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ABSTRACT

HYPEROVALS, LAGUERRE PLANES AND HEMISYSTEMS – AN APPROACH VIA

SYMMETRY

In 1872, Felix Klein proposed the idea that geometry was best thought of as the study of

invariants of a group of transformations. This had a profound effect on the study of geometry,

eventually elevating symmetry to a central role. This thesis embodies the spirit of Klein’s

Erlangen program in the modern context of finite geometries – we employ knowledge about

finite classical groups to solve long-standing problems in the area.

We first look at hyperovals in finite Desarguesian projective planes. In the last 25 years

a number of infinite families have been constructed. The area has seen a lot of activity,

motivated by links with flocks, generalized quadrangles, and Laguerre planes, amongst others.

An important element in the study of hyperovals and their related objects has been the

determination of their groups – indeed often the only way of distinguishing them has been via

such a calculation. We compute the automorphism group of the family of ovals constructed

by Cherowitzo in 1998, and also obtain general results about groups acting on hyperovals,

including a classification of hyperovals with large automorphism groups.

We then turn our attention to finite Laguerre planes. We characterize the Miquelian

Laguerre planes as those admitting a group containing a non-trivial elation and acting tran-

sitively on flags, with an additional hypothesis – a quasiprimitive action on circles for planes

of odd order, and insolubility of the group for planes of even order. We also prove a cor-

respondence between translation ovoids of translation generalized quadrangles arising from

a pseudo-oval O and translation flocks of the elation Laguerre plane arising from the dual

pseudo-oval O∗.
The last topic we consider is the existence of hemisystems in finite hermitian spaces.

Hemisystems were introduced by Segre in 1965 – he constructed a hemisystem of H(3, 32)

and rasied the question of their existence in other spaces. Much of the interest in hemisystems

is due to their connection to other combinatorial structures, such as strongly regular graphs,

partial quadrangles, and association schemes. In 2005, Cossidente and Penttila constructed a
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family of hemisystems in H(3, q2), q odd, and in 2009, the same authors constructed a family

of hemisystem in H(5, q2), q odd. We develop a new approach that generalizes the previous

constructions of hemisystems to H(2r − 1, q2), r > 2, q odd.
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Chapter 1

Incidence geometry

1.1 Introduction

Klein’s Erlangen Program 1872 [95] had a spectacular effect on the study of geometry,

eventually elevating transformation geometry to a similar status to that of analytic geometry

– for which Descartes’ La Géométrie 1637 [2] had played a similar role – and that of

synthetic geometry, for which the most influential work was Euclid of Alexandria’s Elements

ca. 300 BCE [61]. The result was the elevation of symmetry to a central role, as the third

pillar of geometry, together with the older approaches of Euclid via axiomatic deduction and

of Descartes via coordinates.

Symmetry plays a central role in this thesis – in the context of finite geometries. All four

major aspects of the use of groups are exemplified: construction, characterisation, classifica-

tion and calculation.

The first topic is hyperovals of finite Desarguesian planes, where hyperovals with a large

automorphism group are classified, and where the hyperovals of Cherowitzo 1998 [43] have

their automorphism groups calculated. In a process reminiscent of the use of homology

groups (and of fundamental groups) in algebraic topology, this result is used to show that

these hyperovals are not equivalent to any previously known. These results complete the

calculation of the automorphism groups of the known hyperovals of these planes. Previous

attempts to calculate the automorphism groups of the Cherowitzo hyperovals include that

of O’Keefe–Thas 1996 [112] (predating the proof of their conjectured existence!) and that

of Penttila–Pinneri 1999 [126], who built on the O’Keefe–Thas results to obtain an involved

proof on the inequivalence result mentioned above.

The next topic is finite Laguerre planes, where the Miquelian planes are characterised via

their automorphism group, in terms of a flag-transitive action and existence of a non-trivial
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elation, together with a slightly differing weak further hypothesis depending on the parity of

the order of the plane – quasiprimitivity on circles for odd order, and insolubility of the group

for even order. This result uses the full force of the classification of finite simple groups. The

Miquelian planes are the classical planes, and this type of result has a long history – the

corresponding result of Buekenhout–Delandtsheer–Doyen–Kleidman–Liebeck–Saxl 1990 [35]

for flag-transitive linear spaces (also relying on the classification of finite simple groups) was

(aptly) described by Bill Kantor in 1993 [93] in the following terms “the object is known or

the group is dull”. Along the way, a connection is established between flocks of Laguerre

plane and ovoids of generalised quadrangles, in greater generality than in previous work of

Thas 1997 [155] and Lunardon 1997 [100], largely owing to taking greater care with duality;

having two constructions, one in a projective space and the other in the dual space was the

key to achieving greater clarity here, rather than needing a self-dual hypothesis, as in the

earlier work.

The third and final topic is that of hemisystems of finite hermitian varieties, where their

construction for all ranks (in odd projective dimension and odd characteristic) is achieved by

the use of an orthogonal subgroup of the corresponding unitary group, completely solving for

the first time the problem posed by the great Italian geometer Beniamino Segre in 1965 [138].

(Results had earlier been obtained for projective dimensions three and five by Cossidente–

Penttila 2005 [49] and 2009 [50].) Here a hemisystem is a kind of halving of the variety and

finding a symmetry group admitting an appropriate halving is the key to success.

The topics are connected not only by the approach via symmetry, but also through con-

nections with other combinatorial structures: generalised quadrangles, partial geometies,

partial quadrangles, designs and strongly regular graphs to name a few. Other geomet-

ric concepts are used along the way: pseudo-ovals for the material on Laguerre planes, line

spreads, Bruen’s 1972 [31] representation of spreads and polarities in the material on hemisys-

tems, for instance. But the recurring role of most importance is played by the finite classical

groups, with the level of knowledge of group theory required varying greatly in the three dif-

ferent topics; hyperovals require only Hartley’s 1928 [75] determination of the subgroups of
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the three-dimensional finite projective semilinear groups in characteristic two, hemisystems

require a good knowledge of the subfield Aschbacher class (Aschbacher 1984 [4]) of maximal

subgroups of finite projective semilinear unitary groups in even dimension and odd charac-

teristic, while the results on Laguerre planes depend on earlier results by Bamberg–Penttila

2006 [12] on pseudo-ovals, which in turn depend on the classification of finite simple groups.

The results on the automorphism group of the Cherowitzo hyperovals go from the struc-

tures to the groups, while those on hemisystems go from groups to the structures. The

characterisation and classification results on Laguerre planes and hyperovals travel in both

directions.

Thus the spirit of Klein Erlangen Program is embodied in this thesis in the modern

context of finite geometries, with group-theoretic knowledge leading the way to solution of

long-standing problems.

1.2 Some examples

We will now give examples of some beautiful theorems that demonstrate connections between

the different pillars of geometry. Our treatment will remain informal throughout this section;

a formal discussion of many concepts appearing here will follow in subsequent sections.

Figure 1.1: The projective plane PG(2, 2) (the Fano plane).
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Example 1.2.1 (Synthetic ←→ Analytic) A (synthetic) projective space is a collection

of points and lines such that:

• there is a unique line through two distinct points

• every line contains at least three points

• there is at least one line

• if a line meets two sides of a triangle, not at a vertex, then the line meets the third side

of the triangle.

If a synthetic projective space contains only one line it is called a (synthetic) projective

line. A (synthetic) projective plane is a collection of points and lines such that:

• there is a unique line through two distincts points

• every pair of distinct lines intersect in a unique point

• there exists 4 points, no three of which are collinear.

The smallest projective plane, the so called Fano plane, is shown in Figure 1.1. The

classical projective space PG(d,D) is the collection of subspaces of Dd+1, for a division

ring D, and is the canonical (analytic) example of a projective space. When D = GF(q), the

finite field of order q, this is denoted PG(d, q). The classical projective plane PG(2, D) is the

canonical example of projective plane. The subspaces of (algebraic) dimension 1, 2, 3, and

d, are called (projective) points, lines, planes and hyperplanes, respectively. It is common

to abuse notation and denote the point 〈(x1, . . . , xd+1)〉 of PG(d,D) by its homogeneous

coordinates (x1, . . . , xd+1), which are defined up to multiplication by an element of D∗. We

often think of the hyperplane xd+1 = 0 as being “at infinity”, so that PG(d,D) consists of

the affine points (x1, . . . , xd, 1), which can be identified with points of the affine space

AG(d,D), together with a hyperplane at infinity. The affine plane AG(2, 3) over the

finite field GF(3) is shown in Figure 1.2. The completion of AG(2, 3) to the projective plane

PG(2, 3) by adding a points and a line at infinity is shown in Figure 1.3.
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Figure 1.2: The affine plane AG(2, 3).

So there exist simple analytic examples of synthetic projective spaces. The obvious ques-

tion is whether there are others. The extent to which the synthetic axioms characterize the

analytic object is addressed in the following theorem.

Theorem 1.2.2 (Veblen–Young 1908 [171] (see also [172], [173])) A finite-dimensional pro-

jective space is either a projective line, a projective plane, or isomorphic to PG(d,D) for

some division ring D.

This theorem is interesting because we get a very strong analytic conclusion out of quite

weak synthetic hypotheses. We will see in the next example that we also get a great deal of

symmetry from a projective space, and this is one of the attractions of incidence geometry –

getting large amount of symmetry out of very few axioms.

A projective line is a trivial incidence structure, and so the question turns to the existence

of non-classical projective planes. In fact, there do exist non-classical projective planes, and

the question of the existence of a non-classical projective plane of non prime-power order is

a famous open problem in combinatorics.
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Figure 1.3: The completion of the affine plane AG(2, 3) to the projective plane PG(2, 3) by
adding points at infinity and a line at infinity.

Example 1.2.3 (Synthetic ←→ Analytic) A triangle in a projective plane is a set of 3

non-collinear points, and a quadrangle is a set of 4 points, no three collinear. Two triangles

P1Q1R1 and P2Q2R2 are said to be in perspective from a point P if the lines P1P2, Q1Q2,

R1R2 all pass through P . They are in perspective from a line ` if the points P1Q1∩P2Q2,

Q1R1 ∩Q2R2, P1R1 ∩ P2R2 all lie on `.

Theorem 1.2.4 (Desargues’ Theorem 1693 [1]) Two triangles in PG(2, D), for a division

ring D, are in perspective from a point if and only if they are in perspective from a line. This

theorem is illustrated in Figure 1.4.

Theorem 1.2.5 (Pappas’ Theorem 340 [107]) In PG(2, F ), for a field F , if the vertices of

a hexagon lie alternatingly on two lines, then the intersection of opposite sides are collinear.

In other words, if P1, Q1, R1 lie on a line ` and P2, Q2, R2 lie on a line m 6= `, such that

P1Q1P2Q2 is a quadrangle, then the points P1Q2 ∩ P2Q1, P1R2 ∩ P2R1, Q1R2 ∩ Q2R1 are

collinear. This theorem is illustrated in Figure 1.5.
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ℓ

P

P1

Q1

R1

P2

Q2

R2

Figure 1.4: Desargues’ Theorem: In PG(2, D), for a division ring D, the triangles P1Q1R1

and P2Q2R2 are in perspective from a point P if and only if they are in perspective from a
line `.

These are analytic results about certain configurations in projective planes. We can ask to

what extent these configurations characterize the analytic planes. In other words, what can

we say about a plane if we make the (synthetic) assumption that the Desargues or Pappas

configuration holds? This question was answered by Hilbert.

Theorem 1.2.6 (Hilbert 1899 [80]) Desargues’ configuration holds in a projective plane Π

if and only if Π is isomorphic to PG(d,D), for some division ring D. Pappas’ configuration

holds in a projective plane Π if and only if Π is isomorphic to PG(d, F ), for some field F .

By Wedderburn 1905 [179], every finite division ring is a field, and so the finite classical

projective spaces PG(d, q) are called Desarguesian.

Example 1.2.7 (Analytic ←→ Transformation) We have seen some synthetic characteriza-

tions of the analytic Desarguesian projective spaces PG(d, q). If we want to study these spaces

from a transformation geometry perspective, then we first need to calculate the amount of
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P1

Q1

R1

P2

Q2

R2

Figure 1.5: Pappas’ Theorem: In PG(2, F ), for a field F , if the vertices of a hexagon lie
alternatingly on two lines, then the intersection of opposite sides are collinear.

symmetry these spaces contain. An automorphism (or collineation) of PG(d, q) is an inci-

dence preserving bijection of the point set. We would therefore like to describe the automor-

phisms of PG(d, q). Multiplication by an invertible matrix A is a linear map of the underlying

vector space GF(q)d+1 that preserves inclusion of subspaces, and we can also think of this

matrix as acting on the projective space by multiplication on the homogeneous coordinates

of points in PG(d, q). However, this means that our matrix is only defined up to multipli-

cation by an element of GF(q)∗. Thus, we know the group PGL(d+ 1, q) = GL(d+ 1, q)/Z,

where Z = {λI : λ ∈ GF(q)∗}, is a subgroup of Aut PG(d, q). The elements of PGL(d, q)

are called homographies. However, these are not the only symmetries of PG(d, q). A map

of the form x 7→ xα, for α ∈ Aut GF(q), is also an automorphism of PG(d, q); these are

the automorphic collineations. The composition of an automorphic collineation with a

homography is clearly an automorphism, and this leads to the group PΓL(d+ 1, q) = {x 7→
Axα : A ∈ PGL(d+ 1, q), α ∈ Aut GF(q)}. It turns out that any symmetry of PG(d, q) has

this form.

Theorem 1.2.8 (The Fundamental Theorem of Projective Geometry) For d ≥ 2, Aut PG(d, q) =

PΓL(d+ 1, q).
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Example 1.2.9 (Synthetic ←→ Transformation) The last bridge we will consider between

the three pillars concerns the relationship between the existence of particularly nice symme-

tries of finite projective planes and the existence of particularly nice synthetic configurations.

First, we need to decide which properties collineations make them desirable to study from

this point of view. One possibility is that the collineations fix a lot of points and lines. A

central collineation (or perspectivity) of a projective plane is an automorphism that fixes

a point (the center) linewise and a line (the axis) pointwise. The perspectivities are the

non-trivial homographies fixing the maximum number of points, and are thus a natural class

of symmetries to study. Given a point P and a line ` in a projective plane Π, we say that Π

is (P, `)-transitive if for any line m 6= `, the group of perspectivites with center P and axis

` acts transitively on the points of m not on `, and not equal to P . If Π is (P, `)-transitive for

all V on `, then ` is a translation line, and Π is a translation plane. A (P, `)-transitive

plane is considered to be highly symmetric.

It turns out that (P, `)-transitivity is related to a variation of the Desargues configuration

described above. Given a point P and line ` in a projective plane Π, we say that Π is (P, `)-

Desarguesian if whenever the triangles P1Q1R1 and P2Q2R2 are in perspective from P , and

both P1Q1∩P2Q2 and Q1R1∩Q2R2 lie on `, then so does P1R1∩P2R2, that is, the triangles

P1Q1R1 and P2Q2R2 are in perspective from a line.

Theorem 1.2.10 (Baer 1946 [7]) A projective plane is (P, `)-transitive if and only if it is

(P, `)-Desarguesian.

Again, this theorem is of considerable interest because we get large amounts of symmetry

out of a fairly weak synthetic assumption. It is also of some historical importance because it

elevated the transformation geometry perspective to be on equal footing with the synthetic

and analytic pillars for the first time.

In this thesis we approach geometry from each of these perspectives. Hyperovals in

PG(2, q) are defined synthetically as subsets of an analytic projective space, and we obtain

results about their automorphism groups. The classical Laguerre planes are analytically
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defined, and we give a group-theoretic characterization. Finally, we use the automorphism

group of an analytic hermitian space to construct synthetically defined hemisystems. We

therefore demonstrate the interplay between the various pillars of geometry. In the remaining

sections we will define these terms properly, survey the existing literature, and provide some

motivation and context to the aforementioned results.

1.3 Projective spaces and forms

An incidence structure is a triple (X, t, I), where X is a set, t is a function with domain

X, and I is a symmetric relation on X, such that x I y and t(x) = t(y) implies x = y. We

think of X as the objects of our incidence structure, t(x) as the type of x, and I as the

incidence relation on X.

Example 1.3.1 Let us describe formally the projective spaces mentioned earlier. Let V

be a finite-dimensional vector space of dimension d + 1 over the finite field GF(q). Let

X be the set of proper, non-trivial subspaces of V , t(U) = dimU , with incidence defined

by symmetrized inclusion. The resulting incidence structure is the projective geometry

P V = PG(d, q). The one-dimensional subspaces are called (projective) points, and the

two-dimensional subspaces are the (projective) lines. When d = 2 we have the projective

plane PG(2, q).

A correlation of (X, t, I) is a bijection σ : X → X such that x I y if and only if xσ I yσ

and t(x) = t(y) if and only if t(xσ) = t(yσ). In other words, a correlation is a bijection that

restricts appropriately with respect to type and preserves incidence. Correlations of P V
fall into two classes – those that preserve inclusion are collineations and those that reverse

inclusion are dualities. A duality of the Fano plane is shown in Figure 1.6.

Example 1.3.2 In P V , the map

∆ : (a1, . . . , ad) 7−→ {(x1, . . . , xd) : a1x1 + · · ·+ adxd = 0}

is a duality (the standard duality).

10



Figure 1.6: A duality of the Fano plane. The image of a point (line) under the duality is the
line (point) of the same color.

Example 1.3.3 Let F = GF(q), V = F d+1, A ∈ GL(d+ 1, q) , α ∈ AutF . Let β be

the function defined by β : V × V → F , β(x, y) = xtAyα. Then β is a sesquilinear

form, that is, β is linear in the first variable and semilinear in the second variable. The

matrix A is the Gram matrix of β. The form is non-degenerate in the sense that its

radical, rad(β) = {v ∈ V : β(u, v) = 0 for all u ∈ V } is trivial. For U ≤ V , define

U⊥ = {v ∈ V : β(u, v) = 0 for all u ∈ U}. Then the map U 7→ U⊥ is a duality of P V .

Hence, non-degenerate sesquilinear forms on V induce dualitites on V . Birkhoff and

Von-Neumann proved that the converse also holds.

Theorem 1.3.4 (Birkhoff–Von-Neumann 1936 [20]) Every duality of P V is induced by a

non-degenerate sesquilinear form on V .

Sesquilinear forms and dualities provide a rich source of examples of interesting incidence

structures. We will therefore devote some time to exploring this connection. The most

important dualities of P V are the dualities of order 2, these are the polarities of P V . A

subspace of P V contained in its image under a polarity is an absolute subspace with respect

to that polarity. A polarity with the property that all points are absolute is a null polarity.

A polarity with the property that no points are absolute is a conull polarity. It is natural

to ask which non-degenerate sesquilinear forms induce polarities. It turns out that such a

11



form β is reflexive, that is, β satisfies the condition β(x, y) = 0 if and only if β(y, x) = 0.

It turns out that the reflexive, non-degenerate sesquilinear forms fall into three classes.

Theorem 1.3.5 (Dickson 1901 [58]) Up to scalar multiple, a non-degenerate, reflexive, sesquilin-

ear form β on a vector space V over the finite field GF(q) is either:

• symmetric bilinear – β(u, v) = β(v, u) for all u, v ∈ V

• alternating – β(u, u) = 0 for all u ∈ V , or

• hermitian – β(u, v) = β(v, u)α for all u, v ∈ V , where α ∈ Aut GF(q) has order 2,

and q is square.

A vector space with an alternating form is a symplectic space, and the polarity arising

from this space is called a symplectic polarity (this is an example of a null polarity). How-

ever, in characteristic 2, an alternating bilinear form is also symmetric, whereas a symmetric

bilinear form need not be alternating. In order to distinguish these cases, over a field of

characteristic 2, we call a polarity symplectic (or null) if it arises from an alternating sym-

metric bilinear form as above, and pseudo-symplectic if it arises from a non-alternating

symmetric bilinear form. Over fields of odd characteristic, a vector space with a symmetric

bilinear form is an orthogonal space, and it gives rise to an orthogonal polarity. A

vector space (over any field) with a hermitian form is called a unitary space, and it gives

rise to a unitary polarity. These names correspond to the classical groups described in

Section 1.7.

A map Q : V → F satisfying Q(λv) = λ2v, for all v ∈ V , for all λ ∈ F , and such

that βQ(u, v) = Q(u + v) − Q(u) − Q(v) is bilinear, is called a quadratic form, and βQ

is the polarization of Q. A quadratic form is non-degenerate if its singular radical,

singrad(Q) = {v ∈ rad(βQ) : Q(v) = 0} is trivial. If the characteristic of F is odd, then each

of Q and βQ determines the other, and the study of quadratic forms is equivalent to the study

of symmetric bilinear forms. However, in even characteristic, a vector space with a quadratic

form has an alternating polarization, and is therefore symplectic, but not pseudo-symplectic.
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Moreover, the quadratic form Q cannot be recovered from the polarization βQ, indeed, many

quadratic forms correspond to the same polarization. For this reason we do not consider

vector spaces with symmetric bilinear forms, except when they arise as polarizations of some

quadratic form. Hence, in characteristic 2, an orthogonal space is a vector space with a

quadratic form (with a necessarily alternating polarization). Thus, in even characteristic, we

exclude the possibility of a pseudo-symplectic form. There is no loss of generality as far as

geometery is concerned, since it turns out that the geometry arising from a pseudo-symplectic

form is isomorphic to the geometry arising from an alternating form over a vector space of

smaller dimension.

It is also possible to classify quadratic forms, but we need to introduce the appropriate

concepts of equivalence of vector spaces equipped with such forms. Let V and V ′ be vector

spaces over a field F , with respective quadratic forms Q and Q′. A linear bijection g : V → V ′

is an isometry if Q′(gv) = Q(v), for all v ∈ V , and a similarity if Q′(gv) = λQ(v), for all

v ∈ V , for some fixed λ ∈ F ∗. If an isometry, respectively similarity, exists between (V,Q)

and (V ′, Q′), we call the forms isometric, respectively similar. We will return to these

concepts in Section 1.7.

Theorem 1.3.6 (Dickson 1901 [58]) Let V be a finite-dimensional vector space over the

finite field GF(q), and let x = (x1, . . . , xd) ∈ V . A non-degenerate quadratic form Q on V is

isometric to exactly one of the following forms:

• plus type – Q(x) = x1x2 + · · ·+ x2n−1x2n

• blank type I – Q(x) = x1x2 + · · ·+ x2n−1x2n + x2
2n+1, for q even

• blank type II– Q(x) = x1x2 + · · ·+ x2n−1x2n + ηx2
2n+1, where η is a non-square in F ,

and q is odd, or

• minus type – Q(x) = x1x2 + · · · + x2n−1x2n + x2
2n+1 + ax2n+1x2n+2 + bx2

2n+2, where

x2 + ax+ b is irreducible over GF(q).

Note that blank type I and blank type II are similar forms, but not isometric forms.
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1.4 Polar spaces

We can use reflexive sesquilinear and quadratic forms to build an important class of incidence

structures. Let V be a vector space of dimension d + 1 together with either an alternating,

hermitian, or quadratic form. In each case we have both a reflexive sesquilinear form β in

two variables and a quadratic form Q in one variable – either Q is defined by Q(v) = β(v, v),

or β is obtained by polarizing Q – and we can make use of both forms. A subspace of V

on which β vanishes identically is called totally isotropic, while a subspace of V on which

Q vanishes identically is called totally singular. Alternatively, a subspace U is totally

isotropic if U ⊆ U⊥, that is, if U is absolute with respect to the polarity induced by β. A

totally singular subspace is totally isotropic, but not conversely. In the case of alternating

forms, every subspace is totally singular. The set of totally singular points of a quadratic

form is called a quadric. We say a quadric is non-degenerate if the quadratic form defining

it is non-degenerate.

Example 1.4.1 Let β be an alternating or hermitian form on GF(q)d+1, and let ρ be the

polarity induced by β on PG(d, q). Let Π(ρ) = (X, t, I) be the incidence structure where

X is the set of all totally isotropic subspaces of β (equivalently, the absolute subspaces of

ρ), t(U) = dimU , with incidence defined by symmetrized inclusion Then Π(ρ) is a polar

space. Similarly, let Q be a quadratic form on GF(q)d+1, d ≥ 3, and let Q be the associated

quadric. Let Π(Q) = (X, t, I) be the incidence structure where X is the set of all totally

singular subspaces of Q, t(U) = dimU , with incidence defined by symmetrized inclusion.

Then Π(Q) is a polar space. Polar spaces of this form are the classical polar spaces.

A polar space arising from an alternating form (symplectic polarity) is a symplectic

space, denoted W(d, q), a polar space arising from a hermitian form (unitary polarity) is

called a unitary space, denoted1 H(d, q2), and a polar spaces arising from a quadratic

1 Since hermitian forms can only occur over fields of square order, we adopt the convention that H(d, q2)
refers to the geometry arising from a vector space of dimension d + 1 over the finite field GF(q2). Some
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form is an orthogonal space, either hyperbolic, parabolic, or elliptic, accordingly as

the quadratic form is of plus, blank, or minus type, denoted Q+(d, q), Q(d, q), Q−(d, q),

respectively. This information is summarized in Table 1.1. The symplectic space W(3, 2) is

shown in Figure 1.7.

Figure 1.7: The symplectic polar space W(3, 2), a generalized quadrangle of order 2.

The rank of a classical polar space is the largest dimension of any totally isotropic or

totally singular subspace. A maximal is a totally isotropic or totally singular subspace

contained in no other. We use the terms point, line, and so on, in the same way as for

projective spaces. Polar spaces describe the geometry of a vector space carrying a reflexive

sesquilinear form or quadratic form in the same way that projective spaces describe the

geometry of vector spaces.

It is also possible to give a synthetic treatment of polar spaces. The first set of synthetic

axioms are due to Tits 1974 [166] building on work of Veldkamp 1959 [174] (see also Veldkamp

1962 [175]) . They defined an abstract polar space of rank r as a set of points together with

a distinguished set of subsets called subspaces such that

authors use the convention that H(d, q) refers to the geometry arising from a vector space over the finite field
GF(q2).
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Table 1.1: The classical polar spaces arising from a vector space and a either a reflexive
sesquilinear form or a quadratic form.

Form Geometry Notation

alternating symplectic W(d, q)

hermitian unitary H(d, q2)

quadratic (plus) hyperbolic Q+(d, q)

quadratic (blank) parabolic Q(d, q)

quadratic (minus) elliptic Q−(d, q)

• any subspace together with the subspaces it contains is a projective space of dimension

at most r − 1

• the intersection of two subspaces is a subspace

• given a subspace U of dimension r − 1 and a point P not in U , there exists a unique

subspace M containing P such that U ∩M has dimension r − 2 and M contains all

points of U collinear with P

• there exist two disjoint subspaces of dimension r − 1.

