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ABSTRACT

NON-ASYMPTOTIC PROPERTIES OF SPECTRAL DECOMPOSITION OF LARGE

GRAM-TYPE MATRICES WITH APPLICATIONS TO HIGH-DIMENSIONAL INFERENCE

Non-Asymptotic Properties of Spectral Decomposition of Large Gram-Type Matrices with Ap-

plications to High-Dimensional Inference

Jointly modeling a large and possibly divergent number of temporally evolving subjects arises

ubiquitously in statistics, econometrics, finance, biology, and environmental sciences. To circum-

vent the challenges due to the high dimesionality as well as the temporal and/or contemporaneous

dependence, the factor model and its variants have been widely employed. In general, they model

the large scale temporally dependent data using some low dimensional structures that capture vari-

ations shared across dimensions. In this dissertation, we investigate the non-asymptotic proper-

ties of spectral decomposition of high-dimensional Gram-type matrices based on factor models.

Specifically, we derive the exponential tail bound for the first and second moments of the devi-

ation between the empirical and population eigenvectors to the right Gram matrix as well as the

Berry-Esseen type bound to characterize the Gaussian approximation of these deviations. We also

obtain the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix,

namely the sample covariance matrix, and their population counterparts regardless of the size of

the data matrix. The documented non-asymptotic properties are further demonstrated in a suite

of applications, including the non-asymptotic characterization of the estimated number of latent

factors in factor models and related machine learning problems, the estimation and forecasting of

high-dimensional time series, the spectral properties of large sample covariance matrix such as

perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising from

temporally dependent data.
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Next, we consider the estimation and inference of a flexible subject-specific heteroskedas-

ticity model for large scale panel data, which employs latent semiparametric factor structure to

simultaneously account for the heteroskedasticity across subjects and contemporaneous and/or se-

rial correlations. Specifically, the subject-specific heteroskedasticity is modeled by the product

of unobserved factor process and subject-specific covariate effect. Serving as the loading, the

covariate effect is further modeled via additive models. We propose a two-step procedure for es-

timation. Theoretical validity of this procedure is documented. By scrupulously examining the

non-asymptotic rates for recovering the latent factor process and its loading, we show the consis-

tency and asymptotic efficiency of our regression coefficient estimator in addition to the asymptotic

normality. This leads to a more efficient confidence set for the regression coefficient. Using a com-

prehensive simulation study, we demonstrate the finite sample performance of our procedure, and

numerical results corroborate the theoretical findings.

Finally, we consider the factor model-assisted variable clustering for temporally dependent

data. The population level clusters are characterized by the latent factors of the model. We com-

bine the approximate factor model with population level clusters to give an integrative group factor

model as a background model for variable clustering. In this model, variables are loaded on latent

factors and the factors are the same for variables from a common cluster and are different for vari-

ables from different groups. The commonality among clusters is modeled by common factors and

the clustering structure is modeled by unique factors of each cluster. We quantify the difficulty of

clustering data generated from integrative group factor model in terms of a permutation-invariant

clustering error. We develop an algorithm to recover clustering assignments and study its minimax-

optimality. The analysis of integrative group factor model and our proposed algorithm partitions

a two-dimensional phase space into three regions showing the impact of parameters on the possi-

bility of clustering in integrative group factor model and the statistical guarantee of our proposed

algorithm. We also obtain the non-asymptotic characterization of the estimated number of latent

factors. The model can be extended to the case of diverging number of clusters with similar results.
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Chapter 1

Introduction and Background

1.1 Overview

Factor model is a popular and widely used tool for dimension reduction, exploratory analy-

sis, high dimensional inference, and modeling large scale data with sophisticated dependences.

Classical static factor model

yit ✏ ai1ft1 � ☎ ☎ ☎ � aiKftK � uit (1.1.1)

with t ✏ 1, . . . , T and i ✏ 1, . . . , p has been widely studied (Anderson, 1962; Anderson and

Rubin, 1956; Chamberlain and Rothschild, 1983; Lawley and Maxwell, 1962). Here, uit is an

idiosyncratic error process, ♣ft1, . . . , ftKq❏ is a K-dimensional zero mean latent process, and

♣ai1, . . . , aiKq❏ is referred to as the factor loadings. Let A ✏ ♣aikqp,Ki✏1,k✏1, F ✏ ♣f1, . . . , fT q❏

with f t ✏ ♣ft1, . . . , ftKq❏ or equivalently F ✏ ♣f1, . . . ,fKq with fk ✏ ♣f1k, . . . , fTkq❏, and

U ✏ ♣u1, . . . ,uT q with ut ✏ ♣u1t, . . . , uptq❏, (1.1.1) can be equivalently expressed as

Y ✏ AF❏ �U. (1.1.2)

Assume that f t and ut are uncorrelated and ftk has unit variance (Chamberlain and Rothschild,

1983), (1.1.2) specifies the covariance structure of ♣y1t, . . . , yptq❏ as

Σ ✏ AA❏ �Σu, (1.1.3)

where Σ ✏ T✁1E♣YY❏q and Σu ✏ T✁1E♣UU❏q are the p ✂ p population covariance matrix of

yt and ut, respectively. Estimations to A and the diagonal entries of Σu are well documented by

Anderson and Rubin (1956), Anderson (1962), Chamberlain and Rothschild (1983) and Lawley
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and Maxwell (1962) for low dimensional data with fixed p. The method of analysis is based on

the asymptotic normality of some estimator to Σ, such as the sample covariance matrix, and thus

is not applicable when dimension p is large and divergent.

Large dimensional static factor model is first discussed by Stock and Watson (Stock and Wat-

son, 1998) and Forni, Hallin, Lippi, and Reichlin (Forni et al., 2000). Compared to the traditional

static factor model, the assumption on dimensions is relaxed and it allows both p and T diverge.

Thus, large dimensional factor analysis is applicable to modeling the data of large scales. In addi-

tion, the idiosyncratic errors are allowed to be weakly correlated both serially and cross-sectionally,

so Σu is not necessarily a diagonal matrix, which leads to the approximate factor model (Cham-

berlain and Rothschild, 1983). Combining “largeness" and “approximate" together, the new factor

model is known as high dimensional approximate factor model (Bai, 2003; Bai and Ng, 2002;

Stock and Watson, 2002a,b).

An important characteristic of the large dimensional approximate factor model is that the

largest K population eigenvalues of Σ diverge with rate p, while the remaining eigenvalues of

Σ, as well as all eigenvalues of Σu, are bounded, which gives a spike structure (Johnstone, 2001).

As a result, under the pervasiveness assumption that the eigenvalues of p✁1A❏A are distinct and

bounded away from zero and infinity, the eigenvalues of AA❏ will diverge with rate p. This phe-

nomenon arise since the information of the common component accumulates as we sum up the

observations across subjects while uit are unit-specific errors and summing the errors across sub-

jects does not lead to the same accumulation of information. This makes the large dimensional

approximate factor model different from the classical factor model with fixed dimensionality (An-

derson, 1962; Anderson and Rubin, 1956; Lawley and Maxwell, 1962) and innately related to

principal component analysis (PCA) (Anderson et al., 1963; Anderson and Rubin, 1956). PCA is

widely used as a dimension reduction tool by finding a set of orthogonal linear transformations

of the original variables such that the transformed variables maintain the information contained in

the original variables as much as possible. That is, the principal component Z1 ✏ ω1Y is defined

to maximize the variance of Z1 and the principal component Zk ✏ ωkY is defined to maximize
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the variance of Zk given that Zk is orthogonal to Z1, . . . ,Zk✁1. Specially, ω1, . . . ,ωK are the

eigenvectors corresponding to the largest K eigenvalues of Σ. In practice, Σ is always unknown

and estimated by ♣Σ ✏ T✁1YY❏. As mentioned before, the largest K population eigenvalues of

Σ, as well as the eigenvalues of p✁1A❏A, diverge with rate p. Thus, by WeylâĂŹs theorem and

Davis-Kahan theorem (Davis and Kahan, 1970), the difference between the eigen-decomposition

of Σ corresponding to the largest K eigenvalues and that of AA❏ converge to zero as p goes to

infinity, which shows that large dimensional factor analysis and PCA are approximately the same.

Similar as classical factor analysis, this method of analysis (Fan et al., 2013; Lam and Yao, 2012)

gives consistent estimator of A and Σ.

Large dimensional factor analysis is applied in many fields such as economics, psychology and

other disciplines of the social sciences, and accurately estimating the latent factor and loadings

are very important in statistical applications. For large dimension p and sample size T , a popular

approach is to use PCA to simultaneously estimate the latent factor and loadings (Bai and Ng,

2013). Unlike traditional PCA, the authors suggested using eigen-decomposition of Y❏Y. The

estimated factor matrix, ♣F, is defined as
❄
T times the eigenvectors corresponding to the K largest

eigenvalues of Y❏Y and the loading matrix is estimated by ♣A ✏ T✁1Y❏♣F. Further, Fan et al.

(2016) suggested applying PCA to the data matrix projected onto a linear space spanned by relevant

covariates to archive faster convergence rate. Asymptotic analysis of the PCA estimator is given

by Bai and Ng (2013) and Fan et al. (2016). In this dissertation, we focus on the non-asymptotic

analysis of the estimators and its applications.

To carefully study the spectral decomposition of large Gram matrices, we consider data gen-

erated from (1.1.1) or (1.1.2) so that not only the data are of high-dimensional but also allow

temporarily dependence. For the right Gram matrix Y❏Y, the eigenvectors corresponding to the

K largest eigenvalues are of the same direction as fk, where fk is the kth column of F. Therefore,

the spectral decomposition of the right Gram matrix can be investigated using the estimates to la-

tent factor process and loading matrix in (1.1.1). That is, given an estimator to fk, denoted by ♣fk,

properties of the eigenvector corresponding to the kth largest eigenvalue of Y❏Y can be studied
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from T✁1④2 ♣fk, and vice versa. Although the consistency of estimating F has been documented

in literature (Bai and Ng, 2013; Fan et al., 2016), non-asymptotic properties of the deviation of♣F ✏ ♣ ♣f1, . . . , ♣fKq, where ♣fk is the eigenvector corresponding to the kth largest eigenvalue of

Y❏Y, from F have not been fully investigated. We study the non-asymptotic properties of ♣F✁ F

as well as the approximated distribution of ♣fk ✁ fk for each k. Particularly, we relax the condition

on F in the traditional factor model. Compared with Condition PC1 in Bai and Ng (2013), we do

not restrict F on a subspace. Therefore, as an important application in modeling high-dimensional

time series, the non-asymptotic characterization of ♣fk✁fk shows the accuracy of ♣fk as an surrogate

to fk for each k so that the parametric model of the K-dimensional latent processes, if specified in

advance, can be easily estimated and therefore can be employed to forecast yt. Compared to the

traditional likelihood based approach, this approach is computationally easier and requires very

little assumptions on innovations of processes. In addition, we obtain non-asymptotic properties of

the deviation between eigenvectors corresponding to the largest K eigenvalues of T✁1YY❏, i.e.,

the sample covariance matrix, to those of Σ in (1.1.3). By considering T✁1YY❏ as a perturbation

of Σ, our result is similar to the Davis-Kahan Theorem (Cai et al., 2017; Davis and Kahan, 1970;

Fan et al., 2018b; Yu et al., 2014) or the Wedin Theorem (Wedin, 1972). Our conclusion, however,

does not depend on the consistent estimation of Σ. Hence, for the high-dimensional cases, our

result remains valid for the spike part of Σ even though it cannot be consistently estimated using

T✁1YY❏ without regularization. Another important application of our results is to provide the

non-asymptotic characterization of the tail probability of correctly estimating the number of latent

factors K in the factor models, without which recovering the latent factor processes and their load-

ings will be meaningless in practice. For fixed or low dimensions, a variety of subjective methods

such as scree plot of eigenvalues, distribution-based tests including Bartlett’s test, and computa-

tional intensive methods including cross-validation have been employed to determine K (Jolliffe,

2002). For high dimensions with p④T converging to some constant, the information criteria such

as AIC and BIC has be employed (Bai and Ng, 2002; Bai et al., 2018). If the data also follows a

normal distribution, a sequential Kac-Rice test has been introduced to select K (Choi et al., 2017).
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For ultra high dimensions with p ✧ T , from the fact that the largest K eigenvalues of T✁1YY❏

grow rapidly in p while others remain bounded or grow much slower, the consecutive-eigenvalue

type estimator is widely used to determine K. For example, Lam and Yao (2012) and Ahn and

Horenstein (2013) proposed estimators of K based on the ratios of consecutive eigenvalues. A

similar approach is to use the difference of consecutive eigenvalues (Onatski, 2012). These early

results focus on the consistency of the estimated number of factors when p and T diverge. To

better understand how the dimension and sample size affect the probability of correctly estimating

the number of latent factors using those consecutive-eigenvalue type estimators, we first refine re-

sults regarding eigenvalues of the sample covariance matrix (Bai and Yin, 1993; Johnstone, 2001).

Then, we obtain non-asymptotic properties of the ratio of consecutive eigenvalues of the sample

covariance matrix, which further provides the desired exponential tail bound of the probability of

correctly estimating K for factor models or related machine learning problems.

As an application of large dimensional factor model, we consider a flexible data-driven model,

in which the heteroskedasticity across subjects and serial dependence of εit is assumed to arise

from a product of the subject-specific effect and some latent stationary process. Specifically, mo-

tivated by Connor and Linton (2007), Connor et al. (2012), and Fan et al. (2016), we model the

subject-specific effect in the covariance structure by g♣xiq ✏ ♣g1♣xiq, . . . , gK♣xiqq❏ with time in-

variant covariates xi and nonparametric functions g1, . . . , gK . In practice, xi could be the genetic

information in health study or market capitalization in finance applications. Then, we consider a

K-dimensional zero-mean process ft with finite variance, and introduce the subject-specific het-

eroskedasticity model with latent semiparametric factor structure as

yit ✏ z❏itβ � g♣xiq❏ft � uit, (1.1.4)

where the residual process uit is independent of ft. Analogous to the traditional factor models,

g♣xiq and ft serve as the loading and factor, respectively. Particularly, g♣xiq models the desired

heteroskedasticity across subjects and, together with ft, retains the cross-sectional dependence

while ft and uit characterize the serial dependence. Like partially linear model or linear mixed
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model, though ordinary least squares estimator of β is consistent, it is not efficient without taking

the unknown dependence into account. That is, a careful estimation on the unobserved loading

g♣xiq and accurate recovery of the latent process ft are in need to guarantee some sort of effi-

ciency in both estimation and inference on β. In the literature, there exist a variety of approaches

to estimate g♣xiq and ft. For instance, Connor and Linton (2007) employed a kernel method

to estimate ft given xi with finite values, and Connor et al. (2012) extended such estimate for

general xi. Additionally, the consistency on estimating the loading and latent factor, along with

an important result that such consistency requires no specific relationship between T and n (Fan

et al., 2016), also shed lights upon estimating the large covariance structure under assumptions of

factor structures (Fan et al., 2013). Motivated from these pioneer works, we propose a two-stage

projection-based estimator for β, g♣xiq, and ft in model (1.1.4). Roughly speaking, adapting a

projection-based principle component type estimator (Bai, 2003; Fan et al., 2016), we first estimate

g♣xiq and ft from yit ✁ z❏it ♣β for some initial consistent estimator ♣β. Next, in the second stage, we

update the estimate of β with a generalized least squares (GLS) type approach using estimation of

g♣xiq and ft from the first-stage.

In addition, we consider model-based clustering, in which we define population level clusters

relative to a model. We combine the approximate factor model with population level clusters to

give an integrative group factor model as a background model for variable clustering. Although

factor analysis is widely used to model high dimensional data with dependence, and group factor

analysis is applied to model multiple covariance structures, the previous works do not give cluster-

ing recovery for dependent data. Our proposal consider a different case to G-block model (Bunea

et al., 2020). In particular, the variables in the same group are allowed to have different variances

and covariance swith variables in other groups. In addition, each variable can involve temporal

dependence. We provide algorithm of recovering clustering assignments for high dimensional de-

pendent data, along with its optimality. The recovery error rate is defined under a loss function

free from label switching (Gao et al., 2018; Lu and Zhou, 2016). Compared to the existing liter-

atures, our proof of minimax lower bound of recovery error rate involves a denser covering free
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from the number of groups, so it can be extended to the case the number of groups diverges. Also,

we apply Le Cam’s method to give a tight bound for variable clustering with respect to covariance

structures. The upper bound of recovery error rate is derived through scrupulously examining the

non-asymptotic rates for estimating the latent factor process and its loading through PCA proce-

dure (Bai and Ng, 2013; Fan et al., 2016). Lastly, we discover a phase transition in the phase space

of signals of unique factors compared with those of common factors, which gives the region for

possibility and guarantee of successful clustering. Also, our proposed model allows the number

of groups not to be finite constant but a small term with respect to dimension. The technical tools

we develop here are not limited to our setting alone, but are applicable to integrative group factor

models.

1.2 Outline

In this dissertation, we focus on the high-dimensional inference, multivariate time series, and

semiparametric modeling, as well as their applications motivated by the massive data related prob-

lems. In Chapter 2, we carefully study non-asymptotic properties of the spectral decomposition

of large Gram-type matrices based on data that are not necessarily independent. We also obtain

the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix and their

population counterparts regardless of the size of the data matrix. The documented non-asymptotic

properties are further demonstrated in a suite of applications. In Chapter 3, we consider estimation

and inference of a flexible subject-specific heteroskedasticity model for large scale panel data. We

propose a two-step procedure for estimation. By scrupulously examining the non-asymptotic rates

for recovering the latent factor process and its loading, we show the consistency and asymptotic ef-

ficiency of our regression coefficient estimator in addition to the asymptotic normality. In Chapter

4, we combine the approximate factor model with population level clusters to give an integrative

group factor model as a background model for variable clustering. We quantify the difficulty of

clustering data generated from integrative group factor model in terms of a permutation-invariant

clustering error., develop an algorithm to recover clustering assignments and study its minimax-
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optimality. The analysis of integrative group factor model and our proposed algorithm partitions

a two-dimensional phase space into three regions showing the impact of parameters on the possi-

bility of clustering in integrative group factor model and the statistical guarantee of our proposed

algorithm. A short summary and discussion of future work are listed in Chapter 5. The details

of proofs and some additional results from simulation studies and real data analysis are given in

Appendix 1, 2 and 3.
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Chapter 2

Spectral Decomposition of Large Gram-Type

Matrices

2.1 Introduction

Gram-type matrix or Gram matrix is fundamental in a wide range of fields including statistics

(Shawe-Taylor et al., 2005), applied mathematics (Chen et al., 2011; James and Murphy, 1979;

Schölkopf et al., 1999; Shawe-Taylor et al., 2002), machine learning (De Almeida et al., 2008a;

Drineas and Mahoney, 2005; Ramona et al., 2012), engineering (De Almeida et al., 2008b), and

physics (Stark, 2014). Given a p✂T data matrix Y ✏ ♣y1, . . . ,yT qwith p-dimensional observation

yt ✏ ♣y1t, . . . , yptq❏, the left and the right Gram matrices are YY❏ and Y❏Y, respectively (Horst,

1965; Rummel, 1988). Statistically, the left Gram matrix scaled by the sample size T✁1YY❏ co-

incides with the sample covariance matrix after ignoring the sample mean. As a bilinear function

of the data matrix, Gram matrix retains many important information about data. For example, the

right Gram matrix and the data matrix share the common null space while the column space of the

left Gram matrix agrees with that of the data matrix. Particularly, the spectral decomposition of

Gram matrices is a powerful and popular tool to provide a low-rank representation of the original

data yet preserves the information as much as possible. For instance, in the linear model, spectral

decomposition of the Gram matrix from the design matrix reveals the direction of space spanned

by the projection matrix (Mandel, 1982); in the nonparametric regression, spectral decomposi-

tion of the Gram matrix from the spline basis functions provides a complete reconstruction of the

functional space (Bialecki and Fairweather, 1995); and in the exploratory analysis, spectral decom-

position of the Gram matrix from a general data or feature matrix leads to the principal component

analysis (PCA) (Hotelling, 1933; Jolliffe, 2002; Pearson, 1901), kernel PCA, or sparse PCA (Zou

et al., 2006; Zou and Xue, 2018). In addition, spectral decomposition of the Gram matrix has
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been applied to estimate large covariance matrices (Fan et al., 2013, 2018a) and to extract the

latent factors that drive the correlation structure in factor models (Bai, 2003; Bai and Ng, 2013;

Bartholomew et al., 2011; Fan et al., 2016). By itself, the spectral decomposition has also been ap-

plied to other type of matrices to reveal the underlying structure in data, such as the spectral method

along with the graph Laplacian or the adjacency matrix in cluster analysis or network study for the

detection of clusters or latent communities (Donath and Hoffman, 1973; Ng et al., 2002).

Gram matrix naturally grows along with the size of data, and not only it may incur compu-

tational challenges but also lead to theoretical difficulties. For fixed dimensions, the scaled left

Gram matrix or the sample covariance matrix converges to its expectation when T diverges (Bai

and Yin, 1993; Bai et al., 1986, 1988). However, both the left and the right Gram matrices, as

well as their empirical spectral distributions may fail to converge given simultaneously divergent

p and T (Bickel and Levina, 2008a,b; Johnstone and Lu, 2009; Wang and Fan, 2017). Based on

the asymptotic normality of sample covariance matrix, Anderson et al. (1963) established the joint

distribution of empirical eigenvalues in the asymptotic regime where p remains constant and T di-

verges. For independent and identically distributed (i.i.d.) data with divergent dimensions, which

scale with the sample size linearly and vice versa, the limiting distribution of spectral structures

of the sample covariance matrix has also been widely studied (Adamczak et al., 2010; Bai and

Silverstein, 2010; Bai and Yin, 1993; Bai et al., 1986, 1988; Jonsson, 1982; Wachter, 1978). When

p④T diverges, a flexible and common approach is the spike structure model (Johnstone, 2001).

That is, among the p eigenvalues of the population covariance matrix of yt, there are K dominant

eigenvalues compared to the remains so that the signal of low-rank structure outweighs the noise

and therefore can be retrieved from the spectral decomposition. Leveraging this spike structure,

Wang and Fan (2017) showed that, for divergent p④T , the eigenvalue and corresponding eigen-

vector of the sample covariance matrix still converge to their population counterparts whenever

the K dominant population eigenvalues diverge in p with certain rate. They also showed that the

convergence rates of empirical eigenvalue and eigenvector are controlled by the divergent rate of

the corresponding population eigenvalue.

10



The aforementioned assumption that the first K dominant eigenvalues of the population co-

variance matrix of yt have order O♣pq, together with the assumption that noises admit constant

variance, is known as the pervasiveness assumption or strong factor assumption from the factor

model and econometrics literature. Under this assumption, the spike structure can be equivalently

written as a factor model (Bai, 2003; Chamberlain and Rothschild, 1983; Lam and Yao, 2012;

Stock and Watson, 2002a) for which data satisfies

yit ✏ ai1ft1 � ☎ ☎ ☎ � aiKftK � uit (2.1.1)

with t ✏ 1, . . . , T and i ✏ 1, . . . , p. Here, ♣ft1, . . . , ftKq❏ is a K-dimensional zero mean latent

process and uit is an error process. Model (2.1.1) inherently links to a large number of widely used

statistical models and methods, such as the panel data model with unobservable interactive effects

(Ahn et al., 2001a; Bai, 2009a; Bai and Li, 2014; Moon and Weidner, 2017a) and PCA (Fan et al.,

2018a). In matrix form, (2.1.1) is

Y ✏ AF❏ �U, (2.1.2)

where A ✏ ♣aikqp,Ki✏1,k✏1, F ✏ ♣f1, . . . , fT q❏ with f t ✏ ♣ft1, . . . , ftKq❏ or equivalently F ✏
♣f1, . . . ,fKq with fk ✏ ♣f1k, . . . , fTkq❏, and U ✏ ♣u1, . . . ,uT q with ut ✏ ♣u1t, . . . , uptq❏. As-

sume that f t and ut are uncorrelated and E♣f tf❏t q ✏ IK for each t ✏ 1, . . . , T (Chamberlain and

Rothschild, 1983), the covariance of yt is then given by

Σ ✏ AA❏ �Σu, (2.1.3)

where Σ ✏ T✁1E♣YY❏q and Σu ✏ T✁1E♣UU❏q. Model (2.1.2) is called the strict factor model if

T✁1E♣UU❏q is diagonal, i.e., u1t, . . . , upt are uncorrelated with each other; otherwise, it is called

the approximate factor model if T✁1E♣UU❏q is not diagonal (Chamberlain and Rothschild, 1983).

Model (2.1.2) provides an effective dimension reduction by approximating a p-dimensional process
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yt with a K-dimensional process f t and a loading matrix matrix A. From (2.1.3), it is easy to see

that the largestK eigenvalues of Σ increase in p while the remaining eigenvalues are bounded (Bai

and Ng, 2008), which mimics the spike structure model with divergent spiked eigenvalues.

For the traditional factor model with fixed p and i.i.d. normally distributed f t and ut, the

column space of loading matrix A and the diagonal entries of T✁1
E♣UU❏q can be consistently

estimated through either the maximum likelihood estimator (MLE) (Lawley and Maxwell, 1962)

or PCA (Anderson, 1962; Anderson and Rubin, 1956), both of which rely on the consistent esti-

mation of Σ. Though factor models and PCA are not identical in general, they are approximately

the same for high-dimensional problems under the pervasiveness assumption (Fan et al., 2013,

2018a). Specially, the principal components Z1, . . . ,Zk are defined as Zk ✏ w❏
k Y, where the pro-

jection directions w1, . . . ,wK P R
p are the first K eigenvectors of Σ. This eigen-decomposition

formulation of PCA relates PCA to the singular value decomposition (SVD) of Y as well as the

spectral decomposition of the sample covariance matrix, namely the left Gram matrix of Y scaled

by sample size T .

In this paper, to carefully study the spectral decomposition of large Gram matrices, we con-

sider data generated from (2.1.1) or (2.1.2) so that not only the data are of high-dimensional but

also allow temporally dependence. For the right Gram matrix Y❏Y, the eigenvectors correspond-

ing to the K largest eigenvalues are of the same direction as fk, where fk is the kth column of

F. Therefore, the spectral decomposition of the right Gram matrix can be investigated using the

estimates to latent factor process and loading matrix in (2.1.1). That is, given an estimator to fk,

denoted by ♣fk, properties of the eigenvector corresponding to the kth largest eigenvalue of Y❏Y

can be studied from T✁1④2 ♣fk, and vice versa. Although the consistency of estimating F has been

documented in literature (Bai and Ng, 2013; Fan et al., 2016), non-asymptotic properties of the

deviation of ♣F ✏ ♣ ♣f1, . . . , ♣fKq, where ♣fk is the eigenvector corresponding to the kth largest eigen-

value of Y❏Y, from F have not been fully investigated. Our main contribution in this paper is to

study the non-asymptotic properties of ♣F✁ F as well as the approximated distribution of ♣fk ✁ fk
for each k. Particularly, we relax the condition on F in the traditional factor model. Compared
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with Condition PC1 in Bai and Ng (2013), we do not restrict F on a subspace. Therefore, as an

important application in modeling high-dimensional time series, the non-asymptotic characteriza-

tion of ♣fk ✁ fk shows the accuracy of ♣fk as an surrogate to fk for each k so that the parametric

model of the K-dimensional latent processes, if specified in advance, can be easily estimated and

therefore can be employed to forecast yt. Compared to the traditional likelihood based approach,

this approach is computationally easier and requires very little assumptions on innovations of pro-

cesses. In addition, we obtain non-asymptotic properties of the deviation between eigenvectors

corresponding to the largest K eigenvalues of T✁1YY❏, i.e., the sample covariance matrix, to

those of Σ in (2.1.3). By considering T✁1YY❏ as a perturbation of Σ, our result is similar to the

Davis-Kahan Theorem (Cai et al., 2017; Davis and Kahan, 1970; Fan et al., 2018b; Yu et al., 2014)

or the Wedin Theorem (Wedin, 1972). Our conclusion, however, does not depend on the consistent

estimation of Σ. Hence, for the high-dimensional cases, our result remains valid for the spike part

of Σ even though it cannot be consistently estimated using T✁1YY❏ without regularization.

Another important application of our results is to provide the non-asymptotic characterization

of the tail probability of correctly estimating the number of latent factors K in the factor mod-

els, without which recovering the latent factor processes and their loadings will be meaningless

in practice. For fixed or low dimensions, a variety of subjective methods such as scree plot of

eigenvalues, distribution-based tests including Bartlett’s test, and computational intensive methods

including cross-validation have been employed to determine K (Jolliffe, 2002). For high dimen-

sions with p④T converging to some constant, the information criteria such as AIC and BIC has be

employed (Bai and Ng, 2002; Bai et al., 2018). If the data also follows a normal distribution, a

sequential Kac-Rice test has been introduced to select K (Choi et al., 2017). For ultra high dimen-

sions with p ✧ T , from the fact that the largest K eigenvalues of T✁1YY❏ grow rapidly in p while

others remain bounded or grow much slower, the consecutive-eigenvalue type estimator is widely

used to determine K. For example, Lam and Yao (2012) and Ahn and Horenstein (2013) proposed

estimators of K based on the ratios of consecutive eigenvalues. A similar approach is to use the

difference of consecutive eigenvalues (Onatski, 2012). These early results focus on the consistency
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of the estimated number of factors when p and T diverge. To better understand how the dimension

and sample size affect the probability of correctly estimating the number of latent factors using

those consecutive-eigenvalue type estimators, we first refine results regarding eigenvalues of the

sample covariance matrix (Bai and Yin, 1993; Johnstone, 2001). Then, we obtain non-asymptotic

properties of the ratio of consecutive eigenvalues of the sample covariance matrix, which further

provides the desired exponential tail bound of the probability of correctly estimating K for factor

models or related machine learning problems.

The paper is organized as follows. In Section 2.2, we collect the notation and discuss the

preliminary conditions to derive the main results. In Section 2.3, we carry out a non-asymptotic

analysis of the spectral decomposition of large Gram matrices and document the main results.

In Section 2.4, we discuss a variety of applications of our results to high-dimensional statistics.

Section 2.5 presents numerical studies to demonstrate our results in the applications. We conclude

the paper in Section 2.6 and relegate all the proofs and technical details to the supplementary file.

2.2 Notation and Preliminary Conditions

We collect notation in Section 2.2.1 that will be used throughout the paper and discuss in details

the preliminary assumptions in Section 2.2.2 to establish the main results.

2.2.1 Notation

For p-dimensional vector a ✏ ♣a1, . . . , apq❏ P R
p, its ℓq-norm is defined by ⑤⑤a⑤⑤q ✏ ♣➦p

j✏1

⑤aj⑤qq1④q with 1 ↕ q ➔ ✽. For matrix M ✏ ♣mijq1↕i,j↕p P R
p✂p, ⑥M⑥max ✏ maxi,j ⑤mij⑤

denotes the maximum norm and ⑤⑤M⑤⑤F ✏ ♣➦p

i✏1

➦p

j✏1
m2

ijq1④2 is the Frobenius norm. The spectral

norm of M corresponds to its largest singular value, defined as ⑤⑤M⑤⑤2 ✏ sup
aPS ⑤⑤Ma⑤⑤2, where

S ✏ ta P R
p : ⑤⑤a⑤⑤2 ✏ 1✉. Denote the minimum and maximum eigenvalues of M by λmin♣Mq and

λmax♣Mq, respectively. Let tr♣Mq ✏ ➦p

j✏1
mjj be the trace of M. For sequences tan✉ and tbn✉,

an ✏ o♣bnq if an④bn Ñ 0 as nÑ ✽ and an ✏ O♣bnq if lim supnÑ✽ ⑤an⑤④bn ➔ ✽; Xn ✏ op♣anq and

Xn ✏ Op♣anq are similarly defined for a sequence of random variables Xn; an ➚ bn if and only
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if an ↕ Cbn for some positive C independent of n; and an ✖ bn if and only if there exist positive

constants C and D independent of n such that Cbn ↕ an ↕ Dbn. Unless specified otherwise,

s → 1 and C → 0 denote generic constants independent of p, T .

2.2.2 Conditions

Suppose one observes data yt ✏ ♣y1t, . . . , yit, . . . , yptq from model (2.1.1) or (2.1.2) with t ✏
1, . . . , T . We pose the following conditions throughout the paper.

Condition 2.2.1. Almost surely, A❏A is a diagonal matrix with distinct entries; for each t,

ft1, . . . , ftK are uncorrelated with each other and have zero mean and unit variance; for each

t, u1t, . . . , upt have zero mean and finite variances; and f t and ut are independent with each other.

Condition 2.2.1 is similar to the assumption imposed on the approximate factor model (Cham-

berlain and Rothschild, 1983), which leads to the decomposition and identification of Σ in (2.1.3).

The assumption on A can be viewed as Condition PC1 for the traditional factor models (Bai and

Ng, 2013), which is also imposed for the MLE by Lawley and Maxwell (1962).

Condition 2.2.2. There exist constants d1, d2 → 0 such that d1 ↕ λmin♣p✁1A❏Aq ↕ λmax♣p✁1A❏Aq
↕ d2.

Since the largest K eigenvalues of A❏A and AA❏ are the same, the spiked eigenvalues of Σ

essentially diverge at rate p under Condition 2.2.2. When the entries of A remain constants as p

diverges, this is always satisfied for a full rank A under Condition 2.2.1. In general, Condition

2.2.2 implies that, for each k ✏ 1, . . . , K, the mean squared loadings of the kth factor satisfies

p✁1
➦p

i✏1
a2ik ✏ O♣1q, which can be easily satisfied with high probability if aik are i.i.d. copies

from some non-degenerate distribution.

Condition 2.2.3. Denote F0
✁✽ and F✽

T the σ-algebra generated by t♣f t,utq : t ↕ 0✉ and t♣f t,utq :
t ➙ T ✉, respectively. Define the mixing coefficient α♣T q ✏ supAPF0

✁✽,BPF✽
T
⑤P♣AqP♣Bq ✁ P♣A ❳

Bq⑤.

(i) Stationarity: tut, f t✉t↕T are weakly stationary.
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(ii) Strong mixing across t: There exist r1, C1 → 0 such that α♣sq ➔ exp♣✁C1s
r1q for any s → 0.

(iii) Weak dependence in errors: There exist C2 → 0 such that

max
j↕p

p➳
i✏1

⑤E♣uitujtq⑤ ➔ C2,

1

pT

p➳
i✏1

p➳
j✏1

T➳
t✏1

T➳
s✏1

⑤E♣uitujsq⑤ ➔ C2,

max
i↕p

p➳
k✏1

p➳
m✏1

T➳
t✏1

T➳
s✏1

⑤Cov♣uitukt, uisumsq⑤ ➔ C2.

(iv) Tail behavior: There exist r2, r3 → 1 with r✁1
1

� r✁1
2

� r✁1
3

→ 1 and b1, b2 → 0 such that

for each i ✏ 1, . . . , p, k ✏ 1, . . . , K and any s → 0, P♣⑤uit⑤ → sq ↕ expt✁♣s④b1qr2✉ and

P♣⑤ftk⑤ → sq ↕ expt✁♣s④b2qr3✉.

Condition 2.2.3 is similar to the standard assumptions for the factor analysis of large scale

panel data or high-dimensional time series (Bai, 2003; Fan et al., 2016; Stock and Watson, 2002a).

Compared to similar conditions in the literature, we only require tut, f t✉t↕T to be weakly sta-

tionary rather than strictly stationary in (i) by carefully exploiting Davydov’s inequality (Athreya

and Lahiri, 2006). In (iii), it suggests that though the common factors explain most dependence

within yt, the errors also account for some weak cross-section dependence. It is easy to see

⑤⑤Σu⑤⑤2 ✏ O♣1q from (iii), and together with Condition 2.2.2 they are the well-known pervasiveness

assumption.

It is interesting to notice that the well-known Condition PC1 from Bai and Ng (2013) re-

stricts F to a subspace tF P R
T✂K : T✁1F❏F ✏ IK✉. However, for an arbitrary K-dimensional

process under Condition 2.2.1, T✁1F❏F does not necessarily degenerate to its expected value

E♣T✁1F❏Fq ✏ Var♣f1q ✏ IK . To satisfy this subspace restriction, one needs to rescale each real-

ization of F. Since the rescaling operator depends on the realization of F, the rescaled processes

no longer follow the original model of f t if we assume any. This brings extra challenges to many

applications. For example, in Section 2.4.2, this subspace restriction will prevent directly model-
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ing f t in (2.1.1) with some parametric models to forecast high-dimensional time series. In fact, we

notice that this subspace restriction is stringent and can be replaced by the exponential tail bound

on the difference between T✁1F❏F and its expectation IK . From the aforementioned well-known

conditions, this bound can be easily established with the help of τ -mixing coefficient as defined

below.

Definition 2.2.1 (τ -mixing coefficient (Merlevède et al., 2011)). For any real random variable X

and σ-algebra M, denote PX the distribution of X and PX⑤M the conditional distribution of X on

M. The τ -mixing coefficient is defined by

τ♣M, Xq ✏ sup
gPL1♣Rq

✞✞✞✞➺ g♣xqPX⑤M♣xq ✁
➺
g♣xqPX♣xq

✞✞✞✞ ,
where L1♣Rq is the set of 1-Lipschitz functions from R to R.

Then, the τ -mixing coefficient of tftk✉ for each k ✏ 1, . . . , K is

τ♣T q ✏ sup
j➙1

1

j
sup

s→0,T�s↕t1➔☎☎☎➔tj

τ
�
σ♣ftk, t ↕ sq, ♣ft1k, . . . , ftjkq

✟
where σ♣ftk, t ↕ sq is the σ-algebra generated from tftk, t ↕ s✉. Note that, by Condition 2.2.3

(iv), for each k ✏ 1, . . . , K and t ✏ 1, . . . , T ,

Q♣xq ✏ sup
k,t

infts → 0 : P♣⑤f 2

tk⑤ → sq ↕ x✉ ✏ b2
2
tlog♣1④xq✉2④r3 .

Thus, for r4 P ♣0, 1q and any x ➙ 1,

τ♣xq ↕ 2

➺
2α♣xq

0

Q♣uqdu

↕ 4b2
2
r4

✧
r3♣1✁ r4q

2

✯2④r3
exp

✧
2

r3♣1✁ r4q
✯
t2α♣xq✉r4 ,
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which implies that f t is τ -mixing by Condition 2.2.3 (ii). Then, following Theorem 1 in Merlevède

et al. (2011), with probability at least 1✁ T✁1,

⑥T✁1F❏F✁ Ik⑥2F ➚
log T

T
,

which is the desired assumption in place of the subspace restriction on F.

2.3 Main Results

Now we are in position to discuss the main results on non-asymptotic properties of the spectral

decomposition of large Gram-type matrices based on (2.1.1) or (2.1.2). Continue to let Y ✏
AF❏ �U, and we denote T✁1④2 ♣fk the eigenvector corresponding to the kth largest eigenvalue of

the right Gram matrix Y❏Y for k ✏ 1, . . . , K. Then, the loading matrix A can be estimated by♣A ✏ T✁1Y♣F, where ♣F ✏ ♣ ♣f1, . . . , ♣fKq. First, we have the following exponential tail bounds on

the deviations ⑥♣F✁ F⑥2
F

and ⑥♣F✁ F⑥max.

Theorem 2.3.1 (Exponential tail bounds on the deviation between ♣F and F). Under Conditions

2.2.1-2.2.3, the deviation between ♣F and F satisfies

(i) with probability at least 1✁ e✁s,

T✁1⑥♣F✁ F⑥2
F
➚
✂
1

p
� 1

T

✡
s4;

(ii) T✁1
E♣⑥♣F✁ F⑥2

F
q ➚ p✁1 � T✁1 and T✁2 Var♣⑥♣F✁ F⑥2

F
q ➚ p✁2 � T✁2; and

(iii) with probability at least 1✁ e✁s,

⑥♣F✁ F⑥max ➚
✂

1❄
p
� 1

T

✡
♣log T q2④r3s.

For the approximate factor model, it has been shown that the mean squared error (MSE)

T✁1⑥♣F ✁ F⑥2
F

converges to zero when p and T diverge, thus ♣F converges to F in probability
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(Bai and Ng, 2013; Fan et al., 2016). In Theorem 2.3.1, not only have we provided the non-

asymptotic characterization on the MSE of ♣F in the sense that the result holds for finite T and

p, but also the convergence of ♣F to F is established under a weaker condition on F compared to

Condition PC1 in Bai and Ng (2013) as discussed in Section 2.2.2. Theorem 2.3.1 reveals that the

deviation between ♣F and F is due to 1) the deviation between F and its projection onto subspace

tF P R
T✂K : T✁1F✶F ✏ IK✉, which is of rate p✁1 � T✁2; and 2) the error for estimating this

projection, which is of rate p✁2�T✁1. They lead to the non-asymptotic bound on T✁1⑥♣F✁F⑥2
F

in

(i). In addition, ♣p � T q✁1p⑥♣F ✁ F⑥2
F

enjoys a sub-exponential tail with the finite first and second

moments from (ii).

Recall that both ♣F and F have finiteK columns. A by-product of Theorem 2.3.1 is an exponen-

tial tail bound on the deviation between the T✁1④2-scaled kth columns of ♣F, i.e., the kth eigenvector

of the right Gram matrix, and its counterpart in F. That is, with probability at least 1 ✁ e✁s, for

each k ✏ 1, . . . , K,

T✁1⑥ ♣fk ✁ fk⑥22 ➚ ✂
1

p
� 1

T

✡
s4.

Therefore, ♣p� T q✁1p⑥ ♣fk ✁ fk⑥22 also admits a sub-exponential tail with the finite first and second

moments, which are similar to (ii) in Theorem 2.3.1.

Using the max norm, the error rate remains the same for recovering the projection since it

is of finite dimension. On the other hand, the ℓ✽-deviation between F and its projection is of

rate ♣p✁1④2 � T✁1q♣log T q2④r3 , where log T is due to the maximum inequality to control the max-

imum among TK entries in F. Result in (iii) provides a non-asymptotic entry-wise bound on

the deviation between ♣F and F. For each t ✏ 1, . . . , T and k ✏ 1, . . . , K, ⑤ ♣ftk ✁ ftk⑤♣p✁1④2 �
T✁1q✁1tlog♣T q✉✁2④r3 displays a sub-exponential tail. Thus, following the similar argument in (ii),

♣p✁1④2 � T✁1q✁1tlog♣T q✉✁2④r3 ⑤ ♣ftk ✁ ftk⑤ also has the finite first and second moments for all p and

T . By Condition 2.2.3, ftk has the finite first and second moments and so does ♣ftk whenever

♣p✁1④2 � T✁1qtlog♣T q✉2④r3 ✏ O♣1q due to the triangle inequality. This nontrivial result makes it
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possible to further model the K-dimensional latent process parametrically; see Section 2.4.2 for

more details.

Next, to establish the Berry-Esseen type bound for each of the K eigenvectors of the right

Gram matrix, we consider the following additional condition.

Condition 2.3.1. For each t, u1t, . . . , upt are independent with each other.

Condition 2.3.1 is standard for traditional PCA (Jolliffe, 2002) and factor models (Anderson,

1962; Anderson and Rubin, 1956; Lawley and Maxwell, 1962). This stronger condition on ut,

compared to (iii) in Condition 2.2.3, enables us to leverage results from random matrix theory to

establish the following Berry-Esseen type bound. Theorem 2.3.2 provides the approximation error

rate to the distribution of the standardized deviation between ♣fk and fk by the standard normal

distribution for each k.

Theorem 2.3.2 (Berry-Esseen Type Bound for ⑤⑤ ♣fk✁fk⑤⑤22). Under Conditions 2.2.1, 2.2.2, (i),(ii)

and (iv) in 2.2.3, and 2.3.1, for each k ✏ 1, . . . , K, we have

sup
xPR

✞✞✞✞✞P
★
⑥ ♣fk ✁ fk⑥22 ✁ E♣⑥ ♣fk ✁ fk⑥22q

Var1④2♣⑥ ♣fk ✁ fk⑥22q ↕ x

✰
✁ Φ♣xq

✞✞✞✞✞ ➚ log♣T q❄
T

� 1❄
p
,

where Φ♣xq is the cumulative distribution function of the standard normal distribution.

From Theorem 2.3.2, with probability at least 1✁ e✁s,

✞✞✞T✁1⑥ ♣fk ✁ fk⑥22 ✁ T✁1
E♣⑥ ♣fk ✁ fk⑥22q✞✞✞ ➚ ✂

1

p
� 1

T

✡❄
s.

Compared to Theorem 2.3.1, the above improved sub-Gaussian tail on ⑥ ♣fk ✁ fk⑥22 benefits from

the assumption of independent errors in Condition 2.3.1. Theorem 2.3.2 sheds lights on drawing

inference on the leading eigenvectors of the covariance matrix for non i.i.d. data, which is detailed

in Section 2.4.3. For i.i.d. data, the traditional rate in the Berry-Esseen bound for Gaussian ap-

proximation is T✁1④2 (Callaert et al., 1978; Chan and Wierman, 1977). In Theorem 2.3.2, p✁1④2

and T✁1④2 are due to the uncertainty from f t and ut for computing ♣fk. In addition, the dependence
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in f t leads to the extra log T in the bound, which has been observed in literature (Hörmann, 2009;

Jirak, 2016).

In the rest of this section, we will study non-asymptotic properties of the eigenvalues of Y❏Y.

Although the spectral structure of the expected right Gram matrix E♣Y❏Yq differs from that of

the expected left Gram matrix E♣YY❏q, it is interesting to notice that Y❏Y and YY❏ share

the common non-zero eigenvalues. Hence, we first consider YY❏, which is conveniently the

sample covariance matrix scaled by T . Denote tλi✉pi✏1 and twi✉pi✏1 the eigenvalues (in decreasing

order) and corresponding eigenvectors of Σ ✏ T✁1E♣YY❏q, and let t♣λi✉pi✏1 and t ♣wi✉pi✏1 be the

eigenvalues (in decreasing order) and corresponding eigenvectors of ♣Σ ✏ T✁1YY❏. We establish

the non-asymptotic characterization of ♣λi relative to λi as follows.

Theorem 2.3.3 (Non-asymptotic characterization of ♣λi’s relative to λi’s). Under Conditions 2.2.1,

2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, there exist positive constants C and c that only depend on

ut such that the following results hold.

(i) If p ➔ T , with probability at least 1✁ e✁s,

⑤♣λi④λi ✁ 1⑤ ↕ C❄
T
� c❄

pT

❄
s, i ✏ 1, . . . , K,

⑤♣λi④λi ✁ 1⑤ ↕ C
❄
p❄
T

� c❄
T

❄
s, i ✏ K � 1, . . . , p.

(ii) If p ➙ T , with probability at least 1✁ e✁s,

⑤♣λi④λi ✁ 1⑤ ↕ C❄
T
� c❄

pT

❄
s, i ✏ 1, . . . , K,

♣λi④λi ➙❝ p

T
✁ C ✁ c❄

T

❄
s, i ✏ K � 1, . . . , T,

♣λi④λi ↕❝ p

T
� C � c❄

T

❄
s, i ✏ K � 1, . . . , T.

Taking s ✏ log T , Theorem 2.3.3 implies that the first K eigenvalues of the scaled left Gram

matrices, i.e., the sample covariance matrix, ♣λ1, . . . , ♣λK converge to the corresponding eigenvalues
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of Σ in probability. When p ➔ T , the relative errors of the remaining p ✁K eigenvalues to their

population counterparts are bounded by T✁1④2p1④2 in probability. By Condition 2.2.1, λi is bounded

for i → K. Thus, the bound on relative error ⑤♣λi④λi ✁ 1⑤ is the same as that of deviation ⑤♣λi ✁ λi⑤
for i → K. That is, eigenvalues of ♣Σ converge to those of Σ only if p④T Ñ 0. This agrees with the

well known convergence of ♣Σ to Σ in low dimension for i.i.d. data (Bien et al., 2016; Bunea and

Xiao, 2015).

Different lessons are learned when p → T . As ♣Σ is not of full-rank, ♣λi’s with i → K consist

of at most T ✁ K non-zeros and at least p ✁ T zeros. For a legitimate covariance Σ, at least

p ✁ T eigenvalues of ♣Σ are biased for estimating their population counterparts. In addition, the

non-zero eigenvalues of ♣Σ could also be biased. For i.i.d. data with unit variance and p pro-

portional to T , it is known that non-zero eigenvalues of the sample covariance matrix are spread

out and bounded by ♣1 ✁ p1④2T✁1④2q2 and ♣1 � p1④2T✁1④2q2 (Bai and Yin, 1993; James and Stein,

1992; Johnstone and Paul, 2018; Stein, 1956), which explains the bias in non-zero eigenvalues of

the sample covariance matrix compared to their population counterparts (Bai and Yin, 1993; Baik

et al., 2005; Johnstone and Paul, 2018). In contrast, the low-rank structure in factor models pro-

vides better understanding on eigenvalues of ♣Σ. Consider a factor model with ut assumed to be

white noise, Lam and Yao (2012) focused on the cross covariance matrix M ✏ ➦h0

h✏1
Σ♣hqΣ♣hq❏,

where Σ♣hq is the autocovariance matrix of yt at lag h. They remarked that asymptotically, spiked

eigenvalues of the sample cross covariance matrix converge to the corresponding population eigen-

values, while the non-spiked eigenvalues, although may not converge, are bounded by the ratio of

p and T . Theorem 2.3.3 (ii) provides a non-asymptotic characterization of their remarks. First,

we confirm that, as expected, ♣λi fails to converge for i → K if p④T diverges. Also, the non-

asymptotic bound in Theorem 2.3.3 shows that the ratio between E♣♣λiq and λi is bounded above

by 2
❛
πcp④TΦ♣2✁1④2c✁1C

❄
pq for any given p and T . Furthermore, the non-asymptotic bound of♣λi④λi provide a characterization on the closeness between E♣♣λi④λiq and 1 for i ✏ 1, . . . , K. It is

easy to see from Theorem 2.3.3 that the deviation between E♣♣λi④λiq and 1 is bounded above by

2
❛
πc④♣pT qΦ♣2✁1④2c✁1C

❄
pq. This reflects the asymptotic unbiasedness of ♣λi for i ✏ 1, . . . , K.
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Wang and Fan (2017) considered a noiseless factor model with arbitrary factor strengths, which

allows the spiked eigenvalue to be with any rate in p. Compared to their model, (2.1.2) can be

viewed as a special case where the spiked eigenvalues are all in the same rate of p if ut is further

modeled by Cft with some C orthogonal to A. The authors showed that eigenvalues of ♣Σ are

asymptotically unbiased if pT✁1λ✁1i converge to zero for i ✏ 1, . . . , K. Recall that λi ✏ O♣pq
under Condition 2.2.2, so that pT✁1λ✁1i always converges to zero for (2.1.2). Thus, Theorem 2.3.3

gives a similar result on the asymptotic unbiasedness of ♣λi as Wang and Fan (2017). Also, the

authors established the asymptotic normality of ♣λi④λi ✁ 1 upon removing the bias. Complement

to that, Theorem 2.3.3 (ii) provides a finite sample view on ♣λi④λi by showing its non-asymptotic

sub-Gaussian tail for i ✏ 1, . . . , K.

2.4 Applications in High-Dimensional Statistics

To demonstrate results in Section 2.3, we consider a number of interesting and widely stud-

ied applications in high-dimensional statistics, including the estimation of the number of latent

factors in factor models and related machine learning problems, the estimation and forecasting of

high-dimensional time series, the spectral properties of large sample covariance matrix such as

perturbation bounds and inference on the spectral projectors, and the low-rank matrix denoising

from dependent data.

2.4.1 Estimation of the Number of Latent Factors

In high-dimensional factor models or machine learning problems such as PCA, it is necessary

to choose the number of latent factors or principal components K before recovering the loading

matrix and factors or computing the principal components and scores. Traditional methods to esti-

mate K include, for example, the likelihood ratio test and the screen plot (Jolliffe, 2002). For the

high-dimensional data with large covariance matrix, eigenvalues of the sample covariance matrix

or their variants have been utilized and the estimation is consistent under certain separation con-

dition of the first K eigenvalues from the remains. A popular approach is based on the ratio of
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consecutive eigenvalues (Ahn and Horenstein, 2013; Fan et al., 2016; Lam and Yao, 2012),

♣K ✏ argmax1↕i➔min♣p,T q
♣λi♣λi�1

(2.4.1)

where ♣λi is the ith eigenvalue of T✁1YY❏; while, other methods are based on the eigenvalue

differences (Onatski, 2012) or the cumulative magnitude of eigenvalues (Bai and Ng, 2002).

