into consideration in this study. Table (4-12) shows the different risk 

ratings for the different restaurant numbers. 

Table 4-12: Risk rating of the restaurant density 
Restaurant Count Restcode Frequency 

0 0 10,872 
1 0.4 965 
2 0.8 617 
3 1.2 502 
4 1.6 288 
5 2.0 337 
6 2.4 220 
7 2.8 134 
8 3.2 145 
9 3.6 111 
10 4.0 74 
11 4.4 68 
12 4.8 54 
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Restaurant Count Restcode Frequency 
13 5.2 52 
14 5.6 49 
15 6.0 16 
16 6.4 21 
17 6.8 28 
18 7.2 37 
19 7.6 13 
20 8.0 2 
21 8.4 3 
22 8.8 4 
23 9.2 1 
25 10.0 4 

 
4.3.4.3 Synthesizing risk probabilities 

After standardizing the values of the different risk factors, the risk probabilities of 

these factors were synthesized through the following multi-step process: 

1. Calculate a root blockage risk index as the NDVI risk score as it is the only 

data available directly that is related to root intrusion. 

2. Calculate a grease blockage index as the average of restaurant density 

score and the city zoning score as the amount of grease in the pipes 

mainly comes from both restaurants and households. 

3. Calculate a silt blockage index as the pipe material risk score as silt 

occurs due to pipe deterioration and structural failure which can be 

predicted through the pipe material. 

4. Calculate a global blockage index as the average of pipe diameter risk 

score, age risk score, and pipe grade risk score because these factors 

influence blockage risk from roots, grease, and silt.  

5. Calculate the average of the above four indexes to reach an overall 

blockage probability index. 
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4.3.4.4 Calculating risk priority numbers 

The final step to reach the hypothesized RPNs is to calculate the risk propriety 

numbers as the product of the risk occurrence ratings and risk consequence ratings 

were the hypothetical risk priority numbers used as an input to the simulation. The 

resulting distribution of the RPNs is shown in figure (4-17). 

 

Figure 4-17: Distribution of the resulting RPNs. 
 

4.4 Evaluation of search algorithms 

4.4.1 Identify a set of candidate algorithms 

As argued previously, the class of algorithms that fit this structure are 

metaheuristic search techniques that solve combinatorial optimization problems in a 

single solution evolution, also referred to as trajectory methods. Five of the most-widely 

used of these algorithms are Simulated Annealing, Tabu Search, Greedy Randomized 
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Adaptive Search Procedure (GRASP), Variable Neighborhood Search, and Local 

Search – Basic, Iterated, and Guided. 

In this research study, simulated annealing was selected as the most-suitable 

algorithm for the search technique problem defined above. All the above algorithms 

share some common characteristics. They all provide approximate solutions and do not 

guarantee a global optimum. Furthermore, in very large combinatorial optimization 

problems like the one studied in this research, it would be very rare that the algorithm 

would find the global optima. Because the global optimum does not serve as a stopping 

condition, each algorithm has its own stopping condition based on some condition, 

typically related to controlling the cost of searching. Also common is that they will 

occasionally accept moves to inferior solutions which serves the vital purpose of 

allowing the search to escape local optimum solutions, particularly in early iterations. 

These methods are adaptable to a wide range of problems, requiring only: 

1. A representation of the solution space 

2. A method to calculate the objective function at each iteration 

3. A neighborhood function 

4. A method to select moves within the neighborhood 

Simulated annealing has some unique features that will be presented in detail 

below. 

4.4.2 A description of simulated annealing 

Simulated annealing derives its name from the analogy to the physical annealing 

process of cooling metals. In order for metals to cool without defects in their structure, 

the temperature and cooling rate must be carefully controlled. Likewise, in simulated 
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annealing, a cooling rate is employed to allow convergence to optimality while avoiding 

local optima. It has a distinct advantage of converging to a global optimum, given 

sufficient randomness and very slow cooling. A flowchart of the base simulated 

annealing algorithm (BSA) is shown in figure (4-18). 
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Figure 4-18: Flowchart of simulated annealing algorithm (Zhan et al. 2016) 
 

Simulated annealing employs a unique inferior move mechanism which means 

that if a candidate solution is superior to the current solution, the move to a better 

solution is always allowed. However, if a candidate solution is inferior to the current 
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solution, the move may be allowed probabilistically, depending on the temperature and 

the degree of inferiority of the candidate solution. This is called the transition probability. 

The transition probability is based upon the Boltzmann factor, which is the ratio of the 

Boltzmann distribution at two energy states. 

ிሺ௦௧௔௧௘ଶሻ

ிሺ௦௧௔௧௘ଵሻ
ൌ  𝑒

షሺಶభషಶమሻ
೅      (4-9) 

where E1 and E2 are the fitness function values of the current solution and 
candidate solution, respectively, and T is the current temperature variable 
in the range 0-100. 

 
Since the constraint in this study is a requirement for high fitness values, an 

inferior move is considered one where the candidate solution has a lower fitness value 

than the current solution. 

At each test of accepting an inferior move, a random number between 0 and 1 is 

compared to the transition probability. If the random number is less than the transition 

probability, the inferior move is made. In this research, the “energy states” are 

represented by RPN values. 

Consequently, when evaluating a potential move, the difference in RPN values 

and the current temperature determine the probability of accepting inferior moves. In 

figure (4-19), the x-axis is the absolute value of the difference between two RPNs 

(RPNDelta) and the y-axis is the temperature on a scale of 0-100. The shading 

represents ranges of inferior move acceptance probabilities (AcceptProb). This figure 

illustrates that significantly inferior changes have a very low probability of acceptance at 

all temperatures. For example, a RPN Delta > 30 would be accepted less than 5% of 

the time even at the highest temperatures. The graph also illustrates that even small 

inferior moves have probabilities that drop off significantly as the temperature cools. For 
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example, a change as small as 5 in RPN value has only a 37% chance of being 

accepted once the temperature has cooled to 50. Therefore, the greatest freedom of 

moves is achieved in early iterations by setting a slow cooling rate. In other words, the 

algorithm becomes greedier as the temperature parameter declines in later iterations. 

 

Figure 4-19: Conditions and probabilities of accepting inferior moves. 
 

The temperature in the simulated annealing is a parameter that starts at its 

highest value and is reduced at each iteration. This reduction is a parameter known as 

the “cooling rate”. There are several commonly used techniques to control cooling. 

Yang (2010) identified linear cooling and geometric cooling as two commonly used 

annealing schedules. In a linear cooling schedule, the temperature is reduced by a 

constant at each iteration, while in a geometric cooling schedule the temperature is 

reduced by a factor at each iteration. 
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𝑇ሺ𝑡ሻ ൌ  𝑇଴𝛼௧, t = 1, 2, …, tf     (4-10) 

where, T is the temperature parameter, t is the iteration index, and 
alpha is the cooling rate. 
 

In the simulation used in this research, a geometric cooling schedule was 

employed. A practical reason for this was to ensure that the temperature never went 

below zero. Thus, at each new iteration of the search, t, the temperature, T, was 

modified as: 

𝑇ሺ𝑡ሻ ൌ  𝑇௧ିଵሺ1 െ  ఈ

ଵ଴଴
ሻ    (4-11) 

𝑤ℎ𝑒𝑟𝑒 0 ൏ 𝛼 ൏ 100  

This new formula recognizes the fact that the cooling rate was expressed as 

Yang’s (1 – α) as one of the objectives of the research is to determine what affect, if 

any, cooling rates had on the efficiency of the search. 

The last main characteristic of the simulated annealing that was beneficial in this 

research is the neighborhood function. In simulated annealing, the algorithm can be 

viewed as progressing sequentially through a series of states by some probabilistic 

mechanism. From any given state there are a limited number of states that can be 

transitioned to. These allowed states are called “neighbors”. Consequently, the 

performance of the simulated annealing algorithm is highly dependent on the 

neighborhood structure chosen (Goldstein and Waterman 1988). 

4.5 Selection of simulation technique 

4.5.1 Accommodation of the research objectives 

No tools were found in this research to adequately evaluate the performance of 

various search algorithms on the problem structure under study. Therefore, the 
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research required the construction of a specialized simulation to aid in the selection of 

the search algorithms and its suitable parameters. 

The principle need for simulation in this research is to evaluate particular 

combinatorial optimization algorithms with varying parameters in respect to the objective 

function and the constraints previously stated. Central to this was to evaluate a base 

simulated annealing algorithm and research methods to improve its performance, 

termed the enhanced simulated annealing algorithm (ESA). 

There were several requirements for the simulation method to be used in this 

research: 

1. The simulation method was required to accommodate a wide range of 

monitoring locations and available flow monitors which, in the case of sewer 

networks, leads to a very large solution space.  

2. The simulation method was required to accommodate simulation across a 

geospatial network. Unlike some other sensor placement problems where 

sensors may be placed at any point in space or on a uniform grid, the 

problem under consideration in this research only allows sensor placement at 

discrete locations as defined by the map of the sewer network.  

3. The simulation method was required to accommodate varying degrees of 

spatial autocorrelation in risk since the probability of failure at any particular 

location is dependent upon the risk of the surrounding locations.  

4. The simulation method was required to have the capability of ranking the 

efficiency of various optimization algorithms. Since the cost of evaluating any 

particular solution is high, the best algorithms are those that converge quickly 
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on a “good” solution that is unlikely to be the global optimum but is good 

enough to reveal valuable information to justify continuing the search towards 

even better combinations.  

5. The simulation method was required to accommodate trajectory methods of 

metaheuristic search. This required a great deal of flexibility to be designed 

into the simulation, such as the ability to write custom software to direct the 

movement of agents.  

4.5.2 Accommodation of the problem structure in simulations 

In order to be able to determine the suitability of agent-based models (ABM) to 

the requirements imposed by the objective function in this research and its associated 

constraint, each of these requirements was assessed against the different ABM 

capabilities as outlined in the following sections. 

4.5.2.1 Agents and environment as representations of monitors and manholes 

The ABM components can be directly associated to the structure of the sensor 

placement problem described in the previous sections. Specifically speaking, flow 

monitors can be readily represented by agents that move within an environment, while 

the environment represents the geospatial world of the sewer network. In model terms 

the problem represents movement of agents (flow monitors) through an environment 

(discrete locations in a network) that is projected in Euclidian space. These agents 

move in a distance and direction that is controlled by a search algorithm and its 

parameters. Moreover, agents learn from their experience by storing, as attributes, the 

risk characteristics of the candidate monitor locations that they visit. The agents feed 

the information that they acquire along their journey back to the search algorithm, which 
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directs future agent movements presumably towards locations of highest risk of failure. 

Consequently, manholes and pipes may be placed in a network topography in the 

simulation based on empirical data from GIS systems. Simulation applications such as 

Netlogo and AnyLogic directly import GIS data to project a very accurate representation 

of the sewer network. 

4.5.2.2 Modeling the propagation of risk 

A critical attribute of the simulated environment is that it must contain a realistic 

distribution of risk in space. Wegener (2000) observed that the geospatial models 

depend on the location of the phenomena being modelled to the extent that if one or 

more locations changed, the results of the model would change. This suggests that risk 

should be assigned at the manhole level since the results of the model will be the 

assignment of monitors to manholes. 

An RPN ranging from 0-100 was used as the state variable for the risk, with 0 

indicating a near impossible probability of pipe failure with no consequences and 100 

representing an almost certain probability of failure with the highest consequences. The 

goal was for the monitors to seek “hot spots” in the environment where the RPN is 

highest, as RPNs are expected to cluster within the environment as explained 

previously. 

Due to the uncertain nature of the distribution of risk associated with sewage pipe 

failure, a way to deal with this uncertainty is to employ a simulation method that was 

robust to a wide range of realistic risk scenarios. As Batty (2012) noted, ABM became 

very popular in the past two decades as its modeling style has the capability of 

reflecting the richness of our world. This was an additional motivation for the use of 
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ABM in this research. Based on the analysis of hypothetical risk as a function of risk 

predictors and upon the analysis of reported overflows, a frequency distribution of the 

RPNs at each manhole was constructed for the separate categories of “cool spots” and 

“hot spots”. The ABM simulation constructed allowed users to modify the cool spot RPN 

distribution, hot spot RPN distribution, and the number of hotspots. Therefore, with 

these parameters, a wide range of risk profiles were possible. 

4.5.2.3 Agent behavior guided by metaheuristic search algorithms 

Barbati, Bruno, and Genovese (2012) noted that ABMs, due to their promising 

heuristic techniques that can solve problems with distributed, complex and 

heterogeneous domains and their ability to translate search algorithms into agent 

behavior, have been recently used with metaheuristic applications. This capability of 

ABMs can help in modeling how agents might be allowed to behave, like by moving flow 

monitors as directed by an algorithm that adapts to the information previously learned 

by the agents.  

In conclusion ABMs are well adapted to model the problem of the risk of failure in 

sewage systems.  

4.6 Development of a simulation 

4.6.1 Simulation feature overview 

As highlighted previously, the common barriers to the current practices for risk 

assessment of sewer pipe failure are their high cost and the fact that they cannot 

account for the dynamic, complex, and unpredictable risks of sewer failure. Hence, 

agent-based simulation can provide a cost-effective tool to evaluate various approaches 

to risk assessment. 
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The model used in this research was based on actual data supplied by City A 

and was developed using AnyLogic modeling software that provides GIS integration 

capabilities. The GIS data for City A was available in GIS shapefiles. The shapefiles for 

pipes and manholes were imported into the model to form the base layer of the 

environment. From these shapefiles, there were over 14,000 gravity lines and manholes 

included in the model, representing the complete gravity sewer system in City A. The 

simulation was built with the option of importing existing risk data from the GIS, such as 

the classification of failure consequences or the frequency of historical overflows or 

complaints. Figure (4-20) displays a very small area of the manholes and pipes 

imported from the GIS system. 

 

Figure 4-20: An example of the manholes and pipes at City A imported from the GIS 
system. 

 
The simulation was built with a variety of user-supplied parameters to allow 

versatility in designing experiments. These parameters include: 
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1. The number of monitors available. The user may select this number 

based on the desired trade-off between cost and time. 

2. The number of hot spots. The user may select the number of hotspots 

to be randomly distributed across the system and the size of the 

hotspots was controlled by a random function based on the analysis of 

City A hypothesized hot spots and observed historical overflows. 

3. Cool spot parameters. The base model distributed the risk outside of 

hotspots based on a 4-parameter frequency distribution. The user was 

given the ability to change these four parameters to adjust the intensity 

and distribution of risks across the pipes that were not in the hot spots. 

This, for example, provides the ability to simulate isolated pipes that 

have a high risk of failure. 

4. Hot spot parameters. The base model distributes the risk within the hot 

spots based on a 3-parameter distribution. The user is able to modify 

the shape, scale, and location of this distribution in order to create a 

variety of risk profiles within the hot spots. 

5. Metaheuristic search algorithm parameters. These parameters are 

dictated by the search algorithms to be tested. For instance, since the 

base model implemented a simulated annealing algorithm, the cooling 

rate was a user-supplied parameter. Furthermore, parameters for 

defining the neighborhood function of the algorithm, which specifies 

how far a monitor may be moved in a single iteration, were also 

supplied. 
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At run time the environment is built with no two environments being identical due 

to the random functions built into the simulation. Also, at run time the agents are created 

and placed at random locations in the environment. In addition, a variety of metrics are 

maintained as the simulation runs. These include the number of iterations, total 

cumulative cost, total cost to achieve the constraint, and total duration to achieve the 

constraint. These are critical process indicators to the performance of the search 

algorithm.  

Figure (4-21) depicts the agents and the environment of a simulation at its 

termination. The key elements are: 

1. The pipe network is displayed by the multi-colored dots that make up most 

of the image. The dots are colored in clusters depending on their common 

risk characteristics. 

2. The red circles represent the hot spots. The location of the red circles is 

random based on the number of hotspots parameter. The RPN distribution 

of manholes within the hotspots is determined randomly based on the 

three user-supplied hot spot parameters. 

3. The yellow circles represent the agents in the model. Agents are used to 

model locations where sensors are located, and the search algorithm 

guides the agents to hot spots. In this example, 8 of the 10 agents were 

within hotspots at the termination of the simulation run. 

4. The light green shaded circles represent the neighborhoods of the agents. 

Therefore, at least an agent is at the center of each green circle and 

cannot move outside its neighborhood during an iteration. 
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Figure 4-21: Agents and the environment of a simulation at its termination 
 

Figure (4-22) depicts the performance output of a simulation run. There are two 

charts and 10 process indicators that give insights into the nature of the search. The 

most important output is the “Cost to achieve minimum RPN threshold”, which is the 

objective function of the search. The chart in the upper right of the figure, “Threshold 

RPN per Iteration” is informative for understanding diminishing returns of the search. In 

this case it is evident that the benefit of additional iterations declined significantly after 

the 5th iteration, as the slope of the gold line becomes almost flat. 
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Figure 4-22: Performance output of a simulation run 
 

4.6.2 Importing data from existing GIS files 

In this first step the simulation environment, a 2-D map of sewer manholes and 

pipes, is imported from an existing GIS shapefile. Prior to importing a map, the modeler 

assigns severity ratings to each manhole in the GIS database and has the option to 

assign a segmented pipe number that represents the hierarchical relationship of the 

pipe to other pipes within a neighborhood. These assignments will be stored in the 

simulation and used in the modeling step. During this step, the user has the ability to 

import either the entire system or a subset of the system which allows for a more easily 

managed simulation.  

4.6.3 Simulate the distribution of neighborhoods 

The adopted simulation model has the capability of either accepting the 

neighborhoods assigned within the GIS or distributing these neighborhoods 
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probabilistically. In this research, the number of manholes within a neighborhood is 

represented by an Inverse Gaussian Distribution with a mean of 85 manholes per 

neighborhood which are taken from an analysis of the modeled system. The frequency 

distribution of the manholes per neighborhood is shown in figure (4-23) below. 

 
Figure 4-23: The frequency distribution of the manholes per neighborhood 

 
To illustrate the above process, consider a totally synthetic sewer system with 

manholes distributed as shown in figure (4-24), represented by circles. In this particular 

system there are 400 manholes connected by pipes. For simplicity, the pipes are not 

shown. 
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Figure 4-24: A synthetic sewer system 

 
In this system, the simulation model divides the total number of manholes by 85 

to arrive at the number of neighborhoods, 400/85 = 5 neighborhoods. Then, for each of 

these five neighborhoods, a random draw is taken from an Inverse Gaussian 

Distribution with the shape parameter (λ) = 276.24 and the mean parameter (μ) = 

85.357. Consequently, in this example the different neighborhoods take on the following 

sizes: 

 Neighborhood 1 = 46 manholes 

 Neighborhood 2 = 69 manholes 

 Neighborhood 3 = 151 manholes 
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 Neighborhood 4 = 71 manholes 

 Neighborhood 5 = 63 manholes 

Once the neighborhood sizes are determined, the simulation will delineate the 

synthetic neighborhoods in space by selecting the upper left manhole of each 

neighborhood on the map. Then, it will select the nearest manholes sequentially until 

the neighborhood has been filled. For instance, after selecting the manholes for 

neighborhood 1, the simulation will move to the upper left manhole of the remaining 

manholes which are not assigned to a neighborhood. Again, the model will select the 

nearest unassigned manholes in any direction until that particular neighborhood is filled 

and this process will be repeated until all neighborhoods are filled. Figure (4-25) shows 

the neighborhood assignments for the synthetic sewer system, each neighborhood is 

symbolized by a different color dot. 
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Figure 4-25: Neighborhood assignments of the synthetic sewer system 

 
4.6.4 User-supplied parameters 

Although the simulation can generate a wide range of hot spot scenarios, several 

parameters must be set by the user in order for the model to be able to create a 

scenario. These parameters are: 

1. Number of available monitors. This number may range from a single monitor up 

to the total number of manholes. 

2. Cooling rate. This is the rate used to specify the probability of accepting an 

inferior solution in the simulated annealing algorithm.  

3. Neighbor jump function. The neighbor jump function is a lookup table of RPNs 

and distances as shown in figure (4-26) which is used to restrict the distance of 



129 

movement of a monitor in each iteration. This distance may be defined in terms 

of a number of neighborhoods away, a number of manholes away, or the 

maximum distance as the radius in feet. 

4. Number of hotspots. The user must specify the number of hotspots to be 

distributed in the environment which ranges from zero to the number of 

manholes. 

5. Cool spot parameters. Before hot spots are assigned, the simulation will assign 

RPNs to all manholes based on a Dagum distribution. In order for the simulation 

to be able to assign these RPNs, the user must specify the following parameters 

with their default values: 

a. Continuous shape parameter (k>0); default = 0.12757. 

b. Continuous shape parameter (α>0); default = 44.207. 

c. Continuous scale parameter (β>0); default = 91.043. 

d. Continuous location parameter (γ); default = -39.454. 