These axioms were simplified by Buekenhout and Shult 1974 [36] who provided a set of

axioms for a polar space in terms of only the points and lines, from which all other subspaces

could be reconstructed. They define a synthetic polar space as an incidence structure

with two types (points and lines), with incidence satisfying the following axioms:

• every pair of distinct points are incident with at most one line

• every line is incident with at least 3 points, and every point is incident with least 3

lines

• no point is collinear with all points

• given a line ` and a point P not on `, P is collinear with one or all points incident with

`.
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We can also give synthetic definitions of previously analytic concepts in terms of only

the points and lines of the Buekenhout–Schult axioms. A subspace of a (synthetic) polar

space is a set of points U such that for every pair of distinct collinear points P,Q ∈ U , the

line incident with P and Q is contained in U . A subspace U is singular if every pair of

distinct points in U are collinear. The rank of a (synthetic) polar space is the length of a

maximal chain of singular subspaces. A maximal is a singular subspace contained in no

other singular subspace. Of course, the canonical examples of synthetic polar spaces are the

classical polar spaces. The interesting question is whether there are synthetic polar spaces

that are non-classical. The following theorem addresses part of this question.

Theorem 1.4.2 (Buekenhout–Shult 1974 [36]) A finite polar space of rank r ≥ 3 is classical.

This leaves open the question of non-classical rank 2 polar spaces. A rank 2 polar space

is a generalized quadrangle. Generalized quadrangles will be studied in Section 1.5.

1.5 Generalized quadrangles

In previous sections we have seen an analogy between projective spaces and polar spaces. In

particular, Theorem 1.2.2 and Theorem 1.4.2 characterize these spaces in a canonical way

with one exception – the dimension 2 projective spaces and the rank 2 polar spaces behave

differently to the others. Each of these exceptions is a point/line incidence structure, and we

can connect the two by viewing these incidence structures in a wider setting. We will see that

generalized quadrangles (along with the various generalizations in terms of partial geometries)

are connected to all of the structures appearing in this thesis – often in multiple ways – and

it is therefore worth devoting some time to an exposition of some of their most important

properties, and a discussion of the vast number of connections to other combinatorial objects.

1.5.1 Generalized polygons

Let I = (P ,L, I) be a point/line incidence structure, with the set of points P , and lines

L, with P ∩ L = φ, and I ⊆ P × L defining incidence. Note that the incidence graph of
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I is bipartite; this motivates the definition of a nice class of incidence structures known as

generalized polygons. A generalized n-gon, n ≥ 3, is a bipartite graph of diameter n

and girth 2n. We call a generalized n-gon thick if the degree of each vertex is at least 3.

Generalized polygons were introduced by Tits 1959 [164] while studying finite simple groups

of Lie type in prime characteristic.

Example 1.5.1 (Tits 1959 [164]) Consider an incidence structure I = (P ,L, I). An ele-

ment (P ,L) of I is a flag. If a subgroup G of automorphisms of I acts transitively on the

set of flags, then G is flag-transitive. Now suppose that H and K are subgroups of some

group G. Take P = (G : H) to be the set of cosets of H in G, and L = (G : K) to be

the set of cosets of K in G, and I = {(gH, `K) ⊆ P × L : gH ∩ `K 6= φ} to be non-empty

intersection of cosets. Then I = (P ,L, I) is an incidence structure on which the subgroup

G of automorphisms acts flag-transitively. Tits 1956 [163] proved the remarkable fact is that

every flag-transitive incidence structure is of this form for some group G.

Flag-transitivity will be studied in the context of Laguerre planes in Chapter 3. We can

use the construction of Example 1.5.1 to obtain flag-transitive generalized polygons from

groups of Lie type of Lie rank 2.

Example 1.5.2 (Tits 1959 [164]) Let G be a finite simple group of Lie type in characteristic

p, for prime p. Let U be a Sylow p-subgroup of G, and let B = NG(U) be the normalizer

of U in G. Let M1, . . . ,Mr be the maximal subgroups of G containing B. Then r is the Lie

rank of G and if r = 2, the incidence structure with points (G : M1), and lines (G : M2), with

incidence as nonempty intersection, is a flag-transitive generalized polygon. The generalized

polygons arising are essentially the classical examples in each class. For example, the gener-

alized triangles arising from PSL(3, q) are the Desarguesian projective planes PG(2, q), and

the generalized quadrangles appearing are the classical rank 2 polar spaces. When r > 2, we

obtain the finite Desarguesian projective spaces of dimension r and the finite classical polar

spaces of dimension r.
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It is not hard to see that generalized triangles are precisely projective planes, or that

generalized quadrangles are precisely the rank 2 polar spaces. We have already seen examples

of both of these generalized polygons. It is natural to ask which values of n give generalized

n-gons. The answer to this problem lies in the following result.

Theorem 1.5.3 (Feit–Higman 1964 [62]) A finite, thick, generalized n-gon exists if and only

if n = 3, 4, 6, or 8.

For a comprehensive guide to generalized polygons, see Van Maldeghem 1998 [170]. We

will now focus our attention on generalized quadrangles.

1.5.2 Rank 2 polar spaces

We have seen that we can view generalized quadrangles as either the rank 2 polar spaces, or

as generalized n-gons with n = 2. We can also describe generalized quadrangles synthetically

as follows. A (finite) synthetic generalized quadrangle X = (P ,L, I) is a point/line

incidence structure such that there exist positive integers s and t such that

• each point is incident with t+ 1 lines

• each line is incidenct with s+ 1 points

• two distinct points are incident with at most one line

• two distinct lines are incident with at most one point

• given a line ` and a point P not on `, there is a unique point on ` collinear with P .

We say that X has order (s, t), and if s = t, we say that X has order s. The point/line

dual of a generalized quadrangle of order (s, t) is a generalized quadrangle of order (t, s). For

P,Q ∈ P we often write P ∼ Q when P and Q are collinear. We also define P⊥ = {R ∈ P :

R ∼ P}, {P,Q}⊥ = P⊥ ∩Q⊥, and {P,Q}⊥⊥ =
⋂
R∈{P,Q}⊥ R

⊥. If P � Q, we call {P,Q}⊥⊥ a

hyperbolic line of X. A point P ∈ P is regular if
∣∣{P,Q}⊥⊥

∣∣ = t+ 1 for all Q � P .

We are interested in various spectral questions about generalized quadrangles. The first

result of this kind is due to Higman.
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Theorem 1.5.4 (Higman 1974 [79]) In a generalized quadrangle of order (s, t) with s, t > 1,

we have s ≤ t2, and dually t ≤ s2.

Example 1.5.5 The following classical polar spaces are generalized quadrangles. These are

the classical generalized quadrangles.

(1) W(3, q) = Π(ρ), where ρ is a symplectic polarity of PG(3, q), is a generalized quadrangle

of order q

(2) Q+(3, q) = Π(Q), where Q is a hyperbolic quadric of PG(3, q), is a generalized quad-

rangle of order (q, 1)

(3) Q(4, q) = Π(Q), where Q is a parabolic quadric of PG(4, q), is a generalized quadrangle

of order q

(4) Q−(5, q) = Π(Q), where Q is a elliptic quadric of PG(5, q), is a generalized quadrangle

of order (q, q2)

(5) H(3, q2) = Π(ρ), where ρ is a unitary polarity of PG(3, q2), is a generalized quadrangle

of order (q2, q)

(6) H(4, q2) = Π(ρ), where ρ is a unitary polarity of PG(4, q2), is a generalized quadrangle

of order (q2, q3)

Note that Q+(3, q) is a thin generalized quadrangle, and is therefore considered trivial

as a point/line incidence structure (having the structure of a grid). However, as a quadric,

Q+(3, q) is still associated with many interesting combinatorial objects (see, for example

Section 3.2.2). The following results answer some questions about isomorphisms between the

classical generalized quadrangles.

Theorem 1.5.6 (Benson 1970 [16]) A generalized quadrangle X is isomorphic to W(3, q) if

and only if all points of X are regular.

Theorem 1.5.7 (Payne–Thas 1984 [121]) The dual of Q(4, q) is isomorphic to W(3, q). The

dual of Q−(5, q) is isomorphic to H(3, q2).
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Theorem 1.5.8 (Payne–Thas 1984 [121]) Q(4, q) is isomorphic to W(3, q) if and only if q

is even.

Some of the first examples of non-classical generalized quadrangles were given by Tits,

and first appeared in Dembowski 1968 [55]. They arise by generalizing certain properties

of the classical generalized quadrangles. In order to make sense of this, we first need to

introduce some fundamental structures in low dimensional projective spaces.

An oval of PG(2, q) is a set of q + 1 points such that no 3 points are collinear. Ovals

will be studied intensively in Chapter 2. The canonical example of an oval in PG(2, q) is the

set of zeroes of a non-degenerate homogeneous quadratic polynomial in three variables over

GF(q). Such a set is called a conic, however there are many examples of ovals that are not

conics, and these will be discussed at some length in Section 2.2.

Example 1.5.9 Let P be a point of Q(4, q). Project P onto a hyperplane PG(3, q) not on

P . Then P⊥ ∩ PG(3, q) is a plane π. The lines through P project a conic C of π. Each line

through P not in P⊥ is secant to the parabolic quadric Q defining Q(4, q), so the points not

collinear with P project the whole of PG(3, q) \ π. The lines not on P project to lines ` of

PG(3, q) with `∩π a point of C. The points collinear with P are in one-to-one correspondence

with their tangent spaces, which project to planes π′ meeting π in a tangent line to C.

Since an oval is a conic, the above discussion motivates the following construction of a

generalized quadrangle from an oval of PG(2, q).

Example 1.5.10 (Dembowski 1968 [55]) Let O be an oval of PG(2, q). Embed PG(2, q)

as a hyperplane in PG(3, q), and define the incidence structure T2(O) as follows. Points of

T2(O) are of three types: (i) points of PG(3, q) \ PG(2, q); (ii) planes of PG(3, q) meeting

PG(2, q) in a tangent line to O; (iii) the symbol (∞). Lines of T2(O) are of two types:

(a) lines of PG(3, q) not contained in PG(2, q) that intersect PG(2, q) in a point of O; (b)

points of O. Incidence is defined as follows: lines of type (b) are incident with points of type

(ii) which contain them, and with (∞); lines of type (a) are incident with points of type
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(i) contained in them, and with points of type (ii) which contain them. Then T2(O) is a

generalized quadrangle of order q. T2(O) is isomorphic to Q(4, q) if and only if O is a conic.

An ovoid of PG(3, q) is a set of q2 + 1 points such that no 3 are collinear. The canonical

example of an ovoid of PG(3, q) is an elliptic quadric. When q is odd, these are the only

examples.

Theorem 1.5.11 (Barlotti 1955 [13], Panella 1955 [114]) Every ovoid of PG(3, q), q odd, is

an elliptic quadric.

When q is even, there is a non-classical ovoid of PG(3, q).

Example 1.5.12 (Tits 1962 [165]) Let

Ω = {(1, s, t, sσ + st+ tσ+2) : s, t ∈ GF(q)} ∪ {(0, 0, 0, 1)},

where q = 22e+1, e ≥ 1, and xσ = x2e+1
for all x ∈ GF(q). Then Ω is an ovoid of PG(3, q)

that is not equivalent to an elliptic quadric. This is the Tits ovoid.

At this time, these are the only known ovoids of PG(3, q). We can mimic the construction

of Example 1.5.10 using Q−(5, q) instead of Q(4, q). A tangent hyperplane to an elliptic

quadric in PG(5, q) meets the quadric in a cone projecting to an elliptic quadric of PG(3, q).

Since elliptic quadrics are ovoids, we can constuct a generalized quadrangle from an ovoid as

follows.

Example 1.5.13 (Dembowski 1968 [55]) Let Ω be an ovoid in PG(3, q). Embed PG(3, q) as

a hyperplane of PG(4, q). Define the incidence structure T3(Ω) as follows. Points of T3(Ω)

are of three types: (i) points of PG(4, q) \ PG(3, q); (ii) hyperplanes of PG(4, q) meeting

PG(3, q) in a tangent plane to Ω; (iii) the symbol (∞). Lines of T3(Ω) are of two types:

(a) lines of PG(4, q) not contained in PG(3, q) that intersect PG(3, q) in a point of Ω; (b)

points of Ω. Incidence is defined as follows: lines of type (b) are incident with points of type

(ii) which contain them, and with (∞); lines of type (a) are incident with points of type

(i) contained in them, and with points of type (ii) which contain them. Then T3(O) is a

22



generalized quadrangle of order (q2, q). T3(Ω) is isomorphic to Q−(5, q) if and only if Ω is an

elliptic quadric.

Since there exist ovals that are not conics (see Section 2.2) and ovoids that are not elliptic

quadrics (see Example 1.5.12), the constructions in Example 1.5.10 and Example 1.5.13 show

that there exist non-classical generalized quadrangles of order q and (q2, q). The constructions

of Example 1.5.10 and Example 1.5.13 will be generalized in Section 3.5 (see Example 3.5.2).

We can also construct generalized quadrangles from hyperovals.

Example 1.5.14 (Hall 1971 [72]) Let H be a hyperoval of PG(2, q), and embed PG(2, q) as

a hyperplane at infinity in PG(3, q). Define an incidence structure T ∗2 (H) as follows. The

points of T ∗2 (H) are the points of PG(3, q) \ PG(2, q). The lines of T ∗2 (H) are the lines of

PG(3, q) not contained in PG(2, q) that meet H in a unique point. Incidence in T ∗2 (H) is

inherited from PG(3, q). Then T ∗2 (H) is a generalized quadrangle of order (q − 1, q + 1).

The following construction shows how to obtain a new generalized quadrangle from a

generalized quadrangle of order s with a regular point.

Example 1.5.15 (Payne 1971 [116]) Let x be a regular point of the generalized quadrangle

S = (P ,L, I) of order s. Define the incidence structure S ′ = (P ′,L′, I ′) as follows. Points

of S ′ are the points of S not collinear with x. Lines of S ′ are of two types: the lines of type

(a) are the lines of L which are not incident with x, lines of type (b) are the hyperbolic lines

{x, y}⊥⊥, for y � x. Incidence in S ′ is defined as follows: if y ∈ P ′ and L ∈ L′ is type (a),

then y I ′ L if and only if y I L; if y ∈ P ′ and L ∈ L′ is of type (b), then y I ′ L if and only if

y ∈ L′. Then S ′ is a generalized quadrangle of order (s− 1, s+ 1).

1.5.3 Partial geometries

A (finite) partial geometry with parameters s, t, α is a point/line incidence structure

(P ,L, I) such that there exist integers s, t, α ≥ 1 such that

• each point is incident with t+ 1 lines
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• each line is incident with s+ 1 points

• two distinct points are incident with at most one line

• two distinct lines are incidence with at most one point

• given a line ` and a point P not on `, there are α points on ` collinear with P

The dual of a partial geometery with parameters s, t, α is a partial geometry with pa-

rameters s′ = t, t′ = s, α′ = α. A partial geometry is a generalized quadrangle if and

only if α = 1. A partial geometry with α = s + 1 (dually, α = t + 1) is a 2 − (v, s + 1, 1)

design, a so-called block design. A partial geometry with α = s (dually, α = t) is a net or

transversal design (see Bruck 1963 [29]). A partial geometry with 1 < α < min(s, t) is a

proper partial geometry. This are the most important class of partial geometries, since

the others have a literature of their own.

A maximal arc of degree n in PG(2, q) is a set of points K such that every line of

PG(2, q) contains either 0 or n points of K. Maximal arcs are discussed in Section 1.6.1. The

next two results show that we can obtain partial geometries from maximal arcs.

Example 1.5.16 (Thas 1974 [148], Wallis 1973 [178]) Let K be a maximal arc of degree n

in a projective plane π of order q. Define an incidence structure S(K) as follows. The points

of S(K) are the points of π \K. The lines of S(K) are the lines of π secant to K. Incidence is

inherited from π. Then S(K) is a partial geometry with parameters s = q − n, t = q − q/n,

α = q − q/n− n+ 1.

Example 1.5.17 (Thas 1974 [148]) Let K be a maximal arc of degree n in PG(2, q). Embed

PG(2, q) as a hyperplane π of PG(3, q). Define an incidence structure T ∗2 (K) as follows. The

points of T ∗2 (K) are the points of PG(3, q) \ π. The lines of T ∗2 (K) are the lines of PG(3, q)

that meet π in a unique point of K. Incidence is induced from the incidence of PG(3, q).

Then T ∗2 (K) is a partial geometry with parameters s = q − 1, t = (q + 1)(n− 1), α = n− 1.

The partial geometry T ∗2 (K) constructed in Example 1.5.17 of degree 2k, 0 < k < h, in

PG(2, 2h) has parameters s = 2h − 1, t = (2h + 1)(2k − 1), α = 2k − 1. Hence, T ∗2 (K) is a
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generalized quadrangle if and only if k = 1, that is, if K is a hyperoval. Therefore, we can

see T ∗2 (K) as a generalization of the construction T ∗2 (H) of Example 1.5.14.

A (finite) partial quadrangle with parameters s, t, µ is a point/line incidence structure

(P ,L, I) such that there exist integers s, t, α ≥ 1 such that

• each point is incident with t+ 1 lines

• each line is incident with s+ 1 points

• two distinct points are incident with at most one line

• two distinct lines are incident with at most one point

• given a line ` and a point P not on `, there is at most one point on ` collinear with P

• given two non-collinear points P and Q, there are µ points collinear with both P and

Q.

Partial quadrangles were introduced by Cameron 1975 [38]. A generalized quadrangle

is a partial quadrangle with µ = t + 1. A strongly regular graph with λ = 0 is a partial

quadrangle with s = 1 and t = k − 1. Stongly regular graphs are discussed in Section 1.6.2.

Examples of strongly regular graphs with λ = 0 include the pentagon and the Petersen graph

(see Figure 1.8) We can construct partial quadrangles from certain generalized quadrangles

as follows.

Example 1.5.18 (Cameron–Goethals–Seidel 1979 [40]) Let S be a generalized quadrangle

of order (s, s2). Let p be any point of S and define the incidence structure S(p) as follows.

The points of S(p) are the points of S not collinear with p. The lines of S(p) are the lines of

S not containing p. Incidence is induced from S. Then S(p) is a partial quadrangle of order

(s− 1, s2, s(s− 1)).

Let us now generalize the construction of Example 1.5.17. Let K be a set of points in

PG(n, q). Embed PG(n, q) as a hyperplane H in PG(n+ 1, q). Define an incidence structure

T ∗n(K) as follows. The points of T ∗n(K) are the points of PG(n+ 1, q)\H. The lines of T ∗n(K)
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are the lines of PG(n+ 1, q) that meet H in a unique point of K. Incidence is induced from

the incidence of PG(n+ 1, q).

If T ∗n(K) gives a partial quadrangle, then K has to be a set of points in PG(n, q) such

that any line in PG(n, q) is external, tangent or secant to K, and each point of PG(n, q) \ K
is on µ/2 secants. Thus, K is a (t + 1)−cap in PG(n, q) such that each point in K lies on

t+ 1− µ tangents. A few such K are known.

Example 1.5.19 The following T ∗n(K) are partial quadrangles.

(1) T ∗3 (O), with O an ovoid of PG(3, q) is a partial quadrangle with parameters s = q− 1,

t = q2, µ = q(q − 1). These quadrangles were first constructed by Cameron 1975 [38].

(2) Suppose q = 3 and K is not an ovoid. Then K is either an 11-cap in PG(4, 3) (see

Coxeter 1958 [51] or Pellegrino 1974 [123]) and the partial quadrangle has parameters

s = 2, t = 10, µ = 2, or K is the unique 56-cap in PG(5, 3) first constructed by Segre

1965 [138], and the partial quadrangle T ∗5 (K) has parameters s = 2, t = 55, µ = 20.

(3) Suppose q = 4. Then either K is an ovoid of PG(3, 4), or a 78-cap in PG(5, 4) discovered

by Hill 1976 [81] and the resulting partial quadrangle T ∗5 (K) has parameters s = 3,

t = 77, µ = 14, or an (as yet undiscovered) 430-cap in PG(6, 4).

(4) Suppose q ≥ 5. Then a partial quadrangle of the form T ∗n(K) must be T ∗3 (O), for some

ovoid O in PG(3, q) (see Tzanakis–Wolfskill 1987 [167]).

A (finite) semipartial geometry with parameters s, t, α, µ is a point/line incidence

structure (P ,L, I) such that there exist integers s, t, α, µ ≥ 1 such that

• each point is incident with t+ 1 lines

• each line is incident with s+ 1 points

• two distinct points are incident with at most one line

• two distinct lines are incident with at most one point
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• given a line ` and a point P not on `, there are either 0 or α points on ` collinear with

P

• given two non-collinear points P and Q, there are µ points collinear with both P and

Q.

Semipartial geometries were introduced by Debroey–Thas 1978 [53]. They generalize both

partial geometries and partial quadrangles. A semipartial geometry with α = 1 is a partial

quadrangle. A semipartial geometry is a partial geometry if and only if µ = (t+ 1)α, and a

generalized quadrangle if and only if α = 1 and µ = t+1. The dual of a semipartial geometry

is a semipartial geometry if and only if either s = t or the semipartial geometry is in fact a

partial geometry. Semipartial geometries that are not partial geometries are called proper.

Example 1.5.20 (De Clerck–Van Maldeghem 1995 [52]) We can construct semipartial ge-

ometries from the T ∗n(K) construction given above. These constructions involve unitals and

Baer subspaces, which are defined in Section 1.6.1. Let U be a unital in PG(2, q). Then

T ∗2 (U) is a semipartial geometry with s = q2 − 1, t = q3, α = q, µ = q2(q2 − 1). If B is a

Baer subspace of the projective space PG(n, q), then T ∗n(B) is a semipartial geometry with

s = q2 − 1, t = qn+1−1
q−1

, α = q, µ = q(q + 1).

1.6 Related combinatorics

In this section we give some examples of combinatorial objects that are related to some of

the structures of primary interest in this thesis. We do not intend to give a comprehensive

survey, instead the focus is on the connections to hyperovals, circle planes and hemisystems.

1.6.1 Two intersection sets

A k-set of type (m,n) with respect to hyperplanes in PG(d, q), m < n, is a set of points K,

with |K| = k, such that every hyperplane contains either m or n points of K (and m < n).

Such a set is often referred to as a k-(m,n) set. The values m and n are the intersection

numbers of K, and such as set is often called a two intersection set).
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Sets of type (0, 2) in PG(2, q) occur only in planes of even order and are hyperovals.

Hyperovals of PG(2, q) are studied in detail in Chapter 2. An ovoid of PG(3, q) is a (q2 +

1)− (1, q + 1) set of PG(3, q).

More generally, sets of type (0, n) in PG(2, q) are called maximal arcs. The parameter n

is the degree of K. Several families of maximal arcs in exist projective planes (for example,

see Denniston 1969 [56], Thas 1974 [148], Thas 1980 [150], Hamilton 1995 [73], Hamilton–

Mathon 2003 [74].) These families contain examples of maximal arcs for all values of n

dividing q. There are no known examples of maximal arcs in planes of odd order.

Sets of type (1, n) in PG(2, q) fall into two classes based on their size.

Theorem 1.6.1 (Tallini Scafati 1966 [145]) Let K be a k − (1, n) set in a projective plane

of order q, q a prime power, with n 6= q + 1. Then q is a square, n =
√
q + 1, and either

k = q3/2 + 1 or k = q +
√
q + 1.

The (q2 + q + 1) − (1, q + 1) sets in PG(2, q2) are the Baer subplanes. These are the

subgeometries that arise from the fixed points of the Baer involution x 7→ xq in PG(2, q2).

Baer subgeometries play a role in Chapter 4.

A unital U in PG(2, q2) is a (q3 + 1)− (1, q + 1) set. A line is tangent or secant to U
if it intersects U in 1 or q + 1 points. The set of tangent lines to a unital form a unital in

the dual plane called a dual unital. The study of unitals begin in 1946 by Baer. He showed

that polarities were linked to ovals and unitals

Theorem 1.6.2 (Baer 1946 [8]) A polarity ρ of a projective plane of order n has at least

n + 1 absolute points. If ρ has n + 1 absolute points, then the set of absolute points of ρ is

an oval if n is odd, and a line if n is even. If ρ has more than n+ 1 absolute points, then n

is square, and if every non-absolute line has
√
n+ 1 absolute points, then the set of absolute

points is a unital.

This result was sharpened by Seib 1970 [141], who showed that a polarity of a finite

projective plane of order n has at most n3/2 + 1 absolute points, and if equality occurs, then

the set of points is a unital. Unitals in PG(2, q2) arising in this way are the classical unitals.
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Example 1.6.3 (Buekenhout 1976 [34], Metz 1979 [104], see also Grüning 1987 [71]) Let

H be a hyperplane in PG(4, q) and v a point of H. Let O be an ovoid of PG(4, q)/v for

which the plane H/v is a tangent plane. Then O is the set of generators of an ovoidal cone

C in PG(4, q) with vertex v, and H contains a unique generator `. Let S be a spread of H

containing `. Then in the Bruck–Bose translation plane π corresponding to the spread S,

U = C \ ` ∪ {`} is a unital. These are the Buekenhout–Metz unitals.

Other than hyperovals, maximal arcs, unitals and Baer subgeometries, k− (m,n) sets do

not have special names. Until recently, all known examples k−(m,n) sets with m > 0 existed

in planes of square order q, and satisfied n = m +
√
q. However, so called “non-standard”

two intersection sets exist (for example, see Batten–Dover 1999 [14]). Penttila–Royle 1995

[128] classified the two intersection sets in projective planes of order 9.

1.6.2 Strongly regular graphs

A graph Γ with v vertices is strongly regular if there exist non-negative integers k, λ, µ

such that

• each vertex is adjacent to k other vertices (i.e. Γ is regular with degree k)

• for any pair of distinct adjacent vertices, there are λ vertices adjacent to both

• for any pair of distinct non-adjacent vertices, there are µ vertices adjacent to both.

Strongly regular graphs were first defined by Bose 1963 [24] and are fundamental objects of

study in combinatorics. They are important in their own right, as well as being of interest due

to the vast number of connections betwen strongly regular graphs and other combinatorial

structures. The most famous strongly regular graph is the Petersen graph, shown in

Figure 1.8. See Hubaut 1975 [84] for an introduction to strongly regular graphs2. The

following example shows that strongly regular graphs are connected to polar spaces.

2Note however that the survey given in this paper is somewhat out of date by now.
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Figure 1.8: The Petersen graph, a strongly regular graph with v = 10, k = 3, λ = 0, µ = 1.