Under the pervasiveness assumption, i.e. Condition 2.2.2 and (iii) in Condition 2.2.3, the con-

sistency of ♣K has been established (Fan et al., 2016; Lam and Yao, 2012). However, the rate of

the probability of consistent estimation has not been fully explored. Theorem 2.3.3 sheds light on

characterizing this rate. In fact, from Theorem 2.3.3, ♣λK④♣λK�1 is of the order Op♣pq when p ➔ T

andOp♣T q when p → T . In contrast, ♣λi④♣λi�1 isOp♣1q for i ✘ K. As an application, Theorem 2.4.1

establishes the non-asymptotic lower bound of the probability of estimating the correct number of

factors.

Theorem 2.4.1. Under Conditions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, given Y from

(2.1.1) or (2.1.2), ♣K defined in (2.4.1) satisfies

P♣ ♣K ✏ Kq ➙ 1✁ 2 exp♣✁tC1

❛
max♣p, T q ✁ C2

❛
min♣p, T q✉2q, (2.4.2)

where

C1 ✏ 1

c

✓
1✁

✧
max♣p, T qλK�1

TλK
max

1↕i➔min♣p,T q,i✘K

λi

λi�1

✯1④4✛
,

and C2 ✏ c✁1C, with C and c defined in Theorem 2.3.3.

As mentioned in Theorem 2.3.3, C and c are positive constants that only depend on ut so that

C2 → 0 is independent of p and T . Under Conditions 2.2.1 and 2.2.2, λi ✏ O♣pq for i ✏ 1, . . . , K

and λi ✏ O♣1q for i → K so that C1 → 0 for sufficiently large p and T . On the right hand

side of (2.4.2), C2

❛
min♣p, T q is smaller than C1

❛
max♣p, T q whenever p ✦ T or p ✧ T , so the

lower bound is governed by C1

❛
max♣p, T q. It is easy to see that C1 is large if both λK�1④λK and
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max1↕i➔min♣p,T q,i✘K λi④λi�1 are small. That is, it is easy to estimate K if the spiked eigenvalues

λ1, . . . , λK are close to each other and so do the non-spiked eigenvalues λK�1, . . . , λp. Otherwise,

if λi④λi�1 is large for some i ✘ K, C1 will be small so that the lower bound on the right hand side

of (2.4.2) will be away from 1 and implies a more challenging K to be estimated.

When p and T are close, C2

❛
min♣p, T q is not negligible. Notice that the lower bound in

(2.4.2) can be written as 1✁ 2 expt✁C2
1
♣1✁C ✶p1④2T✁1④2q2T ✉ for some positive constant C ✶ given

p ➔ T . When C2
1
♣1✁C ✶p1④2T✁1④2q2 is small, a large T is preferable to drive the lower bound close

to 1. If p ➙ T , the lower bound in (2.4.2) can be written as 1 ✁ 2 expt✁C2
1
♣1 ✁ C ✶T 1④2p✁1④2q2p✉

and similarly, a large p is preferable to make the lower bound approaching 1.

An alternative to ♣K, proposed by Onatski (2012), is to use the difference of consecutive eigen-

values. That is, for given δ → 0 and pre-determined L, one defines

♣Kd ✏ maxti ↕ L : ♣λi ✁ ♣λi�1 ➙ δ✉, (2.4.3)

Similar to Theorem 2.4.1, we have the following result.

Theorem 2.4.2. Under Conditions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, given Y from

(2.1.1) or (2.1.2), ♣Kd in (2.4.3) satisfies

P♣ ♣Kd ✏ Kq ➙ 1✁ 2

K�1➳
i✏1

exp♣✁tC1i

❄
T ✁ C2

❄
p✉2q,

where C1i ✏ ♣2cq✁1♣λi ✁ λi�1 ✁ δq for i ✏ 1, . . . , K, C1,K�1 ✏ c✁1♣δ ✁ λK�2 � λK�1q, and

C2 ✏ c✁1C, with C and c defined in Theorem 2.3.3.

Under the pervasiveness assumption, Onatski (2012) established the consistency of ♣Kd when

p is proportional to T . Theorem 2.4.2 relaxes the restriction on p and T and provides the non-

asymptotic characterization of the probability of consistent estimation of K by ♣Kd. It suggests

that, for carefully selected δ such that δ → λK�2✁ λK�1, ♣Kd and ♣K have similar rates of the prob-

ability of consistent estimation. However, ♣Kd is not tuning free compared to ♣K. Onatski (2012)
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proposed a data-driven procedure to determine δ. Specifically, an iterative procedure was em-

ployed to alternatively update δ and ♣Kd until convergence. Note that λK�2 ✏ λK�1 if u1t, . . . , upt

are identical. In this case, an appropriate δ can be easily found. Otherwise, more numerical itera-

tions are required. Sometimes, ♣Kd may perform better than ♣K in practice, which can be explained

using the non-asymptotic results from Theorems 2.4.1 and 2.4.2. Consider a special case where

p → T , K ✏ 1, λ1 ✏ p, and λ2 ✏ ☎ ☎ ☎ ✏ λp ✏ 1. The lower bound for ♣K in Theorem 2.4.1 is

1 ✁ 2 exp♣✁tc✁1♣1 ✁ T✁1④4q❄p ✁ c✁1C
❄
T ✉2q while the lower bound for ♣Kd in Theorem 2.4.2

is 1 ✁ 2 exp♣✁t♣2cq✁1♣p ✁ 1 ✁ δq❄T ✁ c✁1C
❄
p✉2q ✁ 2 exp♣✁t♣2cq✁1δ

❄
T ✁ c✁1C

❄
p✉2q. For

a divergent p and constant T , ♣Kd outperforms ♣K in terms of a higher rate of the probability of

consistent estimation whenever C → 1✁ T✁1④4.

Different from the consecutive eigenvalue based approaches, the information criterion has also

been used to estimate K. Some of them can be interpreted as a penalized cumulative magnitude of

eigenvalues, such as

PC♣kq ✏
★

1

pT

➳
i➙k

♣λi � k♣σ2
p� T

pT
log

✂
pT

p� T

✡✰
.

where ♣σ2 is some consistent estimate of ♣pT q✁1
➦p,T

i✏1,t✏1
E♣u2itq (Bai and Ng, 2002). Then, K is

estimated by ♣Km ✏ argmink↕L PC♣kq for some pre-determined L. Bai and Ng (2002) further

suggested that ♣σ2 can be replaced by ♣pT q✁1
➦

i→L
♣λi in practice and the penalty term ♣pT q✁1♣p�

T q log♣♣p�T q✁1pT q can be replaced by ♣pT q✁1♣p�T q log♣min♣p, T qq or min♣p, T q✁1 log♣min♣p, T qq.
They also showed the consistency of ♣Km when ♣σ2 is consistent and the penalty shrinks to zero as p

and T diverge. Notice that ♣Km is entirely based on the empirical distribution of ♣λi for i ✏ 1, . . . , p.

Thus, its non-asymptotic properties such as the rate of the probability of consistent estimation may

also be established using Theorem 2.3.3, which we leave to the future work.

2.4.2 Estimation and Forecasting of High-Dimensional Time Series

Making forecast based on high-dimensional time series arises frequently in econometrics, fi-

nancial analysis, and meteorology. Suppose we observe Y P R
p✂T , where each entry yit follows
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(2.1.1) and the zero mean K-dimensional latent process f t is governed by parametric models sat-

isfying Conditions 2.2.1 and 2.2.3. For example, Chen et al. (2018) considered a model similar to

(2.1.1) with f t following an autoregressive model whose parameters are estimated for predicting

yi,s with s → T .

As an application of Theorem 2.3.1, we show the consistency on estimating the moments of

f t using the spectral decomposition of Y❏Y, which guarantees the consistency of moment-based

estimators to parameters of a large realm of parametric models for f t. Denote the sample autoco-

variance function (Brockwell et al., 1991) of f t by

♣Γ♣h, f tq ✏ 1

T

T✁⑤h⑤➳
t✏1

♣f t�⑤h⑤ ✁ f̄q♣f t ✁ f̄q❏,

where f̄ ✏ T✁1
➦T

t✏1
f t. Also, let the sample autocovariance function of ♣f t, the tth row of ♣F, be

♣Γ♣h,♣f tq ✏ 1

T

T✁⑤h⑤➳
t✏1

♣♣f t�⑤h⑤ ✁ ♣̄fq♣♣f t ✁ ♣̄fq❏,
where ♣̄f ✏ T✁1

➦T

t✏1
♣f t. In Theorem 2.4.3, we show that the sample autovariance function of f t

can be consistently recovered by that of ♣f t.
Theorem 2.4.3. Under Conditions 2.2.1-2.2.3, given Y from (2.1.1) or (2.1.2), ♣Γ♣h, f tq and♣Γ♣h,♣f tq defined above satisfy, with probability at least 1✁ e✁s,

⑥♣Γ♣h,♣f tq ✁ ♣Γ♣h, f tq⑥2F ➚ 1

T

✂
1

p
� 1

T

✡
s

for each h ✏ ✁T � 1, . . . , 0, . . . , T ✁ 1.

Notice that both F and ♣F are K ✂ K matrices. As a direct corollary of Theorem 2.4.3, we

can establish the concentration inequality for recovering the temporal dependence structure on

each dimension of f t. For each k ✏ 1, . . . , K, denote the sample autocovariance function of
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tftk : t ➙ 1✉ as

♣γ♣h, ftkq ✏ T✁1

T✁⑤h⑤➳
t✏1

♣ft�⑤h⑤,k ✁ f̄kq♣ftk ✁ f̄kq❏,

where f̄k ✏ T✁1
➦T

t✏1
ftk, and also let the sample autocovariance function of t ♣ftk : t ➙ 1✉ by

♣γ♣h, ♣ftkq ✏ T✁1

T✁⑤h⑤➳
t✏1

♣ ♣ft�⑤h⑤,k ✁ ♣̄
kfq♣ ♣ftk ✁ ♣̄

kfq❏,

where ♣̄ kf ✏ T✁1
➦T

t✏1
♣ftk. From Theorem 2.4.3, with probability at least 1✁ e✁s, we have

⑤♣γ♣h, ♣ftkq ✁ ♣γ♣h, ftkq⑤2 ➚ 1

T

✂
1

p
� 1

T

✡
s

for each h ✏ ✁T � 1, . . . , 0, . . . , T ✁ 1. Similarly, denote the sample autocorrelation function

(ACF; Brockwell et al., 1991) of tftk : t ➙ 1✉ by ♣ρ♣h, ftkq ✏ t♣γ♣0, ftkq✉✁1♣γ♣h, ftkq and the

sample partial autocorrelation function (PACF) by ♣Ψ♣0, ftkq ✏ 1 and ♣Ψ♣h, ftkq being the hth entry

of ♣Ψ♣ftkq where ♣Ψ♣ftkq ✏ ♣R✁1

h ♣ftkq♣ρh♣ftkq with ♣Rh♣ftkq ✏ t♣ρ♣♣i ✁ jq, ftkq✉hi,j✏1
and ♣ρh♣ftkq ✏

♣♣ρ♣1, ftkq, . . . , ♣ρ♣h, ftkqq❏. Likewise, we denote the sample ACF of t ♣ftk : t ➙ 1✉ by ♣ρ♣h, ♣ftkq ✏
t♣γ♣0, ♣ftkq✉✁1♣γ♣h, ♣ftkq, let the sample PACF of t ♣ftk : t ➙ 1✉ be ♣Ψ♣0, ♣ftkq ✏ 1, and let ♣Ψ♣h, ♣ftkq be

the hth entry of ♣Ψ♣ ♣ftkq, where ♣Ψ♣ ♣ftkq ✏ ♣R✁1

h ♣ ♣ftkq♣ρh♣ ♣ftkq, ♣R✁1

h ♣ ♣ftkq ✏ t♣ρ♣♣i ✁ jq, ♣ftkq✉hi,j✏1
and

♣ρh♣ ♣ftkq ✏ ♣♣ρ♣1, ftkq, . . . , ♣ρ♣h, ♣ftkqq❏. From Theorem 2.4.3, we have the following results.

Theorem 2.4.4. Under Conditions 2.2.1-2.2.3, given Y from (2.1.1) or (2.1.2), for each k ✏
1, . . . , K and h ✏ ✁T � 1, . . . , T ✁ 1, with probability at least 1✁ e✁s,

⑤♣ρ♣h, ♣ftkq ✁ ♣ρ♣h, ftkq⑤2 ➚ 1

T

✂
1

p
� 1

T

✡
s,

⑤♣Ψ♣h, ♣ftkq ✁ ♣Ψ♣h, ftkq⑤2 ➚ 1

T

✂
1

p
� 1

T

✡
s.
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Theorem 2.4.4 shows that sample ACF and PACF of tftk : t ➙ 1✉ can be consistently recovered

by those of t ♣ftk : t ➙ 1✉. In addition, Theorem 2.4.4 implies that the sample ACF of ftk and ♣ftk
have the common asymptotic distribution. Similar conclusions are also true for the sample PACF.

These results will have wide applications in modeling and forecasting high-dimensional time series

by (2.1.1) along a broad class of parametric models on f t. For instance, for the autoregression

models, the sample PACF’s give the Yule-Walker estimator to the autoregressive coefficients; and

for the moving average models, the innovation estimator, which is computed from the sample

ACF’s, can be employed to estimate the moving average coefficients.

2.4.3 Spectral Properties of Large Sample Covariance Matrices

Extending results in Section 2.3 on eigenvectors ♣fk of the scaled right Gram matrix T✁1Y❏Y,

we study eigenvectors of the sample covariance matrix ♣Σ, ♣wi for i ✏ 1, . . . , p. First, as an appli-

cation of Theorem 2.3.1, we characterize the deviation between ♣wi and wi in Theorem 2.4.5.

Theorem 2.4.5. Under Conditions 2.2.1-2.2.3, given Y from (2.1.1) or (2.1.2), E♣⑥ ♣wi ✁wi⑥22q ➚
p✁1 � T✁1 and Var♣⑥ ♣wi ✁wi⑥22q ➚ p✁2 � T✁2 for each i ✏ 1, . . . , K.

From Theorem 2.4.5, the firstK eigenvectors of the sample covariance matrix converge to those

of Σ in probability. Together with Theorems 2.3.3, we establish the consistency on estimating

the spectral structure corresponding to the first K eigenvalues of Σ specified by (2.1.3). Notice

that no restrictions on p and T are imposed on this consistency. By Theorem 2.3.3, for p ➔ T ,

⑥♣Σ✁Σ⑥F ➚ T✁1④2p3④2� T✁1④2p
❄
s with probability at least 1✁ e✁s. Thus, from the Davis-Kahan

Theorem (Cai et al., 2017; Davis and Kahan, 1970; Fan et al., 2018b; Yu et al., 2014) and Condition

2.2.1, we have the following corollary.

Corollary 2.4.1. Let Θ♣ ♣wi,wiq ✏ cos✁1♣ ♣w❏
i wiq be the angle between ♣wi and wi. Under Condi-

tions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, given Y from (2.1.1) or (2.1.2), it satisfies

EtsinΘ♣ ♣wi,wiq✉ ➚ E♣⑥♣Σ✁Σ⑥Fq
minj✘i ⑤λj ✁ λi⑤ ➚ T✁1④2 � p✁1④2
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for each i ✏ 1, . . . , K.

Since sinΘ♣ ♣wi,wiq ↕ ⑥ ♣wi ✁ wi⑥2 ↕ 2 sinΘ♣ ♣wi,wiq with properly chosen direction of ♣wi,

Corollary 2.4.1 gives a similar result to the Davis-Kahan Theorem in low dimension. However,

when p → T , as shown in Theorem 2.3.3, not all eigenvalues of ♣Σ necessarily converge to those of

Σ and neither does ♣Σ converge to Σ. Then, the Davis-Kahan Theorem cannot be directly applied to♣Σ. Instead, with the low-rank structure in (2.1.2), we can establish similar results for an alternative

estimator to Σ. We start with eigenvectors corresponding to the first K largest eigenvalues of

Y❏Y, i.e., the PCA estimator to the latent factor matrix and loading matrix. Under Condition

2.3.1, Σ in (2.1.3) can be estimated by ♣ΣPCA ✏ ♣A♣A❏� ♣Σu, where ♣A is defined in Section 2.3, ♣Σu

is a diagonal matrix with diagonal entries ♣σ2
1
, . . . , ♣σ2

p , ♣σ2
i ✏ T✁1

➦T

t✏1
♣u2it for i ✏ 1, . . . , p and ♣uit

is the entry in the ith row and tth column of ♣U ✏ Y ✁ ♣A♣F❏. Then, similar to Corollary 2.4.1, we

have the following result.

Corollary 2.4.2. Given Y from (2.1.1) or (2.1.2), let Θ♣ rwi,PCA,wiq ✏ cos✁1♣ rw❏
i,PCA

wiq be the

angle between rwi,PCA and wi, where rwi,PCA is the eigenvector corresponding to the ith largest

eigenvalue of ♣ΣPCA. Then, under Conditions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, for

each i ✏ 1, . . . , K,

EtsinΘ♣ rwi,PCA,wiq✉ ➚ E♣⑥♣ΣPCA ✁Σq⑥Fq
minj✘i ⑤λj ✁ λi⑤ ➚ p✁1④2T✁1④2 � p✁1.

Next, as an application of Theorem 2.3.2, we will show the approximation error rate to the

distribution of the standardized deviation between wi and ♣wi by the standard normal distribution,

namely the Berry-Esseen type bound. First, we consider Pi ✏ Ip ✁ wi♣w✶
iwiq✁1w✶

i and ♣Pi ✏
Ip ✁ ♣wi♣ ♣w✶

i ♣wiq✁1 ♣w✶
i, which are the projectors onto the orthogonal spaces of wi and ♣wi. First, we

will obtain the Berry-Esseen type bound for ⑥♣Pi ✁Pi⑥22 in Theorem 2.4.6.
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Theorem 2.4.6. Under Conditions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, given Y from

(2.1.1) or (2.1.2), for each i ✏ 1, . . . , p,

sup
xPR

✞✞✞✞✞P
★
⑥♣Pi ✁Pi⑥22 ✁ E♣⑥♣Pi ✁Pi⑥22q

Var1④2♣⑥♣Pi ✁Pi⑥22q
↕ x

✰
✁ Φ♣xq

✞✞✞✞✞
➚ 1

Bi

� log♣T q❄
T

� tlog♣T q✉1④2tlog♣pq✉1④4
T 1④8Bi

.

where Bi ✏ 2
❄
2⑥PiΣPi⑥2⑥QiΣQi⑥2 and Qi ✏

➦
j✘i♣λi ✁ λjq✁1Pj .

A similar result has been documented for independent data in literature (Koltchinskii and

Lounici, 2016); while, Theorem 2.4.6 is more general by allowing temporal dependence in data. In

fact, the third term on the right hand side above quantifies the effect of temporal dependence, and

as a result, the convergence rate is slightly compromised compared to the rate under independence.

Theorem 2.4.6 leads to the following corollary, which extends the Berry-Esseen bound for random

vectors (Bobkov et al., 2018; Bobkov and Chistyakov, 2015; Goldstein et al., 2009).

Corollary 2.4.3. Under Conditions 2.2.1, 2.2.2, (i),(ii) and (iv) in 2.2.3, and 2.3.1, given Y from

(2.1.1) or (2.1.2), for any matrix C and i ✏ 1, . . . , p,

sup
xPR

✞✞✞✞✞P
★
⑥♣PiC✁PiC⑥22 ✁ E♣⑥♣PiC✁PiC⑥22q

Var1④2♣⑥♣PiC✁PiC⑥22q
↕ x

✰
✁ Φ♣xq

✞✞✞✞✞
➚ 1

Bi

� log♣T q❄
T

� tlog♣T q✉1④2tlog♣pq✉1④4
T 1④8Bi

.

In addition, for each i ✏ 1, . . . , p,

sup
xPR

✞✞✞✞P✧⑥ ♣wi ✁wi⑥22 ✁ E♣⑥ ♣wi ✁wi⑥22q
Var1④2♣⑥ ♣wi ✁wi⑥22q

↕ x

✯
✁ Φ♣xq

✞✞✞✞
➚ 1

Bi

� log♣T q❄
T

� tlog♣T q✉1④2tlog♣pq✉1④4
T 1④8Bi

.

Note that Bi ✏ O♣❄pq for i ✏ 1, . . . , K. Thus, Corollary 2.4.3 provides a uniform normal

approximation to standardized ⑥ ♣wi ✁ wi⑥22 for i ✏ 1, . . . , K. However, Bi ✏ O♣1q for i → K
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so that the upper bounds in both Theorem 2.4.6 and Corollary 2.4.3 do not necessarily shrink

to zero. Therefore, as noted by Koltchinskii and Lounici (2016), the normal approximation to

⑥ ♣wi ✁wi⑥22 for i → K may fail to hold. Together with Theorem 2.3.3, Corollary 2.4.3 shows that,

the spectral structures corresponding to the spiked eigenvalues, i.e. the first K eigenvalues of the

sample covariance matrix, provide good estimates to the corresponding spectral structures of Σ,

even for p → T for which ♣Σ is no longer consistent to Σ.

Remark 2.4.1. In practice, E♣⑥ ♣wi ✁ wi⑥22q and Var♣⑥ ♣wi ✁ wi⑥22q are unknown. To use Corol-

lary 2.4.3 for inference, we need estimate them. Koltchinskii and Lounici (2017) offered a data-

splitting procedure which splits the sample into three subsamples: the first for estimating the ex-

pectation, the second for estimating the variance, and the third for building the confidence set.

In addition, since T✁1YY❏ is naturally an empirical process, the multiplier bootstrap can been

employed to build the confidence set of wi for each i ✏ 1, . . . , K without data splitting for i.i.d

data (Naumov et al., 2019). Under Condition 2.2.3, yt from (2.1.1) is weakly temporal dependent

and can be approximated by some m-dependent time series ryt in the following sense,

⑤E♣⑥ ♣wi ✁wi⑥22⑤ytq ✁ E♣⑥ ♣wi ✁wi⑥22⑤rytq⑤ ➚ tlog♣T q✉1④2tlog♣pq✉1④4
T 9④8 ,

⑤Var1④2♣⑥ ♣wi ✁wi⑥22⑤ytq ✁ Var1④2♣⑥ ♣wi ✁wi⑥22⑤rytq⑤ ➚ tlog♣T q✉1④2tlog♣pq✉1④4
T 9④8 ;

and ⑥ ♣wi✁wi⑥22 based on yt and ry have the similar normal approximations (Chen et al., 2004, 2007;

Zhang and Cheng, 2018). Therefore, we can employ the following blockwise multiplier bootstrap

procedure to draw inference on wi (Zhang and Cheng, 2018), whose guarantee is provided by

Corollary 2.4.3 and the above approximation using ryt.
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Algorithm: Blockwise multiplier bootstrap procedure for the inference of wi.

Input: Observations tyit✉p,Ti✏1,t✏1
.

Step 1. Pre-specify integers bT and lT such that T ✏ bT lT based on the nonparametric plug-in method

(Bühlmann and Künsch, 1999), the empirical criteria-based method (Hall et al., 1995) or the algorithm

in Zhang and Cheng (2018).

Step 2. Generate ejs i.i.d. from N ♣1, 1q for j ✏ 1, . . . , B and s ✏ 1, . . . , lT .

Step 3. For each j, calculate Σ
BS
j ✏ T✁1

➦lT
s✏1

ejs
➦sbT

t✏♣s✁1qbT�1
yty

✶
t.

Step 4. For each i ✏ 1, . . . ,K, denote wBS
i,j the eigenvector corresponding to the ith largest eigenvalue

of ΣBS
j and define γBS

α as the 1✁ α percentile of t⑥wBS
i,j ✁ ♣wi⑥22✉Bj✏1

.

Output: Confidence set of wi as tw : ⑥w ✁ ♣wi⑥22 ↕ γBS
α ✉ for i ✏ 1, . . . ,K.

2.4.4 Low-rank Matrix Denoising based on Temporally Dependent Data

Low-rank matrix denoising has numerous applications such as robust video restoration (Ji et al.,

2011), hyperspectral image restoration (He et al., 2015; Zhang et al., 2013), and underdetermined

direction of arrival estimation (Pal and Vaidyanathan, 2014). Lately, the low-rank matrix denoising

in the presence of both heteroskedastic errors and dependent samples has attracted great attention

in literature (Zhang et al., 2018). Suppose we observe time series

yit ✏ xit � uit

for i ✏ 1, . . . , p and t ✏ 1, . . . , T , which can be written as

Y ✏ X�U

where Y ✏ tyit✉p,Ti✏1,t✏1
, X ✏ txit✉p,Ti✏1,t✏1

is a fixed rank-K matrix, and U ✏ tuit✉p,Ti✏1,t✏1
. Assume

noise matrix U satisfies Condition 2.2.3. Let X ✏ WΛV✶ be the SVD, where W is a p ✂ K

orthogonal matrix and V is a T ✂ K orthogonal matrix. Note that the column space of W is
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essentially that of A in (2.1.2) under Condition 2.2.1. Then we can use PCA to estimate W by①W ✏ ♣♣A❏ ♣Aq✁1④2 ♣A with the following theoretical guarantees.

Corollary 2.4.4. Suppose that p ➚ λmin♣Λq ➚ λmax♣Λq ➚ p. Then W and ①W satisfy

Et⑥ sinΘ♣①W,Wq⑥F✉ ➚ 1❄
p
� 1❄

T
,

where ⑥ sinΘ♣①W,Wq⑥F d✏ ⑥W❏
❑①W⑥F and W❑ is a p ✂ ♣p ✁ Kq orthogonal matrix such that

♣W,W❑q is a p✂ p orthogonal matrix.

In Corollary 2.4.4, we consider a spike model with potentially heteroskedastic errors. Like

the approximate factor model, the spiked singular values of X provide stronger signals compared

to the model used in traditional matrix denoising (Cai and Zhang, 2016; Zhang et al., 2018). To

compare, for the non-spiked signal matrix X and homoskedastic variance of U, the optimal rate

of matrix denoising using the regular SVD is E♣⑥ sinΘ♣①W,Wq⑥Fq ➚ min♣p, T q✁1④2 (Theorems

3 and 4, Cai and Zhang, 2016). Thus, Corollary 2.4.4 gives similar results to the regular SVD

(Cai and Zhang, 2016) and the diagonal-deletion SVD (Florescu and Perkins, 2016). In addition,

Theorem 4 in Zhang et al. (2018) showed that the heteroskedastic PCA can obtain the optimal rate

of matrix denoising for non-spiked signal matrix X with heteroskedastic errors. It is easy to see

that if the variance of uit is bounded for each i and t, the optimal rate in Zhang et al. (2018) is also

E♣⑥ sinΘ♣①W,Wq⑥Fq ➚ min♣p, T q✁1④2. Hence, our result also matches the heteroskedastic PCA

(Zhang et al., 2018) in the presence of heteroskedastic errors.

2.5 Numerical studies

In this section, we perform simulation studies to further illustrate results displayed in Sections

2.3, 2.4.1, and 2.4.2.

We first conduct numerical experiments to demonstrate Theorem 2.3.3. Consider model (2.1.1)

with K ✏ 1, uit
i.i.d.✒ N ♣0, 0.01q, and three settings for latent process f t: (1) AR♣1q with autore-

gressive coefficient φ ✏ 0.5 and N ♣0, 1q innovation; (2) AR♣1q with autoregressive coefficient
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φ ✏ 0.5 and t8 innovation; and (3) ARMA♣1, 1q with autoregressive coefficient φ ✏ 0.5, moving

average coefficient θ ✏ 0.5, and N ♣0, 1q innovation. Two scenarios on p and T are considered,

p ✏ t2T 1④2✉ and T ✏ t2p1④2✉. Based on 100 replicates, the simulation results are displayed in

Figure 2.1. From panels (a1), (b1), and (c1), we can see that ♣λi converges to λi when p ➔ T . The

relative error ⑤♣λi④λi ✁ 1⑤ for i ✏ 1 converges to zero faster than those for i ✏ 2 and 10 since λ1

diverges in p while λ2 and λ10 remain in constants. In addition, from panels (a2), (b2), and (c2),

it is noticed that ♣λ1 still converges to λ1 even for p → T while the deviations of other eigenvalues

diverge as p and T diverge. These patterns are commonly observed for all three settings on f t. This

matches results in Theorem 2.3.3.

Next, we demonstrate the influence of p, T , and eigenvalues of Σ on the probability of estimat-

ing the correct number of factors using the ratio of consecutive eigenvalues in (2.4.1). Consider

model (2.1.1) with K ✏ 3 factors and uit
i.i.d.✒ N ♣0, 25q. The three components in f t are inde-

pendent and identically follow AR♣1q process with autoregressive coefficient φ ✏ 0.5 and N ♣0, 1q
innovation. We further set A such that p✁1A❏A has diagonal entries t16, 4, 1✉ (panels (a1) and

(a2) in Figure 2.2), t16, 4, 2✉ (panels (b1) and (b2) in Figure 2.2), and t32, 4, 2✉ (panels (c1) and

(c2) in Figure 2.2). For p and T , two settings are reported: (1) T is fixed, p ✏ 100, 200, . . . , 1000;

and (2) p is fixed, T ✏ 100, 200, . . . , 1000. Based on 500 replicates, results on log♣1✁Pt ♣K ✏ K✉q
are displayed in Figure 2.2. In Figure 2.2, we notice that log♣1✁ Pt ♣K ✏ K✉q decreases faster for

greater λK④λK�1 and smaller maxi✘K λi④λi�1. In fact, from Theorem 2.4.1, log♣1✁ Pt ♣K ✏ K✉q
is bounded by a quadratic function of

❛
max♣p, T q with C1 and C2 defined in Theorem 2.4.1.

Since c and C in Theorem 2.3.3 only depend on the distribution of ut, C2 is same for different A.

On the other hand, as λK④λK�1 increases and maxi✘K λi④λi�1 decreases, C1 increases so that the

quadratic function of
❛
max♣p, T q has a smaller vertex and greater quadratic coefficient. Thus,

Figure 2.2 demonstrates the conclusion in Theorem 2.4.1.

Finally, we study the estimation of moments of latent factor process f t to demonstrate Theo-

rem 2.4.4. Still consider model (2.1.1) with K ✏ 1 factor and uit
i.i.d.✒ N ♣0, 0.01q. Also, we set

three models for f t: (1) AR♣1q with autoregressive coefficient φ ✏ 0.5 and N ♣0, 1q innovation; (2)
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Figure 2.1: In the left column, p ✏ t2T 1④2✉ (p ➔ T ), and in the right column T ✏ t2p1④2✉ (p → T ). In
panels (a1) and (a2), latent process f t follows setting (1); in panels (b1) and (b2), latent process f t follows
setting (2); and in panels (c1) and (c2), latent process f t follows setting (3). In panels (a1), (b1), and (c1), the
relative errors ⑤♣λi④λi ✁ 1⑤ for i ✏ 1, 2, 10 are displayed. In panels (a2), (b2), and (c2), the relative errors are
displayed for λ1 and the sample eigenvalues are displayed for λ2 and λ10 to show that they are unbounded
in p.

AR♣1q with autoregressive coefficient φ ✏ 0.5 and t8 innovation; and (3) ARMA♣1, 1q with au-

toregressive coefficient φ ✏ 0.5, moving average coefficient θ ✏ 0.5 and N ♣0, 1q innovation. Two

settings about p and T are considered: p ✏ 200 with T ✏ 100, 200, . . . , 1000; and T ✏ 200 with

p ✏ 100, 200, . . . , 1000. Based on 100 replicates, ⑤♣ρ♣h, ♣ftkq✁ ♣ρ♣h, ftkq⑤ and ⑤♣Ψ♣h, ♣ftkq✁ ♣Ψ♣h, ftkq⑤
versus T and p are displayed in log-log scale in Figures 2.3 and 2.4. For all settings, the squared
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Figure 2.2: Plots about log♣1 ✁ Pt ♣K ✏ K✉q for p ✏ 100, 200, . . . , 1000, T ✏ 500, 700, 800, 900 (left
column), and T ✏ 100, 200, . . . , 1000, p ✏ 500, 700, 800, 900 (right column). The diagonal entries in
p✁1

A
❏
A are t16, 4, 1✉ (panels (a1) and (a2)), t16, 4, 2✉ (panels (b1) and (b2)), and t32, 4, 2✉ (panels (c1)

and (c2)). Points are omitted when log♣1✁ Pt ♣K ✏ K✉q ✏ ✁✽, i.e. P♣ ♣K ✏ Kq ✏ 1.

differences for both ACF and PACF shrink to zero as p and T diverge. Also, in all settings, the

slopes of the log difference of ACF or PACF versus log T or log p are ✁1④2 (the red lines), which

confirms the established rates of convergence in Theorem 2.4.4.
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Figure 2.3: Log differences of ACF (first row) and PACF (second row) of tft1 : t ➙ 1✉ at lag h ✏ 1, lag
h ✏ 5, and lag h ✏ 25 for p ✏ 200 and T ✏ 100, 200, . . . , 1000. The latent process follows AR♣1q process
with autoregressive coefficient φ ✏ 0.5 and N ♣0, 1q innovation in panels (a1) and (a2); it follows AR♣1q
process with autoregressive coefficient φ ✏ 0.5 and t8 innovation in panels (b1) and (b2); and it follows
ARMA♣1, 1q with autoregressive coefficient φ ✏ 0.5, moving average coefficient θ ✏ 0.5, and N ♣0, 1q
innovation in panels (c1) and (c2). The red solid line has slope ✁1④2.

2.6 Conclusions

In this paper, we scrupulously study the non-asymptotic properties of the spectral decomposi-

tion of large Gram-type matrices under the assumption that data matrix Y is governed by a factor

model. As a result, we establish the exponential tail bound for the first and second moments of

the deviation between the empirical and population eigenvectors to the right Gram matrix as well

as the Berry-Esseen type bound to characterize the Gaussian approximation of these deviations.

Technically, we successfully relax the assumption upon latent factors in the factor model, so that

the latent factor processes are no longer restricted to a subspace as stated by Condition PC1 in Bai

and Ng (2013). We also obtain the non-asymptotic tail bound of the ratio between eigenvalues of

the sample covariance matrix, and their population counterparts regardless of the size of the data

matrix. This extends the works of Bai and Yin (1993), Lam and Yao (2012), and Wang and Fan

(2017).
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Figure 2.4: Log differences of ACF (first row) and PACF (second row) of tft1 : t ➙ 1✉ at lag h ✏ 1, lag
h ✏ 5, and lag h ✏ 25 for T ✏ 200 and p ✏ 100, 200, . . . , 1000. The latent process follows AR♣1q process
with autoregressive coefficient φ ✏ 0.5 and N ♣0, 1q innovation in panels (a1) and (a2); it follows AR♣1q
process with autoregressive coefficient φ ✏ 0.5 and t8 innovation in panels (b1) and (b2); and it follows
ARMA♣1, 1q with autoregressive coefficient φ ✏ 0.5, moving average coefficient θ ✏ 0.5, and N ♣0, 1q
innovation in panels (c1) and (c2). The red solid line has slope ✁1④2.

With the derived non-asymptotic properties of eigenvalues of the sample covariance matrix,

we provide the non-asymptotic characterization of different consecutive-eigenvalues-based meth-

ods to estimate the number of latent factors in factor models and relate machine learning problems.

The established non-asymptotic lower bound of the probability of estimating the correct number

of factors reveal the influence of p, T and eigenvalues of Σ on different methods. In addition, as

an application of our main results, we provide statistical guarantees on estimating the parametric

models for the latent process in dynamic or approximate factor models, so that one can make fore-

cast based on the factor models and high-dimensional time series. We also obtain non-asymptotic

properties of the spectral structure of large sample covariance matrices, including the Davis-Kahan

type perturbation result and the approximation error rate to the distribution of the standardized de-

viation between wi and ♣wi by the standard normal distribution, i.e. the Berry-Esseen type bound.

Based on these results, it is possible to construct confidence sets for the leading eigenvectors of Σ
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using the multiplier bootstrap. Finally, we apply our results to the low-rank matrix denoising in

the presence of heteroskedastic errors and temporal dependence in data.
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Chapter 3

Estimation and Inference of Semiparametric Factor

Model

3.1 Introduction

Jointly modeling a large and possibly divergent number of temporally evolving subjects arise

ubiquitously in statistics, econometrics, finance, biology, and environmental sciences. Statisti-

cal analysis has been successfully adopted to explain the interactions and co-movements among

the temporally evolving subjects (Hsiao, 2014; Lam and Yao, 2012; Lütkepohl, 2006; Stock and

Watson, 2002a). A prototype model with both the modulating or systematic and dependence com-

ponents is the linear model yit ✏ z✶
itβ � εit, i ✏ 1, . . . , n, t ✏ 1, . . . , T, where yit is the ob-

servation for the ith subject at time point t, β is a p-dimensional regression coefficient, zit is the

p-dimensional covariate vector that might evolve in time, and ♣ε1t, . . . , εntq✶ is a vector time series

with possible contemporaneous correlation. Here, the number of subjects n might diverge much

faster than the number of time points T and p is low-dimension or fixed. To name a few appli-

cations in practice, yit can be used to model the gene expression level or protein abundance of

the ith marker in a time course experiment (e.g. Desai and Storey, 2012), or the concentration of

certain air pollutant in county i at day t (e.g. Lindström et al., 2014), or daily closing prices for

asset i on market (e.g. Connor et al., 2012). As n rapidly grows, heteroscedasticity across sub-

jects becomes inevitable and brings substantial challenges to modeling, estimation and inference

(Arellano and Bond, 1991; Fan et al., 2014; Hayakawa and Pesaran, 2015). Ignoring the subject-

specific heteroscedasticity is known to lead inefficient estimation and inference on the regression

components. To battle with such challenges, carefully modeling εit is needed to characterize the

remaining contemporaneous and serial correlations as well as heteroscedasticity across subjects.
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In this paper, we introduce a flexible data-driven model, in which the heteroscedasticity across

subjects and serial dependence of εit are assumed to arise from a product of the subject-specific

effect and some latent stationary process. This approach is rooted in the idea of approximate factor

structure by Chamberlain and Rothschild (1983). That is, by separating the eigenvalues of covari-

ance matrix into divergent and non-divergent groups, the observed process can be approximated

by a latent factor process along with its loading (Bai, 2003; Bai and Ng, 2013; Lam and Yao, 2012;

Stock and Watson, 2002a; Wang and Wang, 2018). Specifically, motivated by Connor and Linton

(2007), Connor et al. (2012), and Fan et al. (2016), we model the subject-specific effect in the

covariance by g♣xiq ✏ ♣g1♣xiq, . . . , gK♣xiqq✶ with time invariant covariates xi and nonparamet-

ric functions g1, . . . , gK . In practice, xi could be the genetic information in the health study or

the market capitalization in finance applications. Then, we consider a K-dimensional zero-mean

process ft, and introduce the subject-specific heteroscedasticity model with latent semiparametric

factor structure as

yit ✏ z✶
itβ � g♣xiq✶ft � uit, (3.1.1)

where the residual process uit is independent of ft. Analogous to the traditional factor models,

g♣xiq and ft serve as the loading and factor, respectively. Particularly, g♣xiq models the desired

heteroscedasticity across subjects and, together with ft, retains the cross-sectional dependence

while ft and uit characterize the serial dependence. Model (3.1.1) features a large number of

widely used statistical models. For example, when ft is degenerate, (3.1.1) reduces to the partially

linear additive models (Bouzebda and Chokri, 2014; Tan et al., 2016); when g♣xiq is known and

ft follows a Gaussian distribution, (3.1.1) is a linear mixed model (Rabe-Hesketh and Skrondal,

2004); when index i is replaced by a one-dimensional spatial location, (3.1.1) is analogous to the

spatio-temporal model (Lu et al., 2009); when g♣☎q degenerate to constant functions, (3.1.1) is

equivalent to the traditional factor models (Bai, 2003; Chamberlain and Rothschild, 1983; Lam

and Yao, 2012; Stock and Watson, 2002a) or the panel data model with unobservable interactive

effects (Ahn et al., 2001b; Bai, 2009b; Bai et al., 2014; Moon and Weidner, 2017b).
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Like the partially linear model or the linear mixed model, though ordinary least squares (OLS)

estimator of β is consistent, it is not efficient without taking the unknown dependence into account.

That is, a careful estimation on the unobserved loading g♣xiq and accurate recovery of the latent

process ft are in need to guarantee some sort of efficiency in both estimation and inference on β.

In the literature, there exist a variety of approaches to estimate g♣xiq and ft. For instance, Connor

and Linton (2007) employed a kernel method to estimate ft given xi with finite values, and Connor

et al. (2012) extended such estimate for general xi. Additionally, the consistency on estimating

the loading and latent factor, along with an important result that such consistency requires no

specific relationship between T and n (Fan et al., 2016), also shed lights upon estimating the large

covariance matrix under assumptions of factor structures (Fan et al., 2013). Motivated from these

pioneering works, we propose a two-stage projection-based estimator for β, g♣xiq, and ft in model

(3.1.1). Roughly speaking, adapting a projection-based principal component type estimator (Bai,

2003; Fan et al., 2016), we first estimate g♣xiq and ft from yit ✁ z✶
it
♣β0 for some initial consistent

estimator ♣β0. Next, in the second stage, we update the estimate of β with a generalized least

squares (GLS) type approach using estimates of g♣xiq and ft from the first-stage.

Theoretically, the asymptotic properties such as consistency on estimating g♣xiq and ft are

not sufficient to guarantee the consistency and, particularly the efficiency, of the second-stage

estimator on β (Baltagi, 2008; Greene, 2003). To circumvent these challenges, a major theoretical

contribution of this paper is to carefully carry out the non-asymptotic analysis on the projection-

based estimator on g♣xiq and ft, by which we show that the consistency on estimating g♣xiq
and ft is free from restrictions on the relationship between n and T . Then, with the derived

exponential-type bounds on estimating g♣xiq and ft, we characterize the non-asymptotic deviation

of the proposed two-stage estimator on β from the oracle GLS with full access to g♣xiq and

ft. These nontrivial non-asymptotic results show that our proposed two-stage estimator of β is

overwhelmingly close to the oracle GLS, and so do their first and second moments. We thereby

establish the efficiency on the proposed estimator on β. Also, we obtain the asymptotic normality

of the two-stage estimator on β for drawing inference.
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The paper is organized as follows. In Section 3.2.1, we detail our model and discuss conditions

for its identification. In Section 3.2.2, we introduce the two-stage projection-based estimation

procedure on the loading, latent factor processes, and regression coefficients. We carry out the

non-asymptotic analysis of our estimator and carefully explore its efficiency on estimating the

regression coefficients in Section 3.3. Inference on the regression coefficients is presented in Sec-

tion 3.4. In Section 3.5, we discuss the determination of the unknown dimension K of the latent

process ft and introduce a novel data-drive approach different from the existing eigenvalue-ratio

based procedures. Sections 3.6 and 3.7 present extensive numerical studies and an application on

air quality and energy consumption data in the United States to demonstrate the proposed method.

The paper concludes with some discussions in Section 3.8. Technical details, proofs of main theo-

rems, and extra simulations including the empirical performance of our procedure on selecting K

are retained in the supplementary files.

3.2 Methodology

3.2.1 A heteroscedasticity model with latent semiparametric factor struc-

ture

Consider an n ✂ 1 vector of temporally evolving subjects yt ✏ ♣y1t, . . . , yntq✶ along with p-

dimensional covariates zit and d-dimensional time invariant factors xi associated with the ith sub-

ject. Our objective is to study the long run movement of yit with respect to zit and model the

dependence, over time, of each component of yt and across components, where the heteroscedas-

ticity across subjects is accountable via xi. In our baseline formulation, each subject is mod-

eled by a multi-factor linear model yit ✏ z✶
itβ � εit (Bianchi et al., 2019) for i ✏ 1, . . . , n and

t ✏ 1, . . . , T , where β ✏ ♣β1, . . . , βpq✶ is a p-dimensional vector of regression coefficients com-

mon across subjects. As discussed in the introduction, we adopt the semiparametric factor model

εit ✏ g♣xiq✶ft�uit,where the loading function g♣xiq : Rd Ñ R
K accounts for the subject-specific

heteroscedasticity and contemporaneous dependence and the K-dimensional latent factor process

ft models the serial dependence. This leads to model (3.1.1).
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The unknown smooth functions gk♣xiq’s can be further modeled in the additive fashion on

R
d without losing flexibility yet providing some concision in techniques. That is, gk♣xiq ✏➦d

ℓ✏1
gkℓ♣xiℓq; see, for instance, Hastie and Tibshirani (1986) and Connor et al. (2012). Func-

tion g provides structure flexible enough to allow dependence between tzit✉i↕n,t↕T and txi✉i↕n.

For instance, consider zit ✏ z♣0qi � z♣1qit where z♣0qi and xi are jointly distributed, and z♣1qit is some

independent process. By assuming g from a Hölder space with no linear functions dwelling in

(Condition 3.3.4 in Section 3.3), (3.1.1) remains identifiable. In addition, assume that fkt has zero

mean and finite variance for each k, t, the error process uit has zero mean and finite variance for

each i, t and is independent from ft, and ft, uit are independent from xi and zit, the cross co-

variance of yt is Cov♣yit, yjs⑤xi,xjq ✏ g♣xiq✶Cov♣ft,fsqg♣xjq � Cov♣uit, ujsq for any i, j, t, s.

Enlightened by this discussion, our proposed model reaches beyond the existing literature (Bai

et al., 2014; Bianchi et al., 2019) in the way that the intertemporal and intratemporal dependence

as well as the subject-specific heteroscedasticity are modeled simultaneously by ft and g. Our

model also enriches the toolkit for modeling multivariate time series. Compared to the traditional

models (Basu and Reinsel, 1993; Lütkepohl, 2006), our framework remains valid even when the

number of time series is much larger than the number of time points.

For each t, let Zt ✏ ♣z1t, . . . , zntq✶, ut ✏ ♣u1t, . . . , untq✶, and denote the n✂K matrix of gk♣xiq
by G ✏ ♣g♣x1q, . . . , g♣xnqq✶, (3.1.1) can be re-written in a more compact form

yt ✏ Ztβ �Gft � ut. (3.2.1)

Similar to the traditional factor models, G and ft are not separately identifiable. We need the

following conditions on the model structures to control the rank and scale of latent loading function

and factor process for model identification.

Condition 3.2.1. The rank of G is K. For each t, f1t, . . . , fKt are uncorrelated with each other

and have zero mean and unit variance; u1t, . . . , unt are uncorrelated with each other and have

zero mean and finite variances. In addition, Zt, ft and ut are uncorrelated from each other.
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Condition 3.2.1 corresponds to conditions discussed after (1.1) in Chamberlain and Rothschild

(1983) and also Condition (C1) in Lam and Yao (2012) (with diagonal Σε and integer k herein).

It guarantees the identifiability of the column space of G. To further identify G from its column

space, consider T unnecessarily independent replicates Y ✏ ♣y1, . . . ,yT q and Z ✏ ♣Z1, . . . ,ZT q.
Let F ✏ ♣f1, . . . ,fT q✶ and U ✏ ♣u1, . . . ,uT q, (3.2.1) reads

Y ✏ Z♣IT ❜ βq �GF✶ �U (3.2.2)

where ❜ denotes the Kronecker product. The following condition guarantees the identification of

G in (3.2.2) and therefore that in (3.1.1).

Condition 3.2.2. Almost surely, T✁1F✶F ✏ Ik and G✶G is diagonal with distinct entries.

First part of this condition is the PC1 condition of Bai and Ng (2013) and has been commonly

adopted in factor analysis (Hallin and Liška, 2008; Moench and Ng, 2011; Wang, 2008). Note that

the identification condition on F is compatible with Condition 3.2.1 as T✁1F✶F is an estimator

of Var♣ftq. Under Condition 3.2.2, we can identify GH and FH for some K ✂ K orthogonal

matrix H with H ✏ I � o♣min♣n, T q✁1q (Bai and Ng, 2013). The distinction among entries of

G✶G prevents rotational indeterminacy.

In contrast to the approximate factor model that allows cross-sectional dependence among ut,

the assumption on uit in Condition 3.2.1 is designated for efficiently estimating β without any

restrictions on n and T . In fact, in the absence of the modulating component in (3.2.2), mild

cross-sectional dependence of uit across i will not affect the estimation on G and F. On the other

hand, without Condition 3.2.1 on uit, a consistent estimate on Cov♣utq is required for efficiently

estimating β. This will demand some conditions on n and T , such as
❄
n log♣nq ✏ o♣T q (Fan

et al., 2013; Wang and Fan, 2017), which is more stringent in comparison to those in Section 3.3.

46



3.2.2 Two-stage projection-based estimation

First-stage estimation: projection-based estimator of G and F

Given some preliminary estimator ♣β0 satisfying ⑥♣β0 ✁ β⑥2 ✏ OP ♣n✁1④2�αT✁1④2q for α P
r0, 1④2q, let rY ✏ Y ✁ Z♣IT ❜ ♣β0q and rU ✏ U� ZtIT ❜ ♣β ✁ ♣β0q✉. In general, such ♣β0 exists as

discussed in Section B.2.5 in the supplementary file. Thus, (3.1.1), or equivalently (3.2.2), can be

expressed as

rY ✏ GF✶ � rU. (3.2.3)

A naive approach is to estimate G and F via principal component analysis (PCA). That is, the

columns of F④❄T are estimated using eigenvectors corresponding to the first K largest eigenval-

ues of the T ✂ T matrix rY✶ rY, and G is estimated by right projecting T✁1 rY onto the estimated F.

This method, however, takes into no account for the functional structure of g in G or the smooth

variation of tryit✉ni✏1
from (3.2.3) against xi at each t. Fan et al. (2016) proposed a projected prin-

cipal component approach by smoothing tryit✉ni✏1
as a function of xi at each t before implementing

the aforementioned principal component estimation. Motivated by this, we replace rY by PrY for

some projection P onto a linear space spanned by a set of basis functions. Not only leveraging

the smoothness, but P can also be constructed to be orthogonal to errors rU so that the subsequent

PCA procedure is approximately error-less.

To begin with, let H be a linear space spanned by a sequence of orthonormal basis functions

tφ0♣xq ✑ 1, φ1♣xq, φ2♣xq, . . . φJ♣xq✉. For each k ✏ 1, . . . , K, i ✏ 1, . . . , n, and ℓ ✏ 1, . . . , d, we

have gkℓ♣xiℓq ✏ b0,kℓ �
➦J

j✏1
bj,kℓφj♣xiℓq � Rkℓ♣xiℓq, where tbj,kℓ✉j↕J are the coefficients and Rkℓ

is the approximation or projection error. Assume Jd� 1 ➔ n so that the coefficients are estimable.

Denote, for each k ✏ 1, . . . , K and i ✏ 1, . . . , n, bk ✏ ♣b0,k, b1,k1, . . . , bJ,k1, . . . , b1,kd, . . . , bJ,kdq✶,
where b0,k ✏

❄
J
➦d

ℓ✏1
b0,kℓ, and

ϕi ✏ ♣1④❄J, φ1♣xi1q, . . . , φJ♣xi1q, . . . , φ1♣xidq, . . . , φJ♣xidqq✶. Then, it admits gk♣xiq ✏ ϕ✶ibk �
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➦d

ℓ✏1
Rkℓ♣xiℓq and (3.2.3) can be rewritten as

rY ✏ ♣ΦB�RqF✶ � rU, (3.2.4)

where Φ ✏ ♣ϕ1, . . . ,ϕnq✶, B ✏ ♣b1, . . . , bKq, and R ✏ t➦d

ℓ✏1
Rkℓ♣xiℓq✉n,Ki✏1,k✏1

. Then, we let P ✏
Φ♣Φ✶Φq✁1Φ✶ and apply the PCA procedure to projected data matrix PrY. That is, we estimate ♣F by

letting the columns of ♣F④❄T be the eigenvectors corresponding to the first K largest eigenvalues

of rY✶PrY and estimate G by ♣G ✏ T✁1PrY♣F. Moreover, B is estimated by ♣B ✏ ♣Φ✶Φq✁1Φ✶ rY♣F.

Second-stage estimation: GLS-type estimator of β

First, consider an averaged version of (3.2.2) over t, ȳ ✏ Z
✶
0
β�GT✁1

➦T

t✏1
ft�T✁1

➦T

t✏1
ut,

where Z0 ✏ T✁1
➦T

t✏1
Zt and ȳ ✏ T✁1

➦T

t✏1
yt. Conditional on Zt’s and xi’s, Condition 3.2.1

implies that the variance of n✂ 1 vector ȳ is

V ✏ GVar

✄
1

T

T➳
t✏1

ft

☛
G✶ �D, (3.2.5)

where the n✂n diagonal matrix D has diagonal entries Var♣T✁1
➦T

t✏1
u1tq, . . . ,Var♣T✁1

➦T

t✏1
untq.