6. Hot spot parameters. After the cool spots are assigned, the simulation will assign 

RPNs to the number of hotspot manholes based on a 3-parameter General 

Extreme Value distribution. Similarly, in order for the simulation to be able to 

assign these RPNs, the user must specify the following parameters with their 

default values: 

a. Continuous shape parameter (k); default = 0.17318. 

b. Continuous scale parameter (σ>0); default = 1.4409. 

c. Continuous location parameter (μ); default is 47.968. 
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Figure 4-26: Neighbor jump function lookup table 

 

4.6.5 Simulate the distribution of cool spots 

The distribution of risk in this study is represented by the distribution of the risk 

priority numbers (RPN) of each manhole. However, since there is no known historical 

data set of RPN distribution throughout a wastewater collection system network, 

multiple methods were used to estimate a realistic distribution based on actual and 

hypothesized data from an actual system.  

Section 4.3.4 describes the method of calculating a hypothetical distribution of 

RPNs based on risk factors and assigned severity ratings. This produced the 

distribution of RPNs shown in figure (4-17). A second exercise was conducted using the 

same assigned severity ratings combined with occurrence ratings from a random 

sample of 456 locations in 7 different sewer systems as described in section 4.1.3.2.1. 

A total of 500 RPN samples was created by taking a random draw of occurrence ratings 

from the 456 locations and multiplying it by a random draw from the 14,496 severity 
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ratings from the studied system. An assumption of independence between severity 

ratings and occurrence ratings is made. Further investigation would be required to verify 

actual independence. 

Based on the above data, a mixed model that combines both the Dagum and 

General Extreme Value distributions was created to as a basis for simulating the 

distribution of RPNs. Figure (4-27) depicts the probability density function of the 

simulation’s default parameters. 

 

Figure 4-27: The probability density function of the simulation’s default 
parameters 

 

After defining all the required parameters, the simulation will proceed to create 

the landscape of coolspots and hotspots. The simulation will take a random draw from 

the Dagum distribution, defined by the user-entered parameters for coolspots, for each 

manhole in the environment and the RPN for each manhole will be stored as a value for 

each manhole agent. 
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4.6.6 Simulate the location and size of hot spots 

Following the assignment of the coolspot RPNs, the simulation will start selecting 

the hotspot manholes. The number of hotspots is determined by the user-defined 

parameter and the simulation will randomly select that number of neighborhoods from 

all available neighborhoods from a uniform distribution. A neighborhood may have 

multiple hotspots that may or may not overlap. In addition, the centroid manhole for 

hotspots in the selected neighborhoods will be designated as the centroid for the 

hotspot. In cases where two hot spots are in one neighborhood, the neighborhood will 

be bisected, and the centroid of each half neighborhood will be the centroid of each 

hotspot. Neighborhoods with three hot spots will be split into thirds, and so on. Figure 

(4-28) illustrates two hotspots, symbolized by large blue circles, placed in two 

neighborhoods of the synthetic sewer system. 
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Figure 4-28: Illustration of two hotspots 

 
The size of each hotspot is stochastic. Based on an analysis of the system under 

study, it is estimated that the number of manholes in each hot spot is a random variable 

drawn from an Inverse Gaussian distribution with a shape parameter (λ) = 276.24 and a 

mean parameter (μ) = 73. For each hotspot, a random number is selected from the 

distribution. In the above example, the first number drawn is 40. Therefore, the first 

hotspot will be comprised of 40 manholes by progressively extending outward from its 

centroid until it contains 39 closest neighbors. See figure (4-29). In the case a 

neighborhood boundary is encountered before the hot spot is filled, the expansion of the 

hot spot will be held within the neighborhood. If there are not enough manholes in the 

neighborhood to fill the hot spot, the entire neighborhood will be selected. If there is 
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more than one hot spot in the neighborhood, a manhole may be contained within 

multiple hot spots. 

 
Figure 4-29: Illustration of the size determination of the hotspots 

 
4.6.7 Simulate the distribution of hotspot RPNs 

Once selected, the simulation will update the RPN’s of the hotspot manholes 

based on a random draw from the General Extreme Value Distribution defined by the 

user-entered parameters for hotspots. Manholes that are in more than one hot spot may 

have the RPN values updated several times, retaining the last RPN assignment made. 

4.6.8 Hotspot seeding capability 

Utility managers may be aware of hot spots in their system. The simulation was 

designed to allow the modeler to specify some or all the initial locations of the agents 
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within hotspots to study their impact on convergence. To enable this feature, a new 

user-supplied parameter, known_hotspots, was added. During the simulation 

initialization, a number of agents, equal to the known_hotspots parameter, are placed 

randomly within the radius of hotspots. The simulation allows more than one agent to be 

located within the same hotspot so long as they follow the rules for manhole separation. 

For illustration, the map in figure (4-30) depicts 10 agents and 28 hot spots. Assuming 

that the known_hotspots parameter was set as a value of eight, then eight of the agents 

are randomly placed within the radius of at least one hotspot. This will be the starting 

assignment for iteration 0 and the simulation progresses as usual from this placement 

based on the chosen search algorithm. 

 
Figure 4-30: Map of known hotspots 
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4.6.9 Simulation of the distribution of severity ratings 

The severity ratings produced as part of the FMEA analysis are critical inputs to 

the enhanced simulated annealing algorithm. The simulation provided the ability to 

import severity codes from the assignment in the GIS or to assign then probabilistically 

to test the robustness of the search techniques. 

4.6.9.1 Initialize severity codes 

This step is only needed when assigning the severity codes probabilistically in 

which each manhole is assigned a severity code during the initialization of the 

simulation. The assignment is based on a random draw from a Weibull distribution 

whose parameters vary depending on the RPN of the manhole. The process of 

assigning these codes uses the following steps: 

1. RPNs are assigned to manholes as described previously depending on hot spot 

and cool spot parameters. 

2. The model will read the assigned RPN for each manhole, then calculate the 

respective severity codes as follows: 

a. Take a random draw from a uniform distribution between 0 and 1. 

b. Calculate the inverse cumulative distribution function of the 2-parameter 

Weibull distribution using the random number as the P parameter. The 

inverse cumulative distribution function of the Weibull distribution is given 

as: 

𝐹ିଵሺ𝑃ሻ ൌ 𝛽ሺln ଵ

ଵି௉
ሻ

ଵ ఈൗ     (4-12) 

 
where the values of α and β are determined based on the RPN of 
the manhole as per table (4-13) below. 
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Table 4-13: Values of α and β 
RPN Bin α Β 

0-10 1.4535 2.0464 
11-20 2.5256 5.6684 
21-30 4.3503 8.2735 
31-40 10.949 8.6302 
41-50 15.555 8.5674 
51-60 16.584 8.8456 
61-70 22.702 9.2171 
71-80 23 9.5 (estimated all values are 9) 
> 80 23 9.5 (estimated no RPNs > 80) 

 
a. Assign the result of the inverse cumulative distribution function as the 

severity code of the manhole. This code should be a number between 0 

and 10 and any results greater than 10 are rounded down to 10. 

4.6.9.2 Graphical Depiction 

The graph of the inverse of the cumulative distribution function of the Weibull 

distribution along with empirical data in the 50-60 RPN bin is shown below in figure (4-

31). The empirical data comes from City A, where severity codes were assigned using 

the scoring rubric and occurrence codes were estimated based on reported overflow 

analysis. Although the fits are approximate, they are felt to be sufficient based on; a) the 

approximate calculations are adequate for the simulated environment; b) use of a 

consistent distribution across all RPN bins is desirable; c) ease of implementation of this 

feature for development of the simulation tool is perceived as important. 
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Figure 4-31: Graphical representation of the severity code cumulative distribution 
function 

 

4.6.10 Implementation of search algorithms in the simulation 

A major goal of the simulations was to test the performance of various search 

algorithms in terms of the objective function. Four search techniques were implemented 

in the simulation: 

1. Base simulated annealing. This is an unembellished simulated annealing 

algorithm that does not consider the peculiarities of the structure of the 

problem. 

2. Enhanced simulated annealing. Several enhancements were tested in the 

quest for making improvements to the performance of base simulated 

annealing. 

3. Sequential search. Sequential search mimics a common practice in 

inspection techniques to assess risk in sewer networks. It was used as a 
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baseline to contrast the benefits of metaheuristic search to an exhaustive 

search methodology. 

4. Greedy search. Another baseline to contrast the benefits of local-optima-

escape features of simulated annealing. 

The following sections will describe the operation of each agent movement 

technique. 

4.6.10.1 Base simulated annealing 

Figure (4-32) summarizes the logic used in the base simulated annealing 

algorithm when the jump function is neighborhoods. It is worth noting that if the jump 

function is in manholes, then agent movement is upstream or downstream on a 

particular pipe within the limits of the number of manholes specified. If the jump function 

is in feet, then agent movement is a random selection of a location within a circle with 

the radius provided by the user. 
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Figure 4-32: Flowchart of the logic used in the base simulated annealing algorithm 
 

Several variables that were used in the base annealing algorithm are defined 

within the simulation before initializing, these variables are: 

 Agent_rpn. The RPN of the monitor that is subject to change at every 

iteration. 

 Manhole_rpn. The RPN of the manholes created during the initialization of 

the environment.  

 Iterations (i). The counter for the number of time steps that have been 

simulated. 

 Iteration_rpn. The sum of all Agent_rpns for the current iteration. 

 Best_rpn. The best solution that has ever been found during the progress. 
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 Best_manholes. The manhole numbers that achieve the Best-rpn. 

 Temperature (t). Starts at 100 and the algorithm terminates when it gets 

below 1. 

 Best_possible_RPN. The global maximum solution which will be rarely 

discovered by the algorithm. 

4.6.10.1.1 Initialize the annealing 

To begin the simulated annealing run, iteration is set to i = 0 and Temperature is 

set to t = 100. At the completion of each iteration, (i) is incremented by 1 and (t) is 

reduced as a function of the user supplied cooling rate. The simulation will halt when the 

temperature falls below 1 or when there are no more allowed locations for agents to 

move to. 

A number of agents will be created equal to the user supplied 

#_monitors_available parameter. Each agent is assigned to a manhole randomly based 

on a uniform distribution and all the manholes on the map have an equal chance of 

being selected as an initial monitoring location. In the example shown in figure (4-32), 

there are 2 agents, representing 2 monitors, and 400 manholes. Thus, for each monitor 

a random number between 1 and 400 is drawn from a uniform distribution and Agent 1 

is randomly assigned to manhole 201 and Agent 2 is randomly assigned to manhole 83. 

Furthermore, the Agent_rpn variable is updated to be equal to the Manhole_rpn of the 

assigned manhole. In the example, Agent 1 takes on the RPN of 40 from manhole 201 

and Agent 2 takes on the RPN of 32 from manhole 83. Afterwards, the variables 

Best_rpn, Best_manholes, and Best_possible_RPN are updated for the first time as 

shown in figure (4-33). 
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Figure 4-33: Initializing the base annealing model 

 
4.6.10.1.2 Calculate move direction and distance 

The move direction and distance operate with some minor differences depending 

on the jump function. However, in all cases the principle is to define a subset of valid 

moves (i.e. “neighbors”) and select a candidate location from among this subset. 

4.6.10.1.2.1 Movement when the jump function is neighborhoods 

The move direction and distance for each agent are calculated independently. 

Regarding the move distance, a random direction between 1 and 360 degrees is 

selected from a uniform distribution. In the example illustrated in figure (4-34), the 

random direction was 259 degrees for Agent 1 and 59 degrees for Agent 2 which are 
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shown as green vector lines on the illustration with the current Agent locations as the 

origin. 

With regards to the move distance, a number of steps are performed to calculate 

this parameter. First, a maximum move distance is derived for each agent from the 

number of adjacent neighborhoods provided by the neighbor jump function table and 

depending on the RPN number of the origin location. Second, the move distance 

becomes shorter as the RPNs increase under the assumption that higher RPNs are 

near hot spots and monitors should stay close to hot spots and it may be limited by the 

map size. Third, boundaries are set as points on the direction vector where either the 

furthest allowed neighborhood or the map boundary intersects the vector. For instance, 

if an agent is allowed to travel three neighborhoods away, then the maximum move 

distance is the distance between the current monitor location and the intersection of the 

direction vector and the furthest boundary of the third neighborhood along the direction 

vector. Fourth, the distance between the origin point and boundary point is then 

calculated using the Pythagorean Theorem. Fifth, the actual move distance is selected 

randomly from a uniform distribution between 1 and the maximum move distance. 

Finally, the nearest manhole along the direction vector at the move distance is then 

selected. It is unlikely that there will be a manhole at the exact coordinates of the move 

direction and distance, therefore the nearest manhole is selected. In the example, both 

agents would be allowed to move up to three adjacent neighborhoods away along the 

direction vector, so long as they do not reach the end of the map. The boundary is the 

intersection of the green direction vectors and the thick red map boundary lines. 

Consider Agent 1 located at (x,y) = (15, 14), with a boundary at the map limit of (1, 9). 
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The maximum move distance is 14.87 and the random draw from the uniform 

distribution between 1 and 14.87 was selected as 10.7. Consequently, Agent 1 will be 

placed approximately at (4.9, 10.4) and the nearest manhole is depicted by the brown 

circle immediately to the left of (4.9, 10.4) as shown in figure (4-33). 

 
Figure 4-34: The move direction and distance for Agent 1 

 
4.6.10.1.2.2 Movement when the jump function is distance 

In this case, the movement distance is a function of RPN as was the case when 

the jump function was neighborhoods. However, when the distance is specified in feet 

the candidate locations are the set of all manholes within the distance given in the table 

in any direction. The actual move is selected randomly from the set of candidate 

locations with each location having an equal probability of being selected. Once a 
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location is selected, the move is tested as an agent may or may not actually make the 

move depending on two tests. 

The first test states that if the destination Manhole_rpn is greater than the current 

Agent_rpn, then the agent will always make the move. The second test allows an Agent 

to move to a lower RPN depending on the temperature calculation. The purpose of this 

test is to allow Agents to escape local maxima in early iterations. However, because the 

destination RPN is lower, the move will be subject to the temperature test which follows 

the Boltzmann distribution using k = 0.1 as the Boltzmann constant. Thus, the formula 

for the test to accept the move to a lower RPN is: 

Exp((Agent_rpn – Manhole_rpn) * -1 / (0.1 * temperature)) > rand(0,1) (4-13) 

This is illustrated in the example when considering Agent 1 that has an 

Agent_rpn of 40 that it inherited from being assigned to manhole 201. Its destination is 

determined to be manhole 290, which has a Manhole_rpn of 35. Consequently, the 

temperature test is performed which yielded the following result:  

Exp((40 – 35) * -1 / (0.1 * 100)) > 0.45, or 0.60 > 0.45 = TRUE 

Therefore, the move is accepted to the new manhole 290. 

Once all the moves are tested, agents that have destinations with higher RPNs 

or that pass the temperature test are moved. Those which fail remain in their current 

location. Figure (4-35) shows the movement of Agent 1 to its new location at manhole 

290.  
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Figure 4-35: Movement of Agent 1 

 
After the movement is completed, the logs of manholes, iterations, and RPNs are 

updated with the results from the iteration. For example, Manhole 201 – iteration 0 = 40 

and Manhole 290 – iteration 1 = 35. The temperature is then reduced by setting 

temperature = temperature * (1 – cooling_rate / 100). If the new temperature is below 

1.0 then the simulation terminates. Otherwise the iteration is set to = iteration + 1 and 

the annealing process is performed repeatedly until the temperature is reduced below 

1.0. 

4.6.10.2 Enhanced simulated annealing 

The idea behind enhancing the base simulated annealing algorithm is primarily to 

take advantage of the knowledge of the consequences of pipe failure to favor the 

selection of high-overflow-consequence manholes, i.e. the manholes with high severity 

ratings. This enhancement requires that severity ratings be stored in a GIS attribute, 
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sev_code, based on the severity rating rubric. Then the sev_code variable is imported 

into the simulation. The enhancement also implements a user-defined variable, 

sensor_range, to allow users to specify how many manholes a single monitor can 

“sense”. For instance, a single monitor may detect failures at two manholes upstream 

and downstream of its location. It would be redundant to place another monitor within 

two manholes. Figure (4-36) shows the flowchart of the operation of the enhanced 

simulated annealing algorithm. 

 

Figure 4-36: Enhanced simulated annealing algorithm 
 

4.6.10.2.1 Initial assignment of monitors to manholes 

In the enhanced algorithm, agents are assigned to manholes in sev_code priority 

ranking. The known hotspots quantified by the parameter “known_hotspots” occur 
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before agents are assigned in any other manner during initialization. Then, the 

remaining agents are assigned in order of manhole sev_code. This process begins by 

attempting to assign all unassigned agents to manholes with a sev_code = 10. If there 

are more unassigned agents than manholes with sev_code = 10, then agents will be 

assigned to every manhole with sev_code =10 before moving to the next sev_code = 9 

and this loop continues until all agents are assigned to a manhole while the rules 

preventing more than 1 agent visiting a particular manhole are still in place. Once 

agents are assigned to manholes, the sev_code of the manhole is assigned to 

agent_sev_code. This update of the variable agent_sev_code is a unique feature of the 

enhanced simulated annealing algorithm. 

Any particular manhole can only be evaluated once during a simulation run. An 

agent is prohibited from evaluating a manhole that has been previously evaluated. In 

addition, an agent may not evaluate any manholes within the user-supplied 

“sensor_range” of manholes upstream or downstream. Consequently, those manholes 

which have not been previously evaluated by an agent nor have they been within the 

“sensor_range” of an evaluated manhole will be labeled as “qualified”. 

4.6.10.2.2 Selection of candidate locations for movement 

Unlike in the base algorithm, the enhanced algorithm implements the concept of 

“nearest x” manholes in which the value of “x” in the neighbor jump function is defined 

by the modeler at initialization. This difference in selecting the candidate locations for 

movement is illustrated in figure (4-37). 
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Figure 4-37: Nearest x Manhole vs. Fixed Distance 

 
This algorithm is based upon the observation that locations with high RPNs are 

more likely to have high sev_code values and more likely to be in close proximity of 

other high RPN locations. Table (4-14) demonstrates the strong correlation between the 

severity ratings and the proportion of locations with RPN values above the risk threshold 

of 50 based on estimates in City A. 

Table 4-14: Correlation between severity codes and high RPNs 
Sev_code Number of Locations 

RPN < 50 RPN >= 50 Total Percentage >= 
50 

0 1  1 0.0% 
1 350  350 0.0% 
2 120  120 0.0% 
3 421  421 0.0% 
4 265  265 0.0% 
5 623  623 0.0% 
6 2  2 0.0% 
7 3  3 0.0% 
8 7,750 823 8,573 9.6% 
9 3,171 1,056 4,227 25.0% 
10 17 16 33 48.5% 

Total 12,723 1,895 14,618 13.0% 
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4.6.10.2.3 Agent movement 

A fundamental change in this algorithm compared to the base simulated 

annealing is the prioritization of the search by sev_code. Therefore, to begin the search 

loop, each agent will start locating the nearest_x qualified manholes where sev_code >= 

agent_sev_code as illustrated in figure (4-38). In this figure, each circle represents a 

manhole, the upper number is the sev_code while the bottom number is the RPN.  

In this example, the agent begins at the purple manhole with a sev_code of 10 

and an RPN of 50. The purple manhole is disqualified from being evaluated again 

during the simulation run. The nearest_x is assumed to be 3 for all RPN values. Note 

the simulation allows the user to enter up to 9 different values for nearest_x depending 

on the value of the agent’s RPN. The agent_sev_code = 10, indicating the search will 

begin with only manholes that have a sev_code = 10. 

 
Figure 4-38: Initial search states for the enhanced model 

 
From the inspection, the nearest manholes that have a sev_code >= 10 are the 

ones shaded green. A random selection is made from among these 3 candidates and 
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the manhole with sev_code = 10 and RPN = 40, represented by the red circle shaded 

green, is selected for evaluation as shown in figure (4-39). Aside from the first 

assignment, the evaluation proceeds as before with higher RPN locations always 

accepted for move while the lower ones are accepted based on the probability 

calculation explained earlier. As a result, in this example, the candidate RPN of 40 is 

lower than the agent RPN of 50 so there is no automatic move. However, it is assumed 

that the probability calculation allows the movement to a lower RPN. 

 
Figure 4-39: Updated search 

 
It is important to note that the progress of the algorithm is based on the evaluated 

manholes, regardless of whether an agent moved to them. In the example, the log will 

show two manholes evaluated, the purple one with an RPN of 50 and the red circled 

one with an RPN of 40. They are no longer qualified for future selection during the 

simulation run. 
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Next, the search progresses looking for 3 manholes with sev_code >= 10, the 

agent_sev_code. Three qualified manholes are available, therefore one of them will be 

selected randomly for evaluation, the manhole with a yellow circle. This manhole has a 

sev_code = 10 and RPN = 50. Since the RPN is higher than the agent RPN, the move 

is accepted without further testing. Two manholes are now disqualified as depicted in 

figure (4-40). 