Example 1.6.4 (see Cohen–Neumaier 1989 [26]) Let Π be a finite polar space with n points,

s + 1 points on every line, and t + 1 lines through every point. The collinearity graph

Γ(Π) of Π is the graph with vertices the points of Π, with vertices adjacent if and only if

their corresponding points are collinear in Π. Then Γ(Π) is strongly regular with parameters

v = n, k = s(t+ 1), λ = s(t+ 1)− n−s(t+1)−1
s

− 1, and µ = t+ 1.

Most of the structures described in the preceding sections are associated with strongly

regular graphs in some way. The next two examples show that strongly regular graphs can

be constructed from semipartial geometries.

Example 1.6.5 (Bose 1963 [24]) Let P be a partial geometry with parameters s, t, α. Define

the graph Γ(P ) as follows. The vertices of Γ(P ) are the points of P , with vertices adjacent

if and only if their corresponding points are collinear in P . Then Γ(P ) is a strongly regular

graph with parameters v = (s+ 1)(st+α)/t, k = s(t+ 1), λ = (α− 1)t+ s− 1, µ = α(t+ 1).

Example 1.6.6 (Cameron 1975 [38]) Let P be a partial quadrangle with parameters s, t, µ′.

Define the graph Γ(P ) as follows. The vertices of Γ(P ) are the points of P , with vertices

adjacent if and only if their corresponding points are collinear in P . Then Γ(P ) is a strongly

regular graph with parameters v = 1 + s(t+ 1)(µ′ + st)/µ′, k = s(t+ 1), λ = s− 1, µ = µ′.
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We can also construct strongly regular graphs from two intersection sets. Note the simi-

larity to the construction in Example 1.5.17.

Example 1.6.7 (Calderbank–Kantor 1986 [37]) LetK be a k−(m,n) set in PG(2, q). Embed

PG(2, q) as a hyperplane π of PG(3, q). Define a graph Γ as follows. The vertices of Γ are the

points of PG(3, q) \ π, with vertices adjacent if and only if the line joining them in PG(3, q)

meets π in a point of K. Then Γ is a strongly regular.

We can construct strongly regular graphs from 2−(v, k, 1) designs. We give some examples

of such designs in Section 1.6.3. Since many 2− (v, k, 1) designs are known, this construction

yields many strongly regular graphs.

Example 1.6.8 (Goethals–Seidel 1970 [70]) Let D be a 2 − (v′, k′, 1) design. Define the

graph Γ(D) as follows. The vertices of Γ(D) are the blocks of D, with vertices adjacent if

and only if their corresponding blocks meet in a unique point of D. Then Γ(D) is a strongly

regular graph with parameters v = v′(v′−1)
k′(k′−1)

, k = k′(v′−k′)
k′−1

, λ = v′−1
k′−1

+ (k′ − 1)2 − 1, µ = k′2.

1.6.3 Designs

A t− (v, k, λ) design is an incidence structure (P ,B, I) with two types, usually called points

P and blocks B, with incidence defined by I = {(P,B) ∈ P × B : P ∈ B}, such that

• |P| = v

• |B| = k for all B ∈ B

• every t-subset of P is incident with exactly λ blocks.

A design is symmetric if the number of points is the same as the number of blocks.

We give some examples of designs that are related to the structures appearing in this

thesis. Firstly, designs can be constructed from projective and affine spaces in a natural way.

Example 1.6.9 Let π be a projective plane of order n. Define a design D(π) = (P ,B, I)

as follows. The points P of the design are the points of π, and the blocks B of the design
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are the lines of π, with natural incidence. Then D(π) is a 2 − (n2 + n + 1, n + 1, 1) design.

Conversely, if D is a 2 − (n2 + n + 1, n + 1, 1) design, we can define a plane π(D) whose

points are the points of D, and whose lines are the blocks of D, with natural incidence. Then

π(D) is a projective plane of order n. Similarly, we can construct a 2− (n2 + n, n, 1) design

from an affine plane of order n, and conversely. We can generalize this construction to obtain

designs from subspaces from projective and affine spaces. Consider the design PD(m,n, q)

whose points are the points of PG(n, q) and whose blocks are the m-spaces in PG(n, q).

Then PD(m,n, q) is a 2 − (v, k, λ) design with v =
[
n+1

1

]
q
, k =

[
m+1

1

]
q
, λ =

[
n−1
m−1

]
q
, where

[
n
k

]
q

= (qn−1)(qn−q)···(qn−qk−1)
(qk−1)(qk−q)···(qk−qk−1)

are the Gaussian coefficients over GF(q). Similarly, the design

AD(n,m, q) whose points are the points of AG(n, q) and whose blocks are the m-spaces of

AG(n, q) is a 2− (qn, qm, λ) design with λ =
[
n−1
m−1

]
q
.

The next two examples show how to construct designs from various two intersection sets.

Example 1.6.10 Let U be a unital in PG(2, q2). Define D(U) to be design whose points are

the points of U , and whose blocks are the (q3 + 1)-secants of PG(2, q2), together with natural

incidence. Then D(U) is a 2− (q3 + 1, q + 1, 1) design.

Example 1.6.11 (Wallis 1973 [178]) Let K be a maximal arc of degree n in a projective

plane π of order q. Define D(K) as follows. Let the points of D(K) be the points of K.

Let the blocks of D(K) be the secant lines of π. Incidence is induced from π. Then D(K)

is a 2 − (q(n − 1) + n, n, 1) design. In particular, hyperovals H in PG(2, q) correspond to

2− (q + 2, 2, 1) designs.

Generalized quadrangles of order q and (q−1, q+1) are related to strongly regular graphs,

and certain 2-designs with a polarity.

Example 1.6.12 (Payne–Thas 1984 [121]) Let S be a generalized quadrangle of order q.

Then we can define a design D(S) as follows. The points of D(S) are the points of S, and

the blocks of D(S) are the sets of the form x⊥ for x ∈ S, together with natural incidence.

Then D is a symmetric 2− (q3 + q2 + q + 1, q2 + q + 1, q + 1) design. The map x 7→ x⊥ is a
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a null polarity of D. The incidence graph of this design is strongly regular with µ = λ + 1.

Conversely, any strongly regular graph with µ = λ+ 1 is associated with a symmetric design

with a null polarity. Similarly, let T be a generalized quadrangle of order (q−1, q+1). Define

the design D(T ) as follows. The points of D(T ) are the points of T , and the blocks of D(T )

are sets of the form x⊥ \ {x}, together with natural incidence. Then D(T ) is a symmetric

2 − (q3 + 2q2, q2 + q, q) design. The map x 7→ x⊥ \ {x} is a conull polarity of D(T ). The

incidence graph of this design is strongly regular with µ = λ. Conversely, any strongly regular

graph with µ = λ is associated with a symmetric design with a conull polarity. Note that

via the construction of Example 1.5.14, hyperovals in PG(2, q) give generalized quadrangles

of order (q − 1, q + 1), and hence are associated with 2 − (q3 + 2q2, q2 + q, q) designs and

strongly regular graphs with µ = λ.

1.7 Classical groups

One of the most successful approaches to the study of polar spaces is via symmetry. Let V

denote a vector space of dimension d+1 over the finite field F = GF(q). The general linear

group GL(d+ 1, q) consists of the invertible linear maps from V to V . The special linear

group SL(d+ 1, q) consists of those maps in GL(d+ 1, q) of determinant 1. The center of

GL(d+ 1, q) consists of the non-zero scalar matrices, which is isomorphic to F ∗, and with

a slight abuse of notation we write F ∗ ≤ GL(d+ 1, q). The projective general linear

group PGL(d+ 1, q) is GL(d+ 1, q)/F ∗, and if X is any subgroup of GL(d+ 1, q), we write

P X for the corresponding projective group X/ (X ∩ F ∗). Thus, for example, the projective

special linear group is defined to be PSL(d+ 1, q) = SL(d+ 1, q)/ (F ∗ ∩ SL(d+ 1, q)). The

general semilinear group ΓL(d+ 1, q) consists of the invertible semilinear transformations

from V to V , and clearly ΓL(d+ 1, q)/GL(d+ 1, q) is isomorphic to AutF . As above, we

can consider the projective semilinear group PΓL(d+ 1, q) = ΓL(d+ 1, q)/F ∗, and more

generally, define P X for any subgroup X of ΓL(d+ 1, q).

Now let us add some more structure to V . Motivated by our earlier discussion, let κ

33



denote either a reflexive sesquilinear form3, or a quadratic form on V . Thus κ : V m → F ,

where m = 1 or 2. We sometimes call (V, κ) a space with form. Let v = (v1, . . . , vm) ∈ V m

denote a tuple in the domain of κ, and for g ∈ ΓL(d+ 1, q), define gv = (gv1, . . . , gvm).

Let g ∈ GL(d+ 1, q). Then g is an isometry of (V, κ) if κ(gv) = κ(v) for all v ∈ V m.

The set of isometries of (V, κ) is denoted I(d + 1, q, κ). An element g ∈ I(d + 1, q, κ) is a

special isometry if g is also in SL(d+ 1, q). The special isometries form a group denoted

S(d + 1, q, κ). An element g ∈ GL(d+ 1, q) is a similarity if there exists some λ ∈ F ∗

such that κ(gv) = λκ(v) for all v ∈ V m. The constant λ is the constant of similitude

of g. The group of similarities is denoted ∆(d + 1, q, κ). An element g ∈ GL(d+ 1, q) is a

semisimilarity if there exists some λ ∈ F ∗, and some α ∈ AutF , such that κ(gv) = λκ(v)α

for all v ∈ V m. The group of semisimilarities is denoted Γ(d + 1, q, κ). It turns out that

in the case that κ is orthogonal, the group S(d + 1, q, κ) contains a certain subgroup of

index 2. We define Ω(d + 1, q, κ) to be this certain subgroup when κ is orthogonal, and

Ω(d+ 1, q, κ) = S(d+ 1, q, κ) otherwise.

As a matter of convenience, we shall write X = X(d + 1, q, κ), where X ranges over the

symbols Ω, S, I, ∆, and Γ. We therefore obtain a chain of subgroups

Ω ≤ S ≤ I ≤ ∆ ≤ Γ.

Information about terminology and notation for the various cases of κ is given in Table 1.2.

For the sake of efficiency, when κ is orthogonal, we use ε ∈ {+,−, ·} to denote the three

classes of orthogonal forms. For example, the group I(d + 1, q, κ) is denoted O+(d+ 1, q)

when κ is the quadratic form of plus type, O−(d+ 1, q), when κ is the quadratic form of

minus type, and O(d+ 1, q) when κ is the quadratic form of blank type. To denote the

projective versions of these groups, we precede the symbol appearing in the fourth column

of Table 1.2 with the symbol P. For example, the group PGU(d+ 1, q) denotes the group

GU(d+ 1, q) modulo scalars.

3If κ is hermitian, then V is over the field F = GF(q2), but we will continue to use q while considering
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Table 1.2: A summary of information relevant to certain classical groups.

Name κ X Notation Geometry

Ω = S SL(d+ 1, q)
linear zero I = ∆ GL(d+ 1, q) PG(d, q)

Γ ΓL(d+ 1, q)

Ω = S SU(d+ 1, q2)
I U(d+ 1, q2)

unitary hermitian ∆ GU(d+ 1, q2) H(d, q2)
Γ ΓU(d+ 1, q2)

Ω = S = I Sp(d+ 1, q)
symplectic alternating ∆ GSp(d+ 1, q) W(d, q)

Γ ΓSp(d+ 1, q)

Ω Ωε(d+ 1, q)
S SOε(d+ 1, q)

orthogonal quadratic I Oε(d+ 1, q) Qε(d, q)
∆ GOε(d+ 1, q)
Γ ΓOε(d+ 1, q)

We end with a powerful result from the theory of categories, first proved by Witt in 1936

for symmetric and hermitian forms over fields of characteristic not 2.

Theorem 1.7.1 (Witt 1936 [181]) Suppose V1 and V2 are spaces with forms, and U1 and U2

are subspaces of V1 and V2, respectively. Then any isometry from U1 to U2 extends to an

isometry from V1 to V2.

We remark that we can replace isometries by special isometries in the statement of Witt’s

theorem, provided that the dimension of V1 and V2 is at least 2.

This seemingly innocuous theorem has many important consequences. Indeed, it is a

fundamental tool in the study of the classical polar spaces. For example, we can use Witt’s

Theorem to show that any two maximal totally isotropic subspaces of a space with form have

the same dimension.

Let M , N be maximal totally isotropic subspaces of V . Without loss of generality,

general κ, so as not to furthur complicate the notation (see Footnote 1).
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dimM ≤ dimN . There is clearly an isomorphism g from M into N , and this is an isometry

since M and N are totally isotropic. By Witt’s Theorem, this isometry extends to an isometry

h from V onto V , and M ⊆ h−1(N). Since M is maximal and h−1(N) is totally isotropic,

M = h−1(N), and hence dimM = dimN . The dimension of a maximal totally isotropic

subspace is called the Witt index of V , and when the form is non-degenerate, is at most

half the dimension of the underlying vector space. A similar argument holds for totally

singular subspaces in the case of an orthogonal space. In this case, the Witt index will be

equal to one more than the dimension of a maximal totally singular subspace contained in

the quadric.
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Chapter 2

Hyperovals in Desarguesian planes

2.1 Introduction

Studying symmetries of configurations in finite Desarguesian projective planes need not in-

volve the use of deep group theory, since the subgroup structure of the collineation groups

of these planes has been known since the work of Mitchell 1911 [105] for odd characteris-

tic, and of his student Hartley 1925 [75] for characteristic two. Despite this advantage we

still know very little about even the symmetries of well-studied objects like hyperovals. For

example, we do not even know whether or not the regular hyperovals are characterized (for

planes of order greater than 2) by the property of admitting an insoluble group. Indeed, the

results of Section 2.4 can be viewed as a failed attempt at such a characterization. The rich

man/poor man result in Theorem 2.4.8 can be considered a post facto explanation of the fact

that all hyperovals of finite Desarguesian projective planes discovered since 1957 have such

small groups. The final section in the chapter, Section 2.5, deals with the original motivating

purpose for this work – the calculation of the groups of the last family of known hyperovals

for which the problem is still open – those of Cherowitzo 1998 [43].

The groups of the Adelaide hyperovals of Cherowitzo–O’Keefe–Penttila 2003 [45] were

calculated by Payne–Thas 2005 [122], the groups of the Subiaco hyperovals of Cherowitzo–

Penttila–Pinneri–Royle 1996 [44] were calculated by combined results of O’Keefe–Thas 1996

[112] and Payne–Penttila–Pinneri (1995) [120], and the groups of the hyperovals of Payne 1985

[118] were calculated by Thas–Payne–Gevaert 1988 [159], with all three using the beautiful

method of associating a curve of fixed degree with the hyperoval and using Bezout’s theorem.

(For earlier hyperovals, see, for example O’Keefe–Penttila 1994 [110]). But the attempt of

O’Keefe–Thas 1996 [112] to apply this method to the Cherowitzo hyperovals only gave partial

results, leading to the technical difficulties and subtlety of the proof of Penttila–Pinneri 1999
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[126] that the Cherowitzo hyperovals are new for fields of order greater than 8. Subtlety

is only necessary when faced with paucity of knowledge, and their results are an immediate

corollary of our determination of the groups of the Cherowitzo hyperovals in Section 2.5. But

our methods are far from beautiful. We apply the magic action of O’Keefe–Penttila 2002 [111],

to perform fiendishly difficult computations in order to show that the homography groups of

the Cherowitzo hyperovals are trivial. We resort to the use of the computer algebra packages

Mathematica and Magma at crucial stages in the computations. The preceding sections form

yet another failed attempt to perform this computation purely theoretically.

It seems that we still understand these hyperovals poorly. It is of note that it took 14

years to prove the generalization of the first examples found to an infinite family, and that

the proof is lengthy and involved. Perhaps a beautiful proof exists and merely eludes us,

owing to our poor understanding of these mysterious objects.

To be more exact about the general results about stabilizers of hyperovals that we obtain,

combining Theorem 2.4.6 and the Remark that follows it shows that if a hyperoval H of

PG(2, q), q > 4 admits an insoluble group G, then there is a subplane π0 of order q0 > 2

meeting H in a regular hyperoval such that G ∩ PGL(3, q) induces PGL(2, q0) on π0, and if

H is irregular, then q > q2
0. We also (sharply) bound above the order of the homography

stabilizer of a non-translation hyperoval of PG(2, q) by 3(q − 1) in Theorem Theorem 2.4.8.

2.2 A Survey of hyperovals in PG(2, q)

2.2.1 Elementary results

An arc in a projective plane is a set of points such that no three are collinear. Bose 1947

[23] proved that an arc in a projective plane of order n has size at most n + 1 if n is odd,

and size at most n+ 2 if n is even. An oval of a projective plane of order n is an arc of size

n+ 1 and a hyperoval of a projective plane of order n

Example 2.2.1 (Baer 1946 [8], Bose 1947 [23]) A conic in PG(2, q) is the set of zeroes of

a non-degenerate homogeneous quadratic polynomial in three variables over GF(q). A conic
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in PG(2, q) is an oval of PG(2, q). Since all conics are equivalent under the automorphism

group PΓL(2, q) of PG(2, q), we may assume that a conic C is the set of zeroes of y2 − xz,

and hence up to equivalence a conic C in PG(2, q) can be written as

C = {(1, t, t2) : t ∈ GF(q)} ∪ {(0, 0, 1)}.

This example shows that conics give ovals, and it is natural to ask about the converse.

At a conference in Trodheim, Järnefelt and Kustaanheimo 1949 [86] conjectured that every

oval of PG(2, p), p prime, is a conic. In his review of [86], Marshall Hall Jr. said that he

found this conjecture implausible.

Theorem 2.2.2 (Segre 1955 [134]) An oval of PG(2, q), q odd, is a conic.

In his review of [134], Marshall Hall Jr. said “The fact that this conjecture seemed

implausible to the reviewer seems to have been at least a partial incentive to the author

to undertake this work. It would be very gratifying if further expressions of doubt were as

fruitful.”

A line in a projective plane is external, tangent or secant to an arc, accordingly as it

meets the arc in 0, 1 or 2 points.

Theorem 2.2.3 (Qvist 1952 [130]) The tangent lines to an oval of a projective plane are

concurrent if the order of the plane is even, and form an oval of the dual plane if the order

of the plane is odd.

The intersection of the tangent lines to an oval in a projective plane of even order is called

the nucleus of the oval. The union of an oval and its nucleus is a hyperoval.

Example 2.2.4 (Bose 1947 [23]) The union of a conic of PG(2, q), q even, and its nucleus

is a hyperoval of PG(2, q). A hyperoval of this form is called a regular hyperoval. Up to

equivalence, a regular hyperoval H of PG(2, q) can be wriiten as

H = {(1, t, t2) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}.
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Two ovals arising from the same hyperoval H are equivalent if and only if their nuclei are

in the same orbit of the stabilizer of H in the collineation group of the plane. This gives one

motiviation for interest in stabilizers of hyperovals.

Theorem 2.2.5 (Segre 1957 [135], Segre 1962 [136]) The stabilizer of a regular hyperoval H
of PG(2, q), q even, in PΓL(3, q) acts transitively if q = 2, in which case it is permutation

equivalent in its action on H to S4 on {1, 2, 3, 4} or if q = 4, in which case it is permutation

equivalent in its action on H to S6 on {1, 2, 3, 4, 5, 6} but fixes a point (the nucleus of the

unique conic C it contains) if q > 4, in which case it is permutation equivalent in its action

on C to PΓL(2, q))on PG(1, q).

For q even, q > 4, if C is a conic with nucleus N and P ∈ C, then (C ∪ {N}) \ {P} is

an oval inequivalent to a conic, called a pointed conic. The next result classifies ovals and

hyperovals in Desarguesian projective planes of order up to 8.

Theorem 2.2.6 (Segre 1957 [135], Sce 1960 [131]) All hyperovals of PG(2, q) are regular for

q = 2, 4, 8. Hence all ovals of PG(2, q) are conics for q = 2, 4 and all ovals of PG(2, 8) are

conics or pointed conics.

The next natural question is whether irregular hyperovals of PG(2, q) exist for q > 8.

The following construction answers this question in the affirmative.

Example 2.2.7 (Segre 1957 [135]) The set

H = {(1, t, tα) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

is a hyperoval of PG(2, q), q even, if α is a generator of Aut GF(q). It is irregular if neither

α nor α−1 is the Frobenius map x 7→ x2. In this case, the stabilizer of H in PΓL(3, q) fixes

(0, 1, 0) and (0, 0, 1) and is permutation equivalent in its action on H \ {(0, 1, 0), (0, 0, 1)} to

AΓL(1, q) on GF(q).

The hyperovals arising from this construction have a particularly nice property. A trans-

lation oval O is an oval for which there is a tangent line ` such that the group of all elations
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with axis ` and stabilising O acts regularly on O \ `. In this case, ` is called an axis of

O. A translation hyperoval is a hyperoval containing a translation oval. It is not hard

to see that the hyperovals of Example 2.2.7 are translation hyperovals of PG(2, q), q even.

In particular, conics are translation ovals, and every tangent line to a conic is an axis, and

so regular hyperovals are translation hyperovals. It turns out that all translation hyperovals

arise this way.

Theorem 2.2.8 (Payne 1971 [115]) Every translation hyperoval of PG(2, q) is equivalent to

{(1, t, tα) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)},

for some generator α of Aut GF(q).

The translation hyperovals give examples of irregular hyperovals in PG(2, 32) and in

PG(2, 2h) for h > 6, while Example 2.2.6 shows that there are no irregular hyperovals in

PG(2, 2h) for h < 4. This raises the question of the existence of irregular hyperovals in

PG(2, 16) and PG(2, 64), first raised by Segre in 1955 [134]. We will answer this question in

Section 2.2.3.

Given the form of the hyperovals in Example 2.2.4, Example 2.2.7 and Theorem 2.2.19,

it is not surprising that hyperovals can be put in a canonical form.

Theorem 2.2.9 (Segre 1962 [136]) Any hyperoval H of PG(2, q), q even, through (0, 1, 0)

and (0, 0, 1) can be written as

H = D(f) = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

for some permutation f : GF(q)→ GF(q). Moreover, if f : GF(q)→ GF(q) is a permutation,

H = D(f) = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

is a hyperoval if and only if for all x ∈ GF(q), the slopes f(x)+f(y)
x+y

are distinct for all y ∈
GF (q), with y 6= x.

41



Such a permutation f is called an o-polynomial for H, provided f(0) = 0 and f(1) = 1.

If we drop the condition that f(1) = 1 (or equivalently, we drop the condition that the oval

passes through (1, 1, 1)) but retain the other conditions, then f is called an o-permutation

for H. We can say more about the terms appearing in an o-polynomial.

Theorem 2.2.10 (Segre 1962 [136], Segre–Bartocci 1971 [140]) Every o-polynomial can be

written in the form

a2x
2 + a4x

4 + · · ·+ aq−2x
q−2,

for q > 2.

In light of Theorem 2.2.9 and Theorem 2.2.10, it makes sense to try to categorize hyper-

ovals in terms of their o-polynomials. The simplest case is when a hyperoval has a monomial

o-polynomial.

2.2.2 Monomial hyperovals

A monomial hyperoval of PG(2, q) is a hyperoval equivalent to D(xn) for some integer

n. We sometimes write D(n) for D(xn) when a hyperoval is monomial. We have already

described some monomial hyperovals, namely the regular hyperoval D(x2) of Example 2.2.4,

and the hyperovals D(xα) of Example 2.2.7, where α is a generator of Aut GF(q). Using

Theorem 2.2.9 it is possible to derive necessary and sufficient conditions for the polynomial

xn to be an o-polynomial.

Theorem 2.2.11 (Segre 1962 [136], Segre–Bartocci 1971 [140]) D(xn) is a hyperoval of

PG(2, q), q even, if and only if (n, q − 1) = (n− 1, q − 1) = 1 and x 7→ ((x + 1)n + 1)/x is

a permutation of GF(q)∗. In this case n and n − 1 are units modulo q − 1, and D(xn) is

equivalent to D(xm) if and only if m = n, 1−n, n/(n− 1), 1/n, (n− 1)/n or 1/(1−n)modulo

q − 1.

We can apply this result to get the following hyperovals.
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Theorem 2.2.12 (Segre 1962 [136], Segre–Bartocci 1971 [140]) D(x6) is a hyperoval of

PG(2, 2h) for h odd. It is not a translation hyperoval for h ≥ 5.

The hyperoval D(x6) of PG(2, 2h), h odd, is known as the Segre–Bartocci hyperoval.

Theorem 2.2.13 (Eich–Payne 1972 [60], Hirschfeld 1975 [82]) D(x20) is a hyperoval of

PG(2, 128). It is not a translation hyperoval, nor is it equivalent to D(x6).

In Glynn 1989 [69], a partial order G was introduced on the integers modulo q − 1 by

aG b if the binary expansion of b dominates the binary expansion of a.

Theorem 2.2.14 (Glynn 1989 [69]) A polynomial f over GF(q) with f(0) = 0 and f(1) = 1

is an o-polynomial over GF(q) if and only if the coefficient of xc in f(x)b (mod xq − x) is

zero for all pairs of integers (b, c) satisfying 1 ≤ b ≤ c ≤ q − 1 with b 6= q − 1 and bG c.

Applying Theorem 2.2.14 to a monomial function xn, for n = 1, 2, . . . , q − 2, we see that

D(xn) is an o-polynomial if and only if for all d = 1, 2, . . . , q − 2, it is not that case that

dGnd. This result appears in Glynn 1983 [67] (and so predates [69]) and allowed for efficient

programs to search for monomial hyperovals over small fields. By doing this Glynn discovered

two new infinite families of hyperovals.

Theorem 2.2.15 (Glynn 1983 [67]) Let q = 2h, h odd, σ ∈ Aut GF(q) such that σ2 ≡ 2

(mod q − 1), and let λ ∈ Aut GF(q) such that λ2 ≡ σ (mod q − 1). Then D(xσ+λ) is a

hyperoval of PG(2, 2h). Also, D(x3σ+4) is a hyperoval of PG(2, 2h).

D(xσ+λ) is regular for h = 1, 3, irregular translation for h = 5, Eich–Payne/Hirschfield

for h = 7, and new for h > 7. D(x3σ+4) is regular for h = 1, 3, irregular translation for h = 5,

Segre–Bartocci for h = 7, equivalent to D(xσ+λ) for h = 9, and new for h > 9.