Then, (3.2.5) naturally leads to the oracle GLS-type estimate of β,

rβ ✏ �
Z
✶
0
V✁1

Z0

✟✁1
Z
✶
0
V✁1ȳ. (3.2.6)

With the full knowledge on G and F in (3.2.2), V in (3.2.6) can be estimated as following. Let f̄ ✏
T✁1

➦T

t✏1
ft, it is known that Var♣T✁1

➦T

t✏1
ftq ✏ T✁2

➦T✁1

t✏✁T�1
♣T ✁ ⑤t⑤qΣf ♣tq, where Σf ♣sq ✏

Cov♣ft,ft�sq and Σf ♣✁sq ✏ Cov♣ft✁s,ftq can be estimated by ♣Σf ♣sq ✏ ♣T ✁ sq✁1
➦T✁s

t✏1
♣ft ✁

f̄q♣ft�s ✁ f̄q✶ and ♣Σf ♣✁sq ✏ ♣T ✁ sq✁1
➦T

t✏s♣ft✁s ✁ f̄q♣ft ✁ f̄q✶ for s ➙ 0, respectively. Hence,

operator

V ♣ftq ✏ 1

T 2

T✁1➳
t✏✁T�1

♣T ✁ ⑤t⑤q♣Σf ♣tq (3.2.7)
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defines an estimator of Var♣T✁1
➦T

t✏1
ftq in (3.2.5). Similarly, we define V ♣uitq as the estima-

tor of Var♣T✁1
➦T

t✏1
uitq for each i ✏ 1, . . . , n and the n ✂ n diagonal matrix with diagonals

V ♣u1tq , . . . ,V ♣untq provides estimate of D in (3.2.5).

The oracle GLS estimator rβ is not accessible as it depends on the full knowledge on ft and

ut. Motivated by rβ, an improved estimate for β can be obtained by replacing G and F with ♣G
and ♣F in (3.2.6), respectively. Specifically, with ♣F from the first-stage, we can further approximate

V♣ftq and V♣uitq in (3.2.5) by V♣ ♣ftq and V ♣♣uitq respectively, where V♣☎q is defined in (3.2.7), ♣ft
is the tth row of ♣F, and ♣ut is the tth column of corresponding ♣U ✏ rY✁ ♣G♣F✶. Then, we define the

estimator of V by ♣V ✏ ♣GV♣ ♣ftq♣G✶ � ♣D, (3.2.8)

where ♣D is the n✂ n diagonal matrix with diagonals V ♣♣u1tq , . . . ,V ♣♣untq and arrive at the TwO-

stage Projection-based Estimator (TOPE) of β

β̄ ✏
✁
Z
✶
0
♣V✁1

Z0

✠✁1

Z
✶
0
♣V✁1ȳ. (3.2.9)

The detailed computation is summarized in Algorithm 1.

Algorithm 1. TOPE (Two-stage projection-based estimator)

Input: Data t♣yit,xi,Zitq✉n,Ti✏1,t✏1
, pre-determined K, and matrix of basis functions Φ.

Procedure:
1: For a given preliminary estimator ♣β0, compute rY ✏ Y ✁ Z♣IT ❜ ♣β0q.
2: First-stage: estimate F by letting the columns of ♣F④❄T be the eigenvectors corresponding to

the first K largest eigenvalues of rY✶PrY and estimate G by ♣G ✏ PrY♣F④T .
3: Second-stage: compute ♣V ✏ ♣GV♣ ♣ftq♣G✶ � ♣D as in (3.2.8), where ♣ft is the tth row of ♣F and♣ut is the tth column of ♣U, and calculate TOPE in (3.2.9).

Output: ♣F, ♣G, β̄, and ♣V.

Alternative to TOPE, one can first project Y using ♣In ✁ Pq, where P ✏ Φ♣Φ✶Φq✁1Φ. Then,

(3.1.1) or (3.2.2) leads to ♣In ✁ PqY ✏ ♣In ✁ PqZ♣IT ❜ βq � RF✶ � ♣In ✁ PqU, and β can

be directly estimated via OLS. This is similar to the procedure of profile likelihood (Fan et al.,
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2005) or restricted maximum likelihood (Jiang et al., 1996). However, the validity of this approach

relies on the assumption that Z and Φ are linearly independent, which is more restricted than that

of TOPE. Another seemingly straightforward approach is to project Y using ♣In ✁ rPZq whererPZ ✏ Z♣Z✶Zq✁1
Z
✶ and perform PCA on ♣In ✁ rPZqY ✓ ♣In ✁ rPZqGF✶ to estimate the loading

and latent process. Though such an estimate of F remains consistent, as also noted by Wang et al.

(2017), this approach only identify the part of the latent structure that is orthogonal to Z. That is,

one can only obtain a consistent estimate of ♣In✁ rPZqG, and in particular ♣G� rPZA is also a valid

estimator for any n✂K matrix A.

3.3 Theoretical properties

We first collect some notation throughout the remaining sections. For vectora ✏ ♣a1, . . . , apq✶ P
R

p, its ℓq-norm is defined by ⑤⑤a⑤⑤q ✏ ♣➦p

j✏1
⑤aj⑤qq1④q with 1 ↕ q ➔ ✽. For a matrix M ✏

♣mijq1↕i,j↕p P R
p✂p, write ⑥M⑥max ✏ maxi,j ⑤mij⑤ to be the maximum norm and ⑤⑤M⑤⑤F ✏

♣➦p

i✏1

➦p

j✏1
m2

ijq1④2 to be the Frobenius norm. The spectral norm of matrix M corresponds to

its largest singular value, defined as ⑤⑤M⑤⑤2 ✏ sup
aPS ⑤⑤Ma⑤⑤2, where S ✏ ta P R

p : ⑤⑤a⑤⑤2 ✏ 1✉.
We write I for an identify matrix. For sequences tan✉ and tbn✉, an ✏ o♣bnq if an④bn Ñ 0 as

n Ñ ✽ and an ✏ O♣bnq if lim supnÑ✽ ⑤an⑤④bn ➔ ✽; Xn ✏ op♣anq and Xn ✏ Op♣anq are simi-

larly defined for a sequence of random variables Xn; an ➚ bn if and only if an ↕ Cbn for some

C independent of n; and an ✖ bn if and only if there exists C,D independent on n such that

C⑤bn⑤ ↕ ⑤an⑤ ↕ D⑤bn⑤. Denote
pÝÑ and dÝÑ as the convergence in probability and in distribution,

respectively. Unless specified otherwise, δ → 0 and C → 0 denote generic constants independent

of n, T, p.

3.3.1 Preliminaries

We impose the following conditions on our model, in addition to Condition 3.2.1.

Condition 3.3.1. With probability at least 1✁δ, 1✁n✁1 log♣1④δq ➚ λmin ♣n✁1G✶Gq ↕ λmax ♣n✁1G✶Gq ➚
1� n✁1 log♣1④δq.
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Condition 3.3.2. The density of xi P X d, where X ⑨ R is compact, is bounded away from zero

and infinity,

Condition 3.3.3. (Accuracy of the sieve approximation)

(i) For each ℓ ✏ 1, . . . , d, k ✏ 1, . . . , K, the loading function gkℓ♣☎q belongs to a Hölder class

G ✏ tg : ⑤g♣rq♣sq ✁ g♣rq♣tq⑤ ↕ L⑤s✁ t⑤α✉ for some L → 0.

(ii) For κ ✏ 2♣r � αq ➙ 4, supxPX
✞✞✞gkℓ♣xq ✁➦J

j✏1
bk,jℓφj♣xq

✞✞✞2 ➚ J✁κ.

(iii) It admits maxk,j,ℓ b
2

k,jℓ ➔ ✽.

Condition 3.3.1 is similar to the pervasive condition on loading matrix in the traditional factor

model (Stock and Watson, 2002a). Since GG✶ and G✶G have their first K largest eigenvalues in

common, the K largest eigenvalues of G✶G also diverges in n. This condition ensures that xi has

non-vanishing explaining power on loading so that G✶G has spiked eigenvalues. Condition 3.3.2

is standard in the literature of nonparametric and semiparametric statistics (Huang et al., 2004;

Liang et al., 2009; Stone, 1985). Here, our model allows xi to be dependent across subjects and

non-stationary in i. The accuracy of sieve approximation in Condition 3.3.3 can be obtained by

common basis like polynomial or B-splines (Chen, 2007; Fan et al., 2016; Lorentz, 1966).

Condition 3.3.4. For Z0 ✏ T✁1
➦T

t✏1
Zt, almost surely, we have

(i) for each n and T , eigenvalues of n✁1
Z
✶
0
Z0 are bounded away from 0 and infinity;

(ii) ⑥PZG⑥F ✏ O♣nαq for each n and T and some α P r0, 1④2q, where PZ is the projection

matrix on Z0.

Condition 3.3.4 (i) is similar to the standard condition on the design matrix in linear model that

Z
✶
0
Z0④n converges in n. Similar to conditions for semiparametric models in Robinson (1988), (ii)

guarantees identifications between the parametric and nonparametric parts in our model. Particu-

larly, it allows dependence between zit and xi. If xi and Z are dependent, as mentioned in Section

3.2.1, function class G in Condition 3.3.3 must exclude linear functions, where (ii) is the empirical

51



characterization of such an exclusion condition. Overall, Condition 3.3.4 guarantees the existence

of the consistent preliminary estimator ♣β0 in the first stage of TOPE.

At last, we impose some widely-used conditions (Bai, 2003; Stock and Watson, 2002a) regard-

ing the serial dependence and stationarity on tft,ut✉ as well as their tail behavior. Denote F0
✁✽

and F✽
T the σ-algebra generated by t♣ft,utq : t ↕ 0✉ and t♣ft,utq : t ➙ T ✉, and recall the

α-mixing coefficient as α♣T q ✏ supAPF0

✁✽,BPF✽
T
⑤P♣AqP♣Bq ✁ P♣A❳Bq⑤.

Condition 3.3.5. (Serial dependence, stationarity, and tail behavior)

(i) tut,ft✉t↕T are strictly stationary with zero mean and finite long run variances.

(ii) There exist r1, C1 → 0 such that for all T → 0, α♣T q ➔ exp♣✁C1T
r1q.

(iii) Exponential tail: there exist r2, r3 → 1 with r✁1

1
� r✁1

2
� r✁1

3
→ 1 and b1, b2 → 0 such

that for each i, k, t and any s → 0, P♣⑤uit⑤ → sq ↕ expt✁♣s④b1qr2✉ and P♣⑤ftk⑤ → sq ↕
expt✁♣s④b2qr3✉.

3.3.2 Statistical guarantees

To establish the statistical guarantees of TOPE for (3.2.2) as well as (3.1.1), we carry out a

non-asymptotic analysis of ♣F and ♣G first, then derive a non-asymptotic bound of the error for

estimating β using β̄. Following this, we obtain a non-asymptotic result of Var♣β̄q in comparison

to that of GLS estimator rβ to study the efficiency of TOPE.

Theorem 3.3.1. Suppose that Conditions 3.2.1, 3.2.2, and 3.3.1-3.3.5 hold, and assume J ✏
o♣n1✁2αq. With probability at least 1✁ δ, we have

1

T
⑥♣F✁ F⑥2

F
➚
✂
1

n
� p2

n1✁2αT
� 1

Jκ

✡
log♣1④δq,

1

n
⑥♣G✁G⑥2

F
➚
✂
J

n2
� p2J

n1✁2αT
� p4J

n2✁4αT 2
� 1

Jκ✁1

✡
tlog♣1④δq✉2,

⑥♣B✁B⑥2
F
➚
✂
J

n2
� p2J

n1✁2αT
� p4J

n2✁4αT 2
� 1

Jκ✁1

✡
tlog♣1④δq✉2.
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In contrast to the known asymptotic properties of ♣F and ♣G for traditional and semiparamet-

ric factor models with divergent n an T (Bai and Ng, 2013; Fan et al., 2016), Theorem 3.3.1

provides finite sample performance of ♣F and ♣G. Given a finite p, the rates obtained in Theo-

rem 3.3.1 agree with the asymptotic results in Fan et al. (2016) as expected. Also, whenever

p ✏ o♣n1④2✁αT 1④2J✁1④2q, ♣F and ♣G are consistent in mean squared errors. Especially, for finite p,

this consistency does not require T diverging to infinity which enables our method to be used for

modeling a large number of short time series in practice. More importantly, the non-asymptotic

results in Theorem 3.3.1 make it possible to establish the following finite sample results on both β̄

and its variance-covariance matrix with respect to GLS estimator rβ as defined in (3.2.6).

Theorem 3.3.2. Under conditions in Theorem 3.3.1, with probability at least 1✁ δ,

⑥β̄ ✁ rβ⑥2 ➚ 1❄
nT

✧❄
J

n
� 1❄

n
� 1

T
� p

❄
J❄

n1✁2αT
� 1

J ♣κ✁1q④2

✯❛
log♣1④δq,

where rβ is the GLS estimator of β with full knowledge of G and F as in Section 3.2.2. In addition,

✎✎✎Var♣β̄q ✁ Var♣rβq✎✎✎
F

➚ pϑn,T,J

nT
� pϑ2

n,T,J

♣nT q3④2 ,

where ϑn,T,J ✏ n✁1J1④2 � n✁1④2 � T✁1 � pJ1④2n✁1④2�αT✁1④2 � J✁♣κ✁1q④2.

The nontrivial finite sample results in Theorem 3.3.2 imply that the deviation between β̄ andrβ is due to: (i) the errors in estimating G with rate n✁1④2T✁1④2♣n✁1J1④2 � pJ1④2n✁1④2�αT✁1④2 �
J✁♣κ✁1q④2q, (ii) the errors in estimating F with rate n✁1④2T✁1④2♣n✁1④2 � T✁1 � pn✁1④2�αT✁1④2 �
J✁κ④2q, and (iii) the deviation between V♣ftq and Var♣T✁1

➦T

t✏1
ftq with rate n✁1④2T✁3④2.

Let ⑥A⑥S :✏ n✁1④2⑥S✁1④2AS✁1④2⑥2 and define a class of estimator to β with respect to working

covariance Vζ by Θζ ✏ tqβζ ✏ ♣Z✶
0
V✁1

ζ Z0q✁1
Z
✶
0
V✁1

ζ ȳ : ⑥Vζ ✁V⑥V ➚ ζ✉, where GLS estimatorrβ P Θ0, the TOPE β̄ P Θϑn,T,J
by Theorem 3.3.1, and OLS estimator ♣βOLS P Θnα by Proposition

B.2.5 in the supplementary file. From the proof of Theorem 3.3.2, ⑥qβζ ✁ rβ⑥2 ✏ Op♣n✁1④2T✁1④2ζq
for any qβζ P Θζ . Thus, ⑥qβζ✁ rβ⑥2 ✏ Op♣n✁1④2T✁1④2q if ζ ✏ O♣1q and ⑥qβζ✁ rβ⑥2 ✏ op♣n✁1④2T✁1④2q
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✆✆✆

op♣♣nT q✁1④2q

Op♣♣nT q✁1④2nαq

Op♣♣nT q✁1④2ζq

β qβζ

♣βOLS

β

rβ

Figure 3.1: A schematic about different estimators to β in (3.1.1), where β is the TOPE estimator and rβ is
the oracle GLS estimator with full knowledge on G and F.

if ζ ✏ o♣1q. With heteroscedasticity across subjects and/or autocorrelation, GLS is known to

be efficient in general (Baltagi, 2008; Greene, 2003). Particularly, for (3.2.2), GLS estimator rβ
is unbiased and efficient in Θζ given the full information on G and Σf ♣tq for each t ✏ 1 ✁
T, . . . , T ✁ 1. Therefore, Theorem 3.3.2 implies that the TOPE β̄ is asymptotically unbiased, and

given pϑn,T,J ✏ o♣1q, the non-asymptotic difference between the variances of β̄ and rβ is bounded

by a rate smaller than ♣nT q✁1, which is the rate of Var♣rβq. That is, the TOPE β̄ is asymptotically

efficient in Θζ . This discussion is visualized in Figure 3.1.

As a final remark, the following theorem establishes results analogous to Theorem 3.3.1 in the

max norm and shares common observations with Wang and Fan (2017) and Barigozzi et al. (2018).

Theorem 3.3.3. For model (3.2.2), under the same conditions of Theorem 3.3.1, with probability

at least 1✁ δ,

⑥♣F✁ F⑥max ➚
✂

1❄
n
� p2❄

n1✁αT
� 1

Jκ④2

✡
tlog♣T q✉2④r3 log♣1④δq,

⑥♣G✁G⑥max ➚
★❝

♣T � p2nαq log♣nq
T 2

� 1❄
n
� p2❄

n1✁αT
� 1

Jκ④2

✰
log♣1④δq,

⑥♣B✁B⑥max ➚
★❝

♣T � p2nαq log♣nq
nT 2

� 1❄
n
� p2❄

n1✁αT
� 1

Jκ④2

✰
log♣1④δq.
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3.4 TOPE-based inference

The following theorem paves a way for drawing inference on β based on the TOPE. In general,

the expectation with respect to tZt,xi✉ is unknown as their joint distribution is not accessible.

To draw inference about β in practice, (ii) below establishes the asymptotic distribution of β̄

conditional on tZt,xi✉.

Theorem 3.4.1. Under Conditions 3.2.1 and 3.3.1-3.3.5 and J ✏ o♣❄nq, we have

(i) with Σ ✏ EZt,X t♣Z✶
0
V✁1

Z0q✁1✉, Σ✁1④2♣β̄ ✁ βq dÝÑ N♣0, Ipq;

(ii) conditional on Zt and xi, ♣Z✶
0
V✁1

Z0q1④2♣β̄ ✁ βq dÝÑ N♣0, Ipq.

Replacing V in Theorem 3.4.1 (ii) by ♣V ✏ ♣GV♣ ♣ftq♣G✶� ♣D from (3.2.8), for any estimable Cβ

with q ✂ p matrix C and q ➔ p, a 100♣1✁ αq% confidence set is given by

CSC ✏
✦
Cβ : ♣Cβ ✁Cβ̄q✶tC♣Z✶

0
♣V✁1

Z0q✁1C✶✉✁1♣Cβ ✁Cβ̄q ➔ χ2

q,1✁α

✮
(3.4.1)

where χ2
q,1✁α is the 100♣1 ✁ αq% quantile of χ2

q distribution. Furthermore, for each ℓ ✏ 1, . . . , p,

denote ♣σ2

ℓ the ℓth diagonal entry of ♣Z✶
0
♣V✁1

Z0q✁1, a 100♣1 ✁ αq% confidence interval for the ℓth

entry of β, βℓ, is given by

CIℓ ✏ r♣βℓ ✁ ♣σℓΦ✁1♣1✁ α④2q, ♣βℓ � ♣σℓΦ✁1♣1✁ α④2qs. (3.4.2)

where Φ♣☎q is the cumulative distribution function of standard normal.

When rows of C are the natural basis of Rp, (3.4.1) provides a confidence set of a subset of

β. To draw inference on individual entries of β, (3.4.2) provides a natural alternative to (3.4.1).

For a subset of β with multiple components, correction such as the Bonferroni procedure can

be applied to (3.4.2) to control family-wise error rate. Moreover, Theorem 3.4.1 implies that

P
�⑥β̄ ✁ β⑥✽ → ε

✟ ➔ p exp ♣✁ε2p✁1σ✁2q , where σ2 can be estimated by the minimum diagonal

of ♣Z✶
0
♣V✁1

Z0q✁1. A uniform confidence set for β at level 100♣1 ✁ αq% is given by CI✶ ✏ tβ :

⑤βℓ ✁ ♣βℓ⑤ ↕ ♣σ❛p log♣p④αq, l ✏ 1, . . . , p✉.
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To draw inference on the explaining power of covariates xi on the dependence structure of data,

Fan et al. (2016) proposed a semiparametric specification testing statistic SG ✏ trt♣rF✶ rY✶ rYrFq✁1rF✶

rY✶PrYrF✉, where columns of rF④❄T are the eigenvectors corresponding to the K largest eigenval-

ues of rY✶ rY. In addition to Conditions 3.3.1-3.3.5, assuming T 2④3 ✏ o♣nq, ntlog♣nq✉4 ✏ o♣T 2q,
J ✏ o♣mint❄n,❄T ✉q, and maxtT❄n, n✉ ✏ o♣Jκq, we have ♣nSG ✁ JdKq♣2JdKq✁1④2 dÝÑ
N♣0, 1q whenever G♣Xq ✏ 0. Thus, we can test H0 : G♣Xq ✏ 0 almost surely. Thus, SG

provides a diagnostic tool for the proposed model (3.1.1) or (3.2.2).

3.5 Determining the number of factors K

In our model, the dimension of latent process ft or the number of loading functions g1♣xiq, . . . ,
gK♣xiq, K is unknown in practice and needs to be estimated. Once a consistent estimator of K is

obtained, all results achieved can be naturally carried over using a standard conditioning argument.

When the number of subjects n is much less than the number of time points T , subjective

methods such as scree plot of eigenvalues, distribution-based test such as Bartlett’s test, and com-

putational intensive method such as cross-validation can be employed to determine K (Jolliffe,

2002). When n ✧ T , relying on the fact that the K largest eigenvalues of the sample covariance

matrix grow fast as n increases and others remain slowly growing or bounded, the eigenvalue ra-

tio estimator/procedure has been widely used to provide consistent estimation of K. Specifically,

Lam and Yao (2012) and Ahn and Horenstein (2013) proposed to select K corresponding to the

largest ratio of the adjacent eigenvalues of rY rY✶. For model (3.1.1), it is naturally to work with

PrY (Fan et al., 2016). In fact, as the non-vanishing eigenvalues of PrY♣PrYq✶ and ♣PrYq✶PrY are

same, it suffices to focus on the eigenvalues of matrix rY✶PrY. That is, denote λk♣rY✶PrYq the k-th

largest eigenvalue of rY✶PrY. Assuming K ➔ Jd④2, which can be achieved by increasing J , the

eigenvalue ratio procedure selects K as

♣K ✏ argmax0➔k➔Jd④2
λk♣rY✶PrYq
λk�1♣rY✶PrYq .
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Under Conditions 3.2.1, 3.3.1-3.3.5, and Assumption 6.1 in Fan et al. (2016), as n and T go to

infinity, it is known that P♣ ♣K ✏ Kq Ñ 1 if J ✏ o♣mint❄n,❄T ✉q and K ➔ Jd④2. Hence, the

eigenvalue ratio procedure provides a consistent estimator on K.

3.5.1 A high-dimensional white noise (HDWN) testing-based procedure

In this section, motivated from the recent development on testing high-dimensional white noise

(Chang et al., 2017; Li et al., 2019), we propose a different procedure to determine K compared

to the eigenvalue ratio method. To motivate our method, we first consider a detrended model that

yt ✏ Gft � ut with independent process ft and ut, where ut is white noise but not ft. Then,

♣In ✁Pqyt is a white noise if and only if PG ✏ G. That is, any projection P making ♣In ✁Pqyt
white noise must admit rank greater than or equal to n✁K. Therefore, the determination of K can

be achieved via sequentially testing multivariate, potentially high-dimensional, white noise with

respect to P’s.

Motivated from above, for the proposed model (3.1.1) or (3.2.2), denote rV and ♣β some con-

sistent estimators of V and β, respectively, such as thresholding estimator (Bickel and Levina,

2008b) or POET-estimator (Fan et al., 2013) and OLS ♣βOLS. Given each K0 ➙ 1, denote ♣γi the

eigenvector associate to the i-th largest eigenvalue of rV and consider projection

P rV ✏ In ✁ ♣♣γK0�1, . . . , ♣γnq✶.
Then, let rwt ✏ ♣In ✁ P rVqryt for t ✏ 1, . . . , T , where ryt ✏ yt ✁ Zt

♣β. For the to-be-determined

dimension K of factor process ft in (3.1.1) or (3.2.2) and a prescribed K0, testing

H0♣K0q : K ↕ K0 v.s. H1♣K0q : K → K0

is therefore equivalent to test

rH0♣K0q : rwt is white noise v.s. rH1♣K0q : not rH0♣K0q. (3.5.1)
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Therefore, we will test (3.5.1) for each K0 ➙ 1 and let

♣K ✏ argmint0 ➔ K0 ➔ min♣n, T q : such that rH0♣K0q fails to be rejected✉.

To that end, we employed the test by Chang et al. (2017). For each s ✏ 1, . . . , S with prescribed

integer S → 1, denote ♣Σ♣sq ✏ T✁1
➦T✁s

t✏1
rwt�s rw✶

t and ♣ρij♣sq the entry of diagt♣Σ♣0q✉✁1④2 ♣Σ♣sq
diagt♣Σ♣0q✉✁1④2. Consider testing statistic

ζT ✏
❄
T max

1↕s↕S
max

1↕i,j↕n✁K0

⑤♣ρij♣sq⑤.
To specify the critical value cvα that P♣ζT → cvαq ✏ α, similar to Chang et al. (2017), we first

show the following result on normal approximation.

Theorem 3.5.1. Under Conditions 3.2.1 and 3.3.5, assume that log♣nq ➚ T ι1 for some ι1 → 0.

Then there exists G ✒ N♣0,ΞT qwith ΞT ✏ ♣IS❜ΓqE♣ξTξ✶T q♣IS❜Γq, where Γ ✏ diagtΣ♣0q✉✁1④2❜
diagtΣ♣0q✉✁1④2 and ξT ✏

❄
T rvect♣Σ♣1q✉✶, . . . , vect♣Σ♣Sq✉✶s✶, such that under rH0♣K0q,

sup
K0↕K

sup
s➙0

⑤P♣ζT → sq ✁ P♣⑤G⑤✽ → sq⑤ Ñ 0 as T Ñ ✽.

By Theorem 3.5.1 and Lemma 3.1 in Chernozhukov et al. (2013), cvα can be empirically

determined by Monte Carlo samples drawn from N♣0, ♣ΞT q, where ♣ΞT is some estimate of ΞT

(Andrews, 1991; Chang et al., 2017). Then, we will reject rH0♣K0q whenever ζT exceeds such a

♣cvα. The following theorem from Chang et al. (2017) guarantees the validity of this test for (3.5.1)

with each prescribed K0.
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Algorithm 1: HDWN Testing-Based Procedure for Selecting K

Input: Observations t♣yit,Zitq✉n,Ti✏1,t✏1
, rV and ♣β as the estimators to V and β discussed in

Section 3.5.1, lag S, and αn ✏ Cn✁ι for constants C → 0 and ι → 0.

WN testing statistic

1: Detrend data by ryt :✏ yt ✁ Zt
♣β for t ✏ 1, . . . , T .

2: For each K0 ➙ 1, 1 ↕ s ↕ S, compute t♣ρij♣sq✉n✁K0

i,j✏1
.

3: Calculate the WN testing statistic ζT ✏
❄
T max1↕s↕S max1↕i,j↕n✁K0

⑤♣ρij♣sq⑤.
Critical value

1: Let Wt ✏ ♣vec♣ rwt�1 rw✶
tq✶, . . . , vec♣ rwt�S rw✶

tq✶q✶ for t ✏ 1, . . . , T ✁ S.

2: For K♣xq ✏ 25♣12π2x2q✁1t♣6πx④5q✁1 sin♣6πx④5q ✁ cos♣6πx④5q✉ with K♣0q ✏ 1 and data-

driven bandwidth bT (Andrews, 1991), calculate

♣S♣sq ✏ T✁S➳
t✏⑤s⑤�1

♣T ✁ Sq✁1WtW
✶
t✁s,

♣JT ✏
T✁S✁1➳

t✏✁T�S�1

K♣t④bT q♣S♣tq.
3: Compute ♣ΞT ✏ ♣IS ❜ ♣Γq♣JT ♣IS ❜ ♣Γq where ♣Γ ✏ diagt♣Σ♣0q✉✁1④2 ❜ diagt♣Σ♣0q✉✁1④2 and♣Σ♣sq ✏ ➦T✁s

t✏1
rwt�s rw✶

t④T for each s.

4: Generate G1, . . . ,GB from N♣0, ♣ΞT q and compute ♣cvαn
as the rBαnsth largest value among

⑤G1⑤✽, . . . , ⑤GB⑤✽.

Selection of K

1: For each K0 ➙ 1, perform the WN test, that is rejecting H0♣K0q if ζT → ♣cvαn
.

2: Stop at the first K0 that H0♣K0q fails to be rejected and let ♣K ✏ K0.

Output: Estimated ♣K.

Theorem 3.5.2. Consider the estimator of ΞT in the following algorithm with ⑤K♣xq⑤ ✖ ⑤x⑤✁τ as

⑤x⑤ Ñ ✽ for τ → 1 and bT ✖ T ρ for 0 ➔ ρ ➔ mint♣τ ✁ 1q④♣3τq, r1④♣2r1 � 1q✉. Under Conditions
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3.2.1 and 3.3.5, assume that log♣nq ➚ T ι2 with ι2 → 0. Let αn be a sequence approaching zero

(e.g. αn ✏ O♣n✁ι3q for ι3 → 0), we have

(1) P♣ζT → ♣cvαn
q Ñ αn under rH0♣K0q as T Ñ ✽, and

(2) assume that max1↕s↕S max1↕i,j↕n ⑤ρij♣sq⑤ → η1④2♣1 � ǫT qT✁1④2λ♣n, αnq, where η is the max-

imum diagonal of ΞT , λ♣n, αnq ✏ t2 log♣n2Sq✉1④2 � t2 log♣1④αnq✉1④2, and ǫT satisfies that

ǫT Ñ 0 and ǫ2T log nÑ ✽, then P♣ζT → ♣cvαn
q Ñ 1 under rH1♣K0q as T Ñ ✽.

Then, the following theorem establishes the validity of the proposed HDWN testing-based

procedure for selecting K.

Theorem 3.5.3. Under conditions in Theorems 3.5.1 and 3.5.2, infn P♣ ♣K ✏ Kq Ñ 1 as T Ñ ✽.

To conclude, we provide some remarks here. The K largest eigenvalues of rY✶PrY diverge in

rate n while the rest remains in constant. However, compared to the discrepancy among divergent

eigenvalues, the gaps between the divergent and non-divergent eigenvalues are not necessarily

large for finite sample when n is only moderately large. This mimics the scenario for testing

high-dimensional hypotheses with strong and sparse signals. As discussed in Chang et al. (2017),

statistic ζT is particular powerful against such an alternative, which is also supported by empirical

numerical studies in Section B.3.4. Finally, the procedure is summarized in Algorithm 1.

3.6 Numerical studies

3.6.1 Simulation settings

For model (3.1.1) or (3.2.2), we demonstrate the finite sample performance of TOPE for both

estimation and inference in comparison to three competing methods: OLS estimator, which is

computed by ignoring heteroscedasticity across subjects and dependence; GLS estimator, which is

the traditional GLS estimator naively utilizing the first K components of T✁1
➦T

t✏1
♣yt ✁ ȳq♣yt ✁

ȳq✶ as ♣V; and last, oracle estimator, which is the TOPE with known G without using functional

approximation. To implement the TOPE, we employ the OLS as the preliminary estimator ♣β0.

60



The mean squared error (MSE) and the empirical coverage probability (ECP) of the confi-

dence region for β are used to compare different procedures. In addition, ⑤⑤♣F ✁ F⑤⑤F④
❄
T and

⑤⑤♣G✁G⑤⑤F④
❄
n are displayed to demonstrate estimations on G and F by the TOPE. The empirical

maximum marginal length of the confidence set (MML) is used to show the efficiency; that is, the

confidence set with ECP agreeing to the nominal level and small MML is more preferable. For

clear presentation, we display MML of different methods normalized by the largest one (the MML

of OLS, in general).

We consider n ✏ 50, 100, 200, 500, 1000, 2000 and T ✏ 20, 50, 100, 200, 500; also, we set

p ✏ 4 with β ✏ ♣1, 1, 1, 1q✶ and generate i.i.d. ziℓ,t ✒ N♣3 exp♣t④30q, 1q for each i ✏ 1, . . . , n,

ℓ ✏ 1, . . . , p, and t ✏ 1, . . . , T . A similar setting was used in Huang et al. (2004). For the loading,

we set d ✏ 3 and generate i.i.d. xi ✒ U♣r0, 1sdq, then let g1♣xq ✏ x1, g2♣xq ✏ x2
1
� x2

2
✁ 1, and

g3♣xq ✏ x2
3
✁ 2x1 � x2 for K ✏ 3. As suggested by Fan et al. (2016), with the initial realization

G0 for g1, g2 and g3, we further compute HG ✏ G✶
0
G0 and set G ✏ G0HG in simulations so that

Condition 3.2.2 is satisfied.

The latent process ft consists of K ✏ 3 independent univariate time series generated from the

same model. Specifically, we consider three dependence structures: independent in t, AR♣1q with

autoregressive coefficient ρ ✏ 0.5, and ARMA♣1, 1q with autoregressive coefficient ρ ✏ 0.5 and

moving average coefficient θ ✏ 0.5. In addition, three innovations are considered, including the

standard normal, centered χ2
5
, and t8. Similar to ft, we generate n independent ui from the same

model, which includes two dependence structures: independent in t and AR♣1q with autoregressive

coefficient ρ ✏ 0.5, as well as two innovations: N♣0, 0.01q and ♣χ2
5
✁ 5q④10. For each setting, 500

simulations are conducted.

3.6.2 Results of TOPE

Figure 3.2 displays the MSE with respect to the log♣nT q on the logarithm scale when T ✏ 20

and ft are independent in t or follow ARMA♣1, 1q model with N ♣0, 1q or t8 innovations. Addi-

tional simulation results are included in the supplementary file. In Figure 3.2, the MSEs of all
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Figure 3.2: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 20. In
plots (a1)-(a4), fkt ✒ N♣0, 1q are independent in k, t. In plots (b1)-(b4), fkt ✒ t8 are independent in k, t. In
plots (c1)-(c4), fk follows ARMA♣1, 1q with N♣0, 1q innovation for each k. In plots (d1)-(d4), fk follows
ARMA♣1, 1q with t8 innovation for each k. Distributions and serial correlations of ui are displayed in the
plots.

estimators reduce as n increasing. Both the TOPE and GLS perform similarly as the oracle es-

timator when ft is independent in t (plots (a1)-(a4), (b1)-(b4)), and all outperform the OLS; on

the other hand, sophisticated dependence on ut slightly increases the MSE but does not alter the

convergence rate (plots (c1)-(c4), (d1)-(d4)). In addition, in the presence of dependence of ft in t,
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the GLS is outperformed as well while the TOPE remains its performance compared to the oracle

estimator (plots (c1)-(c4), (d1)-(d4)). In the supplementary file, additional numerical results for

settings similar to those in Figure 3.2 but with T ✏ 100, 500 are reported in Figures B.4-B.7, and

results for latent factor processes ft following AR♣1q settings are reported in Figures B.8-B.10 for

T ✏ 20, 100, 500. Similar observations are obtained for T ✏ 20 with different settings for ft, and

overall, the differences among distinct estimators decrease as T increasing.

Figure 3.3 displays the estimation error of ♣F and ♣G in terms of ⑥♣F ✁ F⑥F④
❄
T and ⑥♣G ✁

G⑥F④
❄
n, which both decrease to zero when n increases. Error of ♣G decreases as T increasing

while error of ♣F admits similar patterns when n is large yet it slightly inflates for small n and large

T . This observation reflects the need of a relatively large number of subjects n to recover the latent

factor processes satisfactorily when T is large.
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Figure 3.3: ⑥♣F ✁ F⑥F④
❄
T by TOPE (“–✆–" ) and oracle case (“–△–") and ⑥ ♣G ✁G⑥F④

❄
n by TOPE. In

(a), (b), (e), and (f), ft ✒ N♣0, 1q and are independent in t. In (c), (d), (g), and (h), ft ✒ ♣χ2
5 ✁ 5q and are

independent in t; uit ✒ N♣0, 0.1q are independent in t.

Figures 3.4 and 3.5 display the ECP and MML with respect to different T and n for different

estimators. The nominal level is 0.95. In Figure 3.4, the confidence region of TOPE has ECP

close to the nominal level with a small MML. Meanwhile, the coverage probabilities of OLS and

GLS are both deviated from the nominal level and the deviation is substantial when n increases.
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Figure 3.4: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for
MML). In simulations, fkt ✒ N♣0, 1q are independent in k, t; n ✏ 100, 500, 2000 for the first, second, and
third column, respectively. In plots (a1)-(a4) uit ✒ N♣0, 0.01q are independent in i, t. In plots (b1)-(b4),
uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. In plots (c1)-(c4) ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in plots (d1)-(d4) with ♣χ2

5 ✁ 5q④10 innovation.

Also, when dependence of ut in t is introduced, the TOPE still outperforms GLS and OLS. The

MML of TOPE substantially improves when n increases, particularly for large T , which reflects

the fact that the estimation of F of TOPE prefers large n (see plots (c1) and (c2), (d1)-(d2) in Fig-

ure 3.4 for example). In the presence of the dependence of ft in t, the TOPE performs remarkably

well in terms of maintaining small MML and its ECP quickly converges to the nominal level in
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Figure 3.5: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows AR♣1q with t8 innovation for each k; n ✏ 100, 500, 2000 for the first, second, and
third column, respectively. In plots (a1)-(a4), uit ✒ N♣0, 0.01q are independent in i, t. In plots (b1)-(b4),
uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. In plots (c1)-(c4), ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in plots (d1)-(d4) with ♣χ2

5 ✁ 5q④10 innovation.

T (Figure 3.5). Meanwhile, given the heteroscedasticity across subjects and serial/cross-sectional

dependence, both GLS and OLS hardly maintain their ECP to the nominal level. More simulation

results are retained in the supplementary file and provide similar observations. Specifically, Fig-

ures B.11-B.14 displays results for independent fkt in k, t with either independent uit in i, t or ui
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following AR♣1q model with different innovations. Results with ft following the AR♣1q model or

the ARMA♣1, 1q model with different innovations are included in Figures B.15-B.24.

3.7 Study on air quality and energy consumption data using

the TOPE

In this section, we implement our proposed method to analyze an air quality data collected

in the United States in 2015. The data consists of the mean PM2.5 concentration (in µg④m3)

from 129 monitoring sites on each Tuesday and Thursday in 2015, which is extracted from https:

//www.epa.gov/outdoor-air-quality-data. We also include daily max 1-hour concentration of three

common air pollutants. including NO2, SO2, and ozone, and the latitude and longitude of each

monitoring site in our analysis. Sources of energy consumption is known as a potential factor to af-

fect concentration of air pollutants. For this illustrative study, as covariates, we include the annual

state-level energy consumption proportions of three major sources out of all possible resources,

namely coal, natural gas, and petroleum, in 2015 (https://www.eia.gov/electricity/data/browser/).

For analysis, we take logarithm transformation on the air pollutant data and remove potential sea-

sonality. Also, we transform the latitude and longitude to keep their values within r0, 1s.
From Figures 3.6 and B.25 in the supplementary file, it is observed that both geographical

variables (latitude and longitude) and energy consumption proportions can help explaining the

observed heteroscedasticity across monitoring sites so that we will consider them as xi in (3.1.1).

In this analysis, the daily max 1-hour concentration of NO2, SO2, and ozone, as well as the energy

consumption proportions of coal, natural gas, and petroleum are considered as zit in (3.1.1).

To determine the dimension K of latent factor process, we apply both eigenvalue-ratio proce-

dure and the proposed HDWN testing-based procedure (detailed in Section 3.5 in the supplemen-

tary file). Ratios of the first ten adjacent eigenvalues of rY✶PrY are 4.13, 5.26, 6.58, 1.27, 1.68,

1.17, 1.29, 1.21, 1.10 such that the ratio between the third and fourth eigenvalues are the largest.

On the other hand, for the HDWN testing-based procedure, the p-values for testing (3.5.1) with

K0 ✏ 1, 2 and 3 are 0.026, 0.040 and 0.104, respectively. That is, we reject H0♣1q and H0♣2q but
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fail to reject H0♣3q for (3.5.1). Thus, both eigenvalue-ratio procedure and the proposed HDWN

testing-based procedure suggest ♣K ✏ 3. Also, by the procedure discussed at the end in Section

3.4, we test H0 : G♣Xq ✏ 0 to further explore the statistical evidence to include geographical

variables and energy consumption proportions to explain the heteroscedasticity across monitoring

sites. We obtain SG ✏ 2.34 with p-value 4.84 ✂ 10✁14; thus, these covariates are included for

modeling. Then, the complete model in the form of (3.1.1) for performing analysis on this data is

ln♣PM2.5itq ✏ β1 ln♣NO2,itq � β2 ln♣SO2,itq � β3 ln♣Ozitq � β4Cli � β5Ngi � β6Pei

�
3➳

k✏1
tgk1♣Laiq � gk2♣Loiq � gk3♣Cliq � gk4♣Ngiq � gk5♣Peiq✉ fkt � uit

where ln♣PM2.5itq is the log concentration of PM2.5 from the monitoring site i at time t; ln♣NO2,itq,
ln♣SO2,itq, and ln♣Ozitq are the log daily max 1-hour concentration of NO2, SO2, and ozone, re-

spectively, from the same monitoring site i at time t; Cli,Ngi and Pei are the state-level energy

consumption proportions of coal, natural gas, and petroleum out of all possible energy resources

for the monitoring site i, respectively; and Lai and Loi are the latitude and longitude of the monitor

site i, respectively.

Variance

0
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Figure 3.6: Variance of the mean PM2.5 concentration (over all time points) at 129 monitoring sites across
the United States.
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Figure 3.7: The 95% confidence intervals (the OLS estimator in red and the TOPE for (3.1.1) in blue) of
the effects of energy consumption proportions of coal, natural gas, and petroleum and daily max 1-hour
concentration of NO2, SO2, and ozone on the PM2.5 concentration.

For gkℓ in the above model (ℓ ✏ 1, . . . , 5), we use cubic spline with 11 knots to construct Φ

for projection. We fit the above model using the TOPE and draw inference as proposed in Section

3.4 to inspect the effects of covariates on the PM2.5 concentration. As an expected advantage,

no further restrictions need to be imposed to model (3.1.1) and the TOPE. In Figure 3.7, the 95%

confidence intervals for estimated coefficients using the TOPE and the OLS estimator (by ignoring

the variance components) are displayed for comparison. It reflects the efficiency of the TOPE in

the presence of heteroscedasticity across monitoring sites and serial/contemporaneous correlations

discussed in Section 3.3. Specifically, the confidence intervals constructed by the TOPE are shorter

than those by the OLS estimator uniformly. Both resutls suggest significant positive correlation be-

tween daily max 1-hour concentration of NO2 and PM2.5 concentration, r0.05, 0.33s for the OLS

estimator and r0.11, 0.27s for the TOPE, and significant negative correlation between ozone con-

centration to PM2.5 concentration, r✁0.58,✁0.10s for the OLS estimator and r✁0.33,✁0.01s for

the TOPE. However, the TOPE displays a significant positive correlation between coal consump-

tion and PM2.5 concentration while the OLS estimator does not. This agrees with Liang et al.
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(2015) that coal consumption positively contribute to PM2.5 concentration. Also, the recovered

gk for k ✏ 1, 2, 3 display clear non-linearity and are depicted in Figure B.26 in the supplementary

file.

3.8 Discussions

Methodologically, we propose a flexible subject-specific heteroscedasticity model with latent

semiparametric factor structures for analyzing large scale data with both intertemporal and in-

tratemporal dependence. The model simultaneously accounts for the heteroscedasticity across sub-

jects as well as the contemporaneous and serial correlations. We develop a two-stage projection-

based estimator for both the modulating and dependence components of the model, and establish an

inference procedure for regression coefficients. Theoretically, we study the non-asymptotic rates

for recovering the latent factor process and estimating the nonparametric loading function, which

leads to the non-asymptotic properties of the estimated regression coefficients. As a result, we

show that our proposed TOPE is asymptotically efficient within a fairly broad class of estimators

including both OLS and naive GLS estimators.

The widely-used Condition 3.2.2 essentially restricts F to subspace tF P R
T✂K : T✁1F✶F ✏

IK✉, which might be stringent for some applications. In fact, we notice that it can be greatly

relaxed by a concentration assumption of T✁1F✶F to IK , which can be derived from Condition

3.3.5 with the help of the so-called τ -mixing coefficient. As a result, this will alter the con-

vergence rate of ♣F ✁ F in Theorem 3.3.1. Furthermore, as noted after Condition 3.2.2, we as-

sume that the residual process uit is uncorrelated over i to establish the statistical guarantee of

TOPE on estimating β. This condition is similar to that of the traditional PCA that assumes un-

correlated samples. It can be further relaxed to, for example, maxj↕n

➦n

i✏1
⑤E♣uitujtq⑤ ➔ C2,

maxi↕n

➦n

k✏1

➦n

m✏1

➦T

t✏1

➦T

s✏1
⑤ cov♣uitukt, uisumsq⑤ ➔ C2, and ♣nT q✁1

➦n

i✏1

➦n

j✏1

➦T

t✏1

➦T

s✏1

⑤E♣uitujsq⑤ ➔ C2 for some C2 → 0. However, as a result, the n ✂ n covariance matrix Cov♣utq
must be used in place of D in (3.2.5) to retain the efficiency of the TOPE. For that purpose, both

the weighted PCA (Jolliffe, 2002) and the estimator using thresholding principal orthogonal com-
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plements (Fan et al., 2013) can be employed in conjunction with the TOPE. Then, in addition to

some more stringent conditions on n and T , the non-asymptotic results must be re-established to

obtain the similar conclusions in Section 3.3. Finally, from its construction, the TOPE also paves

a potentially effective way, which is free from performing sophisticated constraint likelihood esti-

mation, to make predictions on yt using our proposed model in conjunction with some parametric

assumptions on ft and ut. We will extend our work to these questions in future efforts.
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Chapter 4

Integrative Group Factor Model for Variable

Clustering on Temporally Dependent Data

4.1 Introduction and Notation

We encounter large scale data with potential temporal dependence from multiple resources

or multiple modalities. Such a new data structure often bears similarity as well as uniqueness

among variables, which results in multiple or diverging numbers of covariance structures. In nu-

merous empirical studies, this data structure has been emerging in various big data applications

in a wide range of scientific fields such as bioinformatics and biology (Ernst et al., 2005; Möller-

Levet et al., 2003; Pyatnitskiy et al., 2014), genetics (Fujita et al., 2012; Subhani et al., 2010) and

multimedia (Niennattrakul and Ratanamahatana, 2006, 2007; Ratanamahatana and Keogh, 2005).

Previous works have shown that, by combining diverse but usually complementary information

from different covariance structures, an integrative analysis of large scale data is often beneficial

for understanding the underlying structions; See Klami et al. (2014), Li and Li (2019), Wang et al.

(2019) and Bunea et al. (2020) for examples.

To learn the covariance structure from the large scale data, a number of statistical methods

have recently been developed, such as high-dimensional covariance estimation (Cai et al., 2016;

Fan et al., 2011; Wang and Fan, 2017). Among these models, an important class of such approaches

is the factor model, which model large scale data by the components that capture joint variation

shared across variables (Anderson, 1962; Anderson and Rubin, 1956; Chamberlain and Rothschild,

1983; Lawley and Maxwell, 1962). Factor model is useful in dimension reduction. When it comes

to high dimension case, large dimensional static factor model (Forni et al., 2000; Stock and Watson,

1998) is applied. However, these methods of factor analysis are based on the assumption that

all variables share the same covariance structure or in particular, the same factors. To allow for
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different factors, canonical correlation analysis (CCA) (Thompson, 1984, 2005) and inter-battery

factor analysis (Browne, 1979; Tucker, 1958) are applied to two groups of variables, and multi-

battery factor analysis (Browne, 1980) and group factor analysis (Klami et al., 2014) are applied

to multiple groups. These methods work for more than one group of variables, but are based on

known group assignments.

A more ubiquitous interest with more challenge is to recover unknown clustering assignments

of a large number of variables with potential temporal dependence from multiple resources or mul-

tiple modalities. There are some unique characteristics that make the problem challenging. Most

importantly, large scale data are often correlated, both cross-sectionally and temporally. This phe-

nomenon has been constantly observed, and is actually the base upon which those matrix or tensor

factorization solutions are built (Bai, 2003; Bai and Ng, 2013; Fan et al., 2016; Lock et al., 2013).

The cross-sectional correlation brings challenge to many standard high-dimensional models such

as LASSO (Tibshirani, 1996), as they usually require the predictors not to be highly correlated in

order to achieve the desired statistical properties. To deal with the cross-sectional correlation, a

popular approach is to treat recovering unknown clustering assignments as a variable clustering

question, as given by Klami et al. (2014), Wang et al. (2019) and Bunea et al. (2020). Variable

clustering is also of great challenge for large scale data. First, large scale data often refers to high-

dimension case, where even a single group contains more variables than the sample size. Second,

multiple resources arise new questions; for instance, how to define and recover clustering assign-

ments based on covariance structure. In addition, multiple resources usually results in similarities

as well as unique characteristics among variables. Since the clustering structures are given by

unique characteristics and masked by errors and similarities, careful modeling is required to sep-

arate the unique characteristics from both errors and similarities. Finally, we need to deal with

temporal correlation, which always gives more difficulty in modeling and clustering.

To deal with the temporal correlation, we consider using time series, which is naturally high

dimensional, large in data size and dependent (Keogh and Kasetty, 2003; Lin et al., 2004; Rani

and Sikka, 2012). Time series clustering is a widely used approach to recover clustering assign-
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ments for large dependent data. For time series with difference on means, MacQueen et al. (1967)

applied k-means algorithm with representing clusters by the mean value of the objects in the clus-

ter. Kaufman and Rousseeuw (2009) applied k-medoids algorithm with representing clusters by

the most centrally located object in a cluster. For time series with difference on covariances,

Karypis et al. (1999), Guha et al. (1998) and Zhang et al. (1996) applied a hierarchical clustering

method (Johnson, 1967) by grouping dataobjects into a tree of clusters, and Jebara et al. (2007),

Yin and Yang (2005) and Alzate et al. (2009) applied a spectral clustering method (Ng et al., 2002;

Von Luxburg, 2007). However, these procedures are all data-based and their statistical properties

are not clear. Compared with data-based variablie clustering, model-based clustering enjoys ad-

vantage of clearly defined population-level clusters, which enables us to interpret the clusters and

check the quality of a particular clustering algorithm. Model-based variable clustering is stud-

ied by Bunea et al. (2020). The author proposed an algorithm to recover clustering assignments

and showed its minimax-optimality, which sheds a light on model-based variable clustering for

high-dimensional data. Similar approaches of variable clustering through estimation of covariance

matrix can also be seen in Wagaman and Levina (2009), Ieva et al. (2016) and Hallac et al. (2017).

Despite these efforts, however, there is little work for temporally dependent data.

In this paper, we aim to bridge the gap. We consider integrative group factor model built upon

the latent factors extracted from the large scale data. In particular, the factors are characterized to

common factors for all groups and unique factors for each single group. We show that the model

works for high dimension and high correlation, both cross-sectional and temporal. Based on this

model, we first show the minimax lower bound of clustering recovery rate. The minimax lower

bound is achieved by a similar but denser covering to that in Lu and Zhou (2016) and Gao et al.

(2018), and given by Le Cam’s method; see Theorem 4.3.1 for details. Second, we give estimation

based on principal component analysis (PCA) procedure (Bai and Ng, 2013; Fan et al., 2016) to

the latent factors and loadings, and show its non-asymptotic statistical guarantee. If the clustering

assignments are known, the common factors and unique factors are estimated group-wise by PCA

or partial common PCA (Wang et al., 2019). In practice, the clustering assignments are often
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unknown. Thus, all factors are estimated simultaneously. See Section 4.4.1 for details. Then, we

propose an algorithm to apply the estimation of latent factors and loadings to recover clustering

assignments and gives its upper bound of clustering recovery rate. The clustering recovery works

for high dimensional data with cross-sectional and temporal correlation; see Theorem 4.4.4 for

details. The minimax lower bound and upper bound of clustering recovery rate combine together

to give the optimality of our proposed algorithm. More importantly, from the minimax lower

bound of clustering recovery rate, we find the precise demarcation for the Region of Possibility

and Region of Impossibility in the two-dimensional phase space of the signals of unique factors

in the largest cluster and the signals of unique factors in the smallest cluster compared with those

of common factors. In the former, signals of unique factors are strong enough to allow successful

clustering. In the latter, signals of unique factors are too weak for successful clustering. Also, in

the two-dimensional phase space, we find the precise demarcation for the Region of Guarantees

and Region of Unknown Guarantees from the upper bound of clustering recovery rate. In the

former, our algorithm is guaranteed to give successful clustering. In the latter, the algorithm for

clustering is not clear. From the four regions above, we discover a phase transition for variable

clustering. The phase space partitions into three disjoint regions. In the first one, it is impossible to

do clustering. In the second one, it is possible to do clustering and our algorithm is guaranteed. In

the third, although it is possible to do clustering, the clustering algorithm is not clear. See Figure

4.1 for details. Also, we propose eigenvalue-ratio test (Ahn and Horenstein, 2013; Fan et al.,

2016; Lam and Yao, 2012) to determine number of latent factors, both common and unique, in the

integrative group factor model. We show the non-asymptotic properties of the estimator, which

guarantees the convergence; see Theorem 4.4.5 for details. Finally, we generalize our proposed

method to the case where the number of groups is not finite but diverges with respect to dimension.