 
Figure 4-40: Progressed search 

 
Similarly, the search will continue looking for the 3 nearest manholes with 

sev_code >= 10. However, since there are only 2 qualified manholes that meet this 

condition, the agent_sev_code is decremented by 1 and set to 9. The search now looks 

for the 3 nearest manholes with sev_code >= 9, shown by the yellow lines in figure (4-

39). One of the candidates from among the 3 is selected at random and the search 

continues until the temperature becomes <= 1. 
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4.6.10.3 Sequential search algorithm 

The sequential search algorithm is designed to mimic the heuristics commonly 

used in a large-scale closed-circuit television (CCTV) project. In this algorithm, 

inspections start at the top of a collection system and work downstream. This means 

that lateral lines are inspected first, then followed by mains, trunks, and interceptors. 

The rationale for adopting this algorithm is that pipes are usually cleaned before 

inspection by CCTV. During cleaning, debris is flushed into progressively larger pipes 

and ultimately to the treatment plant. So, since bigger lines have higher scouring 

velocity that aid in the flushing of debris, they should be inspected last. When a pipe 

junction is reached, inspectors will move to the top of other lines coming into the 

junction and work back downstream to the junction. A high-level flowchart of the 

algorithm is presented in figure (4-41). 

 

 
Figure 4-41: Sequential search algorithm flowchart 

 
As seen from the above flowchart, a new parameter, which is number of 

inspectors (#_inspectors), is added to accommodate sequential search which will be 

specified by the user in a range from 1 to 30.  
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4.6.10.3.1 Errors in GIS database 

The sequential search algorithm requires that all pipes in the sewer network be 

connected to nodes (manholes) so that agents can move from an upstream terminal 

node to a downstream terminal node. It is common for GIS systems to contain errors in 

connectivity of the network. Therefore, to resolve this issue, the simulation has the 

capability to optionally process corrections of errors and omissions in the imported 

databases. This capability allows the user to create an Excel workbook referencing the 

upstream and downstream manholes as stored in the GIS with values to update either 

of them. The workbook may also delete records from the GIS. An example of this 

capability is given in table (4-15). As seen from the table, the first row updates the 

upstream manhole. The second updates the downstream manhole. The third row 

deletes the first record that matches the US_Manhole and DS_Manhole as it is possible 

that the GIS database contains more than one record with the same US_Manhole and 

DS_Manhole. In that case only the first record is deleted. If the user wants to delete 

additional instances of that manhole combination, then the Excel workbook must 

contain multiple rows specifying the given manhole combination with the “Delete 

1st_Record” field set to “Y”. 

Table 4-15: Example of the capability to correct errors in the GIS database 
US_Manhole DS_Manhole New_US_Manhole New_DS_Manhole Delete 1st 

Record 
021B024B 012B024A 012BO24H   
074A001B 074A001B  074C0080  
075C0090 075C0080   Y 

 
4.6.10.3.2 Initializing the sequential search algorithm 

The sequential search algorithm utilizes the same variables as described 

previously except that the temperature is unnecessary. At the outset, the number of 
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agents is created equal to the user supplied #_inspectors parameter. Each agent is 

assigned respectively to the manholes furthest from the centroid of the map that are 

also “terminal manholes”, which are manholes at the upstream of pipes with no pipes 

entering them. The first agent is assigned to the furthest manhole from the centroid, the 

second agent is assigned to the second furthest manhole from the centroid of the 

map… etc. Figure (4-42) illustrates the assignment of four inspectors. 

 
Figure 4-42: Assignment of inspectors 

 
4.6.10.3.3 Agent Movement in the sequential search algorithm 

For each agent, moves are evaluated independently at each iteration. An 

iteration is complete when every agent moves to a new qualified manhole. The 

designation of upstream and downstream manholes is contained in the merged 

database of the sGravityline and sForecemain tables from ArcGIS, after corrections. In 

general, an agent will move downstream as long as the downstream manhole has not 

been previously monitored. There are two exceptions to this rule, namely: 1) A junction 
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is reached where more than one pipe enters a manhole, and, 2) There are no 

unmonitored manholes downstream. Table (4-16) summarizes the rules for movement, 

with a small-scale example presented in figure (4-43). 

Table 4-16: Rules of movement in sequential search algorithm 
Is there an 

unmonitored 
downstream 

manhole? 

Is the new 
manhole a 
junction? 

Have all 
branches into 
the junction 

been 
monitored? 

Have all 
manholes 

been 
monitored? 

Action 

Yes Yes Yes - Accept the 
downstream manhole 
as the location for the 
next iteration 

Yes Yes No - Locate the agent at the 
most upstream 
manhole of any one of 
the unmonitored 
branches 

Yes No - - Accept the 
downstream manhole 
as the location for the 
next iteration 

No - - Yes End of the run 
No - - No Randomly select 

another unmonitored 
outer reach manhole 
and move the agent to 
that location 
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Figure 4-43: Example of agent movement in sequential search algorithm 

 
4.6.10.4 Greedy algorithm 

A greedy algorithm is one that only accepts moves that improve the objective 

function. In the context of this research, it is an algorithm that allows an agent to move 

only to candidate locations with equal or higher RPN. The purpose of this algorithm is to 

compare the efficiency of the simulated annealing and enhanced simulated annealing 

algorithms against the greedy search algorithm that always rejects inferior moves. 

Consequently, for the ease of development, the greedy algorithm implemented in the 

simulation makes two simple changes to the simulated annealing algorithm: 

1. The temperature variable is set to a fixed value of 0.0001. This temperature 

value is held constant throughout the simulation and not affected by the cooling 

rate. This effectively sets the Boltzmann factor equal to zero meaning that there 

is a zero chance that an agent will accept an inferior move. 

2. The stopping criteria is modified to stop after 120 iterations (10 years of 

iterations). Figure (4-44) illustrates the operation of the Greedy Algorithm. 
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Figure 4-44: Operations of the greedy algorithm 

 
4.6.11 Simulation output 

As discussed previously, the objective function is to minimize the cost of finding a 

specified number of locations that exceed a specified risk threshold. The simulation 

labelled “N” as the parameter for the specified number of locations which is also 

referred to as the number of continuous monitor locations, or “permanent locations”. 

Consequently, the output of the simulation displays and stores the Nth RPN at each 

iteration as well as a plot of the N highest RPNs. 

The simulation gives an output in terms of a time series chart depicting the Nth 

ranked RPN along with performance metrics, as shown in figure (4-45) where the x-axis 

is the iteration count and the y-axis is the RPN of the Nth ranked location. In the 

example shown in the figure, there are 10 agents (sensors) searching for 50 locations 

(N) with RPN values greater than or equal to 50 (Minimum RPN threshold). There were 

19 iterations required to meet this condition at a cost of $56,400. In the chart shown in 

figure (4-44), the gold line shows the progression of the search in terms of improving the 
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Nth ranked RPN. In the example discussed in this chapter, five iterations of 10 monitors 

were required before a 50th ranked location was available. At that point the 50th ranked 

location shows an RPN of approximately 40, the first plotted point of the yellow line. As 

the search progressed, the 50th ranked RPN improved significantly before leveling to 

minor incremental improvement. The red line illustrates the threshold RPN set at 50. 

Therefore, the single constraint of the search is met at the point of intersection between 

the red line and yellow line which is the least number of iterations satisfying the 

condition that the Nth ranked location is greater than or equal to the threshold RPN. 

 

 

 

Figure 4-45: Simulation output 

rpn_goal_iterations 
= min value of x-axis 
where goal is 
attained (19 in this 
example) 

Goal is attained where 
the gold line exceeds 
the Minimum RPN 
Threshold on the y-axis 
(assume 50 for this 

l )

User specified 
50 permanent 
locations 

User 
specified 10 
monitors 
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4.6.12 Calibrating the simulation 

The calibration of the model was based on the data obtained from City A in the 

Southeastern United States. It was assumed that the observed overflows in the 

modeled city were from manholes with the highest RPN. This assumption has three 

limitations: 

1. RPN includes consequence ratings whereas observed overflow data does 

not. This leaves open the potential that locations with high RPN may be 

the result of high failure consequence combined with low failure 

probability. In these cases, the high RPN would not be expected to predict 

an observed overflow in historical data because the RPN is the result of 

failure consequences, not likelihood. 

2. Overflows are suspected to be underreported non-uniformly. The 

implication is that by looking only at reported overflows, the risks 

associated with unreported overflows is ignored. 

3. Observed overflows occur after surcharge, the definition of failure in this 

research. It is possible that a significant number of pipes fail without the 

surcharge reaching the subsurface structures or the surface where they 

can be observed. 

The procedure for calibrating the model is summarized as follows: 

1. There were 133 observed overflows in the historical data. Therefore, the 

133 manholes in the simulation with the highest RPNs were labelled as 

the locations of failure.  
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2. In order to calibrate spatial autocorrelation, a comparison was conducted 

between the simulation and the historical data for the number of hotspots 

and the Moran’s I statistic. 

3. The simulation parameters were adjusted until a reasonable match was 

achieved on number of hotspots and Moran’s I. 

4.6.12.1 Calibration of hotspot distribution 

Two techniques were used to analyze hotspots, Point Kernel Density and Grid 

Counts. 

 

 

4.6.12.1.1 Point kernel density 

Overflow locations were geocoded in the modeled city’s GIS database. Using the 

analysis tools of the GIS software it was possible to calculate the density of the overflow 

locations. The map of these densities is shown in figure (4-46). A visual inspection of 

the contours indicates 10 distinct local optima that were considered clusters. 
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Figure 4-46: Point Kernel Density 

 
4.6.12.1.2 Grid count 

A second method was employed to identify the hotspots using the modeled city’s 

GIS database which is a count of the observed overflows within the fishnet grid of the 

sewer network. The map of these densities is shown in figure (4-47). The cells are 

shaded based on the count of overflows, with darker shades indicating a higher count. 

Clusters were considered any shaded cells completely surrounded by unshaded cells. A 

total of nine clusters were identified using this technique. 
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Figure 4-47: Grid Count 

 
A comparison of the two methods shows that they both have roughly the same 

number of clusters centered in the same areas. It is important to remember that the goal 

of the calibration was not an exact match to the modeled city, but rather a realistic 

approximation of the distribution of risk, since risk distribution will vary between systems 

and over time. Therefore, in the rest of the analysis, the grid count method was used 

because of its computational simplicity compared to kernel densities. 
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4.6.12.2 Calibration results 

Multiple simulation runs were conducted using various parameters of hotspots 

and cool spots as described previously. At each run, the output of the simulation was 

imported into the GIS tool where comparisons were made to the hotspot count and 

Moran’s I statistic of the observed data. The simulation achieved a reasonable match to 

the observed data at the parameter settings shown in figure (4-48) below. 

 
Figure 4-48: Simulation Parameter Settings 

 
A side-by-side map of simulated versus observed hotspots is shown in figure (4-

49) in which the simulated hotspots are shown on the left. As seen from the figure, there 

were eight hotspots in the simulation run that produced this graph compared to nine in 

the observed overflow data. Repeated runs of the simulation distributed hotspots in 

different locations and with slightly different counts but with similar realism. 
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Figure 4-49: Comparison of Simulated and Observed Hotspots 

 
The simulation also produced spatial autocorrelation metrics similar to the 

observed failures as shown in figure (4-50) in which the simulated values are on the left. 

The comparison values are the Moran’s Index, the z-score, and the p-values as shown 

in table (4-17). The p-values between the simulation and the observed data are very 

similar, indicating a high probability that the observations are clustered. 

 

Figure 4-50: comparison of Spatial Autocorrelation Metrices 
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Table 4-17: Comparison between the simulated and observed data 
Statistic Simulation Observed 
Moran’s Index 0.064 0.086 
z-score 1.698 1.733 
p-value 0.090 0.083 

 
As a result, all screening and optimization experiments presented in this research 

were conducted with the parameters resulting from this calibration. However, the 

simulation parameters are sufficiently robust to facilitate calibration to a wide range of 

hot spot frequencies and spatial distributions. 

4.7 Design of Experiments 

Design of Experiments (DOE) was employed as the tool for evaluating results of 

various algorithms and parameters. In most cases, fractional factorial experiment 

designs were required due to the high number of factors. In screening experiments only 

one replicate was made for each treatment, while in optimizing experiments, three 

replicates were performed for each treatment in order to estimate the variability due to 

the intentional randomness in the simulation. For each algorithm, screening and 

optimization experiments were conducted to estimate the best parameters for each 

algorithm. Algorithms were then compared based on the mean objective function values 

for each algorithm for the treatments utilizing its best estimated parameters. 

4.7.1 Experiment objectives 

The primary objective of the experiments was to determine the algorithm and 

associated parameters that minimized the objective function. There are three 

components to this objective. The first is to determine what parameters achieve the best 

performance for each algorithm. The second is to select the algorithm that provides the 

best performance in terms of minimum cost. The third is to conduct a sensitivity analysis 
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of the selected algorithm in order to evaluate its robustness. Based on these objectives, 

several questions were needed to be answered: 

1. Does the neighborhood function affect the outcome? 

2. Does the movement depending on RPN affect the outcome? 

3. Is there an interaction with the environment parameters (e.g. hotspot and cool 

spot distribution)? 

4. Do different risk tolerances, indicated by max number of sites to actively 

manage and minimum RPN threshold, lead to different sensor placement 

strategies? 

5. Are there any impacts on the outcome if some hot spot locations are known 

from the outset? 

4.7.2 DOE strategy 

The simulation contained 58 user-controlled parameters which are listed in table 

(4-18) and cross referenced to the simulation initialization screen in figure (4-51). 

Multiple experiments were conducted for which only the primary experiment factors 

were varied. The experiment strategy required that some experiments contain 11 

factors with two levels each, with three replicates for each treatment. This would have 

required 6,144 experiment runs to collect data on every combination of factors for a 

single experiment. This was time prohibitive, hence a fractional factorial experiment 

design was used as it provided a significant efficiency advantage. 
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Table 4-18: The simulation user-controlled parameters 
Number Simulation 

Parameter Name 
Description 

1 Algorithm Which of 4 search algorithms 
2 Alpha Cool spot parameter 
3 Beta Cool spot parameter 
4 cooling rate Simulated annealing parameter 
5 costPerIteration Cost per level meter per iteration 
6 excelFile Input file name - defaults to manholes.xls 
7 Gamma Cool spot parameter 
8 hoodSource Either probabilistically or from shape file. 

Shape file option never tested. 
9 isEnhanced Enhanced simulated annealing flag 
10 Kappa Cool spot parameter 
11 knownHotspots Number of known hotspots for seeding 

starting locations 
12 maxDistance1 Maximum radius (in feet) to move for RPN 

0-10 
13 maxDistance2 Maximum radius (in feet) to move for RPN 

10-20 
14 maxDistance3 Maximum radius (in feet) to move for RPN 

20-30 
15 maxDistance4 Maximum radius (in feet) to move for RPN 

30-40 
16 maxDistance5 Maximum radius (in feet) to move for RPN 

40-50 
17 maxDistance6 Maximum radius (in feet) to move for RPN 

50-60 
18 maxDistance7 Maximum radius (in feet) to move for RPN 

60-70 
19 maxDistance8 Maximum radius (in feet) to move for RPN 

70-80 
20 maxDistance9 Maximum radius (in feet) to move for RPN 

above 80 
21 minRPNThresh

old 
The minimum threshold for active risk 
management 

22 Mu Hot spot location parameter 
23 numHotspots Hot spot parameter 
24 numInspectors Number of inspectors in the sequential 

search algorithm 
25 numMonitors Number of monitors (agents) searching for 

manholes 
26 numNearestMa

nholes1 
Nearest_x for Enhanced Sim Annealing for 
RPN 0-10 
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Number Simulation 
Parameter Name 

Description 

27 numNearestMa
nholes2 

Nearest_x for Enhanced Sim Annealing for 
RPN 10-20 

28 numNearestMa
nholes3 

Nearest_x for Enhanced Sim Annealing for 
RPN 20-30 

29 numNearestMa
nholes4 

Nearest_x for Enhanced Sim Annealing for 
RPN 30-40 

30 numNearestMa
nholes5 

Nearest_x for Enhanced Sim Annealing for 
RPN 40-50 

31 numNearestMa
nholes6 

Nearest_x for Enhanced Sim Annealing for 
RPN 50-60 

32 numNearestMa
nholes7 

Nearest_x for Enhanced Sim Annealing for 
RPN 60-70 

33 numNearestMa
nholes8 

Nearest_x for Enhanced Sim Annealing for 
RPN 70-80 

34 numNearestMa
nholes9 

Nearest_x for Enhanced Sim Annealing for 
RPN above 80 

35 numPermanent
Locations 

Number of locations being searched for in 
excess of minRPNThreshold 

36 radius:0.25 Selection of zoom level for map 
37 rangeType1 Neighborhoods or manhole search range 

for RPN 0-10 
38 rangeType2 Neighborhoods or manhole search range 

for RPN 10-20 
39 rangeType3 Neighborhoods or manhole search range 

for RPN 20-30 
40 rangeType4 Neighborhoods or manhole search range 

for RPN 30-40 
41 rangeType5 Neighborhoods or manhole search range 

for RPN 40-50 
42 rangeType6 Neighborhoods or manhole search range 

for RPN 50-60 
43 rangeType7 Neighborhoods or manhole search range 

for RPN 60-70 
44 rangeType8 Neighborhoods or manhole search range 

for RPN 70-80 
45 rangeType9 Neighborhoods or manhole search range 

for RPN above 80 
46 rangeValue1 Max neighborhoods or manholes (see 

rangeType) for RPN 0-10 
47 rangeValue2 Max neighborhoods or manholes (see 

rangeType) for RPN 10-20 
48 rangeValue3 Max neighborhoods or manholes (see 

rangeType) for RPN 20-30 
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Number Simulation 
Parameter Name 

Description 

49 rangeValue4 Max neighborhoods or manholes (see 
rangeType) for RPN 30-40 

50 rangeValue5 Max neighborhoods or manholes (see 
rangeType) for RPN 40-50 

51 rangeValue6 Max neighborhoods or manholes (see 
rangeType) for RPN 50-60 

52 rangeValue7 Max neighborhoods or manholes (see 
rangeType) for RPN 60-70 

53 rangeValue8 Max neighborhoods or manholes (see 
rangeType) for RPN 70-80 

54 rangeValue9 Max neighborhoods or manholes (see 
rangeType) for RPN above 80 

55 scaleX Hot spot parameter 
56 sensorRange Number of manholes that a sensor must be 

away from previously monitored manhole 
57 sequentialFile Excel file containing corrections to manhole 

connectivity problems. 
58 shapeX Hot spot parameter 

 

 
Figure 4-51: Simulation initialization screen 
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The available parameters were treated in four distinct ways in order for the 

experiment to efficiently meet the objective. These distinctions are described below and 

summarized in table (4-19). 

1. Each algorithm was optimized independently. Since the available parameters 

differed for each algorithm, the experiment strategy was to optimize 

parameters for each algorithm individually before comparison. Early trials 

using “algorithm” as a factor ran into issues due to the dissimilar parameters 

in each algorithm and the added complexity of adding factors and levels. 

2. Primary experiment factors. These were the parameters of greatest interest to 

study in the optimization of each algorithm. There were 11 parameters for the 

two simulated annealing algorithms and fewer parameters the other two 

algorithms. 

3. Sensitivity factors. There were 13 parameters outside of the primary 

experiment factors that were of interest in this study after the primary 

experiment factors were optimized. These parameters are:  

a. Eight related to the distribution of hot spots and cool spots. The 

purpose of experimentation with these parameters was to assess the 

robustness of the optimized algorithm on a variety of sewer system 

environments. 

b. The parameter knownHotSpots was included to test a hypothesis that 

sensors should be placed in locations where failures historically 

occurred. 
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c. The parameter costPerIteration was included to quantify the cost 

differences between sequential search and simulated annealing. 