At the time of their construction the Glynn hyperovals were the first new infinite family

of hyperovals for over twenty years; their discovery marked the beginning of an era in which

a constant stream of new hyperovals emerged. It is also significant that this was the first

instance of a computer being used in the construction of an infinite family of hyperovals.
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Although the proofs in Glynn 1983 [67] are computer free, the use of computer technol-

ogy was essential in the discovery of these hyperovals, and this is true of the discovery of

most subsequent hyperovals. We look more closely at computer searches for hyperovals in

Section 2.2.3.

In his paper Glynn also conjectured that there were no more monomial hyperovals, and

this question is still open. Using Theorem 2.2.14, he implemented a fast algorithm and

searched for all monomial o-polynomials in PG(2, 2h) for h ≤ 19. He subsequently extended

the search and found no new hyperovals.

Theorem 2.2.16 (Glynn 1989 [69], computer assisted) For h ≤ 28 the only monomial hy-

perovals of PG(2, 2h) are the translation hyperovals, the Segre-Bartocci hyperovals and the

two families of Glynn hyperovals.

It seems likely that with the increase of computer power since 1989 that this result could

be extended to larger field orders, however the fact that no new hyperovals were found for

h ≤ 28 suggests that a classification of the monomial hyperovals is required and that further

computer searches will not be of any use. The first significant result on the classification of

monomial hyperovals is the following two bit theorem.

Theorem 2.2.17 (Cherowitzo–Storme 1998 [46]) D(k) with k = 2i+2j, i 6= j, is a hyperoval

in PG(2, 2h) if and only if h = 2e − 1 is odd, and one of the following holds: (1) k = 6

(Segre–Bartocci hyperoval); (2) k = σ + 2 and σ = 2e (translation hyperoval); (3) σ + λ with

σ = 2e, λ2 = σ (Glynn hyperoval); (4) k = 3/4 (translation hyperoval).

This theorem has been extended to a classification of all monomial hyperovals with ex-

ponent having three bits.

Theorem 2.2.18 (Cherowitzo–Vis 2012 [176]) If D(k) with k = 2i1 + 2i2 + 2i3 is a hyperoval

in PG(2, q), then it is either a translation hyperoval, a Segre hyperoval, or a Glynn hyperoval.
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2.2.3 Hyperovals from computer searches

In 1958, Lunelli and Sce conducted a computer search for hyperovals in small order planes

at the suggestion of Segre. They found an irregular hyperoval in PG(2, 128), thus answering

the question posed by Segre only a year earlier.

Theorem 2.2.19 (Lunelli–Sce 1958 [102]) The set

L ={(1, t, η12t2 + η10t4 + η3t8 + η12t10 + η9t12 + η4t14) : t ∈ GF(q)}

∪ {(0, 1, 0), (0, 0, 1)}

is an irregular hyperoval of PG(2, 16), where η ∈ GF(16) satisfies η4 = η + 1.

The Lunelli–Sce Hyperoval was the first hyperoval discovered that was not equivalent

to one described by a monomial o-polynomial. For many years it was unclear whether L
was contained in an infinite family of hyperovals or was in some sense sporadic. It was

only recently that the question was resolved, as L was placed into two infinite families

of hyperovals. The construction of these infinite families is complex, and reveals a deep

connection between seemingly unrelated structures. We shall review these constructions in

Section 2.2.4.

In O’Keefe–Penttila 1991 [109], the authors search for hyperovals in PG(2, 32) under

certain hypotheses on the order of the automorphism group of the putative hyperoval.

Theorem 2.2.20 (O’Keefe–Penttila 1992 [109], computer assisted) D(f) is a new hyperoval

of PG(2, 32), where

f(t) = t4 + η11t6 + η20t8 + η11t10 + η6t12 + η11t14 + t16

+ η11t18 + η20t20 + η11t22 + η6t24 + η11t26 + t28,

and η ∈ GF(32) satisfies η5 = η2 + 1. The full stabiliser of this hyperoval in PΓL(3, 32) has

order 3.

One of the intriguing properties of the O’Keefe-Penttila hyperoval is its reluctance to

be a member of an infinite family. It is known not to be a member of any of the existing infinite
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families of hyperovals, and moreover, it is also known not to arise by general construction

methods that yield all other known hyperovals.

By extending the methods of [109] to PG(2, 64), Penttila and Pinneri were able to search

for hyperovals whose automorphism group admitted a collineation of order 5. They found

two such hyperovals and showed that no other hyperovals with this property existed, thus

solving the part of Segre’s question left open by Lunelli and Sce 36 years earlier.

Theorem 2.2.21 (Penttila–Pinneri 1994 [125], computer assisted) There is an irregular hy-

peroval D(f) in PG(2, 64) with full stabiliser in PΓL(3, 64) of order 60, and another D(g)

with full stabiliser in PΓL(3, 64) of order 15, where

f(x) = x8 + x12 + x20 + x22 + x42 + x52

+ β21
(
x4 + x10 + x14 + x16 + x30 + x38 + x44

+x48 + x54 + x56 + x58 + x60 + x62
)

+ β42
(
x2 + x6 + x26 + x28 + x32 + x36 + x40

)
,

and

g(x) = x24 + x30 + x62

+ β21
(
x4 + x8 + x10 + x14 + x16 + x34 + x38

+x40 + x44 + x46 + x52 + x54 + x58 + x60
)

+ β42
(
x6 + x12 + x18 + x20 + x26 + x32 + x36

+x42 + x48 + x50
)
,

and β is a primitive element of GF(64) satisfying β6 = β + 1.

By refining the previous search algorithm, Penttila and Royle were able to extend the

search to hyperovals admitting an automorphism of order 3, and found further hyperovals.
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Theorem 2.2.22 (Penttila–Royle 1995 [127], computer assisted) There is an irregular hy-

peroval D(f) in PG(2, 64) with full stabiliser in PΓL(3, 64) of order 12, where

f(x) = x4 + x8 + x14 + x34 + x42 + x48 + x62

+ β21(x6 + x16 + x26 + x28 + x30 + x32 + x40 + x58)

+ x18 + x24 + x36 + x44 + x50 + x52 + x60

where β is a primitive element of GF(64) satisfying β6 = β + 1.

Theorem 2.2.23 (Penttila–Royle 1995 [127], computer assisted) There is a non-monomial

hyperoval of PG(2, 128) with full stabilizer in PΓL(3, 128) of order 14 which is inequivalent

to the Payne and Cherowitzo hyperovals. There are at least two inequivalent non-translation

hyperovals of PG(2, 256) with full stabiliser in PΓL(3, 256) of order 16.

It is clear from the complexity of the o-polynomials associated with these hyperovals

that they were not found by traditional analytic techniques. Indeed, the existence of such

complicated o-polynomials seems to suggest that classification of hyperovals is a very difficult

problem. Before further progress could be achieved, it was clear that new techniques were

required. We investigate some of these techniques in Section 2.2.4.

2.2.4 Hyperovals from q-clans

Let C be a conic in PG(2, q), and let PG(2, q) be embedded as a hyperplane in PG(3, q). For

a point v ∈ PG(3, q) \ PG(2, q), the union of the points on the lines incident with v and a

point of C is the quadratic cone with vertex v and base O. A flock of a quadratic cone

K with vertex v is a set of q planes which partitions K \ {v} into disjoint conics. Flocks will

be explored in detail in Chapter 3.

Choose K = {(x, y, z, w) : y2 = xz} as the quadratic cone. The planes determining the

flock would thus satisfy equations of the form atx+ bty+ cty+w = 0 for t ∈ GF(q). The set

of matrices {(
at bt
0 ct

)
: t ∈ GF(q)

}
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has the property that the difference of any two distinct matrices is anisotropic, that is,

the equation x(As − At)xt = 0 has only the trivial solution for s 6= t. A set of q matrices

{At : t ∈ GF(q)} indexed by GF(q) such that the difference of distinct matrices is anisotropic

is called a q-clan. Without loss of generality we an assume that At =

(
f(t) t1/2

0 ag(t)

)
, where

trace (a) = 1, f, g : GF(q)→ GF(q), f(0) = g(0) = 0, f(1) = g(1) = 1, and

trace

(
a(f(s) + f(t))(g(s) + g(t))

s+ t

)
= 1

for all s, t ∈ GF(q), s 6= t. Such a q-clan is called normalized if it is in this standard form.

The relationship between q-clans and ovals is described in the following theorem.

Theorem 2.2.24 (Payne 1985 [118], Cherowitzo–Penttila–Pinneri–Royle 1996 [44]) Let q be

even. Let f, g : GF(q)→ GF(q) with f(0) = g(0) = 0, f(1) = g(1) = 1. Then

trace

(
κ(f(s) + f(t))(g(s) + g(t))

s+ t

)
= 1

if and only if g is an o-polynomial, fs is an o-polynomial for all s ∈ GF(q), where

fs(x) =
f(x) = κsg(x) + s1/2x1/2

1 + κs+ s1/2
,

and trace (κ) = 1.

A herd of ovals in PG(2, q), q even, is a family of q + 1 ovals {Os : s ∈ GF(q) ∪ {∞}},
each containing (1, 0, 0), (0, 1, 0), and (1, 1, 1), and with nucleus (0, 0, 1), with

Os = {(1, t, fs(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}, s ∈ GF(q),

O∞ = {(1, t, g(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)},

where

fs(t) =
f(x) = κsg(x) + s1/2x1/2

1 + κs+ s1/2
,

for some κ with trace (κ) = 1. We define a herd of hyperovals in the natural way.

Thus, Theorem 2.2.24 says that for q even, a q-clan gives rise to a herd of ovals of PG(2, q),

and conversely. q-clans are also linked to other structures, for example, there is a connection
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between q-clans and generalized quadrangles, a connection between q-clans and flocks of

the quadratic cone, and a connection between flocks of the quadratic cone and translation

planes. These connections will be explored in Chapter 3. Given a q-clan C, we denote by

H(C) the corresponding herd, GQ(C) the corresponding generalized quadrangle, F(C) the

corresponding flock, and π(C) the corresponding translation plane.

Example 2.2.25 (Thas 1987 [151]) For q = 2h,

C1 =

{(
t1/2 t1/2

0 κt

)
: t ∈ GF(q)

}
,

for a ∈ GF(q), trace (a) = 1, is the classical q-clan. The associated flocks F(C1) are

the linear flocks. The herd H(C1) consists of q + 1 nondegenerate conics. The generalized

quadrangle GQ(C1) is isomorphic to H(3, q2), and the translation plane π(C1) is Desarguesian.

Example 2.2.26 (Fisher–Thas 1979 [64], Walker 1976 [177], Kantor 1980 [90], Betten 1973

[17]) For q = 2h, h odd,

C2 =

{(
t1/4 t1/2

0 t3/4

)
: t ∈ GF(q)

}

is the FTWKB q-clan. The flock F(C2) is due to Fisher–Thas 1979 [64], and is linear when

q = 2. The translation plane π(C2) is due to Walker 1976 [177], and independently, Betten

1973 [17]. The generalized quadrangle GQ(C2) is due to Kantor 1980 [90]. The herd H(C2)

consists of q + 1 irregular translation ovals if q > 2.

The examples of q-clans given so far have not yielded any new hyperovals. At the time

of publication, the following example of Payne 1985 [118] constructs the first infinite family

of non-monomial hyperovals, and the only known examples of such a hyperoval apart from

the example of Lunelli Sce 1958 [102].

Example 2.2.27 (Payne 1985 [118]) For q = 2h, h odd,

C3 =

{(
t1/6 t1/2

0 t5/6

)
: t ∈ GF(q)

}

is the Payne q-clan. It is classical if and only if q = 2, and FTWKB if and only q = 8.

The herd H(C3) consists of two Segre–Bartocci hyperovals and q − 1 previously unknown

hyperovals, the Payne hyperovals, which are equivalent to D(x1/6 + x1/2 + x5/6).
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Example 2.2.28 (Cherowitzo–Penttila–Pinneri–Royle 1996 [44]) For q = 2h,

C4 =

{(
f(t) t1/2

0 κg(t)

)
: t ∈ GF(q)

}

is a q-clan, where

κ =
d2 + d5 + d1/2

d(1 + d+ d2)

f(x) =
d2(x4 + x) + d2(1 + d+ d2)(x3 + x2)

(x2 + dx+ 1)2
+ x1/2

g(x) =
d4x4 + d3(1 + d2 + d4)x3 + d3(1 + d2)x

(d2 + d5 + d1/2)(x2 + dx+ 1)2
+

d1/2

(d2 + d5 + d1/2)
x1/2

and d ∈ GF(q) with d2 + d + 1 6= 0 and trace (1/d) = 1. This is the Subiaco q-clan. It

is classical if and only if q = 2 or 4, and FTWKB (or Payne) if and only if q = 8. The

herd H(C4) consists of new hyperovals, the so-called Subiaco hyperovals D(f), D(g), and

D(f(x) + sg(x) + s1/2x1/2), for each s ∈ GF(q). When h ≡ 2 (mod 4), up to isomorphism

there are two Subiaco hyperovals, and when h 6≡ 2 (mod 4), up to isomorphism there is only

one. The Subiaco hyperovals are not equivalent to any other known family for q > 32. When

q = 16, the associated flock F(C4) is due to DeClerk–Herssens 1993 [157]. The Subiaco

hyperovals include the Penttila–Royle 1995 [127] hyperovals for q = 128 and q = 256 (in the

former case just one of them), the Penttila–Pinneri 1994 [125] hyperovals for q = 64 (both of

them), the Payne 1985 [118] hyperoval for q = 32 and the Lunelli–Sce 1958 [102] hyperoval

for q = 16 as special cases.

Example 2.2.29 (Cherowitzo–O’Keefe–Penttila 2003 [45]) Let β ∈ GF(q2), β 6= 1 such that

βq+1 = 1. Define T (x) = x+ xq for all x ∈ GF(q2), q = 2h, m = (q − 1)/3. Then

C5 =

{(
f(t) t1/2

0 κg(t)

)
: t ∈ GF(q)

}

is a q-clan, for q = 4h, where

κ =
T (βm)

T (β)
+

1

T (βm)
+ 1

f(t) =
T (βm)(t+ 1)

T (β)
+

T ((βt+ βq)m)

t(β)(t+ T (β)t
1
2 + 1)m−1

+ t
1
2

κg(t) =
T (βm)

T (β)
t+

T ((β2 + 1)m)

t(β)T (βm)(t+ T (β)t1/2 + 1)m−1
+

1

T (βm)
t1/2.
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This is the Adelaide q-clan, and the hyperovals D(f) are the Adelaide hyperovals. The

Adelaide hyperovals include the second Penttila–Royle 1995 [127] hyperoval for q = 256, the

Penttila–Royle 1994 [125] hyperoval for q = 64 and the Lunelli–Sce 1958 [102] hyperoval for

q = 16, as special cases. They are not translation hyperovals for q > 4 and not Subiaco

hyperovals for q > 16, and are hence not equivalent to a known family.

2.2.5 Hyperovals from α-flocks

Cherowitzo 1998 [43] generalizes the work in Section 2.2.4 by applying the concept of a flock

to the more general cones over translation ovals, and develops the analogous theory which

depends on automorphisms of the underlying field. He defines an α-cone in PG(3, q) to be

the set of points Σα = {(x, y, z, w) : yα = xzα−1} together with vertex (0, 0, 0, 1), where α is

an automorphism of GF(q) generating Aut GF(q). An α-flock is a set of q planes of PG(3, q)

not passing through the vertex which do not intersect each other in a point of Σα. An α-clan

is a set of q upper triangular matrices

{(
at bt
0 ct

)
: t ∈ GF(q)

}

such that there exists a κ ∈ GF(q) with trace (κ) = 1 such that

trace

(
κ

(at + as)
1/(α−1)(ct + cs)

(bt + bs)α/(α−1)

)
= 1

for all s 6= t. A new definition of a herd is also given. With these definitions, there are

connections between α-clans, α-flocks, and hyperovals, the most important for us is given in

the following theorem.

Theorem 2.2.30 (Cherowitzo 1998 [43]) If

{(
f(t) t1/α

0 g(t)

)
: t ∈ GF(q)

}

is an α-clan then f(t) is an o-polynomial.

By using this theorem, the last known family of hyperovals is constructed.

51



Theorem 2.2.31 (Cherowitzo 1998 [43]) Let q = 2h, h odd, σ2 ≡ 2 (mod q − 1). Then
{(

f(t) t1/α

0 g(t)

)
: t ∈ GF(q)

}

is an α-clan, for α = σ, where

f(t) = tσ + tσ+2 + t3σ+4,

g(t) = tσ + t3σ+2 + t3σ+6 + t5σ+4 + t5σ+8 + x7σ+10 + x9σ+12.

Hence, D(xσ + xσ+2 + x3σ+4) are hyperovals of PG(2, 2h), h odd, known as the Cherowitzo

hyperovals. These hyperovals are not equivalent to any known family of hyperovals for

q > 8.

Note that the definition of an α-clan includes q-clans in the special case α = 2. Cherowitzo

1998 [43] shows that both of the Glynn hyperovals have o-polynomials arising from an α-clan

for α = σ. This means that all known hyperovals with the exception of the O’Keefe-Penttila

1991 hyperoval in PG(2, 32) contain ovals equivalent to one contained in an oval herd of an

α-clan. Cherowitzo 1998 [43] conjectures that there is a missing α-clan having an oval herd

containing ovals from this hyperoval, however this has been disproved by Brown–O’Keefe–

Penttila–Royle 2007 [28].

2.2.6 Summary

There are 10 known infinite families of hyperovals in PG(2, q): the regular hyperovals, the

translation hyperovals of Segre 1957 [135], the hyperovals of Segre–Bartocci 1971 [140], the

two families of hyperovals of Glynn 1983 [67], the hyperovals of Payne 1985 [118], the two

families of Subiaco hyperovals of Cherowitzo–Penttila–Pinneri–Royle 1996 [44], the hyper-

ovals of Cherowitzo 1998, and the Adelaide hyperovals of Cherowitzo–O’Keefe–Penttila 2003

[45]. Moreover, there is only one known hyperoval that does not fit into one of these families,

namely the O’Keefe Penttila 1991 [109] hyperoval of PG(2, 32). For convenience, we list

the known hyperovals and their automorphism groups in Table 2.1. Notice that in general,

the hyperovals with the large automorphism groups were discovered before hyperovals with

smaller automorphism groups. We will discuss this phenomenon more in Section 2.5.
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Table 2.1: The known hyperovals H = D(f) of PG(2, q) and their automorphism groups,
where q = 2h, and λ4 ≡ σ2 ≡ 2 (mod q − 1).

Name f(x) Field Restriction AutH
q = 2 S4

Regular x2 q = 4 S6

q > 4 PΓL(2, q)

Translation x2i , (i, h) = 1 none AΓL(1, q)

q = 32 (Cq−1 o C3)o ChSegre–Bartocci x6

q > 32, h odd Cq−1 o Ch

q = 128 (Cq−1 o C3)o ChGlynn I x3σ+4

q > 128, h odd Cq−1 o Ch

Glynn II xσ+λ q > 512, h odd Cq−1 o Ch

Payne x1/6 + x1/2 + x5/6 q ≥ 32, h odd C2h

Adelaide see Example 2.2.29 q ≥ 64, h even C2h

Subiaco I see Example 2.2.28 q ≥ 32 C2h

Subiaco II see Example 2.2.28
q ≥ 64, h ≡ 2

(mod 4)
C5 o C2h

Cherowitzo xσ + xσ+2 + x3σ+4 q ≥ 32, h odd Ch

O’Keefe–Penttila see Theorem 2.2.20 q = 32 C3
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2.3 Background results

In Section 2.4, we derive some general results about groups acting on hyperovals in Desar-

guesian planes. We will need some preliminary results, which we collect in this section. The

mainstay of our approach to groups of hyperovals of Desarguesian planes are the following

two fundamental results of Hartley on groups of homographies of Desarguesian planes.

A Singer cycle is a cyclic subgroup of PGL(3, q) of order q2 + q + 1.

Theorem 2.3.1 (Hartley 1925 [75]) A proper subgroup of PSL(3, q), q even, fixes a point,

a line, a triangle, a subplane, or a classical unital, or is contained in the normalizer of a

Singer cycle, or q = 4 and the subgroup fixes a hyperoval.

Theorem 2.3.2 (Hartley 1925 [75]) A proper subgroup of PSU(3, q), q even and a square,

fixes a point, a line, a triangle or a subplane, or is contained in the normalizer of a Singer

cycle, or q = 4 and the order of the subgroup is 36.

A group of collineations of a projective plane is irreducible if it fixes no point, line or

triangle. It is strongly irreducible if it is irreducible and fixes no proper subplane.

Corollary 2.3.3 A strongly irreducible proper subgroup G of PSL(3, q), q even, q > 4, is

contained in the normalizer of a Singer cycle, or q is a square and G = PSU(3, q).

We also need information about the subgroups of PGL(2, q), q even, for which a convenient

reference is Dickson 1901 [58], although the result is due, independently, to Wiman 1899 [180]

and Moore 1903 [106].

Theorem 2.3.4 (Dickson 1901 [58]) The only non-abelian composition factors of subgroups

of PGL(2, q), q even, are PSL(2, q0), with q a power of q0. The subgroups of PGL(2, q), q

even, q > 8, of order greater than 3(q − 1) contain a Sylow 2-subgroup of PGL(2, q).

Corollary 2.3.5 The only non-abelian composition factors of subgroups of PΓL(3, q), q even,

are PSL(3, q0), PSL(2, q0), PSU(3, q0) and A6, where q is a power of q0.
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Proof Let H be an insoluble subgroup of PΓL(3, q), q even. Then H∩PSL(3, q) is insoluble.

By Theorem 2.3.1, Theorem 2.3.2 and Theorem 2.3.4, either H∩PSL(3, q) contains PSL(3, q0)

or PSU(3, q0) or A6, since the stabilizer of a triangle is soluble, and the groups of collineations

with centre a point or axis a line are soluble, and the group induced by the stabilizer of a

point in H ∩ PSL(3, q) on the lines through that point is a subgroup of PGL(2, q). �

We now survey elementary results on groups of hyperovals that also apply in the non-

Desarguesian case. Deeper results, using theorems about simple groups, can be found in the

papers of Korchmáros.

Recall, a collineation of a projective plane is central if it fixes a point (the center) linewise,

and a line (the axis) pointwise. If the center is incident with the axis, the collineation is an

elation, and if the center is not incident with the axis, it is a homology.

Involutions play an important role. Their action on projective planes is determined by

the following result of Baer.

Theorem 2.3.6 (Baer 1946 [8]) An involutory collineation of a projective plane of order q,

q even, is either an elation or a Baer involution, in which case q is a square.

More can be said when the involution is an elation and fixes a hyperoval.

Theorem 2.3.7 (Biliotti–Korchmáros 1987 [19]) A non-trivial central collineation of a pro-

jective plane of order q, q even, fixing a hyperoval is necessarily an involutory elation with

centre not on the hyperoval.

Proof Since the orbits of a point, not the centre, not on the axis, are collinear and have

length the order of the collineation, any point on the hyperoval, not on the axis, not the

centre, has an orbit of length 2. The collineation is therefore involutory. By Theorem 2.3.6,

it is an elation. Since there is a point on the hyperoval not on the axis, the orbit of that

point, together with the centre, forms a collinear triple; so the centre is not on the hyperoval.

�

The following result of Hughes controls involutions for planes of order 2 modulo 4.
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Theorem 2.3.8 (Hughes 1957 [85]) A projective plane of order q > 2, q ≡ 2 (mod 4), has

no involutory collineations.

Further control of elations fixing hyperovals follows from the next result of Penttila–Royle.

Theorem 2.3.9 (Penttila–Royle 1995 [127]) A non-trivial central collineation of a finite

projective plane of even order q > 2 fixing a hyperoval H, is necessarily an elation with axis

secant to H and centre not on H.

Proof By Theorem 2.3.7, we need only show that the axis is a secant line for q > 2. By

Theorem 2.3.8, q ≡ 0 (mod 4). So the number of points on the hyperoval is congruent to 2

modulo 4. Thus the number of secant lines on any point P on the axis, not the centre, and

not on the hyperoval, is odd. Hence a secant line is fixed. But the only fixed line on P is the

axis, so it follows that the axis is a secant line. �

The following elementary observation of Biliotti–Korchmáros about two elations fixing a

hyperoval is fundamental.

Theorem 2.3.10 (Biliotti–Korchmáros 1987 [19]) Two non-trivial central collineations of a

finite projective plane of even order q > 4 fixing a hyperoval have different centres.

More detailed information is given in the next result of Biliotti–Korchmáros, an alternative

proof of which was found by Penttila–Pinneri.

Theorem 2.3.11 (Biliotti–Korchmáros 1987 [19], Penttila–Pinneri 1999 [126]) Let H be a

hyperoval in a projective plane π of order q, and suppose that two distinct non-trivial elations

of π stabilize H. Then one of the following holds:

(1) the elations have different centres but the same axis, which is secant to H, and the

product of the elations is an involutory elation with the same axis but a different centre;

(2) the axes are distinct and meet at a point of H, the centres are distinct and the line

joining the centres is
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(a) a secant line, and the product of the elations has order dividing q − 1, or

(b) an external line, and the product of the elations has order dividing q + 1;

(3) the axes are distinct secant lines which meet at a point not on H, the centres are distinct

and the line joining the centres is external to H, the product of the elations has order

3, and q ≡ 1 (mod 3);

(4) q = 2 or 4.

Corollary 2.3.12 No hyperoval of a projective plane of order q, with q 6≡ 1 (mod 3), is

stabilized by 3 non-trivial elations with axes forming a triangle.

A bound on the order of the homography stabilizer of a hyperoval of a Desarguesian plane

is given in the following theorem.

Theorem 2.3.13 (O’Keefe–Penttila 1991 [108]) The stabilizer in PΓL(3, q) of a hyperoval

in PG(2, q), q > 2, has order dividing (q + 2, 3)(q + 1)q(q − 1).

The next result allows greater control of one of Hartley’s cases, when a hyperoval is fixed.

Corollary 2.3.14 A subgroup of the normalizer in PGL(3, q), q even, of a Singer cycle

stabilizing a hyperoval is a 3-group, and fixes a point or a triangle.

Proof The greatest common divisor of (q + 2, 3)(q + 1)q(q − 1) and 3(q2 + q + 1) divides 9.

�

2.4 Groups of hyperovals in PG(2, q)

Lemma 2.4.1 [15] A strongly irreducible proper subgroup of PSL(3, 4) that does not fix a

classical unital is the stabilizer A6 in PSL(3, 4) of a hyperoval of PG(2, 4).

