
THESIS

SECURE REMOTE SENSOR SIMULATOR FOR HEAVY VEHICLE ELECTRONIC

CONTROL UNITS

Submitted by

Ram Rohit Gannavarapu

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2022

Master’s Committee:

Advisor: Edwin Chong

Jeremy Daily

Sudeep Pasricha

Copyright by Ram Rohit Gannavarapu 2022

All Rights Reserved

ABSTRACT

SECURE REMOTE SENSOR SIMULATOR FOR HEAVY VEHICLE ELECTRONIC

CONTROL UNITS

Heavy Vehicle Event Data Recorders (HVEDRs) have the capability to record crash-related

data and are valuable tools for traffic crash investigators. The data extracted from HVEDRs con-

tain information to help reconstruct the driver’s behaviors and determine the events leading to a

crash.Data extraction is commonly performed using diagnostic tools when the electronic control

unit (ECU) with the HVEDR is available on the vehicle’s network. In the cases where the electrical

system of the vehicle is compromised, the ECU is often removed and connected to a harness for

power and communications. These harnesses are not designed to preserve fault codes or diagnostic

trouble codes which can result in overwriting data related to a particular crash event.

This thesis describes the open-source hardware and software design of a remotely accessible

sensor simulator used to create a fault-free environment for a bench download of an HVEDR.

The sensor simulator device reduces the chance of any alteration of the original fault code data

inside the HVEDRs by emulating the presence of actuators and sensors to the ECU. It does this

using analog voltage outputs, pulse-width modulated signals, digital potentiometers, and CAN

messages. The settings for these are adjustable remotely through a web-based interface.

A contribution of the thesis focuses on a process to increase the security posture of the embed-

ded IoT devices wherein it utilizes a hardware security module to offload cryptography operations.

The hardware security module was also used for secure key storage and implement Elliptic Curve

Digital Signature Algorithm (ECDSA) to sign and verify messages for integrity, which is a key

process in Transport layer security (TLS). The device also securely connects to a cloud infras-

tructure using TLS, enabling investigators to operate these devices remotely using a web-based

ii

graphical user interface. Secure remote access enables further research and investigation of heavy

vehicle electronic systems.

iii

ACKNOWLEDGEMENTS

Throughout the writing of this thesis, I have received a great deal of assistance. I would like to

first thank my mentor, Dr. Jeremy Daily, who has guided me through this project with his valuable

knowledge and dedication. I would also like to thank Dr. Edwin Chong, Dr. Sudeep Pasricha

for being on my thesis committee. Thanks to all my research colleagues who have helped me

throughout the project. More importantly, I would like to thank my parents and my sister for their

constant support throughout. I would like to thank Colorado State University for providing the

facilities and resources to conduct the research.

iv

DEDICATION

I would like to dedicate this thesis to my late grandfather Addanki Marthanda Manikya Sharma.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Related Research . 2