Similar results of latent factors and loadings estimation, clustering recovery and its optimality are

given.

Our proposal contributes on several fronts. Although factor analysis is widely used to model

high dimensional data with dependence, and group factor analysis is applied to model multiple

74



covariance structures, the previous works do not give clustering recovery for dependent data. Our

proposal consider a different case toG-block model (Bunea et al., 2020). In particular, the variables

in the same group are allowed to have different variances and covariance swith variables in other

groups. In addition, each variable can involve temporal dependence. We provide algorithm of

recovering clustering assignments for high dimensional dependent data, along with its optimality.

The recovery error rate is defined under a loss function free from label switching (Gao et al., 2018;

Lu and Zhou, 2016). Compared to the existing literatures, our proof of minimax lower bound of

recovery error rate involves a denser covering free from the number of groups, so it can be extended

to the case the number of groups diverges. Also, we apply Le Cam’s method to give a tight bound

for variable clustering with respect to covariance structures. The upper bound of recovery error

rate is derived through scrupulously examining the non-asymptotic rates for estimating the latent

factor process and its loading through PCA procedure (Bai and Ng, 2013; Fan et al., 2016). Lastly,

we discover a phase transition in the phase space of signals of unique factors compared with those

of common factors, which gives the region for possibility and guarantee of successful clustering.

Also, our proposed model allows the number of groups not to be finite constant but a small term

with respect to dimension. The technical tools we develop here are not limited to our setting alone,

but are applicable to integrative group factor models.

We employ the following notation throughout this article. For a real number x, let rxs be the

largest integer no larger than x. Denote ap ✏ ♣a, . . . , aq❏ P R
p. For a p-dimensional vector

a ✏ ♣a1, . . . , apq❏ P R
p, its ℓq-norm is defined by ⑤⑤a⑤⑤q ✏ ♣➦p

j✏1
⑤aj⑤qq1④q with 1 ↕ q ➔ ✽.

For a matrix M ✏ ♣mijq1↕i,j↕p P R
p✂p, write ⑥M⑥max ✏ maxi,j ⑤mij⑤ to be the maximum norm

and ⑤⑤M⑤⑤F ✏ ♣➦p

i✏1

➦p

j✏1
m2

ijq1④2 to be the Frobenius norm. The spectral norm of matrix M

corresponds to its largest singular value, defined as ⑤⑤M⑤⑤2 ✏ sup
aPS ⑤⑤Ma⑤⑤2, where S ✏ ta P

R
p : ⑤⑤a⑤⑤2 ✏ 1✉. Denote the minimum and maximum eigenvalues of matrix M by λmin♣Mq and

λmax♣Mq, respectively. Let tr♣Mq ✏ ➦p

j✏1
mjj be the trace of M. For sequences tan✉ and tbn✉,

an ✏ o♣bnq if an④bn Ñ 0 as n Ñ ✽ and an ✏ O♣bnq if lim supnÑ✽ ⑤an⑤④bn ➔ ✽; Xn ✏ op♣anq
and Xn ✏ Op♣anq are similarly defined for a sequence of random variables Xn; an ➚ bn if and
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only if an ↕ Cbn for some C independent of n; and an ✖ bn if and only if there exists positive C

and D independent on n such that Cbn ↕ an ↕ Dbn. Unless specified otherwise, s → 1 and C → 0

denote generic constants independent of p, T .

The paper is organized as follows. In Section 4.2, we detail the integrative group factor model

and discuss the preliminary conditions to derive the main results. In Section 4.3, we show the

minimax lower bound of recovery error rate. In Section 4.4, we propose an estimation procedure on

the latent factor processes and their loadings, an algorithm to recover clustering assignments based

on the estimation, and determination of number of latent factors. We carry out a non-asymptotic

analysis of our proposed estimator in Section 4.4.1, explore the upper bound of recovery error rate

in Section 4.4.2 and derive convergence rate of determining of number of latent factors in Section

4.4.5. The results in Sections 4.3 and 4.4.2 combine to give the optimality and phase transition of

our proposed algorithm. In Section 4.5, we discuss an alternative case where the number of groups

diverges. Similar results of the upper bound and the minimax lower bound of recovery error rate

are given. We conclude the paper with some discussions in Section 4.6.

4.2 Model

In this section, we introduce the model lucubrated in this paper and make some reasonable and

necessary assumptions about the models and groups of the integrative group factor model. First,

we denote a p-dimensional multivariate time series with T observations as yit for i ✏ 1, . . . , p and

t ✏ 1, . . . , T . Unlike traditional clustering analysis that is based on different means for different

groups (Gao et al., 2018; Lu and Zhou, 2016; Zhang et al., 2018, 2016), we assume that yit is a

stationary time series with zero mean. Instead, variables in different groups are defined by their

variance and covariance with others. In particular, two curves of time series yit and yjt in two

different groups are “weakly" correlated in the sense that there exists a process ft satisfying that

cov♣yit, yjt⑤ftq ✏ 0 and Var♣yit⑤ftq,Var♣yjt⑤ftq ✘ 0, while such a process does not exist for two

curves of time series in the same cluster. In other words, we define the groups of time series based

on their covariance structure. First, we set up condition of the cluster assignments. Suppose that
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the p dimensions are split into m disjoint groups by clustering assignment z ✏ ♣z1, . . . , zpq P
t1, . . . ,m✉p as follows:

V ✏ V ♣1q ❨ ☎ ☎ ☎ ❨ V ♣mq,

where V ✏ t1, . . . , p✉, V ♣jq ✏ ti : zi ✏ j✉ and m is a constant independent of p and T . Let

pj ✏ ⑤V ♣jq⑤ be the number of curves in the jth cluster for j ✏ 1, . . . ,m. Throughout the paper, we

focus on the relatively “balanced" groups with the following condition.

Condition 4.2.1. For each j ✏ 1, . . . ,m, pj ✖ p.

Condition 4.2.1 illustrates what we mean by the balanced groups aforementioned, which basi-

cally assumes that each cluster has a size proportional to p. This assumption ensures the number

of curves in each cluster is not too small, and thus it guarantees the accuracy of clustering. Note

that if we only have one group, we are dealing with a high dimensional covariacne structure. Thus,

further condition on the covariance structure is needed to identify the covaraiance and cluster

structure. As suggested by Johnstone (2001), to simplify the model, we consider spike covariance

structure model, which is important and useful for high dimensional data. According to Chamber-

lain and Rothschild (1983), Stock and Watson (2002a), Bai (2003) and Lam and Yao (2012), the

spike covariance structure can be modeled by an approximate factor model. Thus, we start from

an approximate factor model.

4.2.1 Approximate Factor Model

An approximate factor model (Bai, 2003; Chamberlain and Rothschild, 1983; Lam and Yao,

2012; Stock and Watson, 2002a) is

yit ✏ ai1ft1 � ☎ ☎ ☎ � airftr � uit,

for t ✏ 1, . . . , T and i ✏ 1 . . . , p, where yit is an observation from the ith variable at time t,

♣ft1, . . . , ftrq❏ is a r-dimensional process and uit is an error process. The model can be written as
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in matrix format

Y ✏ AF❏ �U,

where Y ✏ ♣y1, . . . ,yT q with yt ✏ ♣y1t, . . . , yptq❏, A ✏ taik✉p,ri✏1,k✏1
, F ✏ ♣f1, . . . ,fT q❏ with

ft ✏ ♣ft1, . . . , ftrq❏ and U ✏ ♣u1, . . . ,uT q with ut ✏ ♣u1t, . . . , uptq❏. In the approximate factor

model, we assume that:

Condition 4.2.2. For each t ✏ 1, . . . , T , ft1, . . . , ftr are uncorrelated with each other and have

zero mean and unit variance; for each t, u1t, . . . , upt have zero mean and finite variances; and ft

and ut are independent with each other.

Condition 4.2.3. A❏A is a diagonal matrix with non-zero distinct entries and there exist constants

d1, d2 → 0 such that d1 ➚ λmin♣p✁1A❏Aq ↕ λmax♣p✁1A❏Aq ➚ d2.

Condition 4.2.4. Let F0
✁✽ and F✽

T denote the σ-algebras generated by t♣ft,utq : t ↕ 0✉ and

t♣ft,utq : t ➙ T ✉, respectively. Define the mixing coefficient α♣T q ✏ supAPF0

✁✽,BPF✽
T
⑤P♣AqP♣Bq✁

P♣A❳Bq⑤. The data are generated as follows.

(i) Stationarity. tut,ft✉t↕T is weak stationary;

(ii) Strong mixing. There exist q1, C1 → 0 such that for any s → 0, α♣sq ➔ exp♣✁C1s
q1q;

(iii) Exponential tail. There exist q2, q3 → 1 with q✁1

1
� q✁1

2
� q✁1

3
→ 1 and b1, b2 → 0 such that

for each i ✏ 1, . . . , p, and any s → 0, P♣⑤uit⑤ → sq ↕ expt✁♣s④b1qq2✉ and P♣⑤ftk⑤ → sq ↕
expt✁♣s④b2qq3✉.

Condition 4.2.2 are conditions on the latent factor process and error process in the approximate

factor model. In the model, the factors ft1, . . . , ftK are assumed to be uncorrelated. Thus, the

covariance structure of model is given by

Σ ✏ AA❏ �Σu,
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where Σ ✏ T✁1
E♣YY❏q and Σu ✏ T✁1

E♣UU❏q are the population covariance matrixs of the

data matrix Y and error matrix U. We do not assume that u1t, . . . , upt are independent with each

other, so Σu is allowed not to be a diagonal matrix. Condition 4.2.3 is similar to the PC1 condition

in Bai and Ng (2013). Unlike PC1 condition, we relax the restriction on F and do not require

that almost surely, T✁1F❏F ✏ Ir. Instead, we only require that with probability at least 1 ✁ e✁s,

⑥T✁1F❏F ✁ Ik⑥2F ➚ T✁1s, which is satisfied for F under Condition 4.2.2 and 4.2.4 (Zhang et al.,

2020). Since AA❏ and A❏A shares the same non-zero eigenvalues, condition 4.2.3 gives that the

first K eigenvalues of AA❏ diverge with p. This ensures the identifiability of the approximate

factor model (Chamberlain and Rothschild, 1983). In addition, the serial covariance between two

variables yit and yjt,

cov♣yit, yjtq ✏
r➳

k✏1

aikajk � cov♣uit, ujtq

which is mainly contributed by the loading matrix A. Condition 4.2.4 is commonly imposed in

high-dimensional factor analysis (e.g. Bai, 2003; Stock and Watson, 2002a) that requires weak

serial dependency of the latent factor process and error process. The exponential tail is satisfied

for some heavy tailed distribution such as t-distribution or gamma distribution. Thus, we relax the

normality assumption in traditional factor models (Bai, 2003; Bai and Ng, 2013).

4.2.2 Integrative Group Factor Model

An integrative group factor model is an extension of the approximate factor model that the

variables in each cluster follows the approximate factor model, and can be useful in many fields

such as psychology (Ramírez et al., 2018). It is easy to see that, if we ignore the error process, two

variables will be uncorrelated if they are loaded on different factors. Thus, we allow the existence

of common factors and unique factors across variables. For simplicity, we propose the following

model

yit ✏ ai1f
♣0q
t1 � ☎ ☎ ☎ � airzif

♣0q
trzi

� bi1f
♣ziq
i1 � ☎ ☎ ☎ � birzif

♣ziq
irzi

� uit (4.2.1)
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for t ✏ 1, . . . , T and i ✏ 1 . . . , p, where z1, . . . , zp P t1, . . . ,m✉ are underlying labels. Here,

yit is an observation from the ith variable at time t, ♣f ♣0qt1 , . . . , f
♣0q
tr0

q❏ is a r0-dimensional process,

♣f ♣jqt1 , . . . , f
♣jq
trj
q❏ is a rj-dimensional process for j ✏ 1, . . . ,m and uit is an error process. Denote

ti1, . . . , ipj✉ :✏ ti : zi ✏ j✉ for each j ✏ 1, . . . ,m. Then the model for group j can be written as

y
♣jq
t ✏ Ajf

♣0q
t �Bjf

♣jq
t � u♣jqt , (4.2.2)

where Aj ✏ taiℓk✉pj ,r0ℓ✏1,k✏1
, Bj ✏ tbiℓk✉pj ,rjℓ✏1,k✏1

, y♣jqt ✏ ♣y♣jqi1t
, . . . , y

♣jq
ipj t

q❏, f ♣jqt ✏ ♣f ♣jqt1 , . . . , f
♣jq
trj
q❏

and u♣jqt ✏ ♣ui1t, . . . , uipj tq❏ for j ✏ 0, 1, . . . ,m and t ✏ 1, . . . , T . In the integrative group factor

model, we apply the following condition:

Condition 4.2.5. Condition 4.2.2 and 4.2.4 hold for ft ✏ ♣f ♣0q
1t , . . . , f

♣0q
r0t
, . . . , f

♣mq
1t , . . . , f

♣mq
rmt q❏

and ut ✏ ♣u1t, . . . , uptq❏.

Similar as Condition 4.2.2, Condition 4.2.5 ensures the identifiability of the integrative group

factor model. We assume that all factors are uncorrelated with each other, so that serial covariance

between two variables yit and yjt,

cov♣yit, yjtq ✏
r0➳
k✏1

aikajk �
rzi➳
k✏1

bikbjk � cov♣uit, ujtq (4.2.3)

if zi ✏ zj and

cov♣yit, yjtq ✏
r0➳
k✏1

aikajk � cov♣uit, ujtq (4.2.4)

if zi ✘ zj . Thus, we simultaneously models the variance structure within groups and covariance

between groups. In addition, if zi ✘ zj , the covariance between yit and yjt conditional on f ♣0qt is

cov♣yit, yjt⑤f ♣0qt q ✏ cov♣uit, ujtq,
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while their variance conditional on f ♣0qt is

Var♣yit⑤f ♣0qt q ✏
rzi➳
k✏1

b2ik � Var♣uitq.

This matches our definition about groups in Section 4.2. Further, we denote F ✏ ♣f1, . . . ,fT q❏.

For the sake of identification and consistent estimate, we propose the following conditions.

Condition 4.2.6. There exist positive constant R such that rj ↕ R for each j ✏ 0, 1, . . . ,m. For

each j ✏ 1, . . . ,m and i ✏ 1, . . . , pj ,
➦r0

ℓ✏1
I♣aiℓ ✘ 0q ➙ 1 and

➦rj
ℓ✏1

I♣b♣jqiℓ ✘ 0q ➙ 1. For each

j ✏ 1, . . . ,m, there exist i P t1, . . . , pj✉ such that
➦rj

ℓ✏1
I♣b♣jqiℓ ✘ 0q ✏ rj .

Condition 4.2.7. For each j ✏ 1, . . . ,m, A❏
j Aj and B❏

j Bj are diagonal matrices with non-zero

distinct entries and A❏
j Bj ✏ 0. There exist constants d1, d2 → 0 such that d2④d1 ➔ m, d1 ↕

λmin♣p✁1A❏
j Ajq ↕ λmax♣p✁1A❏

j Ajq ↕ d2 and d1 ↕ λmin♣p✁1B❏
j Bjq ↕ λmax♣p✁1B❏

j Bjq ↕ d2

for each j ✏ 1, . . . ,m.

Condition 4.2.6 gives assumption on the loadings for the integrative group factor model. The

upper bound of factors ensures the total number of factors K ✏ ➦m

j✏0
rj is bounded, which

is essential in statistical guarantee in estimating K. The lower bound of non-zero elements in

loading matrix separates the loaded and unloaded factors for each variable. This condition is

essential in estimating the latent factors and loadings as well as recovering the latent cluster

assignments. Condition 4.2.7 is similar to Condition 4.2.3. Besides the condition on eigen-

values of A❏
j Aj and B❏

j Bj , we put an additional condition on the bound of eigenvalues that

d2④d1 ➔ m. This condition requires the lower bound of eigenvalues not to be too small and

the upper bound not to be too large. Unlike approximate factor model, in integrative group fac-

tor model, we have common factors as well as unique factors. Note that by Condition 4.2.7,

d1m ↕ λmin♣p✁1
➦m

j✏1
A❏

j Ajq ↕ λmax♣p✁1
➦m

j✏1
A❏

j Ajq ↕ d2m, which implies that the common

factors and unique factors are of the same strength. Thus, the common factors and unique factors

are not distinguishable without additional condition on the strength, which is crucial in estimat-

ing number of common and unique factors and the factor matrices. Hence, we give an additional
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condition that d2④d1 ➔ m in Condition 4.2.7. See Section 4.4.5 for more details. We assume the

columns of loading matrix to be orthogonal and columns of factor matrix to be orthonormal, which

ensures the unbiasedness of PCA procedure (Bai and Ng, 2013). Let

rC ✏

✔✖✖✖✖✕
A1 B1

...
. . .

Am Bm

✜✣✣✣✣✢ . (4.2.5)

It is easy to write equations (4.2.3) and (4.2.4) in matrix form as

Var♣ytq ✏ rCrC❏ � Var♣utq, (4.2.6)

where yt ✏ ♣y♣1q❏t , . . . ,y
♣mq❏
t q and ut ✏ ♣u♣1q❏t , . . . ,u

♣mq❏
t q. Note that by Condition 4.2.7,

d1m ↕ λmin♣p✁1
➦m

j✏1
A❏

j Ajq ↕ λmax♣p✁1
➦m

j✏1
A❏

j Ajq ↕ d2m and d1 ↕ λmin♣p✁1B❏
j Bjq ↕

λmax♣p✁1B❏
j Bjq ↕ d2 for each j ✏ 1, . . . ,m, which implies that d1 ↕ λmin♣p✁1 rC❏ rCq ↕

λmax♣p✁1 rC❏ rCq ↕ d2m. Then, by the identifiability of approximate factor model (Theorem 4,

Chamberlain and Rothschild, 1983), K is uniquely determined by number of diverging eigenval-

ues of Var♣ytq. In addition, the decomposition of Var♣ytq in (4.2.6) is unique in the sense that

suppose there exist p✂K matrix V and p✂ p positive definite matrix W with uniformly bounded

eigenvalues such that Var♣ytq ✏ VV❏ �W, then VV❏ ✏ rCrC❏ and W ✏ Var♣utq. That is, the

column space of rC is uniquely determined by Var♣ytq. Also, Condition 4.2.7 shows that rC❏ rC is

a diagonal matrix, which further gives K2 equations upon rC ( K♣K ✁ 1q④2 equations from thatrC❏ rC is a diagonal matrix and K♣K � 1q④2 equations from that T✁1F❏F converges to IK in prob-

ability) and uniquely determines rC from its column space. Thus, it is clear that any p✂K matrixrC satisfying Condition 4.2.7 and (4.2.6) must have the same block structure as (4.2.5) gives. In

addition, by Condition 4.2.7, the columns of rC corresponding to the largest r0 eigenvalues are the

columns of loadings of common factors. This shows the identifiability of the integrative group

factor model.
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Combining model (4.2.2) with the cluster assignments z, we have a model with parameter

♣z,Cq P ♣Z, Cq ✏
✦
z P t1, . . . ,m✉p,C ✏ tcik✉p,Ki,k✏1 P R

p✂K :

pj♣zq ✖ p, cik ✏ 0 for k ❘ t1�
j✁1➳
ℓ✏0

rj, . . . ,

j➳
ℓ✏0

rj✉ if zi ✏ j

✰
,

where Z is the set of all labels z ✏ ♣z1, . . . , zpq P t1, . . . ,m✉p which satisfy Condition 4.2.1 and

C is the set of matrices which have the form in (4.2.5) and satisfy Condition 4.2.7. Assuming that

the cluster assignments satisfy that z1 ↕ ☎ ☎ ☎ ↕ zp, we can write model (4.2.1) in a matrix form as

Y ✏ rCF❏ �U, (4.2.7)

where rC is defined in (4.2.5). In practice, the group assignments are always unknown. To account

for the latent group assignments, we introduce a p✂ p permutation matrix Π. Then, model (4.2.1)

can be written as

Y ✏ ΠrCF❏ �U (4.2.8)

where Y ✏ tyit✉p,Ti✏1,t✏1, U ✏ tuit✉p,Ti✏1,t✏1 or

Y ✏ CF❏ �U, (4.2.9)

where C ✏ ΠrC. The permutation matrix Π is not unique for model (4.2.2). However, the cluster

assignments given by the permutation matrix Π is unique up to label switching.

The integrative group factor model given above enjoys some commonalities with previous

works in existing literatures. For instantce, Wang et al. (2019) propose partial common PCA in

modeling multiple covariance matrices. Based on equal group size and known clustering assign-
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ments, the covariance matrix for the jth cluster is decomposed as

Σj ✏ ΓΛjΓ
❏ �Ψj,

where Γ is a p ✂ K orthogonal matrix and Λj is a diagonal matrix. Under the same conditions

of equal group size and known clustering assignments, the covariance matrix for the jth cluster of

integrative group factor model with no common factor is given by

Σj ✏ BjB
❏
j �Ψj.

Thus, under additional condition that B1, . . . ,Bm share the same column space, partial common

PCA and integrative group factor model are equivalent. Thus, partial common PCA is actually a

special case of integrative group factor model. Also, Bunea et al. (2020) proposed an approximate

G-block model for model-based variable clustering. In particular, the variables are clustered by

partition z and the covariance matrix Σ is decomposed as

Σ ✏ ΓVΓ❏ �Ψ, (4.2.10)

where Γ is a 0-1 membership matrix relative to z, V is a symmetricm✂mmatrix and Ψ has small

off-diagonal entries. In the approximate G-block model, the clustering assignments are given by

the membership matrix A and the variance and covariance of variables are given by V. Thus, all

variables in a cluster share the same variance and covariance, which is different from the variance

and covariance of integrative group factor model given by (4.2.3) and (4.2.4). Thus, approximate

G-block model and integrative group factor model are different in most cases, and equivalent in

some special cases. For example, we consider a special case, where there is no common factor and

only one unique factor with the same loading among all variables in the each cluster in integrative

group factor model, and V is a diagonal matrix in approximate G-block model. In this case, the

loading matrix Bj of unique factors in the jth cluster is bj1pj . Then, the covariance matrix for
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integrative group factor model is given by

Σ ✏tdiag♣b11p1 , . . . , bm1pmq✉tdiag♣b11p1 , . . . , bm1pmq✉❏ �Σu

✏tdiag♣1p1 , . . . ,1pmq✉tdiag♣b21, . . . , b2mq✉tdiag♣1p1 , . . . ,1pmq✉❏ �Σu.

Note that diag♣1p1 , . . . ,1pmq is a 0-1 membership matrix and diag♣b2
1
, . . . , b2mq is am✂m diagonal

matrix. Thus, approximateG-block model and integrative group factor model are equivalent in this

case.

4.3 Minimax Lower Bound of Clustering Recovery

First, we consider detecting the latent clustering assignments of variables in model (4.2.1).

Since an ordering of the variables is not available in many applications such as genetics, social,

finical and economic data, methods invariant to variable permutations are appropriate for such

applications (Wagaman and Levina, 2009). Thus, as suggested by Jin et al. (2015), the clustering

recovery errors should not depend on how we label each of them groups. To do variable clustering

that is permutation invariant, we introduce a loss function that is also permutation invariant as

follows. Denote Sm as the set of all permutations of t1, . . . ,m✉. Then, the 0✁ 1 loss function for

estimated labels ♣z is defined as

L♣♣z, zq ✏ inf
ΠPSm

✓
1

p

p➳
i✏1

ItΠ♣♣ziq ✘ zi✉
✛
. (4.3.1)

Note that in model (4.2.2), the cluster structure is invariant to the permutations of label symbols,

so we do not distinguish for cluster label switching. In practice, we only care about which curves

are in the same cluster, instead of the exact cluster labels, so the actual labels used in defining

the cluster assignments should be inconsequential. Thus, we introduce the permutation Π and the

minimization over all permutations to avoid the error from label switching. The loss function in

(4.3.1) has been previously used in the investigation of clustering in mixture models (Lu and Zhou,

2016) and stochastic block models (Gao et al., 2017, 2018; Zhang et al., 2016). Alternatively,
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Bunea et al. (2020) considers recovering exact group assignments, which treats label switching as

errors, which results in different group recovery errors. They may give slight different minimax

lower bound, which is essentially caused by the difference of loss functions instead of difficulty of

modeling.

4.3.1 Minimax Lower Bound for Integrative Group Factor Model

As discussed in Section 4.2.2, model (4.2.2) models the variance structure within groups and

covariance between groups simultaneously. Thus, in this paper, we consider separating variables

through multiple groups through the covariance matrix of variables. In particular, we put variables

with relatively strong correlation into the same cluster. Unlike normal clustering based on mean of

each cluster, we apply clustering based on variance and covariance matrix of groups. Covariance-

type clustering has been studied before by Ieva et al. (2016) and Hallac et al. (2017). However,

the error rate of covariance-type clustering is not given, which is not trivial. We will first show the

lower bound of the probability of failing to estimate correct cluster assignments in the following

theorem. To get minimax lower bound of the expected value of the 0 ✁ 1 loss function, we first

choose p④4 elements in t1, . . . ,m✉p, which is the space ofm cluster assignments for p variables, as

separations. Similar approach can be seen in Lu and Zhou (2016) and Gao et al. (2018). Compared

to those authors, we choose a denser covering that is independent on m, so the covering works for

finite m. Then, the distances between each pair of the p④4 are quantified by the K-L divergence

between the corresponding distributions. To get a tighter lower bound, we apply Le Cam’s method

and give the following minimax lower bound.

Theorem 4.3.1. Let Z be the set of all labels ♣z1, . . . , zpq P t1, . . . ,m✉ which satisfy Condition

4.2.1 and C be the set of matrices which have the form in (4.2.5) and satisfy Condition 4.2.7. Fur-

ther, let D2

A ✏ maxj λmax♣p✁1A❏
j Ajq and d2B ✏ minj λmin♣p✁1B❏

j Bjq. Then, the signal-noise

ratio for model (4.2.8) is defined as θ ✏ ♣D2

Ar0 � d2B minj rjq✁1d2Br0 maxj rj . Under Condi-
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tions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, for some ε P ♣log♣2q④ log♣p④4q, 1q, we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ tε log♣p④4q ✁ log♣2q✉♣1✁ εqm
16θpT

❫ 1

64
, (4.3.2)

where the infimum is taken over all label estimators ♣z.

For p → 8, the maximum of (4.3.2) about ε is achieved by letting ε ✏ t2 log♣p④4q✉✁1 log♣p④2q,
we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ tlog2♣p④4q � log2♣2q✉m
32θp log♣p④4qT ❫ 1

64
, (4.3.3)

where the infimum is taken over all label estimators ♣z. To obtain a non-trivial lower bound in

(4.3.3), we require sample size T to be no larger than θ✁1m✁1p log♣p④8q. If sample size is larger

than θ✁1m✁1p log♣p④8q, Theorem 4.3.1 provides a negative, and thus trivial lower bound. Note

that this constrain does not give an upper bound the dimension p. Thus, the lower bound still holds

for high dimensional setting. The signal-noise ratio θ ✏ ♣D2

Ar0 � d2B minj rjq✁1d2Br0 maxj rj

shows the strength of unique factors compared with common factors. Recall that the covariance

of variables are decomposed into two parts, one from the common factors and the other from the

unique factors. In addition, we separate variables through multiple groups through the covariance

matrix of variables. If the signal-noise ratio θ is big, that is, the loadings of unique factors are

big compared with the loadings of common factors, the covariance will mainly be attributed by

the unique factors. Since unique factors for different groups are uncorrelated, this gives a strong

correlation between variables in the same cluster and a weak correlation between variables in

different groups. In this case, it is easy to estimate correct cluster assignments and a small lower

bound does not require huge sample size T or dimension p. Conversely, if the signal-noise ratio θ

is small, that is, the covariance of variables is mainly attributed by the common factors, a correct

estimation of cluster assignments requires a large sample size T and dimension p.

87



4.3.2 Difficulty of Clustering Recovery for ApproximateG-block Model and

Integrative Group Factor Model

Similar results of minimax lower bound of clustering recovery rate for approximate G-block

model (4.2.10) are given by Bunea et al. (2020). However, the author derived the lower bound

based on different loss function, which considers label switching as errors. Thus, the minimax

lower bound cannot be compared with our result directly. To compared approximate G-block

model in Bunea et al. (2020) and integrative group factor model, we consider the minimax lower

bound of clustering recovery rate based on the loss function in (4.3.1) for approximate G-block

model. We apply similar proof as Theorem 4.3.1 with the same covering to give the following

corollary.

Corollary 4.3.1. Let Z be the set of all labels ♣z1, . . . , zpq P t1, . . . ,m✉ which satisfy Condition

4.2.1 and V be the set of m✂m symmetric matrices with positive diagonal entries. Further, we let

a be the smallest diagonal element and b be the largest off-diagonal element of matrices in V . For

model (4.2.10), under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, for some ε P ♣log♣2q④ log♣p④4q, 1q,
we have

inf
♣z

sup
zPZ,VPV

EtL♣♣z, zq✉ ➙ ♣b✁ aqtε log♣p④4q ✁ log♣2q✉♣1✁ εqm
16pT

❫ 1

64
, (4.3.4)

where the infimum is taken over all label estimators ♣z.

Similar as Theorem 4.3.1, for p → 8, the maximum of (4.3.4) about ε is achieved by letting

ε ✏ t2 log♣p④4q✉✁1 log♣p④2q, we have

inf
♣z

sup
zPZ,VPV

EtL♣♣z, zq✉ ➙ tlog2♣p④4q � log2♣2q✉m
32♣b✁ aqp log♣p④4qT ❫ 1

64
, (4.3.5)

where the infimum is taken over all label estimators ♣z. It can be seen that the signal-noise ratio is

different for approximate G-block model and integrative group factor model. Since signal-noise

ratio of integrative group factor model is more complicate than that of approximateG-block model,
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the parameter of integrative group factor model is more complicated. However, the convergence

rates of their minimax lower bound of clustering recovery rate are the same, so the two models

have the same difficulty of clustering recovery.

4.4 Methodology for Clustering

Next, we consider detecting the latent cluster assignments. By (4.2.3) and (4.2.4), it is easy to

see that the covariance structure of the observation process yit is given by the cluster assignments.

Thus, it is straightforward to estimate the cluster assignments by the covariance structure. How-

ever, for high dimensional data or temporally dependent data, the covariance structure cannot be

consistently estimated without further assumption. On the other hand, recall that in Section 4.2,

we define two curves of time series in different groups if they are uncorrelated conditional on some

factors, which are the common factors in model (4.2.1). That is, if two curves of time series are

loaded on the same factors, they are in the same cluster. Conversely, if there exist some factors that

either of the two curves is not loaded on, they are in different groups. Thus, the cluster assignment

is given by the structure of the loading matrix C as shown in (4.2.5). Unlike the covariance struc-

ture, the loading matrix is consistently estimated for high dimensional data with weak temporal

dependence (Bai and Ng, 2013; Fan et al., 2016). Thus, we start from estimating latent factors and

loadings.

4.4.1 Estimating Latent Factors and Loadings

Note that for the T ✂T matrix Y❏Y, the eigenvectors corresponding to the K largest eigenval-

ues are approximately the same direction as fk, the column vectors of F. Therefore, the spectral

decomposition of Y❏Y can be investigated using the estimates to latent factor process and load-

ing matrix in (4.2.9) and we employ principal component analysis (PCA) approach (Bai and Ng,

2013; Fan et al., 2016) to estimate the factors and loadings. Here, the latent factors and load-

ings can be easily estimated via matrix eigen-decomposition. Particularly, we let T✁1④2♣vk be

the eigenvector corresponding to the kth largest eigenvalue of Y❏Y for k ✏ 1, . . . , K. Then,
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the common factors F0 is estimated by ♣F0 ✏ ♣♣v1, . . . , ♣vr0q. Consequently, the common loading

matrix A ✏ ♣A❏
1
, . . . ,A❏

mq❏ is estimated by right projecting T✁1Y onto the estimated F0, i.e.♣A ✏ T✁1Y♣F0. To estimate the unique factors and loadings, we consider two cases, where the

cluster assignments are known or unknown. With the information of cluster assignments, we can

then estimate the unique factors and their loadings for each group. For each j ✏ 1, . . . ,m, let

Yj ✏ ♣y♣jq
1
, . . . ,y

♣jq
T q be the data matrix of group j. Then, we estimate Fj and Bj by PCA ap-

proach again. We let T✁1④2 ♣w♣jq
k be the eigenvector corresponding to the kth largest eigenvalue

of Y❏
j Yj for k ✏ r0 � 1, . . . , r0 � rj . Then, Fj , the unique factors for group j, is estimated

by ♣Fj ✏ ♣ ♣w♣jq
1
, . . . ♣w♣jq

rj q. Consequently, the corresponding loading matrix Bj is estimated by♣Bj ✏ T✁1Yj
♣Fj . If the cluster assignments are unknown, we first estimate all factors together and

then eliminate the common factors. All factors F is estimated by ♣F ✏ ♣♣v1, . . . , ♣vKq and their load-

ing matrix C is estimated by ♣C ✏ T✁1Y♣F. Similar as Bai and Ng (2013) and Fan et al. (2016),

statistical guarantee of estimating latent factors and loading are given in the following theorems in

terms of mean squared errors of the estimating procedure.

Theorem 4.4.1 (First moment of ♣F0 and ♣A). Under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, de-

noting d2A ✏ minj λmin♣p✁1A❏
j Ajq, with probability at least 1✁ e✁s,

1

T
⑥♣F0 ✁ F0⑥2F ➚

D2

A

d2A

✂
1

p
� 1

T

✡
s3,

1

p
⑥♣A✁A⑥2

F
➚D

2

A

d2A

✂
1

p
� 1

T

✡
s4.

For the unique factors and loadings, similar results of convergence as Theorem 4.4.1 are given

in the following theorem.

Theorem 4.4.2 (First moment of ♣Fj and ♣Bj). Under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7,

denoting d2Bj
✏ λmin♣p✁1B❏

j Bjq for each j ✏ 1, . . . ,m, with probability at least 1✁ e✁s, for each

j ✏ 1, . . . ,m,

1

T
⑥♣Fj ✁ Fj⑥2F ➚ log♣mqD

2

Ar0

d2Bj
rj

✂
m

p
� 1

T

✡
s3,
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1

p
⑥♣Bj ✁Bj⑥2F ➚ log♣mqD

2

Ar0

d2Bj
rj

✂
m

p
� 1

T

✡
s4.

For all factors and loadings, similar as Theorem 4.4.1, we have the following guarantee.

Theorem 4.4.3 (First moment of ♣F and ♣C). Under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, with

probability at least 1✁ e✁s,

1

T
⑥♣F✁ F⑥2

F
➚ D2

Ar0

d2B minj rj

✂
m

p
� 1

T

✡
s3,

1

p
⑥♣C✁C⑥2

F
➚ D2

Ar0

d2B minj rj

✂
m

p
� 1

T

✡
s4.

In contrast to the known asymptotic properties of estimating latent factor matrix and loading

matrix for traditional and semiparametric factor models with divergent number of variables p and

time points T (Bai and Ng, 2013; Fan et al., 2016),Theorems 4.4.1 to 4.4.3 provides similar results

as estimating latent factors and loadings for approximate factor model, both asymptotically as in

Bai and Ng (2013) and Fan et al. (2016) and non-asymptotically as in Zhang et al. (2019) and

Zhang et al. (2020). Since D2

A, d2A, d2B, r0, minj rj and maxj rj are constant, they are always

omitted in previous results. As shown in Theorem 4.3.1, these constants play important roles in

the possibility of estimating the cluster assignments. Thus, it is direct to think that the constants

also play roles in the statistical guarantee of estimating the latent factors and loadings as well

as the cluster assignments. Therefore, unlike previous results, we keep the constants to see the

relationship among the constants, dimension p and sample size T . In Theorem 4.4.1, the result

is established under a weaker condition on F0 compared to Condition PC1 in Bai and Ng (2013)

as discussed in Section 4.2.1. Besides the deviation between F0 and its projection onto subspace

tF P R
T✂K : T✁1F✶

0
F0 ✏ Ir0✉, which is of rate p✁1 as given in Bai and Ng (2013),Fan et al.

(2016) and Zhang et al. (2019), we also account for the error for estimating this projection, which

is of rate p✁2 � T✁1. This leads to the slower convergence rate on T✁1⑥♣F0 ✁F0⑥2F. Similar results

can be seen in Zhang et al. (2020).
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4.4.2 Data Driven Recovery of Clustering Assignments

Next, we will provide an estimator of the cluster assignments based on the estimator of loading

matrix in Section 4.4.1, and show the statistical guarantee based on Theorem 4.4.3. First, we

consider a block diagonal matrix B ✏ diag♣B1, . . . ,Bmq, which is the ♣r0 � 1qth to the Kth

columns of C ✏ tcik✉p,Ki✏1,k✏1
, and its estimate ♣B, which is the ♣r0 � 1qth to the Kth columns of♣C ✏ t♣cik✉p,Ki✏1,k✏1

. Denote B ✏ tbik✉p,K✁r0
i✏1,k✏1

, ♣B ✏ t♣bik✉p,K✁r0
i✏1,k✏1

and E ✏ teik✉p,K✁r0
i✏1,k✏1

. Note that we

are dealing with the possible range for each element of ♣B simultaneously. Thus, unlike Theorems

4.4.1 to 4.4.3, to start with, we use maximum norm to quantify the deviation of ♣C from C in the

following corollary.

Corollary 4.4.1. Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, with probability at least 1✁ 10e✁s,

(i) ⑥♣F✁ FH2⑥max ➚ DA

❄
r0d

✁1

B ♣minj rjq✁1④2p✁1④2tlog♣T q✉2④r2s;

(ii) ⑥♣C✁CH✁1

2
⑥max ➚ DA

❄
r0d

✁1

B ♣minj rjq✁1④2♣T✁1④2❛log♣pqs;

(iii) ⑥♣C✁C⑥max ➚ DA

❄
r0d

✁1

B ♣minj rjq✁1④2♣T✁1④2❛log♣pq � p✁1④2qs.

Different from Theorem 4.4.3, Corollary 4.4.1 provides the union maximum bound of each

element of ♣C✁C. Similar results can be seen in Wang and Fan (2017), Barigozzi et al. (2018) and

Zhang et al. (2019). However, since DA, dB, r0 and minj rj are constant, they are also omitted in

previous results. Similar as Theorems 4.4.1 to 4.4.3, we keep the constants to see the relationship

among the constants, dimension p and sample size T . Then, we apply an estimator of cluster

assignments based on ♣B. In following algorithm, we first apply thresholding on each element of♣B based on their large deviations given in Corollary 4.4.1, and get a matrix ♣I consisting of only 0

and 1. Then, ♣z, the estimator of cluster assignments, is given by row-wise screening of ♣I.
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Algorithm 4 Cluster Assignments Estimation

Input: p✂ ♣K ✁ r0q matrix ♣B ✏: t♣bik✉p,K✁ro
i,k✏1

and pre-determined δ.

1: Let τ ✏ δ logtm✁1 log✁1♣pqpT ✉♣T✁1④2❛log♣pq � p✁1④2q. For k ✏ 1, . . . , K ✁ r0, let ♣ik ✏
♣I♣⑤♣b1k⑤ → τq, . . . , I♣⑤♣bpk⑤ → τq❏ and ♣I ✏ ♣♣i1, . . . ,♣iK✁r0q ✏: t♣iik✉p,K✁r0

i✏1,k✏1
. Denote the rows of♣I as♣i1, . . . ,♣ip and the kth element of♣i1 as♣i1♣kq.

2: If there exists k such that ♣i1♣kq ✏ ♣i2♣kq ✏ 1, let ♣z1 ✏ ♣z2 ✏ 1 and ♣i♣1q ✏ ♣i1 �♣i2. Else, let

♣z1 ✏ 1, ♣z2 ✏ 2,♣i♣1q ✏♣i1 and♣i♣2q ✏♣i2.

3: If there exists j and k such that♣i3♣kq ✘ 0 and♣i♣jq♣kq ✘ 0, let ♣z3 ✏ j and♣i♣jq ✏ ➦i:zi✏j
♣ii. Else,

let ♣z3 ✏ maxi➔3 ♣zi � 1 and♣i♣♣z3q ✏♣i3.
4: Repeat Step 3 for i ✏ 4, . . . , p.

Output: Cluster assignments estimator ♣z ✏ ♣♣z1, . . . , ♣zpq❏.

In Algorithm 4, the constant δ reflects the balance of the difference between two 0✁1 matrices,♣I ✏ ♣♣i1, . . . ,♣iK✁r0q and I ✏ ♣i1, . . . , iK✁r0q, where ik ✏ ♣I♣b1k ✘ 0q, . . . , I♣bpk ✘ 0qq❏ and

B ✏ tbik✉p,K✁r0
i✏1,k✏1

is the ♣r0 � 1qth to the Kth columns of C. A big δ will decrease P♣⑤♣bik⑤ →
τ ⑤bik ✘ 0q and increase P♣⑤♣bik⑤ ➔ τ ⑤bik ✏ 0q. If we want to prevent two curves of time series

in the same cluster from being mistakenly assigned in different groups, we will choose a big δ.

Conversely, a small δ prevents two curves of time series in different groups from being mistakenly

assigned in the same cluster. Since both probability converge to zero as p and T go to infinity,

the choice of δ will not affect the convergence of Algorithm 4. Thus, in practice, we can choose

δ ✏ 1. Algorithm 4 requires the pairwise comparisons of p vectors with dimension K ✁ r0 so

the computation complexity is O♣pKq. We show the statistical guarantee of ♣z by the following

theorem.
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Theorem 4.4.4. For model (4.2.8), under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, the 0-1 loss

function in (4.3.1) for ♣z defined in Algorithm 4 satisfy that,

EtL♣♣z, zq✉ ↕ 10 expt✁♣DA

❄
r0q✁1dB

❛
minj rj minbik✘0 ⑤bik⑤✉m log♣pq
pT

.

It is easy to see that if we apply the estimator in Algorithm 4 upon the oracle loading matrix,

that is, the ♣r0 � 1qth to the Kth rows of C, under Condition 4.2.6, the estimator will be exactly

the true cluster assignments up to label switch. Consequentially, in Theorem 4.4.4, the error rate

of estimating cluster assignments is given by the difference between two 0 ✁ 1 matrices, ♣I ✏
♣♣i1, . . . ,♣iK✁r0q and I ✏ ♣i1, . . . , iK✁r0q, where ik ✏ ♣I♣b1k ✘ 0q, . . . , I♣bpk ✘ 0qq❏ and B ✏
tbik✉p,K✁r0i✏1,k✏1 is the ♣r0 � 1qth to the Kth columns of C. Thus, the error rate of estimating cluster

assignments is given by the error rate of estimating loading matrix. In the right hand side of the

inequality in Theorem 4.4.4, the rate log♣pqmp✁1T✁1, reflects the deviation of ♣B being the same

as B, and the constant 10 expt✁♣DA

❄
r0q✁1dB

❛
minj rj minbik✘0 ⑤bik⑤ in the error rate reflects the

tolerance of ♣B deviating from B.

4.4.3 Upper Bound of Group Recovery and Optimality

In addition, Theorem 4.4.4 gives an upper bound of miss-clustering error with the same rate

as the minimax lower bound in Theorem 4.3.1 up to a constant. Thus, the cluster assignment

estimator ♣z in Algorithm 4 is the optimal cluster assignment estimator.

The signal-noise ratio θ in Theorem 4.3.1 can be written as

θ ✏ D✁2
A d2B maxj rj

1�D✁2
A r✁1

0
d2B minj rj

:✏ ζ1

1� ζ2
,

where ζ1 ✏ D✁2
A d2B maxj rj and ζ2 ✏ D✁2

A r✁1
0
d2B minj rj . Here, ζ1 quantifies the smallest signal

of unique factors in the largest cluster compared with the largest signal of common factors and ζ2

quantifies the smallest signal of unique factors in the smallest cluster compared with the largest

signal of common factors. It is easy to see that θ is monotone increasing with respect to ζ1 and
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monotone decreasing with respect to ζ2. That is, the signal-noise ratio is greater if the unique

factors in the largest cluster is separable form the common factors. Also, in Theorem 4.3.1 , if

θ ✏ O♣log♣pqmp✁1T✁1q, the the lower bound in (4.3.3) is lower bounded by a constant. Thus,

for ζ1 and ζ2 satisfying that θ ✏ O♣log♣pqmp✁1T✁1q, it is not strongly consistent to estimate

cluster assignments. Theorem 4.3.1 indicates the necessity of separation conditions in estimating

cluster assignments. If ζ1 is small or ζ2 is large, the signal from common factors is so strong

compared with the signal from unique factors that it is impossible to identify unique factors or

separate groups based on unique factors. Combining Theorem 4.4.4 and 4.3.1, we have the region

of D✁2A d2B maxj rj and D✁2A ♣maxj rjq✁1d2Br0 for the possibility and guarantee of estimating cluster

assignments as shown in Figure 4.1. In Figure 4.1, the bottom right region of impossibility is the

region of ζ1 and ζ2 that θ ✏ O♣log♣pqmp✁1T✁1q and thus the the lower bound in Theorem 4.3.1

is lower bounded by a constant. The top left region of possibility and guarantee is the region that

both the upper bound in Theorem 4.4.4 lower bound in Theorem 4.3.1 converge to zero as p and

T go to infinity. The bottom left region of possibility and unknown guarantee indicates the case

that it is possible to estimate cluster assignments but our method in Algorithm 4 may not work. In

general, if d2B and maxj rj are large, and D2

A and r0 are small, the signal of unique factors for each

cluster is strong compared with the signal of common factors, so it is possible and guaranteed to

estimate cluster assignments.

4.4.4 Upper Bound of Clustering Recovery for COD

For model-based covariance-type variable clustering, Bunea et al. (2020) proposed covariance

difference (COD) algorithm based on scaled covariance difference (sCOD)

sCOD♣i, jq ✏ max
ℓ✘i,j

✞✞✞✞✞ cov♣yi ✁ yj, yℓq❛
Var♣yi ✁ yjqVar♣yℓq

✞✞✞✞✞
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ζ1

ζ2

m log p

pT

log2
✂
m log p

pT

✡
Impossible Region

ζ1 ➙ ♣1�ζ2qm log p

pT

Possible Region with Guarantees

ζ1 ↕ ♣1 � ζ2qm log p

pT
and ζ2 ➙

log2
✂
m log p

pT

✡

Possible Region with
Unknown Guarantees

Figure 4.1: Region for possibility and guarantee of estimating cluster assignments. It is possible to estimate
cluster assignments if ζ1④♣1 � ζ2q ↕ p✁1T✁1m log♣pq and guaranteed if exp♣❄ζ2q ➙ p✁1T✁1m log♣pq
where ζ1 ✏ D✁2A d2B maxj rj and ζ2 ✏ D✁2A ♣minj rjq✁1d2Br0.

and its estimator

④sCOD♣i, jq ✏ max
ℓ✘i,j

✞✞✞✞✞✞
♣Σiℓ ✁ ♣Σjℓ❜

♣♣Σii � ♣Σjj ✁ 2♣Σijq♣Σℓℓ

✞✞✞✞✞✞ ,
where ♣Σ is an estimator of Σ and ♣Σij is the element of ♣Σ in the ith row and jth column. Then, the

clustering assignments are estimated by the following algorithm.
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Algorithm 5 COD algorithm

Input: p✂ p matrix ♣Σ and pre-determined δ.

1: Initialize S ✏ t1, . . . , p✉ and k ✏ 1.

2: If ⑤S⑤ ✏ 1, let ♣Gk ✏ S . If ⑤S⑤ → 1, let ♣ik, jkq ✏ argmini,jPS,i✘j
④sCOD♣i, jq. If④sCOD♣ik, jkq → δ, let ♣Gk ✏ ik. If ④sCOD♣ik, jkq ↕ δ, let ♣Gk ✏ tℓ P S : ④sCOD♣ik, ℓq ❫④sCOD♣jk, ℓq ↕ δ✉. Replace S by S③ ♣Gk.

3: Replace k by k � 1 and repeat Step 2.

4: For each i ✏ 1, . . . , p, let ♣zi ✏ k if i P ♣Gk.

Output: Cluster assignments estimator ♣z ✏ ♣♣z1, . . . , ♣zpq❏.

Since COD algorithm is highly dependent on covariance matrix estimation, which may fail

to converge for high-dimensional dependent data, we consider estimating Σ through estimated

loading matrix ♣C, that is

♣Σ ✏ ♣C♣C❏ � ♣σ2

uI.

To show the properties of COD algorithm for integrative group factor model, first, we consider

a special case, where r0 ✏ r1 ✏ ☎ ☎ ☎ ✏ rj ✏ 1, Aj ✏ aj1pj and Bj ✏ bj1pj for some aj and

bj and each j ✏ 1, . . . ,m. Then, we slightly change the special case to a second case where

r0 ✏ r1 ✏ ☎ ☎ ☎ ✏ rj ✏ 1, but Aj ✏ 0 for each j ✏ 1, . . . ,m, Bj ✏ bj1pj for some bj and each

j ➙ 2 and B1 ✏ ♣1, . . . , p1q❏. In both cases, we provide properties of COD algorithm in the

following corollary.

Corollary 4.4.2. (i) For model (4.2.10), if r0 ✏ r1 ✏ ☎ ☎ ☎ ✏ rj ✏ 1, Aj ✏ aj1pj and Bj ✏ bj1pj

for some aj and bj and each j ✏ 1, . . . ,m, the 0-1 loss function in (4.3.1) for ♣z defined in
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Algorithm 5 using satisfy that,

EtL♣♣z, zq✉ ↕ 10 expt✁♣DA

❄
r0q✁1dB

❛
minj rj maxi,k ⑤cik⑤✉m log♣pq
pT

.

(ii) For model (4.2.10), if r0 ✏ r1 ✏ ☎ ☎ ☎ ✏ rj ✏ 1, Aj ✏ 0 for each j ✏ 1, . . . ,m, Bj ✏ bj1pj

for some bj and each j ➙ 2 and B1 ✏ ♣1, . . . , p1q❏, the 0-1 loss function in (4.3.1) for ♣z
defined in Algorithm 5 using oracle Σ satisfy that, for some positive constant C,

EtL♣♣z, zq✉ ➙ C

m
.

Corollary 4.4.2 (i) shows the convergence of COD algorithm similar to Algorithm 4. Although

both algorithms are minimax optimal, Algorithm 4 is free from covariance estimation, and thus

more flexible to high-dimensional dependent data. However, note that m is a fixed constant here.

Thus, the lower bound of clustering recovery rate in Corollary 4.4.2(ii) does not converge to 0 even

using oracle covariance matrix Σ. Compared with the conditions of Corollary 4.4.2(i), we can

see that COD algorithm does not work even when we only change loadings for factors in a single

cluster, which shows that, the convergence of COD algorithm is restricted for integrative group

factor model. When the variances of variables in the same cluster are allowed to be different, COD

algorithm may not work.