Proof By Theorem 2.3.1, the only case to eliminate is that of a subgroup of the normalizer

of a Singer cycle. But when q = 4, the intersection of the normalizer in PGL(3, q) of a Singer

cycle with PSL(3, q) fixes a subplane. �
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The following Lemma is reminiscent of results in Bonisoli–Korchmáros 2002 [22]. The

reader may find it helpful to compare and contrast the approaches.

Lemma 2.4.2 [15] If the stabilizer G in PGL(3, q) of a hyperoval in PG(2, q), q > 4, is

irreducible, then G ∩ PSL(3, q) is irreducible.

Proof SupposeG∩PSL(3, q) is not irreducible. IfG 6= G∩PSL(3, q), then |G : G ∩ PSL(3, q)|
= 3. Suppose G ∩ PSL(3, q) fixes a point P . Then GP ≥ G ∩ PSL(3, q), and so the orbit

of P under G has length 1 or 3, a contradiction. Hence G ∩ PSL(3, q) does not fix a point,

and dually, G ∩ PSL(3, q) does not fix a line. So G ∩ PSL(3, q) fixes a triangle ∆, and

G∆ = G ∩ PSL(3, q). We show that G(∆) is a 3-group. Suppose not. Let p be a prime

dividing
∣∣G(∆)

∣∣
∣∣∣
∣∣PGL(3, q)(∆)

∣∣ = (q − 1)2. Then p 6= 2, since elations do not pointwise fix

a triangle. So p > 3. Let 1 6= P ∈ Sylp
(
G(∆)

)
. Since P is not generated by a homol-

ogy, |P | q − 1. Hence fix(P ) = ∆. However, PGL(3, q)(∆) = Cq−1 × Cq−1 is abelian, so

P is its unique Sylow p-subgroup. Therefore P char G(∆) C G ∩ PSL(3, q) implies P char

G ∩ PSL(3, q) C G. Hence P C G, and so G fixes ∆, a contradiction.

Without loss of generality, ∆ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. For all a ∈ GF(q)∗ such that

there exists b ∈ GF(q)∗ with



a 0 0
0 b 0
0 0 1


 ∈ G(∆), b is unique (otherwise G(∆) would contain

a homology). So

G(∆) =







a 0 0
0 f(a) 0
0 0 1


 : a ∈ S





where S ≤ GF(q)∗ and f : S → GF(q)∗ is a homomorphism. Since S is the unique cyclic

group of GF(q)∗ of order |S|, and f(S) ≤ S, it follows that f(x) = xn for some n. Hence

G(∆) =







a 0 0
0 an 0
0 0 1


 : a ∈ S



 .

But



an 0 0
0 1 0
0 0 a


 =



an−1 0 0

0 a−1 0
0 0 1


 ∈ G(∆), and so an(n−1) = a−1, forcing n2 − n + 1 ≡ 0

(mod |S|). Since there are no solutions to this congruence modulo 9, it follows that |S| = 3.

But now |G| = 9 or 18, and up to conjugacy G ≤ PGU(3, 4), and G fixes a triangle, a

contradiction. �
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Theorem 2.4.3 [15] The stabilizer G in PGL(3, q) of a hyperoval in PG(2, q) fixes a point,

line, triangle, or a subplane π0 of order 4. If G is irreducible, then either q = 4 and G ∼= A6,

or q > 4 and the group induced by G on π0 is a subgroup of PGU(3, 4).

Proof Suppose q > 4 and G is irreducible. Then G ∩ PSL(3, q) is irreducible by Theo-

rem 2.4.2. Since PSU(3, q0) contains a group of order q0 of elations with the same cen-

tre, G ∩ PSL(3, q) cannot induce PSU(3, q0) on any subplane of order q0 > 2 by Theo-

rem 2.3.10, and is not contained in the normalizer of a Singer cycle by Theorem 2.3.14. Hence,

G ∩ PSL(3, q) is a proper subgroup of PSL(3, q), and fixes a subplane by Theorem 2.3.3.

Let π0 be a minimal non-trivial subplane of order q0 fixed by G∩PSL(3, q) and let L be the

group induced by G∩PSL(3, q) on π0. Then L is strongly irreducible, and by Theorem 2.3.3

applied to L ∩ PSL(3, q0), it follows that π0 has order 4. (Note that a group inducing a

subgroup of the normalizer of a Singer cycle of π0 either fixes a triangle of PG(2, q), or is

a subgroup of the normalizer of a Singer cycle of PG(2, q), which eliminates this case.) If

L∩PSL(3, q) is not a subgroup of PSU(3, 4), then L∩PSU(3, 4) fixes a hyperoval of PG(2, 4)

by Theorem 2.4.1 and Theorem 2.3.1. Thus L ∩ PSL(3, 4) = A6 or PSL(2, 5), however both

of these contain distinct elations with the same centre, contradicting Theorem 2.3.10. Since

G normalizes G ∩ PSL(3, q), it follows that in this case G = G ∩ PSL(3, q) and has order 36

by Theorem 2.3.2. �

Which insoluble groups can act on hyperovals of Desarguesian planes? The following

example is instructive.

Example 2.4.4 PGL(2, q0) ≤ PGL(3, q)H, where

H = {(1, t, t2) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

is a regular hyperoval and q = qh0 . Moreover, it is the stabilizer of the subplane

π0 = {(x, y, z) : x, y, z ∈ GF(q0)}

in PGL(3, q)H, and π0∩H is a regular hyperoval of π0, consisting of a conic C0 and its nucleus

N . The points of π0 are of three kinds: N , the points of C0, and the centres of elations of
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PGL(2, q0). The lines of π0 are of three kinds: the tangent lines to C0, the secant lines to C0

and the external lines to C0.

In the theorem that follows we need to deduce the existence of an invariant subplane from

knowledge of a group fixing a hyperoval. The preceding example allows us to construct this

subplane from the group without needing its action on the plane.

Example 2.4.5 The incidence structure I(G) with points

(i) ∞

(ii) Sylow 2-subgroups Tof G

(iii) involutions t of G

and lines

(a) Sylow 2-subgroups [T ] of G

(b) dihedral subgroups U of order 2(q0 − 1) of G

(c) dihedral subgroups V of order 2(q0 + 1) of G

with incidence

∞ I [T ], T I [T ], t I [T ] ⇐⇒ t ∈ T

∞ ��I U, T I U ⇐⇒ 〈T, U〉 ∼= AGL(1, q0), t I U ⇐⇒ t ∈ U

∞ ��I V, T ��I V, t I V ⇐⇒ t ∈ V

is isomorphic to PG(2, q0), since the correspondence

∞←→ N

T ←→ fix(T ) ∩ (π0 ∩H)

t←→ centre of t

[T ]←→ tangent line to π0 ∩H at fix(T ) ∩ (π0 ∩H)

U ←→ unique fixed line of U

V ←→ unique fixed line of V
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is an isomorphism with π0.

Theorem 2.4.6 [15] If the stabilizer G in PΓL(3, q) of a hyperoval H is insoluble, then either

q = 4 and G ∼= S6, or G fixes a subplane π0 of order q0 > 2. In the latter case, π0 ∩ H is a

regular hyperoval of π0 and G has a normal subgroup isomorphic to PGL(2, q0).

Proof Suppose q > 4. By Theorem 2.4.3, G is reducible, since both PΓU(3, 4) and the

pointwise stabilizer of a subplane are soluble. Since the stabilizer of a triangle is also soluble,

G fixes a point or line. G ∩ PSL(3, q) is insoluble, and so by [63]1 and Theorem 2.3.6,

G∩PSL(3, q) contains an elation. Suppose G fixes no point. Then G fixes a line `. If ` is not

the axis of any non-trivial elation in G, then G acts faithfully on `, and hence G is isomorphic

to a subgroup of PΓL(2, q). Since G is insoluble, G has a normal subgroup N isomorphic to

PGL(2, q0), for q0 > 2, q = qh0 , by Theorem 2.3.4. Since N contains at least two non-trivial

elations that commute, by Theorem 2.3.11 ` is the common axis, a contradiction. Thus ` is

the axis of some non-identity elation in G, hence secant to H by Theorem 2.3.9. This implies

that the stabilizer of ` ∩H is soluble, contradicting the insolubility of G.

Therefore G fixes a point P which is on the axis of every elation of G ∩ PSL(3, q). By

Theorem 2.3.10, if P is not on H, then P is not the centre of a non-trivial elation fixing H.

If P is on H, then P is not the centre of any non-trivial elation by Theorem 2.3.7. Hence

G acts faithfully on the lines through P , and as above, G is isomorphic to a subgroup of

PΓL(2, q), and has a normal subgroup N isomorphic to PGL(2, q0), for q0 > 2, q a power of

q0. If P is not on H, then G acts on the q/2 external lines through P , contrary to the action

of PGL(2, q0) on PG(1, q0). Hence P is on H.

Let C0 be the intersection of H with the orbit of length q0 + 1 of N on the subpencil

of lines through P . Then I(N) ∼= PG(2, q0), but also I(N) is isomorphic to the incidence

1We only need the fact that all subgroups of PGL(3, q) of odd order are soluble, which is much easier to
prove.
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structure with points

(i) P

(ii) the points of C0

(iii) centres of involutions of N

and lines

(a) PQ, where Q ∈ C0

(b) QQ′, where Q,Q′ ∈ C0, Q 6= Q′

(c) the unique line fixed by V, where V ≤ N, V ∼= D2(q0+1)

with incidences inherited from PG(2, q), by applying Theorem 2.3.11. Hence G fixes the

subplane π0 = I(N), and π0 ∩ H is a hyperoval H0 of π0. By [110, Theorem 3.3], H0 is

regular. �

Remark 2.4.7 If q = q2
0, then the hyperoval is regular, for an orbit of PGL(2, q0) on points

of the hyperoval not in PG(2, q0) has length at most q2
0−q0, but elements of order q0−1 have

all fixed points in PG(2, q0). Such an orbit consists of points stabilized by a cyclic q0 + 1,

and there are 2 such points (for each cyclic q0 + 1) and they must lie on a regular hyperoval.

Hence, if the stabilizer is insoluble and the hyperoval is not regular, then the homography

stabilizer has order less than q − 1.

The following result gives a rich man/poor man classification of hyperovals of PG(2, q).

Theorem 2.4.8 A hyperoval of PG(2, q) with homography stabilizer greater than 3(q− 1) is

a translation hyperoval.

Proof Let G be the homography stabilizer of the hyperovalH, with |G| > 3(q−1). If G fixes

a subplane of order 4, then |G| = 36 by Theorem 2.3.2, so q = 4, a contradiction. If not, G

fixes a point, line or triangle by Theorem 2.4.3. By the above remark and Theorem 2.4.6, we

can assume G is soluble. If G fixes a point or line, G induces a soluble subgroup of PGL(2, q)
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on the lines through the point (points on the line). By [110, Theorem 3.6], Theorem 2.3.13

and Theorem 2.3.4, it follows that G has order divisible by q, in which case H is translation.

Suppose G fixes a triangle ∆. By Theorem 2.3.7, G(∆) contains no homologies. Hence G(∆)

acts faithfully on any side of ∆, and so |G| divides 6(q − 1). If |G| = 6(q − 1), then since

G(∆) acts semiregularly on points on no side of ∆, it follows that ∆ is a subset of H. Since

G(∆) acts transitively on H \ ∆, it follows from [110, Lemma 3.8], that H is monomial,

contradicting [110, Theorem 4.4]. �

Example 2.4.9 The known hyperovals that achieve equality in the above bound are the

hyperovals of Segre–Bartocci 1971 [140] in PG(2, 32) and Eich–Payne–Hirschfeld–Glynn 1972

[60] in PG(2, 128) (see [110]).

2.5 The stabilizer of the Cherowitzo hyperoval

In order to calculate the group of the title of this section, we first need to recall the represen-

tation of hyperovals by o-polynomials (and o-permutations). For reasons that will become

apparent, our focus will shift to ovals for a period of time.

By the transitivity of PΓL(3, q) on ordered quadrangles of PG(2, q), we can assume that

a given oval has nucleus (0, 0, 1) and contains the points (1, 0, 0), (0, 1, 0) and (1, 1, 1). Such

an oval can be written in the form

D(f) = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}

where f is a permutation polynomial of degree less than q−1 satisfying f(0) = 0, f(1) = 1 and

such that for each s ∈ GF(q), the function fs where fs(0) = 0, fs(x) = (f(x+s)+f(s))/x is a

permutation (see, for example Hirschfeld 1985 [83]). Conversely, any polynomial f satisfying

the above conditions gives rise to an oval D(f) with nucleus (0, 0, 1). Such a polynomial is

called an o-polynomial. Note that we have altered the notation in earlier section – now

D(f) is an oval, with associated hyperoval D(f) ∪ {(0, 0, 1)}.
If we drop the condition that f(1) = 1 (or equivalently, we drop the condition that the oval

contains (1, 1, 1)) but retain the other conditions, then f is an o-permutation. Associated with
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an o-polynomial are q−1 o-permutations, namely the non-zero multiples of the o-polynomial.

With an o-permutation f , is associated a unique o-polynomial (1/f(1))f . If f is an o-

polynomial then 〈f〉 comprises the zero polynomial together with the q − 1 o-permutations

associated with f . Clearly, the q− 1 ovals D(fi), where the fi are o-permutations associated

with an o-polynomial f are equivalent under PGL(3, q).

We now turn to a method for computing an oval stabilizer (and hence hyperoval stabi-

lizer).

Let F denote the collection of all functions f : GF(q)→ GF(q) such that f(0) = 0. Note

that each element of F can be expressed as a polynomial in one variable of degree at most

q − 1 and that F is a vector space over GF(q). If f(x) =
∑
aix

i ∈ F and γ ∈ Aut GF(q)

then we write fγ(x) =
∑
aγi x

i or equivalently, fγ(x) = (f(x1/γ))γ. As usual, we write xγ for

componentwise action by γ ∈ Aut GF(q) on x in GF(qn).

Lemma 2.5.1 (O’Keefe–Penttila 2002 [111]) For each f ∈ F and ψ ∈ PΓL(2, q), where

ψ : GF(q)2 → GF(q)2, x 7→ Axγ for A =

(
a b
c d

)
∈ GL(2, q) and γ ∈ Aut GF(q) , let the

image of f under ψ be the function ψf : GF(q)→ GF(q) such that

ψf(x) = |A|−1/2

[
(bx+ d)fγ

(
ax+ c

bx+ d

)
+ bxfγ

(a
b

)
+ dfγ

( c
d

)]

Then this definition yields an action of PΓL(2, q) on F , which is called the magic action.

We remark that in each term in the formula of the magic action, the denominator of the

argument of fγ is always a factor. Thus, for example, dfγ(c/d) is interpreted as 0 if d = 0

and so on.

The following result elucidates the relationship between o-permutations that are equiv-

alent under the magic action of PΓL(2, q) and ovals that are equivalent under the natural

action of PΓL(3, q) on PG(2, q). We remark that Theorem 2.5.2 holds for PGL(3, q) in place

of PΓL(3, q).

Theorem 2.5.2 (O’Keefe–Penttila 2002 [111]) Let f and g be o-permutations for PG(2, q)

and suppose that D(f) and D(g) are equivalent under PΓL(3, q). Then there exists ψ ∈
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PΓL(2, q) such that ψf ∈ 〈g〉. Moreover, there is a one-to-one correspondence between {ϕ ∈
PΓL(3, q) : ϕD(f) = D(g)} and {ψ ∈ PΓL(2, q) : ψf ∈ 〈g〉}.

We now outline our strategy. From now on let f(t) = tσ+tσ+2 +t3σ+4, σ2 ≡ 2 (mod q−1)

so that H = D(f) ∪ {(0, 0, 1)} is the Cherowitzo hyperoval. We determine PGL(3, q)H by

finding

{g ∈ PGL(3, q)H : g(0, 0, 1) = P}

for each P ∈ H; that is

{g ∈ PGL(3, q)H : gD(f) = H \ {P}}.

Since D(f) andH\{P} are ovals, we may apply the magic action by finding an o-permutation

h such that D(f) is equivalent to D(h) under PGL(3, q). This reduces our calculation to a

calculation with 2 by 2 matrices. In fact, there is a slight subtlety that complicates our

approach which will be apparent below (this revolves around the difficulty of computing an

explicit formula for the inverse of a certain function).

Two admissions belong here. The calculations are fiendishly difficult, so require the use

of computer algebra software. Also, fields of small order (namely 32, 128 and 512) need to be

treated separately. Fortunately, a straighforward stabilizer calculation in Magma is feasible

for these orders and resolves the issue. The other calculation was performed in Mathematica,

in characteristic 2, with variables for the unknown quantities, thereby avoiding the need to

compute in infinitely many finite fields. We give some of the details below.

Our tactics involved equating the coefficients of the polynomial equations that result from

the magic action (after reducing modulo xq−x). Indeed, for small field orders the exponents

coalesce, which is why we resort to Magma in these cases.

The following result is also proved in O’Keefe–Thas [112] using very different methods.

Lemma 2.5.3 Let g ∈ PGL(3, q)H, q > 32, such that g(0, 0, 1) = (0, 0, 1). Then g is the

identity map on PG(2, q).
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Proof By Theorem 2.5.2, we must show that if ψ ∈ PGL(2, q) such that ψf = kf for some

fixed k ∈ GF(q)∗ then ψ is the identity map. Let ψ : x 7→ Ax where A =

(
a b
c d

)
∈ GL(2, q).

From the definition of the magic action, ψf is a rational function, and so we can write

ψf = ν/δ, and hence

ν(x) = kδ(x)f(x) (2.1)

where this equation is interpreted modulo xq − x. If q > 32, then the terms appearing in

Equation (2.1) are distinct.

If b = 0 and d 6= 0, then consideration of the x4 terms gives ka4c3σ = 0, and hence c = 0.

Looking at the xσ and xσ+2 terms we see that kaσd2σ+4 = kaσ+2d2σ+2, and hence a = d.

Thus ψ is the identity map on PG(2, q).

If b 6= 0 and d = 0, then equating constant terms gives c3σ+4 = 0, and hence c = 0, a

contradiction. Thus the only case left to consider is b 6= 0, d 6= 0. Consideration of the x2

terms gives

b3σ+5cσ+2d5σ+6 + a2b3σ+3cσd5σ+8 = 0,

and hence

b2cσ+2 + a2cσd2 = 0.

If c 6= 0 we have (ad+ bc)2 = 0, a contradiction. Hence c = 0. Equating x terms gives

a3σ+4d6σ+9 + aσ+2b2σ+2d6σ+9 + aσb2σ+2d6σ+9 = 0

and so

a3σ+4 + aσ+2b2σ+2 = aσb2σ+4. (2.2)

Consideration of the xσ+1 terms gives

a3σ+4bσd5σ+9 + aσ+2b3σ+2d5σ+9 = 0

which implies

a3σ+4 + aσ+2b2σ+2 = 0

and Equation (2.2) then forces

aσb2σ+4 = 0
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Now b 6= 0 by assumption, which means that |A| = 0, a contradiction. �

Lemma 2.5.4 Let g ∈ PGL(3, q)H, q > 128. Then g(0, 0, 1) 6= (0, 1, 0).

Proof Suppose g ∈ PGL(3, q)H with g(0, 0, 1) = (0, 1, 0). Let φ ∈ PGL(3, q) be φ : x 7→ Ax,

where A =




1 0 0
0 0 1
0 1 0


 ∈ GL(3, q). Then (φ g)D(f) = D(f−1), and so by Theorem 2.5.2 there

exists ψ ∈ PGL(2, q) such that ψf ∈ 〈f−1〉. Let ψ : x 7→ Bx, where B =

(
a b
c d

)
∈ GL(2, q).

From the definition of the magic action it follows that ψfh is a rational function, and so we

can write ψfh = ν/δ, for ν, δ ∈ F . Now f−1(x) =
x1/σ(1 + x+ xσ)

1 + x2 + xσ
(see Penttila–Pinneri

1994 [126]), and so for some k ∈ GF(q)∗ we have

ν(x)(1 + x2 + xσ) = kδ(x)x1/σ(1 + x+ xσ) (2.3)

where this equation is interpreted modulo xq − x. The terms in this equation are distinct

when q > 128. We consider the case where b 6= 0, d 6= 0 (the other cases are similar).

In this case, consideration of the x2 coefficients of Equation (2.3) gives

b3σ+5cσ+2d5σ+6 + a2b3σ+3d5σ+8 = 0,

and hence

b2cσ+2 = a2cσd2,

which forces c = 0. Consideration of the x terms gives

a3σ+4d6σ+9 + aσ+2b2σ+2d6σ+9 + aσb2σ+4d6σ+9 = 0,

and thus

a3σ+4 + aσ+2b2σ+2 = aσb2σ+4. (2.4)

Now, looking at the x2σ+2 terms of Equation (2.3), gives

aσ+2b3σ+3d3σ+8 + aσb3σ+5d5σ+8 = 0

and hence

aσ+2 = aσb2.

Substituting in Equation (2.4) gives a = 0, a contradiction. �
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Lemma 2.5.5 [15] Let g ∈ PGL(3, q)H, q > 512. Then g(0, 0, 1) 6= (1, t, f(t)) for any

t ∈ GF(q).

Proof Suppose g(0, 0, 1) = (1, t, f(t)) for g ∈ PGL(3, q)H and t ∈ GF(q). Define the

permutation h : GF(q) → GF(q) by h(0) = 0, h : x 7→ x
(
f(x−1 + t) + f(t)

)
and let φ ∈

PGL(3, q) be φ : x 7→ Ax, where A =




t 1 0
f(t) 0 1

1 0 0


 ∈ GL(3, q). Then (φ g)D(f) = D(h−1),

and so by Theorem 2.5.2 there exists ψ ∈ PGL(2, q) such that ψf ∈ 〈h−1〉. Let ψ : x 7→ Bx,

where B =

(
a b
c d

)
∈ GL(2, q). From the definition of the magic action it follows that ψfh is

a rational function, and so we can write ψfh = ν/δ, for ν, δ ∈ F . Hence, for some k ∈ GF(q)∗

we have

ν(x) = kxδ(x) (2.5)

for all x ∈ GF(q). A technical calculation shows that the terms appearing in (Equation (2.5))

are distinct when q > 512, and we can therefore equate coefficients modulo q − 1 to deduce

conditions on ψ. Without loss of generality, b 6= 0 and d 6= 0. Consideration of the x−14

coefficients of Equation (2.5) gives

k(c1/2d3σ+3t6σ + a1/2b6σ+9d3σ+7/2t6σ) = 0

and so t = 0. From the x−9 and x−7 coefficients we deduce

b3σ+4c3σ+4 + b3σ+4cσ+2d2σ+2 + b3σ+4cσd2σ+4

+aσb2σ+4c2d3σ+2 + a3σ+4d3σ+4 + aσb2σ+4d3σ+4 = 0

and

b3σ+4c3σ+4 + b3σ+4cσ+2d2σ+2 + b3σ+4cσd2σ+4

+a3σ+4d3σ+4 + aσ+2b2σ+2d3σ+4 + aσb2σ+4d3σ+4 = 0

respectively. Adding these two equations forces a = 0. The constant terms now give

b3σ+10cσd5σ+3 = 0, and so c = 0. But this gives |A| = 0, a contradiction. �
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Theorem 2.5.6 [15] Let H denote the Cherowitzo hyperovals in PG(2, q), q = 2h, h odd.

The stabilizer of H in PGL(3, q) is trivial, and hence the full stabilizer of H in PΓL(3, q) is

PΓL(3, q)H = {(x, y, z) 7→ (xα, yα, zα) : α ∈ Aut GF(q)}.

Proof Apply Lemma 2.5.3, Lemma 2.5.4, Lemma 2.5.5. �

The somewhat delicate argument in Penttila–Pinneri 1999 [126] showing that the Cherow-

itzo hyperovals are new for q > 8, is now unnecessary.

Corollary 2.5.7 The Cherowitzo hyperovals are new for q > 8.

Proof All other known hyperovals H have PGL(3, q)H 6= 1. �

A final remark about the reasons for the difficulty in determining the stabilizers of the

Cherowitzo hyperovals is in order. Since the group is so small, there are many candidates for

the stabilizer above the group in the lattice of all subgorups of PΓL(3, q). This may account

for the present lack of a satisfying proof.
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Chapter 3

Flag-transitive Laguerre planes

3.1 Introduction

Characterizing classical incidence structures by group-theoretic properties has a long history.

Here we contribute a characterization of Miquelian Laguerre planes of odd order of this

type. Our hypotheses are that the finite Laguerre plane admit a group containing a non-

trivial elation acting quasiprimitively on the circles and transitively on the (point, circle)

flags. To achieve this, we show that a Laguerre plane admitting a group containing a non-

trivial elation and acting quasiprimitively on circles is an elation Laguerre plane. We then

apply the theorems of Steinke 1991 [142] and Löwen 1994 [99] to reduce our situation to the

study of pseudo-ovals admitting an irreducible transitive group. Applying a recent theorem

of Bamberg-Penttila 2006 [12] completes the proof.

We then turn to a generalization of a theorem of Thas 1997 [155] and Lunardon 1997

[100] concerning semifield flocks of the quadratic cone in PG(3, q) and translation ovoids of

Q(4, q), q odd. We generalize this to even characteristic, and to a correspondence between

translation flocks of elation Laguerre planes and translation ovoids of the corresponding

translation generalized quadrangles.

Finally, we extend the characterization to all Miquelian Laguerre planes of finite order by

dropping the hypothesis of quasiprimitivity on circles and adding the hypothesis of insolu-

bility.

The functors constructing translation generalized quadrangles from pseudo-ovals, and ela-

tion Laguerre planes from (dual) pseudo-ovals (together with the theorems that establish the

reverse) mean that these subjects should be studied in conjunction. We illustrate this perspec-

tive not only with our main result, but also by studying how this correspondence enlightens

the study of translation ovoids of translation generalized quadrangles and translation flocks
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of elation Laguerre planes. This correspondence also elevates the importance of the study of

pseudo-ovals.

3.2 Circle planes

A circle plane is an incidence structure (P ,L, C), of points, lines, and circles, with an

equivalence relation on L (parallelism) such that

• (Joining) 3 pairwise non-collinear points lie on a unique circle

• (Touching) Given a point P on a circle C, and P ′ not on C, not collinear with P , there

is a unique circle C ′ on P ′ with C ∩ C ′ = {P}

• (Tangency) A circle and a line meet in a unique point

• (Parallelism) Every point lies one exactly 1 line from each parallel class, and non-parallel

lines meet in a unique point

• (Non-degeneracy) |C| ≥ 2 and |C| ≥ 3 for all C ∈ C.

A circle plane with 0, 1, or 2 parallel classes is called an inversive plane (or Möbius

plane), a Laguerre plane or a Minkowski plane, respectively.