Sequential search is often used in inspection programs. Therefore, the 

magnitude of cost savings is an important argument to use in favor of 

employing a metaheuristic. 

d. The parameter minRPNthreshold was included to test the sensitivity of 

the optimum parameters to varying risk tolerances. One hypothesis is 

that the jump function is related to the minRPNthreshold choice. 

e. The parameter numPermanentLocations was included primarily to 

quantify the additional risk mitigation possible with increased resources 

to continuous monitoring and estimate the marginal benefit of 

additional spending. 

f. The parameter sensorRange was included to quantify the benefit of 

technological improvements in sensing technology. 
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Table 4-19: Ways of treating the available parameters 
Experiment 

Purpose 
Variable (companion variable) Number of 

factors in 
Based 

Simulated 
Annealing 

Number of 
factors in 
Enhanced 
Simulated 
Annealing 

Optimize one at a 
time 

Algorithm (Enhanced) Not varied within experiment runs 

Primary experiment 
factors 

Cooling rate 1 1 
maxDistance 1-9 or rangeValue 
1-9 (rangeType 1-9) 

9  

numNearestManhole 1-9  9 
numMonitors (numInspectors) 1 1 

Sensitivity factors costPerIteration, alpha, beta, 
gamma, kappa, knownHotspots, 
minRPNthreshold, mu, 
numHotspots, 
numPermenantLocations, 
scaleX, sensorRange, shapeX 

Not varied within experiment runs 

Maintenance 
Variables 

excelFile, hoodSource, radius, 
sequentialFile 

Not Applicable 

 
Note that in the above table “companion variables” were included. These are 

parameters that are used in conjunction with other parameters in a paired fashion, 

however only one of them only will be populated in an experiment. For example, 

numMonitors and numInspectors are parameters for the number of agents in the 

simulated annealing and sequential search algorithms, respectively. Another example is 

rangeValue and rangeType which are used together to designate a jump magnitude 

such as “4 manholes” or “2 neighborhoods”. 

4.7.3 Treatment selection 

4.7.3.1 Method for selecting parameters 

In order to select the parameters, experiments were conducted in three phases - 

screening, optimization, and sensitivity. The first two were performed for each algorithm. 

Screening experiments were fractional factorial designs for the purpose of eliminating 

non-significant factors and gaining an approximate understanding of where the good 
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parameter values existed. At the same time, the optimization experiments were 

conducted to explore in more detail the regions of interest indicated by the screening 

experiment results. Iterations of optimization experiments continued until either a 

parameter reached a limit, or an optimum parameter value was revealed by curvature in 

the response variable. Special experiments were designed to test the sensitivity by 

employing the sensitivity factors. Following is a description of the primary experiment 

values: 

1. Cooling rate. This parameter applies only to the base simulated annealing 

and enhanced simulated annealing. The cooling rate specifies the steps at 

which the simulated annealing temperature is reduced at each iteration.  

High cooling rates produce faster search convergence but lower the 

resolution of the results. 

2. Max distance 1-9. This parameter applies only to the base simulated 

annealing and greedy search. It is a table of values that indicates the 

maximum distance, in feet, that an agent may move in a single iteration. 

Each of the nine values in the table corresponds to the RPN of the current 

location in increments of 10. Max distance 1 applies to RPN between 0-

10, Max distance 2 to RPN between 10-20, etc. 

3. Range value 1-9 and range type 1-9. This parameter applies only to the 

base simulated annealing and greedy search. It is an alternative move 

designation to Max distance that allows movement to be designated as a 

number of manholes or a number of neighborhoods away. Moreover, 

range values may be used in conjunction with Max distance. For example, 
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moves for RPN values of 0-10 may be specified as a distance in feet in 

the same simulation where moves for RPN values of 10-20 are specified 

as a number of manholes away. 

4. Number of nearest manholes 1-9. This parameter applies to the enhanced 

simulated annealing only. It is a table of values specifying the number of 

nearest manholes within the neighborhood of an agent corresponding to 

RPN values in increments of 10. Agents are restricted to movements only 

within these defined neighborhoods. 

5. Number of monitors/number of inspectors. This parameter applies to all 

algorithms and it designates the number of agents active during the 

search. 

4.7.3.2 Choice of factor levels 

For the screening experiments, factor levels were chosen to be very broad, 

guided by the authors experience in sewer system monitoring. Table (4-20) is a list of 

the primary experiment variables with their low and high levels for screening 

experiments and the rationale for selecting those levels. 

Table 4-20: Primary experiment variables for the screening experiments 
Parameter Low Level High Level Rationale 
Cooling rate 1 20 Preliminary 

screening 
experiments 
indicated slow 
convergence at 
values below 1 and 
frequent early 
termination at 
values above 20. 

Max distance 1,000 30,000 1,000 feet is the 
approximate sensor 
range. 30,000 feet 
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Parameter Low Level High Level Rationale 
is the approximate 
distance between 
observed hot spots. 

Range value + type 3 manholes 3 neighborhoods 3 manholes is the 
estimated sensing 
range of a monitor. 
3 neighborhoods 
were the maximum 
distance between 
observed 
overflows. 

Number of nearest 
manholes 

3 1,000 3 manholes are 
within sensing 
range of each 
other. 1,000 
manholes covered 
the approximate 
distance between 
hot spots.  

Number of 
monitors/inspectors 

10 150 Experience in pilot 
program was that 
10 was too few to 
achieve scale of 
operations. Above 
100 produced 
expensive “over 
solutions”. 

 

For each experiment, several factors were held at a constant level as shown in 

table (4-21). 

Table 4-21: Values and rationale for constant factors 
Parameter Value Rationale 

Cost per iteration 300 Published price for 1 month of level monitoring, 
including installation 

Cost per inspection 470 CCTV cost from EPA Report to Congress (US 
EPA 2004a) 

Cool spot shape – alpha 70 
Calibration of 4-parameter Dagum distribution 
to hypothesized RPN 

Cool spot scale – beta 50 
Cool spot shape – kappa 0.2 
Cool spot location – gamma 0 
Known hotspots 0 Base case assumes no prior knowledge of 

hotspots 
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Parameter Value Rationale 
Minimum RPN threshold 50 The bin containing the 90th percentile of RPNs 
Number of hotspots 28 Calibration of hotspots to hypothesized RPN 
Number of permanent 
locations 

50 Author’s experience of a modest monitoring 
program 

Hot spot location - mu 55 
Calibration of 3-parameter General Extreme 
Value distribution to hypothesized RPNs 

Hot spot scale - sigma 1.5 
Hot spot shape - kappa 0.4 
Sensor range 0 Allow the smallest movement possible 

  
4.7.3.3 Response variable 

The response variable in all experiments was the minimum total cost that 

satisfied the single constraint. The simulation updates the total cost at the end of each 

iteration and displays the minimum cost that meets the constraint. 

4.7.3.4 Cost per iteration/ cost per Inspection 

Cost per iteration and cost per inspection were treated as sensitivity factors in the 

experiments because they will differ between sewer system owners. It is conceivable 

that unit cost differences between monitoring and inspection could lead to a change in 

optimizing behaviors. The default value of $300 for cost per iteration was based on 

2018 prices from an industry-known technical services provider of flow monitoring data. 

Municipalities pay a $300 flat rate and receive 30-days of level data in csv format, which 

is suitable for calculating risk occurrence ratings. The service provider provides all 

installation, maintenance, and data collection associated with collecting this data. At the 

same time, the default value of $470 for cost per inspection is based on cost and 

productivity assumptions for closed-circuit television inspection (CCTV). The formula 

used to estimate the cost per inspection was: 

Average cost per linear foot in 2002 * 2002-2018 inflation factor * average feet 
between manholes 
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The average cost per linear foot is based upon a 12-city survey published in the 

2004 EPA Report to Congress (US EPA 2004a). Although the data is quite old, it was 

accepted as the best data available due to its unbiased source and its representation of 

different regions of the country. The variation is pricing between cities is notable, 

ranging from $0.27/foot in Santa Rosa, CA to $1.63/foot in Sacramento less than 100 

miles away. This reflects not only differences in job complexity and local pricing, but 

also the way in which utilities calculate their cost of inspection.  

An estimate of average feet between manholes was required to determine the 

price equivalent to monitoring a pipe segment with a level monitor. A report produced by 

Black & Veatch for The American Society of Civil Engineers (ASCE) and the U.S. EPA 

reported that average manhole spacing is 236 feet (Nelson, Habbian, and Andrews 

2000). This allowed the final calculation of $470 per inspection ($1.99 per foot & 236 

feet). 

4.7.3.5 Cost equivalence of monitoring and inspection 

The technical service provider who supplied the unit cost also provided the 

productivity assumptions which indicated that a single level monitor was capable of 

providing level data for two manholes upstream and downstream of its installed location. 

Therefore, using the average distance of 236 ft between manholes results in a single 

monitor collecting performance data over a length of 944 feet per installation. In 

addition, the installation duration required for the methodology proposed in this research 

is 30 days. 

The same technical service provider was the source for the productivity 

assumption of 1,200 feet per day per inspection team for CCTV. Consequently, over a 
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4-week month, 20 workdays, this team would inspect 24,000 feet at a cost of $1.99 per 

foot, or $47,760. For the same $47,760 spent on inspections in a month, 159 level 

meters could be installed for a month (47,760/300). These meters would collect data 

over an effective distance of 150,100 feet which is more than six times the area 

inspected at the same price using CCTV. 

As seen, this is a strong argument in favor of monitoring as it provides data 

sufficient for risk occurrence rating at a much lower cost per foot than CCTV inspection. 

In addition to this advantage, the monitoring data is continuous over the 30 days unlike 

the CCTV data which is a literal snapshot of the visible physical condition of the pipe. 

4.7.4 Experiment phases and design decisions 

The experiment design specifications are outlined in table (4-22). The BSA was 

divided into separate experiments to compare different neighborhood functions, one 

using a distance in feet to determine neighbors where agent movement was allowed 

(BSA – Dist), the other using the number of neighborhoods away based on defining 

neighborhoods as locations sharing common characteristics believed to influence failure 

probability (BSA – Hood). 

Table 4-22: Results of experiment design 
Algorithm Phase Fact.s Lev.s Res. Fract. Repl

. 
Ctr 

Points 
Axial 

Points 
# of 

Runs 
ESA Screen 11 2 V 1/64 3 3 0 99 
ESA Optimize 2 2 CCD Full 3 15 12 39 
BSA – 
HOOD 

Screen 11 2 IV 1/64 3 3 0 99 

BSA – 
HOOD 

Optimize 4 2 CCD Full 3 21 24 93 

BSA – 
DIST 

Screen 11 2 IV 1/64 3 3 0 99 

BSA – 
DIST 

Optimize 6 2 CCD 1/2 3 30 42 264 

SS Optimize 1 15 Full Full 3 0 0 45 
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Algorithm Phase Fact.s Lev.s Res. Fract. Repl
. 

Ctr 
Points 

Axial 
Points 

# of 
Runs 

Greedy Screen 1 12 Full Full 3 0 0 36 
Greedy Optimize 1 4 Full Full 7 0 0 28 

 
Results of the screening experiments determined the selection of factors for the 

optimization experiments. In several instances, excursion experiments along the path of 

steepest descent were conducted to add resolution to the shape of the solution space. 

4.7.4.1 Number of factors 

4.7.4.1.1 Screening phase 

The purpose of screening was to determine which factors have significant effects 

on the total cost in terms of practical and statistical significance. It was assumed that the 

3-way and higher interactions were not significant and that confounding main effects 

with 3-way interactions was unlikely to be significant. Likewise, the efficiency of 1/64th 

fraction experiment designs was an acceptable risk for allowing some 2-way 

interactions to be confounded. As the experiments were conducted, it was necessary to 

explore 2-way confounding. 

Simulated annealing simulations, both BSA and ESA, contained 11 primary 

factors: the nine RPN-based movement magnitude values, the cooling rate, and the 

number of agents. The Greedy algorithm contained only 1 primary factor, the number of 

agents. The remaining factors in the Greedy algorithm experiments were held at the 

BSA-DIST optimums to allow direct comparison. Sequential search did not have a 

screening phase due to the fact that only one factor was needed in the experiment, 

which was the number of inspectors. 
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4.7.4.1.2 Optimization phase 

The number of factors for optimization experiments depended on the number of 

significant factors identified in the screening phase. For example, in the ESA algorithm, 

only 2 of the 11 primary factors were required to characterize the changes in the 

response variable. 

4.7.4.2 Factor levels and midpoints 

For screening experiments using some form of the simulated annealing algorithm 

a 2k fractional factorial experiment was used. This required two levels of each factor. To 

avoid any issues with varying units used for the factors, coded units of -1, 0, and 1 were 

used in the statistical analysis for the low values, midpoints, and high values 

respectively. Experiments involving the Greedy algorithm and Sequential Search 

involved a single factor therefore it was practical to conduct full-fraction experiments 

with multiple levels. 

Optimization experiments involving the simulated annealing algorithms began 

with Central Composite Design experiments. The motivation for this design was to 

reveal any curvature, which would indicate a possible local optimum. Factor levels and 

midpoints were dependent upon the screening experiment results along with excursion 

experiments along the path of steepest descent. 

4.7.4.2.1 Resolution and fraction 

Screening experiments involving simulated annealing were resolution IV which 

allows the conclusions to be drawn with relatively few experimental runs. The choice for 

resolution IV was made based on the belief that 3-way interactions were insignificant 

and that 2-way interactions, if significant, could be deconvoluted based on knowledge of 
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the search algorithm operations. This choice accepts the risk of confounding main 

effects with 3-way interactions and confounding some 2-way interactions with other 2-

way interactions. The selection of the fraction was driven by the requirement to maintain 

resolution IV along with the desire to conduct no more than 100 simulation runs per 

experiment. 

4.7.4.2.2 Replications 

For each treatment, three replications were performed to examine the effects of 

the stochastic elements in the simulation, which included random initial placement of 

agents, random placement of hot spots, and randomness in the distribution of RPNs 

within hot and cool spots. The value of 3 replications was proven to be sufficient in most 

experiments as shown by tests of statistical significance in the factors. In some cases, 

supplemental replications were added for verification. For example, in the final 

comparison of the simulated annealing algorithms, ten replications were performed. 

4.7.4.2.3 Center points 

All two-level experiments including at least 3 replications of center point runs. 

This allowed curvature in the response surface to be detected. The presence of 

curvature indicated that factor levels may be near a minimum or maximum level. 

Experiments with more than 2 levels contained sufficient data to test for curvature. 

4.7.4.3 Stopping criteria 

The experiments were considered to have met their objectives when the values 

of the factors reached a minimum, maximum, or inflection. For example, if the response 

value achieved its optimum when the number of agents = 1, then no further reduction of 

agents was sensible as a minimum factor level was reached. An example of an 
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inflection is shown in the right pane of figure (4-52). The mean value of the objective 

function was achieved when the number of monitors factor was at its middle level, 2. 

Movement in either direction resulted in the worsening of the objective function. Thus, 

the experiment was concluded. 

 
Figure 4-52: Inflection stopping criteria 

 
4.7.4.4 Sensitivity 

4.7.4.4.1 Cost per iteration 

The purpose of exploring cost per iteration is to establish an economic 

comparison of the best performing metaheuristic search algorithm versus sequential 

search. The output of this experimentation is cost per iteration that would be required to 

achieve the same result as that of continuous monitoring using the optimized simulated 

annealing movement strategy. 

4.7.4.4.2 Hotspot and coolspot parameters 

The simulation contained seven parameters that determine the number of 

hotspots and the distribution of RPN’s within hotspots and cool spots which are 

represented by the variables numHotSpots, alpha, beta, kappa, mu, scaleX, and 
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shapeX. Note the gamma parameter was held at zero to calibrate RPN values >= 0. A 

two-level, 1/8th fractional factorial experiment was designed using the optimal search 

algorithm and fixed values for all other parameters. Three center points were added. 

This required a total of 51 experimental runs. 

4.7.4.4.3 Risk profile parameters 

The risk profile can be characterized by the number of permanent locations 

desired to be found that meet the minimum RPN threshold which are represented by 

two parameters: numPermanentLocations and minRPNthreshold. Low 

minRPNthreshold and high numPermanentLocations indicate a low tolerance for risk. 

On the other hand, high minRPNthreshold and low numPermanentLocations indicate a 

high tolerance for risk. A 2-factor, 4-level, 3-replicate full factorial experiment was 

designed to quantify the change in the cost objective to varying degrees of risk 

threshold. This required 48 simulation runs. 
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OPTIMIZATION & IMPLEMENTATION 
 
 
 

5.1 Optimization of the simulated annealing algorithm parameters  

In order to apply the simulation model developed in the previous chapter and 

obtain results for manhole selections, experimentation was performed on each of the 

three variants of the simulated annealing search algorithm. The first variant utilized a 

neighborhood function which categorized neighbors based solely on their distance, in 

feet, from the agents’ starting location. This variant is labelled “BSA Dist” for “basic 

simulated annealing – distance”. The second variant defined neighbors based on the 

shared characteristics hypothesized to be predictive of failures. Neighbors were 

categorized based on the number of adjacent neighborhoods away from the agent or 

the number of manholes away located on the same pipe. This variant is labelled “BSA 

Hood” for “basic simulated annealing – neighborhood”. The third and last variant utilized 

the knowledge gained in assessing the risk severity. It categorized the neighbors based 

on the closest manholes with a risk severity rating close to that of the starting location. 

This variant is labelled “ESA” for enhanced simulated annealing. The results of this 

battery of experiments will be shown for all three variants at each stage of the 

experimentation process in order to highlight their differences. 

5.1.1 Screening experiments: main effects model 

For the screening phase, resolution IV fractional factorial designs were 

employed. In total, there were 11 factors. The search cost was used as the response 

variable. Factors were considered to be statistically significant if their p-values were less 

than or equal to 0.05, i.e. a 95% confidence level. The following table (5-1) summarizes 
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the significant factors that were employed and the summary statistics for each of the 

three algorithms at the conclusion of the screening phase.  

Table 5-1: Summary statistics for the screening phase algorithms and the significant 
factors employed 
Algorithm Significant 

Parameters 
R-Sq 

statistic 
Lack of Fit 

assessment 
Curvature 

assessment 
Model 

sufficient 
BSA Dist numMonitors 

coolingRate 
rangeValue3 
rangeValue5 
rangeValue6 

39.55% p-value of 0.00 
indicated 
missing factors 
or interactions 

p-value of 
0.597 
indicated 
insignificant 
curvature 

No 

BSA Hood numMonitors 
coolingRate 
rangeValue5 
rangeValue7 

47.56% p-value of 0.00 
indicated 
missing factors 
or interactions 

p-value of 
0.286 
indicated 
insignificant 
curvature 

No 

ESA numMonitors 
numNearMH6 

33.93% p-value of 0.00 
indicated 
missing factors 
or interactions 

p-value of 
0.094 
indicated 
insignificant 
curvature  

No 

 
The 11 factors represent the following: 

1. numMonitors is the number of monitors involved in the search, where 
each monitor is represented by an agent in the simulation. 

2. coolingRate is the simulated annealing parameter that determines the rate 
at which the temperature variable falls, which directly influences the 
probability of accepting moves to inferior solutions. 

3. The three rangeValue parameters for the BSA Dist. algorithm are 
maximum distances, in feet, that agents may move in any iteration. 

4. The two rangeValue parameters for the BSA Hood algorithm are 
maximum number of manholes or neighborhoods that agents may move in 
any iteration. 

5. numNearMH6 for the ESA algorithm is the number of closest locations 
that agents may move to an any iteration. 

5.1.2 Screening experiments – 2-way interactions model 

Because the lack of fit was significant in all of the main effects models, the 

experimental data was fitted with models that included all statistically significant 2-way 

interactions. The results of this fitting are shown in table (5-2). 
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Table 5-2: Results of 2-way interaction models 
Alg. Parameters with 

Significant Effects 
R-Sq Lack of Fit  Curv. Model 

sufficient 
BSA 
Dist 

numMonitors 
coolingRate 
rangeValue2 
rangeValue3 
rangeValue5 
rangeValue6 
numMonitors*coolingRate 
numMonitors*rangeValue1 
numMonitors*rangeValue2 
numMonitors*rangeValue5 
numMonitors*rangeValue6 
coolingRate*rangeValue2 
rangeValue1*rangeValue3 

68.58% Lack of fit 
was 
insignifican
t (p-value 
less than 
0.05) 

p-value 
of 0.487 
indicated 
insignific
ant 
curvature 

Yes 

BSA 
Hood 

numMonitors 
coolingRate 
rangeValue5 
rangeValue7 
coolingRate*rangeValue5 
coolingRate*rangeValue7 
coolingRate*numMonitors 

89.06% Lack of fit 
was 
insignifican
t (p-value 
less than 
0.05) 

Curvatur
e was 
significan
t with p-
value 
0.023 

Yes 

ESA numMonitors 
numNearMH6 
numMonitors*numNearMH
6 

52.48% Lack of fit 
was 
insignifican
t (p-value 
less than 
0.05) 

Curvatur
e was 
significan
t with p-
value 
0.05 

Yes 

 
5.1.3 Screening experiments path of steepest descent 

Using the three 2-way interaction models, the path of steepest descent was 

calculated based on the coefficients of the regression models. Due to the interactions in 

the model, a linear programming application was used to determine the main effects 

settings that will minimize the response variable. The factor with the highest coefficient 

in absolute value was chosen as the variable to be changed manually. The other 

variables were proportionally modified based on the ratio of their coefficients to the 

manually changed factor coefficient (Montgomery 2013). Furthermore, at each step, 
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three replications of the simulation runs were performed, and the resulting costs were 

averaged. This process continued until a local minimum in the response variable was 

discovered. 