4.4.5 Determining Number of Factors

In practice, the number of factors is always unknown and it is necessary to choose the number

of latent factors, both common and unique, before estimating the latent factors and their loadings

and apply the estimator of loading matrix upon Algorithm 4 to estimate cluster assignments. Tra-

ditional methods to estimate K include, for example, the likelihood ratio test and the screen plot

(Jolliffe, 2002). For the high-dimensional data with large covariance matrix, eigenvalues of the

sample covariance matrix or their variants have been utilized and the estimation is consistent under

certain separation condition of the first K eigenvalues from the remains. A popular approach is
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based on the ratio of consecutive eigenvalues (Ahn and Horenstein, 2013; Fan et al., 2016; Lam

and Yao, 2012). Let ♣λk be the kth largest eigenvalue of T✁1YY❏. Similar as approximate factor

model, by Condition 4.2.7, the first K largest eigenvalues of T✁1YY❏ will diverge with rate p, the

rest stays constant if p ✏ O♣T q and diverge with rate p④T if T ✏ o♣pq. Thus, the ratio of the Kth

and ♣K � 1qth eigenvalues T✁1YY❏ will diverge with rate min♣p, T q as p and T go to infinity,

while the other eigenvalue-ratios stay constant. Thus, the total number of factors K is determined

by the largest gap between eigenvalues of T✁1YY❏ as suggested by Lam and Yao (2012), Ahn and

Horenstein (2013) and Fan et al. (2016). Unlike usual factor models, we still need to determine the

number of common factors r0 to consistently estimate the common factors and their loadings. As

discussed above, the ratio of the r0th and ♣r0 � 1qth eigenvalues of T✁1YY❏ will not diverge as p

and T go to infinity. However, by Condition 4.2.7, the ratio of the r0th and ♣r0 � 1qth eigenvalues

of T✁1YY❏ is greater than other ratios among the first K eigenvalues, so the largest gap among

the largest K eigenvalues can be used to estimate r0. Since in practice, K is always unknown, we

replace it by ♣K given by the discussion before. That is, instead of choosing the largest gap between

eigenvalues of T✁1YY❏ as suggested by Lam and Yao (2012), Ahn and Horenstein (2013) and

Fan et al. (2016), we choose two largest gaps, and define

♣K ✏ argmax1↕k➔min♣p,T q
♣λk♣λk�1

,

♣r0 ✏ argmax
1↕k➔ ♣K

♣λk♣λk�1

. (4.4.1)

Then, we provide the following statistical guarantee of ♣K and ♣r0.
Theorem 4.4.5. Under Conditions 4.2.1, 4.2.5, 4.2.6 and 4.2.7, we have

P♣ ♣K ✏ Kq ➙ 1✁ 2 exp

✒
✁C3

✦❛
max♣p, T q ✁ C4

❛
min♣p, T q

✮2
✚
,

P♣♣r0 ✏ r0q ➙ 1✁ 2 exp

✒
✁C1

✦❛
max♣p, T q ✁ C2

❛
min♣p, T q

✮2
✚
,

where C1, C2, C3 and C4 are positive constants.
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Theorem 4.4.5 gives the non-asymptotic properties in estimating r0 and K. As mentioned

before, the first K largest eigenvalues of T✁1YY❏ will diverge with rate p. Thus, in Theorem

4.4.5, the error rate of ♣K and ♣r0 corresponds to p. By Theorem 4.4.5, the error rates of estimating

K and ♣r0 is large when p are much larger or smaller than T . Thus, eigenvalue-ratio estimator 4.5.3

works well in low dimension case (p ✦ T ) and ultra high dimension case (p ✧ T ). In the case

where p is close to T , the error rate of estimating K and ♣r0 may not converge, which has been

pointed out before by Bai and Yin (1993). In addition, with Theorem 4.4.5, we will assume that r0

and K are known when estimating the latent factors, loadings and cluster assignments. Otherwise,

we will use ♣r0 and ♣K given above and all results are conditional on the event t♣r0 ✏ r0, ♣K ✏ K✉.
Although the number of factors can be properly estimated, the estimation to the number of

groups m is still not clear. By the definition that K ✏ ➦m

j✏0 rj and consistent estimator ♣K and ♣r0,
an estimated upper bound of m is given by ♣K ✁ ♣r0. However, since the number of unique factors

in each cluster is not determined, this upper bound cannot give a consistent estimate of m. In

practice, we will assume a known number of groups, or choose a large number to avoid mistakenly

assigning two curves of time series in different groups in the same cluster.

4.5 The Recovery of Divergent Number of Groups

In this section, we introduce the integrative group factor model with diverging number of

groups, that is, m is not a constant but diverge with respect to p. This is a different approach

from traditional clustering analysis, where the number of groups m are always assumed to be fi-

nite. However, this constriction is not always satisfied. By allowing the number of groups to

diverge, we enable the analysis to work for a large number of groups and a rather small number

of curves, such as 10 groups of 100 curves. In this case, the number of curves within each cluster

is a small term of p. Recall that, in Section 4.2, we let the curves of time series be stationary

with different covariance structure, which is modeled through an approximate factor model. In the

case m diverges, we still model each cluster by an approximate factor model with finite number

of factors, but the total number of factors will diverge with the number of groups. Thus, by allow-
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ing for diverging number of groups as well as factors, we have a larger parameter space and less

information about it, which results in difficulty in estimating cluster assignments and estimating

latent factors and loadings. We will show that most approaches for finite the number of groups still

works for the case where the number of groups diverges, but with a smaller convergence rate. Sim-

ilar as the integrative group factor model with finite number of groups, we denote a p-dimensional

multivariate time series with T observations as yit for i ✏ 1, . . . , p and t ✏ 1, . . . , T and split the p

dimensions into m disjoint groups as follows:

V ✏ V ♣1q ❨ ☎ ☎ ☎ ❨ V ♣mq

where V ✏ t1, . . . , p✉ and m diverges with p. Let pj ✏ ⑤V ♣jq⑤ be the number of curves in the kth

cluster for j ✏ 1, . . . ,m. Similar as before, we focus on the relatively “balanced" groups with the

following condition.

Condition 4.5.1. There exist constant γ P ♣0, 1q such that m ✖ pγ and pj ✖ p1✁γ for each

j ✏ 1, . . . ,m.

Condition 4.5.1 illustrates what we mean by the balanced groups aforementioned. In Condition

4.5.1, m is proportional to p, which is not essential for the case m diverges. In fact, m can be any

small term of p. However, the condition of pj is necessary by assuming that each cluster has a size

proportional to p1✁γ for some constant γ between 0 and 1, that is, the size of each cluster is of the

same scale. This assumption ensures the number of curves in each cluster is not too small or too

large. It is easy to see that, if we assume there is no sparsity in the loading matrices A1, . . . ,Am and

B1, . . . ,Bm, the number of common and unique factors are finite, and the elements of the loading

matrices are constants, the strength of a factor is proportional to the number of curves loaded

on the factor. Thus, by assuming each cluster has a size proportional to p1✁γ , we let the unique

factors have the same strength, which is different from the strength of common factors. Thus, it

guarantees the separation of common and unique factors and the accuracy of clustering. Similar

as the integrative group factor model with finite number of groups, we propose Conditions 4.2.5
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and 4.2.6 for the possibility and guarantee of recovering cluster assignments and estimating latent

factors and loadings. These conditions are also essential in the case m diverges. In addition, we

propose the following condition.

Condition 4.5.2. For each j ✏ 1, . . . ,m, A❏
j Aj and B❏

j Bj are diagonal matrices with non-

zero distinct entries and A❏
j Bj ✏ 0. There exist constants d1, d2 → 0 such that d2④d1 ➔ m, d1 ↕

λmin♣p✁1�γA❏
j Ajq ↕ λmax♣p✁1�γA❏

j Ajq ↕ d2 and d1 ↕ λmin♣p✁1�γB❏
j Bjq ↕ λmax♣p✁1�γB❏

j Bjq ↕
d2 for each j ✏ 1, . . . ,m.

Different from Condition 4.2.7, in Condition 4.5.2, we divide A❏
j Aj and B❏

j Bj by p1✁γ instead

of p, since by Condition 4.5.1, pj , the number of curves in each cluster, is proportional to p1✁γ .

Note that by Condition 4.5.2, d1 ↕ λmin♣p✁1
➦m

j✏1
A❏

j Ajq ↕ λmax♣p✁1
➦m

j✏1
A❏

j Ajq ↕ d2, which

implies that the common factors and unique factors are of different strength (p versus p1✁γ . Thus,

unlike the case of finite m, the common factors and unique factors are distinguishable without any

further conditions. Recall that each cluster only have finite number of factors, so given the cluster

assignments, we can estimate the latent factors and loadings in each cluster by PCA procedure

as given in Section 4.4.1. Motivated by this, similar as before, we proposed PCA procedure to

estimate the latent factors and loadings, and estimate cluster assignments based on the estimation.

Similar as the case m is finite, we let T✁1④2♣vk be the eigenvector corresponding to the kth

largest eigenvalue of Y❏Y for k ✏ 1, . . . , K. Then, the common factors F0 is estimated by ♣F0 ✏
♣♣v1, . . . , ♣vr0q and the common loading matrix A ✏ ♣A❏

1
, . . . ,A❏

mq❏ is estimated by ♣A ✏ T✁1Y♣F0.

With the information of cluster assignments, for each j ✏ 1, . . . ,m, we let Yj ✏ ♣y♣jq
1
, . . . ,y

♣jq
T q

be the data matrix of group j. We let T✁1④2 ♣w♣jq
k be the eigenvector corresponding to the kth

largest eigenvalue of Y❏
j Yj for k ✏ r0 � 1, . . . , r0 � rj . Then, Fj , the unique factors for group

j, is estimated by ♣Fj ✏ ♣ ♣w♣jq
1
, . . . ♣w♣jq

rj q and the corresponding loading matrix Bj is estimated by♣Bj ✏ T✁1Yj
♣Fj . If the cluster assignments are unknown, we first estimate all factors together

and then eliminate the common factors. All factors F is estimated by ♣G ✏ ♣♣v1, . . . , ♣vKq and

their loading matrix C is estimated by ♣C ✏ T✁1Y♣F. Similar results of statistical guarantee of
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estimating latent factors and loading are given in the following theorems in terms of mean squared

errors of the estimating procedure.

Theorem 4.5.1. Under Conditions 4.5.1, 4.2.5, 4.2.6 and 4.5.2, denoting

d2A ✏ minj λmin♣p✁1A❏
j Ajq and d2Bj

✏ λmin♣p✁1B❏
j Bjq for each j ✏ 1, . . . ,m, with probability

at least 1✁ e✁s,

1

T
⑥♣F0 ✁ F0⑥2F ➚

D2

A

d2A

✂
1

p
� 1

T

✡
s3,

1

p
⑥♣A✁A⑥2

F
➚D

2

A

d2A

✂
1

p
� 1

T

✡
s4,

1

T
⑥♣Fj ✁ Fj⑥2F ➚

D2

Ar0 log♣mq
d2Bj

rj

✂
1

p1✁γ
� 1

T

✡
s3,

1

p
⑥♣Bj ✁Bj⑥2F ➚

D2

Ar0 log♣mq
d2Bj

rj

✂
1

p1✁γ
� 1

T

✡
s4,

1

T
⑥♣F✁ F⑥2

F
➚ D2

Ar0

d2B minj rj

✂
1

p1✁γ
� 1

T

✡
s3,

1

p
⑥♣C✁C⑥2

F
➚ D2

Ar0

d2B minj rj

✂
1

p1✁γ
� 1

T

✡
s4.

Note that the number of curves in each cluster is p1✁γ rather than p. Thus, the convergence

rate of estimating the unique factors are smaller than that for the case where m is fixed. Since

the identifiability condition 4.2.5 works for both common factors and unique factors, the slower

convergence rate holds for estimating unique factors and all factors simultaneous, as shown in

Theorem 4.4.2 and 4.4.3. In addition, since sample size does not affect the strength of signal, the

convergence rate with respect to sample size T is the same for estimating loadings of common

factors and unique factors. Note that when we are estimating unique factors separately for each

cluster, the dimension is smaller compared with that when estimating common factors (p1✁γ versus

p), the convergence rate of unique factors and loadings is smaller than that of common factors and

loadings. Similarly, estimating C and F requires a PCA procedure with diverging number of

factors, so the convergence rate or all factors and loadings is smaller compared with the result of

common factors and loadings. Also, it is shown in Theorem 4.5.1 that the estimation error of latent
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factors and loadings is large if the strongest signal is strong (D2

A and r0 are large) and the weakest

signal is weak (d2B and minj rj is small). Thus, the estimation error is small if all signals are

approximately of the same strength. Also, we apply Algorithm 4 to estimate cluster assignments

with the following statistical guarantee.

Theorem 4.5.2. For model (4.2.8), under Conditions 4.5.1, 4.2.5, 4.2.6 and 4.5.2, the 0-1 loss

function in (4.3.1) for ♣z defined in Algorithm 4 satisfy that,

EtL♣♣z♣♣Iq, zq✉ ↕ 10 expt✁♣CDA

❄
r0q✁1dB

❛
minj rj minbik✘0 ⑤bik⑤✉ log♣pq

p1✁γT
.

Recall that in the casem diverges, estimating C and F requires a PCA procedure with diverging

number of factors, so the convergence rate or all factors and loadings is smaller with respect to p

(p1✁γ versus p) compared with the result of common factors and loadings. Thus, the upper bound

of estimating cluster assignment is smaller when m diverges than that when m is finite.

4.5.1 Minimax Lower Bound of Group Recovery and Optimality when m

Diverges

To show the optimality of the upper bound in Theorem 4.5.2, the minimax lower bound of

group recovery is given by the following theorem for the case m diverges. Similar as the tech-

niques of Theorem 4.3.1, we first choose p④4 elements in t1, . . . ,m✉p as covering and quantify the

distances between each pair by the K-L divergence between the corresponding distributions. Since

the covering we find in the proof of Theorem 4.3.1 does not depend on m, it works for both the

case m is finite and the case m diverges. Also, we apply Le Cam’s method again.

Theorem 4.5.3. Let Z be the set of all labels ♣z1, . . . , zpq P t1, . . . ,m✉ which satisfy Condition

4.5.1 and C be the set of matrices which have the form in (4.2.5) and satisfy Condition 4.2.7.

Further, let D2

A ✏ maxj λmax♣p✁1�γA❏
j Ajq and d2B ✏ minj λmin♣p✁1�γB❏j Bjq. Then, the signal-

noise ratio for model (4.2.8) is defined as θ ✏ ♣D2

Ar0� d2B minj rjq✁1d2Br0 maxj rj . Under Condi-
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tions 4.5.1, 4.2.5, 4.2.6 and 4.5.2, for some ε P ♣log♣2q④ log♣p④4q, 1q, we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ tε log♣p④4q ✁ log♣2q✉♣1✁ εq
16θp1✁γT

❫ 1

64
, (4.5.1)

where the infimum is taken over all label estimators ♣z.

By letting ε ✏ t2 log♣p④4q✉✁1 log♣p④2q, we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ tlog2♣p④4q � log2♣2q✉
32θ log♣p④4qp1✁γT

❫ 1

64
, (4.5.2)

where the infimum is taken over all label estimators ♣z. The possible and guaranteed region of

estimating cluster assignments are given in the following figure. From Theorems 4.5.2 and 4.5.3,

we can see that the lower bound and upper bound of clustering is smaller when m diverges. The

change of possible and guaranteed region of clustering is shown in Figure 4.2. In Figure 4.2, the

red dash line shows the regions when m is finite. As shown in Figure 4.2, when m diverges, the

impossible region gets greater and the possible and guaranteed region gets smaller, which shows

that it is harder to estimate cluster assignments when m diverges.

4.5.2 Determining Number of Factors when m Diverges

However, when m diverges with p, the number of all factors K ✏ ➦m

j✏0
rj also diverge, even

if rj is finite for each j ✏ 0, 1, . . . ,m. Thus, although traditional methods in estimating K such as

eigenvalue-ratio test (Ahn and Horenstein, 2013; Fan et al., 2016; Lam and Yao, 2012), eigenvalue-

difference test (Onatski, 2012) and likelihood based test (Jolliffe, 2002) may still work for the case

m diverges, their statistical guarantee is not clear. In particular, by Condition 4.2.7, the first r0

largest eigenvalues of T✁1YY❏ will diverge with rate p, the r0 � 1 to K largest eigenvalues will

diverge with rate p1✁γ , the rest stays constant if p ✏ O♣T q and diverge with rate p④T if T ✏ o♣pq.
Thus, we let ♣λk be the kth largest eigenvalue of T✁1YY❏, and define

♣K1 ✏ argmax1↕k➔min♣p,T q
♣λk♣λk�1

,
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ζ1

ζ2

m log p

pT

log p

p1✁γT

log2
✂
m log p

pT

✡
log2

✂
log p

p1✁γT

✡

Impossible Region

ζ1 ➙ ♣1� ζ2q log p

p1✁γT

Possible Region with Guarantees ζ1 ↕
♣1� ζ2q log p

p1✁γT
and ζ2 ➙ log2

✂
log p

p1✁γT

✡

Possible Region with
Unknown Guarantees

Figure 4.2: Region for possibility and guarantee of estimating cluster assignments. In the case m diverges, it
is possible to estimate cluster assignments if ζ1④♣1�ζ2q ↕ p✁1�γT✁1 log♣pq and guaranteed if exp♣❄ζ2q ➙
p✁1�γT✁1 log♣pq where ζ1 ✏ D✁2

A d2B maxj rj and ζ2 ✏ D✁2

A ♣minj rjq✁1d2Br0.

♣K2 ✏ argmax
1↕k➔min♣p,T q,k✘ ♣K1

♣λk♣λk�1

. (4.5.3)

Then, r0 and K are estimated by ♣r0 ✏ min♣ ♣K1, ♣K2q and ♣K ✏ max♣ ♣K1, ♣K2q. Alternatively, given

additional condition that ft is temporally correlated andut is a white noise process, we can conduct

sequential test

H0♣K0q : K ↕ K0 v.s. H1♣K0q : K → K0,

with K0 some pre-specified positive integer and estimate K by

♣K ✏ argminK0
tH0♣K0q fail to be rejected✉.

The test can be given by likelihood ratio test (Jolliffe, 2002) or white noise test (Chang et al., 2017;

Li et al., 2019; Zhang et al., 2019). Since we are expected to conductK tests, a false discovery rate
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(FDR) controlling procedure is applied. However, as discussed above, K diverges with respect to

p, so the convergence of ♣K to K is not guaranteed by existing theories. Thus, in the case where m

diverges, we will estimate the latent factors and loadings and estimate cluster assignments based

on known number of all factors K.

4.6 Conclusions and Discussions

In this paper, we consider an integrative group factor model to do covariance-type variable

clustering of a p✂ T data matrix, viewed as p variables with T replicates, which makes it different

from stochastic block models (Gao et al., 2018; Zhang et al., 2018, 2016) where a p ✂ p binary

adjacency matrix is analyzed. Although we could have applied available clustering procedures

tailored for stochastic block models to the empirical covariance matrix T✁1YY❏ or covariance

matrix estimated by PCA procedure ♣Σ ✏ ♣C♣C❏ � ♣σ2
uI, by treating it as some sort of weighted

adjacency matrix, it turns out that applying verbatim the spectral clustering procedure would lead to

poor results (Bunea et al., 2020). Also, different from mean-type model for variable clustering (Lu

and Zhou, 2016), we assume the data to be zero mean and define the clustering structure based on

variances and covariances of variable. Compared with existing covariance-type model for variable

clustering such as approximate G-block model (Bunea et al., 2020), we relax the condition of

data matrix by allowing the T replicates to be temporally dependent. More importantly, we allow

the variables in the same cluster to have different variances and covariances, which gives more

flexibility to the model and increases the difficulty of identifiability and estimation as well. In

addition, we consider a permutation invariant loss function of clustering assignments to give a

permutation invariant clustering error rate. The invariant clustering error rate is appropriate for

applications in which an ordering of the variables is not available (Jin et al., 2015; Wagaman and

Levina, 2009), such as genetics, social, finical and economic data

In the integrative group factor model, the commonality among clusters are modeled through

some common factors. The factor structure and test for loadings of factors (Fan et al., 2016) shed a

light on testing for commonality among clusters. We continue to formalize the notion of common
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factors between different clusters of variables and propose to use it as a general approach to study

the structure of factors. By testing on the loadings of common factors, we propose inference on

the commonality among clusters, which leads to better understanding of the clustering structure.

Since the latent factors integrative group factor model consist of common factors as well as unique

factors, it is crucial to separate common factors from unique factors, especially when the signals

of common factors are not very strong. Thus, we will first propose the test for commonality

conditional on perfect separation of common factors from unique factors and then extend it to

unconditional case. We will extend our work to the question in future efforts.

In addition, to demonstrate our method of clustering recovery, we will propose numerical

and real-data studies to compare our propose Algorithm 4 with other variable clustering algo-

rithms, such as k-means algorithm (MacQueen et al., 1967), k-medoids algorithm (Kaufman and

Rousseeuw, 2009), hierarchical clustering method (Guha et al., 1998; Karypis et al., 1999; Zhang

et al., 1996), spectral clustering method (Alzate et al., 2009; Jebara et al., 2007; Yin and Yang,

2005), group factor analysis (Klami et al., 2014), partial common PCA (Wang et al., 2019), COD

and PECOK algorithm (Bunea et al., 2020). We will consider some simple cases such as the spe-

cial case of both integrative group factor model and approximate G-block model given in Section

4.2.2, and some complicated cases of integrative group factor model where there are multiple fac-

tors in each cluster. Also, we will generate data from different dependence structures to show the

properties of our method under temporal dependence. A real data analysis will be conducted using

multinational macroeconomics indices and Fama-French series.
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Chapter 5

Conclusion and Future Work

In this dissertation, we studied non-asymptotic properties of estimation and inference of large

dimensional factor model and their applications to high-dimensional inference, multivariate time

series, and semiparametric modeling. In Chapter 2, we carefully study the non-asymptotic prop-

erties of spectral decomposition of large Gram-type matrices based on data generated from large

dimensional factor model. Specifically, we obtain the tail bound and rate of convergence of the first

and second moments for deviations between the empirical and population eigenvectors to the right

Gram matrix as well as the Berry-Esseen type bound to characterize the asymptotic distribution of

these deviations. We also derive the non-asymptotic tail bound of the ratio of eigenvalues for the

left Gram matrix, namely the sample covariance matrix, to their population counterparts regardless

of the dimension and size of data matrix. The documented non-asymptotic properties are further

applied to non-asymptotically characterize the property of the recovered number of latent factors

in PCA, which gives the bound of error rate for finite dimension and sample size. In Chapter 3, we

consider a flexible subject-specific heteroskedasticity model for large scale panel data, which em-

ploys latent semiparametric factor structure to simultaneously account for the heteroskedasticity

across subjects and contemporaneous and/or serial correlations. We propose a two-step procedure

for estimation and show the consistency and asymptotic efficiency of our regression coefficient

estimator in addition to the asymptotic normality. This leads to a more efficient confidence set of

the regression coefficient. In Chapter 4, we combine the approximate factor model with population

level clusters to give an integrative group factor model as a background model for variable clus-

tering. We quantify the difficulty of clustering data generated from integrative group factor model

in terms of a permutation-invariant clustering error., develop an algorithm to recover clustering

assignments and study its minimax-optimality. The analysis of integrative group factor model and

our proposed algorithm partitions a two-dimensional phase space into three regions showing the

impact of parameters on the possibility of clustering in integrative group factor model and the
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statistical guarantee of our proposed algorithm. In the future, We plan to continue pursuing cur-

rent and develop new directions to further broaden my research portfolio. We will adopt factor

model to model the multivariate or high dimensional time serie with multiple changing points in

the covariance structures and therefore pave a path to detect the changing covariance/structure of

high dimensional time series. Also, We will propose to extend large dimensional factor model for

modeling multivariate time series of count data with potentially growing number of subjects. In ad-

dition, we will combine PCA and Canonical Correlation Analysis (CCA) to simultaneously study

the sample covariance matrix and the cross-covariance. Lastly, we will study to an alternative

estimation to the number of factors for traditional principal component analysis using Kac-Rice

statistic.
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Appendix A

Supplemental materials for Chapter 2

This online supplementary material contains technical results used for the main paper. In Sec-

tion A.1, we prove the main results in Theorems 2.3.1-2.3.3 in the paper. In Section A.2, we show

Theorems 2.4.1-2.4.6 of the main paper. Lastly, in Section A.3, we include technical lemmas and

auxiliary results.

Here and after, we constantly explore the tail probability of random variableX in the following

sense: with probability at least 1 ✁ e✁s, X ➚ s for s → 1. Such an inequality is often proved with

probability 1✁Ce✁s instead, where C → 0 is an absolute constant. In such cases, it is easy to show

that the inequality still holds with the original probability. By replacing s with s � log♣Cq, we

claim that with probability at least 1✁ e✁s, X ➚ s� log♣Cq ➚ t1� log♣Cq✉s. Thus, it will be said

without further explanation that probability bound 1✁Ce✁s can be replaced by 1✁e✁s via adjusting

the constant. See Koltchinskii and Lounici (2017); Zhang et al. (2019) for similar discussions.

Finally, Conditions 2.2.1-2.3.1 and models (2.1.1)-(2.1.2) are referred to corresponding conditions

or models in the main paper.

A.1 Proof of Results in Section 2.3

A.1.1 Proof of Theorem 2.3.1

Proof. The conclusion in (i) follows from Lemmas A.3.3 and A.3.6. By (i), for each a → 1, we

have

T✁1♣p✁1 � T✁1q✁1E♣⑥♣F✁ F⑥2
F
q

✏
➺ ✽
0

PtT✁1♣p✁1 � T✁1q✁1⑥♣F✁ F⑥2
F
→ s✉ds

✏
➺ a

0

PtT✁1♣p✁1 � T✁1q✁1⑥♣F✁ F⑥2
F
→ s✉ds�

➺ ✽
a

PtT✁1♣p✁1 � T✁1q✁1⑥♣F✁ F⑥2
F
→ s✉ds
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↕a�
➺ ✽
a

exp♣✁Cs1④4qds

↕a� 4C♣a3④4 � 3a1④2 � 6a1④4 � 6q exp♣✁Ca1④4q,

where C is a positive constant. The right hand side of the above inequality is minimized at a

positive constant C1 such that

T✁1
E♣⑥♣F✁ F⑥2

F
q ↕ C1♣p✁1 � T✁1q.

Similarly, we have

T✁2 Var♣⑥♣F✁ F⑥2
F
q ↕ E♣⑥ ♣fk ✁ fk⑥42q ↕ ♣p✁2 � T✁2qt2� log♣6q✉C2,

where C2 is a positive constant. Finally, (iii) follows from Lemmas A.3.6 and A.3.7.

A.1.2 Proof of Theorem 2.3.2

Proof. For each k ✏ 1, . . . , K, let

rPk ✏ IT ✁ fk♣f❏k fkq✁1f❏k , P̄k ✏ IT ✁ ♣fk♣ ♣f❏k ♣fkq✁1 ♣f❏k ,
rQk ✏

➳
j✘k

tλk♣A❏Aq ✁ λj♣A❏Aq✉✁1rPj,

rBk ✏ 2
❄
2⑥rPkp

✁1FA❏AF❏rPk⑥2⑥rQkp
✁1FA❏AF❏ rQk⑥2,

and rCk ✏ 2 trtrPtp
✁1FA❏AF❏rPk✉ trtrQkp

✁1FA❏AF❏ rQk✉.

Similar to the proof of Theorem 6 in Koltchinskii and Lounici (2017) and Lemma A.3.13,

T rB✁1

k

✦
⑥ ♣fk ✁ fk⑥22 ✁ E♣⑥ ♣fk ✁ fk⑥22q✮ d✏ τ � ζ
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where supx ⑤P♣τ ↕ xq ✁Φ♣xq⑤ ➚ rB✁1

k and with probability at least 1 ✁ e✁s and ⑤ζ⑤ ➚ T✁1④2s �rB✁1

k T✁1④2s3④2. Thus,

sup
x

✞✞✞P ✑
T rB✁1

k

✦
⑥ ♣fk ✁ fk⑥22 ✁ E♣⑥ ♣fk ✁ fk⑥22q✮ ↕ x

✙
✁Φ♣xq

✞✞✞
➚ 1rBk

� z❄
T
� z3④2rBk

❄
T
� exp♣✁zq

for any z → 0. By letting z ✏ mintlog♣ rBkq, log♣T q✉, we have

sup
x

✞✞✞P ✑
T rB✁1

k

✦
⑥ ♣fk ✁ fk⑥22 ✁ E♣⑥ ♣fk ✁ fk⑥22q✮ ↕ x

✙
✁Φ♣xq

✞✞✞ ➚ 1rBk

� log♣T q❄
T

.

As rBk ✏ O♣pq, the theorem is proved following the similar arguements for Theorem 6 in Koltchin-

skii and Lounici (2017).

A.1.3 Proof of Theorem 2.3.3

Proof. Recall that

1

T
YY❏ ✏ AA❏ � 1

T
AF❏U❏ � 1

T
UFA❏ � 1

T
UU❏

and

1

T
E♣YY❏q ✏ AA❏ � 1

T
E♣UU❏q.

Also, note that AA❏, T✁1AF❏U❏, and T✁1UFA❏ all have rank K, so that for each i ✏ K �
1, . . . ,min♣p, T q, ♣λi ✖ λi♣T✁1UU❏q and λi ✖ λi♣E♣T✁1UU❏qq.

(i) If p ➔ T , by Condition 2.3.1 and Theorem 5.58 in Vershynin (2010), with probability at least

1✁ e✁2s,

⑤λi♣T✁1UU❏q ✁ λi♣E♣T✁1UU❏qq⑤ ↕ max♣ζ, ζ2q,
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for each i ✏ 1, . . . , p, where ζ ✏ ❄
CT✁1④2❄p � ❄

cT✁1④2❄s and C and c are positive

constants only depending on ut. Thus, with probability at least 1✁ e✁2s,

⑤λi♣T✁1UU❏q ✁ λi♣E♣T✁1UU❏qq⑤ ↕ C

❝
p

T
� c❄

T

❄
s,

(ii) If p → T , note that the first T largest eigenvalues of T✁1UU❏ are the same as those of

T✁1U❏U. By Condition 2.3.1 and Theorem 5.39 in Vershynin (2010), for each i ✏ 1, . . . , T ,

with probability at least 1✁ e✁2s,

❝
p

T
✁ C ✁ c❄

T

❄
s ➚ λi♣T✁1U❏Uq ➚

❝
p

T
� C � c❄

T

❄
s.

By Condition 2.2.2, for each i ✏ 1, . . . , K, λi♣AA❏q ✏ O♣pq. Also, by Condition 2.2.3 and the

discussion above, p✁1λi♣T✁1
E♣UU❏qq and p✁1λi♣T✁1UU❏q are bounded. Thus, with probability

at least 1✁ e✁2s,

♣λi
λi
↕ λi♣AA❏q � λmax♣T✁1AF❏U❏q � λmax♣T✁1UFA❏q � λmax♣T✁1UU❏q

λi♣AA❏q � λmin♣T✁1E♣UU❏qq
➚ 1� C❄

T
� c❄

pT

❄
s

and

♣λi
λi
➙ λi♣AA❏q � λmin♣T✁1AF❏U❏q � λmin♣T✁1UFA❏q � λmin♣T✁1UU❏q

λi♣AA❏q � λmax♣E♣UU❏qq
➪ 1✁ C❄

T
✁ c❄

pT

❄
s.
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A.2 Proofs of Results in Section 2.4

A.2.1 Proof of Results in Section 2.4.1

Proof of Theorem 2.4.1. By Theorem 2.3.3, if p ➔ T , for s ➔ c✁2♣❄T ✁ C
❄
pq2, with probability

at least 1✁ e✁s,

♣λi♣λi�1

➚ λi

λi�1

✧
1� C❄

T
� c❄

pT

❄
s

✯2

, i ✏ 1, . . . , K ✁ 1,

♣λK♣λK�1

➪ λK

λK�1

✧
1✁ C

❄
p❄
T

✁ c❄
T

❄
s

✯✧
1✁ C❄

T
✁ c❄

pT

❄
s

✯
,

♣λi♣λi�1

➚ λi

λi�1

✧
1� C

❄
p❄
T

� c❄
T

❄
s

✯2

, i ✏ K � 1, . . . , L,

Thus, for s ➔ c✁1T � c✁1Cp, with probability at least 1✁ e✁s,

♣λK④♣λK�1

maxi✘K
♣λi④♣λi�1

➪ λK④λK�1

C3

✧
1✁ C

❄
p❄
T

✁ c❄
T

❄
s

✯4

where C3 ✏ max1↕i↕L,i✘K λi④λi�1. Thus,

P♣ ♣K ✏ Kq ➙ 1✁ 2 expt✁♣C1

❄
T ✁ C2

❄
pq2✉,

where

C1 ✏ 1

c

★
1✁

✂
λK�1

λK
max

1↕i↕L,i✘K
λi④λi�1

✡1④4✰

and C2 ✏ c✁1C.

On the other hand, if p → T , for s ➔ c✁2♣❄p✁ C
❄
T q2, with probability at least 1✁ e✁s,

♣λi♣λi�1

➚ λi

λi�1

✧
1� C❄

T
� c❄

pT

❄
s

✯2

, i ✏ 1, . . . , K ✁ 1,

♣λK♣λK�1

➪ TλK

pλK�1

✧
1✁ C

❄
T❄
p

✁ c❄
p

❄
s

✯✧
1✁ C❄

T
✁ c❄

pT

❄
s

✯
,
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♣λi♣λi�1

➚ λi

λi�1

✧
1� C

❄
T❄
p

� c❄
p

❄
s

✯2

, i ✏ K � 1, . . . , L.

Thus, for s ➔ c✁1p� c✁1CT , with probability at least 1✁ e✁s,

♣λK④♣λK�1

maxi✘K
♣λi④♣λi�1

➪ TλK④♣pλK�1q
C3

✧
1✁ C

❄
T❄
p

✁ c❄
p

❄
s

✯4

.

Thus,

P♣ ♣K ✏ Kq ➙ 1✁ 2 expt✁♣C4

❄
p✁ C2

❄
T q2✉,

where

C4 ✏ 1

c

★
1✁

✂
pλK�1

TλK
max

1↕i↕L,i✘K
λi④λi�1

✡1④4✰

The conclusion follows.

Proof of Theorem 2.4.2. By Theorem 2.3.3, for each i ✏ 1, . . . , L,

⑤♣λi ✁ λi⑤ ↕
C
❄
p❄
T

� c❄
T

❄
s.

Thus, with probability at least 1✁ e✁s,

♣λi ✁ ♣λi�1 ➙ λi ✁ λi�1 ✁
2C

❄
p❄

T
✁ 2c❄

T

❄
s

for i ✏ 1, . . . , K and

♣λK�1 ✁ ♣λK�2 ↕ λK�1 ✁ λK�2 �
2C

❄
p❄

T
� 2c❄

T

❄
s.
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Thus,

P♣ ♣Kd ✏ Kq ✏
K↔
i✏1

P♣♣λi ✁ ♣λi�1 ➙ δ, ♣λK�1 ✁ ♣λK�2 ↕ δq

➙1✁ 2

K�1➳
i✏1

expt✁♣C1i

❄
T ✁ C2

❄
pq2✉,

where C1i ✏ ♣2cq✁1♣λi ✁ λi�1 ✁ δq for i ✏ 1, . . . , K, C1,K�1 ✏ c✁1♣δ ✁ λK�2 � λK�1q, and

C2 ✏ c✁1C. The theorem is proved.

A.2.2 Proof of Results in Section 2.4.2

Proof of Theorem 2.4.3. Note that

♣Γ♣h,♣f tq ✁ ♣Γ♣h, f tq ✏ 1

T
♣FP1

✔✖✕0h✂♣T✁hq 0♣T✁hq✂♣T✁hq

IT✁h 0♣T✁hq✂h

✜✣✢P1
♣F

✁ 1

T
FP1

✔✖✕0h✂♣T✁hq 0♣T✁hq✂♣T✁hq

IT✁h 0♣T✁hq✂h

✜✣✢P1F.

The conclusion follows from Lemmas A.3.3 and A.3.6.

Proof of Theorem 2.4.4. By Theorem 2.4.3, for each k ✏ 1, . . . , K, with probability at least 1 ✁
e✁s,

⑤♣γ♣h, ♣ftkq ✁ ♣γ♣h, ftkq⑤2 ➚ 1

T

✂
1

p
� 1

T

✡
s.

Thus, with probability at least 1✁ e✁s,

⑤♣ρ♣h, ♣ftkq ✁ ♣ρ♣h, ftkq⑤2 ✏
✞✞✞✞✞♣γ♣h, ♣ftkq♣γ♣0, ♣ftkq ✁ ♣γ♣h, ftkq♣γ♣0, ftkq

✞✞✞✞✞
2

➚ 1

T

✂
1

p
� 1

T

✡
s.
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A.2.3 Proof of Results in Section 2.4.3

Proof of Theorem 2.4.5. It is easy to see that ♣wi ✏ ⑥Y ♣fi⑥✁12
Y ♣fi for i ↕ K. Also, we have

Yfi ✏ AF❏fi �Ufi ✏ A♣f❏
1
fi, . . . ,f

❏
Kfiq❏ � ♣u❏

1
fi, . . . ,u

❏
nfiq❏.

By Condition 2.2.1,

E♣Yfiq ✏ TAei,

where ei is the ith natural basis in R
T , and

T✁1⑥Yfi ✁ E♣Yfiq⑥22 ➚ T✁1⑥A⑥2
2
s,

with probability at least 1 ✁ e✁s. Thus, by the proof of Theorem 2.3.1, with probability at least

1✁ 4e✁s,

T✁1⑥Yfi ✁ E♣Yfiq⑥22 ➚ ♣p✁1 � T✁1q⑥A⑥2
2
s.

Finally, by Condition 2.2.1, A❏A is a diagonal matrix almost surely. Thus, wi ✏ ⑥Aei⑥✁12
Aei

almost surely. Similar to the proof of Theorem 2.3.1, the conclusion follows.

For each i ✏ 1, . . . , p, let

Bi ✏ 2
❄
2⑥PiT

✁1
E♣YY❏qPi⑥2⑥QiT

✁1
E♣YY❏qQi⑥2

and

Ci ✏ 2 trtPiT
✁1
E♣YY❏qPi✉ trtQiT

✁1
E♣YY❏qQi✉,

where, as defined in Section 2.4.3, Pi ✏ Ip ✁wi♣w❏i wiq✁1w❏i , ♣Pi ✏ Ip ✁ ♣wi♣ ♣w❏i ♣wiq✁1 ♣w❏i , and

Qi ✏
➦

j✘i♣λi ✁ λjq✁1Pj .
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Proof of Theorem 2.4.6. Similar to the proof of Theorem 2.3.2,by Lemma A.3.12,

TB✁1

i

✦
⑥♣Pi ✁Pi⑥22 ✁ E♣⑥♣Pi ✁Pi⑥22q

✮
d✏ τ � ζ

where

sup
x

⑤P♣τ ↕ xq ✁Φ♣xq⑤ ➚ 1

Bi

and with probability at least 1✁ e✁s,

⑤ζ⑤ ➚ s❄
T
� s3④2

Bi

❄
T
� tlog♣T q✉1④2tlog♣pq✉1④4

T 1④8Bie✁s④4 .

Thus,

sup
x

✞✞✞P ✑TB✁1

i

✦
⑥♣Pi ✁Pi⑥22 ✁ E♣⑥♣Pi ✁Pi⑥22q

✮
↕ x

✙
✁Φ♣xq

✞✞✞
➚ 1

Bi

� s❄
T
� s3④2

Bi

❄
T
� tlog♣T q✉1④2tlog♣pq✉1④4 exp♣✁s④4q

T 1④8Bi

� exp♣✁sq

for any s → 0. By letting

s ✏ min

✧
log♣Biq, log♣T q, log

✂
T 1④8Bi

tlog♣T q✉1④2tlog♣pq✉1④4
✡✯

,

we have

sup
x

✞✞✞P ✑TB✁1

i

✦
⑥♣Pi ✁Pi⑥22 ✁ E♣⑥♣Pi ✁Pi⑥22q

✮
↕ x

✙
✁Φ♣xq

✞✞✞
➚ 1

Bi

� log♣T q❄
T

� tlog♣T q✉1④2tlog♣pq✉1④4
T 1④8Bi

.

Similar to the proof of Theorem 6 in Koltchinskii and Lounici (2017), the conclusion follows.
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A.3 Auxiliary Lemmas

Lemma A.3.1. Under Conditions 2.2.1-2.2.3, given Y in model (2.1.1) or (2.1.2),

(i) E♣⑥F❏U❏⑥2
F
q ✏ O♣pT q, E♣⑥U⑥2

2
q ✏ O♣pq, E♣⑥A❏U⑥2

F
q ✏ O♣pT q and E♣⑥A❏UF⑥2

F
q ✏

O♣pT q.

(ii) With probability at least 1 ✁ 4e✁s, ⑥F❏U❏⑥F ➚ ♣pT q1④2❄s, ⑥U⑥2 ➚ p1④2
❄
s, ⑥A❏U⑥F ➚

♣pT q1④2❄s and ⑥A❏UF⑥F ➚ ♣pT q1④2❄s.

Proof. (i) The conclusion follows from Lemma D.2 in Wang and Fan (2017).

(ii) For any x → 0, it holds

P♣⑥F❏U❏⑥F④
❛
C0pT →Mq ↕ exp♣✁xMqErexptx⑥F❏U❏⑥F④

❛
C0pT ✉s

↕ exp♣✁xMqE
✑
1� x⑥F❏U❏⑥F④

❛
C0pT

�x2⑥F❏U❏⑥2
F
④t2C0pT ✉ � o♣x2⑥F❏U❏⑥2

F
④t2C0pT ✉q

✘
↕ expt✁xM � x� x2④2� o♣x2q✉

since E♣⑥F❏U❏⑥2
F
q ↕ C0pT for someC0 → 0. The minimum of right hand side is expt✁♣M✁

1q2④2✉. Letting s ✏ 2✁1♣M ✁ 1q2, we have with probability at least 1 ✁ e✁s, ⑥F❏U❏⑥F ➚
❄
pTs. The remaining bounds can be derived similarly.

Denote K aK✂K diagonal matrix with diagonals equal to the firstK eigenvalues of ♣pT q✁1Y❏Y.

Then ♣pT q✁1Y❏Y♣F ✏ ♣FK. Let

H ✏ ♣pT q✁1A❏AF❏♣FK✁1.

By model (2.1.2), we have ♣F✁ FH ✏ �➦
3

i✏1
Mi

✟
K✁1 where

M1 ✏ 1

pT
FA❏U♣F, M2 ✏ 1

pT
U❏AF❏♣F, M3 ✏ 1

pT
U❏U♣F.
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Then, we will provide a bound on ⑥H✁ I⑥F using Lemmas A.3.2 to A.3.6.

Lemma A.3.2. Under Conditions 2.2.1-2.2.3, with probability at least 1 ✁ 5e✁s, ⑥K✁1⑥2 ➚ 1 �
T✁1④2❄s.

Proof. The K largest eigenvalues of ♣pT q✁1Y❏Y are the same as those of W ✏ ♣pT q✁1YY❏. As

Y ✏ AF❏ �U, we have W ✏ ➦
5

i✏1
Wi where

W1 ✏ 1

p
AA❏, W2 ✏ 1

pT
AF❏U❏, W3 ✏ W❏

2
,

W4 ✏ 1

pT
UU❏, W5 ✏ 1

p
A

✂
1

T
F❏F✁ I

✡
A❏.

By Lemma A.3.1, with probability at least 1✁ 4e✁s,

⑥W2⑥2 ↕ ♣pT q✁1⑥A⑥2
✎✎F❏U✎✎

F
➚ T✁1④2❄s,

and

⑥W4⑥2 ↕ ♣pT q✁1⑥U⑥2
2
➚ T✁1s.

By Condition 2.2.1, with probability at least 1 ✁ e✁s, ⑥W5⑥2 ➚ T✁1④2❄s. For k ✏ 1, . . . , K,

⑤λk♣Wq ✁ λk♣W1q⑤ ↕ ⑥W ✁W1⑥2. This implies, with probability at least 1 ✁ 5e✁s, ⑤λk♣Wq ✁
λk♣W1q⑤ ➚ T✁1④2❄s for each k ✏ 1, . . . , K. Note that the K largest eigenvalues of W1 is

also the K largest eigenvalues of p✁1A❏A. Thus, with probability at least 1 ✁ 5e✁s, ⑥K✁1⑥2 ➚
1� T✁1④2❄s.

Lemma A.3.3. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 5e✁s,

1

T
⑥♣F✁ FH⑥2

F
➚
✂
1

p
� 1

T 2

✡✁
1� s

T

✠
s2.

Proof. Note that ⑥♣F⑥F ✏ ❄
KT with probability 1 and by Condition 2.2.1,

⑥F⑥F ➚
❄
T t1� T✁1④2❄s✉
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with probability at least 1 ✁ e✁s. Then, by Lemma A.3.1, with probability at least 1 ✁ 5e✁s,

⑥M1⑥F, ⑥M2⑥F ➚
❛
p✁1Ts and ⑥M3⑥F ➚ T✁1④2s. Then, the results follows Lemma A.3.2.

Lemma A.3.4. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 5e✁s,

(i) T✁1⑥M1⑥2F ➚ ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3,

(ii) T✁2⑥F❏M2⑥2F ➚ ♣pT q✁1♣1� T✁1sqs,

(iii) T✁2⑥F❏♣♣F✁ FHq⑥2
F
➚ ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3,

(iv) T✁2⑥♣F❏♣♣F✁ FHq⑥2
F
➚ ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3.

Proof. (i) With probability at least 1✁ 5e✁s,

⑥H⑥2 ↕ ♣pT q✁1⑥A⑥2
F
⑥F⑥F⑥♣F⑥F⑥K✁1⑥2 ➚ 1� sT✁1

by Lemma A.3.2. Then by Lemmas A.3.1 and A.3.3, with probability at least 1✁ 5e✁s,

⑥A❏U♣F⑥2
F
↕ 2⑥A❏U♣♣F✁ FHq⑥2

F
� 2⑥A❏UFH⑥2

F

➚ pT

✂
T

p
� 1

✡
s3 � pTs

✂
1� s2

T 2

✡
➚ ♣T 2 � pT qs3.

The result follows that ⑥F⑥F ➚
❄
T t1� T✁1④2❄s✉ with probability at least 1✁ e✁s.

(ii) Similar to (i), with probability at least 1✁ 5e✁s,

1

T 2
⑥F❏M2⑥2F ↕

1

p2T 4
⑥F❏U❏A⑥2

F
⑥F⑥2

F
⑥♣F⑥2

F
➚ s

pT

✁
1� s

T

✠
.

(iii) Combining (i) and (ii), the result follows from the proof of Lemma A.3.3.

(iv) The result follows from ⑥♣F❏♣♣F✁ FHq⑥F ↕ ⑥♣F✁ FH⑥2
F
� ⑥H❏F❏♣♣F✁ FHq⑥F.
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Lemma A.3.5. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 5e✁s,

⑥H❏H✁ IK⑥2F ➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠3

.

Proof. By Condition 2.2.1, ⑥T✁1F❏F ✁ IK⑥F ➚ T✁1④2❄s with probability at least 1 ✁ e✁s. Also,♣F❏♣F ✏ T IK . Thus,

H❏H✁ IK ✏ H❏
✂
IK ✁ 1

T
F❏F

✡
H� 1

T
♣FH✁ ♣Fq❏FH� 1

T
♣F❏♣FH✁ ♣Fq.

The result follows from Lemma A.3.4.

Lemma A.3.6. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 5e✁s,

⑥H✁ IK⑥2F ➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Proof. Note that pHK ✏ A❏A
✁
T✁1F❏♣F✁H

✠
� A❏AH. By Lemma A.3.4, with probability

at least 1✁ 5e✁s,

✎✎✎✎1pA❏A
✂
1

T
F❏♣F✁H

✡✎✎✎✎2
F

↕ 1

p2
⑥A❏A⑥2

F

1

T 2
⑥F❏♣♣F✁ FHq⑥2

F
� 1

p2
⑥A❏A⑥2

F

✎✎✎✎IK ✁ 1

T
F❏F

✎✎✎✎2
F

⑥H⑥2
2

➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Therefore, with probability at least 1✁ 5e✁s,

✎✎✎✎1pA❏AH✁HK

✎✎✎✎2
F

➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

This implies that with probability at least 1✁5e✁s, H (up to an error term) is a matrix consisting of

eigenvectors of p✁1A❏A. By Condition 2.2.1, A❏A is a diagonal matrix with distinct eigenvalues

with probability 1. Thus, each eigenvalue is associated with a unique unitary eigenvector up to
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a sign change and each eigenvector has a single non-zero entry. Thus, with probability at least

1✁ 5e✁s,

⑥H✁ J⑥2
F
➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
for some diagonal matrix J. By Lemma A.3.5, with probability at least 1 ✁ 5e✁s, for each k ✏
1, . . . , K,

⑤λk♣Hq ✁ η⑤2 ➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
where η is either 1 or ✁1. Without loss of generality , we can assume that all entries of H is

positive (otherwise we can multiply the corresponding columns of ♣F and ♣A by ✁1). Hence, with

probability at least 1✁ 5e✁s,

⑥H✁ IK⑥2F ✏
➳
i✘j

h2ij �
K➳
i✏1

♣hii ✁ 1q2 ➚
✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Lemma A.3.7. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 6e✁s,

⑥♣F✁ FH⑥max ➚
✂

1❄
p
� 1

T

✡
tlog♣T q✉2④r3s. (A.3.1)

Proof. By Lemma D.2 in Fan et al. (2013), with probability at least 1✁ 2e✁s,

⑥U❏U⑥max ➚ ♣❄pT � pqs

and

⑥A❏U⑥max ➚ ❄
pTs.

Also, with probability at least 1✁ e✁s, ⑥F⑥max ➚ tlog♣T q � s✉1④r3 . Thus, with probability at least

1✁ 3e✁s, ⑥M1⑥max, ⑥M2⑥max ➚ p✁1④2

tlog♣T q✉2④r3s and ⑥M3⑥max ➚ ♣p✁1④2 � T✁1qtlog♣T q✉1④r3s. The result follows from Lemma A.3.2

that ⑥K✁1⑥2 ➚ 1� T✁1④2❄s with probability at least 1✁ 5e✁s.
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Recall that ♣A ✏ T✁1Y♣F. We have ♣A✁AH ✏ ➦3

i✏1
Ci where

C1 ✏ 1

T
AF❏♣♣F✁ FHq, C2 ✏ 1

T
UFH, C3 ✏ 1

T
U♣♣F✁ FHq.

Lemma A.3.8. Under Conditions 2.2.1-2.2.3, with probability at least 1✁ 7e✁s,

(i) p✁1⑥♣A✁AH⑥2
F
➚ ♣T✁1s� T✁2s2 � p✁1T✁1s3 � p✁2s3q♣1� T✁1sq,

(ii) ⑥♣A✁AH⑥max ➚ T✁1④2tlog♣pq✉1④2s,

(iii) ⑥♣A✁AH✁1⑥max ➚ T✁1④2tlog♣pq✉1④2s.

Proof. (i) By Lemmas A.3.1 and A.3.3, with probability at least 1 ✁ 7e✁s, ⑥C1⑥2F ➚ ♣p✁1 �
T✁1q♣1 � T✁1sqs3, ⑥C2⑥2F ➚ T✁1p♣1 � T✁1sq2s and ⑥C3⑥2F ➚ ♣T✁1 � pT✁3q♣1 � T✁1sqs3.
So

p✁1⑥♣A✁AH⑥2
F
➚ ♣pT✁1s� pT✁2s2 � T✁1s3 � p✁1s3q♣1� T✁1sq.

(ii) By Lemma B.1 in Fan et al. (2011), with probability at least 1✁e✁s, ⑥F❏U❏⑥max ➚
❛
T log♣pqs.

Then, with probability at least 1 ✁ 7e✁s, ⑥C1⑥max ➚ p✁1s, ⑥C2⑥max ➚ T✁1④2❛log♣pqs, and

⑥C3⑥max ➚ ♣pT q✁1④2tlog♣T q✉1④r3s. So we have

⑥♣A✁AH⑥max ➚ T✁1④2tlog♣pq✉1④2s.

(iii) The result follows from T ♣♣A✁AH✁1q ✏ AH✁1♣HF❏ ✁ ♣F❏q♣F�U♣♣F✁ FHq �UFH.

Lemma A.3.9. Under Conditions 2.2.1-2.2.3,

E

✧✎✎✎✎ 1TYY❏ ✁ 1

T
E♣YY❏q

✎✎✎✎
2

✯
➚
❝
p

T
.
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Proof. Recall that

T✁1YY❏ ✏ T✁1AF❏FA❏ � T✁1AF❏U❏ � T✁1UFA❏ � T✁1UU❏

and T✁1
E♣YY❏q ✏ AA❏ � T✁1

E♣UU❏q. By Condition 2.2.3, with probability at least 1✁ e✁s,

Et⑥T✁1AF❏FA❏ ✁AA❏⑥2✉ ➚ p1④2T✁1④2s1④2.