Example 3.2.1 Let P be a point in a circle plane S. The internal structure at P , denoted

SP , is a point/line incidence structure. The points of SP are the points of S not collinear with

P , and the lines of SP are the circles of S through P , together with the lines of S not through

P , with incidence inherited from S. This is an affine plane, called the derived affine plane

at P . The joining axiom shows that SP is a linear space, the touching axiom is the parallel

postulate, and non-degeneracy of S implies non-degeneracy of SP . The completion of SP is

called the derived projective plane at P , denoted by πP .

Suppose C is a circle not through P . Then the set of points of C not collinear with P

together with the points of `∞ corresponding to the parallel classes in S form an oval of πP .

From the set of all circles not on P , there arises in this way a set of ovals HP of πP , such that
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any triangle of πP \ `∞ with no side on the (0, 1, or 2) special points of `∞ lies on a unique

oval O of HP . Conversely, suppose we are given such a set of ovals of a projective plane π,

there is a circle plane such that π is the derived projective plane at a point P , and this set

of ovals arises from the circles not on P .

The following quote from Steinke 1995 [143] summarizes the previous example concisely:

“the investigation of circle planes is equivalent to the study of projective planes with suffi-

ciently many ovals of a certain kind.”

A bundle of a circle plane is the set of circles through two distinct non-collinear points.

A pencil is a set of circles through a point that are pairwise tangent. A flock is a partition

of the points into circles in the case of a Minkowski or Laguerre plane, and a partition of all

but 2 points into circles in the case of an inversive plane. Every circle plane has bundles by

definition. To construct pencils, take a point P , and a circle C on P . Then the set of circles

through P that are tangent to C at P form a pencil (this pencil becomes the parallel class

containing the line C in the derived affine plane at P ). It is not so clear that flocks exist,

indeed, there are infinite circle planes having no flocks. In the next sections we will survey

some of the main results about finite circle planes.

3.2.1 Inversive planes

An inversive plane (or Möbius plane) is an incidence structure I = (P , C) of points and

circles such that

• (Joining) 3 pairwise non-collinear points lie on a unique circle

• (Touching) Given a point P on a circle C, and P ′ not on C, not collinear with P , there

is a unique circle C ′ on P ′ with C ∩ C ′ = {P}

• (Non-degeneracy) |C| ≥ 2 and |C| ≥ 3 for all C ∈ C.

In a finite inversive plane, there exists a positive integer n, called the order of I such

that |P| = n2 + 1, |C| = n3 +n, and |C| = n+ 1 for all C ∈ C. Hence, a finite non-degenerate
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inversive plane of order n is a 3− (n2 + 1, n+ 1, 1) design, and conversely. All the inversive

planes that follow will be finite and non-degenerate.

Example 3.2.2 The classical inversive plane I(q) of order q is constructed from an

elliptic quadric Q−(3, q) in PG(3, q). The points of I(q) are the points of Q−(3, q), the circles

of I(q) are the non-tangent planes to Q−(3, q), and incidence is inherited from PG(3, q). Up

to isomorphism, this does not depend on the choice of elliptic quadric.

We can generalize this construction by replacing Q−(3, q) by an ovoid of PG(3, q).

Example 3.2.3 Let Ω be an ovoid of PG(3, q). Define the structure I(Ω) as follows. The

points of I(Ω) are the points of Ω, the circles are the secant planes to Ω, and incidence

is inherited from PG(3, q). Then I(Ω) is an inversive plane of order q, called an egglike

inversive plane. I(Ω) is classical if and only if Ω ∼= Q−(3, q). Hence, there exist non-

classical inversive planes of orders 22e+1, e ≥ 1, from the ovoids of Tits 1962 [165].

Theorem 3.2.4 (Dembowski 1964 [54]) Every inversive plane of even order is egglike. Hence

its order is a power of 2.

This is slightly frustrating, since Theorem 3.2.4 says that we know an inversive plane of

even order comes from an ovoid, but we do not have a classification of ovoids of PG(2, q), q

even. On the other hand, we know that an ovoid in PG(2, q), q odd, is an elliptic quadric

due to Barlotti 1955 [13] and Panella 1955 [114] , but we do not know that an inversive plane

of odd order comes from an ovoid of PG(3, q). At present, all known inversive planes are

egglike.

We have the following result connecting an inversive plane to its derived affine plane.

Theorem 3.2.5 (Thas 1990 [153], [152]) Let I be an inversive plane of odd order. Then the

derived affine plane of I at some point is Desarguesian if and only if I is classical.

We now turn to the question of flocks of inversive planes.
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Example 3.2.6 Let Ω be an ovoid of PG(3, q), and let ` be a line external to Ω. The set of

all secant planes to Ω on ` is a flock of I(Ω), called a linear flock of I(Ω)

The following theorem classifies flocks of egglike inversive planes.

Theorem 3.2.7 (Orr 1973 [113], Thas 1973 [147]) Any flock of an inversive egglike plane is

linear.

3.2.2 Minkowski planes

A Minkowski plane is an incidence structure M = (P ,L, C) of points, lines, and circles

such that

• (Joining) 3 pairwise non-collinear points lie on a unique circle

• (Touching) Given a point P on a circle C, and P ′ not on C, not collinear with P , there

is a unique circle C ′ on P ′ with C ∩ C ′ = {P}

• (Tangency) A circle and a line meet in a unique point

• (Parallelism) L can be partitioned into two sets L1 and L2, such that each points lies

on a unique line of L1 and a unique line of L2.

• (Non-degeneracy) |C| ≥ 2 and |C| ≥ 3 for all C ∈ C.

In a finite Minkowski plane, there exists a positive integer n called the order of M such

that |P| = n2 + n + 1, |L| = 2n + 2, |C| = n3 − n, |`| = n + 1 for all ` ∈ L, |C| = n + 1 for

all C ∈ C. All Minkowski planes that follow will be finite and non-degenerate.

Example 3.2.8 The classical Minkowski plane M(q) of order q is constructed from a

hyperbolic quadric Q+(3, q) in PG(3, q). The points of M(q) are the points of Q+(3, q), the

lines ofM(q) are the generators of Q+(3, q), the circles ofM(q) are the non-tangent planes to

Q+(3, q), and incidence is inherited from PG(3, q). Up to isomorphism, this does not depend

on the choice of hyperbolic quadric.
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We can obtain non-classical Minkowski planes from sharply 3-transitive sets of permuta-

tions.

Example 3.2.9 (Segre 1965 [139]) Let S be a sharply 3-transitive set of permuations of a

set X. Define the incidence structureM(S) as follows. The points ofM(S) are the elements

of X2, the lines of M(S) are sets of the form {(c, x) : x ∈ X} and {(x, c) : x ∈ X}, the

circles of M(S) are the graphs {(x, xσ) : σ ∈ S}, with natural incidence. Then M(S) is a

Minkowski plane. M(S) is classical if and only the action of S on X is isomorphic to the

action of PGL(2, q) on PG(1, q).

We have a classification result for Minkowski planes of even order.

Theorem 3.2.10 (Heise 1974 [76], Percsy 1974 [129]) Every Minkowski plane of even order

is classical. Hence its order is a power of 2.

There is also an analogous result to Theorem 3.2.5 connecting a Minkowski plane of odd

order to its derived affine plane.

Theorem 3.2.11 (Chen–Kaerlein 1973 [42]) LetM be a Minkowski plane of odd order. The

derived affine plane of M at some point is Desarguesian if and only if M is classical.

There are many known flocks of Minkowski planes.

Example 3.2.12 Let ` be an external line to hyperbolic quadric Q+(3, q) in PG(3, q). The

set of all planes on ` is a flock of M(q), called the linear flock of M(q).

Theorem 3.2.13 (Thas 1975 [149]) Any flock of a Minkowski plane of even order is linear.

There exist non-linear flocks of Minkowski planes of odd order.

Example 3.2.14 (Thas 1975 [149]) Let q be odd. Let Q be a quadratic form of plus type

on V = GF(q)4, so that the zeros of Q form a hyperbolic quadric Q+(3, q) in PG(3, q), and

let β be the polarization of Q. Let ` be external to Q+(3, q), and let m = `⊥ = {v ∈ V :
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β(u, v) = 0 for all u ∈ `}. Then

F =
{
P⊥ : P ∈ ` and Q(v) = (GF(q)∗)2 (mod (GF(q)∗)2)

or P ∈ m and Q(v) = −(GF(q)∗)2 (mod (GF(q)∗)2)
}

is a flock of M(q), called the Thas flock of M(q).

Example 3.2.15 (Baker–Ebert 1987 [9], Bader 1988 [5], Bonisoli 1988 [21], Johnson 1989

[88]) There are 3 exceptional flocks of M(q), one each for q = 11, 23, 59, associated with the

irregular nearfields of Dickson 1905 [57] of orders 112, 232, 592.

The following theorem completes the classification of flocks of classical Minkowksi planes.

Theorem 3.2.16 (Bader–Lunardon 1989 [6]) Any flock of a finite classical Minkowski plane

of odd order is linear, Thas, or exceptional.

3.2.3 Laguerre planes

A Laguerre plane is an incidence structure L = (P ,L, C) of points, lines, and circles such

that

• (Joining) 3 pairwise non-collinear points lie on a unique circle

• (Touching) Given a point P on a circle C, and P ′ not on C, not collinear with P , there

is a unique circle C ′ on P ′ with C ∩ C ′ = {P}

• (Tangency) A circle and a line meet in a unique point

• (Parallelism) Every point is on a unique line

• (Non-degeneracy) |C| ≥ 2 and |C| ≥ 3 for all C ∈ C.

In a finite Laguerre plane, there exists a positive integer n called the order of M such

that |P| = n2 + n, |L| = n+ 1, |C| = n3, |`| = n for all ` ∈ L, |C| = n+ 1 for all C ∈ C. All

Laguerre planes that follow will be finite and non-degenerate.

We begin by defining a quadratic cone of PG(3, q).
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Example 3.2.17 Let C be a conic in PG(2, q), and embed PG(2, q) as a hyperplane π of

PG(3, q). For a point V not on π, take the lines through V which meet C in a point. There

are necesarily q+1 such lines, and the set of q2 +q+1 points on these lines form a quadratic

cone K. The point V is the vertex of K, the lines through V meeting C in a point are the

generators of K, and K is said to project to the conic C. Since all conics of PG(2, q) are

equivalent under PΓL(3, q), it follows that all quadratic cones are equivalent under PΓL(4, q).

Hence, if we label coordinates for PG(4, q) by (x, y, z, w), we can take π to be the plane w = 0,

and our vertex to be V = (0, 0, 0, 1). Then

K = {(x, y, z, w) : y2 = xz},

and K meets π in the conic

C = {(1, t, t2, 0) : t ∈ GF(q)} ∪ {(1, 0, 0, 0)}.

Hence, K is the quadric of PG(3, q) defined by the degenerate form Q given by Q(x, y, z, w) =

y2 − xz.

We can obtain a Laguerre plane from a quadratic cone as follows.

Example 3.2.18 The classical Laguerre plane L(q) of order q is obtained from a quadratic

cone K of PG(3, q) with vertex V . Points of L(q) are points of K other than V , the lines

of L(q) are generators of K, and the circles of L(q) are plane sections of K not on V , with

incidence inherited from PG(3, q). Up to isomorphism, this does not depend on the choice

of quadratic cone.

We can generalize this construction by replacing a conic of PG(2, q) with an oval of

PG(2, q).

Example 3.2.19 Let O be an oval of PG(2, q) and embed PG(2, q) as a hyperplane π in

PG(3, q). For a point V not on π, take the lines through V which meet C in a point. This is

the oval cone K with vertex V projecting to O. Given an oval O of PG(2, q) with associated

oval cone K with vertex V , we can construct the incidence structure L(K) as follows. The

77



points of L(K) are the points of K other than V , the lines of L(K) are the generators of L(K),

and the circles of L(K) are the planes of PG(3, q) not on V . Then L(K) is a Laguerre plane

of order q, called an egglike Laguerre plane (or an ovoidal Laguerre plane). L(K) is

classical if and only if O is a conic. This construction gives non-classical Laguerre planes

for q = 2h, h ≥ 3 (see Section 2.2 and Table 2.1). At present, all known Laguerre planes

are egglike (see Steinke 1995 [143]). The question of whether or not there exist non-egglike

Laguerre planes is very important, but difficult open problem.

We have an analogous result of Theorem 3.2.11 for Laguerre planes.

Theorem 3.2.20 (Chen–Kaerlein 1973 [42]) Let L be a Laguerre plane of odd order. The

derived affine plane of L at some point is Desarguesian if and only if L is classical.

There are many known flocks of Laguerre planes. As in the inversive and Minkowski case,

there is a concept of a linear flock of a Laguerre plane.

Example 3.2.21 Let K be an oval cone in PG(3, q) projecting to the oval O in PG(2, q),

and let ` be a line external to K. Then the set of all planes on `, but not on the vertex of K
is a flock of L(K), called a linear flock of L(K).

Recall from Section 2.2.4 that a q-clan is a set of q (2×2) matrices such that the difference

between any two distinct matrices is anisotropic. We have already seen a connection between

q-clans and ovals via Theorem 2.2.24. The following theorem demonstrates the connection

between q-clans and flocks of the classical Laguerre plane

Theorem 3.2.22 (Thas 1987 [151]) Let K = {(x, y, z, w) : y2− xz = 0} be a quadratic cone

in PG(3, q) with vertex V = (0, 0, 0, 1). Then

C =

{(
at bt
0 ct

)
: t ∈ GF(q)

}

is a q-clan if and only if

F(C) = {[at, bt, ct, 1] : t ∈ GF(q)}

is a flock of K.
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Thus we have flocks of the classical Laguerre plane L(q), q even, from the q-clans of

Example 2.2.25 (the linear flocks), Example 2.2.26 (the FTWKB flocks), Example 2.2.27

(the Payne flocks), Example 2.2.28 (the Subiaco flocks), Example 2.2.29 (the Adelaide

flocks). We can also use Theorem 3.2.22 to construct non-linear flocks of L(q), q odd.

Examples of infinite families include the work of Fisher–Thas 1979 [64], Walker 1976 [177],

Kantor 1980 [90], Betten 1973 [17], for q ≡ −1 (mod 3), Kantor 1986 [92] for q odd, Kantor

1986 [92] for q ≡ ±2 (mod 5), Gevaert–Johnson 1988 [66], Kantor 1982 [91] for q = 5h,

Gevaert–Johnson 1988 [66], Ganley 1981 [65] for q = 3h, and Law–Penttila 2001 [97] for

q = 3h. Flocks of L(q) have been classified for q ≤ 29 by Law–Penttila 2003 [98]. There are

28 flocks of L(29).

If α = 2i, 1 ≤ i < h, with (i, h) = 1, then D(xα) is a translation oval of PG(2, q) (see

Example 2.2.7). Let L(α) = L(K), where K is the cone over the oval D(xα). We call L(α) a

translation Laguerre plane. Examples of non-linear flocks of translation Laguerre planes

are given in Fisher–Thas 1979 [64], and Cherowitzo 1998 [43] (5 families). Each flock of L(α)

is also a flock of L(1/α) if the first two coordinates are transposed. The theory of flocks of

L(α) only differs from the theory of flocks of L(q) if q 6= 2, q/2. Hence, it is first of interest

in its own right when q = 32 and xα = x4. Flocks of L(α) have been classified in this case by

Brown–O’Keee–Payne–Penttila–Royle 2007 [28], and the only examples are the ones given

above.

3.3 Characterizations of Laguerre planes

The classical Laguerre planes are characterized geometrically as those satisfying the Miquelian

property (also known as condition M1) – whenever 8 distinct points P1, P2, P3, P4, Q1, Q2,

Q3, Q4 are given such that each of the sets {P1, P2, P3, P4}, {P1, P2, Q3, Q4}, {P3, P4, Q1, Q2},
and {P2, P3, Q2, Q3}, {P4, P1, Q4, Q1} are contained in a circle, then the set {Q1, Q2, Q3, Q4}
is also contained in a circle, or consists of two pairs of collinear points. This property char-

acterizes the classical Laguerre planes.
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Theorem 3.3.1 (van der Waerden–Smid 1935 [169]) A Laguerre plane satisfies the Miquelian

property if and only if it is classical.

The equivalent geometric characterization for egglike Laguerre planes is given by the

bundle axiom – for any eight pairwise non-collinear points P1, P2, P3, P4, Q1, Q2, Q3, Q4,

if 5 of the 6 quadruples Qij = {Pi, Qi, Pj, Qj}, i < j, lie on at least 4 circles, then so does

the last.

Theorem 3.3.2 (Kahn 1980 [89]) A Laguerre plane satisfies the bundle axiom if and only

if it is egglike.

This paper is concerned with characterizing Laguerre planes based on their symmetry,

and so we define the following group theoretic properties of Laguerre planes. The kernel T

of a Laguerre plane L is the kernel of the action of AutL on the lines of L. The elation

group ∆ of L consists of the identity and all elements of T fixing no circle. We remark that

∆ is a normal subgroup of AutL (see Steinke 1991 [142]). An elation Laguerre plane

is a Laguerre plane with ∆ acting regularly on circles. Egglike Laguerre planes are elation

Laguerre planes. It turns out that elation Laguerre planes are related to combinatorial objects

known as (dual) pseudo-ovals.

An n-dimensional pseudo-oval of PG(3n− 1, q) is a setO of qn+1 subspaces of dimension

n − 1 such that any three span PG(3n− 1, q). Notice that from any element E of O, the

other elements of O project a partial (n−1)-spread of deficiency one of PG(2n− 1, q), which

can be uniquely completed to a spread (see Beutelspacher 1980 [18]). Hence E is contained

in a unique subspace TE of dimension 2n − 1 disjoint from the other elements of O. These

subspaces are the tangents to O.

Example 3.3.3 There is a bijective, GF(q)-linear map from the underlying vector space

GF(qn)3 of PG(2, qn) (thought of as a vector space over GF(qn)) to the underlying vector

space GF(q)3n (thought of as a vector space over GF(q)) of PG(3n− 1, q). Hence, we can

identify points of PG(2, qn) with (n − 1)-spaces of PG(3n− 1, q). This is an example of

field reduction. Let O be an oval of PG(2, qn). By field reduction, each point of the
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oval corresponds to a (n − 1)-space of PG(3n− 1, q). The condition that no 3 points of O
are collinear means that any three of the corresponding (n − 1)-spaces span PG(3n− 1, q).

Hence, field reduction applied to an oval of PG(2, qn) gives an n-dimensional pseudo-oval of

PG(3n− 1, q). Pseudo-ovals arising in this way are called elementary pseudo-ovals. A

pseudo-oval arising from field reduction applied to a conic is called a pseudo-conic. All

known pseudo-ovals are elemenatry (see Bamberg–Penttila 2006 [12]).

An n-dimensional dual pseudo-oval of PG(3n− 1, q) is a set O of qn + 1 subspaces of

dimension 2n − 1 with the property that any three intersect trivially, together with qn + 1

subspaces of dimension n−1, called the tangents to O, with the property that each element

X of O lies on a unique tangent meeting no other element of O. The following construction

demonstrates how to obtain an elation Laguerre plane from a dual pseudo-oval.

Example 3.3.4 (Steinke 1991 [142], Löwen 1994 [99]) Let O be an n-dimensional dual

pseudo-oval of PG(3n− 1, q). Embed PG(3n− 1, q) as a hyperplane H in PG(3n, q) and

let L(O) be the incidence structure defined as follows. The points of L(O) are the (2n)-

subspaces of PG(3n, q) meeting H in an elements of O, the lines of L(O) are the elements

of O, the circles of L(O) are the points of PG(3n, q) not on H, with the natural incidence.

Then L(O) is an elation Laguerre plane of order qn.

In fact, every elation Laguerre plane arises from this construction.

Theorem 3.3.5 (Steinke 1991 [142]) A Laguerre plane L is an elation Laguerre plane if and

only if L ∼= L(O) for some dual pseudo-oval O.

Finally, we state some results on the geometric properties of elation Laguerre planes.

A Laguerre plane is weakly Miquelian if it satisfies condition M2 – whenever distinct

points P1, P2, P3, P4, Q1, Q2, Q3, Q4 are given such that Pi and Qi are collinear for i = 1 . . . 4,

and the sets {P1, P2, P3, P4}, {P1, P2, Q3, Q4}, {P3, P4, Q1, Q2}, are contained in a circle, then

{Q1, Q2, Q3, Q4} is also contained in a circle. Note that M2 is obtained from M1 by replacing

the concircular sets {P2, P3, Q2, Q3}, {P4, P1, Q4, Q1} with pairs of collinear points. Schroth
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1999 [133] proved that egglike Laguerre planes satisfy condition M2 (see Schroth 1999 [132]

for a simpler proof of this result along with a partial converse). The following theorem of

Knarr gives a geometric characterization of elation Laguerre planes.

Theorem 3.3.6 (Knarr 2002 [96]) A Laguerre plane L satisfies condition M2 if and only if

L is an elation Laguerre plane.

3.4 Symmetries of Laguerre planes

The most important open problem about Laguerre planes of finite order is whether or not

they are all egglike. The difficulty of addressing this problem directly leads naturally to the

development of results under suitable symmetry hypotheses. The conclusions of such results

may vary – for example, the plane may be an elation Laguerre plane, egglike or Miquelian.

The stronger conclusions naturally arise from stronger symmetry hypotheses. Unsurprisingly,

the hypothesis of a large group acting nicely forces the plane to be Miquelian, but the proof

involves a lot of group theory, and ultimately depends upon the classification of finite simple

groups.

The following result is fundamental to our approach.

Theorem 3.4.1 (Löwen 1994 [99]) Let ∆ be the elation group of an elation Laguerre plane

L(O). Then AutL(O) = ∆o ΓL(3n, q)O.

A permutation group is said to be quasiprimitive if each of its nontrivial normal sub-

groups is transitive. A primitive group is quasiprimitive but not conversely.

Theorem 3.4.2 Let L be a Laguerre plane with automorphism group G. If G acts quasiprim-

itively on the circles of L, and contains an elation of L, then L is an elation Laguerre plane.

Proof By Steinke 1991 [142], ∆ is a non-trivial normal subgroup of G. By quasiprimitivity,

∆ acts transitively and hence regularly on circles. �
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A Laguerre plane is flag-transitive its automorphism group acts transitively on (point,circle)

flags. A (dual) psuedo-oval O is transitive if its automorphism group acts transitively on

O.

Theorem 3.4.3 L(O) is flag-transitive if and only if O is transitive.

Proof Let H be the hyperplane at infinity. Suppose L(O) is flag-transitive and let O1,

O2 ∈ O. There exists flags Fi = (Pi, C), i = 1, 2, of L(O) and g ∈ AutL(O) such that

Pi ∩ H = Oi and gF1 = F2. Then gO1 = O2, and by Theorem 3.4.1, g restricted to H
is in PΓL(3n, q). Conversely, suppose O is transitive and Fi = (Pi, Ci), i = 1, 2, are flags

of L(O) with Pi ∩ H = Oi. Then there exists g ∈ PΓL(3n, q)O with gO1 = O2 and an

elation of PG(3n, q) with centre C1C2 ∩ H and axis H such that hC1 = C2. If g induces

g ∈ PΓL(3n+ 1, q), then ghF1 = F2. �

The preceding two theorems have reduced our problem to a problem about subgroups of

semi-linear groups, which makes it tractable.

Theorem 3.4.4 (Bamberg–Penttila 2006 [12]) A Laguerre plane L arising from a transitive

dual pseudo-oval O of PG(3n− 1, q), q odd, is Miquelian or the full automorphism group G

of the pseudo-oval acts reducibly on PG(3n− 1, q).

Proof By Bamberg–Penttila 2006 [12, Theorem 3.1], if L is not Miquelian then G is soluble.

By [12, Remark 4.2], G ≤ ΓL(1, qb) for some b. We claim that b = 2n and the G fixes a

PG(2n− 1, q). Suppose n = 1. Then ΓL(1, qb) ≤ PΓL(3, q), and so b ≤ 2. Since |O| = q+ 1
∣∣ΓL(1, qb)

∣∣, it follows that b = 2. But then ΓL(1, q2) fixes a line of PG(2, q). Now suppose

n ≥ 2. Let ` be a primitive prime divisor of q2n − 1. Then ` |G| as G is transitive on

O, so `
∣∣ΓL(1, qb)

∣∣ and the primitive part Φ∗2n(q) of q2n − 1 divides
∣∣ΓL(1, qb)

∣∣. By Hering

1974 [77] and Hering 1985 [78], we can deduce that 2n b. Since ΓL(1, qb) ≤ PΓL(3n, q),

it follows that b < 3n, and hence b = 2n. Let S ∈ Syl` (G), and let S1 = S ∩ GL(1, qb).

Since |L1| |GL(1, q2n)| and |L1|6 |GL(1, qm)| for any m < 2n, it follows that every non-trivial

irreducible representation for S1 is 1-dimensional over GF(q2n), and hence 2n-dimensional
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over GF(q). It follows that as an S1-module, GF(q)3n =
⊕n

i=1 1 ⊕ W for some W with

dimW = 2n. Since S1 is normal in G, it follows that G fixes W . �

Theorem 3.4.5 A Laguerre plane L with automorphism group G containing a non-trivial

elation and acting flag-transitively and quasiprimitively on circles is Miquelian of odd order

q. Conversely, let L be a Miquelian Laguerre plane of odd order q and G ≤ AutL. Then G

contains a non-trivial elation and acts flag-transitively and quasiprimitvely on circles if and

only if G ≥ ∆o Ω(3, q).

Proof To prove the first statement, notice that by Theorem 3.4.2, L is an elation Laguerre

plane. By Theorem 3.3.5, L ∼= L(O) for some dual pseudo-oval O, which is transitive

by Theorem 3.4.3. If q is odd and L is not Miquelian, then by Theorem 3.4.4, G is not

quasiprimitive on circles since G is of affine type and acts reducibly on PG(3n− 1, q) (see

[59]). If q is even then by [146], O can be extended to a pseudo-hyperoval by the addition of

a nuclear element, giving rise to a system of imprimitivity.

To prove the second statement, let L be Miquelian of odd order q, and G ≤ AutL. If

G ≥ ∆ o Ω(3, q) then clearly G contains a non-trivial elation elation. Since ∆ o Ω(3, q) is

transitive on the conic, it is flag-transitive on L by Theorem 3.4.3. The orbits of Ω(3, q) on

PG(2, q) are the conic, internal and external points, all of which span PG(2, q). Therefore

Ω(3, q), and hence G, acts irreducibly on PG(2, q), and thus G acts quasiprimitively on circles.