In several cases, the step sizes were modified due to the constraints on the 

factor levels. For instance, numMonitors could not be less than 1. Thus, in such cases, 

the values of the factors were estimated by the experimenter. Figure (5-1) below 

summarizes the results of this sequential experimentation by depicting the sequence of 

steps and the response variable for each algorithm. 

. 

 

Figure 5-1: Results of sequential experimentation 
 

As seen from the above figure, each algorithm reached a local minimum at a 

different number of steps from its center point. To compare the models together, the 

factor “numMonitors” was used as it was significant in every model. Consequently, at 

the stopping point of the descent, the numMonitors factors were equal to 1, 12, and 10 
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for BSA Dist, BSA Hood, and ESA, respectively, which are all less than their center 

points.  

5.1.4 Optimization experiments 

Optimization experiments were conducted of the stopping points of the steepest 

descent sequence. These experiments were Central Composite Design experiments 

with high and low factor settings determined by the experimenter’s judgement based on 

experience with the simulation. At the same time, the factors that were ignored as a 

result of the screening experiment’s results, were held at their midpoint values during 

optimization runs. A comparison of the results of the optimization experiments is shown 

in table (5-3).  

Table 5-3: Comparison of the optimization experiments results 
Algorithm Parameters with 

significant effects 
R-sq statistic Assessment 

BSA Dist rangeValue5 
rangeValue6 
numMonitors*numMonitors 
rangeValue6*rangeValue6 
rangeValue1*rangeValue3 

19.65% Poor model i.e. 
needs further 
validation. 

BSA Hood No statistically significant 
effects 

Near 0% Poor model. 
Factors were not 
varied enough to 
induce a 
significant 
response i.e. 
needs further 
validation. 

ESA numMonitors (p=0.071) 
numNearMH6 

28.85% Poor model but 
potentially useful. 

 
5.1.5 Excursions 

The first round of the optimization experiments produced inconclusive results.  

Additional simulation runs were designed and conducted for each of the three simulated 

annealing algorithms. The design of this round of simulations was customized to each 
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algorithm, based on the observations in the filtering experiments and the experiments 

along the path of steepest descent. 

5.1.5.1 BSA-Dist algorithm excursion runs 

It was observed during the steepest ascent simulation runs that the response 

variable was sensitive to the changes in the numMonitors parameter. Based on this 

observation, a new set of simulations was run at the lowest possible value for 

numMonitors while all other factors were held at the levels implied by the optimization 

experiment statistical models. The results of these three simulation runs are shown in 

the third column of table (5-4) while the second column shows the optimal settings from 

the optimization experiment results, a central composite design experiment. 

Table 5-4: Results of the BSA-Dist experiments at center points and minimum values 
Replicate 11 monitors, 0.1 cooling, 15k below RV6, 

500 at and above RV6 as implied by 
CCD 

1 monitor, 0.1 cooling, 15k below 
RV6, 500 at and above RV6 

Run 1 31.8 23.4 
Run 2 39.6 35.1 
Run 3 42.6 18.9 

Average 38.0 25.8 
 
Based on these results, a full factorial DOE was performed at the lowest range of 

the numMonitors parameter, these were settings of numMonitors = 1,2, and 3. The 

objective of this experiment was to verify the sensitivity of the response variable to the 

small movements around the 1-monitor simulation. The main conclusion from the 

results of this excursion was that: a) the fewer the monitors the better, and, b) the 

smaller the movement in the critical bin and above the better, with the exception that 

anything smaller than 500 feet restricted the agent from finding sufficient qualified 

locations.  When this occurred, agents became trapped in suboptimal locations. 

Therefore, 500 feet was set as the minimum movement value. 
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As a final excursion, for the most influential experiment factor, numMonitors, a 

series of simulation runs was conducted by ranging the numMonitors from 1 to 100 in 

steps of 10. These results formed the basis of the final observations of the optimal 

parameters for the BSA-Dist algorithm.  

5.1.5.2 BSA-Hood algorithm excursion runs 

The results of the optimization experiments with the BSA-Hood algorithm showed 

that error dominated the effect from the changes in the experiment factors. The r2 

statistic was 0.00%. There were three possible explanations as to why these factors 

were significant in the screening experiment (r2 = 88%) but not in the optimization 

experiment: 

1. Missing terms in this area of the solution space. This is not likely since 

these terms explained so much variance in the screening experiment. 

2. Insufficient replications to dampen the noise. This is one possible solution 

to the above problem. 

3. The factors were not varied enough to induce a statistically significant 

response. This is likely the root cause of the problem because of the 

variation built into the simulation.  

Based on the above, a multi-level factorial experiment was designed with five 

levels of the significant factors in the screening experiment, numMonitors and 

coolingRate. The range of variation in the factor levels was set to overlap with the 

screening experiment where statistically significant results were observed. The resulting 

model from this experiment produced a r2 statistic of 66%, which was considered 

acceptable. 
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In addition, the results of the multi-level factorial experiment suggested best 

responses when the numMonitors were less than 38. A central composite design 

experiment was conducted in this range and the interaction plot from this experiment is 

shown in figure (5-2). From the interaction plot, it is obvious that there was significant 

curvature and interactions. Therefore, a custom Central Composite Design experiment 

was conducted using the midpoints noted in table (5-4). 

 

Figure 5-2: The interaction plot 
 

A custom experiment design was selected to accommodate limitations 

encountered in the simulation. Due to memory requirements, the simulation could 

accommodate a maximum total manhole movement of around 100. Also, the simulation 

would not terminate with a single monitor and cooling rates above 12. The practical 
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minimum combination was numMonitors = 5 and coolingRate = 12. After examining the 

final results, these limitations in the simulation did not affect the outcome of the 

research. The results from the custom CCD model were statistically significant, with an 

r2 statistic of 77%. This model was the basis for determining optimal parameter settings 

for the BSA-Hood algorithm. 

5.1.5.3 ESA algorithm excursion runs 

The optimization experiment for the ESA algorithm yielded an r2 statistic of 

28.85%, which was judged insufficient but potentially valuable in guiding the next round 

of experimentation. The contour plots from the optimization experiment indicated a local 

minimum within an interaction of the numNearMH6 parameter and the numMonitors 

parameter as shown in figure (5-3). 
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Figure 5-3: Contour plots at optimum 

 
Next, an experiment was designed within the range of the optimum contour. The 

results showed only noise which suggests that the factors were not varied sufficiently in 

this range to produce a statistically significant response. This led to a judgement that 

the ranges were sufficiently precise to estimate optimal parameters and no further 

excursion experiments were performed. 

At this stage, all experimental runs with the ESA algorithm were combined and 

graphically analyzed. An interesting observation was discovered showing the 

relationship between numMonitors, the number of iterations required to meet the 

objective function constraints, and the cost response variable. This insight is the basis 

of several conclusions discussed elsewhere in this chapter, and the understanding of 
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tradeoffs between cost and other objectives that may be valued by sewer system 

operators. 

5.1.6 Optimum parameter settings 

A summary of factor levels that produced the minimum cost is shown in table (5-

5). The values in grey font were not significant. They were held at the shown midpoint 

values during the optimization experiments. 

Table 5-5: Factor levels producing minimum cost 
Parameter BSA-Hood BSA-Dist ESA 

numMonitors 5 1 100 
coolingRate 10 0.1 10 

rangeValue1-4 1 hood 15,000 500 
rangeValue5 50 MH 15,000 500 
rangeValue6 1 hood 500 500 
rangeValue7 2 hoods 500 500 

rangeValue8+ 1 hood 500 500 
numNearMH6   130 

 
As seen from the above table, the two base simulated annealing algorithms 

produced better results at levels of numMonitors less than or equal to 5. In comparison 

the enhanced simulated annealing algorithm performed better at a much higher level of 

100 numMonitors. The reason behind such difference is that the ESA algorithm uses 

severity rating information to confine the initial placement of monitors to a subset of 

locations that are more likely to have high RPN values, while the BSA algorithms 

randomly distribute the initial placement across the entire sewer network. This 

difference produced a significantly different strategy in how the ESA searched for a 

solution in contrast to the two BSA algorithms. On the other hand, the differences in 

numMonitor settings between the two BSA algorithms was not practically significant to 

the cost response. The reason for the difference in optimal parameter settings is related 

to the fact that the BSA-Dist algorithm is less restrictive for movement while BSA-Hood 
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enforced network connectivity and geographic neighborhood restrictions. Hence, agents 

more often exhausted the candidate locations to move to and ceased to search further. 

The coolingRate parameter produced smaller effects on the response variable 

than did numMonitors. For the ESA algorithm, the coolingRate was not statistically 

significant while for the BSA algorithms it served two functions. The first function was to 

allow the movement to worse solutions in order to escape local minimums. The second 

function was to terminate the simulation when the temperature variable became less 

than 1. Therefore, for the BSA-Dist algorithm, the coolingRate converged to a very low 

setting to allow each monitor enough iterations to find 50 manholes with an RPN greater 

than or equal to 50. For the BSA-Hood algorithm, the coolingRate did not need to go as 

low due to the optimal results occurring with numMonitors = 5. 

The rangeValue and numNear parameters controlled the magnitude of the 

movement allowed by the agents as a function of their current location’s RPN. These 

differences in the settings highlight two general observations. First, the sensitive bins for 

the movement were those around the threshold value of RPN. Although this was a 

statistically significant factor in the BSA-Dist and ESA algorithms, the BSA-Hood 

algorithm operated differently as the sensitive parameters were the bins immediately 

before and after rangeValue6. The second observation is that smaller movement at bins 

equal to and above the threshold bin produced better results due to the clustering of 

risk. Once an agent discovered a high-risk location, its best movement strategy was to 

search nearby manholes for the next move. 
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5.1.7 Performance comparison 

The interval plot in figure (5-4) depicts the mean cost and 95% confidence 

intervals for the mean for each of the three simulated annealing algorithms. 

 
Figure 5-4: Interval plot of cost 

 
The interval plot was produced by 10 replications of each algorithm at its optimal 

settings. There are no overlapping confidence intervals for the 10 replicates of each 

algorithm which indicates statistically different mean cost responses. The BSA-Dist 

algorithm produced the lowest cost, while the ESA algorithm was slightly higher than the 

upper limit of the BSA-Dist confidence interval, by less than $800. However, a major 

difference between these two algorithms is that the that the results from the BSA-Dist 

were more variable than ESA. The reason behind this difference is that for the former 

algorithm, there are low number of monitors, 1, which makes many iterations across a 

space that varies in each simulation run. In contrast, the ESA algorithm exhibited the 
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ability to meet the objective function constraints with the initial placement of agents. This 

yielded some desirable properties in addition to reaching a cost response that was 

second best of those found in these experiments. 

The BSA-Hood algorithm produced significantly worse results than the other two 

algorithms. It was observed that the BSA-Hood algorithm was less stable in terms of 

terminating before either finding a solution or running out of memory in the simulation, 

albeit no statistics were kept on these problems. 

5.1.8 Insights gained in optimization experiments 

The intensive experimentation with the simulated annealing algorithms revealed 

several potentially important insights into the optimal sensor placement. These insights 

are as follows. 

5.1.8.1 There are significant trade-offs to achieving the lowest average cost 

5.1.8.1.1 There is a trade-off between lowest mean cost and variability of cost 

As seen from figure (5-4), there is a trade-off between the cost variability and the 

lowest average cost. From this figure, it is evident that the BSA-Dist had the lowest 

average cost with a mean cost of $25,400. Yet, this low mean cost was accompanied 

with a standard deviation of $5,300 and a coefficient of variation of 21%. On the 

contrary, the ESA algorithm produced a higher mean cost of $30,000, yet with zero 

standard deviation. 

5.1.8.1.2 There is a trade-off between lowest mean cost and search duration 

As shown in figure (5-5), there was a significant difference in the duration of the 

search depending on the employed algorithm. The lowest cost algorithm, BSA-Dist, 

yielded the longest duration with a mean of nearly 85 months and a standard deviation 
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of 17.6 months. In comparison, the ESA algorithm met the objective function constraints 

in 1 month with zero standard deviation. This is a significant difference that warranted 

further exploration as outlined below. 

 
Figure 5-5: Interval plot of duration 

 
As explained previously, fewer meters are more efficient in terms of cost but take 

more time due to “the resolution problem” which is the phenomenon of overshooting the 

objective function constraint. To demonstrate the impact of this phenomenon in the 

context of this research, scatterplots of cost and duration were drawn as presented in 

figure (5-6) for the BSA-Dist algorithm. 
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Figure 5-6: Scatterplot of cost & duration for the BSA-Dist algorithm 

 
In order to accurately draw this plot, a new response variable, calcIterations, was 

created to store the number of iterations (months) required for a simulation to meet the 

objective function constraint. A number of patterns are visible. First, as the number of 

monitors increases, the calcIterations decrease as expected. Second, the average cost 

follows a pattern of increase with increasing numMonitors until a critical value is 

reached that enough monitors are employed to insure consistently finding a sufficient 

number of locations to meet the constraint on a particular number of iterations. A clear 

example of this pattern is shown in the case of the BSA-Dist algorithm in figure (5-6). As 

seen from the figure, at 200 numMonitors on the x-axis, the cost is sometimes equal to 

$60,000 and in other simulation runs reaches $120,000. These are the different costs to 

conduct either one or two iterations of monitoring. As the number of the monitors is 

increased, it can be seen that the cost increases for both the one and two iterations, 

which is expected. This trend continues until the numMonitors reach 300. At this level, 
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all of the simulation runs achieve the objective function in a single iteration. Thus, the 

average cost decreases because no 2-iteration runs exist to raise that average. 

Moreover, this is also considered the point of minimum iterations as adding monitors 

beyond this point will only add cost. 

 In the case of numMonitors equal to “1”, the algorithm will stop when the 

constraint is met exactly. For example, the BSA-Dist algorithm with one agent always 

stopped exactly when the 50th location meeting the RPN criteria was located. The last 

iteration that discovered the 50th location would have a cost of only $300 * 1 = $300. 

However, in the scenario where numMonitors is equal to 100, the extra iteration that 

contained the 50th location costs $300 * 100 = $30,000. Yet, in treatments with a high 

number of monitors, extra locations above the required number of 50 were common 

because the “resolution” of the simulation runs was in 100-agent, $30,000 units. 

In addition, a similar pattern is observed in the scatterplot of cost and duration for 

the ESA algorithm as shown in figure (5-7). 

 
Figure 5-7: Scatterplot of cost & duration for the ESA algorithm 
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In this figure, the ESA reaches the point of 1-iteration solutions at the level where 

the numMonitors is equal to 100, which is one-third the number of iterations required by 

the BSA-Dist algorithm. This advantage in duration was achieved as a result of the ESA 

algorithm’s limitation of the search space in the initial placement of monitors, while the 

BSA-Dist algorithm selects initial locations from among the entire system. For the BSA-

Dist algorithm, as the number of monitors increases, the probability of selecting an initial 

location with an RPN equal to or greater than the threshold RPN converges on the 

probability of those locations existing in the entire population of locations. Since the 

ESA algorithm prioritizes initial locations based on severity ratings, the proportion of 

locations with RPNs meeting the threshold RPN becomes significantly higher in 

locations with high severity ratings. Therefore, the probability of initially placing a 

monitor in a high RPN location is much higher in the ESA algorithm. 

5.1.8.2 Improvements can be made through enhancements to the simulated annealing 

algorithm 

The discovery of desirable outcomes in terms of variation and duration led to an 

analysis of the three algorithms performance over multiple objectives. Table (5-6) 

presents a ranking of the three algorithms at various levels of numMonitors based on 

cost (labelled “avgAdjCost”), coefficient of variation for cost (labelled “COVadjCost”), 

and duration in months (labelled “avgCalcIterations”). From this table, it can be 

concluded that the ESA algorithm with 100 monitors achieved the best outcomes for 

variation and duration and the 2nd best outcome for cost. Moreover, the BSA-Dist 

algorithm achieved the best ranked outcome for cost, but the 26th ranked variation and 
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the 31st ranked duration. The last column is a logical check for dominated solutions, 

which shows that there are only two treatments that are non-dominated.  

Table 5-6: Ranking of the three algorithms at various levels of numMonitors 

 

 
Based on the above, the substantial improvement in the variability and duration 

with the ESA algorithm with a 1-iteration solution is very likely worth the increase in cost 

except in the case where duration is of almost zero weight to the decision maker. 

Algo numMonitors avgAdjCost COVadjCost avgCalcIterations costRank covRank iterRank rankSum Nondominated

ESA 100 30.0 0.00 1.00 2 1 1 4 TRUE

ESA 60 36.0 0.00 2.00 3 1 10 14 FALSE

ESA 70 42.0 0.00 2.00 7 1 10 18 FALSE

ESA 40 36.0 0.00 3.00 3 1 16 20 FALSE

ESA 80 48.0 0.00 2.00 14 1 10 25 FALSE

BSAD 300 90.0 0.00 1.00 24 1 1 26 FALSE

BSAD 90 54.0 0.00 2.00 17 1 10 28 FALSE

ESA 50 45.0 0.00 3.00 11 1 16 28 FALSE

BSAD 310 93.0 0.00 1.00 28 1 1 30 FALSE

BSAD 350 105.0 0.00 1.00 31 1 1 33 FALSE

BSAD 150 90.0 0.00 2.00 24 1 10 35 FALSE

BSAD 30 45.0 0.00 5.00 11 1 25 37 FALSE

BSAD 70 63.0 0.00 3.00 21 1 16 38 FALSE

BSAD 100 90.0 0.00 3.00 24 1 16 41 FALSE

ESA 90 45.0 0.35 1.67 11 27 8 46 FALSE

ESA 30 42.0 0.12 4.67 7 17 23 47 FALSE

BSAD 20 41.8 0.01 7.00 6 16 26 48 FALSE

BSAD 50 59.9 0.00 4.00 19 15 22 56 FALSE

BSAD 1 25.9 0.31 86.33 1 26 31 58 TRUE

BSAD 40 56.0 0.12 4.67 18 17 23 58 FALSE

ESA 20 44.0 0.21 7.33 10 22 27 59 FALSE

BSAD 60 60.0 0.17 3.33 20 20 20 60 FALSE

BSAD 225 90.0 0.43 1.33 24 31 5 60 FALSE

BSAD 125 87.5 0.25 2.33 23 23 15 61 FALSE

BSAD 80 80.0 0.17 3.33 22 20 20 62 FALSE

BSAD 250 100.0 0.43 1.33 29 29 5 63 FALSE

ESA 10 49.0 0.13 16.33 16 19 29 64 FALSE

BSAD 10 37.4 0.46 12.33 5 32 28 65 FALSE

BSAD 200 100.0 0.35 1.67 29 28 8 65 FALSE

ESA 1 42.1 0.25 140.33 9 24 32 65 FALSE

BSAD 280 112.0 0.43 1.33 32 29 5 66 FALSE

ESA 5 48.5 0.31 32.33 15 25 30 70 FALSE
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Another benefit of the ESA algorithm with a single-iteration solution is its simplicity. In 

this case there are no movements of agents. This removes any affect from coolingRate, 

rangeValue, or numNearest parameters. The only parameter of consequence is the 

numMonitors. 

To validate this conclusion, additional analysis was conducted in the region of 

numMonitors between 1 and 100 to confirm the ESA algorithm’s performance. The 

interval plot in figure (5-8) visualizes the relationship between cost, numMonitors, and 

number of iterations. The numeric labels on the plot represent the number of iterations 

in months. From this plot, as the numMonitors increases, the variation decreases to a 

point around a consistent duration. Afterwards, the variation will start increasing again 

as the number of monitors begin to reach for a lower number of iterations. Hence, the 

ultimate solution is the one that requires a minimum numMonitors to reach a solution 

with a single iteration. This was achieved at a cost of $30,000 and 100 numMonitors. 
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Figure 5-8: Interval plot for the ESA algorithm depicting the relationship between 

cost, numMonitors, and number of iterations 
 

5.1.8.3 There are diminishing returns of successive iterations 

It was observed that diminishing returns occurred at micro and macro levels. On 

the micro level, there are diminishing returns in successive iterations within a simulation 

run. This observation was evident when the run-time output of the simulation was 

depicted in figure (5-9) for the example case of 5 agents in the ESA algorithm. This 

graph plots the cumulative number of locations discovered that meet the threshold RPN 

requirements, which is represented by the gold line. The red line represents the 

threshold RPN. Hence, when the red line becomes a vertical line, this means that the 

minimum number of qualified locations has been located. As seen from the figure, the 

number of risky locations discovered initially increases on a steep slope then it starts to 

10090807060504030201051

90

80

70

60

50

40

30

20

10

0

numMonitors

Co
st

 $
00

0

30111

22

1

222
222

222

333

333

55

4
7

9

6
14

18
17

2627

44

109

134

178

95% CI for the Mean
Interval Plot of Cost with ESA Algorithm



206 

flatten. This can be attributed to the fact that the logic of the search algorithm limits the 

search area to a potential hot spot when risky locations are found. Although this figure 

demonstrates this pattern for the ESA algorithm, a similar pattern of diminishing returns 

was observed in all simulated annealing algorithms.  