1.3 Objective . 3

1.4 Approach . 4

1.5 Background on Heavy Vehicle Systems 6

1.5.1 Standard sensors found in heavy vehicles 6

1.5.2 Creating a fault-free environment . 8

1.5.3 Data extraction from ECMs . 9

1.6 Contribution . 10

1.7 Organization of Thesis . 11

Chapter 2 System Design . 12

2.1 Requirements . 12

2.1.1 Fault free environment . 12

2.1.2 Remote connection . 13

2.1.3 Compatibility . 13

2.1.4 Cybersecurity requirements . 13

2.1.5 Provisioning . 13

2.1.6 Real-time feedback . 13

2.1.7 Open Source . 13

2.2 Functions . 14

2.2.1 Simulating Resistive sensors . 14

2.2.2 Generation of Analog DC Signals . 14

2.2.3 PWM signal generation . 15

2.2.4 Monitoring voltage on the output . 16

2.2.5 CAN Read/Write messages . 16

2.2.6 User Interface . 16

2.3 Functional Allocation . 17

2.3.1 Generating PWM signals . 17

2.3.2 Controlling digital potentiometers . 18

2.3.3 Communication over CAN bus . 18

2.3.4 Monitor Voltage . 18

2.3.5 Application Programming Interface . 19

2.3.6 User Interface . 19

vi

2.4 Architecture . 19

2.5 Conclusion . 21

Chapter 3 Hardware Design . 22

3.1 Introduction . 22

3.2 Requirements . 22

3.3 Hardware Building Blocks . 23

3.4 Detailed Schematics . 26

3.4.1 Voltage Regulation and power protection 29

3.4.2 Development Board . 30

3.4.3 Digital Potentiometers . 31

3.4.4 Pulse Width Modulated Signals . 35

3.4.5 Ethernet Module . 36

3.4.6 CAN Transceivers . 37

3.4.7 Crypto Trust Platform . 38

3.4.8 External Connections . 39

3.5 Enclosure and Printed Circuit Board . 40

3.6 Bill of Materials . 44

3.7 Functional Unit Tests . 45

3.7.1 Digital Potentiometer test . 45

3.7.2 PWM test . 47

3.7.3 Voltage monitoring test . 49

3.7.4 CAN Test . 52

3.7.5 ATECC608B test . 56

3.7.6 Ethernet test . 57

3.8 Hardware Design and Testing Summary 60

Chapter 4 Software Design . 61

4.1 Introduction . 61

4.2 Requirements . 61

4.3 API Design . 61

4.3.1 PWM process flow . 65

4.3.2 Potentiometers process flow . 67

4.3.3 CAN Message generation process flow 69

4.4 Graphical User Interface (GUI) . 71

4.4.1 Digital Potentiometers . 71

4.4.2 Pulse width Modulation . 72

4.4.3 CAN message viewer . 73

4.4.4 CAN Message Generator . 74

4.5 Functional Unit Tests . 76

4.5.1 GET method tests . 76

4.5.2 POST method tests . 82

4.6 Conclusion . 84

Chapter 5 Securing Cloud and External Communication 85

vii

5.1 Introduction . 85

5.2 Transport Layer Security 1.2 (TLS) . 85

5.2.1 ECDSA sign and verify test . 87

5.3 Implementation . 95

5.4 Cloud Communications Summary . 98

Chapter 6 Conclusion . 99

6.1 Limitations and Future work . 99

Bibliography . 101

viii

LIST OF TABLES

3.1 Mini-SSS3 bill of materials(BOM) . 44

3.2 PAC1934 voltage measurement results . 51

3.3 Hardware test case summary . 60

ix

LIST OF FIGURES

1.1 V diagram for product development at the system level 5

2.1 Two wire sensor configuration where terminal A is not connected. 14

2.2 Three wire sensor configuration . 15

2.3 Mini-SSS3 function allocation . 17

2.4 Mini-SSS3 architecture overview . 20

3.1 Different layers of hardware components . 24

3.2 High-level printed circuit board block diagram . 26

3.3 Mini-SSS3 schematic page-1 . 27

3.4 Mini-SSS3 schematic page-2 . 28

3.5 Power Regulation . 29

3.6 Power monitoring IC . 30

3.7 Primary Microcontroller . 31

3.8 MCP41HV51 Terminal connections . 32

3.9 Digital Potentiometers . 32

3.10 MCP41HV51 TCON register . 33

3.11 MCP41HV51 block diagram . 34

3.12 PWM Signal Generator Schematic . 35

3.13 operational amplifier configuration . 36

3.14 Mini-SSS3 Schematic for Wiznet850i Ethernet module 37

3.15 Mini-SSS3 schematic for CAN Transceivers . 38

3.16 ATECC608A cyrptographic co-processor . 38

3.17 Pin definitions for the external connections . 40

3.18 Mini-SSS3 Printed Circuit Board . 41

3.19 Assembled Mini-SSS3 circuit card assembly . 41

3.20 Mini-SSS3 enclosure Ethernet side . 42

3.21 Mini-SSS3 enclosure Molex side . 43

3.22 Mini-SSS3 digital potentiometer test . 47

3.23 Mini-SSS3 PWM signal generation test observations from the Saleae Logic analyzer. . 48

3.24 Mini-SSS3 PWM signal frequency test . 49

3.25 Mini-SSS3 voltage monitor test . 52

3.26 Mini-SSS3 CAN message viewer test . 54

3.27 Mini-SSS3 CAN message generation test . 56

3.28 ATECC608 get serial number test . 57

3.29 Mini-SSS3 Ethernet test . 59

4.1 Mini-SSS3 HTTP API flow diagram . 63

4.2 PWM process flow diagram . 65

4.3 Potentiometers process flow diagram . 67

4.4 CAN generation flow diagram . 69

4.5 Digital Potentiometer GUI . 72

x

4.6 PWM GUI . 73

4.7 CAN viewer GUI . 74

4.8 CAN message generator GUI . 75

4.9 POST request serial monitor output . 83

5.1 TLS Handshake . 86

5.4 AWS Certificate Registration . 93

5.5 Certificate signing request test . 95

5.6 AWS user login screen . 96

5.7 AWS user signup . 97

5.8 Access control with AWS Cognito user pool . 98

xi

Chapter 1

Introduction

1.1 Background

A statistical projection of traffic fatalities shows that an estimated 2,811,185 people were in-

volved in motor vehicle accidents in the United States in 2018 [1]. Different agencies, such as law

enforcement, attorneys, and accident investigators, need to find the actual cause of those accidents.