Now suppose that G ≤ AutL contains a non-trivial elation, and acts flag-transitively and

quasiprimitively on circles. Since G contains a non-trivial elation, it contains all elations by

quasiprimitivity on circles. Let H be the hyperplane at infinity. Then the group H induced

by G on H is a subgroup of PΓO(3, q) acting transitively on the conic, and it follows from

[58] that either H ≤ ΓL(1, q2) or H ≥ PΩ(3, q). The first case cannot arise by the proof of

Theorem 3.4.4. Hence H ≥ PΩ(3, q) ∼= Ω(3, q) (since q is odd). �

Our methods can also be used to characterize all Miquelian Laguerre planes of finite

order. Since the automorphism group of a Miquelian Laguerre plane of even order does not
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act quasiprimitively on circles, we must remove this hypothesis and substitute another to

eliminate the one dimensional semilinear case of Bamberg–Penttila 2006 [12].

Theorem 3.4.6 A Laguerre plane L with an insoluble automorphism group G containing a

non-trivial elation and acting flag-transitively is Miquelian. Conversely, let L be a Miquelian

Laguerre plane of order q and G ≤ AutL. Then G contains a non-trivial elation, is insoluble,

and acts flag-transitively if and only if G ≥ ∆o Ω(3, q).

3.5 Generalized quadrangles and eggs

Recall from Section 1.5 that a (finite) generalized quadrangle of order (s, t) (s, t ≥ 1) is

an incidence structure of points and lines with a symmetric incidence relation such that each

point is incidenct with t+ 1 lines, each line is incident with s+ 1 points, two distinct points

lie on at most one line, two distint lines meet in at most one point, and given a line ` and

a point P not on `, there exists a unique point Q on ` such that Q is collinear with P . If

s = t then we say the generalized quadrangel has order s. Classical examples of generalized

quadrangles arise from non-degenerate quadrics of PG(d, q). Let Q be a non-degenerate

quadric of PG(d, q), d > 3. The polar space Π(Q) arising from Q is the incidence structure

with points the points of Q, and lines the lines of PG(d, q) contained in Q (with natural

incidence). For example, if Q is a parabolic quadric of PG(4, q) then Π(Q) = Q(4, q) is a

generalized quadrangle of order q. IfQ is an elliptic quadric of PG(5, q) then Π(Q) = Q−(5, q)

is a generalized quadrangle of order (q, q2). See Example 1.5.5 for the complete list of classical

generalized quadrangles.

This section is concerned with a certain class of generalized quadrangles related to elation

Laguerre planes. A generalized quadrangle S of order (s, t) (s, t > 1) is a translation

generalized quadrangle based at x if there is an abelian group G of automorphisms fixing

x linewise and acting regularly on points not collinear with x. The group G is the translation

group of S, and x is the translation point or base point. The classical examples given

above are all translation generalized quadrangles.

When studying translation generalized quadrangles the following combinatorial structure
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plays an important role. An egg E of PG(2n+m− 1, q) is a set of qm + 1 (n − 1)-spaces

of PG(2n+m− 1, q) such that any three distinct elements of E span a (3n− 1)-space, and

each element E of E is contained in an (n+m−1)-space TE of PG(2n+m− 1, q), such that

TE is skew from any element of E \ {E}. TE is the tangent space of E at E.

Example 3.5.1 Ovals of PG(2, q) are eggs with m = n = 1, and pseudo-ovals are eggs with

m = n. Ovoids of PG(3, q) are eggs with m = 2, n = 1, and hence an egg with m = 2n

is called a pseudo-ovoid. In even characteristic all known pseudo-ovoids are elementary,

but this is not true in odd characteristic, with Kantor’s bad eggs 1986 [92] providing a

counterexample (see also Payne 1985 [117] and Payne 1989 [119]).

We can construct a translation generalized quadrangle from an egg in the following way.

Example 3.5.2 Let E be an egg of PG(2n+m− 1, q). Embed PG(2n+m− 1, q) in PG(2n+m, q),

and define the incidence structure T (E ) as follows. Points of T (E ) are of three types: (i)

points of PG(2n+m, q) \PG(2n+m− 1, q); (ii) (n+m)-spaces of PG(2n+m, q) intersect-

ing PG(2n+m− 1, q) in a tangent space; (iii) the symbol (∞). Lines of T (E ) are of two

types: (a) n-spaces of PG(2n+m, q) intersecting PG(2n+m− 1, q) in an element of E ; (b)

elements of E . Incidence is defined as follows: lines of type (b) are incident with points of

type (ii) which contain them, and with (∞); lines of type (a) are incident with points of

type (i) contained in them, and with points of type (ii) which contain them. Then T (E ) is a

TGQ based at (∞) of order (qn, qm). This generalizes the familiar constructions T2(O), for

an oval O of PG(2, q), and T3(Ω), for an ovoid Ω of PG(3, q), due to Dembowski 1968 [55].

See Example 1.5.10 and Example 1.5.13.

The following theorem shows that the study of translation generalized quadrangles is

equivalent to the study of eggs.

Theorem 3.5.3 (Payne–Thas 1984 [121], see also Payne–Thas 1980 [158]) A generalized

quadrangle S is a translation generalized quadrangle if and only if S ∼= T (E ) for some egg E

of PG(2n−m+ 1, q).
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We remark that a pseudo-oval of PG(3n− 1, q) gives rise to a translation generalized quad-

rangle of order (qn, qn) via this construction. We are naturally interested in when translation

generalized quadrangles constructed from a pseudo-oval give classical translation generalized

quadrangles. Applying field reduction to an egg E of PG(2n+m− 1, qh) gives an egg E

of PG(h(2n+m)− 1, q), and T (E ) ∼= T (E ) as translation generalized quadrangles. This

observation along with the fact that for eggs E1, E2 of PG(2n+m− 1, q), T (E1) ∼= T (E2)

if and only if E1
∼= E2 (see Thas–Thas–Van Maldeghem 2006 [160]), leads to the following

result.

Theorem 3.5.4 Let O be a pseudo-oval of PG(3n− 1, q). Then T (O) ∼= Q(4, qn) if and

only if O is a pseudo-conic. T (O) ∼= Q−(5, qn) if and only if O is obtained from an elliptic

quadric by field reduction.

In order to show that the correspondence of the next section between translation ovoids of

T (O) and translations flocks of L(O∗) is functorial (that is, that equivalent ovoids correspond

to equivalent flocks) we must pin down the automorphism group of T (O), for O a pseudo-

oval. While this is an easy consequence of results appearing in the literature, apparently

by an oversight it does not appear to be explicitly stated anywhere. The reason for this is

that in the literature T (E ), for E an egg, is the centre of attention. There exist eggs E for

which T (E ) is not classical but where AutT (E ) does not fix (∞). However, there do not

exist pseudo-ovals with this property, thus simplifying the treatment of AutT (O) compared

to AutT (E ).

Theorem 3.5.5 (Thas–Thas–Van Maldeghem 2006 [160]) Let O be a pseudo-oval of H =

PG(3n− 1, q) and let T be the group of elations of PG(3n, q) with axisH. Then AutT (O)(∞) =

T o ΓL(3n, q)O.

Theorem 3.5.6 Let T be the group of elations of PG(3n, q) with axis H. If O is a pseudo-

conic of PG(3n− 1, q) then AutT (O) = PΓO(5, qn) and AutT (O)(∞) = T o ΓL(3n, q)O. If

O is not a pseudo-conic of PG(3n− 1, q) then AutT (O)(∞) = AutT (O) = T o ΓL(3n, q)O.
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Proof If O is a pseudo-conic, then the result follows from Theorem 3.5.4. If O is not a

pseudo-conic, then by Theorem 3.5.5 it suffices to show that every automorphism of T (O)

fixes (∞). Suppose not. Then T (O) contains at least two distinct translation points x, y.

Since the orbit of y under the translation group about x consists of translation points not

collinear with x, we can assume x and y are collinear. By Thas 2002 [161, Theorem 3],

T (O) ∼= Q(4, qn), contradicting Theorem 3.5.4. �

3.6 Ovoids of TGQ and flocks of ELP

An ovoid Ω of a generalized quadrangle is a set of points such that every line contains a

unique point of Ω. A translation ovoid based at x of a generalized quadrangle is an ovoid Ω

such that there is an abelian group G of automorphisms fixing Ω, fixing x linewise, and acting

regularly on Ω \ {x}. The group G is the translation group of Ω, and x is the translation

point or basepoint. Given an ovoid Ω of PG(3, q) containing an oval O of PG(2, q), then

Ω = (Ω \ O) ∪ {πP : P ∈ O} is an ovoid of T2(O), where πP is the tangent plane to Ω at P

(see Brown 2000 [27]). Such an ovoid is called a projective ovoid. If π∞ is the plane on

O and π is another plane of PG(3, q) then {(∞)} ∪ π \ (π ∩ π∞) is also an ovoid of T2(O),

called a planar ovoid.

Let O be a pseudo-oval of PG(3n− 1, q) and Ω be a translation ovoid of T (O). If O
is a pseudo-conic then since AutT (O) is transitive on the points of T (O), we can assume

without loss of generality that a translation ovoid Ω of T (O) has translation point (∞).

On the other hand, suppose O is not a pseudo-conic. If (∞) /∈ Ω, then |Ω| = q2n + 1 and
∣∣(∞)⊥ ∩ Ω

∣∣ = qn + 1. However, (∞) is fixed by AutT (O) by Theorem 3.5.6, contrary to Ω

being a translation ovoid. Hence (∞) ∈ Ω. If there is a translation point x 6= (∞) of Ω, then

Ω \ {x} is an orbit containing (∞), a contradiction. Hence, without loss of generality we can

assume that a Ω has translation point (∞). We also remark here that since applying field

reduction to a pseudo-oval O of PG(3n− 1, ph) gives a pseudo-oval O of PG(3hn− 1, p),

and T (O) ∼= T (O) as translation generalized quadrangles, we can assume without loss of

generality that q is prime.
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Theorem 3.6.1 Let S be a translation generalized quadrangle of order s. Then every trans-

lation ovoid Ω based at (∞) corresponds to a subspace S(Ω) of projective space over the prime

field disjoint from the pseudo-oval O (after field reduction).

Proof By applying Theorem 3.5.3 and field reduction, S ∼= T (O) for some pseudo-oval of

PG(3n− 1, p) for some prime p. Let H be the hyperplane at infinity. Let P1 and P2 be points

of T (O) not collinear with (∞). A routine calculation shows that P1 and P2 are not collinear

in T (O) if and only if P1P2 ∩H is disjoint from O. Identify PG(3n− 1, p) \H with GF(p)3n

and let G be the translation group of Ω. By Theorem 3.5.6, G ≤ T o ΓL(3n, p)O, and it

follows that G ≤ T with G acting regularly on Ω \ (∞) over GF(p). Thus Ω \ (∞) forms a

subspace of GF(p)3n. We therefore have a Σ ∼= PG(2n, p) such that Σ ∩ H ∼= PG(2n− 1, p)

is disjoint from O. �

Recall that a flock of a Laguerre plane of order n is a partition of the points into n circles.

Flocks of Laguerre planes were surveyed in Section 3.2.3. A translation flock of a Laguerre

plane is a flock with an abelian group of automorphisms acting regularly on the circles of the

flock.

Theorem 3.6.2 Every translation flock F of an elation Laguerre plane L corresponds to a

subspace S(F) of projective space over the prime field disjoint from the dual pseudo-oval O
(after field reduction).

Proof By applying field reduction and Theorem 3.3.5, L ∼= L(O) for some dual pseudo-oval

of PG(3n− 1, p) for some prime p. Let H be the hyperplane at infinity. A routine calculation

shows that two circles C1, C2 of L(O) are disjoint in L(O) if and only if C1C2 ∩H is disjoint

from O. Identify PG(3n− 1, p) \ H with GF(p)3n and let G be the translation group of F .

Then G ≤ ∆ o ΓL(3n, p)O by Theorem 3.4.1, and thus G ≤ ∆ with G acting regularly on

F over GF(p). Thus F forms a subspace of GF(p)3n. We obtain a Σ ∼= PG(n, p) such that

Σ ∩H ∼= PG(n− 1, p) is disjoint from O. �

The natural correspondence between Theorem 3.6.1 and Theorem 3.6.2 can be made

explicit with the following result.
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Theorem 3.6.3 Let O be a pseudo-oval of PG(3n− 1, q). To every translation ovoid Ω

of T (O) there corresponds a translation flock F of L(O∗) and conversely. Two translation

ovoids are isomorphic if and only if their corresponding translation flocks are isomorphic.

Proof Apply field reduction so that without loss of generality q is prime. If O is a pseudo-

conic then without loss of generality Ω is based at (∞). Applying the standard duality gives

S(Ω)∗ = S(F) and S(F)∗ = S(Ω). By Theorem 3.4.1 and Theorem 3.5.6, Ω1
∼= Ω2 if and only

if S(Ω2) and S(Ω2) are in the same orbit of PΓL(3n+ 1, q)O, if and only if S(F1) = S(Ω1)∗

and S(F2) = S(Ω2)∗ are in the same orbit of PΓL(3n+ 1, q)O∗ , if and only if F1
∼= F2. �

We remark that under this correspondence planar ovoids of T2(O) correspond to linear

flocks of L(O∗).
Much of the difficulty in phrasing in the latter sections of this paper is concerned with

how best to make precise the vague notion that elation Laguerre planes and translation

generalized quadrangles with s = t are dual objects. Theorem 3.3.5 and Theorem 3.5.3 focus

attention on pseudo-ovals and their duals. In terms of the constructions (T (O) and L(O∗))
the action takes place at infinity. The original proofs of the corollary below used a self-duality

(which necessitated the hypothesis that q was odd), but in fact the pseudo oval O and its

dual O∗ lie in different projective spaces – it is not advantageous to identify them. We obtain

the following theorems as corollaries of our approach.

Corollary 3.6.4 (Thas 1997 [155], Lunardon 1997 [100]) To each semifield flock of Q(4, q),

q odd, there corresponds a translation ovoid of Q(4, q) and conversely.

Corollary 3.6.5 (Johnson 1987 [87], Glynn 1984 [68]) Semifield flocks of the quadratic cone

are linear in characteristic 2 and translation ovoids of W(q) (and hence of PG(3, q)), q even,

are elliptic quadrics, and are equivalent.

Finally, the generalization to non-classical generalized quadrangles and non-Miquelian

Laguerre planes involves non-trivial examples. There is a non-linear translation flock of L(O),

where O is the Segre-Bartocci oval in PG(2, 32) constructed by Oscar Jenkins, mentioned
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in Penttila 2005 [124]. There is also a non-linear translation flock of L(O), where O is the

Lunelli–Sce oval in PG(2, 16) [102].
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Chapter 4

Hemisystems of polar spaces

4.1 Introduction

A hemisystem H of a polar space is a set of maximals such that for every point P , exactly

half the maximals on P are in H. Hemisystems were first introduced by Segre in 1965, in

his monumental 201 page memoir [138]. Segre was studying regular systems of order m of

H(3, q2) – sets R of lines of H(3, q2) such that every point lies on exactly m lines of R, with

0 < m < q + 1. He proved that when q is odd, such a system must have m = (q + 1)/2, and

he called a regular system of H(3, q2) of order (q+ 1)/2 a hemisystem. He also constructed a

hemisystem of H(3, 32) admitting PSL(3, 4), and proved that this hemisystem is unique. He

raised the following question.

Problem 4.1.1 (Segre 1965 [138]) Do hemisystems exist in H(2r − 1, q2) for r > 2, q > 3?

We will completely resolve this problem in the following sections.

Bruen and Hirschfield 1978 [33] proved the nonexistence of regular systems of H(3, q2),

for q even. Thas 1995 [154] proved that a regular system of H(3, q2) is a hemisystem, and

hence q is odd, by showing that the complement of the concurrency graph of the lines of a

regular system of H(3, q2) of order m is a strongly regular graph with v = (q3 +1)(q+1−m),

k = (q2 + 1)(q −m), λ = q −m− 1, µ = q2 + 1−m(q + 1), and applying the fact that in a

strongly regular graph we have µ(v − k − 1) = k(k − λ− 1).

Cameron, Goethals and Seidel 1978 [40], extended Segre’s original definition of a hemisys-

tem to also cover any generalized quadrangle of order (s, s2), s odd. They defined a hemisys-

tem to be a set of points meeting every line in (s+1)/2 points, and showed that the collinearity

graph of such a set is strongly regular. They also gave a simple construction of Segre’s ex-

ample in the dual setting of Q−(5, q). The set of 56 points that arises is the cap usually
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attributed to Hill 1976 [81].

Much of the motivation for the early study of hemisystems comes from their connection to

partial quadrangles, first introduced by Cameron 1975 [38]. Recall, a partial quadrangle is

an incidence structure of points and lines such that any two points are incident with at most

one line, every point is incident with t+ 1 lines, every line is incident with s+ 1 points, two

non-collinear points are jointly collinear with exactly µ points, and for any line ` and point

P not on `, there is at most one point Q on ` collinear with P . Partial quadrangles were

introduced in Section 1.5.3. It follows directly from these conditions that the point graph of

a partial quadrangle is a strongly reguar graph with parameters v = 1 + s(t+ 1)(µ+ st)/µ,

k = s(t+ 1), λ = s− 1, µ = µ.

A generalized quadrangle is a partial quadrangle with µ = t+ 1. Partial quadrangles

that are not generalized quadrangles are quite rare – most arise from deleting a point P , all

lines on P , and all points collinear with P , from a generalized quadrangle of order (s, s2).

This construction gives a partial quadrangle of order (s−1, s2, s(s−1)), see Theorem 1.5.18.

Examples of partial quadrangles that do not come from this construction either arise from

one of the seven known triangle free strongly regular graphs, or from caps of projective spaces

(see Theorem 1.5.19), or from a hemisystem of a generalized quadrangle of order (s, s2) in a

way that we describe below.

Example 4.1.2 (Cameron–Delsarte–Goethals 1979 [39]) We can construct a partial quad-

rangle from a hemisystem of a generalized quadrangle of order (s, s2) by defining the points of

the partial quadrangle to be the lines of the hemisystem, and the lines of the partial quadran-

gle to be the lines of the generalized quadrangle. The resulting partial quadrangle has order

((s− 1)/2, s2, (s− 1)2/2), and therefore does not arise from deleting points and lines from a

generalized quadrangle as above. Since the complement of a hemisystem is also a hemisystem,

and partial quadrangles give strongly regular graphs, any hemisystem of a GQ(s, s2) leads to

two stongly regular graphs, which may not be isomorphic (see Bamberg–De Clerck–Durante

2009 [10] for an example where this occurs).
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Finally, hemisystems are related to combinatorial structures known as association schemes.

A d-class association scheme is a set X, together with d + 1 symmetric relations Ri on

X such that {R0, . . . , Rd} partitions X ×X, the identity relation on X ×X is R0, and for

any (x, y) ∈ Rk, the numbers pkij = {z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj} depend only on

i, j, k (and not on x and y). Association schemes were first defined by Bose and Shimamoto

1952 [25]. A strongly regular graph gives a 2-class association scheme by defining (x, y) ∈ R1

if x is adjacent to y, and (x, y) ∈ R2 if x and y are distinct and non-adjacent. Any 2-class

association scheme can be viewed as coming from a strongly regular graph. in this way. Sim-

ilarly, a distance regular graph with diameter i gives an i-class association scheme by defining

(x, y) ∈ Ri if d(x, y) = i. Association schemes can be also be constructed from permutation

groups. For example a generously transitive group G of rank d+ 1 acting on a set X gives a

d-class association scheme by defining {R1, . . . , Rd} to be the orbitals of G on X. For more

information on association schemes see Brouwer–Cohen–Neumaier 1989 [26]. The following

example demonstrates the relationship between hemisystems and association schemes.

Example 4.1.3 (van Dam–Martin–Muzychuk 2010 [168]) A hemisystem H of a polar space

X gives a 4-class association scheme via the following construction. We say that x, y ∈ X are

in the same half of X if either x and y are both in H or both in Hc. We say x and y are in

opposite halves otherwise. Then define (x, y) ∈ R1 if x and y are incident and in the same

half, (x, y) ∈ R2 if x and y are incident and in opposite halves, (x, y) ∈ R3 if x and y are not

incident and in the same half, (x, y) ∈ R4 if x and y are not incident and in opposite halves.

This construction is of some interest because the resulting association scheme is cometric but

not metric (equivalently, Q-polynomial but not P polynomial), and such association schemes

are quite rare in the literature. See Martin–Muzychuk–Williford 2007 [103] for definitions of

these terms and a survey of cometric but not metric association schemes.

4.2 Recent work

Recall, the first hemisystem of H(3, q2) was found by Segre in 1965. Thirty years later, no

new hemisystems had been found, and Thas conjectured that Segre’s example was the only
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hemisystem in a hermitian space.

Conjecture 4.2.1 (Thas 1995 [154]) There are no hemisystems of H(3, q2), for q > 3.

This conjecture was shown to be false ten years later, with the first new construction

of hemisystems since Segre’s 1965 example. Cossidente and Penttila constructed an infinite

family of hemisystems of H(3, q2), q odd, and a sporadic example in H(3, 52).

Theorem 4.2.2 (Cossidente–Penttila 2005 [49]) There exists a hemisystem of H(3, q2), for

each odd prime power q, admitting PΩ−(4, q2). There exists a hemisystem of H(3, 52) admit-

ting 3 . A5.

The resulting partial quadrangles and strongly regular graphs arising from these hemisys-

tems are new for q > 3. This construction lead to renewed interest in hemisystems (see for

example, Thas 2007 [156]). Four years later, the same authors used a similar construction to

get three new families of hemisystems in H(5, q2).

Theorem 4.2.3 (Cossidente–Penttila 2009 [50]) There exists a hemisystem of H(5, q2), for

each odd prime power q, admitting PΩ−(6, q2). There exists a hemisystem of H(5, q2) for

each odd prime power q, admitting PΩ+(6, q2). There exists a hemisystem of H(5, q2), for

each odd prime power q, admitting PΩ(5, q2).

The main goal of this work is to generalize the results of Theorem 4.2.2 and Theorem 4.2.3

to obtain hemisystems of H(2r − 1, q2), for each odd prime power q, and each r > 2.

The existence of hemisystems of hermitian polar spaces lead to the renewed interest in

hemisystems of generalized quadrangles. As we noted earlier, the generalized quadrangles

are the only polar spaces that admit non-classical examples. The Fisher–Thas–Walker–

Kantor–Betten generalized quadrangle is an example of a non-classical generalized quadrangle

(see Example 2.2.26 for the associated q-clan). In 2009, a hemisystem of this non-classical

generalized quadrangle was constructed.

Theorem 4.2.4 (Bamberg–De Clerck–Durante 2009 [10]) There is a hemisystem of the

Fisher–Thas–Walker–Kantor–Betten generalized quadrangle of order (5, 52).
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Recall, a flock of a quadratic cone K with vertex V in PG(3, q) is a partition of K\V into

q disjoint conics. Flocks were discussed in Section 3.2.3. Thas 1987 [151] proved that a flock

of a quadratic cone leads to a generalized quadrangle – these are the so called flock general-

ized quadrangles. The Fisher–Thas–Walker–Kantor–Betten generalized quadrangle is an

example of a flock generalized quadrangle, and indeed, every known GQ(s2, s) arises from a

flock. Since Theorem 4.2.4 proves that the existence of a hemisystem in this particular flock

generalized quadrangle, it is natural to ask if every flock generalized quadrangle contains a

hemisystem. The following theorem shows that this is true in odd characteristic.

Theorem 4.2.5 (Bamberg–Guidici–Royle 2010 [11]) Every flock generalized quadrangle of

order (s2, s), s odd, contains a hemisystem.

It appears that after a long period where hemisystems were thought to be extremely rare,

we may in fact have an embarrassment of riches. Theorem 4.2.5, in principle, gives rise to a

large number of hemisystems of generalized quadrangles (the construction involves a choice,

which means that it is possible that each flock generalized quadrangle contains a number of

hemisystems; it is not clear at this stage how many of these hemisystems are inequivalent).

However, the construction given in Bamberg–Guidici–Royle 2010 [11] is quite complicated,

and it appears that it will take some time to gain insight into hemisystems obtained from

this model. However, a hemisystem equivalent to the Cossidente–Penttila hemisystems of

H(3, q2) was constructed in Bamberg–Guidici–Royle 2010 [11], so it is possible that using

this model may be useful in the construction of new hemisystems. We will be interested in

constructing hemisystems in hermitian polar spaces rather than generalized quadrangles, so

this is not an approach that we will consider in this paper.

4.3 The Cossidente–Penttila examples

Our goal is to generalize the hemisystems construted in Cossidente–Penttila 2005 [49] and

Cossidente–Penttila 2009 [50]. Both of these papers involve a particular embedding of

Qε(d, q) ⊂ H(d, q2), and so we will first summarize the key properties of this embedding.
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In Cossidente–Penttila 2005 [49] and Cossidente–Penttila 2009 [50], the authors present

the embedding in terms of commuting polarities. These were first introduced by Tits 1955

[162]. Ten years later, Segre 1965 [138] developed the theory of polarities commuting with

a non-degenerate unitary polarity in PG(3, q2) in the context of studying the geometry of

the hermitian surface H(3, q2). The theory of commuting polarities also seems to be of great

importance in understanding the structure of certain maximal subgroups of finite classical

groups. This is apparent, for example, in the works of Aschbacher 1984 [4] and Cossidente–

King 2004 [47].

The particular setting we are interested in is as follows. Let U be the unitary polarity

assoicated with H(d, q2). Let B be an orthogonal polarity commuting with U . Let V = BU =

UB. Then by Segre 1965 [138], V is a non-linear collineation of PG(d, q2), and Q = V∩H(d, q2)

is a non-degenerate quadric. In fact, Q = H(d, q2) ∩ Σ0, where Σ0 is a Baer subgeometry

of PG(d, q2) isomorphic to PG(d, q). The type of Q matches the type of B. Thus, we have

Qε(d, q) ⊂ H(d, q2), and

PΩε(d+ 1, q) ≤ POε(d+ 1, q) ≤ PU(d+ 1, q2),

for ε = ±. This embedding is illustrated in Figure 4.1.