By Lemma A.3.1, with probability at least 1✁ 4e✁s,

E♣⑥T✁1UFA❏⑥2q ➚ p1④2T✁1④2s.

By Theorem 1 in Koltchinskii and Lounici (2017), with probability at least 1✁ e✁s,

Et⑥T✁1UU❏ ✁ T✁1
E♣UU❏q⑥2✉ ➚ p1④2T✁1④2 � T✁1④2s1④2.

The conclusion follows.

Lemma A.3.10. Under Conditions 2.2.1-2.3.1, for each i ✏ 1, . . . , p,

sup
x

✞✞✞✞✞✞P
✩✫✪
✎✎✎✎✎ 1❄

T

T➳
t✏1

♣Piytq♣Qiytq❏
✎✎✎✎✎
2

2

↕ x

✱✳✲✁ P
�
γi⑥Qiz⑥22 ↕ x

✟✞✞✞✞✞✞ ➚ tlog♣T q✉2 log♣pq
T 1④2♣1� x4q ,

where γi is the eigenvalue of Γi ✏ T✁1
➦T

t✏1
♣Piytq♣Piytq❏, z ✒ N ♣σ2

fAA❏�σ2
uIpq independent

of Γi, σ
2

f ✏ T✁1
➦T

t✏1
E♣f11ft1q and σ2

u ✏ T✁1
➦T

t✏1
E♣u11u1tq.

Proof. Recall that yt ✏ Aft � ut,

♣Piytq♣Qiytq❏ ✏ Piyty
❏
t Qi

✏ PiAftf
❏
t A

❏Qi �PiAftu
❏
t Qi �Piutf

❏
t A

❏Qi �Piutu
❏
t Qi.
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By Condition 2.2.3 and Theorem 2 in Jirak (2016), for each k ✏ 1, . . . , K and i ✏ 1, . . . , p,

sup
x

✞✞✞✞✞P
✄➦T

t✏1
ftk❄

Tσf
↕ x

☛
✁Φ♣xq

✞✞✞✞✞ ➚ tlog♣T q✉2
T 1④2♣1� x4q

and

sup
x

✞✞✞✞✞P
✄➦T

t✏1
uit❄

Tσu
↕ x

☛
✁Φ♣xq

✞✞✞✞✞ ➚ tlog♣T q✉2
T 1④2♣1� x4q ,

where σ2

f ✏ T✁1
➦T

t✏1
E♣f11ft1q and σ2

u ✏ T✁1
➦T

t✏1
E♣u11u1tq. The conclusion follows from the

proof of Theorem 4 in Koltchinskii and Lounici (2016).

Lemma A.3.11. Under Conditions 2.2.1-2.3.1, for each i ✏ 1, . . . , p, with probability at least

1✁ e✁s,

✞✞✞⑥♣Pi ✁Pi⑥22 ✁ E♣⑥♣Pi ✁Pi⑥22q
✞✞✞ ➚tlog♣T q✉1④2tlog♣pq✉1④4

T 9④8e✁s④4 � Bi

❄
s

T

� ⑥T✁1
E♣YY❏q⑥2

2
s

ḡ2i T
� Ci

❄
s

T 3④2 ,

where ḡi ✏ min♣λi ✁ λi�1, λi✁1 ✁ λiq for i ✏ 2, . . . , p and ḡ1 ✏ λ1 ✁ λ2.

Proof. By Lemma 1 in Koltchinskii and Lounici (2016), ♣Pi✁Pi ✏ Li�Si, where Li ✏ QiDPi�
PiDQi, ⑥Si⑥2 ➚ ḡ✁2

i ⑥D⑥2
2
, and D ✏ T✁1YY❏✁T✁1

E♣YY❏q. By Lemma A.3.9, with probability

at least 1✁ e✁s,

⑥D⑥
2
➚ p1④2T✁1④2 � T✁1④2s1④2.

Notice PiDQi ✏ T✁1
➦T

t✏1
♣Piytq♣Qiytq❏, we have

⑥Li⑥22 ✏ ⑥QiDPi �PiDQi⑥22
✏ 2⑥PiDQi⑥22

✏ 2

T

✎✎✎✎✎ 1❄
T

T➳
t✏1

♣Piytq♣Qiytq❏
✎✎✎✎✎
2

2

.
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By Lemma A.3.10, with probability at least 1✁ e✁s,

✞✞t⑥Li⑥22 ✁ E♣⑥Li⑥22q✉ ✁ t2✁1Tγi⑥Qiz⑥22 ✁ 2✁1TE♣γi⑥Qiz⑥22q✉
✞✞

➚tlog♣T q✉
1④2tlog♣pq✉1④4

T 9④8e✁s④4 .

Following the proof of Theorem 4 in Koltchinskii and Lounici (2017), with probability at least

1✁ e✁s,

✞✞t2✁1Tγi⑥Qiz⑥22 ✁ 2✁1TE♣γi⑥Qiz⑥22q✉
✞✞ ➚ Bi

❄
s

T
� ⑥T✁1

E♣YY✶q⑥2✽s
ḡ2i T

� Ci

❄
s

T 3④2 ,

where Bi and Ci are given before proof of Theorem 2.4.6. The lemma is proved.

Lemma A.3.12. Under Conditions 2.2.1-2.3.1, for each i ✏ 1, . . . , p,

✞✞✞TB✁1

i Var1④2♣⑥♣Pi ✁Pi⑥22q ✁ 1
✞✞✞ ➚ log♣T q❛log♣pq

T 1④4Bi

� 1

T
� Ci❄

TBi

.

Proof. By Lemma A.3.10,

✞✞✞✞Var♣⑥Li⑥22q ✁
4

T 2
Var♣γi⑥Qiz⑥22q

✞✞✞✞
↕ 4

T 2

➺ ✽

0

✞✞✞✞✞✞P
✩✫✪
✎✎✎✎✎ 1❄

T

T➳
t✏1

♣Piytq♣Qiytq❏
✎✎✎✎✎
2

2

→ ❄
x

✱✳✲✁ P
�
γi⑥Qiz⑥22 →

❄
x
✟✞✞✞✞✞✞ dx

➚tlog♣T q✉
2 log♣pq

T 5④2 .

Notice 4Var♣γi⑥Qiz⑥22q ✏ t♣T � 1qB2
i � 2C2

i ✉T✁1 by the proof of Theorem 6 in Koltchinskii and

Lounici (2017). Thus, we have

Var♣⑥Li⑥22q ➚
1

T 2

✒tlog♣T q✉2 log♣pq
T 1④2 � T � 1

T
B2

i �
2

T
C2

i

✚
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and ✞✞✞TB✁1

i Var1④2♣⑥♣Pi ✁Pi⑥22q ✁ 1
✞✞✞ ➚ log♣T q❛log♣pq

T 1④4Bi

� 1

T
� Ci❄

TBi

.

Lemma A.3.13. Under Conditions 2.2.1-2.3.1, for each k ✏ 1, . . . , K,

✞✞✞p rB✁1

k Var1④2♣⑥P̄k ✁ rPk⑥22q ✁ 1
✞✞✞ ➚ 1

p
�

rCk❄
p rBk

.

Proof. By Lemma 1 in Koltchinskii and Lounici (2016), P̄k ✁ rPk ✏ rLk � rSk, where rD ✏
p✁1Y❏Y ✁ p✁1FA❏AF❏, rLk ✏ rQk

rDrPk � rPk
rDrQk and ⑥rSk⑥2 ➚ rg✁2

k ⑥rD⑥2
2
, where

rgk ✏ mintλk♣A❏Aq ✁ λk�1♣A❏Aq, λk✁1♣A❏Aq ✁ λk♣A❏Aq✉

for k ✏ 2, . . . , K and ḡ1 ✏ λ1♣A❏Aq ✁ λ2♣A❏Aq. By Lemma A.3.1, with probability at least

1✁ 3e✁s, ⑥D⑥
2
➚ p✁2T✁1s. Similar to Lemmas A.3.11 and A.3.12 with rBk and rCk defined before

the proof of Theorem 2.3.2, the lemma is proved.
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Appendix B

Supplemental materials for Chapter 3

This online supplementary material contains proofs of the main theorems, technical details,

and extra results from numerical studies. Proofs of the main theorems are included in Section B.1.

Technical details and discussions are reported in Section B.2. The theoretical validity of our pro-

cedure on selecting K and its numerical comparison with the competing eigenvalue-ratio based

procedures are documented in Section B.3. Section B.4 displays extra results from simulation

studies. We firs collect some notation throughout this supplementary files.

Notation. For a matrix M ✏ ♣mijq1↕i,j↕p P R
p✂p, write ⑤⑤M⑤⑤F ✏ ♣➦p

i✏1

➦p

j✏1
m2

ijq1④2 to be the

Frobenius norm, ⑥M⑥max ✏ maxi,j ⑤mij⑤ to be the maximum norm and ⑥M⑥✽ ✏ maxi
➦

j ⑤mij⑤
to be the induced ℓ✽ norm. The spectral norm of matrix M corresponds to its largest singular

value, defined as ⑤⑤M⑤⑤2 ✏ sup
aPS ⑤⑤Ma⑤⑤2, where S ✏ ta P R

p : ⑤⑤a⑤⑤2 ✏ 1✉ and the ℓq-

norm of p-dimensional vector a ✏ ♣a1, . . . , apq✶ is defined by ⑤⑤a⑤⑤q ✏ ♣➦p

j✏1
⑤aj⑤qq1④q with 1 ↕

q ➔ ✽. Denote the minimum and maximum eigenvalues of matrix M by λmin♣Mq and λmax♣Mq,
respectively. Let tr♣Mq ✏ ➦p

j✏1
mjj be the trace of M, vec♣Mq be the vectorization of M, and

❜ be the Kronecker product. We write I for an identify matrix. For sequences tan✉ and tbn✉,
an ✏ o♣bnq if an④bn Ñ 0 as nÑ ✽ and an ✏ O♣bnq if lim supnÑ✽ ⑤an⑤④bn ➔ ✽; Xn ✏ op♣anq and

Xn ✏ Op♣anq are similarly defined for a sequence of random variables Xn; an ➚ bn if and only if

an ↕ Cbn for some C independent of n; and an ✖ bn if and only if there exists C,D independent

on n such that C⑤bn⑤ ↕ ⑤an⑤ ↕ D⑤bn⑤. Denote
pÝÑ and dÝÑ the convergence in probability and in

distribution, respectively. Unless specified otherwise, δ → 0 and C → 0 denote absolute constants

independent of n, T, p.

In this supplementary file, we constantly explore the tail probability of random variable X in

the following sense: with probability at least 1 ✁ δ, X ➚ t1 � log♣1④δq✉. Such an inequality is

often proved with probability 1✁ Cδ instead, where C → 0 is an absolute constant. In such cases,

it is easy to show that the inequality still holds with the original probability. By replacing δ with
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δ④C, we claim that with probability at least 1✁ δ, X ➚ t1� log♣C④δq✉ ➚ t1� log♣1④δq✉. Thus, it

will be said without further explanation that probability bound 1✁Cδ can be replaced by 1✁ δ via

adjusting the constant. Also, note that 1 � log♣1④δq ✏ log♣e④δq, so we can replace concentration

bound 1� log♣1④δq by log♣1④δq. See Koltchinskii and Lounici (2017) for a similar discussion.

B.1 Proof of the main results

B.1.1 Invertibility of the projection matrix

Without loss of generality, we take X d ✏ r0, 1sd. Consider coefficients a1,a2 P R
Jd�1, where

ak ✏
✁
a
♣kq
0
, a

♣kq
11
, . . . , a

♣kq
J1 , . . . , a

♣kq
1d , . . . , a

♣kq
Jd

✠✶
P R

Jd�1, k ✏ 1, 2, . . .

and define

①a1,a2②n ✏ 1

n

➳
i

ta♣1q
0

�
➳
j

➳
ℓ

a
♣1q
jℓ φj♣Xiℓq✉ta♣2q0

�
➳
j

➳
ℓ

a
♣2q
jℓ φj♣Xiℓq✉. (B.1.1)

In literature, conditions on the largest and smallest eigenvalues of n✁1Φ✶Φ are usually stated as an

important assumption for theoretical guarantees (e.g. Fan et al., 2016). However, under standard

nonparametric settings, we can establish it as following.

Lemma B.1.1. Under Condition 3.3.2, whenever J ✏ o♣❄nq and d ➔ J✁1n, with probability at

least 1✁ δ,

n

✧
1✁ J

n
log♣J2④δq

✯
➚ λmin ♣Φ✶Φq ➔ λmax ♣Φ✶Φq ➚ n

✧
1� J

n
log♣J2④δq

✯
,

where

Φ ✏

✔✖✖✖✖✕
1④❄J φ1♣x11q . . . φJ♣x11q . . . φ1♣x1dq . . . φJ♣x1dq

...
...

...
...

...

1④❄J φ1♣xn1q . . . φJ♣xn1q . . . φ1♣xndq . . . φJ♣xndq

✜✣✣✣✣✢
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as defined in Section 3.2.2.

Proof. From (B.1.1), ①a,a②n ✏ a✶ ♣n✁1Φ✶Φqa for any a P R
Jd�1. For any δ → 0, let

Aδ ✏
✧
⑤①a,a②n ✁ E ♣①a,a②nq ⑤ ➪ J

n
log♣J2④δqE♣①a,a②nq

✯
.

On Ac
δ, we have

✧
1✁ J

n
log♣J2④δq

✯
E ♣①a,a②nq ➚ ①a,a②n ➚

✧
1� J

n
log♣J2④δq

✯
E ♣①a,a②nq .

By Lemma B.2.4, E ♣①a,a②nq ✖ ⑥a⑥2
2
. Thus, we have

✧
1✁ J

n
log♣J2④δq

✯
⑥a⑥2

2
➚ a✶ �n✁1Φ✶Φ

✟
a ➚

✧
1� J

n
log♣J2④δq

✯
⑥a⑥2

2
.

The conclusion follows from Lemma B.2.5, which implies PtAδ✉ ➔ δ.

B.1.2 Proof of Theorems 3.3.1 and 3.3.3

Theorems 3.3.1 and 3.3.3 readily follow Propositions B.2.1–B.2.4.

B.1.3 Proof of Theorem 3.3.2

Recall that ♣V ✏ ♣GV♣ ♣ftq♣G✶ � ♣D, similarly to the proof of Lemma B.2.17, we have

λmin♣♣Vq ➪ 1

T

✓
1� 1❄

nT
�
❛
T � p2n2α

❄
n3T

� t♣T � p2n2αq log♣nq✉1④4❄
n2T

� 1

nJκ④2

✛
t1�

❛
log♣1④δq✉,

with probability at least 1✁ δ. Then, by Lemma B.2.17, with probability at least 1✁ δ,

✎✎✎ ♣V✁1 ✁V✁1

✎✎✎
2

✏
✎✎✎ ♣V✁1♣V ✁ ♣VqV✁1

✎✎✎
2

↕
✎✎✎ ♣V✁1

✎✎✎
2

✎✎✎V✁1♣♣V ✁Vq
✎✎✎
2

➚ T

✧❄
J

n
� 1❄

n
� 1

T
� p

❄
J❄

n1✁2αT
� 1

J ♣κ✁1q④2

✯
t1�

❛
log♣1④δq✉.
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By Lemmas B.2.2 and B.2.3, ⑥Z✶
0
♣Gf̄ � ūq⑥2 ➚ ⑥Z0⑥FT✁1④2❛log♣1④δq with probability at least

1✁ δ. Thus, with probability at least 1✁ δ,

✎✎✎β̄ ✁ rβ✎✎✎
2

↕ ⑥t♣Z✶
0
♣V✁1

Z0q✁1 ✁ ♣Z✶
0
V✁1

Z0q✁1✉Z✶
0
V✁1♣Gf̄ � ūq⑥2

� ⑥♣Z✶
0
♣V✁1

Z0q✁1
Z
✶
0
♣♣V✁1 ✁V✁1q♣Gf̄ � ūq⑥2

↕ ⑥♣Z✶
0
V✁1

Z0q✁1
Z
✶
0
⑥2⑥♣Z✶

0
♣V✁1

Z0q✁1
Z
✶
0
⑥2⑥V✁1⑥2⑥Z✶

0
♣Gf̄ � ūq⑥2⑥♣V✁1 ✁V✁1⑥2

� ⑥♣Z✶
0
♣V✁1

Z0q✁1⑥2⑥Z✶
0
♣Gf̄ � ūq⑥2⑥♣V✁1 ✁V✁1⑥2

➚ 1❄
nT

✧❄
J

n
� 1❄

n
� 1

T
� p

❄
J❄

n1✁2αT
� 1

J ♣κ✁1q④2

✯
t1�

❛
log♣1④δq✉.

Therefore, for any a → 0,

E

✂✎✎✎β̄ ✁ rβ✎✎✎2
2

✡
✏
➺ ✽

0

P

✂✎✎✎β̄ ✁ rβ✎✎✎2
2

→ s

✡
ds

✏
➺ a

0

P

✂✎✎✎β̄ ✁ rβ✎✎✎2
2

→ s

✡
ds�

➺ ✽

a

P

✂✎✎✎β̄ ✁ rβ✎✎✎2
2

→ s

✡
ds

↕ a� e

➺ ✽

a

exp

★
✁ snT

Cϑ2

n,T,J

✰
ds

✏ a� Ceϑ2

n,T,J

nT
exp

★
✁ anT

Cϑ2

n,T,J

✰
,

with ϑn,T,J ✏ J1④2n✁1�n✁1④2�T✁1�pJ1④2n✁1④2�αT✁1④2�J✁♣κ✁1q④2 and constant C → 0. Letting

a ✏ ♣nT q✁1Cϑ2

n,T,Jt1� log♣21q✉ gives

E

✂✎✎✎β̄ ✁ rβ✎✎✎2
2

✡
↕ 2Cϑ2

n,T,J

nT
.

For TOPE β̄ and the oracle generalized least squares (GLS) estimator rβ whose jth components

are denoted by β̄j and rβj respectively, repeatedly employing Cauchy-Schwartz inequality to each

of the ♣i, jq pair with i, j ✏ 1, . . . , p leads to

⑤Cov♣β̄i, β̄jq ✁ Cov♣rβi, rβjq⑤
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✏⑤Et♣β̄i ✁ βiq♣β̄j ✁ rβjq✉ � Et♣β̄i ✁ rβiq♣rβj ✁ βjq✉⑤

↕rEt♣β̄i ✁ βiq2✉s1④2rEt♣β̄j ✁ rβjq2✉s1④2 � rEt♣rβj ✁ βjq2✉s1④2rEt♣β̄i ✁ rβiq2✉s1④2
➚ ϑn,T,J

nT
� ϑ2

n,T,J

♣nT q3④2 ,

which yields

✎✎✎Var♣β̄q ✁ Var♣rβq✎✎✎
F

✏
✓

p➳
i,j✏1

✦
Cov♣β̄i, β̄jq ✁ Cov♣rβi, rβjq✮2

✛1④2

➚ pϑn,T,J

nT
� pϑ2

n,T,J

♣nT q3④2 .

B.1.4 Proof of Theorem 3.4.1

(i) For the oracle GLS estimator rβ, it holds

rβ ✁ β ✏♣Z✶
0
V✁1

Z0q✁1
Z
✶
0
V✁1

✄
G

1

T

T➳
t✏1

ft � 1

T

T➳
t✏1

ut

☛

:✏A
✄
G

1

T

T➳
t✏1

ft � 1

T

T➳
t✏1

ut

☛
,

where A ✏ ♣Z✶
0
V✁1

Z0q✁1
Z0V

✁1 and V ✏ GVar♣T✁1
➦T

t✏1
ftqG✶ � Var♣T✁1

➦T

t✏1
u1tqIn

as defined in (3.2.5) in the main paper. For any p-vector c,

♣nT q1④2c✶♣rβ ✁ βq :✏
T➳
t✏1

♣Wnt �⑨Wntq,

where Wnt ✏ n1④2T✁1④2c✶Aut and ⑨Wnt ✏ n1④2T✁1④2c✶AGft. Then

T➳
t✏1

Er⑤Wnt⑤3s ✏ n3④2T✁1④2⑥c⑥3
2
Er⑥A⑥3

2
⑥sEr⑥u1⑥32s ➔ ✽
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for any n, and since ⑥A⑥2 ↕ ⑥A⑥F ↕ p⑥A⑥2 we have

➦T

t✏1
Er⑤Wnt⑤3s✁➦T

t✏1
ErW 2

nts
✠3④2 ↕ T✁1④2⑥c⑥3

2
E r⑥A⑥3

2
sE r⑥u1⑥32s

tc✶E rAVar♣u1qA✶s c✉3④2

↕ T✁1④2
E r⑥A⑥3

2
sE r⑥u1⑥3s

tmaxi Var♣ui1q✉3④2 tE r⑥A⑥2
F
s✉3④2

Ñ 0

as T diverges to infinity. By Lyapunov central limit theorem,
➦T

t✏1
Wnt is hence asymp-

totically normal. Similarly, under Condition 3.3.4, we can show that ⑨Wnt is asymptotically

normal. In addition,
➦T

t✏1
Wnt and

➦T

t✏1
⑨Wnt are uncorrelated since tut✉ and tft✉ are inde-

pendent mean zero processes. Therefore, n1④2T 1④2c♣rβ✁βq is asymptotically normal for any

c, and we have

Σ✁1④2♣rβ ✁ βq dÝÑ N♣0, Ipq,

where Σ ✏ E r♣Z✶
0
V✁1

Z0q✁1s . By Theorem 3.3.2, we have

❄
nT ♣β̄ ✁ rβq pÝÑ 0. (B.1.2)

Notice that ⑥Σ⑥2
F
✏ OP ♣nT q, Slutsky’s theorem yields

Σ✁1④2♣β̄ ✁ βq dÝÑ N♣0, Ipq.

(ii) Similar to (i) and conditional on Zt and X, Lyapunov central limit theorem yields

♣Z✶
0
V✁1

Z0q1④2♣rβ ✁ βq dÝÑ N♣0, Ipq,

and Slusky’s theorem leads to

♣Z✶
0
V✁1

Z0q1④2♣β̄ ✁ βq dÝÑ N♣0, Ipq.
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B.2 Technical results

B.2.1 Preliminaries

Lemma B.2.1. Under Condition 3.3.5, vi♣T q ✏ T✁1④2➦T

t✏1
uit is sub-exponential for each i ✏

1, . . . , n.

Proof. Note that E♣⑤uit⑤4�δ1q ➔ ✽ for any t ✏ 1, . . . , T , i ✏ 1, . . . , n and δ1 → 0 and

✽➳
T✏0

α♣T q1④3 ➔
✽➳
t✏0

expt✁CT r1④3✉ ➔ ✽.

By Theorem 4 in Tikhomirov (1981), ⑤Ptvi♣T q ➔ s✉✁P♣Wi ➔ sq⑤ ↕ C1T
✁1④2♣1�⑤s⑤q✁4tlog♣T q✉3

for each i ✏ 1, . . . , n and any s, where W ✒ N♣0, σ2
i q and

σ2

i ✏ E♣u2i1q � 2

✽➳
t✏2

E♣ui1uitq.

Thus, we have

Pt⑤vi♣T q⑤ → s✉ ✏ P

✄✞✞✞✞✞ 1❄
T

T➳
t✏1

uit

✞✞✞✞✞ → s

☛
↕ 2 exp

✥✁s2④ �2σ2

i

✟✭� C1T
✁1④2♣1� sq✁4tlog♣T q✉3

for any T and constants C1 → 0. Furthermore, for any k ✏ 1, 2, . . .,

Et⑤vi♣T q⑤k✉

✏
➺

1

0

Pt⑤vi♣T q⑤ → s1④k✉ds�
➺ ✽
1

Pt⑤vi♣T q⑤ → s1④k✉ds

↕ 1�
➺ ✽
1

2 exp
✥✁s2④k④♣2σ2q✭ ds� ➺ ✽

1

C1T
✁1④2♣1� s1④kq✁4tlog♣T q✉3ds

↕ 1�
➺ ✽
0

2e✁tk♣2σ2

i qk④2tk④2✁1dt�
➺ ✽
1

C1kT
✁1④2tlog♣T q✉3♣1� tq✁4tk✁1dt

✏ 1� 2♣2σ2

i qk④2kΓ♣k④2q � C1πT
✁1④2tlog♣T q✉3k!,
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so that

E rexptsvi♣T q✉s ↕ 1�
✽➳

k✏2

⑤s⑤kEt⑤vi♣T q⑤k✉
k!

↕ 1� 2♣2�
❜
2σ2

i s
2q

✽➳
k✏1

♣σ2
i s

2qkk!
♣2kq! � C1πT

✁1④2tlog♣T q✉3
✽➳

k✏2

⑤s⑤k

➚ expt2σ2

i s
2 � C1πT

✁1④2tlog♣T q✉3✉

for ⑤s⑤ ➔ mint1④σi, 1✉. The assertion follows from the definition of sub-exponential distributions.

Lemma B.2.2. Under Conditions 3.2.1 and 3.3.5, for any s → 0,

P

★✎✎✎✎✎A T➳
t✏1

ut④T
✎✎✎✎✎
2

→ s⑥A⑥F④
❄
T

✰
➔ 2p exp

✧
✁ s2

2σ2

✯

for p✂ n matrix A and σ2 ✏ maxi σ
2
i with σ2

i defined in Lemma B.2.1.

Proof. Write A ✏ ♣a1, . . . ,apq✶, where a1, . . . ,ap are n-dimensional vectors. For each m ✏
1, . . . , p and w ➙ 0, by Conditions 3.2.1, 3.2.2, and 3.3.5, Lemma B.2.1, and Corollary 4 in

Samson et al. (2000),

P

✄✞✞✞✞✞a✶m 1

T

T➳
t✏1

ut

✞✞✞✞✞ ➙ s

☛
✏ P

✄✞✞✞✞✞ n➳
i✏1

amivi♣T q
✞✞✞✞✞ ➙ s

❄
T

☛

↕ 2 exp

✧
✁ s2T

2σ2⑥am⑥22

✯
.

Hence

P

★✞✞✞✞✞a✶m T➳
t✏1

ut④T
✞✞✞✞✞ → ⑥am⑥2s④

❄
T

✰
↕ 2 exp

✧
✁ s2

2σ2

✯
for any m ✏ 1, . . . , p and

P

★✎✎✎✎✎A T➳
t✏1

ut④T
✎✎✎✎✎
2

→ ⑥A⑥Fs④
❄
T

✰
↕ 2p exp

✧
✁ s2

2σ2

✯
.
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Conclusion in Lemma B.2.2 remains valid for correlated tuit✉Tt✏1 over i. In fact, if one as-

sumes cross-sectional dependence of tuit✉ over i by letting maxj↕n
➦n

i✏1 ⑤E♣uitujtq⑤ ➔ C2, maxi↕n➦n

k✏1
➦n

m✏1
➦T

t✏1
➦T

s✏1 ⑤ cov♣uitukt, uisumsq⑤ ➔ C2, and ♣nT q✁1➦n

i✏1
➦n

j✏1
➦T

t✏1
➦T

s✏1 ⑤E♣uitujsq⑤ ➔
C2 for some C2 → 0, Corollary 4 in Samson et al. (2000) still applies in the above proof.

Lemma B.2.3. For p✂K matrix A, under Condition 3.2.1 and 3.3.5,

P

★✎✎✎✎✎A T➳
t✏1
ft④T

✎✎✎✎✎
2

→ s⑥A⑥F④
❄
T

✰
↕ 2pC3 exp♣✁C4s

2④2q

for constants C3, C4 → 0.

Proof. The proof is similar to that of Lemma B.2.2.

B.2.2 Some results for spline estimators

Lemma B.2.4. Under Condition 3.3.2, there exist constants c1, c2 such that

c1⑥a⑥22 ↕ E♣①a,a②nq ↕ c2⑥a⑥22.

Proof. It follows from Condition 3.3.2 that, for any ℓ ✏ 1, . . . , d, the marginal density of Xℓ

on its support is bounded away from 0 and ✽. Without loss of generality, we assume that, the

support of X is r0, 1sd and density h♣Xq is bounded from below and above by m1 and m2 with

0 ➔ m1 ↕ m2 ➔ ✽.

Denote fℓ♣Xℓq ✏
➦

j ajℓφj♣Xℓq, ℓ ✏ 1, . . . , d and f0 ✑ a0. Then, we have

E♣①a,a②nq ✏ E

✔✕★a0 �➳
j

➳
l

ajℓφj♣Xℓq
✰2
✜✢ ✏ E

✔✕★a0 � d➳
ℓ✏1

fℓ♣Xℓq
✰2
✜✢ .
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Since the basis functions are centralized,

E♣①a,a②nq ✏
➺
X

★
a0 �

d➳
ℓ✏1

fℓ♣Xℓq
✰2

h♣XqdX ✖
➺
X

★
a0 �

d➳
ℓ✏1

fℓ♣Xℓq
✰2

dX

✏ a2
0
�
➺
X

★
d➳

ℓ✏1

fℓ♣Xℓq
✰2

dX

By Lemma 1 of Stone (1985), we obtain

➺
X

★
d➳

ℓ✏1

fℓ♣Xℓq
✰2

dX ➙
✂
C0

2

✡d✁1 d➳
ℓ✏1

➺
1

0

f 2

ℓ ♣xqdx

✏
✂
C0

2

✡d✁1
✄➳

ℓ

➳
j

a2jℓ

☛
,

where C0 ✏ 1✁ ♣1✁m1④m2q1④2. Consequently, we have

E♣①a,a②nq ➙ a2
0
�
✂
C0

2

✡d✁1
✄➳

ℓ

➳
j

a2jℓ

☛
➙ min

★
1,

✂
C0

2

✡d
✰
⑥a⑥2.

Similarly, we can establish that

➺
1

0

★
d➳

ℓ✏1

fℓ♣Xℓq
✰2

dX ↕ d2
d➳

ℓ✏1

➺
1

0

f 2

ℓ ♣xqdx ✏ d2

✄➳
ℓ

➳
j

a2jℓ

☛

and thus

E♣①a,a②nq ↕ a2
0
� d2

✄➳
ℓ

➳
j

a2jℓ

☛
↕ ♣1� d2q⑥a⑥2.

Lemma B.2.5. Under Condition 3.3.2, we have

P

★
sup

a1,a2PRJd�1

⑤①a1,a2②n ✁ E♣①a1,a2②n⑤q❛
E♣①a1,a1②nqE♣①a2,a2②nq

→ s

✰
↕ C1J

2 exp

✧
✁C2

n

J

s2

1� s

✯

for some constant C1, C2 → 0.
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Proof. The proof is similar to that of Lemma A.2 in Huang et al. (2004). First, notice that

①a1,a2②n ✁ E♣①a1,a2②nq ✏ 1

n

➳
ℓ,ℓ✶

➳
j,j✶
a
♣1q
jℓ a

♣2q
j✶ℓ✶

✥
e✶jℓΦ

✶Φej✶ℓ✶ ✁ E♣e✶jℓΦ✶Φej✶ℓ✶q
✭
,

where ejℓ is the ♣Jℓ� j � 1qth natural basis of RJd�1. Hence, we have

Φejℓ ✏ tφj♣X1ℓq, . . . , φj♣Xnℓq✉✶. For any j, j✶, ℓ, ℓ✶,

Var

✂
1

n
e✶jℓΦ

✶Φej✶ℓ✶

✡
↕ 1

n2

➳
i

E
✥
φ2

j♣Xiℓqφ2

j✶♣Xiℓ✶q
✭ ➚ 1

n
.

As ⑤φj♣Xℓq⑤ ↕ M for each j, ℓ for some M → 0, Bernstein’s inequality yields that for s → 0 and

constants M1, M2 → 0

P

✧✞✞✞✞ 1ne✶jℓΦ✶Φej✶ℓ✶ ✁ E

✂
1

n
e✶jℓΦ

✶Φej✶ℓ✶

✡✞✞✞✞ → c2s

✯
↕ exp

✧
✁ ns2

M1 �M2s

✯
.

By the union bound, for s → 0 and constants C1, C2 → 0

P

✓ ↕
j,j✶,ℓ,ℓ✶

✧✞✞✞✞ 1ne✶jℓΦ✶Φej✶ℓ✶ ✁ E

✂
1

n
e✶jℓΦ

✶Φej✶ℓ✶

✡✞✞✞✞ → c2s

Jd

✯✛
↕ C1J

2 exp

✧
✁ C2ns

2

J2 � sJ

✯
.

Denote

B ✏
↕

j,j✶,ℓ,ℓ✶

✥✞✞n✁1e✶jℓΦ
✶Φej✶ℓ✶ ✁ E

�
n✁1e✶jℓΦ

✶Φej✶ℓ✶
✟✞✞ → c2s♣Jdq✁1

✭
,

so that P♣Bq ➔ C1J
2 exp t✁C2ns

2♣J2 � sJq✁1✉. For each s → 0, on Bc,

⑤①a1,a2②n ✁ E♣①a1,a2②nq⑤ ✏ 1

n

➳
ℓ,ℓ✶

➳
j,j✶
a
♣1q
jℓ a

♣2q
j✶ℓ✶

✥
e✶jℓΦ

✶Φej✶ℓ✶ ✁ E♣e✶jℓΦ✶Φej✶ℓ✶q
✭

↕
➳
j,ℓ

➳
j✶,ℓ✶

⑤a♣1qjℓ ⑤⑤a♣2qj✶ℓ✶ ⑤
c2s

Jd

↕ c2s

Jd

✄
Jd

➳
j,ℓ

⑤a♣1qjℓ ⑤2
☛1④2✄

Jd
➳
j✶,ℓ✶

⑤a♣2qj✶ℓ✶ ⑤2
☛1④2

✏ c2s⑥a1⑥2⑥a2⑥2
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➚ s
❛
E♣①a1,a1②nqE♣①a2,a2②nq,

where the last inequality is due to Lemma B.2.4. The conclusion follows.

B.2.3 Technical results for the proof of Theorem 3.3.1

Lemma B.2.6. Under Conditions 3.3.1 and 3.3.3, for each n, with probability at least 1✁ δ,

1✁ n✁1 log♣1④δq ➚ λmin

✂
1

n
G✶PG

✡
➔ λmax

✂
1

n
G✶PG

✡
➚ 1� n✁1 log♣1④δq.

Proof. Denote R ✏ G✁PG, and we have G✶PG ✏ G✶G✁G✶R. Thus we have

λmin

✂
1

n
G✶PG

✡
➙ λmin

✂
1

n
G✶G

✡
� λmin

✂
✁ 1

n
G✶R

✡
,

λmax

✂
1

n
G✶PG

✡
↕ λmax

✂
1

n
G✶G

✡
� λmax

✂
✁ 1

n
G✶R

✡
.

Note that ⑥R⑥2
F
➚ nJ✁κ by Condition 3.3.3. Thus, combining Condition 3.3.1, it holds that, with

probability at least 1✁ δ,

⑥n✁1G✶R⑥2
F
✏ 1

n2
tr♣R✶GG✶Rq ↕ λmax

✂
1

n
GG✶

✡
1

n
tr♣R✶Rq ➚ J✁κt1� n✁1 log♣1④δq✉.

Thus, with probability at least 1 ✁ δ, ⑤λ♣G✶R④nq⑤ ➚ J✁κt1 � n✁1 log♣1④δq✉. By Condition 3.3.1,

with probability at least 1✁ δ,

1✁ n✁1 log♣1④δq ➚ λmin

✂
1

n
G✶G

✡
➔ λmax

✂
1

n
G✶G

✡
➚ 1� n✁1 log♣1④δq.

The conclusion follows.

Lemma B.2.7. Under Conditions 3.2.1 and 3.3.2-3.3.5, for rU ✏ U�ZtIT ❜ ♣β✁ ♣βq✉ defined in

Section 3.2.2 in the main paper and ♣β the OLS estimator in Proposition B.2.5,
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(i) E♣⑥F✶ rU✶⑥2
F
q ✏ O♣♣n � p2n2αqT q, E♣⑥rU✶Φ⑥2

F
q ✏ O♣nJ♣T � p2n2αqq and E♣⑥Φ✶ rUF⑥2

F
q ✏

O♣p2n1�2αTJq.

(ii) With probability at least 1 ✁ 3δ, ⑥F✶ rU✶⑥F ➚ t♣n � p2qT ✉1④2t1 � ❛
log♣1④δq✉, ⑥rU✶Φ⑥F ➚

tnJ♣T � p2q✉1④2t1�❛
log♣1④δq✉ and ⑥Φ✶ rUF⑥F ➚ ♣p2nTJq1④2t1�❛

log♣1④δq✉.

(iii) With probability at least 1✁ 4δ,

⑥PrU⑥F ➚
❛
J♣T � p2n2αqt1� n✁1J log♣J2④δq✉3④2t1�

❛
log♣1④δq✉.

Proof. (i) By Lemma B.1 of Fan et al. (2016), E♣⑥F✶U✶⑥2
F
q ✏ O♣nT q, E♣⑥U✶Φ⑥2

F
q ✏ O♣nJT q,

E♣⑥Φ✶UF⑥2
F
q ✏ O♣nTJq, and E♣⑥PU⑥2

F
q ✏ O♣JT q. Thus, it suffices to show

Er⑥ZtIT ❜ ♣β ✁ ♣βq✉F⑥2
F
s ✏ O♣p2T q, (B.2.1)

Er⑥Φ✶
ZtIT ❜ ♣β ✁ ♣βq✉⑥2

F
s ✏ O♣p2nJq, (B.2.2)

Er⑥Φ✶
ZtIT ❜ ♣β ✁ ♣βq✉F⑥2

F
s ✏ O♣p2nTJq. (B.2.3)

By Proposition B.2.5, Er⑥ZtIT ❜ ♣β ✁ ♣βq✉⑥2
F
s ↕ E♣⑥Z⑥2

F
q⑥IT ⑥22E♣⑥β ✁ ♣β⑥2

F
q ✏ O♣p2n2αq.

Then (B.2.1) follows from Cauchy-Schwartz inequality that

Er⑥ZtIT ❜ ♣β ✁ ♣βq✉F⑥2
F
s ↕ Er⑥ZtIT ❜ ♣β ✁ ♣βq✉⑥2

F
sE♣⑥F⑥2

F
q ✏ O

�
p2n2αT

✟
.

As a consequence of Lemma B.2.4, we have E♣⑥Φ⑥2
2
q ✏ O♣nq, and consequently E♣⑥Φ⑥2

F
q ↕

♣Jd� 1qE♣⑥Φ⑥2
2
q ✏ O♣nJq, and (B.2.2) holds since

Er⑥Φ✶
ZtIT ❜ ♣β ✁ ♣βq✉⑥2

F
s ↕ Er⑥ZtIT ❜ ♣β ✁ ♣βq✉⑥2

F
sE♣⑥Φ⑥2

F
q ✏ O

�
p2n1�2αJ

✟
.

Applying Cauchy-Schwartz inequality, (B.2.3) follows

Er⑥Φ✶
ZtIT ❜ ♣β ✁ ♣βq✉F⑥2

F
s ↕ Er⑥ZtIT ❜ ♣β ✁ ♣βq✉⑥2

F
sE♣⑥Φ⑥2

F
qE♣⑥F⑥2

F
q ✏ O

�
p2n1�2αTJ

✟
.
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(ii) Since E♣⑥F✶ rU✶⑥2
F
q ↕ C0♣n� p2n2αqT for some C0 → 0, for s → 0 we have

P♣⑥F✶ rU✶⑥F④
❛
C0♣n� p2n2αqT →Mq

↕ exp♣✁sMqErexpts⑥F✶ rU✶⑥F④
❛
C0♣n� p2n2αqT ✉s

↕ exp♣✁sMqE
✑
1� s⑥F✶ rU✶⑥F④

❛
C0♣n� p2n2αqT

�s2⑥F✶ rU✶⑥2
F
④t2C0♣n� p2n2αqT ✉ � o♣s2⑥F✶ rU✶⑥2

F
④t2C0♣n� p2n2αqT ✉q

✙
↕ exp♣✁sM � s� s2④2� o♣s2qq.

The minimum of the right hand side is expt✁♣M ✁ 1q2④2✉. Letting δ ✏ expt✁♣M ✁ 1q2④2✉,
we have with probability at least 1✁ δ,

⑥F✶ rU✶⑥F ➚
❛
♣n� p2n2αqT t1�

❛
log♣1④δq✉.

The remaining two bounds follows similarly.

(iii) By Lemma B.1.1, with probability at least 1✁ δ, we have

⑥Φ⑥2
2
✏ λmax♣Φ✶Φq ➚ n

✧
1� J

n
log♣J2④δq

✯

and

⑥♣Φ✶Φq✁1⑥2 ✏ λ✁1

min
♣Φ✶Φq ➚

✒
n

✧
1✁ J

n
log♣J2④δq

✯✚✁1

➚ n✁1

✒
1� J

n
log♣J2④δq � o

✧
J

n
log♣J2④δq

✯✚
➚ n✁1

✧
1� J

n
log♣J2④δq

✯
.

Hence, with probability at least 1✁ 4δ,

⑥PrU⑥F ↕ ⑥Φ⑥2⑥♣Φ✶Φq✁1⑥2⑥Φ✶ rU⑥F ➚
❛
J♣T � p2n2αq

✧
1� J

n
log♣J2④δq

✯3④2
t1�

❛
log♣1④δq✉.
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Lemma B.2.8. With probability at least 1✁ 2δ,

(i) ⑥rU✶ΦB⑥F ➚
❛
n♣T � p2n2αqt1�❛log♣1④δq✉,

(ii) ⑥B✶Φ✶ rUF⑥F ➚ p
❄
n1�2αT t1�❛log♣1④δq✉2t1�❛log♣1④δq✉.

Proof. By Proposition B.2.5,

E

✑
⑥ZtIT ❜ ♣β ✁ ♣βq✉✶ΦB⑥2

F

✙
↕ E

✑
⑥ZtIT ❜ ♣β ✁ ♣βq✉G⑥2

F

✙
� E

✑
⑥ZtIT ❜ ♣β ✁ ♣βq✉R⑥2

F

✙
✏ O♣p2n1�2αq,

E

✑
⑥B✶Φ✶

ZtIT ❜ ♣β ✁ ♣βq✉F⑥2
F

✙
↕ E

✑
⑥G✶

ZtIT ❜ ♣β ✁ ♣βq✉F⑥2
F

✙
� E

✑
⑥R✶

ZtIT ❜ ♣β ✁ ♣βq✉F⑥2
F

✙
✏ O♣p2n1�2αT q.

By Lemma C.6 in Fan et al. (2016), E ♣⑥UΦB⑥2
F
q ✏ O♣nT q and E ♣⑥BΦ✶UF⑥2

F
q ✏ O♣nT q. So

similar to the proof of Lemma B.2.7, with probability at least 1✁ 4δ,

⑥rUΦB⑥F ↕ ⑥ZtIT ❜ ♣β ✁ ♣βqB✉Φ⑥F � ⑥UΦB⑥F ➚
❛
n♣T � p2n2αqt1�

❛
log♣1④δq✉,

⑥B✶Φ✶ rUF⑥F ↕ ⑥B✶Φ✶
ZtIT ❜ ♣β ✁ ♣βq✉F⑥F � ⑥B✶Φ✶UF⑥F ➚ p

❄
n1�2αT t1�

❛
log♣1④δq✉.

Denote K aK✂K diagonal matrix whose diagonals are the firstK eigenvalues of ♣nT q✁1 rY✶PrY.

Then ♣nT q✁1 rY✶PrY♣F ✏ ♣FK. Let

H ✏ 1

nT
B✶Φ✶ΦBF✶♣FK✁1

Substituting (3.2.4), we have ♣F✁ FH ✏
✄

8➳
i✏1

Ai

☛
K✁1
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where

A1 ✏ 1

nT
FB✶Φ✶ rU♣F, A2 ✏ 1

nT
rU✶ΦBF✶♣F, A3 ✏ 1

nT
rU✶PrU♣F,

A4 ✏ 1

nT
FB✶Φ✶RF✶♣F, A5 ✏ 1

nT
FR✶ΦBF✶♣F,

A6 ✏ 1

nT
FR✶PRF✶♣F, A7 ✏ 1

nT
FR✶PrU♣F, A8 ✏ 1

nT
rU✶PRF✶♣F.

Next, in Lemmas B.2.9-B.2.13, we will provide a bound on ⑥H✁ I⑥F in probability.

Lemma B.2.9. With probability at least 1✁ 5δ, ⑥K✁1⑥2 ➚ 1� n✁1 log♣1④δq.

Proof. The K largest eigenvalues of ♣nT q✁1 rY✶PrY are the same as those of

W ✏ ♣nT q✁1♣Φ✶Φq✁1④2Φ✶ rY rY✶Φ♣Φ✶Φq✁1④2.

Substituting rY ✏ GF✶ � rU and T✁1F✶F ✏ IK , we have W ✏ ➦
4

i✏1
Wi where

W1 ✏ 1

n
♣Φ✶Φq✁1④2Φ✶GG✶Φ♣Φ✶Φq✁1④2,

W2 ✏ 1

nT
♣Φ✶Φq✁1④2Φ✶GF✶ rU✶Φ♣Φ✶Φq✁1④2,

W3 ✏ W✶
2
,

W4 ✏ 1

nT
♣Φ✶Φq✁1④2Φ✶ rUrU✶Φ♣Φ✶Φq✁1④2.

By Lemma B.1.1, with probability at least 1✁ δ, we have

⑥Φ⑥2
2
✏ λmax♣Φ✶Φq ➚ n

✧
1� J

n
log♣J2④δq

✯

and

⑥♣Φ✶Φq✁1⑥2 ✏ λ✁1

min
♣Φ✶Φq ➚

✒
n

✧
1✁ J

n
log♣J2④δq

✯✚✁1

➚ n✁1

✒
1� J

n
log♣J2④δq � o

✧
J

n
log♣J2④δq

✯✚
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➚ n✁1

✧
1� J

n
log♣J2④δq

✯
.

By Lemma B.2.6, with probability at least 1 ✁ δ, ⑥PG⑥2
2
✏ λmax ♣G✶PGq ➚ n♣1 � J✁κqt1 �

n✁1 log♣1④δq✉. Hence, with probability at least 1✁ 5δ,

⑥W2⑥2 ↕ 1

n
⑥♣Φ✶Φq✁1④2⑥2

2
⑥Φ⑥2⑥PG⑥2⑥

✎✎✎✎ 1T F✶ rU✶Φ

✎✎✎✎
F

➚ p

❝
J

n1✁2αT
♣1� J✁κqt1� n✁1J log♣J2④δq✉3④2t1�

❛
log♣1④δq✉t1� n✁1 log♣1④δq✉

and by Lemma B.2.7, with probability at least 1✁ 4δ,

⑥W4⑥2 ↕ 1

nT
⑥♣Φ✶Φq✁1④2⑥2

2
⑥Φ✶ rU⑥2

F

➚ J♣T � p2n2αq
nT

t1� J log♣J2④δq④n✉t1�
❛
log♣1④δq✉.

By Weyl’s Theorem, ⑤λk♣Wq ✁ λk♣W1q⑤ ↕ ⑥W ✁W1⑥2 for each k ✏ 1, . . . , K, which implies,

with probability at least 1✁ 5δ,

⑤λk♣Wq ✁ λk♣W1q⑤ ➚
✧

p
❄
J❄

n1✁2αT
� J♣T � p2n2αq

nT

✯
t1� J log♣J2④δq④n✉3④2t1�

❛
log♣1④δq✉.

Note that the K largest eigenvalues of W1 is also the K largest eigenvalues of n✁1G✶PG. Thus,

by Lemma B.2.6, with probability at least 1✁ 5δ, ⑥K✁1⑥2 ➚ 1� n✁1 log♣1④δq.

Lemma B.2.10. With probability at least 1✁ 7δ,

(i) ⑥A1⑥F, ⑥A2⑥F ➚
❛
n✁1♣T � p2n2αqt1�❛log♣1④δq✉,

(ii) ⑥A3⑥F ➚ n✁1T✁1④2J♣T � p2n2αqt1�❛log♣1④δq✉,

(iii) ⑥A4⑥F, ⑥A5⑥F ➚ ♣J✁κ④2❄T qt1�❛log♣1④δq✉,

(iv) ⑥A7⑥F, ⑥A8⑥F ➚
❛♣T � p2n2αq♣nJκ✁1q✁1t1�❛log♣1④δq✉;

and ⑥A6⑥F ➚ J✁κ
❄
T .
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Proof. Notice that ⑥F⑥F ✏ ❄
KT with probability 1 and ⑥♣F⑥F ✏ ❄

KT . Then, (i) follows from

Lemma B.2.8 and (ii) follows from Lemma B.2.7. By Condition 3.3.3 that ⑥R⑥2
F
➚ nJ✁κ, (iii)

follows from Lemma B.2.6 and ΦB ✏ PG. Part (iv) follows from Lemma B.2.7 and ⑥R⑥2
F
➚

nJ✁κ. Result on A6 follows similarly to (iii) given ⑥P⑥2 ✏ 1.

Lemma B.2.11. With probability at least 1✁ 3δ,

(i) ⑥A1⑥max, ⑥A2⑥max ➚ n✁1④2T✁1
❛
T � p2n2αtlog♣T q✉2④r2t1� log♣1④δq✉,

(ii) ⑥A3⑥max ➚ n✁1④2T✁1
❛
T � p2n2αtlog♣T q✉1④r2t1� log♣1④δq✉,

(iii) ⑥A4⑥max, ⑥A5⑥max ➚ n✁1T✁1tlog♣T q✉3④r2J✁κt1� log♣1④δq✉,

(iv) ⑥A7⑥max, ⑥A8⑥max ➚ ♣nT q✁1J✁κ
❛
J♣T � p2n2αqtlog♣T q✉2④r2t1� log♣1④δq✉;

and ⑥A6⑥max ➚ ♣nT q✁1J✁2κtlog♣T q✉3④r2 .

Proof. By Lemma B.1 in Fan et al. (2011), with probability at least 1 ✁ 1δ, ⑥rUPrU⑥max ➚
❄
n♣T � p2n2αqt1 � log♣1④δq✉. Also, the proof of Lemma D.2 in Wang and Fan (2017) implies

that ⑥U✶ΦB⑥✽ ➚ ❄
nT . Hence, with probability at least 1✁ δ, ⑥rU✶ΦB⑥✽ ➚ ❄

n♣T � p2n2αqt1�
log♣1④δq✉ by Lemma B.2.8. Then, the results follow from that ⑥F⑥max ➚ tlog♣T q � log♣1④δq✉1④r2

with probability at least 1✁ δ.

Proposition B.2.1. Given J ✏ o♣❄nq and κ ➙ 1,

(i) With probability at least 1✁ 12δ,

1

T
⑥♣F✁ FH⑥2

F
➚
✂
1

n
� p2

n1✁2αT
� 1

Jκ

✡
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉. (B.2.4)

(ii) With probability at least 1✁ 8δ,

⑥♣F✁ FH⑥max ➚
✂

1❄
n
� p❄

n1✁2αT

✡
tlog♣T q✉2④r2t1� log♣1④δq✉. (B.2.5)
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Proof. By Lemma B.2.9, ⑥K✁1⑥2 ➚ 1 � n✁1 log♣1④δq with probability at least 1 ✁ 5δ. The result

follows from Lemmas B.2.10 and B.2.11.

Lemma B.2.12. With probability at least 1✁ 20δ,

(i) T✁1⑥A1⑥2F ➚ tn✁2 � n✁1�2αT✁1p2 � ♣nTJκq✁1♣T � p2n2αq✉ t1 � ❛
log♣1④δq✉2t1 � n✁1

log♣1④δq✉,

(ii) T✁2⑥F✶A2⑥2F ➚ n✁1�2αT✁1p2t1�❛
log♣1④δq✉2,

(iii) T✁2⑥F✶♣♣F✁ FHq⑥2
F
➚ tn✁2 � n✁1�2αT✁1p2 � J✁κ✉ t1�❛

log♣1④δq✉2,

(iv) T✁2⑥♣F✶♣♣F✁ FHq⑥2
F
➚ tn✁2 � n✁1�2αT✁1p2 � J✁κ✉ t1�❛

log♣1④δq✉2.

Proof. (i) First, by lemmas B.2.6 and B.2.9, with probability at least 1✁ 6δ,

⑥H⑥2 ↕ 1

nT
⑥PG⑥2

F
⑥F⑥F⑥♣F⑥F⑥K✁1⑥2 ➚ 1� n✁1 log♣1④δq.