Determining critical information that happened just a few seconds before and during the accident is

crucial. For passenger vehicles, Event Data Recorders (EDRs) can aid investigations of the causes

of crashes [2]. For heavy vehicles, Heavy Vehicle Event Data Recorder (HVEDR) functionality is

integrated into one or more Engine Control Modules (ECMs) [3].

Even though ECMs were initially designed to improve fuel efficiency and achieve optimal

engine performance while meeting emission regulations, they also serve to store critical informa-

tion such as vehicle speed, driving logs, diagnostic fault codes, brake status, and throttle posi-

tion [4], [5]. Modern ECMs record event data related to diagnostic faults, hard or quick stops, and

the vehicle’s last or most recent stop [5]. This information is stored in a manner that allows reports

to be generated and may be of value in an accident investigation and the data must be preserved in

a forensically sound manner [6].

The early designs of the smart sensor simulator [7] were concentrated on understanding the

different types of sensors and actuators that are needed to be simulated to create a fault free en-

vironment which would reduce the likelihood of data alterations during a bench download from a

HVEDR. Córcega’s work focused on validating this process on seven different ECM’s and creating

a fault free environment for those modules. Later a new version the smart sensor sensor simulator 2

(SSS2) was designed as a commercial solution by Dr. Daily at Synercon Technologies. The SSS2

had some hardware improvements with a smaller form factor compared to the SSS. SSS2 also had

a windows based graphical user interface application which communicated over USB. Those were

1

later open sourced and were made available at [8]. Both the SSS and SSS2 only communicated

through USB and had an overhead of installing additional software to interface with them. In this

thesis we also focus on creating a web based graphical user interface making it compatible with

any operating system and removing the overhead of installing additional software/drivers. With

the addition of a web interface and remote access, cybersecurity controls will need to be designed

into simulator solutions going forward.

Internet of Things (IoT) devices are deployed in a variety of domains, including public and

private networks. Cybersecurity is becoming critical to avoid the threat of leakage of sensitive

information. Unfortunately, many low-end IoT devices become vulnerable due to the lack of im-

plementation of security measures. A hacker who gains access to one device can replicate the same

attack on the others. Because embedded device (IoT) firmware architects prioritize functionality

over security, exploiting SPI flash and other device components is becoming common [9] [10].

That could be due to various factors requiring high processing power for performing cryptographic

operations, which require high memory requirements and optimizing costs [11]. Once we have

access to the hardware, it is possible to dump data from a serial flash or a JTAG debugger and gain

access to stored secrets or code [9] [10]. Once someone gets access to this sensitive information,

the whole network could be compromised. This thesis aims to utilize hardware security mod-

ules(HSMs), also commonly known as Trusted Platform Modules, to implement security measures

on microcontrollers with comparatively low memory and processing power.

1.2 Related Research

The preferred method for obtaining HVEDR records is to download the information directly

from the vehicle via the in-cab Deutsche connector, using an RP1210 compliant Vehicle Diagnostic

Adapter (VDA) and Original Equipment Manufacturer (OEM) software [3]. However, this cannot

be accomplished in some instances due to the extent and nature of the damage to the vehicle,

particularly if the electrical or communications networks have been compromised. Suppose this

information cannot be downloaded directly from the truck. In that case, there are three alternative

2

methods for obtaining the data: using a surrogate vehicle, performing a benchtop download without

a simulator harness, or performing a benchtop download with a simulator harness [5].

In the surrogate vehicle method, the ECM(s) are removed from the vehicle involved in the

accident and placed into an undamaged vehicle of the same make and model. Finding a suitable

surrogate can be difficult and is often only feasible for large fleet operators. Additionally, there is

the opportunity cost of having the surrogate vehicle out of service while the ECMs are swapped,

and the data is retrieved [12]. An alternate method is to perform a benchtop download, in which

the event data is retrieved from the ECM(s) while out of the vehicle. When an ECM is powered on

while disconnected from the vehicle, the absence of sensor inputs can create new fault codes; these

new faults may overwrite potentially valuable information [13], [14]. A simulator harness can be

connected to the ECM using actual and emulated truck components. However, these are typically

limited to a specific truck configuration and are expensive [12]. Some simulator harness solutions,

such as [15], can only simulate passive sensors, although many ECMs require active signals to be

fault free [14].