PG(d, q)

PG(d, q2)

Qǫ(d, q)

H(d, q2)

Figure 4.1: The embedding Qε(d, q) ⊂ H(d, q2).
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It is perhaps easier to consider this embedding in terms of Gram matrices. Let β be the

polarization of a quadratic form Q over GF(q)d+1. Then β(x, y) = xtAy, for some symmetric

matrix A ∈ GL(d+ 1, q). Define a new form β̃ on GF(q2)d+1 by β̃(x, y) = xtAy, where

∈ Aut GF(q2) is defined by x = xq. Then is an involution in Aut GF(q2) (a Baer

involution), and A is hermitian with respect to as a matrix in GL(d+ 1, q2). Hence, β̃ is

a hermitian form over GF(q2)d+1. Clearly, any totally singular subspace with respect to Q is

totally isotropic with respect to β̃. This gives the embedding Qε(d, q) ⊂ H(d, q2). Now any

isometry B ∈ GL(d+ 1, q) of β satisfies BtAB = A, and hence BtAB = A, and so B is an

isometry of β̃. This gives the chain of subgroups

Ωε(d+ 1, q) ≤ Oε(d+ 1, q) ≤ U(d+ 1, q2),

and so on for the similarities, semisimilarites etc.

Since we have GF(q) as a subfield of GF(q2), PG(d, q) as a subgeometry of PG(d, q2),

and an involution acting trivially on the subfield (subgeometry), we borrow language from

analysis, and call subspaces in PG(d, q2) real if they meet PG(d, q) in a subspace of PG(d, q),

and imaginary otherwise. The following theorem is fundamental to the approach in the

Cossidente–Penttila papers.

Theorem 4.3.1 (Sved 1983 [144]) Every imaginary point of H(d, q2) lies on a unique real

line of PG(d, q2).

Theorem 4.3.1 gives us a way of distinguishing the points of H(d, q2). Take a real line `,

and consider β̃ = β|`. If dim rad(β̃) = 2, then β̃ is the zero form, and hence |` ∩ H(d, q2)| =
q2 + 1, |` ∩Qε(d, q)| = q + 1, and ` is totally isotropic. If dim rad(β̃) = 1, then β̃ is

equivalent to β̃(x, y) = x1y1, and hence |` ∩ H(d, q2)| = |` ∩Qε(d, q)| = 1. In this case we

say that ` is a tangent line. If dim rad(β̃) = 0, then β̃ is non-degenerate, β̃ is equivalent

to β̃(x, y) = x1y1 + x2y2, and hence |` ∩ H(d, q2)| = q + 1. If Q̃ = Q|`∩PG(d,q) has plus type,

then Q̃ is equivalent to Q̃(x) = x1x2, and hence |` ∩Qε(d, q)| = 2, and ` is secant. If Q̃ has

minus type, then Q̃ is equivalent to Q̃(x) = x2
1 + ax1x2 + bx2

2 with x2 + ax + b irreducible

over GF(q), and hence |` ∩Qε(d, q)| = 0 and ` is external. The four classes real lines and
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the structure of their totally isotropic points is shown in Figure 4.2. The points of H(d, q2)

thus fall into four classes:

• real totally isotropic points

• imaginary totally isotropic points on a real totally isotropic line

• imaginary totally isotropic points on real secant line

• imaginary totally isotropic points on a real external line.

Notice that an imaginary totally isotropic point of H(d, q2) cannot lie on a real tangent line,

since the point of tangency is real. Now returning to the papers of Cossidente–Penttila,

we can start to see how thinking of points in terms of these classes is useful. Define

G = PSU(4, q2)Q−(3,q). By Cossidente–King 2004 [47, Proposition 2.2], G = PGO−(4, q) ∩
PSU(4, q2).

· · · · · ·
q+1︷ ︸︸ ︷ · · ·

· · · · · ·
· · · · · ·

q−1︷ ︸︸ ︷ · · ·
· · ·
q+1︷ ︸︸ ︷ · · ·

q2−q︷ ︸︸ ︷
real imaginary

external

tangent

secant

t.i.

Figure 4.2: The four classes of real lines. Totally isotropic points are denoted by a filled in
circle, non-totally isotropic points are denoted by open circles.

Proposition 4.3.2 ([49, Proposition 2.2]) The group G has three orbits on the points of

H(3, q2) – real totally isotropic points, imaginary totally isotropic points on a real secant line,

and imaginary totally isotropic points on a real external line.

Proposition 4.3.3 ([49, Proposition 2.3]) The group G has two orbits on the lines of H(3, q2)

– the secant lines, and the external lines.
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So the classification of points and lines of the hermitian surface we have considered is

compatible with a group of automorphisms. This means that we can bring the extensive the-

ory of the subgroup structure of the classical groups to bear on the problem. The key insight

of Cossidente–Penttila 2005 [49] is the existence of a subgroup of H = PΩ−(4, q) of G with

the property that G and H have the same orbits on the points of H(3, q2), but each G-orbit

on lines splits into two H-orbits. Labeling the point orbits of H as {P1,P2,P3} and the line

orbits of H as {O1,O2,O3,O4}, the authors then go on to calculate the intersection numbers

bij = |{P ∈ Pi : P I `j, for a fixed `j ∈ Oj}|, and aij = |{` ∈ Oj : Pi I `, for a fixed Pi ∈ Pi}|.
The matrix B = [bij] is the block-tactical decomposition matrix, and the matrix A = [aij]

is the point-tactical decomposition matrix.

It turns out that the block-tactical decomposition matrix with respect to the H-orbits is




1 1 0 0

0 0 q2+1
2

q2+1
2

q2 q2 q2+1
2

q2+1
2


 ,

and the point-tactical decomposition matrix is



q+1

2
q+1

2
0 0

0 0 q+1
2

q+1
2

1 1 q−1
2

q−1
2


 .

Notice that each colum in the point-tactical decomposition matrix is repeated. It follows

immediately that {O1,O3} and {O2,O4} are hemisystems of H(3, q2). Of course, the difficult

part of this approach is the calculations of the entries of the decomposition matrices, each of

which is highly non-trivial.

The approach in [50] is similar. Note that the maximals in H(5, q2) are planes. Define

Gε = PSU(6, q2)Qε(5,q). By [47], Gε = PGOε(6, q) ∩ PSU(6, q2), for ε = ±. We have the

following propositions about the orbits of Gε on H(5, q2).

Proposition 4.3.4 ([50, Proposition 2.2, Proposition 2.4]) The group Gε has four orbits on

the points of H(5, q2) for ε = ± – real totally isotropic points of H(5, q2), imaginary points

on a real totally isotropic line, imaginary points on a real secant line, imaginary points on a

real external line.
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Proposition 4.3.5 ([50, Proposition 2.3, Proposition 2.5]) The group G− has three orbits

on planes of H(5, q2). The group G+ has four orbits on planes of H(5, q2).

Again, there are subgroups Hε = PΩε(6, q) of Gε with the same point orbits, and having

the property that every Gε-orbit on planes splits into two Hε-orbits. The block-tactical and

point-tactical intersection numbers with respect to the Hε orbits were calculated in [50]. In

the elliptic case the block tactical decomposition matrix is




q + 1 q + 1 1 1 0 0
q2 − q q2 − q 0 0 q2 + 1 q2 + 1

0 0 q4+q2

2
q4+q2

2
q4−q2

2
q4−q2

2

q4 q4 q4+q2

2
q4+q2

2
q4+q2

2
q4+q2

2



,

and the point-tactical decomposition matrix is




q3+q2+q+1
2

q3+q2+q+1
2

q4−q2
2

q4−q2
2

0 0
q+1

2
q+1

2
0 0 q4+q3

2
q4+q3

2

0 0 q3+q2+q+1
2

q3+q2+q+1
2

q4−q2
2

q4−q2
2

q + 1 q + 1 (q2−1)(q+1)
2

(q2−1)(q+1)
2

q4−q2
2

q4−q2
2


 .

Again, since columns of the point-tactical decomposition matrix occur in pairs, amalgamation

of the first, third, and fifth plane orbits under PΩ−(6, q) gives a hemisystem of H(5, q2). In

the hyperbolic case the block tactical decomposition matrix is




q2 + q + 1 q2 + q + 1 q + 1 q + 1 1 1 0 0
q4 − q q4 − q q2 − q q2 − q 2q2 2q2 q2 + 1 q2 + 1

0 0 0 0 q4−q2
2

q4−q2
2

q4−q2
2

q4−q2
2

0 0 q4 q4 q4−q2
2

q4−q2
2

q4+q2

2
q4+q2

2


 ,

and the point-tactical decomposition matrix is




q + 1 q + 1 (q2−1)(q+1)
2

(q2−1)(q+1)
2

q4−q2
2

q4−q2
2

0 0

1 1 1 1 q4+q3+q−1
2

q4+q3+q−1
2

q4+q3+q−3
2

q4+q3+q−3
2

0 0 0 0 q3+q2+q+1
2

q3+q2+q+1
2

q4−q2
2

q4−q2
2

0 0 q + 1 q + 1 (q2−1)(q+1)
2

(q2−1)(q+1)
2

q4−q2
2

q4−q2
2


 .

Here, the union of the first, third, fifth, and seventh plane orbits of Q+(6, q) gives a hemisys-

tem of H(5, q2). In the next section we will look at how to generalize these constructions.
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4.4 A class of hemisystems in H(2r − 1, q2)

Our goal here is to generalize the construction outlined in Section 4.3. Each hemisystem

arose by taking the union of orbits on maximal totally isotropic subspaces under a suitable

group, and the fact that these orbits formed a hemisystem was apparent from the fact that

each column of the point-tactical decomposition matrix was repeated. However, there is an

obvious problem with continuing with this approach. The number of orbits of PΩε(d+ 1, q)

on totally isotropic points of H(d, q2) looks like it will remain constant, but the number of

orbits on maximals appears to be growing with the rank. The action of PΩ+(6, q) on H(5, q2)

already has four orbits on totally isotropic points and eight orbits on totally isotropic planes,

and so calculating the tactical decomposition matrices requires 32 non-trivial calculations.

Trying to calculate these matrices for larger rank seems foolish.

We need to somehow argue that the columns of the point-tactical decomposition are

repeated without having to calculate the matrices. The insight that was minimized in [49]

and [50] is that there are in fact two groups involved in the construction of each hemisystem.

In each case there were groups A,B ≤ PΓU(d+ 1, q2) such that:

• B is a normal subgroup of A

• A and B have the same orbits on totally isotropic points of H(d, q2)

• each A-orbit on maximal totally isotropic subspaces of H(d, q2) splits into two B-orbtis.

As stated above, the authors then proceeded to compute the intersection numbers with

respect to the B-orbits on points and maximals. However, as the next lemma shows, this is

unnecessary.

Lemma 4.4.1 (The AB-Lemma) Let I = (P ,M, I) be an incidence structure with two

types, which we call points and maximals. Let A and B be two subgroups of Aut I such that

(i) B is a normal subgroup of A, (ii) A and B have the same orbits on P, (iii) each A-orbit

on M splits into two B-orbits. Then there are 2n hemisystems admitting B, where n is the

number of A-oribts on maximals.
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Proof Let H be a union of B-orbits on maximals, one from each A-orbit. Let P be a point

and M be a maximal in H. Let O be the B-orbit of M , and O′ be the complement of O in

the A-orbit of M . Then A acts transitively on {O,O′}, since B is normal in A. It follows

that the number of maximals in O on P equals the number of maximals in O′ on P , since

P has the same orbit under both A and B. Let H′ be the complement of H in the set of

all maximals. It follows that the number of maximals in H on P equals the numbers of

maximals in H′ on P , and so this number is half the number of maximals on P . Thus H is

a hemisystem. �

The advantage to working abstractly with the two groups instead of concretely with one

group is that we are using that fact that each column of the point-tactical decomposition

matrix is repeated without having to know the entries in each column. So all we need to

do is find a pair of subgroups satisfying the hypotheses of the AB–Lemma. We will use

Lemma 4.4.1 with I = H(2r − 1, q2), A = PO−(2r, q), B = PSO−(2r, q).

Lemma 4.4.2 For r > 1, q odd, PO−(2r, q) and PSO−(2r, q) each have 4 orbits on to-

tally isotropic points of H(2r − 1, q2) – real points, imaginary points on a real secant line,

imaginary points on a real external line, and imaginary points on a real line of Q−(2r, q).

Proof First we show that PO−(2r, q) has the stated orbits. By the classification of quadrics,

any two external lines are isometric, as are any two secant lines, as are any two lines of the

quadric, as are any two points of the quadric. Hence PO−(2r, q) is transitive on real points,

and to get the desired result for imaginary points, we may assume that we have two imaginary

points on the same real line `, and that ` is not tangent to Q−(2r − 1, q), as such lines are

tangent to H(2r − 1, q2), so contain no imaginary totally isotropic points. By Witt’s theorem,

the group induced on ` by the stabiliser of ` in O−(2r, q) is the isometry group of `. If ` is

a line of the quadric, this is GL(2, q), which is clearly transitive on PG(1, q2) \ PG(1, q). By

[94, Proposition 2.9.1 (iii)], if ` is external then the group O−(2, q) induced on ` by O−(2r, q)

is dihedral of order 2(q + 1); in this case, ` is a hyperbolic line of H(2r − 1, q2), containing

q+ 1 totally isotropic points, and the group is again transitive on the totally isotropic points
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on `. By [94, Proposition 2.9.1(iii)], if ` is secant then the group O+(2, q) induced on ` is

dihedral of order 2(q−1); in this case, ` is a hyperbolic line of H(2r − 1, q2), containing q−1

imaginary totally isotropic points, and the group is yet again transitive on the imaginary

totally isotropic points on `. Hence PO−(2r, q) has the required point orbits. But since

we can apply Witt’s theorem with special isometries in place of isometries, it follows that

PSO−(2r, q) has the same point orbits. �

In order to compute the orbits of PO−(2r, q) and PSO−(2r, q) on maximal totally isotropic

subspaces of H(2r − 1, q2), the following geometric perspective on the field extension GF(q) ⊂
GF(q2), and the embedding PG(2r − 1, q) ⊂ PG(2r − 1, q2) is useful. This perspective goes

back to Bruen 1972 [31] (see also Bruen 1975 [32]).

Take an (r − 1)-space M disjoint from PG(2r − 1, q). Then M is also disjoint from

PG(2r − 1, q2). By Casse–O’Keefe 1990 [41], a subspace of PG(2r − 1, q2) of dimension r is

fixed by if and only if it intersects the subgeometry PG(2n− 1, q) in a subspace in dimension

r. For every point P ∈ M , consider the line `P joining P to P . This line is fixed by , and

so intersects PG(2r − 1, q) in a line. Consider the set S = {`P : P ∈ M}. Since M is skew

to PG(2r − 1, q), distinct elements of S are disjoint. Hence, S is a partition of the points of

PG(2r − 1, q) into lines. Such a set is called a 1-spread of PG(2r − 1, q). This construction is

illustrated in Figure 4.3. Spreads are connected to many objects of interest in combinatorics.

The following example shows that spreads can be used to construct translation planes.

Example 4.4.3 (Andre 1954 [3], Bruck–Bose 1964 [30]) From a 1-spread S we construct

an affine plane A(S) as follows. Embed PG(2r − 1, q) as a hyperplane in PG(2r, q). Define

the points of A(S) to be the points in PG(2r, q) \ PG(2r − 1, q), and define the lines of

A(S) to be the planes of PG(2r, q) meeting PG(2r − 1, q) in an element of S, with incidence

inherited from PG(2r, q). The resulting incidence structure is a 2 − (q2r, q2, 1) design, and

when r = 2, A(S) is a translation plane. For any n ≥ 2, if A(S) is isomorphic to the

point/line design of some AG(r, q2), then the spread S is called Desarguesian. It turns

out that every Desarguesian spread can be constructed in this way (see Lunardo 1999 [101],

Segre 1964 [137]).
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PG(2r − 1, q)

PG(2r − 1, q2)

Q−(2r − 1, q)

H(2r − 1, q2)
M

M

P

P

ℓP

Figure 4.3: The construction of a line spread of PG(2r − 1, q) from an (r − 1)-space M of
PG(2r − 1, q2) disjoint from PG(2r − 1, q).

Thinking about field extensions in terms of spreads is useful in part because certain results

about maximality of orthogonal groups are most naturally stated in terms of stabilizers of

spreads. In particular, the work of Cossidente–King 2006 [48] contains very explicit geometric

descriptions of subgroups that are suitable for computing orbits, and are therefore convenient

for our purposes.

Lemma 4.4.4 For r > 1, q odd, every maxmial totally isotropic subspace of H(2r − 1, q2)

disjoint from PG(2r − 1, q) corresponds to a spread S of PG(2r − 1, q) whose stabilizer in

O−(2r, q) has the structure O−(r, q2) · 2.

Proof Firstly, M is disjoint from PG(2r − 1, q), since otherwise there would be a point

P ∈ M ∩ M , and ` = 〈P, P 〉 would be a real line contained in M , a contradiction. For

each P ∈ M , define `P = 〈P, P 〉. By Bruen 1972 [31], S = {`P : P ∈ M} is a spread of

PG(2r − 1, q). Let π be the orthogonal polarity of minus type on PG(2r − 1, q2). Define the

polarity α on M by Pα = P π ∩M . It is easy to see that P π contains M and P
π

contains M ,

and so both P π and P
π

contain 〈Pα, P
α〉. Hence, 〈Pα, P

α〉 = P π ∩ P π
= `πP . It follows that

α is an orthogonal polarity of minus type. Any isometry of the associated quadratic form on
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M induces an isometry of PG(2r − 1, q), and by Cossidente–King 2006 [48], the stabilizer of

S is generated by these induced isometries together with the Baer involution. �

Lemma 4.4.5 For r > 1, q odd, two maximal totally isotropic subspaces of H(2r − 1, q2) lie

in the same orbit of PO−(2r − 1, q) if and only if they have the same number of real points.

Proof Let M be a maximal totally isotropic subspace of H(2r − 1, q2). Let N = M ∩
Q−(2r − 1, q) have algebraic dimension n. Let Σ = N⊥/N ∼= H(2(r − n)− 1, q2). Then M/N

is a maximal totally isotropic subspace of Σ disjoint from Q−(2(r − n)− 1, q). For r > 1,

PO−(2r, q) is transitive on singular subspaces of fixed algebraic dimension, so it suffices to

show that for r > 1, PO−(2r − 1, q) is transitive on maximals disjoint from Q−(2r − 1, q).

By [94], we know that PO−(2r − 1, q) is transitive on pairs {M,M}, and by [48] there exists

an element in PO−(2r − 1, q) interchanging M and M . �

Lemma 4.4.6 For r > 2, q odd, each PO−(2r, q2)-orbit on maximal totally isotropic sub-

spaces of H(2r − 1, q2) disjoint from PG(2r − 1, q) splits into two PSO−(2r, q2)-orbits.

Proof Let M be a maximal totally isotropic subspace of H(2r − 1, q2). Since PSO−(2r, q)

has index 2 in PO−(2r, q), it follows that PSO−(2r, q)M has index 1 or 2 in PO−(2r, q)M . We

wish to show that the index is 1. By Lemma 4.4.4, we known that M corresponds to a spread

S. By Cossidente–King 2006 [48], unless r is odd and q ≡ 3 (mod 4), the stabilizer of the

spread S corresponding to M lies in PSO−(2r, q), and the result follows. In the case where r

is odd and q ≡ 3 (mod 4), a simple determinant calculation shows that the Baer involution

is not in PSO−(2r, q), and so even though PSO−(2r, q)S has index 2 in PO−(2r, q)S , it is still

the case that PSO−(2r, q)M = PO−(2r, q)M . �

Lemma 4.4.7 For r > 2, q odd, each PO−(2r, q2)-orbit on maximal totally isotropic sub-

spaces of H(2r − 1, q2) splits into two PSO−(2r, q2)-orbits.

Proof Let M be a totally isotropic subspace of H(2r − 1, q2), and let N = M∩Q−(2r − 1, q)

have algebraic dimension n. By Lemma 4.4.5 and the fact that PO−(2r, q) is transitive on
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totally singular subspaces of fixed aglebraic dimension, we may assume that every maximal

in the PO−(2r − 1, q)-orbit meets Q−(2r − 1, q) in N . Let Σ = N⊥/N ∼= H(2(r − n)− 1, q2).

Then M/N is a maximal totally isotropic subspace of Σ disjoint from Q−(2(r − n)− 1, q). By

Lemma 4.4.6, each PO−(2r − 1, q)Σ
N -orbit onM/N splits into two orbits under PSO−(2r − 1, q)Σ

N ,

and the result follows. �

Theorem 4.4.8 For r > 2, q odd, there exists a hemisystem of H(2r − 1, q2) admitting

PSO−(2r, q).

Proof This follows from Lemma 4.4.1, Lemma 4.4.2, and Lemma 4.4.7. �

We remark that we have completely solved the problem of the existence of hemisystems

in hermitian spaces first raised by Segre in 1965.
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Index

(P, `)-transitive, 9

(P, `)-Desarguesian, 9

α-clan, 51

α-cone, 51

k-(m,n) set, 27

k-set of type (m,n), 27

q-clan, 48

absolute, 11

Adelaide q-clan, 51

Adelaide flocks, 79

Adelaide hyperovals, 51

affine points, 4

affine space, 4

alternating, 12

anisotropic, 48

arc, 38

association scheme, 94

automorphic collineations, 8

automorphism, 8

axis, 9, 41

Baer involution, 28, 98

Baer subgeometry, 97

Baer subplanes, 28

Baer subspaces, 27

base, 47

blank type I, 13

blank type II, 13

block design, 24

block-tactical, 100

Buekenhout–Metz unitals, 29

bundle, 72

bundle axiom, 80

cap, 26, 92

center, 9

central, 55

central collineation, 9

Cherowitzo hyperovals, 52

circle plane, 71

classical q-clan, 49

classical generalized quadrangles, 20

classical inversive plane, 73

classical Laguerre plane, 77

classical Minkowski plane, 74

classical polar spaces, 14

classical projective space, 4

classical unitals, 28

collinearity graph, 30

collineation, 8

collineations, 10

commuting polarities, 97
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condition M1, 79

condition M2, 81

conic, 21, 38

constant of similitude, 34

conull, 11

correlation, 10

degree, 28

derived affine plane, 71

derived projective plane, 71

Desarguesian, 7, 104

design, 31

dual pseudo-oval, 81

dual unital, 28

dualities, 10

egg, 86

egglike inversive plane, 73

egglike Laguerre plane, 78

elation, 55

elation group, 80

elation Laguerre plane, 80

elementary pseudo-ovals, 81

Elements, 1

elliptic, 15

Erlangen Program, 1

external, 39, 98

Fano plane, 4

field reduction, 80

flag, 18

flag-transitive, 18, 83

flock, 47, 72, 96

flock generalized quadrangles, 96

FTWKB q-clan, 49

FTWKB flocks, 79

Gaussian coefficients, 32

general linear group, 33

general semilinear group, 33

generalized n-gon, 18

generalized polygons, 18

generalized quadrangle, 17, 24, 85, 93

generators, 77

Glynn hyperovals, 43

Gram matrix, 11

hemisystem, 92

herd, 48

hermitian, 12

homogeneous coordinates, 4

homographies, 8

homology, 55

hyperbolic, 15

hyperbolic line, 19

hyperoval, 38

hyperovals, 28

hyperplane at infinity, 4

imaginary, 98
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in perspective from a line, 6

in perspective from a point, 6

incidence relation, 10

incidence structure, 10

internal structure, 71

intersection numbers, 27

inversive plane, 71, 72

irreducible, 54

irregular hyperovals, 40

isometric, 13

isometry, 13, 34

kernel, 80

La Géométrie, 1

Laguerre plane, 71, 76

linear flock, 74, 75, 78

linear flocks, 49

lines, 10

Lunelli–Sce Hyperoval, 45

Möbius plane, 71, 72

maximal, 15, 17

maximal arc, 24

maximal arcs, 28

Minkowski plane, 71, 74

minus type, 13

Miquelian, 79

monomial hyperoval, 42

net, 24

non-degenerate, 11, 12

normalized, 48

nucleus, 39

null, 11, 12

O’Keefe-Penttila hyperoval, 45

o-permutation, 42

o-polynomial, 42, 63

objects, 10

opposite halves, 94

order, 19, 72, 74, 76

orthogonal polarity, 12

orthogonal space, 12, 13, 15

oval, 21, 38

oval cone, 77

ovoid, 22, 28, 88

ovoidal Laguerre plane, 78

parabolic, 15

partial geometry, 23

partial quadrangle, 25

partial quadrangles, 93

Payne q-clan, 49

Payne flocks, 79

Payne hyperovals, 49

pencil, 72

perspectivity, 9

Petersen graph, 29

planar ovoid, 88

plus type, 13
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point-tactical, 100

pointed conic, 40

points, 10

polar space, 85

polarities, 11

polarization, 12

project, 77

projective general linear group, 33

projective geometry, 10

projective line, 4

projective ovoid, 88

projective plane, 4, 10

projective semilinear group, 33

projective space, 4

projective special linear group, 33

proper, 27

proper partial geometry, 24

pseudo-conic, 81

pseudo-oval, 80

pseudo-ovoid, 86

pseudo-symplectic, 12

quadrangle, 6

quadratic cone, 47, 77

quadratic form, 12

quadric, 14

quasiprimitive, 82

radical, 11

rank, 15, 17

real, 98

reflexive, 12

regular, 19, 29

regular hyperoval, 39

regular systems, 92

same half, 94

secant, 28, 39, 98

Segre–Bartocci hyperoval, 43

semipartial geometry, 26

semisimilarity, 34

sesquilinear form, 11

similar, 13

similarity, 13, 34

Singer cycle, 54

singular, 17

singular radical, 12

space with form, 34

special isometry, 34

special linear group, 33

spread, 104

standard duality, 10

strongly irreducible, 54

strongly regular, 29

Subiaco q-clan, 50

Subiaco flocks, 79

Subiaco hyperovals, 50

subspace, 17

subspaces, 15
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symmetric, 31

symmetric bilinear, 12

symplectic, 12

symplectic polarity, 12

symplectic space, 12, 14

synthetic generalized quadrangle, 19

synthetic polar space, 16

tangent, 28, 39, 98

tangent space, 86

tangents, 80, 81

Thas flock of M(q), 76

thick, 18

Tits ovoid, 22

totally isotropic, 14, 98

totally singular, 14

transitive, 83

translation flock, 89

translation generalized quadrangle, 85

translation group, 85, 88

translation hyperoval, 41

translation Laguerre plane, 79

translation line, 9

translation oval, 40

translation ovoid, 88

translation plane, 9, 104

translation point, 85, 88

transversal design, 24

triangle, 6

two intersection set, 27

type, 10

unital, 28

unitals, 27

unitary polarity, 12

unitary space, 12, 14

vertex, 47, 77

weakly Miquelian, 81

Witt index, 36
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[22] A. Bonisoli and G. Korchmáros. Irreducible collineation groups fixing a hyperoval. J.
Algebra, 252(2):431–448, 2002.

[23] R. C. Bose. Mathematical theory of the symmetrical factorial design. Sankhyā, 8:107–
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