 
Figure 5-9: Run-time output of the simulation 

 
On the macro level, a second diminishing return was observed in the relationship 

between duration and the number of monitors. Figure (5-10) represents a regression fit 

of the relationship between duration and numMonitors for the BSA-Dist algorithm. The 

Morgan-Mercer-Flodin model provides a good fit to characterize this relationship with a 

coefficient of determination, r2, for the BSA-Dist and ESA models fit of 0.93 and 0.95, 

respectively. As observed from the figure, the model shows a rapid improvement for 

each additional monitor added when numMonitors is small, with diminishing returns 

after an inflection point. 
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Figure 5-10: Fit of the relationship between duration and numMonitors for the BSA-Dist 
algorithm 

 
In addition, figure (5-11) depicts the relationship between the duration and the 

numMonitors for the ESA algorithm. While the shapes of the curves are very similar, the 

x-axis scale is substantially smaller in the case of the ESA algorithm due to the reasons 

discussed above. 
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Figure 5-11: Fit of the relationship between duration and numMonitors for the 
ESA algorithm 

 
5.2 Optimization of sequential search parameters  

The objective for iincorporating a sequential search algorithm into the simulation 

is to compare its performance to that of the enhanced simulated annealing 

metaheuristic. Sequential search models are a common industry practice for conducting 

closed circuit television inspection of pipelines beginning at the upper branches of the 

collection system network and working sequentially towards the termination of the 

network, usually at wastewater treatment plants. 

The simulation was developed with four parameters for the sequential search 

(SS) algorithm. Each parameter combination was replicated three times in order to 

measure the performance across variable locations of hot spots and various starting 
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locations. Finally, for each simulation run, the cost, number of inspections, and duration 

were recorded.  

The first of these parameters is the number of permanent locations 

(numPermenantLocations). This parameter represents the number of locations being 

searched for in excess of the minimum RPN threshold. In these simulation runs this 

parameter was kept constant at a value of 50 in order to provide a direct comparison to 

the ESA results. Similarly, the second parameter, the RPN threshold 

(minRPNThreshold), was also kept constant at a value of 50. Regarding the third 

parameter, the number of inspectors (numInspectors), this parameter was varied in the 

simulation from 1, 10, 20…,100 to explore the effect of the number of inspectors on the 

cost. A total of 45 simulation runs were used to assess the sequential search 

algorithm’s performance.  

The fourth parameter is the cost per inspection (costPerIteration) which is 

equivalent to the cost per monitoring location in the ESA algorithm. In order to 

determine the value for this parameter, two inputs were considered; the average 

inspection cost and the inspection productivity as a function of time. For the first input, 

data for closed Circuit Television (CCTV) inspection was available from two sources to 

arrive at an estimated unit cost for inspection. Table (5-7) is reproduced from the 2004 

U.S. EPA Report to Congress (US EPA 2004a). Costs per foot of inspection exhibited a 

wide range, from $0.27 to $3.24. The average cost per foot of $1.44 in 2002 was used 

in this analysis. However, before using this average cost, an adjustment was made to 

convert this amount to the current 2018 dollars. Based on the U.S. Bureau of Labor 

Statistics inflation calculator, the average cost per foot for the inspection was calculated 
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to be $1.99 in 2018 dollars. In addition, a second conversion was required to convert 

the cost per linear foot into an equivalent cost per manhole. A study published by the 

engineering firm Black and Veatch in 2000 concluded that there were 22.3 manholes 

per mile of sewer pipe, or an average of 236 feet of pipe per manhole (Nelson, Habbian, 

and Andrews 2000). This is consistent with the GIS database provided for this research 

where a reported 3,036,000 feet of pipe contained 14,446 manholes, or an average of 

210 feet of pipe per manhole. Consequently, the higher number of 236 feet was used in 

this analysis. Therefore, by using the cost estimate of $1.99/linear foot and 236 linear 

feet/manhole produces an equivalent manhole cost of $470/manhole. This value was 

used for cost per inspection. 

Table (5-7): CCTV cost per linear foot including labor and equipment costs 
Location CCTV Cost ($) 
Los Angeles, CA 0.57 
Sacramento, CA 1.63 
Santa Rosa, CA 0.27 
Honolulu, HI 3.24 
Boston, MA 1.89-2.70 
Laurel, MD 1.72 
Albuquerque, NM 1.56 
Charleston, SC 0.39 
Fort Worth, TX 0.48 
Fairfax County, VA 0.81 
Norfolk, VA 1.62 
Virginia Beach, VA 1.56-1.73 
Average 1.44 

 
Inspection productivity was estimated in order to assess the duration to meet the 

objective function. CCTV inspection data was provided by a CCTV contractor derived 

from decades of history across multiple cities. Their productivity assumption was that a 

single crew can inspect 1,200 feet of pipe per workday on average. Thus, given the 



211 

assumption of 236 feet between manholes, this would equate to a crew inspecting 5.1 

manholes per day. 

5.2.1 Cost response  

As shown from the linear regression fit in figure (5-12), there was no relationship 

found between cost and the number of inspectors.  

 

Figure 5-12: Fit of the relationship between cost and number of inspectors 
 

From the regression analysis, the variation in the number of inspectors explained 

only 2% of the variation in cost as indicated by the r2 statistic. The red dotted lines in the 

above figure depict the 95% confidence intervals for the regression line, shown in black, 

while the blue dotted line is the average cost for all runs of $214,775. A horizontal line 

can be contained within the confidence interval boundaries, which is an indication of the 

lack of correlation with the number of inspectors. The 95% confidence interval for the 

mean cost was $194k - $236k. The cost analysis indicated that cost was driven simply 
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by the number of locations that must be inspected to find 50 manholes with an RPN 

meeting the threshold conditions. The 95% confidence interval resulted in between 412 

and 502 inspections were required on average to meet these conditions. The cost 

variability resulted from how close the agents were initially placed to hot spots based on 

the randomness designed in the simulation. 

5.2.2 Duration trade-off  

The conclusion that the cost was dependent solely upon the number of 

inspections performed plus a variance term, inferred that the duration of the search 

could be shortened by simply employing more inspectors. However, as the number of 

inspectors increased, the improvements in duration due to extra inspectors was lost in 

the variance component. After 70 inspectors there was no statistical difference in the 

duration of the search. These results are presented in table (5-8). 

Table (5-8): Inspection duration trade-off 
numInspectors Duration LL Duration UL Bin 

100 0.6 1.3 1 
90 0.8 1.2 1 
80 0.9 1.6 1 
70 0.9 1.2 1 
60 1.3 1.6 2 
50 1.0 1.9 1 
40 1.9 2.4 3 
30 3.0 4.4 4 
20 3.6 5.0 4 
10 5.9 11.5 5 
1 43.8 189.5 6 

 
5.2.3 Variability trade-off  

An analysis of the variability of the cost as a function of the number of inspectors 

showed there is no statistical difference as evident by the overlapping interval bars in 

figure (5-13). The high p-values shown for the Bartlett’s Test and Levene’s Test are 
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further evidence of the equality of variances at different levels of numInspectors. The 

null hypothesis is that the population variances under consideration are equal, and the 

alternative hypothesis is that not all variances are equal. The high p-values lead to a 

rejection of the null hypothesis. 

 
Figure 5-13: Test for equal variances of the relationship between cost and 

number of inspectors 
 

5.2.4 Comparison to the ESA algorithm  

Using the cost and productivity assumptions described above, the ESA algorithm 

met the objective function at a significantly less cost, $30k for ESA, versus $215k for 

SS. This suggests that significant cost savings could be achieved by replacing CCTV 

inspections with level monitoring. Based upon the conclusion that on average 457 pipe 

segments would be required to meet the constraints of the simulation conditions, 

inspection cost would have to decrease from the assumed value of $1.99/foot to 
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$0.28/foot in order to achieve cost parity with the ESA approach. This conclusion would 

also require the bold assumption that a point-in-time CCTV inspection would be as 

effective in estimating risk occurrence ratings as 30 days of continuous level monitoring.  

In terms of duration, the simulation concluded that between four and five 

inspection crews could meet the objective in one month, which was the time required by 

the ESA approach. The only advantage offered by the sequential search approach was 

that the addition of more inspectors will enable the completion of the work in less than 

one month, which was the minimum duration using ESA. This, however, was not proven 

by the simulation because the duration savings were sufficiently small to be lost in the 

noise of the simulation randomness. 

5.3 Optimization of greedy search parameters  

The purpose of incorporating a greedy search algorithm into the simulation was 

to judge the benefits of the optima-escaping features of simulated annealing, namely its 

probabilistic allowance of movement to inferior solutions. To achieve this objective, a 

series of simulation experiment runs were conducted using a greedy search algorithm. 

Initially, three replications of each treatment were run in order to calculate a mean cost 

and duration. Yet, to better understand the variation of the results, ten replications were 

run in the parameter settings that yielded the best outcomes. 

The greedy algorithm employed operates with nearly identical logic to the base 

simulated annealing algorithm with the distance neighborhood function (BSA-Dist), 

except that the coolingRate parameter is not used and the simulation is terminated after 

120 iterations. This number of iterations was assumed to be a sufficient because it 

represents 10 years of searching, which is much longer than a collection systems 
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operator would be willing to wait based on the researcher’s experience. Therefore, due 

to the similarity between the greedy algorithm and the BSA-Dist algorithm, all 

parameters, except for the numMonitors parameter, were held at the optimal levels 

discovered in the BSA-Dist experimentation described earlier. Figure (5-14) shows the 

screen shot of the simulation parameters for one of the three simulation runs with 

numMonitors = 1. 

 
Figure 5-14: Screen shot of the greedy algorithm simulation parameters 

 
5.3.1 Cost response  

When conducting the simulation runs, those conducted at numMonitors =1 and 

numMonitors = 10 did not satisfy the objective function constraints before the 120-

iteration limit was reached. Therefore, no results were available. These runs were 

removed from the experiment. The most likely cause of this result is that the greedy 
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algorithm prevents movement to inferior solutions. Agents were likely trapped in 

locations of local optima that did not meet the minimum RPN threshold objective. 

Figure (5-15) shows the interval plot of the cost response across the various 

levels of numMonitors. As seen from the figure, on average, fewer monitors produced a 

lower cost which is consistent with the BSA-Dist results. In addition, since the fewest 

number of monitors that would complete a simulation was numMonitors = 15, that level 

was accepted as the optimum setting. Also evident in the greedy algorithm was the 

phenomenon of the cost increasing as the number of monitors increases, until a point is 

reached that a sufficient number of monitors are employed to consistently reduce the 

number of iterations. For example, at the point of numMonitors = 220 the cost “resets” 

because the solution is found consistently in one iteration starting at that point. 

 

Figure 5-15: Interval plot of the cost for the greedy algorithm 
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5.3.2 Duration and variability trade-off  

As seen from figure (5-16), there is a clear trade-off between the average cost 

and average duration in the greedy algorithm. In general, spending more money will 

decrease the duration of the search, which is consistent with the simulated annealing 

algorithms. A good compromise appears at the point where the average cost is equal to 

$66,000 and the average duration is one month. At this point, the level of monitors is 

220, which was the lowest number of monitors that consistently achieved a 1-iteration 

solution. At the same time, the optimum solution which employs 15 monitors produces a 

lowest average cost of $45,000, but a longest average duration of just over 10 months. 

Further analysis was also performed to compare the variability of the cost in 

relation to the number of monitors employed. From this analysis, and similar to the 

simulated annealing algorithms, the use of more monitors reduce variability after a 

certain point. These results are not discussed in this research study as they were not 

considered essential to the research objectives. 
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Figure 5-16: Regression fit of the relationship between cost and duration 
 

5.3.3 Comparison of the greedy algorithm with other algorithms  

The greedy algorithm was compared to the BSA-Dist algorithm using one monitor 

and also to the ESA algorithm using 100 monitors. Additionally, it was compared to a 

special run using the BSA-Dist algorithm with numMonitors = 15. This last configuration 

was used as a comparison “twin” to the greedy algorithm since it was the simulated 

annealing algorithm that matched the parameter settings of the best performing greedy 

algorithm configuration. Figure (5-17) displays the comparison in terms of cost. It is 

apparent that the performance at the optimal settings of the BSA-Dist and ESA 

algorithms are still significantly better in terms of mean cost than the greedy algorithm at 

the 95% confidence level. The BSA-Dist with 15 monitors produced a lower cost on 

130120110100908070605040

10

8

6

4

2

0

Average Cost $000

A
ve

ra
ge

 D
ur

at
io

n 
(M

on
th

s)

S 1.27394
R-Sq 79.2%
R-Sq(adj) 76.0%

Fitted Line Plot of Cost-Duration Relationship
avgDuration =  28.18 - 0.5706 avgCost

+ 0.002923 avgCost**2



219 

average, yet the difference was not statistically significant at the 95% confidence level. 

However, the difference would have been significant at the 90% confidence level. 

 

Figure 5-17: Comparison of the different algorithms by cost 
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Figure 5-18: Comparison of the different algorithms by duration 
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5.4.1 Sensitivity analysis for the distribution of failure 

5.4.1.1 Simulation parameters involved in the RPN Distribution 

The simulation was developed to accommodate changes in the number of 

hotspots, the hotspot parameters represented by the General Extreme Value 

distribution, and the coolspot parameters represented by the 4-parameter Dagum 

distribution, as shown in table (5-9).  

Table (5-9): Hotspots and Coolspots parameters 
Hotspot Parameters Coolspot Parameters 

Shape Shape parameter (κ) 
Scale Shape parameter (α) 

Location (μ) Scale parameter (β) 
 Location parameter (γ) 

 
5.4.1.2 Assessing the sensitivity to RPN distribution 

5.4.1.2.1 Experiment design 

The purpose of the experiment was to determine which, if any, of the RPN 

distribution parameters affected the cost and duration of meeting the objective function 

and its constraints. The experiment design was a 7-factor, 1/8 fraction, 2-level DOE with 

a resolution IV. Table (5-10) presents each of the parameters used in the experiment 

and their respective low and high settings for the experiment runs, as well as a brief 

explanation for the reasoning used behind the choice of the different settings. Since 

there is no data available, these settings were based on the researcher’s judgement on 

values that might be observed in actual sewer systems. 

Table 5-10: The parameters used in the experiment 
Parameter Low High Reasoning 

numHotSpots 19 57 Between 10% and 30% hotspots 
Κ 0.1 3 Skewness of coolspots from left to right 
Α 50 90 Kurtosis for coolspots from flat to sharp 
β 40 60 Variable top end of coolspot RPN 
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Parameter Low High Reasoning 
Γ   Held at zero to keep bottom end of 

coolspots at RPN of zero 
ShapeX 0.1 0.8 Variable hotspot Kurtosis from flat to sharp 
ScaleX 1 5 Range top end RPN in hotspots from 60 to 

90 
Μ 50 60 Set observed bimodality from non-

observed to observed 
 
There were 16 unique combinations of parameters in this experiment and each 

was replicated three times to account for the starting point variability present in the 

simulation experiment. All other simulation parameters were held at the optimal settings 

determined for the ESA algorithm. 

5.4.1.2.2 Results 

From this experiment, it was found that all seven factors had significant main 

effects on cost, as well as significant two-way interactions of the main effects. The main 

effects and the two-way interactions explained 97% of the variation in cost. In addition, 

based on the results, the most influential parameter was the coolspot scale parameter 

(β) as it accounted for 47% of the sequential sum-of-squares for main effects and was 

involved in 51% of sum-of-squares of the two-way interactions. For all experiment runs 

where beta was greater than or equal to 50, the resulting cost was at its minimum 

possible value of $30,000. In order to maintain optimal cost at low beta values, a high 

number of hotspots and a high coolspot shape parameter (κ) were required. Otherwise 

the results were highly variable. 

In conclusion, the shape, scale, and location of coolspots and hotspots 

significantly affected the cost of the search for optimal locations. Each real application of 

this search will encounter different risk distribution. The implication of this conclusion is 

that in order to meet the objective function of minimizing cost across the full spectrum of 
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real-world situations, a method is needed to estimate the distribution of RPNs so that 

the ESA search parameters, namely numMonitors, can be estimated. 

5.4.1.3 Methods to estimate the distribution of RPNs in sewer systems 

5.4.1.3.1 Attempts to estimate RPN distribution using 2 normal distributions 

An expectation algorithm (EM) was studied to fit two normal distributions to the 

RPN data in which the lower distribution would characterize the coolspots and the 

higher distribution would characterize the hotspots. These normal distributions would be 

approximated by fits of a General Extreme Value distribution and Dagum distribution in 

the simulation. In this way, sample data could be approximately accurately in the 

simulation. However, the results of this methodology were inconsistent. For example, in 

one experiment run the cost using the optimization experiment parameters was 

consistently $60,000 compared to $90,000 using the EM estimated parameters. 

In addition, it was apparent that gathering enough data to apply EM could 

become more expensive than the search for high RPN locations. In repeated trial and 

error, it appeared that about 200 locations would need to be sampled in order to get a 

reasonable approximation of the coolspot and hotspot parameters. Therefore, this 

approach was abandoned as being impractical. 

5.4.1.3.2 Estimation of numMonitors based on proportion of high RPN manholes in 

small samples 

As illustrated earlier in this chapter, the ESA algorithm produced the best results 

on single-iteration solutions. Those were the cases where the smallest number of 

monitors were located in areas with highest severity ratings such that the minimum 

number of qualified manholes were discovered in the initial placement. Based on this 
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knowledge, an approach was designed that is based on estimating the proportion of 

high RPN manholes in the locations with the highest severity rankings. 

The first step in this procedure was to determine the optimal setting of the 

numMonitors parameter for each of the 16 combinations of RPN distribution settings 

established by the DOE. For each of these combinations, the approach required 

multiple iterations of the simulation, with incremental changes in the numMonitors 

parameter, until a minimum inflection in cost was observed. Note that this approach is 

similar to the path of steepest descent procedure.  

When a minimum was discovered, the detailed logs of the simulation were saved 

in a database for further analysis. From the database of simulation logs it was possible 

to calculate the proportion of manholes with an RPN above the minimum RPN threshold 

in the highest severity ratings. The category of “highest severity ratings” was the highest 

severity rating at which there were at least enough manholes to meet the objective 

function constraint. For example, if the objective is to find 50 manholes with RPN 

greater than or equal to 50, then the search would begin with the highest possible 

severity score of 10. If there were more than 50 manholes with RPN greater than or 

equal to 50, then only manholes with a severity rating of 10 would be considered in the 

proportion. If there were not enough manholes found, then manholes with a severity 

rating of 9 would be considered. Similarly, the severity rating would continue to 

decrease until at least 50 manholes were in the population. In only one case did the 

population needed to be expanded to severity ratings of 9. Through trial and error, good 

results were consistently found when the population was 10 times the number of 

locations being sought. 
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It was hypothesized that the optimal number of monitors needed in the ESA 

search was correlated to this proportion of high RPN manholes in locations with high 

severity rating. The independent variable labelled “Proportion of Locations with High 

Severity Ratings meeting RPN Criteria” in figure (5-20), is the ratio of the locations with 

an RPN greater than or equal to 50 which also had severity ratings equal to 10, divided 

by the total count of locations in the entire system that had severity ratings equal to 10. 

There was one exception, run #1, where the severity ratings had to be dropped to 9 or 

greater to have at least 50 monitors in the denominator of the ratio. The dependent 

variable, shown on the Y-axis of figure (5-19), is the value of the numMonitors 

parameter in the ESA algorithm that produced the lowest average cost in three 

replications of the simulation at each treatment. 

 

Figure 5-19: Estimation of the proportion of high RPN manholes 
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A logistic regression model provided a very good fit to the data with a coefficient 

of determination (r2) statistic of 0.998. From this model, the optimal numMonitor 

settings, y, could be predicted by equation (5-1). 

y = 9.66 / (1 + -1.00 * e(-0.195x))   (5-1) 

5.4.1.3.3 Estimation of the proportion of locations with high severity ratings meeting 

RPN criteria 

In the previous section, the proportion of locations with high severity ratings 

meeting the RPN criteria was based on the knowledge of RPN numbers for all locations 

in the collection system. However, in practice, these numbers cannot be known without 

monitoring every location, which is cost prohibitive. Therefore, an analysis was 

undertaken to determine how well this proportion could be estimated using the data 

gathered in a relatively small and rapid monitoring phase, termed the “sampling phase”. 

 In this sampling phase, the number of monitors deployed should not exceed the 

number of permanent locations being searched for, due to the possibility that every 

monitor in the sample be placed in a location that met the RPN criteria. In such a case, 

the search objectives would be met in this sampling phase without any excessive 

monitoring. If an insufficient number of locations met the RPN criteria in the sampling 

phase, then the data would be used to estimate the additional number of monitors to be 

deployed in the search phase based on equation (5-1). For the purposes of validation, 

the number of monitors deployed in the sampling phase was 50. 