A similar subsystem often called the "Truck-in-a-Box" (TIB), allows investigators to emulate

sensors and actuators often seen in different engine configurations to create a fault-free environ-

ment [3]. The TIB renders all signals to the ECM by using the actual sensors or utilizing equivalent

electrical components. The setup in [13] is used as a teaching tool for technical schools. It can also

be used to simulate sensor malfunctions, typically seen in crash events, and to study the ECM’s

response without an actual truck.

1.3 Objective

The initial motivation for the remote sensor simulator builds upon the work done by Corgega [7]

where he initially designed a smart sensor simulator, a hardware tool for bench top downloads that

is able to simulate both passive and active signals in order to create a fault-free environment. Later

another version called the smart sensor simulator 2 (SSS2) was designed by Synercon technologies

[16] making it a commercial product.

3

The remote sensor simulator or called as Mini Smart Sensor Simulator 3 (Mini-SSS3) is de-

signed to be general purpose and able to work with various ECMs - across different manufacturers

but most importantly give the investigators an option to operate these devices remotely. Various

passive and active signals are simulated via a combination of digital potentiometers and Pulse

Width Modulated (PWM) outputs. Additionally, the Mini-SSS3 supports common vehicle com-

munications standards, such as Controller Area Network (CAN). The hardware is paired with

software that enables users to simulate different sensors and actuators through a Graphical User

Interface (GUI). Both the hardware and software solutions are open source and available at [17].

The key objective of the Mini-SSS3 was to give the device a way to be controlled remotely in a

secure manner.

1.4 Approach

Figure 1.1 shows a V-diagram followed during the product development of the Mini smart

sensor simulator. Cryptography was given importance at every design, development, test, and

validation stage following the ISO/SAE21434 standard [18]. During the initial phase of system

design, we did system-level analysis to understand the initial requirements for the overall system

and this analysis was then used to do a system level planning to include new features.Then, based

on the resulting requirements the functionalities were further allocated to hardware and software

design or both respectively.Further, Cybersecurity requirements were then drafted to make sure

the communication between the IoT device (Mini-SSS3) and cloud infrastructure secure. Finally,

at the last the stage of the design process all the functionalities were translated into hardware and

software components. This concludes the design phase of the Mini-SSS3 system.

In the testing phase, initially each of the individual component were tested for validating their

functionalities. Then, the whole system was integrated and tested again to make sure the function-

alities were delivering the results as per the requirements. Finally, after the feature integration and

system validation the Mini-SSS3 was released for production.

4

Figure 1.1: V diagram for product development at the system level [19]

5

1.5 Background on Heavy Vehicle Systems

Electronic Control Units (ECUs) are designed for many tasks, including:

• Improve fuel efficiency.

• Meet emission regulations.

• Aid with troubleshooting and diagnostics.

• Protect the system/asset they monitor (i.e., Engine, Transmission, among others).

There are numerous sensors and switches throughout the truck that allow these ECUs to make

decisions based on electrical inputs. The truck’s battery and the ignition switch power these ECUs.

After then, the ECU(s) will utilize this voltage as a reference for the 5V, 8V, and 12V sources

used to power the various sensors and switches triggered by these units. J1708/J1587 [20] [21], or

J1939 [27] are common protocols used by ECUs to connect with other modules. For example, the

vehicle’s diagnostic port provides access to at least one of these communication protocols

1.5.1 Standard sensors found in heavy vehicles

The ECM monitors engine sensors. Sensor outputs monitored by the ECM take many forms,

including resistance, analog, Pulse Width Modulated (PWM), or a communication standard such

as CAN, J1708, etc. The ECM is the most common ECU across all OEMs. This module contains

all the timing calibrations needed to drive fuel injectors and maximize fuel efficiency [28]. It also

monitors all the engine sensors and switches to protect this asset. There are at least two harnesses

connected to an ECM. These harnesses are often referred to as vehicle side and engine side. Among

the sensors connected to the engine side harness, there are:

• Engine Oil Pressure Sensor

• Intake Manifold Pressure Sensor

• Intake Manifold Temperature Sensor

6

• Barometric Pressure Sensor

• Engine Coolant Temperature Sensor

• Fuel Temperature Sensor

• Engine Oil Temperature Sensor

• Inlet Air Temperature Sensor

• Inlet Air Temperature Sensor

• Crankcase Pressure Sensor

• Ambient Air Temperature Sensor

These are commonly thermistors (temperature) or variable capacitance (pressure) sensors. Some

sensors have built-in signal conditioning and provide a voltage output. Therefore, the signal ex-

pected by the ECM is within a voltage range, usually from 0.25V and 4.75V.