Then, by Lemma B.2.8 and Proposition B.2.1, with probability at least 1✁ 20δ,

⑥B✶Φ✶ rU♣F⑥2
F

↕ 2⑥B✶Φ✶ rU♣♣F✁ FHq⑥2
F
� 2⑥B✶Φ✶ rUFH⑥2

F

➚
✧
n♣T � p2n2αq

✂
T

n
� p2

n1✁2α
� T

Jκ

✡
� p2n1�2αT

✯
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉

➚ ✥
T 2 � p2n2αT � p4n4α � nT ♣T � p2n2αq④Jκ

✭
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉.

The result follows that ⑥F⑥F ✏ ⑥♣F⑥F ✏ ❄
KT with probability 1.

(ii) By Lemma B.2.8, with probability at least 1✁ 4δ,

1

T 2
⑥F✶A2⑥2F ↕

1

n2T 4
⑥F✶ rU✶ΦB⑥2

F
⑥F⑥2

F
⑥♣F⑥2

F
➚ p2

nT
t1�

❛
log♣1④δq✉2.
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(iii) Combining (i) and (ii), the result follows from Lemma B.2.10.

(iv) The result follows from

1

T
⑥♣F✶♣♣F✁ FHq⑥F ↕ 1

T
⑥♣F✁ FH⑥2

F
� 1

T
⑥H✶F✶♣♣F✁ FHq⑥F.

Lemma B.2.13. With probability at least 1✁ 20δ,

⑥H✶H✁ IK⑥2F ➚
✂

1

n2
� p2

n1✁2αT
� 1

Jκ

✡
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉.

Proof. By Condition 3.2.2, F✶F ✏ T IK with probability 1 and ♣F✶♣F ✏ T IK . So

H✶H ✏ 1

T
♣FHq✶FH ✏ 1

T
♣FH✁ ♣Fq✶FH� 1

T
♣F✶♣FH✁ ♣Fq � IK

and ⑥H✶H ✁ IK⑥F ↕ T✁1⑥♣♣F ✁ FHq✶F⑥F⑥H⑥2 � T✁1⑥F✶♣♣F ✁ FHq⑥F, which gives the desired

result.

Define ♣B ✏ T✁1♣Φ✶Φq✁1Φ✶ rY♣F so that ♣G ✏ T✁1PrY♣F ✏ Φ♣B , we have

♣B✁BH ✏
4➳

i✏1

Ci

where

C1 ✏ 1

T
♣Φ✶Φq✁1Φ✶RF✶♣F, C2 ✏ 1

T
♣Φ✶Φq✁1Φ✶ rUFH,

C3 ✏ 1

T
♣Φ✶Φq✁1Φ✶ rU♣♣F✁ FHq, C4 ✏ 1

T
BF✶♣♣F✁ FHq.

Proposition B.2.2. With probability at least 1✁ 20δ,

(i) ⑥♣B ✁ BH⑥2
F
➚ tn✁2J � n✁1�2αT✁1p2J � n✁2�4αT✁2p4J � J✁κ�1✉ t1 � J log♣J2④δq④n✉3

t1�❛log♣1④δq✉4,

168



(ii) n✁1⑥♣G✁GH⑥2
F
➚ ♣n✁2J � n✁1�2αT✁1p2J � n✁2�4αT✁2p4J � J✁κ�1q t1�J log♣J2④δq④n✉4t1�❛

log♣1④δq✉4.

Proof. (i) By Lemmas B.1.1, B.2.7, B.2.8 and B.2.12, with probability at least 1✁ 20δ,

⑥C1⑥2F ➚
1

Jκ
t1� J log♣J2④δq④n✉3,

⑥C2⑥2F ➚
p2J

n2αT
t1� J log♣J2④δq④n✉2t1�

❛
log♣1④δq✉2,

⑥C3⑥2F ➚
✂
J

n2
� p2J

n2✁2αT
� p4J

n2✁4αT 2
� T � p2

nTJκ✁1

✡
t1� J log♣J2④δq④n✉2

t1�
❛
log♣1④δq✉4,

⑥C4⑥2F ➚
✂
J

n2
� p2J

n1✁2αT
� 1

Jκ✁1

✡
t1� J log♣J2④δq④n✉3t1�

❛
log♣1④δq✉2.

So ⑥♣B✁BH⑥2
F
➚ tn✁2J � n✁1�2αT✁1p2J � n✁2�4αT✁2p4J � J✁κ�1✉ t1�J log♣J2④δq④n✉3t1�❛

log♣1④δq✉4.

(ii) The result follows from

1

n
⑥♣G✁GH⑥2

F
↕ 2

n
⑥Φ♣♣B✁BHq⑥2

F
� 2

n
⑥RH⑥2

F
.

Proposition B.2.3. With probability at least 1✁ 20δ,

(i) ⑥♣B✁BH⑥max ➚ n✁1④2T✁1t♣T � p2n2αq log♣nq✉1④2t1� log♣1④δq✉,

(ii) ⑥♣G✁GH⑥max ➚ T✁1t♣T � p2n2αq log♣nq✉1④2t1� log♣1④δq✉,

(iii) ⑥♣G✁GH✁1⑥max ➚ T✁1t♣T � p2n2αq log♣nq✉1④2t1� log♣1④δq✉.

Proof. (i) By Lemma B.1 in Fan et al. (2011), with probability at least 1 ✁ δ, ⑥FrU⑥max ➚❛♣T � p2q log♣nqt1 � log♣1④δq✉. Then, by Lemmas B.1.1, B.2.7, B.2.8 and B.2.12, with
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probability at least 1✁ 20δ,

⑥C1⑥max ➚ tlog♣T q✉2④r2❄
nTJκ

t1� log♣1④δq✉,

⑥C2⑥max ➚
❛♣T � p2n2αq log♣nq❄

nT
t1� log♣1④δq✉,

⑥C3⑥max ➚
✂
T � p2n2α

nT 2

✡
tlog♣T q✉2④r2t1� log♣1④δq✉,

⑥C4⑥max ➚
✂
T � p2n2α

❄
nT 2Jκ

✡
tlog♣T q✉2④r2t1� log♣1④δq✉.

So ⑥♣B✁BH⑥max ➚ n✁1④2T✁1t♣T � p2n2αq log♣nq✉1④2t1� log♣1④δq✉.

(ii) The result follows from

⑥♣G✁GH⑥max ↕ 2

n
⑥Φ♣♣B✁BHq⑥max � 2

n
⑥RH⑥max.

(iii) The result follows from

♣G✁GH✁1 ✏ 1

T
GH✁1♣HF✶ ✁ ♣F✶q♣F� 1

T
PrU♣♣F✁ FHq � 1

T
P♣UFH.

Proposition B.2.4. With probability at least 1✁ 20δ,

⑥H✁ IK⑥2F ➚
✂

1

n2
� p2

n1✁2αT
� 1

Jκ

✡
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉.

Proof. Note that

HK ✏ 1

n
B✶Φ✶ΦB

✂
1

T
F✶♣F✁H

✡
� 1

n
B✶Φ✶ΦBH.

By Lemma B.2.12, with probability at least 1✁ 20δ,

✎✎✎✎ 1nB✶Φ✶ΦB

✂
1

T
F✶♣F✁H

✡✎✎✎✎
F
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↕ 1

n
⑥ΦB⑥2

F

1

T
⑥F✶♣♣F✁ FHq⑥F

➚
✂
1

n
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣1④δq✉

❛
1� n✁1 log♣1④δq.

In addition, by Conditions 3.3.1 and 3.3.3, ⑥G✶G✁B✶Φ✶ΦB⑥F ➚ nJ✁κ④2. Therefore, with proba-

bility at least 1✁ 20δ,

✎✎✎✎ 1nG✶GH✁HK

✎✎✎✎
F

➚
✂
1

n
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣1④δq✉

❛
1� n✁1 log♣1④δq.

This implies that with probability at least 1✁ 20δ, H (up to an error term) is a matrix consisting of

eigenvectors of n✁1G✶G. By Condition 3.2.2, G✶G is a diagonal matrix with distinct eigenvalues

with probability 1. Thus, each eigenvalue is associated with a unique unitary eigenvector up to

a sign change and each eigenvector has a single non-zero entry. Thus, with probability at least

1✁ 20δ,

⑥H✁D⑥F ➚
✂
1

n
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣1④δq✉

❛
1� n✁1 log♣1④δq

for some diagonal matrix D. By Lemma B.2.13, with probability at least 1 ✁ 20δ, for each i ✏
1, . . . , K,

⑤λ♣Hq ✁ η⑤ ➚
✂
1

n
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣1④δq✉

❛
1� n✁1 log♣1④δq

where η is either 1 or ✁1. Without loss of generality , we can assume that all entries of H is

positive (otherwise we can multiply the corresponding columns of ♣F and ♣G by ✁1). Hence, with

probability at least 1✁ 20δ,

⑥H✁ IK⑥2F ✏
➳
i✘j

h2ij �
K➳
i✏1

♣hii ✁ 1q2

➚
✂

1

n2
� p2

n1✁2αT
� 1

Jκ

✡
t1�

❛
log♣1④δq✉2t1� n✁1 log♣1④δq✉.
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B.2.4 Technical results for the proof of Theorem 3.3.2

Recall that V ♣ftq ✏ T✁2
➦T✁1

t✏✁T�1
♣T ✁⑤t⑤q♣Σf ♣tq as defined in Section 3.2.2 in the main paper,

where ♣Σf ♣sq ✏ 1

T ✁ s

T✁s➳
t✏1

♣ft ✁ f̄q♣ft�s ✁ f̄q✶

and ♣Σf ♣✁sq ✏ 1

T ✁ s

T➳
t✏s

♣ft✁s ✁ f̄q♣ft ✁ f̄q✶

for s ➙ 0, respectively.

Lemma B.2.14. Under Condition 3.2.2, with probability at least 1✁ δ,

✎✎✎V♣ ♣ftq ✁ V ♣ftq
✎✎✎
F

➚ 1

T

✂
1❄
n
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣20④δq✉.

Proof. Note that

V♣ftq ✏ 1

T 2

T➳
t,s✏1

♣ft ✁ f̄q♣fs ✁ f̄q✶ ✏ 1

T 2
F✶P1F,

where P1 is the projection matrix onto ♣1, . . . , 1q✶ P R
T . Thus, by Theorem 3.3.1

✎✎✎V♣ ♣ftq ✁ V♣ftq
✎✎✎2
F

✏ 1

T 4

✎✎✎♣FP1
♣F✶ ✁ FP1F

✶
✎✎✎2
F

↕ 1

T 4
⑥♣F✁ F⑥2

F
t⑥P1

♣F⑥2
F
� ⑥P1F⑥2F✉

➚ 1

T 2

✂
1

n
� p2

n1✁2αT
� 1

Jκ

✡
t1�

❛
log♣20④δq✉2.

The conclusion follows.
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Lemma B.2.15. Under Conditions 3.2.1, 3.2.2, and 3.3.5,

✎✎✎✎✎V ♣ftq ✁ Var

✄
1

T

T➳
t✏1

ft

☛✎✎✎✎✎
F

➚ 1

T 2

Proof. Recall that

Var

✄
1

T

T➳
t✏1

ft

☛
✏ 1

T 2

➳
t,s

Cov♣ft,fsq

and

V ♣ftq ✏ 1

T 2

➳
t,s

♣ft ✁ f̄q♣fs ✁ f̄q✶.

By Davydov’s inequality (Athreya and Lahiri, 2006), for each k ✏ 1, . . . , K and t, s ✏ 1, . . . , T ,

⑤E♣ftkfskq2⑤ ➚ tα♣⑤t ✁ s⑤q✉1④r1tE♣⑤ftk⑤2q1q✉1④q1tE♣⑤fsk⑤2q2q✉1④q2 , for some q1, q2 → 0 such that

1④r1 � 1④q1 � 1④q2 ✏ 1, where α♣☎q is the α-mixing coefficient. By Condition 3.3.5, E♣⑤ftk⑤q1q
and E♣⑤fsk✶ ⑤q2q exist for each t ✏ 1, . . . , T and α♣⑤t ✁ s⑤q ➔ exp♣✁C1⑤t ✁ s⑤r1q, so ⑤E♣ftkfskq2⑤ ➚
exp♣✁⑤t✁ s⑤q. Thus,

⑥Cov♣ft,fsq⑥F ➚ exp♣✁⑤t✁ s⑤q

and

✎✎✎✎✎V ♣ftq ✁ Var

✄
1

T

T➳
t✏1

ft

☛✎✎✎✎✎
F

✏
✎✎✎✎✎ 1

T 2

➳
t,s

Cov♣ft,fsq
✎✎✎✎✎
F

➚ 1

T 2

T➳
t✏1

exp♣✁tq ➚ 1

T 2
.

Lemma B.2.16. For each i ✏ 1, . . . , n, with probability at least 1✁ δ,

✞✞✞✞✞V ♣♣uitq ✁ Var

✄
1

T

T➳
t✏1

uit

☛✞✞✞✞✞
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➚ 1

T

✒
1❄
nT

� 1

n3④2✁α
� p

T 1④2n3④2 �
t♣T � p2q log♣nq✉1④4❄

n2T
� 1

nJκ④2

✚
t1�

❛
log♣21④δq✉,

where V ♣♣u1tq is defined in Section 3.2.2 of the main paper.

Proof. Denote ♣U ✏ t♣uit✉n,Ti✏1,t✏1
. Note that

U✁ ♣U ✏ ♣♣G✁GH✁1q♣♣F✶ ✁HF✶q �GH✁1♣♣F✶ ✁HF✶q � ♣♣G✁GH✁1qHF✶.

Then by Propositions B.2.1 and B.2.3 and Cauchy-Schwartz inequality, with probability at least

1✁ 20δ,

1

T
⑥♣U✁U⑥2

F
➚
★
1

n
� p2

n1✁2αT
�
❝
♣T � p2n2αq log♣nq

T 2
� J✁κ

✰
t1� log♣1④δq✉2.

Thus, similarly to the proof of Lemmas B.2.14 and B.2.15, with probability at least 1✁ 21δ,

⑤V♣♣uitq ✁ V♣uitq⑤ ➚ 1

nT

✒
1❄
n
� p❄

n1✁2αT
� t♣T � p2n2αq log♣nq✉1④4❄

T
� 1

Jκ④2

✚
t1�

❛
log♣20④δq✉

and ✞✞✞✞✞V ♣uitq ✁ Var

✄
1

T

T➳
t✏1

uit

☛✞✞✞✞✞ ➚ 1❄
nT 2

t1�
❛
log♣1④δq✉.

The conclusion follows.

Lemma B.2.17. With probability at least 1✁ δ,

✎✎✎V✁1♣♣V ✁Vq
✎✎✎
2

➚
✧❄

J

n
� 1❄

n
� 1

T
� p

❄
J❄

n1✁2αT
� 1

J ♣κ✁1q④2

✯
t1� log♣21④δq✉.

Proof. Recall that V ✏ GVar
✁
T✁1

➦T

t✏1
ft

✠
G✶ �D, so

λmin♣Vq ➙ λmin

★
GVar

✄
T✁1

T➳
t✏1

ft

☛
G✶
✰
� λmin♣Dq ➪ T✁1.
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Note that

♣V ✁V ✏G
★
V♣ ♣ftq ✁ Var

✄
1

T

T➳
t✏1

ft

☛✰
G✶ � ♣♣G✁GqV♣ ♣ftq♣G✶

�GV♣ ♣ftq♣♣G✁Gq✶ � ♣ ♣D ✁Dq.

In addition, by the proof of Theorem 2 in Fan et al. (2008), ⑥GV✁1G⑥2 ✏ O♣T q. Thus,

✎✎✎V✁1♣♣V ✁Vq
✎✎✎
2

↕
✎✎✎✎✎V♣ ♣ftq ✁ Var

✄
1

T

T➳
t✏1

ft

☛✎✎✎✎✎
F

� 2⑥V♣ ♣ftq⑥F⑥♣G✁G⑥F �
✎✎✎ ♣D ✁D

✎✎✎
F

.

From Lemmas B.2.14 and B.2.15, with probability at least 1✁ δ,

✎✎✎✎✎V♣ ♣ftq ✁ Var

✄
1

T

T➳
t✏1

ft

☛✎✎✎✎✎
F

➚ 1

T

✂
1❄
n
� 1

T
� p❄

n1✁2αT
� 1

Jκ④2

✡
t1�

❛
log♣21④δq✉,

and

✎✎✎ ♣D ✁D

✎✎✎
F

➚ 1

T

✒
1

T
� 1

n
� p

n1✁2αT 1④2 �
t♣T � p2n2αq log♣nq✉1④4❄

nT
� 1❄

nJκ④2

✚
t1�

❛
log♣21④δq✉

which leads to the desired assertion by lemma B.2.16 and Theorem 3.3.1.

As a straightforward corollary to Lemma B.2.17, with probability at least 1✁ δ,

✎✎✎ ♣V ✁V

✎✎✎
V,F

➚
✧❄

J

n
� 1❄

n
� 1

T
� p

❄
J❄

n1✁2αT
� 1

J ♣κ✁1q④2

✯❛
log♣1④δq,

where ⑥A⑥S,F :✏ n✁1④2⑥S✁1④2AS✁1④2⑥F. If ft and ut are independent across t, then ⑥♣V✁V⑥V,F ➚
tn✁1

❄
J � p

❄
Jn✁1④2�αT✁1④2 � J✁♣κ✁1q④2✉❛log♣1④δq, which mimics the optimal rate from Fan

et al. (2013) and Wang and Fan (2017).
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B.2.5 Some legitimate preliminary estimators

In this section, we will discuss some preliminary estimators ♣β0 that satisfy the condition of

TOPE. That is, ⑥♣β0 ✁ β⑥2 ✏ OP ♣n✁1④2�αT✁1④2q for α P r0, 1④2q as in Section 3.2.2. We start with

the ordinary least squares (OLS) estimator based on an average version of model (3.1.1) or (3.2.2)

over time,

♣βOLS ✏ ♣Z✶
0
Z0q✁1

Z
✶
0
ȳ. (B.2.6)

Proposition B.2.5. Under Conditions 3.2.1, 3.2.2, and 3.3.4, with probability at least 1✁ δ,

⑥♣βOLS ✁ β⑥2
2
➚ p2

n1✁2αT
log♣1④δq.

Proof. Combining (B.2.6) and ȳ ✏ Z
✶
0
β �GT✁1

➦T

t✏1
ft � T✁1

➦T

t✏1
ut, we have

♣βOLS ✏ ♣Z✶
0
Z0q✁1

Z
✶
0

★
1

T

T➳
t✏1

♣Ztβ �Gft � utq
✰

✏ β � ♣Z✶
0
Z0q✁1

Z
✶
0
G

✄
1

T

T➳
t✏1

ft

☛
� ♣Z✶

0
Z0q✁1

Z
✶
0

✄
1

T

T➳
t✏1

ut

☛
✑ β � ♣Iq � ♣IIq.

By Condition 3.3.4, with probability 1, ⑥PZG⑥2
F
➚ n2α. In addition, eigenvalues of n✁1

Z
✶
0
Z0

is bounded away from 0 and infinity almost surely by Condition 3.3.4 (i). Thus, eigenvalues of

♣n✁1
Z
✶
0
Z0q✁1 is bounded away from 0 and infinity almost surely. That is,

✎✎✎♣Z✶
0
Z0q✁1

Z
✶
0

✎✎✎2
F

✏ trt♣Z✶
0
Z0q✁1✉ ➚ p

n
,

and thus

⑥ ♣Z✶
0
Z0q✁1

Z
✶
0
G⑥2

F
↕ ⑥ ♣Z✶

0
Z0q✁1

Z
✶
0
⑥2
F
⑥PZG⑥2

F
➚ p2

n1✁2α
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by Cauchy-Schwarz inequality. In light of Lemma B.2.3, we have

P

✦
⑥♣Iq⑥2 → sT✁1④2 ⑥ ♣Z✶

0
Z0q✁1

Z
✶
0
G⑥F

✮
➔ C1 exp♣✁C2s

2q.

By Lemma B.2.2, it holds

P

✦
⑥♣IIq⑥2 → sT✁1④2 ⑥ ♣Z✶

0
Z0q✁1

Z
✶
0
⑥F
✮
➔ C1 exp♣✁C2s

2q.

Thus, we have

P

✦
⑥♣βOLS ✁ β⑥2 → sT✁1④2 t⑥ ♣Z✶

0
Z0q✁1

Z
✶
0
G⑥F � ⑥ ♣Z✶

0
Z0q✁1

Z
✶
0
⑥F✉
✮
➔ 2C1 exp♣✁C2s

2q.

Hence, ♣βOLS is a legitimate preliminary estimator for the TOPE. In addition to the OLS es-

timator, one may consider the following preliminary estimator. As discussed in Section 3.2.1

in the main paper, zit and g♣xiq are allowed to be dependent so that we can rewrite g♣xiq as

g♣xiq ✏ Azi☎ � g0♣xiq, where A is a K ✂ p matrix and zi☎ ✏ T✁1
➦T

t✏1
zit is the average of zit

over time. Then, model (3.1.1) in the main paper can be rewritten as

yit ✏ z✶itβ � z✶i☎ηt � g0♣xiq✶ft � uit,

where ηt ✏ A✶ft. Under Condition 3.2.1, g0♣xiq✶ft � uit is uncorrelated with the regressors zit.

Hence, we can use the following random-effects GLS (Schmidheiny and Basel, 2011) to estimate

♣β,η1, . . . ,ηT q by

✔✖✖✖✖✖✖✖✕

♣β
♣η1
...

♣ηT

✜✣✣✣✣✣✣✣✢
✏ ♣W✶ ♣Σ✁1

R Wq✁1W✶ ♣Σ✁1

R y,
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where y ✏ ♣y11, . . . , yn1, . . . , y1T , . . . , ynT q✶,

W ✏

✔✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✕

z✶
11

z✶
1☎

...
...

z✶
n1 z✶

n☎
...

. . .

z✶
1T z✶

1☎
...

...

z✶
nT z✶

n☎

✜✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✢
and ♣ΣR is an estimator of ΣR, the covariance matrix of v ✏ ♣g0♣x1q✶f1 � u11, . . . , g0♣xnq✶f1 �
un1, . . . , g0♣x1q✶fT � u1T , . . . , g0♣xnq✶fT � unT q✶. Under Condition 3.2.1 in the main paper, ΣR

is a block diagonal matrix diag♣ΣR,1, . . . ,ΣR,T q with

ΣR,t ✏ E

✩✬✬✬✬✫✬✬✬✬✪

✔✖✖✖✖✕
g0♣x1q✶

...

g0♣xnq✶

✜✣✣✣✣✢
✒
g0♣x1q . . . g0♣xnq

✚✱✴✴✴✴✳✴✴✴✴✲� σ2

uIn

for each t ✏ 1, . . . , T , where var♣uitq ✏ σ2
u. There are a variety of estimators of ♣ΣR,1. For

instance, Bai (2009b) and Schmidheiny and Basel (2011) estimated ♣ΣR,1 by first estimating v,

which is achieved via the OLS estimator. This is the so-called feasible GLS estimator (Bai, 2009b;

Lam and Yao, 2012; Leek and Storey, 2007) and can be extended to the iterative feasible GLS

estimator (Bai, 2009b; Phillips, 2010). That is, we can update ♣Σnew
R,1 using ♣♣βold, ♣ηold

1
, . . . , ♣ηold

T q
from the previous step and iteratively update ♣♣βnew, ♣ηnew

1
, . . . , ♣ηnew

T q using the update ♣Σnew
R,1. The

update ♣♣βnew, ♣ηnew
1
, . . . , ♣ηnew

T q admits the following shrinkage of errors.
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Proposition B.2.6 (Lemma 1 in Phillips (2010)). Under Conditions C1 to C3 in Phillips (2010), if

T ➙ p� 1 and A0 ✏ E♣W✶Σ✁1

R Wq is nonsingular,

❄
n
✦
♣♣βnew✶

, ♣ηnew✶
1

, . . . , ♣ηnew✶
T q✶ ✁ ♣β✶,η✶

1
, . . . ,η✶T q✶

✮
✏ 2T

T ✁ 1

❄
n
✦
♣♣βold✶

, ♣ηold✶
1
, . . . , ♣ηold✶

T q✶ ✁ ♣β✶,η✶
1
, . . . ,η✶T q✶

✮
ψA✁1

0
ψ � oP ♣1q,

where ψ is given in Phillips (2010).

Together along with ⑥♣β ✁ β⑥2 ↕ ⑥♣♣β✶, ♣η✶
1
, . . . , ♣η✶T q✶ ✁ ♣β✶,η✶

1
, . . . ,η✶T q✶⑥2, Proposition B.2.6

implies that the iterative feasible GLS estimator improves as the iteration grows. Thus, upon some

iterations, the iterative feasible GLS estimator also provide a legitimate preliminary estimator for

the TOPE.

B.3 Technical results for Section 3.5.1

B.3.1 Proof of Theorem 3.5.1

Recall the notation from Section 3.5.1 that γi and ♣γi denote the eigenvectors correspond-

ing to the ith largest eigenvalues of V and rV, respectively; and θit ✏ γ ✶iryt, ♣θit ✏ ♣γ ✶iryt, and

rwt ✏ ♣♣γK0�1, . . . , ♣γnq✶ryt for ryt ✏ yt ✁ Zt
♣β discussed in Section 3.5.1. Let ♣µ ✏ ♣IS ❜♣Γqrvect♣Σ♣1q✉✶, . . . , vect♣Σ♣Sq✉✶s✶, and µ ✏ ♣IS ❜ Γqrvect♣Σ♣1q✉✶, . . . , vect♣Σ♣Sq✉✶s✶, where ♣Γ ✏

diagt♣Σ♣0q✉✁1④2 ❜ diagt♣Σ♣0q✉✁1④2, Γ ✏ diagtΣ♣0q✉✁1④2 ❜ diagtΣ♣0q✉✁1④2, ♣Σ♣sq ✏ ➦T✁s

t✏1
rwt�srw✶

t④T , and Σ♣sq ✏ ➦T

t✏1
wt�sw

✶
t④T for each s. Then, consider

♣ψ ✏
❄
T max

1↕l↕♣n✁K0q2S
♣µl, ψ ✏

❄
T max

1↕l↕♣n✁K0q2S
µl, G

0 ✏ max
1↕l↕♣n✁K0q2S

Gl,

where G ✏ ♣G1, . . . , Gl, . . . , G♣n✁K0q2Sq ✒ N♣0,ΞT q, ΞT ✏ ♣IS ❜ ΓqE♣ξTξ✶T q♣IS ❜ Γq, and

ξT ✏ ❄
T rvect♣Σ♣1q✉✶, . . . , vect♣Σ♣Sq✉✶s✶ as defined in Section 3.5.1 in the main paper.

Similar to arguments in the proof of Proposition 1 in the appendix to Chang et al. (2017),

Theorem 3.5.1 follows from sup1↕K0↕K sups ⑤P♣ ♣ψ ↕ sq ✁ P♣G0 ↕ sq⑤ ✏ o♣1q. To that end,
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first, recall that for each K0, ♣Σ♣0q ✏ ➦T

t✏1
rwt rw✶

t④T and Σ♣0q ✏ ➦T

t✏1
wtw

✶
t④T , where rwt ✏

♣ ♣wK0�1,t, . . . , ♣wntq✶ and wt ✏ ♣wK0�1,t, . . . , wntq✶. Lemma B.3.1, together with Proposition B.2.5

and Condition 3.3.5, implies that sup1↕i↕K sup1↕t↕T P♣⑤ ♣wit⑤ → sq ➚ exp♣✁srq for some r → 0.

Then, for diagt♣Σ♣0q✉✁1④2 ✏ ♣♣σ♣0q
1
, . . . , ♣σ♣0qn✁K0

q and diagtΣ♣0q✉✁1④2 ✏ ♣σ♣0q
1
, . . . , σ

♣0q
n✁K0

q, Lemma

B.3.1 and Theorem 1 in Merlevède et al. (2011) imply that

sup
1↕K0↕K

sup
1↕i↕n✁K0

P♣⑤♣σ♣0qi ✁ σ
♣0q
i ⑤ → εq ➚ nT exp♣✁T ιειq � n exp♣✁Tε2q

for some 0 ➔ ι ➔ 1 and any ǫ → 0. Hence, for each K0 ✏ 1, . . . , K and any ǫ → 0,

P♣⑤ ♣ψ ✁ ψ⑤ → εq ➚ nT exp♣✁T ιειq � n exp♣✁Tε2q. (B.3.1)

Along Lemma A.4 in Chang et al. (2017) and anti-concentration inequality of Gaussian random

variables, (B.3.1) implies

sup
1↕K0↕K

sup
s

⑤P♣ ♣ψ ↕ sq ✁ P♣G0 ↕ sq⑤

↕ sup
1↕K0↕K

sup
s

⑤P♣ ♣ψ ↕ sq ✁ P♣ψ ↕ sq⑤ � sup
s

⑤P♣ψ ↕ s� εq ✁ P♣G0 ↕ s� εq⑤

� sup
s

⑤P♣s ➔ G0 ↕ s� εq⑤ ✏ o♣1q.

This completes the proof of Theorem 3.5.1.

B.3.2 Proof of Theorem 3.5.3

For each k → 1, rejecting H0♣kq leads to the rejection of H0♣k ✁ 1q as well. That is,

tReject H0♣k ✁ 1q✉ ⑩ tReject H0♣kq✉ so that P rtReject H0♣k ✁ 1q✉ ❨ tFTR H0♣kq✉s ✏ 1,

where FTR stands for failing to reject. Hence, for each n, Theorem 3.5.2 implies that

P♣ ♣K ✏ Kq ✏ P♣r❳K✁1

k✏1
tReject H0♣kq✉s ❳ tFTR H0♣Kq✉q

✏ P rtReject H0♣K ✁ 1q✉ ❳ tFTR H0♣Kq✉s
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✏ ✁P rtReject H0♣K ✁ 1q✉ ❨ tFTR H0♣Kq✉s � P tReject H0♣K ✁ 1q✉

�P tFTR H0♣Kq✉

Ñ 1✁ αn.

as T goes to infinity. Therefore, infn P♣ ♣K ✏ Kq Ñ 1 as T diverges to infinity with αn given in

Theorem 3.5.2.

B.3.3 Technical results for Section B.3.1

For r ✂ n and n ✂ r half orthogonal matrices H1 and H2 satisfying H✶
1
H1 ✏ H✶

2
H2 ✏ Ir, as

Chang et al. (2018) we define

D♣M♣H1q,M♣H2qq ✏ t1✁ tr♣H1H
✶
1
H2H

✶
2
q④r✉1④2

where M♣H1q and M♣H2q are the column spaces of H1 and H2, respectively.

Lemma B.3.1. Under Conditions 3.2.1(b) and 3.3.5 in the main paper, for ♣θit and θit defined in

Section B.3.1,

sup
1↕i↕K

sup
1↕t↕T

⑤♣θit ✁ θit⑤ ✏ Op♣⑥rV ✁V⑥F④νq �Op♣⑥♣β ✁ β⑥2q

where ν ✏ min1↕k↕K λk♣Vq ✁ λk�1♣Vq.

Proof. For each i ✏ 1, . . . , K, denoting H1 ✏ ♣γ1, . . . ,γiq and ♣H1 ✏ ♣♣γ1, . . . , ♣γiq, by the remark

after Lemma 1 in Chang et al. (2018), we have

D♣M♣♣H1q,M♣H1qq ✏ Op♣⑥♣H1 ✁H1⑥2q ✏ Op♣⑥rV ✁V⑥2④νiq,

where νi ✏ λi♣Vq ✁ λi�1♣Vq. Thus, there exists some orthogonal matrix Qi such that,

sup
1↕i↕K

⑥♣γi ✁Qiγi⑥2 ✏ Op♣D♣M♣H1q,M♣H2qqq ✏ Op♣⑥rV ✁V⑥2④νq,
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where ν ✏ min1↕k↕K λk♣Vq ✁ λk�1♣Vq. The conclusion follows from

⑤♣θit ✁ θit⑤ ↕ ⑤♣♣γi ✁ γiq✶♣yt ✁ Ztβq⑤ � ⑤♣γ ✶iZt♣♣β ✁ βq⑤.

Here ν is the smallest eigenvalue of GG✶ and determines the strength of latent factors. Lemma

B.3.1 also shows that

D♣M♣♣γK�1, . . . , ♣γnq,M♣γK�1, . . . ,γnqq ✏ Op♣⑥rV ✁V⑥F④νq �Op♣⑥♣β ✁ β⑥2q

so that

⑥♣ ♣wK�1,t, . . . , ♣wntq✶ ✁Q♣wK�1,t, . . . , wntq✶⑥2 ✏ Op♣⑥rV ✁V⑥F④νq �Op♣⑥♣β ✁ β⑥2q,

for some orthogonal matrix Q.
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Figure B.1: Comparisons of the empirical mean of ♣K using HDWN testing-based procedure (“–✆–" ) along
with those of ALT1 (“–△–" ) and ALT2 (“ –✆–"). In the simulation, rt ✏ 10. In the first row, T ✏ 50 and
in the second row, T ✏ 100. In (a) and (e), fk follows AR♣3q for each k and uit is temporally independent
for each i. In (b) and (f), fk follows AR♣3q and ui follows ARCH♣1q model. In (c) and (g), fk follows
GARCH♣2, 2q for each k and uit’s are temporally independent. In (d) and (h), fk follows GARCH♣2, 2q for
each k and ui follows ARCH♣1q for each i.
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B.3.4 Simulation resutls

In this section, we demonstrate the performance of proposed HDWN testing-based procedure

for determining dimension K of latent process ft. For comparison, we consider the eigenvalue-

ratio procedures using projected data PrY (ALT1) (Fan et al., 2016) and original data rY (ALT2)

(Ahn and Horenstein, 2013; Lam and Yao, 2012).
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Figure B.2: Comparisons of the empirical mean of ♣K using HDWN testing-based procedure (“–✆–" ) along
with those of ALT1 (“–△–" ), and ALT2 (“ –✆–" ). In the simulation, rt ✏ 5. In the first row, T ✏ 50 and
in the second row, T ✏ 100. In (a) and (e), fk follows AR♣3q for each k and uit is temporally independent
for each i. In (b) and (f), fk follows AR♣3q and ui follows ARCH♣1q model. In (c) and (g), fk follows
GARCH♣2, 2q for each k and uit’s are temporally independent. In (d) and (h), fk follows GARCH♣2, 2q for
each k and ui follows ARCH♣1q for each i.

For numerical studies, we set n ✏ 50, 80, 100, 150, 200, 300 and T ✏ 50, 100. From model

(3.1.1), data are generated using the same setting in Section 3.6.1 with K ✏ 3 except that: 1)

the three independent and identically distributed component series in ft either follow AR♣3q with

autoregressive coefficient ρ ✏ ♣0, 0, 0.5q or GARCH♣2, 2q with autoregressive coefficient α ✏
♣0.12, 0.04q and variance coefficient σ ✏ ♣0.4, 0.08q, and standard normal innovations are used;

2) we rescale G such that n✁1④2G✶G is a 3 ✂ 3 diagonal matrix with diagonals 5 ☎ rt, 5, 3 and

rt P t2, 5, 10✉; 3) finally, uit are either i.i.d. standard normal or the n component series in ut

are independent ARCH♣1q series with autoregressive coefficient α ✏ 0.2 and standard normal

innovation. For each setting, 100 experiments are conducted. For the proposed HDWN testing-
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based procedure, OLS ♣βOLS and thresholding estimator for rV (Bickel and Levina, 2008b) are

employed and the significance level is set as αn ✏ 0.5n✁1④5. The mean of estimated K is reported

for comparison.

For the proposed HDWN-testing based procedure, committing Type I error results in large ♣K
compared to the true K while committing Type II error leads to a smaller ♣K. In practice, we are

more keen on a slightly over-complicate model than an under-complicate one. Thus, we can set

the significance level α ✏ 0.1 or 0.2, which provides greater powers. That is, we decrease the

probability of choosing a smaller K and increase the probability of choosing a greater K. On the

other hand, the proposed procedure has smaller chance of selecting wrong K when power is ap-

proaching to 1 and significance level is close to 0. Therefore, we can choose a smaller significance

level for large n and T . That is, we can let αn Ñ 0 as n diverges as seen in Theorem 3.5.2.

Given small n and large ratio between the largest and second largest eigenvalues of GG✶ (pan-

els (a) and (e) in Figure B.1, for example), the proposed method outperforms eigenvalue-ratio

procedures. As discussed in Section 3.5.1, the empirical eigenvalues of rYPrY corresponding to

the nonzero counterparts diverge in nwhile the remaining stays in constant order. Thus, the perfor-

mance of eigenvalue-ratio procedures becomes satisfactory only when n is large enough (ALT1).

On the other hand, as expected, it is observed in Figure B.1 that using the projected data (ALT1) in

the eigenvalue ratio procedure provides better estimates on K compared to that using the original

data (ALT2). When the ratio between the largest and second largest eigenvalue of GG✶ is mild

(Ahn and Horenstein, 2013; Fan et al., 2016; Lam and Yao, 2012), such as 5 or 2 in Figures B.2 and

B.3, the performance of eigenvalue-ratio procedures improves substantially while the performance

of proposed method remains satisfactory.

B.4 Additional simulation studies

In this section, Figures B.4 to B.2 display additional results from the simulation studies in the

main paper. Section B.4.1 displays the mean squared error (MSE) for estimating β, Section B.4.2

reports comparisons of the empirical coverage probability (ECP) and maximum marginal length
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Figure B.3: Comparisons of the empirical mean of ♣K using HDWN testing-based procedure (“–✆–" ) along
with those of ALT1 (“–△–" ), and ALT2 (“ –✆–" ). In the simulation, rt ✏ 2. In the first row, T ✏ 50 and
in the second row, T ✏ 100. In (a) and (e), fk follows AR♣3q for each k and uit is temporally independent
for each i. In (b) and (f), fk follows AR♣3q and ui follows ARCH♣1q model. In (c) and (g), fk follows
GARCH♣2, 2q for each k and uit’s are temporally independent. In (d) and (h), fk follows GARCH♣2, 2q for
each k and ui follows ARCH♣1q for each i.

(MML) of 95% confidence regions for different estimators as considered in Section 3.6 in the main

paper. Figures B.25 and B.26 in Section B.4.3 includes more plots from the real data study.

B.4.1 Mean squared error for estimating β

This section displays the logarithm of MSE for estimating β with respect to the logarithm of

nT with different choices of n, T , and the dependence across t in fk ✏ ♣fk1, . . . , fkt, . . . , fkT q for

k ✏ 1, 2, 3 and that in ui ✏ ♣ui1, . . . , uit, . . . , uiT q for each i ✏ 1, . . . , n.

• Figures B.4 and B.5 are about independent fkt for each k and t with T ✏ 100 and 500,

respectively.

• In Figures B.6 and B.7, fk follows ARMA♣1, 1q model with normal or t8 innovations for

each k ✏ 1, 2, 3, and T ✏ 100 and 500.

• Finally, in Figures B.8–B.10, fk follows AR♣1q model with standard normal or centered χ2
5

innovations for each k ✏ 1, 2, 3, and T ✏ 20, 100, 500.
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Figure B.4: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 100.
In the first row, fkt ✒ N♣0, 1q are independent in k, t. In the second row, fkt ✒ t8 are independent in k, t.
Distributions and serial correlations of ui are displayed in the plots. Results are based on 500 replications.
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Figure B.5: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 500.
In the first row, fkt ✒ N♣0, 1q are independent in k, t. In the second row, fkt ✒ t8 are independent in k, t.
Distributions and serial correlations of ui are displayed in the plots. Results are based on 500 replications.
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Figure B.6: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 100.
In the first row, fk follows ARMA♣1, 1q with N♣0, 1q innovation for each k; in the second row, fk follows
ARMA♣1, 1q with t8 innovation for each k. Distributions and serial correlations of ui are displayed in the
plots. Results are based on 500 replications.
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Figure B.7: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 500.
In the first row, fk follows ARMA♣1, 1q with N♣0, 1q innovation for each k; in the second row, fk follows
ARMA♣1, 1q with t8 innovation for each k. Distributions and serial correlations of ui are displayed in the
plots. Results are based on 500 replications.
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Figure B.8: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 20.
For each k, fk follows AR♣1q with N♣0, 1q innovation in the first row; in the second row, fk follows AR♣1q
with centered χ2

5 innovation. Distributions and serial correlations of ui are displayed in the plots. Results
are based on 500 replications.
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Figure B.9: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 100.
For each k, fk follows AR♣1q with N♣0, 1q innovation in the first row; in the second row, fk follows AR♣1q
with centered χ2

5 innovation. Distributions and serial correlations of ui are displayed in the plots. Results
are based on 500 replications.
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Figure B.10: Comparisons of the logarithm of MSE for estimating β by TOPE (“–✆–") along those of the
oracle estimator (“ –✆–"), the GLS estimator (“ –♦–"), and the OLS (“–△–"). Results are about T ✏ 500.
For each k, fk follows AR♣1q with N♣0, 1q innovation in the first row; in the second row, fk follows AR♣1q
with centered χ2

5 innovation. Distributions and serial correlations of ui are displayed in the plots. Results
are based on 500 replications.
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B.4.2 Plots of empirical covering probability and maximum marginal length

This section displays the ECP and MML, which are defined in the main paper as the empir-

ical frequency of the confidence region covering the true regression coefficients and the maxi-

mum width along the p directions of the confidence region, respectively. We display the ECP

and MML along varying T for combinations of different methods, n, and dependence across t

in fk ✏ ♣fk1, . . . , fkt, . . . , fkT q for k ✏ 1, 2, 3 and that in ui ✏ ♣ui1, . . . , uit, . . . , uiT q for each

i ✏ 1, . . . , n.
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Figure B.11: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP
and ‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the
GLS estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for
MML). In simulations, fkt ✒ ♣χ2

5 ✁ 5q are independent in k, t; n ✏ 100, 500, 2000 for the first, second,
and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the second row,
uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.

• Figures B.11–B.14 displays results for independent fkt following the centered χ2
5

or t8 dis-

tributions, and it is either that uit are independent in i, t or ui follows AR♣1q model with

different innovations.
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Figure B.12: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fkt ✒ ♣χ2

5 ✁ 5q are independent in k, t; n ✏ 100, 500, 2000 for the first, second, and third
column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q innovation while same
model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are based on 500 replications.

• In Figures B.15–B.18, fk follows AR♣1q model with different innovations while it is either

that uit are independent in i, t or ui follows AR♣1q model with different innovations (such

as normal or centered χ2
5
).

• Figures B.19–B.24 are about results when fk follows the ARMA♣1, 1q model for each k with

normal, centered χ2
5

and t8 innovations, respectively. Residual uit either are independent in

i, t or ui is AR♣1q processes for each i with different innovation.
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Figure B.13: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fkt ✒ t8 are independent in k, t; n ✏ 100, 500, 2000 for the first, second, and third column,
respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the second row, uit ✒ ♣χ2

5✁ 5q④10
are independent in i, t. Results are based on 500 replications.
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Figure B.14: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fkt ✒ t8 are independent in k, t; n ✏ 100, 500, 2000 for the first, second, and third column,
respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q innovation while same model is
used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are based on 500 replications.
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Figure B.15: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows AR♣1q with N♣0, 1q innovation for each k; n ✏ 100, 500, 2000 for the first,
second, and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the
second row, uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.
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Figure B.16: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML). In
simulations, fk follows AR♣1q with N♣0, 1q innovation for each k; n ✏ 100, 500, 2000 for the first, second,
and third column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q innovation
while same model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are based on 500

replications.
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Figure B.17: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows AR♣1q with centered χ2

5 innovation for each k; n ✏ 100, 500, 2000 for the first,
second, and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the
second row, uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.
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Figure B.18: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows AR♣1q with centered χ2

5 innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are
based on 500 replications.
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Figure B.19: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with N♣0, 1q innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the
second row, uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.
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Figure B.20: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with N♣0, 1q innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are
based on 500 replications.
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Figure B.21: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with centered χ2

5 innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the
second row, uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.
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Figure B.22: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with centered χ2

5 innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are
based on 500 replications.

204



0.25

0.60

0.95

0.3

0.6

1.0

0 100 200 300 400 500

T

E
C

P

MML

( a )

0 100 200 300 400 500

T
( b )

0.25

0.60

0.95

0.3

0.6

1.0

0 100 200 300 400 500

T

EC
P

M
M

L

( c )

0.25

0.60

0.95

0.3

0.6

1.0

0 100 200 300 400 500

T

E
C

P

MML

( d )

0 100 200 300 400 500

T
( e )

0.25

0.60

0.95

0.3

0.6

1.0

0 100 200 300 400 500

T

EC
P

M
M

L

( f )

Figure B.23: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with centered t8 innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, uit ✒ N♣0, 0.01q are independent in i, t. In the
second row, uit ✒ ♣χ2

5 ✁ 5q④10 are independent in i, t. Results are based on 500 replications.
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Figure B.24: Comparisons of the ECP and MML of 95% confidence region of TOPE (“–✆–" for ECP and
‘- -✆- -" for MML) along those of the oracle estimator (“ –✆–" for ECP and “ - -✆- -" for MML), the GLS
estimator (“ –♦–" for ECP and “- -♦- -" for MML), and the OLS (“ –△–" for ECP and “- -△- -" for MML).
In simulations, fk follows ARMA♣1, 1q with centered t8 innovation for each k; n ✏ 100, 500, 2000 for the
first, second, and third column, respectively. In the first row, ui follows the AR♣1q model with N♣0, 0.01q
innovation while same model is used for ui in the second row with ♣χ2

5 ✁ 5q④10 innovation. Results are
based on 500 replications.
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B.4.3 Extra displays from real data analysis

In this section, extra plots are displayed for the real data analysis conducted in Section 3.7 in

the main paper.
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Figure B.25: Variances of the mean PM2.5 concentration at 129 monitoring sites versus coal and natural
gas consumption of the states, in which the monitoring sites reside.
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Figure B.26: Recovered nonparametric loading functions ♣gk♣xq for latitude, longitude, energy consumption
proportion of natural gas, coal, and petroleum, for each k ✏ 1, 2, 3.
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Appendix C

Supplemental materials for Chapter 4

This supplementary material contains technical results used for the main paper.

C.1 Technical Results

Proof of Theorem 4.3.1. For simplicity, in the proof of Theorem 4.3.1, we assume ft and ut are

temporally independent, and Var♣utq ✏ σ2
uIp.

Step 1. In this step, we construct a series of “candidate cluster assignments" and their cor-

responding loading matrices and prove that they belong to the subset of cluster assignments and

loading matrices in the theorem statement. Denote Sm as the set of all permutations of t1, . . . ,m✉.
Recall that in Section 4.3, we consider the 0✁ 1 loss function for estimated labels ♣z as

L♣♣z, zq ✏ inf
ΠPSm

✓
1

p

p➳
i✏1

ItΠ♣♣ziq ✘ zi✉
✛
.

In model (4.2.2), we do not distinguish for cluster label switching. Thus, we introduce the permu-

tation Π to avoid the error from label switching. Similar setting can be seen in Lu and Zhou (2016)

and Gao et al. (2018). Now we impose the assumption that p → 8 and p④♣4m2q → 1. For each

j ✏ 1, . . . ,m and z ✏ ♣z1, . . . , zpq, define pj♣zq ✏
➦p

i✏1
I♣i : zi ✏ jq. Without loss of generality,

let z✝ P t1, . . . ,m✉p satisfy that p1♣z✝q ↕ p2♣z✝q ↕ ☎ ☎ ☎ ↕ pm♣z✝q and p1♣z✝q ✏ p2♣z✝q ✏ rp④ms.
As suggested by Lu and Zhou (2016) and Gao et al. (2018), for each j ✏ 1, . . . ,m, let Tj be a

subset of ti : zi ✏ j✉ with cardinality rpj♣z✝q ✁ p④♣4m2qs, T ✏ ❨m
j✏1

Sj and

Z✝ ✏ tz P t1, . . . ,m✉p : zi ✏ z✝i for all i P T ✉.

Different from the approach of Lu and Zhou (2016) and Gao et al. (2018) that m④4 cluster assign-

ments are constructed by filling t1, . . . , p✉③T with the same assignments, we fill it with different
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assignments to get a denser covering. That is, we construct a series of candidate cluster assign-

ments by letting n ✏ p④4 and

tz♣1q, . . . , z♣nq✉ ✏ tz P Z✝ : zi ✏ z✝i for all i P T ✉.

Since the number of covering does not depend on m, this construction works when m is finite.

Note that, for each ℓ ✏ 1, . . . , n and j ✏ 1, . . . ,m, pj♣z♣ℓqq ➙ rp④m ✁ p④♣4m2qs ✖ p. Thus, for

each ℓ ✏ 1, . . . , n, z♣ℓq satisfies Condition 4.2.1, so z♣1q, . . . , z♣nq P Z . Next, we construct a series

of candidate loading matrices corresponding to the series of cluster assignments above. Specially,

we let

C0♣zq ✏

✔✖✖✖✖✕
DAA

♣0q
1

dBB
♣0q
1

...
. . .

DAA
♣0q
m dBB

♣0q
m

✜✣✣✣✣✢ , (C.1.1)

and

♣A♣0q
j ,B

♣0q
j q ✏

✔✖✕D♣1q
j

D
♣2q
j

✜✣✢ ,
where

D
♣1q
j ✏

✔✖✖✖✖✖✖✖✕

1 1 . . . 1 1

✁1 1 . . . 1 1

...
. . . . . .

...
...

0 0 . . . ✁rj � 1 1

✜✣✣✣✣✣✣✣✢
is a rj ✂ ♣r0 � rjq matrix and

D
♣2q
j ✏

✔✖✖✖✖✕
1 ☎ ☎ ☎ 0

...
. . .

...

0 ☎ ☎ ☎ 1

✜✣✣✣✣✢
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is a ♣pj♣zq ✁ rjq ✂ ♣r0 � rjq block diagonal matrix consisting of r0 � rj vectors of d01 for j ✏
1, . . . ,m. For simplicity, we assume that ♣pj♣zq✁ rjq④♣r0� rjq is an integer for each j ✏ 1, . . . ,m

and the vectors 1’s in D
♣2q
j are of same length ♣pj♣zq ✁ rjq④♣r0 � rjq. It is easy to see that for

each ℓ ✏ 1, . . . , n, C0♣z♣ℓqq has the form in (4.2.5) and satisfies Conditions 4.2.6 and 4.2.7, so

C0♣z♣1qq, . . . ,C0♣z♣nqq P C. Therefore, ♣z♣1q,C0♣z♣1qqq, . . . , ♣z♣nq,C0♣z♣nqqq truly belongs to the

class in the statement of Theorem 4.3.1:

�
z♣1q,C0♣z♣1qqq, . . . , ♣z♣nq,C0♣z♣nqq

✟ ⑨ ♣Z, Cq.

Step 2. Next for each ℓ ✘ ℓ✶, we prove that ♣z♣ℓq,C0♣z♣ℓqqq and ♣z♣ℓ✶q,C0♣z♣ℓ✶qqq are well-

separated and the Kullback-Leibler (K-L) divergence between ♣z♣ℓq,C0♣z♣ℓqqq and ♣z♣ℓ✶q,C0♣z♣ℓ✶qqq
are bounded. By the definition of T , for each ℓ ✘ ℓ✶, we have

L♣z♣ℓq, z♣ℓ✶qq ✏ 1

4p
. (C.1.2)

Next, we consider the Kullback-Leibler divergence between ♣z♣ℓq,C0♣z♣ℓqqq and ♣z♣ℓ✶q,C0♣z♣ℓ✶qqq
for each ℓ ✘ ℓ✶. Note that the covariance matrix for model (4.2.2) and group assignments z is

Σ♣zq ✏ C0♣zqC0♣zq❏ � σ2

uIp. (C.1.3)

By the following fact on the Kullback-Leibler divergence between multivariate Gaussians: denot-

ing P1 and P2 as the probability measure corresponding to N ♣0,Σ1q and N ♣0,Σ2q, respectively,

if Σ1 and Σ2 are non-degenerating, then

KL ♣P1,P2q ✏ T

2

✧
tr
�
Σ✁1

1
Σ2

✟✁ p� log

✂ ⑤Σ1⑤
⑤Σ2⑤

✡✯
.
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By the definition of Σ♣zq in (C.1.3), Σ♣z♣ℓqq is non-degenerating for each ℓ ✏ 1, . . . , n. Thus, the

K-L divergence between P
z
♣ℓq,C0♣z♣ℓqq and P

z
♣ℓ✶q,C0♣z♣ℓ✶qq is

KL

✁
P
z
♣ℓq,C0♣z♣ℓqq,Pz

♣ℓ✶q,C0♣z♣ℓ✶qq
✠

✏T
2

✧
tr
✁
Σ♣z♣ℓqq✁1Σ♣z♣ℓ✶qq

✠
✁ p� log

✂ ⑤Σ♣z♣ℓqq⑤
⑤Σ♣z♣ℓ✶qq⑤

✡✯
.