Based on the chosen sample size, the population proportion, and the population 

size, confidence intervals were constructed for the proportion of locations with severity 

ratings meeting RPN criteria for each treatment as shown in table (5-11). The 
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confidence intervals were constructed at an 80% confidence level based on the 

conclusion that it was acceptable to have two out of 10 sample proportions that did not 

contain the population proportion. It was also noted that the confidence intervals were 

wide in some instances and could be narrowed by increasing the sample size. Note that 

2 additional runs were added to the experiment. Run #0 was added using the optimal 

parameters settings found for the ESA search algorithm. Run #17 was added using the 

center points for the designed experiment. 

Table 5-11: Confidence intervals for the proportion of locations with severity ratings 
meeting RPN criteria for each treatment 

 

5.4.1.3.4 Motivation for a multi-phase search technique 

The term “multi-phase search” is used here to describe the methodology with an 

initial sample phase followed by one or more iterations of the ESA algorithm. The 

number of monitors employed in each iteration is determined by the estimated 

proportions of all prior phases using formula (5-1). 

Run Confidence Sample size Pop Prop Pop Size Prop LL Prop UL

0 80% 50             56% 141            48.70% 63.21%

1 80% 50             6% 377            2.29% 10.58%

2 80% 50             79% 553            72.34% 86.34%

3 80% 50             18% 168            11.90% 23.54%

4 80% 50             92% 556            87.76% 96.96%

5 80% 50             27% 77              22.40% 32.02%

6 80% 50             100% 1,772         100.00% 100.00%

7 80% 50             38% 105            31.38% 44.16%

8 80% 50             100% 1,633         99.25% 100.50%

9 80% 50             94% 447            90.08% 98.13%

10 80% 50             28% 330            20.88% 35.97%

11 80% 50             79% 602            72.28% 86.35%

12 80% 50             17% 143            11.49% 22.51%

13 80% 50             95% 709            91.07% 98.76%

14 80% 50             76% 489            68.58% 83.28%

15 80% 50             100% 1,541         98.66% 100.69%

16 80% 50             38% 104            31.72% 44.47%

17 80% 50             100% 1,907         100.00% 100.00%
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Three replications of the multi-phase search were conducted for each of the 17 

experiment treatments plus run #0, for a total of 18 combinations of hotspot and 

coolspot parameters which produced 56 results. From these results, the following 

observations were deduced: 

1. The number of iterations varied depending on the relative scarcity of the 

locations being sought. In 12 of the 56 results (22%), the required number of 

locations was found in the sampling phase. These were environments where 

nearly 100% of the high severity locations met the RPN criteria. In seven 

results (13%) the search phase consisted of two additional iterations, for a 

total of three iterations to meet the objective function constraints. These 

occurred in treatments where the high RPN proportion was low, between 6% 

and 38% of the population. In no cases were more than 3 total iterations 

required. 

2. In optimal results under the experiment conditions, exactly 50 locations 

meeting the RPN criteria were found, as finding more than 50 indicated 

excessive monitoring and associated excessive cost. Figure (5-20) depicts 

the number of locations found by each run number in the experiment. As seen 

from the figure, in 20 of the runs, 37%, exactly 50 locations were found. In 

87% of the runs, less than 60 locations were found meeting the RPN criteria. 

In one extreme case, 138 locations were found when seeking only 50. The 

latter occurred in a case where there was a significant sampling error in the 

proportion of locations with high severity ratings meeting RPN criteria. 
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Figure 5-20: Number of locations found by each run number in the experiment 
 

In addition, an important unforeseen benefit of the multi-phase search is that it 

produced lower average cost compared to the ESA algorithm. The results of a linear 

regression between the two algorithms in shown in figure (5-21). The lower cost is a 

benefit from re-estimating the number of monitors needed in successive iterations 

based on knowledge gained concerning the distribution of RPNs. More precisely, 

estimating the number of monitors reduces the instances of deploying more monitors 

than necessary, resulting in needless cost. 
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Figure 5-21: Linear regression between the multi-phase search and the ESA 
algorithm 

 
The formula for estimating the cost of the multi-phase search is shown in 

equation (5-2) 

y = 6388 + 0.8210x     (5-2) 

where x is the ESA average cost and y is the multi-phase average cost 

Using the default unit cost assumption of $300/monitor/month, the regression 

equation predicts that the multi-phase algorithm will produce lower estimated cost when 

26 or more monitor-months are required in the search. Monitor-months are the product 

of the number of monitors and the number of iterations. 

The outlier shown in figure (5-21) is run #3, which experienced a replicate that 

contained a significant sampling error by chance. This is evident from the fact that the 

regression equation would predict a cost of $80,278 for run #3, while the costs of the 
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three replicates were $83,400, $106,800, and $243,300, respectively. A probable 

explanation is that the probability density function for run #3 is unusual, as shown in 

figure (5-22). From this figure, it is evident that there is a concentration of locations with 

RPNs between 34 and 40, none of which meet the minimum RPN requirements of the 

experiment. In addition, the hotspot locations are spread across a large scale, as 

indicated by the long right tail in the distribution. 

 

Figure 5-22: The probability density function for run #3 
 

5.4.1.4 Conclusion 

In conclusion, as evident from the sensitivity analysis conducted above, the 

search results are highly sensitive to the differences in the distribution of RPNs. This 

conclusion resulted in a modification to the search algorithm recommended by this 

research to incorporate multi-phase search in advance of ESA search. 
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5.4.2 Sensitivity Analysis for the number of locations and risk threshold 

There are two parameters designed into the simulation to reflect the risk 

preferences of the decision maker - “numPermanentLocations” and 

“minRPNThreshold”. The first of these parameters is the number of locations that the 

decision-makers determine that can be actively managed according to their risk 

tolerance and resource constraints. The second parameter is the level of risk that 

establishes the risk threshold. Since both of these parameters greatly depend on the 

decision-makers preferences, experiments were conducted with the simulation to 

assess the sensitivity of the ESA algorithm to such concerns. 

5.4.2.1 Experiment design 

To understand the sensitivity of the search algorithm to these parameters, a 

multi-level DOE was undertaken with the two parameters as factors. To improve the 

resolution of the response, four levels were selected for each factor as shown in table 

(5-12). Three replicates were run for each of the 16 treatments, for a total of 48 

simulation runs. 

Table 5-12: The selected levels for each factor 
Factor Level 

1 
Level 

2 
Level 

3 
Level 

4 
Reasoning 

numPermanentLocations 50 200 350 500 Lowest & highest levels 
programmed in the 
simulation - 300 is 
$1m/year monitoring 
program 

minRPNThreshold 30 40 60 70 Vary by 10 to get into 
different bins. 50 is 
already evaluated in the 
optimization runs  

 
The enhanced simulated annealing (ESA) algorithm was utilized for these 

simulation runs based on its demonstrated effectiveness in finding solutions at a low 
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cost and low monitoring duration. The parameters that were not involved in the 

experiment were held at the levels found optimal during the optimization experiments. In 

addition, supplemental runs were undertaken to gauge the sensitivity to the changes in 

the parameters that were found to be significant in screening experiments with the ESA 

algorithm. These were the number of agents (“numMonitors”) and the maximum number 

of nearest manholes an agent could move to in one iteration (“numNearestManholes”). 

5.4.2.2 Results 

The initial results of the multi-factor experiment showed that only the 

minRPNThreshold parameter was statistically significant for the average cost of the 

search. The numPermanentLocations parameter had a p-value of 0.22, which was 

deemed insignificant at 95% confidence. The r2 statistic for the linear model was 0.72. 

These results raised questions that prompted further exploration which indicated that a 

2nd order polynomial is a better mathematical relationship of the minRPNThreshold to 

the cost response with an improved r2 of 0.72 to 0.91, as shown in figure (5-23). 
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Figure 5-23: The 2nd order polynomial for the relationship between the 
minRPNThreshold to the cost response 

 
The plot in figure (5-23) illustrates the nature of the cost response. When the 

minRPNThreshold is set at low levels, the cost is insensitive to changes in the threshold 

due to the abundance of locations with RPN values above the threshold. There is an 

inflection point between the threshold values of 45 and 50 where the number of 

locations above the threshold diminish rapidly. When the threshold is set at these higher 

RPN values, the cost to find a solution increases as a power function due to the need to 

monitor many more locations in order to find a sufficient number of locations that meet 

the criteria. 

Further exploration of the residuals of the fit above led to the discovery that 

outliers at the highest minRPNThreshold of 60 were concealing a linear relationship of 

the residuals to the numPermanentLocations parameter as is shown in figure (5-24).  
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Figure 5-24: Residuals of the fit 
 

To overcome this problem, the outliers were removed, and a new regression 

analysis was conducted for the lower threshold values, as shown in figure (5-25). This 

was performed with the understanding that there exists a minRPNThreshold value 

which, once exceeded, would relegate the effect of numPermanentLocations to noise. It 

is also noted that at very high settings for numPermanentLocations, a solution was not 

found before the simulation termination conditions were met. There were no solutions 

when the minRPNThreshold was at 60 and numPermanentLocations was 200 and 

higher. Similarly, when the minRPNThreshold was set at 70, no solution was found due 

to the lack of manholes in the population that had RPN values above the threshold.  
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Figure 5-25: The fitted line plot for the lower threshold values 
 

By combining the fit of response values and that of the residuals, the following 

prediction equation is formulated: 

Estimated search cost = 1110.67 – 64.92(minRPNThreshold) + 
0.9417(minRPNThreshold)2 + 0.3067(numPermanentLocations)  (5-3) 
 
As shown in figure (5-26), adding the numPermanentLocations term improved 

the r2 statistic from 0.91 to 0.99 which held true for all values of minRPNThreshold 

below 60. 
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Figure 5-26: Scatterplot of estimated and sampled costs 
 

5.4.2.3 Optimal numNearestManholes parameter settings under varying 

minRPNThreshold values 

As the minRPNThreshold values changed, it might also be beneficial to increase 

or decrease the agent movement restrictions which are controlled by the vector of 

numNearestManholes parameters. There are nine values in the vector corresponding to 

RPN ranges 1-10, 10-20…etc. Experiments in finding the optimal parameter settings for 

the ESA algorithm suggested that only the setting in the “critical bin”, defined as the 

value of the numNearestManholes parameter that contains the minRPNThreshold 

value, produced a statistically significant effect. Therefore, a 10-factor 2-level 

experiment with three replicates was designed to gain insight into this question. This is 

shown in table (5-13). 
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Table 5-13: The 10-factor levels used in the experiment 
Factor Low High Reasoning 

minRPNThreshold 30 60 Range covered by the simulations 
in the experiments 

numNearestManholes 1 130 500 This range produced response in 
ESA optimization experiments numNearestManholes 2 130 500 

numNearestManholes 3 130 500 
numNearestManholes 4 130 500 
numNearestManholes 5 130 500 
numNearestManholes 6 130 500 
numNearestManholes 7 130 500 
numNearestManholes 8 130 500 
numNearestManholes 9 130 500 

 
The numPermanentLocations parameter was held at a value of 50 because it 

had shown to give a range of outcomes, while the numMonitors parameter was held at 

40 after preliminary simulation runs demonstrated that it produced several multi-

iterations runs. It was suspected that some features of the metaheuristic search were 

more evident in multi-iteration runs than those that reached a solution on the initial 

placement of monitors. It was also known that the multi-phase approach commonly 

required three iterations. In addition, the coolingRate parameter was held at a value of 5 

which was lower than in the ESA optimization experiments because the lower 

temperature allowed the simulation to perform more iterations before hitting its stopping 

criteria. A large number of iterations were needed to find a solution when the 

minRPNThreshold values were high. 

Similar to previous experiments, the results showed a strong linear relationship 

between minRPNThreshold values and the cost response. The effect of the critical bin 

values was statistically significant but much smaller in practical significance. This is also 

true of the interaction between the two factors. None of the other numNearestManholes 

factors was statistically significant. Figure (5-27) shows the results of this experiment. 
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Figure 5-27: Results of the optimal numNearestManholes parameter settings 
 

Based on the above experiment, additional observations were evident. First, it 

was observed that when minRPNThreshold values were at 45 or below, the solution 

was always found in two iterations. When this occurred the numNearestManholes 

setting was irrelevant. This was later found to be exactly as expected given the 

proportion of locations with RPN values above 45. Second, when the number of 

iterations was high, as in the case when minRPNThreshold was greater than or equal to 

60, the numNearestManholes value appeared more influential. Lower values of 

numNearestManholes produced better results in those situations. This can be explained 

by the fact that there were many more agent movements involved in the solution. An 

example of this relationship is shown in interval plot in figure (5-28), where two levels of 

the minRPNThreshold are shown with varying numNearestManholes6 values. From this 

figure, at the threshold value of 55 there is little difference in cost. In contrast, at the 
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threshold value of 60, the costs are significantly higher, and the variation is higher 

between numNearestManholes6 settings. 

 

Figure 5-28: Example of the influence of the values of numNearestManholes 
 

Another valuable observation is the performance of the ESA algorithm in the 

presence of changing RPN threshold values. At higher thresholds, the number of 

iterations required to find a solution increases due to the scarcity of locations that 

exceed the threshold. Comparing the number of iterations it took in experiments to find 

a solution versus the expected number of iterations based on the proportion of 

manholes meeting the threshold condition is a measure of the efficiency of the ESA 

algorithm. This proportion is further stratified by the severity ratings because the ESA 

algorithm begins with the highest severity ratings and progressively reduces them until a 

solution is reached. This comparison is presented in table (5-14) and figure (5-29). Note 



241 

that in the case of RPN thresholds of 55 and 60, the severity rating in the search 

population was reduced from 10 to 9 so that the search population contained enough 

manholes to reach the objective of 50 locations discovered with 40 agents. 

Table 5-14: Experimental versus expected number of iterations 
minRPNThreshold Number of 

qualifying 
locations in the 
pop./count in 

the population 

Proportion 
of 

qualifying 
locations in 

the 
population 

Expected 
number of 
iterations 
based on 

proportion 
of 

qualifying 
manholes 

in the 
population 

Average 
number of 
iterations 

required by 
the ESA 

algorithm in 
experiments 

30 250/252 99% 2 2 
45 190/252 75% 2 2 
49 156/252 62% 3 3 
50 141/252 56% 3 3 
55 596/6557* 9% 14 10 
60 150/6557* 2% 55 47 

*Population includes all locations with severity code of 9 and 10 

 

Figure 5-29: Experimental versus expected number of iterations 
 

60555045403530

60

50

40

30

20

10

0

minRPNThreshold

It
er

at
io

ns

ESA Algorithm
Random Sample

Basis of Estimate

Scatterplot of Iterations vs RPN Threshold



242 

As seen from the figure, with higher iterations the ESA algorithm is more efficient 

than random search. It is evident from the above table that the proportion of qualifying 

manholes in the population decreases dramatically between threshold values of 50 and 

55, and this is where the inflection in cost occurs. This observation is a further support 

for the multi-phase approach where the number of iterations is expected to be three or 

less. In that situation, knowledge of the actual distribution of clusters is not a significant 

deterrent to the cost of finding a solution. 

The results of this testing were inconclusive for determining the optimal setting of 

the numNearestManholes setting at the critical bin. In general, smaller values of 

numNearestManholes in the critical bin produced lower averaged cost. However, at very 

small movements, there is a possibility of a single failure event being registered by 

several of the closest manholes in the area if they are on the same line. Therefore, the 

values of 1 and 10 were rejected. A value of 25 for numNearestManholes at the critical 

bin was considered a good compromise, keeping in mind that when applying the multi-

phase search technique, the number of iterations is likely to be three or less and 

therefore the numNearestManholes setting would be inconsequential. 

5.4.3 Sensitivity analysis for the number of known hotspots 

In this section, experiments were undertaken to assess the impact of estimating 

the number of known hotspots in lowering the cost of achieving the search objective. 

5.4.3.1 Experiment design 

A two-factor, four-level DOE was created for the purpose of determining if the 

number of known hotspots affected the cost of the search. The parameter 

“knownHotspots” was used in the simulation to allow the user to enter an integer 
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between zero and the numMonitors parameter value. When a non-zero number is 

entered, the initial placement of that number of monitors is a random manhole within the 

boundaries of randomly chosen hotspots. For this experiment, the ESA algorithm was 

utilized with the parameters that were found to be optimal in the optimization 

experiments described earlier. During the experiment, the two factors that were varied 

were the knownHotspots parameter and the numMonitors parameters. The 

numMonitors parameter was varied because it was found to have the highest impact on 

the cost outcome in the optimization experiments and it was suspected that there would 

be 2-way interactions between these two factors. The levels chosen for the factors are 

shown in table (5-15). The experiment was full factorial with three replicates of each 

treatment that resulted in a total of 48 simulation runs. 

Table 5-15: The selected levels for each factor 
Factor Level 

1 
Level 

2 
Level 

3 
Level 

4 
Reasoning 

numMonitors 85 90 95 100 These were in the range of 
the observed monitors with 
varying knownHotspots 

knownHotspots 0 9 18 28 Full range from zero to 
100% 

 
5.4.3.2 Results 

The regression results indicated that higher numbers of knownHotspots did result 

in lower costs, while the numMonitors parameter was not statistically significant in the 

linear model. The scatterplot below, figure (5-30), provides some visibility into a non-

linear response. As observed from the figure, when the constraints of the objective 

function were met in a single iteration, there is a clear linear response, as indicated by 

the black dots. There is also a linear response when two iterations are required, as 

indicated by the red dots.  



244 

 

Figure 5-30: Scatterplot of the numMonitors parameter 
 

Further exploration revealed that the number of iterations was a function of 

knownHotspot and numMonitor levels as shown in figure (5-31). Note that the “UC” 

designation in the axis titles indicates uncoded values of the factors. 
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Figure 5-31: Scatterplot of the knownHotspots parameter 

 
From these two figures, it can be concluded that as the number of 

knownHotspots increases, the number of iterations, and, consequently, the cost of the 

search, will decrease. 

5.4.3.3 Application of the number of known hotspots in the multi-phase approach 

In order to assess how to apply the knowledge of known hotspots and what is the 

expected benefit, further analysis was conducted in a sample of differing RPN 

distribution scenarios. Because the full range of RPN distributions that might be 

encountered is not known, the purpose of this analysis was only to determine if there 

could be a benefit to utilizing knowledge of known hotspots and whether it might be of 

sufficient benefit to warrant the additional expenses of analyzing historical records and 

interviewing system operators to estimate the location of hotspots. 
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From the experiments of varying RPN distributions, three experimental runs were 

selected. Run #15 which produced a consistent 1-iteration solution, run #11 which 

produced a consistent 2-iteration solution, and run #10 which produced a consistent 3-

iteration solution. For each of these three runs, three replications were performed. To 

conduct this analysis, a modification was made to the simulation to tag all locations 

either in a labelled hotspot or in no hotspot. The log files of each run were then 

consolidated into a single database. Next, the proportion of locations above the 

threshold value of 50 were compared between the population of all monitors and the 

population of only monitors within hotspots. Because the ESA algorithm begins its 

search with severity codes of 10 and moves to successively lower severities, the data 

was stratified based on severity code. 

The results of this analysis are shown in figure (5-32) from which three 

observations were made: 

1. When the proportion of qualifying manholes is close to 1, there is no 

difference in the outcome between seeding agents within hotspots or not. 

This is intuitive as one would expect nearly every monitor to be assigned 

initially to a location with an RPN which exceeds that threshold. 

2. When the candidate manhole population were the ones with a severity 

code of 10, it is preferable to assign at least some agents to the known 

hotspots. In the case of run #10, the hotspot locations had a significantly 

higher proportion of qualifying manholes than the total manhole population 

with severity equal to 10. In run #15, the difference was not statistically 

significant. 
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3. When the candidate manhole population were the ones with a severity 

code of 9 or greater, the results vary. This is believed to be dependent on 

the distribution of high RPN manholes within hotspots. The RPN 

distribution of run #15 is expected to be unusual as, in that run, the 

location parameter of the hotspots is less than that of coolspots. On the 

other hand, run #10 is expected to be more typical as it produced the 

expected result of a benefit to placing agents within known hot spots. 

Figure (5-32) provides information on the magnitude of the cost savings through 

utilizing the known hotspots. As seen, the difference can be potentially worth the 

expense of gathering additional data as long as the proportion of qualifying manholes is 

not close to 1. 

 

Figure 5-32: Results of the application of the number of known hotspots in the 
multi-phase approach 
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These results raise questions for the implementation of the multi-phase 

approach. The first is whether all monitors should be placed within the hotspots to gain 

their potential benefit of a higher proportion of qualifying manholes. The risk of this 

approach is that it assumes true knowledge of hotspots based on observations, usually 

pipe failures that caused surface flooding, which can be misleading and lead to the 

placement of monitors in areas that are not truly hotspots. Moreover, this approach 

ignores the possibility of unknown hotspots that could be discovered in the course of the 

search. In addition, a second risk of placing all monitors within the known hotspots is 

that multiple monitors will detect the same failure mechanism. For example, a blockage 

within a pipeline can cause elevated water level measurements for many manholes 

upstream. If multiple monitors are placed along such a pipeline, several may assign 

occurrence codes based on elevated d/D levels caused by the same blockage. This will 

incur the opportunity cost of not placing the redundant monitors in new locations where 

independent risks are present. 