The engine harness is also connected to variable reluctance sensors that help the ECM deter-

mine what position the engine is in at any given time during its cycle. The ECM uses two sensors

located near the crankshaft and camshaft. These sensors often include:

• Engine Position Sensor 1

• Engine Position Sensor 2

• Crankshaft position sensor

• Camshaft position sensor

• Timing reference sensor

• Synchronous reference sensor

The engine uses the input from these sensors to make decisions and drive different actuators

such as:

7

• EGR Valve Motor

• Variable Geometry Turbocharger Actuator

• Engine compression Brake Solenoids

• Injectors

• Engine Cooling Fan Solenoid

• Stop Engine Lamp

• Check Engine Lamp

The vehicle side harness enables the ECM to monitor sensors and switches available on the

truck’s dashboard. This harness also houses all the communications and power terminals needed

for the ECM to function. Through these communication lines, the ECM can obtain data, such as

vehicle speed, from other modules. One example of a sensor connected to the vehicle side harness

is the Pedal Position Sensor (PPS). This sensor can differ on the make an model of the vehicle and

engine. For example, Caterpillar uses a PPS that produces a single channel PWM signal to the

ECM. The PPS used by Detroit Diesel engines (from DDEC IV to DDEC X) utilizes a variable

resistance sensor (potentiometer) which provides an analog voltage signal, typically from 0.25V

to 5V, which the ECM reads to sense the position of the pedal.

Some actuators are controlled over CAN rather than an analog or PWM signal depending on

the engine configuration. However, neither engine CAN nor any standard CAN network (SAE

J1939) are used to actuate these sensors. Instead, modules such as the After-treatment Control

Module (ACM) or MCM have dedicated CAN lines to control these controllers. In some cases,

The device must emulate CAN frames in order to avoid fault codes.

1.5.2 Creating a fault-free environment

Fault codes are generated when any sensors on the vehicle side or the engine side harness

are missing. Missing sensors causes new diagnostic records to be written, and these new files

8

can potentially overwrite any existing records that may have collision-related data [13]. Existing

literature showed that active fault codes on the Mercedes-Benz ECMs had overwritten existing

diagnostic records on subsequent power cycles [13]. Hence its important to create a fault-free

environment before the data is extracted from the HVEDR to reduce the chance of overwriting

data.

1.5.3 Data extraction from ECMs

Under normal circumstances, communication with the ECM is done over the diagnostic port,

which is present inside the driver’s cabin. This connector is often the standardized 9-pin connector

described by the SAE J1939-13 standard [16]. This 9-pin connector is also called a Deutsch

connector. The OEM software and an RP1210 compliant device that serves as a translator are

necessary to establish communication between the computer and the truck.

When communications with the ECM(s) cannot be established through the diagnostic port,

the ECM can be removed and a Direct to Module (DTM) or bench download is performed. This

process requires the investigator to remove the engine and vehicle side harness and retrieve the

ECM from the truck. Using an OEM Reprogramming Harness and an external source of power,

the download can be performed. However, this method will certainly introduce new diagnostic

fault codes that will alter the original image of the ECM and could potentially overwrite crash-

related records. A bench download can also be done without an OEM reprogramming harness.

Instead of using a reprogramming harness to perform a bench download, sockets crimped to

wires are used to connect to the ECM. Opposite to the crimped end, banana plugs are used to

connect to a breakout box. A power source and RP1210 compliant device connect to this breakout

box to power the system and carry out the download. Similar to the bench download using a

reprogramming harness, this download will also introduce diagnostic fault codes. Moreover, the

sockets are not mechanically fastened, which risks losing electrical continuity with the ECM’s

terminals.

9

In cases when a bench download is required, a fault-free environment must be created to guar-

antee that all data records available within the ECM are preserved. Based on the practices for

ECM downloads shown in the previous section, the only way to achieve a fault-free environment

is to simulate the different sensors and actuators available to the ECM through both the engine and

vehicle side harnesses. A miniature Smart Sensor Simulator 3 (Mini-SSS3) was designed to be

able to perform this task.