By Lemmas C.2.17 and C.2.18, we have

KL

✁
P
z
♣ℓq,C0♣z♣ℓqq,Pz

♣ℓ✶q,C0♣z♣ℓ✶qq
✠

✏r0T
2

log

☎✆D2

A

➦m

k✏1

pk♣z♣ℓqq
r0�rk

� σ2
u

D2

A

➦m

k✏1

pk♣z♣ℓ✶qq
r0�rk

� σ2
u

☞✌� T

2

m➳
k✏1

rk log

☎✆ d2Bpk♣z♣ℓqq
r0�rk

� σ2
u

d2
B
pk♣z♣ℓ✶qq
r0�rk

� σ2
u

☞✌
✏r0T

2
log

☎✆1�
D2

A

✁
1

r0�rk1
✁ 1

r0�rk2

✠
D2

A

➦m

k✏1

pk♣z♣ℓqq
r0�rk

� σ2
u

☞✌� rk1T

2
log

☎✆1�
d2B

r0�rk1

d2
B
pk1 ♣z♣ℓ✶qq
r0�rk1

� σ2
u

☞✌
� rk2T

2
log

☎✆1✁
d2B

r0�rk2

d2
B
pk2 ♣z♣ℓ✶qq
r0�rk2

� σ2
u

☞✌,
for some k1 ✘ k2. By the definition of Z✝, pj♣zq ✖ p④m for each j ✏ 1, . . . ,m and any z P Z✝.

Thus, by the well known fact that log♣1� xq ↕ x,

KL
�
P
z
♣jq,C0♣z♣jqq,Pz

♣ℓq,C0♣z♣ℓqq
✟

(C.1.4)

↕T
2

✩✫✪D
2

Ar0

✁
1

r0�rk1
✁ 1

r0�rk2

✠
D2

A

➦m

k✏1

pk♣z♣jqq
r0�rk

� σ2
u

�
d2Brk1
r0�rk1

d2
B
pk1 ♣z♣ℓqq
r0�rk1

� σ2
u

✁
d2Brk2
r0�rk2

d2
B
pk2 ♣z♣ℓqq
r0�rk2

� σ2
u

✱✳✲
↕ d2Br0 maxj rjmT

2♣D2

Ar0 � d2B minj rjqp.
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Step 3. We finalize the proof by the generalized FanoâĂŹs lemma. Specifically by (C.1.2),

(C.1.4) and Lemma in (Yu, 1997), we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ 1

8p

✩✫✪1✁
d2Br0 maxj rjmT

2♣D2

A
r0�d2

B
minj rjqp � log♣2q
log♣p④4q

✱✳✲ .

Letting θ ✏ ♣D2

Ar0 � d2B minj rjq✁1d2Br0 maxj rj and

p ✏ θmT

2tε log♣p④4q ✁ log♣2q✉ ❴ 8

for some ε P ♣log♣2q④ log♣p④4q, 1q, we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ ♣D2

Ar0 � d2B minj rjqtε log♣p④4q ✁ log♣2q✉♣1✁ εqm
16d2Br0 maxj rjpT

❫ 1

64
.

Proof of Corollary 4.3.1. Step 1. In this step, we construct a series of “candidate cluster assign-

ments" and their corresponding loading matrices and prove that they belong to the subset of cluster

assignments and loading matrices in the theorem statement. Denote Sm as the set of all permuta-

tions of t1, . . . ,m✉. Recall that in Section 4.3, we consider the 0 ✁ 1 loss function for estimated

labels ♣z as

L♣♣z, zq ✏ inf
ΠPSm

✓
1

p

p➳
i✏1

ItΠ♣♣ziq ✘ zi✉
✛
.

Similar as the proof of Theorem 4.3.1, for each j ✏ 1, . . . ,m, we let Tj be a subset of ti : zi ✏ j✉
with cardinality rpj♣z✝q ✁ p④♣4m2qs, T ✏ ❨m

j✏1
Sj and

Z✝ ✏ tz P t1, . . . ,m✉p : zi ✏ z✝i for all i P T ✉.
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Then, we construct a series of candidate cluster assignments by letting n ✏ p④4 and

tz♣1q, . . . , z♣nq✉ ✏ tz P Z✝ : zi ✏ z✝i for all i P T ✉.

Note that, for each ℓ ✏ 1, . . . , n and j ✏ 1, . . . ,m, pj♣z♣ℓqq ➙ rp④m ✁ p④♣4m2qs ✖ p. Thus, for

each ℓ ✏ 1, . . . , n, z♣ℓq satisfies Condition 4.2.1, so z♣1q, . . . , z♣nq P Z . Then, the membership

matrix relative to z is

Γ♣zq ✏

✔✖✖✖✖✕
1p1♣zq

. . .

1pm♣zq

✜✣✣✣✣✢ .

Next, we construct a series of candidate loading matrices corresponding to the series of cluster

assignments above. Specially, we let Ψ ✏ σ2
uI and

V0 ✏

✔✖✖✖✖✖✖✖✕

b a . . . a

a b . . . a

...
...

. . .
...

a a . . . b

✜✣✣✣✣✣✣✣✢
where the diagonal elements are all b, off-diagonal elements are all a and 0 ➔ a ➔ b. It is easy to

see that V0 is a symmetric matrix. Therefore, ♣z♣1q,V0q, . . . , ♣z♣nq,V0q truly belongs to the class

in the statement of Theorem 4.3.1:

�
z♣1q,V0q, . . . , ♣z♣nq,V0q

✟ ⑨ ♣Z,Vq.

Step 2. Next for each ℓ ✘ ℓ✶, we prove that ♣z♣ℓq,V0q and ♣z♣ℓ✶q,V0q are well-separated and

the Kullback-Leibler (K-L) divergence between ♣z♣ℓq,V0q and ♣z♣ℓ✶q,V0q are bounded. By the
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definition of T , for each ℓ ✘ ℓ✶, we have

L♣z♣ℓq, z♣ℓ✶qq ✏ 1

4p
. (C.1.5)

Next, we consider the Kullback-Leibler divergence between ♣z♣ℓq,V0q and ♣z♣ℓ✶q,V0q for each

ℓ ✘ ℓ✶. Note that the covariance matrix for model (4.2.10) and group assignments z is

ΣG♣zq ✏ Γ♣zqV0Γ♣zq❏ � Ip. (C.1.6)

By the following fact on the Kullback-Leibler divergence between multivariate Gaussians: denot-

ing P1 and P2 as the probability measure corresponding to N ♣0,Σ1q and N ♣0,Σ2q, respectively,

if Σ1 and Σ2 are non-degenerating, then

KL ♣P1,P2q ✏ T

2

✧
tr
�
Σ✁1

1
Σ2

✟✁ p� log

✂ ⑤Σ1⑤
⑤Σ2⑤

✡✯
.

By the definition of ΣG♣zq in (C.1.6), ΣG♣z♣ℓqq is non-degenerating for each ℓ ✏ 1, . . . , n. Thus,

the K-L divergence between P
z
♣ℓq,V0q and P

z
♣ℓ✶q,V0q is

KL

✁
P
z
♣ℓq,V0q,Pz

♣ℓ✶q,V0q
✠

✏T
2

✧
tr
✁
ΣG♣z♣ℓqq✁1ΣG♣z♣ℓ✶qq

✠
✁ p� log

✂ ⑤ΣG♣z♣ℓqq⑤
⑤ΣG♣z♣ℓ✶qq⑤

✡✯
.

With similar arguments as Lemmas C.2.17 and C.2.18, we have tr
�
ΣG♣z♣ℓqq✁1ΣG♣z♣ℓ✶qq

✟ ✏ p and

log

✂ ⑤ΣG♣z♣ℓqq⑤
⑤ΣG♣z♣ℓ✶qq⑤

✡
✏

m➳
j✏1

log

✂ ♣b✁ aqpj♣z♣ℓqq � σ2
u

♣b✁ aqpj♣z♣ℓ✶qq � σ2
u

✡

By the definition of Z✝, pj♣zq ✖ p④m for each j ✏ 1, . . . ,m and any z P Z✝. Thus, by the well

known fact that log♣1� xq ↕ x, for some k1 ✘ k2,

KL
�
P
z
♣jq,V0

,P
z
♣ℓq,V0

✟
(C.1.7)
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↕T
2

✧
1

♣b✁ aqpk1♣z♣ℓqq � σ2
u

✁ 1

♣b✁ aqpk2♣z♣ℓqq � σ2
u

✯
↕ mT

2♣b✁ aqp.

Step 3. We finalize the proof by the generalized FanoâĂŹs lemma. Specifically by (C.1.5),

(C.1.7) and Lemma in (Yu, 1997), we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ 1

8p

★
1✁

mT
2♣b✁aqp � log♣2q

log♣p④4q

✰
.

Letting

p ✏ ♣b✁ aqmT
2tε log♣p④4q ✁ log♣2q✉ ❴ 8

for some ε P ♣log♣2q④ log♣p④4q, 1q, we have

inf
♣z

sup
zPZ,CPC

EtL♣♣z, zq✉ ➙ ♣b✁ aqtε log♣p④4q ✁ log♣2q✉♣1✁ εqm
16pT

❫ 1

64
.

Proof of Theorem 4.4.1. The conclusion follows from Lemmas C.2.5, C.2.8 and C.2.9.

Proof of Theorem 4.4.2. The conclusion follows by applying similar discussion as Theorem 4.4.1

to the first r0 � rj largest eigenvalues of T✁1Y❏
j Yj and that

1

T
⑥♣Fj ✁ Fj⑥2F ↕

1

T
⑥♣♣F0, ♣Fjq ✁ ♣F0,Fjq⑥2F ➚

m

p
s3,

m

p
⑥♣Bj ✁Bj⑥2F ↕

1

p
⑥♣♣Aj, ♣Bjq ✁ ♣Aj,Bjq⑥2F ➚

✂
m

p
� 1

T

✡
s4,

for each j ✏ 1, . . . ,m.

Proof of Theorem 4.4.3. The conclusion follows from Lemmas C.2.11, C.2.14 and C.2.15.
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Proof of Corollary 4.4.1. (i) Recall that ♣F ✁ FH2 ✏ �➦
3

i✏1
Ni

✟
K✁1

2
. By Lemma C.2.10,

⑥K✁1

2
⑥2 ➚ d✁1

B ♣minj rjq✁1④2♣1�DA

❄
r0T

✁1④2❄sq with probability at least 1✁7e✁s. Also, by

Lemma C.2.16,
➦

3

i✏1
⑥Ni⑥max ➚ DA

❄
r0p

✁1④2tlog♣T q✉2④r2s. Thus, with probability at least

1✁ 10e✁s,

⑥♣F✁ FH2⑥max ✏
✄

3➳
i✏1

⑥Ni⑥max

☛
⑥K✁1

2
⑥2

➚ DA

❄
r0d

✁1

B ♣min
j
rjq✁1④2p✁1④2tlog♣T q✉2④r2s.

(ii) Note that ♣C ✁CH✁1

2
✏ T✁1CH✁1

2
♣H2F

❏ ✁ ♣F❏q♣F � T✁1U♣♣F ✁ FH2q � T✁1UFH2. By

Lemma B.1 in Fan et al. (2011), with probability at least 1 ✁ e✁s, ⑥UF⑥max ➚
❛
T log♣pqs.

Thus, by Lemma C.2.14, with probability at least 1✁ 10e✁s,

⑥♣C✁CH✁1

2
⑥max

✏ 1

T
⑥C⑥max⑥H✁1

2
⑥2⑥H2F

❏ ✁ ♣F❏⑥max⑥♣F⑥F � 1

T
⑥U⑥2⑥♣F✁ FH2⑥max � 1

T
⑥UF⑥max⑥H2⑥2

➚D
2

Ar0tlog♣T q✉2④r2s
d2B minj rj

❄
pT

� DA

❄
r0tlog♣T q✉2④r2s

dB
❛
minj rjT

� DA

❄
r0
❛
log♣pqs

dB
❛
minj rj

❄
T

➚DA

❄
r0
❛
log♣pqs

dB
❛
minj rj

❄
T
.

(iii) The conclusion follows from the result above and Lemma C.2.14.

Proof of Theorem 4.4.4. In the proof of Theorem 4.4.4, we assume that the number of common

factors r0 and number of all factors K are correctly estimated. Then, we consider a block diagonal

matrix B ✏ diag♣B1, . . . ,Bmq, and its estimate ♣B ✏ B � E. Denote B ✏ tbik✉p,K✁r0
i✏1,k✏1

, ♣B ✏
t♣bik✉p,K✁r0

i✏1,k✏1
and E ✏ teik✉p,K✁r0

i✏1,k✏1
. By Corollary 4.4.1, with probability at least 1✁ 10e✁s,

max
i,k

⑤eik⑤ ➚ DA

❄
r0

dB
❛
minj rj

★❝
log♣pq
T

� 1❄
p

✰
s.
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As Algorithm 4 suggests, we let τ ✏ δ log♣pT ④mq♣T✁1④2❛log♣pq � p✁1④2q. Then, for each i ✏
1, . . . , p and k ✏ 1, . . . , K ✁ r0, we have

P♣⑤♣bik⑤ → τ, bik ✏ 0q ✏ P♣⑤eik⑤ → τq ↕ 10tm✁1 log✁1♣pqpT ✉✁
δdB

❄
minj rj

CDA
❄
r0 ,

for some positive constant C. Similarly, for each i ✏ 1, . . . , p and k ✏ 1, . . . , K ✁ r0, we have

P♣⑤♣bik⑤ ↕ τ, bik ✘ 0✉q ✏ P♣⑤eik⑤ ➙ ⑤bik⑤ ✁ τq

↕10 exp
★
✁ ⑤bik⑤
δ logtm✁1 log✁1♣pqpT ✉♣T✁1④2❛log♣pq � p✁1④2q

✰
tm✁1 log✁1♣pqpT ✉✁

CDA
❄
r0

δdB
❄

minj rj .

For each k ✏ 1, . . . , K ✁ r0, let ik ✏ ♣I♣b1k ✘ 0q, . . . , I♣bpk ✘ 0qq❏, ♣ik ✏ ♣I♣⑤♣b1k⑤ →
τq, . . . , I♣⑤♣bpk⑤ → τq❏, ♣I ✏ ♣♣i1, . . . ,♣iK✁r0q and I ✏ ♣i1, . . . , iK✁r0q. Then, by letting δ ✏
♣dB
❛
minj rjq✁1CDA

❄
r0, we have

P♣♣I ✘ I✉q ✏P
★

p,K✁r0↕
i,k✏1

♣⑤♣bik⑤ → τ, bik ✏ 0q ❨ ♣⑤♣bik⑤ ↕ τ, bik ✘ 0✉q
✰

↕10 exp
★
✁ minbik✘0 ⑤bik⑤
δ logtm✁1 log✁1♣pqpT ✉♣T✁1④2❛log♣pq � p✁1④2q

✰
tm✁1 log✁1♣pqpT ✉✁1.

Note that by the definition of rC in (4.2.5) , there exist a p ✂ p permutation matrix Π satisfying

that I ✏ ΠIrC, where IrC ✏ tI♣rcik ✏ 0q✉p,Ki,k✏1
and rcik is element of rC. By the definition of

♣z♣Iq in Algorithm 4, row switching of I will not affect ♣z♣Iq, that is, ♣z♣Iq ✏ ♣z♣ΠIrCq ✏ ♣z♣IrCq.
Under Condition 4.2.6, for each j ✏ 1, . . . ,m, there exists ij P ti : zi ✏ j✉ satisfying that➦rj

ℓ✏1
I♣b♣jqiℓ ✘ 0q ✏ rj . Thus, for each i✶ P ti : zi ✏ j✉, there exists some k satisfying that

iij♣kq ✏ ii✶♣kq ✏ 1 so ♣zij♣IrCq ✏ ♣zi✶♣IrCq. Similarly, for each i✶ ❘ ti : zi ✏ j✉, there exist j✶ and ij✶

satisfying that i✶ P ti : zi ✏ j✶✉ and ♣zi✶j♣IrCq ✏ ♣zi✶♣IrCq, so ♣zij♣IrCq ✘ ♣zi✶ . Hence,

L♣♣z♣Iq, zq ✏ L♣♣z♣IrCq, zq ✏ 0.
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Thus,

EtL♣♣z♣♣Iq, zq✉ ✏EtL♣♣z♣♣Iq, zq⑤♣I ✏ I✉P♣♣I ✏ Iq � EtL♣♣z♣♣Iq, zq⑤♣I ✘ I✉P♣♣I ✘ Iq

↕10 exp
★
✁ minbik✘0 ⑤bik⑤
δ logtm✁1 log✁1♣pqpT ✉♣T✁1④2❛log♣pq � p✁1④2q

✰
tm✁1 log✁1♣pqpT ✉✁1

↕10 expt✁♣CDA

❄
r0q✁1dB

❛
minj rj minbik✘0 ⑤bik⑤✉m log♣pq
pT

.

The conclusion follows.

Proof of Corollary 4.4.2. (i) By Corollary 4.4.1, with probability at least 1✁ 10e✁s,

max
i,j

⑤♣Σij ✁Σij⑤ ✏max
i,j

✞✞✞✞✞ K➳
k✏1

♣cik♣ckj ✁ K➳
k✏1

cikckj

✞✞✞✞✞ ↕ 2Kmax
i,k

⑤cik⑤max
i,k

⑤♣cik ✁ cik⑤

↕2Kmaxik ⑤cik⑤DA

❄
r0

dB
❛
minj rj

★❝
log♣pq
T

� 1❄
p

✰
s.

Then, the conclusion follows from similar discussion in the proof of Theorem 4.4.4 and that

K ✏ m under the conditions of Corollary 4.4.2.

(ii) Without loss of generality, we assume that z1 ↕ ☎ ☎ ☎ ↕ zp and the loadings for the variables

in first cluster is monotone increasing. Then,

sCOD♣1, 2q ✏max
ℓ✘1,2

✞✞✞✞✞ Σ1ℓ ✁ ♣Σ2ℓ❛♣Σ11 �Σ22 ✁ 2Σ12qΣℓℓ

✞✞✞✞✞
➙
✞✞✞✞✞ Σ13 ✁Σ23❛♣Σ11 �Σ22 ✁ 2Σ12qΣ33

✞✞✞✞✞
✏1 ✘ 0.

Thus, by Algorithm 5, variable 1 is put into a cluster with a single variable itself. Similar

result holds for other variables in the first cluster. Thus, estimated clustering assignments for
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variables in the first cluster are all wrong, so

L♣♣z, zq ➙ p1

p
.

The conclusion follows from Condition 4.2.1 that p1 ✖ p.

Proof of Theorem 4.4.5. Recall that

1

T
YY❏ ✏ CC❏ � 1

T
CF❏U❏ � 1

T
UFC❏ � 1

T
UU❏

and

1

T
E♣YY❏q ✏ CC❏ � 1

T
E♣UU❏q.

Also, note that CC❏, T✁1CF❏U❏ and T✁1UFC❏ have rankK, so for each k ✏ K�1, . . . ,min♣p, T q,♣λk ✖ λk♣T✁1UU❏q and λk ✖ λk♣E♣T✁1UU❏qq.

(i) If p ➔ T , by Condition 4.2.4 and Theorem 5.58 in Vershynin (2010), with probability at least

1✁ e✁2s,

⑤λk♣T✁1UU❏q ✁ λk♣E♣T✁1UU❏qq⑤ ↕ max♣ζ, ζ2q,

for each k ✏ 1, . . . , p, where ζ ✏ ❄
CT✁1④2❄p � ❄

cT✁1④2❄s and C and c are positive

constants only depending on ut. Thus, with probability at least 1✁ e✁2s,

⑤λk♣T✁1UU❏q ✁ λk♣E♣T✁1UU❏qq⑤ ↕ C

❝
p

T
� c❄

T

❄
s,

(ii) If p → T , note that the first T largest eigenvalues of T✁1UU❏ are the same as those of

T✁1U❏U. By Condition 4.2.4 and Theorem 5.38 in Vershynin (2010), for each k ✏ 1, . . . , T ,
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with probability at least 1✁ e✁2s,

❝
p

T
✁ C ✁ c❄

T

❄
s ➚ λk♣T✁1U❏Uq ➚

❝
p

T
� C � c❄

T

❄
s.

By Condition 4.2.7, for each k ✏ 1, . . . , r0, λk♣CC❏q ✏ O♣pq and for each k ✏ r0� 1, . . . , K,

λk♣CC❏q ✏ O♣p1✁γq. Also, by Condition 4.2.4, p✁1λk♣T✁1E♣UU❏qq are bounded and by the

discussion above, p✁1λk♣T✁1UU❏q is bounded. Thus, for each k ✏ 1, . . . , r0, with probability at

least 1✁ e✁2s,

♣λk
λk

↕ λk♣CC❏q � λmax♣T✁1CF❏U❏q � λmax♣T✁1UFC❏q � λmax♣T✁1UU❏q
λk♣CC❏q � λmin♣T✁1E♣UU❏qq

↕ 1� C❄
T
� c❄

pT

❄
s

and

♣λk
λk

➙ λk♣CC❏q � λmin♣T✁1CF❏U❏q � λmin♣T✁1UFC❏q � λmin♣T✁1UU❏q
λk♣CC❏q � λmax♣E♣UU❏qq

➙ 1✁ C❄
T
✁ c❄

pT

❄
s.

Thus, if p ➔ T , for s ➔ c✁2♣❄T ✁ C
❄
pq2, with probability at least 1✁ e✁s,

♣λk♣λk�1 ↕ λk

λk�1

✧
1� C❄

T
� c❄

pT

❄
s

✯2

, k ✏ 1, . . . , K ✁ 1,

♣λK♣λK�1 ➙ λK

λK�1

✧
1✁ C

❄
p❄
T
✁ c❄

T

❄
s

✯✧
1✁ C❄

T
✁ c❄

pT

❄
s

✯
,

♣λk♣λk�1 ↕ λk

λk�1

✧
1� C

❄
p❄
T
� c❄

T

❄
s

✯2

, k ✏ K � 1, . . . , L,

Thus, for s ➔ c✁1T � c✁1Cp, with probability at least 1✁ e✁s,

♣λK④♣λK�1
maxk✘K ♣λk④♣λk�1 ➙ λK④λK�1

C3

✧
1✁ C

❄
p❄
T
✁ c❄

T

❄
s

✯4
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where C3 ✏ max♣max1↕k↕K✁1 λk④λk�1,maxK�1↕k↕L λk④λk�1q. Thus,

P

✁ ♣K ✏ K
✠
➙ 1✁ 2 exp

✦
✁♣C1

❄
T ✁ C2

❄
pq2
✮
,

where

C1 ✏ 1

c

✓
1✁

✧
λK�1

λK
max

✂
max

1↕k↕K✁1

λk

λk�1

, max
K�1↕k↕L

λk

λk�1

✡✯1④4✛

and C2 ✏ c✁1C.

Also, if p → T , for s ➔ c✁2♣❄p✁ C
❄
T q2, with probability at least 1✁ e✁s,

♣λk♣λk�1

↕ λk

λk�1

✧
1� C❄

T
� c❄

pT

❄
s

✯2

, k ✏ 1, . . . , K ✁ 1,

♣λK♣λK�1

➙ TλK

pλK�1

✧
1✁ C

❄
T❄
p
✁ c❄

p

❄
s

✯✧
1✁ C❄

T
✁ c❄

pT

❄
s

✯
,

♣λk♣λk�1

↕ λk

λk�1

✧
1� C

❄
T❄
p
� c❄

p

❄
s

✯2

, k ✏ K � 1, . . . , L.

Thus, for s ➔ c✁1p� c✁1CT , with probability at least 1✁ e✁s,

♣λK④♣λK�1

maxk✘K
♣λk④♣λk�1

➙ TλK④♣pλK�1q
C3

✧
1✁ C

❄
T❄
p
✁ c❄

p

❄
s

✯4

.

Thus,

P

✁ ♣K ✏ K
✠
➙ 1✁ 2 exp

✦
✁♣C4

❄
p✁ C2

❄
T q2

✮
,

where

C4 ✏ 1

c

✓
1✁

✧
pλK�1

TλK
max

✂
max

1↕k↕K✁1

λk

λk�1

, max
K�1↕k↕L

λk

λk�1

✡✯1④4✛

The conclusion follows.
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Note that the conditions of the case m diverges are the same as those of the case m is finite

except Conditions 4.2.1 and 4.5.1, i.e. the condition of m. Thus, the proof for Theorems 4.5.1

to 4.5.3 can be derived using essentially the same argument as those of Theorems 4.4.1 to 4.3.1.

Since we show the non-asymptotic results in Theorems 4.4.1 to 4.3.1, the results hold for any m.

Hence, by Condition 4.5.1, it is straight forward to replace m by pγ in Theorems 4.4.1 to 4.3.1 to

get Theorems 4.5.1 to 4.5.3. It is easy to see that the parameter space is larger if the number of

groups diverges. Consequentially, the convergence rate is smaller with respect to p. Details of the

proof are omitted.

C.2 Auxiliary Lemmas

In this section, we denote the first r0 columns of F0 as F0 and the rest columns as Fu.

Lemma C.2.1 (Lemma B.1 in Fan et al. (2016)). E♣⑥F❏
0
U❏⑥2

F
q ✏ O♣pT q.

Lemma C.2.2 (Lemma C.1 in Wang and Fan (2017)). (i) E♣⑥U⑥2
2
q ✏ O♣pq;

(ii) ⑥B❏U⑥max ✏ O♣T❛λmax♣BBT qq for any p✂K matrix B;

(iii) E♣⑥U❏U⑥maxq ✏ O♣❄pT � pq.

Lemma C.2.3. Under Conditions 4.2.4-4.2.7,

(i) E♣⑥F❏
0
U❏⑥2

F
q ✏ O♣pT q, E♣⑥F❏uU❏⑥2

F
q ✏ O♣pTmq, E♣⑥U⑥2

2
q ✏ O♣pq, E♣⑥A❏U⑥2

F
q ✏

O♣D2

Ar0pT q, E♣⑥A❏UF0⑥2Fq ✏ O♣D2

Ar0pT q and E♣⑥C❏UF⑥2
F
q ✏ O♣D2

Ar0pTmq.

(ii) With probability at least 1 ✁ 6e✁s, ⑥F❏
0
U❏⑥F ➚ ♣pT q1④2❄s, ⑥F❏uU❏⑥F ➚ ♣pT ④mq1④2❄s,

⑥U⑥2 ➚ p1④2
❄
s, ⑥U❏U⑥max ➚ ♣❄pT � pqs, ⑥A❏U⑥F ➚ DA♣r0pT q1④2

❄
s, ⑥A❏UF0⑥F ➚

DA♣r0pT q1④2
❄
s and ⑥C❏UF⑥F ➚ DA♣r0pTmq1④2

❄
s.

Proof. (i) By Lemmas C.2.1 and C.2.2, E♣⑥F❏
0
U❏⑥2

F
q ✏ O♣pT q, E♣⑥F❏uU❏⑥2

F
q ✏ O♣pTmq and

E♣⑥U⑥2
2
q ✏ O♣pq. In addition,

E♣⑥A❏U⑥2
F
q ✏

T➳
t✏1

r0➳
k✏1

E

✩✫✪
✄

p➳
i✏1

aikuit

☛2
✱✳✲ ✏

T➳
t✏1

r0➳
k✏1

p➳
i✏1

p➳
i✶✏1

aikai✶kE♣uitui✶tq

223



↕pr0 max
k↕r0,i↕p

a2ik

T➳
t✏1

max
i✶↕p

p➳
i✏1

⑤E♣uitui✶tq⑤ ✏ O♣D2

Ar0pT q

The remaining bounds can be derived similarly.

(ii) For any x → 0, it holds

P♣⑥F❏
0
U❏⑥F④

❛
C0pT →Mq ↕ exp♣✁xMqErexptx⑥F❏

0
U❏⑥F④

❛
C0pT ✉s

↕ exp♣✁xMqE
✑
1� x⑥F❏

0
U❏⑥F④

❛
C0pT

�x2⑥F❏
0
U❏⑥2

F
④t2C0pT ✉ � o♣x2⑥F❏

0
U❏⑥2

F
④t2C0pT ✉q

✘
↕ expt✁xM � x� x2④2� o♣x2q✉

since E♣⑥F❏
0
U❏⑥2

F
q ↕ C0pT for someC0 → 0. The minimum of right hand side is expt✁♣M✁

1q2④2✉. Letting s ✏ 2✁1♣M ✁ 1q2, we have with probability at least 1 ✁ e✁s, ⑥F❏
0
U❏⑥F ➚

❄
pTs. The remaining bounds can be derived similarly.

Denote K1 a r0✂r0 diagonal matrix with diagonals equal to the first r0 eigenvalues of ♣pT q✁1Y❏Y.

Then ♣pT q✁1Y❏Y①F0 ✏ ①F0K1. Let

H1 ✏ ♣pT q✁1A❏AF❏
0
①F0K

✁1

1
.

By model (4.2.7), we have ①F0 ✁ F0H1 ✏
�➦

3

i✏1
Mi

✟
K✁1 where

M1 ✏ 1

pT
F0C

❏U①F0, M2 ✏ 1

pT
U❏CF❏

0
①F0, M3 ✏ 1

pT
U❏U①F0.

Then, we will provide a bound on ⑥H1 ✁ Ir0⑥F using Lemmas C.2.4 to C.2.8.

Lemma C.2.4. Under Conditions 4.2.4-4.2.7„ with probability at least 1 ✁ 7e✁s, ⑥K✁1⑥2 ➚
♣dA❄r0q✁1♣1�DA

❄
r0T

✁1④2❄sq.
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Proof. The r0 largest eigenvalues of ♣pT q✁1Y❏Y are the same as those of W ✏ ♣pT q✁1YY❏. As

Y ✏ CF❏ �U, we have W ✏ ➦
5

i✏1
Wi where

W1 ✏ 1

p
CC❏, W2 ✏ 1

pT
CF❏U❏, W3 ✏ W❏

2
,

W4 ✏ 1

pT
UU❏, W5 ✏ 1

p
C

✂
1

T
F❏F✁ IK

✡
C❏.

By Lemma C.2.3, with probability at least 1✁ 6e✁s,

⑥W2⑥2 ↕ ♣pT q✁1⑥C⑥2♣
✎✎F❏

0
U
✎✎
F
� ✎✎F❏uU✎✎Fq ➚ DA

❄
r0T

✁1④2❄s,

and

⑥W4⑥2 ↕ ♣pT q✁1⑥U⑥2
2
➚ T✁1s.

By Condition 4.2.5, with probability at least 1 ✁ e✁s, ⑥W5⑥2 ➚ T✁1④2❄s. For k ✏ 1, . . . , K,

⑤λk♣Wq ✁ λk♣W1q⑤ ↕ ⑥W ✁W1⑥2. This implies, with probability at least 1 ✁ 6e✁s, ⑤λk♣Wq ✁
λk♣W1q⑤ ➚ T✁1④2❄s for each k ✏ 1, . . . , K. Note that the r0 largest eigenvalues of W1 is

also the r0 largest eigenvalues of p✁1C❏C. Thus, with probability at least 1 ✁ 7e✁s, ⑥K✁1

1
⑥2 ➚

♣dA❄r0q✁1♣1�DA

❄
r0T

✁1④2❄sq.

Lemma C.2.5. Under Conditions 4.2.4-4.2.7, with probability at least 1✁ 8e✁s,

1

T
⑥♣F0 ✁ F0H1⑥2F ➚

D2

A

d2A

✂
1

p
� 1

T 2

✡✁
1� s

T

✠
s2.

Proof. Note that ⑥♣F0⑥F ✏
❄
r0T with probability 1 and by Condition 4.2.5,

⑥F0⑥F ➚
❄
T t1� T✁1④2❄s✉

with probability at least 1 ✁ e✁s. Then, by Lemma C.2.3, with probability at least 1 ✁ 7e✁s,

⑥M1⑥F, ⑥M2⑥F ➚ DA

❛
r0p✁1Ts and ⑥M3⑥F ➚ T✁1④2s. Then, the results follows Lemma C.2.4.
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Lemma C.2.6. Under Conditions 4.2.4-4.2.7, with probability at least 1✁ 7e✁s,

(i) T✁1⑥M1⑥2F ➚ D2

Ad
✁2

A ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3,

(ii) T✁2⑥F❏
0
M2⑥2F ➚ D2

Ad
✁2

A ♣pT q✁1♣1� T✁1sqs,

(iii) T✁2⑥F❏
0
♣♣F0 ✁ F0H1q⑥2F ➚ D2

Ad
✁2

A ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3,

(iv) T✁2⑥♣F❏
0
♣♣F0 ✁ F0H1q⑥2F ➚ D2

Ad
✁2

A ♣p✁2 � p✁1T✁1q♣1� T✁1sqs3.

Proof. (i) With probability at least 1✁ 7e✁s,

⑥H1⑥2 ↕ ♣pT q✁1⑥A⑥2
F
⑥F0⑥F⑥♣F0⑥F⑥K✁1

1
⑥2 ➚ D2

A

d2A
♣1�D2

Ar0sT
✁1q

by Lemma C.2.4. Then by Lemmas C.2.3 and C.2.5, with probability at least 1✁ 7e✁s,

⑥C❏U♣F0⑥2F ↕ 2⑥C❏U♣♣F0 ✁ F0H1q⑥2F � 2⑥C❏UF0H1⑥2F
➚ D2

A

d2A
pT

✂
T

p
� 1

✡
s3 � D2

A

d2A
pTs

✂
1� s2

T 2

✡
➚ D2

A

d2A
♣T 2 � pT qs3.

The result follows that ⑥F0⑥F ➚
❄
T t1� T✁1④2❄s✉ with probability at least 1✁ e✁s.

(ii) Similar to (i), with probability at least 1✁ 7e✁s,

1

T 2
⑥F❏

0
M2⑥2F ↕

1

p2T 4
⑥F❏

0
U❏A⑥2

F
⑥F0⑥2F⑥♣F0⑥2F ➚

D2

As

d2ApT

✁
1� s

T

✠
.

(iii) Combining (i) and (ii), the result follows from the proof of Lemma C.2.5.

(iv) The result follows from ⑥♣F❏
0
♣♣F0 ✁ F0H1q⑥F ↕ ⑥♣F0 ✁ F0H1⑥2F � ⑥H❏F❏

0
♣♣F0 ✁ F0Hq⑥F.

226



Lemma C.2.7. Under Conditions 4.2.4-4.2.7, with probability at least 1✁ 7e✁s,

⑥H❏
1
H1 ✁ Ir0⑥2F ➚

D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠3

.

Proof. By Condition 4.2.5, ⑥T✁1F❏
0
F0✁ Ir0⑥F ➚ T✁1④2❄s with probability at least 1✁ e✁s. Also,♣F❏

0
♣F0 ✏ T Ir0 . Thus,

H❏
1
H1 ✁ Ir0 ✏ H❏

1

✂
Ir0 ✁

1

T
F❏

0
F0

✡
H1 � 1

T
♣F0H✁①F00q❏F0H1 � 1

T
♣F❏
0
♣F0H1 ✁ ♣F0q.

The result follows from Lemma C.2.6.

Lemma C.2.8. Under Conditions 4.2.4-4.2.7, with probability at least 1✁ 7e✁s,

⑥H1 ✁ Ir0⑥2F ➚
D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Proof. Note that pH1K1 ✏ A❏A
✁
T✁1F❏

0
♣F0 ✁H1

✠
�A❏AH1. By Lemma C.2.6, with proba-

bility at least 1✁ 7e✁s,

✎✎✎✎1pA❏A
✂
1

T
F❏

0
♣F0 ✁H1

✡✎✎✎✎2
F

↕ 1

p2
⑥A❏A⑥2

F

1

T 2
⑥F❏

0
♣♣F0 ✁ F0H1q⑥2F �

1

p2
⑥A❏A⑥2

F

✎✎✎✎Ir0 ✁ 1

T
F❏

0
F0

✎✎✎✎2
F

⑥H⑥2
2

➚D
2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Therefore, with probability at least 1✁ 7e✁s,

✎✎✎✎1pA❏AH1 ✁H1K1

✎✎✎✎2
F

➚ D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

This implies that with probability at least 1✁7e✁s, H1 (up to an error term) is a matrix consisting of

eigenvectors of p✁1A❏A. By Condition 4.2.5, A❏A is a diagonal matrix with distinct eigenvalues

with probability 1. Thus, each eigenvalue is associated with a unique unitary eigenvector up to
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a sign change and each eigenvector has a single non-zero entry. Thus, with probability at least

1✁ 7e✁s,

⑥H1 ✁ J1⑥2F ➚
D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
for some diagonal matrix J1. By Lemma C.2.7, with probability at least 1 ✁ 7e✁s, for each k ✏
1, . . . , r0,

⑤λk♣H1q ✁ η⑤2 ➚ D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
where η is either 1 or ✁1. Without loss of generality , we can assume that all entries of H1 is

positive (otherwise we can multiply the corresponding columns of ♣F0 and ♣A by ✁1). Hence,

denoting H1 ✏ th♣1qij ✉r0i,j✏1
, with probability at least 1✁ 7e✁s,

⑥H1 ✁ Ir0⑥2F ✏
➳
i✘j

♣h♣1qij q2 �
r0➳
i✏1

♣h♣1qii ✁ 1q2 ➚ D2

A

d2A

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Recall that ♣A ✏ T✁1Y♣F0. We have ♣A✁AH1 ✏
➦

3

i✏1
Ei where

E1 ✏ 1

T
AF❏

0
♣♣F0 ✁ F0H1q, E2 ✏ 1

T
UF0H1, E3 ✏ 1

T
U♣♣F0 ✁ F0H1q.

Lemma C.2.9. Under Conditions 4.2.4-4.2.7, with probability at least 1✁7e✁s, p✁1⑥♣A✁AH1⑥2F ➚
d2A♣T✁1s� T✁2s2 � p✁1T✁1s3 � p✁2s3q♣1� T✁1sq.

Proof. By Lemmas C.2.3 and C.2.5, with probability at least 1 ✁ 7e✁s, ⑥E1⑥2F ➚ D2

Ad
✁2

A ♣p✁1 �
T✁1q♣1� T✁1sqs3, ⑥E2⑥2F ➚ T✁1p♣1� T✁1sq2s and ⑥E3⑥2F ➚ D2

Ad
✁2

A ♣T✁1 � pT✁3q♣1� T✁1sqs3.
So p✁1⑥♣A✁AH1⑥2F ➚ D2

Ad
✁2

A ♣pT✁1s� pT✁2s2 � T✁1s3 � p✁1s3q♣1� T✁1sq.

Then, we will provide similar results corresponding to the first K eigenvalues of ♣pT q✁1Y❏Y.

Denote K2 aK✂K diagonal matrix with diagonals equal to the firstK eigenvalues of ♣pT q✁1Y❏Y.

Then ♣pT q✁1Y❏Y♣F ✏ ♣FK2. Let H2 ✏ ♣pT q✁1C❏CF❏♣FK✁1

2
. Using our central model (4.2.7)
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in the paper (i.e. Y ✏ CF❏ �U), we have ♣F✁ FH2 ✏
�➦

3

i✏1
Ni

✟
K✁1

2
where

N1 ✏ 1

pT
FC❏U♣F, N2 ✏ 1

pT
U❏CF❏♣F, N3 ✏ 1

pT
U❏U♣F.

Then, we will provide a bound on ⑥H2 ✁ IK⑥F using Lemmas C.2.10 to C.2.14.

Lemma C.2.10. Under Conditions 4.2.4-4.2.7, with probability at least 1 ✁ 7e✁s, ⑥K✁1

2
⑥2 ➚

♣dB
❛
minj rjq✁1♣1�DA

❄
r0T

✁1④2❄sq.

Proof. The proof is similar as that of Lemma C.2.4

Lemma C.2.11. Under Conditions 4.2.4-4.2.7 in the main paper, with probability at least 1✁7e✁s,

1

T
⑥♣F✁ FH2⑥2F ➚

D2

Ar0

d2B minj rj

✂
m

p
� 1

T 2

✡✁
1� s

T

✠
s2.

Proof. Note that ⑥♣F⑥F ✏ ❄
KT with probability 1 and by Condition 4.2.5 in the main paper,

⑥F⑥F ➚
❄
T t1 � T✁1④2❄s✉ with probability at least 1 ✁ e✁s. Then, by Lemma C.2.3, with prob-

ability at least 1 ✁ 6e✁s, ⑥N1⑥F, ⑥N2⑥F ➚ DA

❛
r0pT ④ms and ⑥N3⑥F ➚ T✁1④2s. Then, the results

follows Lemma C.2.10.

Lemma C.2.12. Under Conditions 4.2.4-4.2.7 in the main paper, with probability at least 1✁7e✁s,

(i) T✁1⑥N1⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1♣p✁2m� p✁1T✁1mq♣1� T✁1sqs3,

(ii) T✁2⑥F❏N2⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1p✁1T✁1m♣1� T✁1sqs,

(iii) T✁2⑥F❏♣♣F✁ FH2q⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1♣p✁2m� p✁1T✁1mq♣1� T✁1sqs3,

(iv) T✁2⑥♣F❏♣♣F✁ FH2q⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1♣p✁2m� p✁1T✁1mq♣1� T✁1sqs3.

Proof. (i) With probability at least 1 ✁ 7e✁s, ⑥H2⑥2 ↕ p✁1T✁1m⑥C⑥2
F
⑥F⑥F⑥♣F⑥F⑥K✁1

2
⑥2 ➚

D2

Ar0d
✁2

B ♣minj rjq✁1m♣1 � d2B minj rjsT
✁1q by Lemma C.2.10. Then by Lemmas C.2.3

and C.2.11, with probability at least 1✁ 7e✁s,

⑥C❏U♣F⑥2
F
↕ 2⑥C❏U♣♣F✁ FH2q⑥2F � 2⑥C❏UFH2⑥2F
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➚ pTm

✂
T

p
� 1

✡
s3 � pTms

✂
1� s2

T 2

✡
➚ D2

Ar0

d2B minj rj
m♣T 2 � pT qs3.

The result follows that ⑥F⑥F ➚
❄
T t1� T✁1④2❄s✉ with probability at least 1✁ e✁s.

(ii) Similar to (i), with probability at least 1✁ 7e✁s,

1

T 2
⑥F❏M2⑥2F ↕

1

p2T 4
⑥F❏U❏C⑥2

F
⑥F⑥2

F
⑥♣F⑥2

F
➚ D2

Ar0ms

d2B minj rjpT

✁
1� s

T

✠
.

(iii) Combining (i) and (ii), the result follows from the proof of Lemma C.2.11.

(iv) The result follows from ⑥♣F❏♣♣F✁ FH2q⑥F ↕ ⑥♣F✁ FH2⑥2F � ⑥H❏
2
F❏♣♣F✁ FH2q⑥F.

Lemma C.2.13. Under Conditions 4.2.4-4.2.7 in the main paper, with probability at least 1✁7e✁s,

⑥H❏
2
H2 ✁ IK⑥2F ➚

D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠3

.

Proof. By Condition 4.2.5 in the main paper, ⑥T✁1F❏F ✁ IK⑥F ➚ T✁1④2❄s with probability at

least 1✁ e✁s. Also, ♣F❏♣F ✏ T IK . Thus,

H❏
2
H2 ✁ IK ✏ H❏

2

✂
IK ✁ 1

T
F❏F

✡
H2 � 1

T
♣FH2 ✁ ♣Fq❏FH2 � 1

T
♣F❏♣FH2 ✁ ♣Fq.

The result follows from Lemma C.2.12.

Lemma C.2.14. Under Conditions 4.2.4-4.2.7 in the main paper, with probability at least 1✁7e✁s,

⑥H2 ✁ IK⑥2F ➚
D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

230



Proof. Note that pH2K2 ✏ C❏C
✁
T✁1F❏♣F✁H2

✠
�C❏CH2.By Lemma C.2.6, with probability

at least 1✁ 7e✁s,

✎✎✎✎1pC❏C
✂
1

T
F❏♣F✁H2

✡✎✎✎✎2
F

↕ 1

p2
⑥C❏C⑥2

F

1

T 2
⑥F❏♣♣F✁ FH2q⑥2F �

1

p2
⑥C❏C⑥2

F

✎✎✎✎IK ✁ 1

T
F❏F

✎✎✎✎2
F

⑥H2⑥22

➚ D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Therefore, with probability at least 1✁ 7e✁s,

✎✎✎✎1pC❏CH2 ✁H2K2

✎✎✎✎2
F

➚ D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

This implies that with probability at least 1✁ 7e✁s, H2 (up to an error term) is a matrix consisting

of eigenvectors of p✁1C❏C. By Condition 4.2.5 in the main paper, C❏C is a diagonal matrix

with distinct eigenvalues with probability 1. Thus, each eigenvalue is associated with a unique

unitary eigenvector up to a sign change and each eigenvector has a single non-zero entry. Thus,

with probability at least 1✁ 7e✁s,

⑥H2 ✁ J2⑥2F ➚
D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠

for some diagonal matrix J2. By Lemma C.2.13, with probability at least 1 ✁ 7e✁s, for each

k ✏ 1, . . . , K,

⑤λk♣H2q ✁ η⑤2 ➚ D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠

where η is either 1 or ✁1. Without loss of generality , we can assume that all entries of H2

is positive (otherwise we can multiply the corresponding columns of ♣F and ♣C by ✁1). Hence,

231



denoting H2 ✏ th♣2qij ✉Ki,j✏1
, with probability at least 1✁ 5e✁s,

⑥H2 ✁ IK⑥2F ✏
➳
i✘j

♣h♣2qij q2 �
K➳
i✏1

♣h♣2qii ✁ 1q2 ➚ D2

Ar0

d2B minj rj

✂
s

T
� s2

T 2
� s3

p2
� s3

pT

✡✁
1� s

T

✠
.

Recall that ♣C ✏ T✁1Y♣F. We have ♣C✁CH2 ✏
➦

3

i✏1
Gi where

G1 ✏ 1

T
CF❏♣♣F✁ FH2q, G2 ✏ 1

T
UFH2, G3 ✏ 1

T
U♣♣F✁ FH2q.

Lemma C.2.15. Under Conditions 4.2.4-4.2.7, with probability at least 1✁7e✁s, p✁1⑥♣C✁CH2⑥2F ➚
D2

Ar0d
✁2

B ♣minj rjq✁1♣T✁1s� T✁2s2 � p✁1T✁1s3 � p✁2s3q♣1� T✁1sq.

Proof. By Lemmas C.2.3 and C.2.11, with probability at least 1✁7e✁s, ⑥G1⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1

♣p✁1m�T✁1q♣1�T✁1sqs3, ⑥G2⑥2F ➚ T✁1pm♣1�T✁1sq2s and ⑥G3⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1♣T✁1�
pT✁3q♣1 � T✁1sqs3. So p✁1⑥♣C ✁ CH2⑥2F ➚ D2

Ar0d
✁2

B ♣minj rjq✁1♣pT✁1s � pT✁2s2 � T✁1s3 �
p✁1ms3q♣1� T✁1sq.

Lemma C.2.16. With probability at least 1✁ 3e✁s,

(i) ⑥N1⑥max, ⑥N2⑥max ➚ DA

❄
r0p

✁1④2tlog♣T q✉2④r2s;

(ii) ⑥N3⑥max ➚ p✁1④2tlog♣T q✉1④r2s.

Proof. By Lemma C.2.3, with probability at least 1 ✁ 6e✁s, ⑥U❏U⑥max ➚ ♣❄pT � pqs. Also,

by Lemma C.2.2, ⑥U❏C⑥✽ ➚ DA

❄
r0pT . Hence, with probability at least 1 ✁ e✁s, ⑥U❏C⑥✽ ➚

DA

❄
r0pTs. Then, the results follow from that ⑥F⑥max ➚ tlog♣T q� s✉1④r2 with probability at least

1✁ e✁s.

Recall that

Σ♣zq ✏ C0♣zqC0♣zq❏ � σ2

uIp.
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where

C0♣zq ✏

✔✖✖✖✖✕
DAA

♣0q
1

dBB
♣0q
1

...
. . .

DAA
♣0q
m dBB

♣0q
m

✜✣✣✣✣✢ ,

♣A♣0q
j ,B

♣0q
j q ✏

✔✖✕D♣1q
j

D
♣2q
j

✜✣✢ ,

D
♣1q
j ✏

✔✖✖✖✖✖✖✖✕

1 1 . . . 1 1

✁1 1 . . . 1 1

...
. . . . . .

...
...

0 0 . . . ✁rj � 1 1

✜✣✣✣✣✣✣✣✢
is a rj ✂ ♣r0 � rjq matrix and

D
♣2q
j ✏

✔✖✖✖✖✕
1 ☎ ☎ ☎ 0

...
. . .

...

0 ☎ ☎ ☎ 1

✜✣✣✣✣✢
is a ♣pj♣zq ✁ rjq ✂ ♣r0 � rjq block diagonal matrix consisting of r0 � rj vectors of d01 for j ✏
1, . . . ,m.

Lemma C.2.17. For Σ♣zq defined above, any ℓ ✘ ℓ✶ and z♣ℓq, z♣ℓ
✶q P T ,

log

✂ ⑤Σ♣z♣ℓqq⑤
⑤Σ♣z♣ℓ✶qq⑤

✡
✏r0 log

☎✆D2

Ar0
➦m

k✏1

pk♣z♣ℓqq
r0�rk

� σ2
u

D2

Ar0
➦m

k✏1

pk♣z♣ℓ✶qq
r0�rk

� σ2
u

☞✌
�

m➳
k✏1

rk log

✂
d2B minj rjpk♣z♣ℓqq � σ2

u♣r0 � r1q
d2B minj rjpk♣z♣ℓ✶qq � σ2

u♣r0 � r1q
✡
.
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Proof. By definition of C0♣zq in (C.1.1) and definition of Σ♣zq in (C.1.3), the eigenvalues of

C0♣zq❏C0♣zq is

☎✝✝✝✝✆D2

Ar0

m➳
k✏1

pk♣zq
r0 � rk

, . . . , D2

Ar0

m➳
k✏1

pk♣zq
r0 � rk❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥

r0

,
d2B minj rjp1♣zq

r0 � r1
, . . . ,

d2B minj rjp1♣zq
r0 � r1❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥

r1

, . . . ,

d2B minj rjpm♣zq
r0 � rm

, . . . ,
d2B minj rjpm♣zq

r0 � rm❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
rm

☞✍✍✌.

Since C0♣zq❏C0♣zq and C0♣zqC0♣zq❏ share the same non-zero eigenvalues,

⑤Σ♣zq⑤ ✏
✄
D2

Ar0

m➳
k✏1

pk♣zq
r0 � rk

� σ2

u

☛r0

Πm
k✏1

✂
d2B minj rjpk♣zq

r0 � rk
� σ2

u

✡rk

σ2♣p✁➦m
k✏1

rkq
u .

Note that by definition of tz♣1q, . . . , z♣nq✉, pk♣z♣jqq and pk♣z♣ℓqq are the same for m ✁ 2 pairs and

with difference 1 for 2 pairs. Then for any ℓ ✘ ℓ✶,

log

✂ ⑤Σ♣z♣ℓqq⑤
⑤Σ♣z♣ℓ✶qq⑤

✡
✏r0 log

☎✆D2

Ar0
➦m

k✏1

pk♣z♣ℓqq
r0�rk

� σ2
u

D2

Ar0
➦m

k✏1

pk♣z♣ℓ✶qq
r0�rk

� σ2
u

☞✌
�

m➳
k✏1

rk log

✂
d2B minj rjpk♣z♣ℓqq � σ2

u♣r0 � r1q
d2B minj rjpk♣z♣ℓ✶qq � σ2

u♣r0 � r1q
✡
.

Lemma C.2.18. For Σ♣zq defined above, any ℓ ✘ ℓ✶ and z♣ℓq, z♣ℓ
✶q P T ,

tr
✁
Σ♣z♣ℓqq✁1Σ♣z♣ℓ✶qq

✠
✏ p.
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Proof. Note that

Σ♣z♣ℓqq✁1 ✏

✔✖✕ E ✁ 1

1�σ2
u
c1♣ℓq❏C✁1♣z✁1q❏Σ✁1

0
♣ℓq

✁ 1

1�σ2
u
Σ✁1

0
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for ℓ ✘ ℓ✶. The conclusion follows.
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