Based on the above, a compromise solution is recommended until more research 

results are available. It is recommended that a single monitor be placed initially within 

each known hotspot as long as it complies with the severity code criteria of the ESA 

algorithm. Furthermore, other available monitors should be placed randomly within the 

system based on severity codes. Although this approach may not take full advantage of 

the density of high-risk manholes within hotspots, it hedges against the possibility of 

unknown hotspots and multiple monitors detecting a single failure mechanism. 
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CONCLUSIONS AND FUTURE RESEARCH 
 
 
 

6.1 Conclusions  

This research developed a framework for managing the risk of failures in sewers 

due to maintenance issues. In the course of the research, a number of advances and 

developments in the state-of-the-art in research and practice were achieved. These 

include: 1) Establishment of an encompassing risk management framework for the 

threat of inadequate capacity in complex infrastructure networks, 2) Validation that a 

strategy of iterative sensor movements can efficiently assess risks of failures in 

wastewater collection systems, 3) Development of a method of estimating pipe failure 

probabilities with limited water level data, 4) Development of a method of directing the 

allocation and movement of sensors within the sewage network using a metaheuristic 

search algorithm in multiple phases, 5) Development of a tool to aid in designing and 

testing risk management strategies for infrastructure networks through agent-based 

simulation, and 6) Identification of well-defined future research opportunities.  

6.1.1 Establishment of a risk management framework 

In this research a risk management framework was developed through the 

adoption of FMEA with adaptations as described in section 4.1.3. This framework is 

graphically depicted in figure (6-1). 
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Figure 6-1: Risk Management Framework 
 
A major limitation of previous FMEA applications was the lack of a method for 

scoring occurrence risk. This research presents a solution to this problem using roving 

level monitors and a novel analytical process. FMEA was shown to be a valuable 

construct for integrating the elements of the standard risk model into a practical decision 

support tool. Eliminating the detectability element of the Risk Priority Number scheme 

reduced the required inputs to severity scores and occurrence scores. Moreover, a risk 

priority number, combining risk consequences and risk probability, produced a single 

measure for ranking the risk associated with locations and the associated establishment 

of a single value for a threshold. The risk priority number concept allowed the enhanced 

simulation annealing algorithm to take advantage of the knowledge of severity ratings 

for the entire search space. In addition, the risk management framework proposed in 

this research integrates well with GIS, allowing the use of mapping tools in the risk 

determination process. As a result, this process addresses the seven key elements of 

risk management as prescribed by the INCOSE Systems Engineering handbook: First, 
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a framework is started by analyzing the risk severity. Second, the analysis of risk 

likelihood is then accomplished by the iterative movement of sensors guided by the 

ESA, a metaheuristic search algorithm inspired by simulated annealing. Third, RPN is 

used to address three of the INCOSE elements by quantifying the risk in a methodical 

way, allowing for the prioritization of risks by classifying then as either acceptable or 

unacceptable, and comparing the discovered RPN values with the decision makers 

RPN threshold. The proposed framework also provides a plan of action for 

unacceptable risk. When a risk reducing action is taken, the framework provides a way 

to assess its impact and determine if it is sufficient improvement to make the risk 

acceptable. If it is, the framework prescribes the next steps of efficiently searching for 

another location with unacceptable risk. Finally, the framework uses measurements and 

statistics to help manage risks.  

6.1.2 Validation of iterative sensor movements in assessing risk 

Another major contribution of this research study is its ability to assess the risk in 

wastewater collection systems efficiently. This research concluded that the use of level 

monitors was an effective method to detect pipes at risk of failure before those failures 

occur. The argument is made that dynamic measures of pipe capacity, such as level 

data over time, are preferable to a static visual inspection from methods like CCTV 

inspection. The novelty of this research relative to continuous monitoring is two-fold: 

The first is that there is value in placing monitors in locations outside of known hotspots. 

The search algorithms proposed in this research demonstrated that monitors can find 

high risk locations which were previously unknown. Discovering these locations prior to 

observed failures will allow system operators to perform preventative maintenance. The 
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second novelty is the value of sensor movement. No prior research has proposed 

combining search algorithms with continuous monitoring devices. Yet, as demonstrated 

in this study, moving sensors in accordance with ESA search rules can find a specified 

number of unacceptably risky locations at 1/7th of the cost of sequential search. This 

benefit is multiplied when comparing the amount of information provided in 30 days of 

monitoring to an instantaneous visual inspection. For example, 30 days of monitoring 

using a 5-minute sample rate produces 8,640 measurements of pipe capacity. 

6.1.3 Development of a method to estimate pipe failure probabilities 

The third contribution is estimating the pipe failure probability with limited data. 

Prior research and practice have not addressed the question of a single metric of risk 

probability in terms of free hydraulic capacity. However, the methodology proposed in 

this research was able to estimate failures with 80% accuracy using only 30 days of 

monitor data. Moreover, this research study provided insight into the critical importance 

to the number of sensor measurements showing water levels at the 0.7 d/D bin. The 

period of 30 days is valuable in that it is a sufficiently short period to be economical and 

to allow reasonable monitoring durations to converge on a solution. By using the 

process shown in this study, the desired number of high-risk locations was discovered 

in no more than three months of monitoring. 

6.1.4 Demonstration of the value of metaheuristic search 

With regards to the fourth contribution, this research argues that metaheuristic 

search is an appropriate methodology for approaching problems with this structure. The 

unknowns surrounding the shape of the search space combined with the cost of 

acquiring this knowledge motivated the need for trajectory method solutions. In addition, 
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metaheuristic search, in contrast to statistical modeling, requires no knowledge of cause 

and effect, nor correlations to failures. It was only sufficient to establish that failures 

cluster and that the search technique employed could take advantage of spatial 

autocorrelation. To reach this conclusion, a considerable amount of the research time 

was devoted to the study the various search algorithms with various parameters. The 

search was guided by an objective function which recognizes that a satisficing goal of 

finding a pre-determined number of locations at a lowest cost is more practical than an 

objective function focused on the absolute minimization of risk. Experiments showed 

that the absolute lowest cost can be achieved by utilizing a single monitor guided by a 

simulated annealing algorithm using distances as the neighborhood function. This was 

aided by a low cooling rate parameter, which allowed an extensive freedom of 

movement in early iterations, with a small neighborhood movement function once high-

risk locations were found. These settings best exploited the characteristics of failure 

clustering by restricting movements to small areas once a hotspot was discovered.  

6.1.5 The introduction of multiple phases of search with varying agents 

A multi-phase search technique prioritized by location severity ratings and 

inspired by the ESA algorithm was the most robust search technique of those 

examined. It yielded the best results in terms of cost and search duration across a wide 

range of risk distributions. A few important discoveries led to this conclusion: 

1. Single-iteration solutions provided the fastest possible solutions and were 

relatively economical.  

2. The single-iteration solutions with the lowest costs were those that used a 

minimum number of monitors that consistently met the objective function 
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in a single 30-day monitoring period. Subsequent experimentation showed 

that this number of monitors was highly dependent on the unknown 

distribution of risk in the system and the RPN threshold selected. 

3. Due to this dependency, simulation demonstrated that a first stage 

sampling of the search space could provide valuable input to estimate the 

number of monitors that could provide a single-iteration solution. 

4. Experimentation with the ESA algorithm showed the value of limiting the 

search space by the severity ratings and progressively expanding the 

search space to lower severity ratings as the search progressed. 

5. Combining a first stage sampling with a search space restricted on 

severity ratings produced a search algorithm that was successful in coping 

with a range of possible risk distribution scenarios. 

The results of the comparisons showed that this multi-phase search technique 

produced a lower cost than the optimized ESA algorithm whenever 26 monitor months 

or more of data were required to meet the objective function. In medium to large sewer 

systems it is almost a certainty that this much data would be prescribed. An unexpected 

advantage of the recommended search technique is its simplicity. It was found that it is 

difficult to explain the concepts behind simulated annealing to wastewater system 

operators in a way that was instinctively appealing. The concept of sampling within the 

areas of highest failure consequence has been more appealing to those unfamiliar with 

this topic. 
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6.1.6 Development of an agent-based simulation tool 

It was shown through this research that agent-based simulation is an effective 

tool for designing and testing risk management strategies for infrastructure networks. A 

realistic simulated environment was required to enable this research. Agent-based 

simulation was shown to be well adapted to the problem structure, with dynamic agents 

representing monitor devices and static agents representing the search space of 

potential monitoring locations. No prior research was found that employed simulation to 

model risk propagation in complex infrastructure networks. In the case of sewers, 

hydraulic models are often used to model drainage networks. However, hydraulic 

models lack features to address a variety of risk environments and the inclusion of 

various search techniques to discover potential failures. 

Simulation calibration was an important step in providing validation of the 

simulated environment. The use of the Moran’s i, normalized to manhole density, as a 

statistic for spatial autocorrelation, along with a heuristic to estimate the number of 

hotspot locations, allowed the calibration of the simulation to the available data. 

6.2 Well-defined future research opportunities 

Another noteworthy result of this study is the discovery of a few well-defined 

specific opportunities for future research. In this way, it is hoped that the insights 

discovered in this research will serve as a launching point for further improvement of 

methods of managing the risk of failure in complex linear assets. These opportunities 

will be discussed in the following sub-sections. 
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6.2.1 Definition of failure 

A fundamental question addressed in this study is the definition of “failure”. 

Interviews with sewer system managers did not produce a consensus definition. The 

definition used in this research is convenient from a systems engineering viewpoint 

since it relates to the design requirements of wastewater collection systems. However, it 

is recognized that pipes often lose conveyance capacity without any consequences of 

the “failure”. The significance of this distinction is that some stakeholders may find 

limited value in a process that identifies surcharged pipes if they are concerned only 

with the risk of visible overflows, public complaints, or regulatory enforcement actions. 

As a result, there are future research opportunities in this area that can be directed 

towards understanding the full spectrum of the definition of failure and adapting risk 

management activities to accommodate the different definitions of failure.  

6.2.2 Computation of severity scores 

This research proposed a convenient method for quantifying the consequences 

of failure on a 1-10 scale using aerial imagery. Future research may consider the 

varying consequences of failures based upon their magnitude. A surcharge leading to 

overflows of a few gallons has significantly less consequence than an overflow in the 

same location of thousands of gallons. Thus, future research that considers pipe sizes 

and flow rates in the severity score rubric would help develop further understanding of 

the potential worst-case scenarios. This research could be furthered by incorporating 

hydraulic models that estimate affected land and water bodies under a range of 

overflow scenarios. Future research that presents the consequences of failure in the 

form of a distribution of potential impacts at each location or class of locations would be 
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beneficial to decision makers. Considering the migration of contaminated water once it 

reaches the surface would lead to a better understanding of consequences, particularly 

when the consequences are far away from the point of failure. 

6.2.3 Computation of occurrence scores 

Occurrence scores in this research were based on 30 days of level monitoring 

data. This was somewhat arbitrary and motivated by selecting a duration that would be 

considered short, and thus affordable. Future research might explore the question of an 

optimal monitoring period that balances cost with prediction accuracy. Future studies 

can utilize velocity sensors, available in modern flow monitors, to improve forecast 

accuracy through analysis techniques such as scatterplots of depth and velocity 

relationships (Enfinger and Stevens 2006). Future research might also explore 

estimating failure probabilities in non-circular pipes. Other shapes should be examined 

with the expectations that the general methodology will apply but the equations for 

calculating occurrence ratings will be different. 

6.2.4 Alternative search objectives 

The objective function selected for this research prioritizes low cost over finding 

the absolute highest risks by setting classifying risk levels as either acceptable or not 

acceptable. This choice accepts that locations of global highest risk will not be actively 

managed because lower risks, which were discovered sooner, will receive attention. 

Presumably, systems operators could prioritize management actions in order of RPN 

within the unacceptable risk category. In the course of the research, search duration 

became a consideration. Future research that formulates the problem as a multi-
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objective optimization problem could be of value in aligning the competing objectives to 

match the risk preference of the decision makers.  

Three aims in this research are location of a minimum number of unacceptable 

risks, minimization of cost, and minimizing the trade-off of cost and search duration. 

Minimizing variability was considered in this research but not included as a goal for the 

solutions. However, the simulation constructed for this research could provide a useful 

platform for evaluating these approaches since the elements of time, risk, duration, and 

some inherent variability are available in the simulation output. 

An intriguing possibility for a next step is to augment the process proposed in this 

research with a very limited number of a different type of agent who perpetually search 

for locations of higher risk, guided by the ESA algorithm. The use of a single agent was 

shown to be very efficient in discovering risky locations. This approach could justify the 

extra expense of a set of continuously searching agents by finding locations of higher 

risk than those that meet the criteria of unacceptable risk. 

6.2.5 Added realism to simulations 

The baseline simulation in this research assumes a theoretical distribution of risk 

occurrence ratings, calibrated to overflow data. Prior research into mathematical models 

for forecasting blockages casts doubt on theoretical distributions based on inferential 

statistics as it supports the variation of explanatory variables from system to system. 

More data, in addition to overflow data, would lead to a better understanding of 

incidents of pipe surcharge. This research attempted to mitigate the effect of these 

assumptions through calibration to available data and by a sensitivity analysis involving 

a range of possible risk distributions. Additional effort can confirm how well the various 
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conditions represented the state of actual sewer systems. Future research that 

examines the impact of these conditions and/or accommodates the variation of 

explanatory variables might improve the accuracy of the model predictions and the 

validity of the simulation model vis-à-vis the real world. 

6.2.6 Data from continuous monitoring 

An important benefit of continuous monitoring with movement iterations is that it 

will make available much more data on the state of collection systems than is currently 

available. The advent of the internet-of-things (IoT) is making analytical tools 

increasingly available. The scarcity of data on the hydraulic performance of drainage 

systems inhibits the application of these tools to managing one of the most critical 

infrastructure systems in developed countries. Yet, analysis of big datasets should 

provide a much better understanding of the mean time between potential failure and 

functional failure for common failure modes of sewers, in addition to the possibility of 

forecasting the progression of potential failures for the purpose of determining optimal 

intervention times. Furthermore, it might also inform the decision of when to install 

continuous monitors. Potential failures that develop very slowly might be ignored in the 

early period of formation, deferring monitoring until potential failure is more imment. 

Therefore, further research into the development of mathematical prediction 

models for failure, aided by continuous monitoring data, would be beneficial. Prior 

research indicates that predictor variables and coefficients vary for each specific sewer 

system and that it is a slow and difficult process to develop the models due to the 

condition of the available data. To overcome this problem, continuous monitoring data 

can be geocoded and cross-referenced to GIS systems which will facilitate future model 



260 

development, including the ability to customize each model to the system where it will 

be used. Further research can foster greater understanding of the information contained 

in depth-to-diameter ogives. The data relations revealed in the ogives have not been 

commonly used in collection system performance analysis. Thus, research using 

modern machine learning classification algorithms would be an interesting research 

area. A tentative hypothesis of this research is that the shapes of the ogives would 

reveal some of the more common failure modes in sewers, such as the accumulation of 

grease, sediment accumulation, root intrusion, and excessive rain water infiltration and 

inflow, through the use of a single measurement entity – water level. Understanding the 

failure mode would suggest times for optimal intervention and the type of intervention 

needed.  

6.2.7 Enabling technologies to discover potential failures 

This research aids the potential for discovery of a subset of failures that utilities 

can afford to actively manage. This research can provide a means for utilities to guide 

the allocation of limited budgets to efficiently find valuable locations for risk 

management. New technologies are needed to enable these limited budgets to afford 

full-scale system monitoring. These technologies will be less expensive and/or capable 

of sensing across very large areas.  

6.2.8 Future research area summary  

It would be beneficial for future research to define the optimal monitoring period 

for making estimates of failure probability. Longer periods might lead to better accuracy 

than the 80% achieved in this study, while shorter periods may maintain the same level 

of accuracy at lower cost. There is value in additional research in understanding the 
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probability distributions of risky locations. The available information for this study were 

theoretical distributions of surcharge and observed overflow information. There was no 

data available regarding empirical pipe surcharge probability distributions. This 

prompted this research study to look at the robustness of the risk assessment 

techniques to a wide range of distributions. An understanding of the range of failure 

distributions across many collection systems would allow further optimization of the 

search parameters. In addition, more research is needed into the technologies that 

would enable wide-scale deployment of continuous monitors. This would make it 

possible to know the state of an entire collection system all the time to potentially 

achieve the ultimate goal of eliminating all impacts from sewer failures.  
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APPENDIX A 
 
 
 
This appendix contains unedited data collected by ADS Environmental Services 

in the course of flow monitoring projects conducted in seven cities in the United States 

during the period from 1 September 2017 to 1 October 2017. The projects were 

selected randomly from a larger database of projects with a total of 447 monitoring 

locations included in the sample. From this sample, a total of 141 of the locations in six 

cities recorded surcharge (zero free capacity) during the sampling period.  

A lookup table constructed using a hydraulics elements curve was used to 

calculate pipe carrying capacity at each decile of d/D as a percentage of full pipe 

capacity (O’Shea 2019). The relationship is presented graphically in figure (A-1). 

 
Figure A-1: Pipe carrying capacity at each d/D level 

 
For each location, a bias correction was added so that no pipe was allowed to 

carry more than its design capacity at any water level and the average flow rate 

recorded by the flow monitor was divided by the full pipe flow rate recorded by the flow 

monitor for each d/D decile. This data is shown in table (A-1) with each row in the table 
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representing a monitor location. It is worth noting that eighteen locations were removed 

from the sample because the results were negative. A location was labelled “Fully 

Functional” if it achieved 100% of design capacity at full pipe. The results show that the 

pipes that recorded surcharge did so at a mean of 76% of their design capacity. The 

results also show that 16% of the sample conveyed their design capacity. 

Table A-1: Percentage of design capacity at each monitor location 

Project ID Pct. Design Capacity Fully Functional? 

1 81% 0 
1 95% 0 
1 100% 1 
1 90% 0 
1 94% 0 
1 79% 0 
1 85% 0 
1 100% 1 
1 98% 0 
1 77% 0 
1 85% 0 
1 82% 0 
1 70% 0 
1 15% 0 
1 83% 0 
1 86% 0 
1 77% 0 
1 64% 0 
1 40% 0 
1 50% 0 
1 97% 0 
1 56% 0 
1 72% 0 
1 49% 0 
1 51% 0 
1 83% 0 
1 52% 0 
1 85% 0 
1 51% 0 
1 70% 0 
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Project ID Pct. Design Capacity Fully Functional? 

1 98% 0 
1 85% 0 
1 24% 0 
1 88% 0 
1 91% 0 
1 96% 0 
1 84% 0 
1 96% 0 
1 90% 0 
1 92% 0 
1 95% 0 
1 100% 1 
1 92% 0 
1 55% 0 
1 54% 0 
1 87% 0 
1 100% 1 
2 64% 0 
3 55% 0 
3 100% 1 
3 100% 1 
3 91% 0 
3 100% 1 
3 25% 0 
3 100% 1 
3 15% 0 
4 17% 0 
4 76% 0 
4 51% 0 
4 85% 0 
4 92% 0 
4 78% 0 
4 98% 0 
4 62% 0 
4 93% 0 
4 100% 1 
4 94% 0 
4 93% 0 
4 56% 0 
4 72% 0 
4 51% 0 
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Project ID Pct. Design Capacity Fully Functional? 

4 46% 0 
4 73% 0 
4 87% 0 
4 67% 0 
4 100% 1 
4 47% 0 
4 78% 0 
4 97% 0 
4 100% 1 
4 100% 1 
4 92% 0 
4 55% 0 
4 59% 0 
4 100% 1 
4 100% 1 
4 63% 0 
4 51% 0 
4 100% 1 
4 59% 0 
4 53% 0 
4 100% 1 
4 40% 0 
4 42% 0 
4 93% 0 
4 100% 1 
4 42% 0 
4 66% 0 
4 95% 0 
4 90% 0 
4 61% 0 
4 29% 0 
5 100% 1 
5 78% 0 
5 98% 0 
5 93% 0 
5 92% 0 
5 83% 0 
5 86% 0 
5 52% 0 
5 100% 1 
5 95% 0 
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Project ID Pct. Design Capacity Fully Functional? 

5 81% 0 
5 79% 0 
5 15% 0 
5 28% 0 
5 93% 0 
5 90% 0 
5 71% 0 
6 100% 1 
6 78% 0 
6 76% 0 

Mean 76% 
 

Proportion Fully Functional 16% 

 