The Mini-SSS3 integrates the adaptability of the TIB and the ability to repeat an identical bench

download of the fault-free cables described in previous sections. Even though the Mini-SSS3

allows the investigator to emulate a great variety of sensors, actuators, switches, and modules,

the fault-free environment must be constructed before the actual forensic download is performed.

The crash-related events stored in the ECM can be overwritten seconds after a fault code is set.

Therefore, investigators must follow a proper method to create a fault-free environment must be

followed to minimize opportunities for data tampering. Also, due to the Mini-SSS3’s smaller size,

multiple units may be necessary to simulate all the sensors necessary for an actual engine control

module.

1.6 Contribution

The key contributions of this thesis involve:

1. Documentation of the hardware and software design of the Mini Smart Sensor Simulator

(Mini-SSS3).

2. creating a web based graphical user interface for the Mini-SSS3 making it a standalone

device without the need of installing additional drivers or software.

3. Implementing a voltage feedback loop and providing users with a real time feedback of the

current state of the device.

4. Implementing cybersecurity protocols on memory-constrained micro-controllers with the

purpose of increasing security posture.

10

5. Connecting the sensor simulator to cloud infrastructure allowing users to control the sensor

simulator remotely.

1.7 Organization of Thesis

The thesis is divided into five chapters:

• Chapter 1 provides a basic introduction to the project, literature review of related researches,

objective and motivation of the project, background on sensors on a heavy vehicle, an ap-

proach to achieve the objective, and the contribution.

• Chapter 2 provides the hardware design, which lists the project requirements, system block

diagram, detailed component schematics showing how the electrical components are con-

nected, housing and printed circuit board (PCB) layout displaying the placement of those

components on the device, bill of materials (BOM) listing all required parts, and results

from hardware functional tests.

• Chapter 3 reviews the software design, which consists of the process overview indicating the

interactions between all the system components. The chapter also talks about the embedded

firmware of the device, the interface of the cloud services for each of the operation modes.

• Chapter 4 talks about securely connecting the sensor simulator to third-party cloud services

such as Amazon Web Services utilizing the ATECC608 cryptographic co-processor.

• Chapter 5 concludes the thesis with a restatement of the abstract, contribution and lists some

future works for project improvement.

11

Chapter 2

System Design

2.1 Requirements

To create a fault-free environment, the device should simulate a wide range of sensors and

actuators. The solution should also be highly generalized and universal, such that a wide variety

of vehicle makes and models are supported. Allowing most of the configuration to happen via

software makes the solution more user-friendly and limits room for user error - a configuration

representing a specific vehicle make, and model can be saved and reloaded as needed. While some

requirements have not been vetted against industry standards, they have worked for laboratory

uses. A few major requirements are summarized below.

2.1.1 Fault free environment

All sensors, actuators, switches, and other modules required for a heavy vehicle control unit

to behave as if they were connected to an actual sensor must be emulated by the system to ensure

a fault-free environment. Most sensors that are present in any commercial truck can be classified

into the following categories:

• Two-wire sensors

• Three-wire sensors

• Pulse Width Modulation

• Actuators or Solenoids to +12V

• Actuators or Solenoids to Ground

• Switches

12

2.1.2 Remote connection

The next primary requirement is that users can securely connect to cloud infrastructure and

control these devices remotely. The system should have an interface to connect to the internet.

2.1.3 Compatibility

The system shall be backward compatible with the pinouts from the earlier versions of the

smart sensor simulator. This allows re-use of the Molex connectors built for various ECM’s.

2.1.4 Cybersecurity requirements

The system shall have a way to securely store private keys to maintain confidentiality. The

system shall also have integrity of the keys stored on these devices

and while also ensuring the uniqueness of those keys.

2.1.5 Provisioning

The system shall have a provisioning process that shall involve configuring and locking the

hardware security modules. This process also involves registering certificates from the device with

the cloud provider.

2.1.6 Real-time feedback

The system shall have a way to provide real-time feedback to the user about changes taking

place on the device. The settings on the device must be accurately reflected in a user interface.

2.1.7 Open Source

An open-source solution that allows third parties to investigate and validate the underlying

source code lends credibility and transparency to the process and bolsters the forensic soundness

of the results.

13

2.2 Functions

Based on the system requirements a few key functionalities for the Mini-SSS3 are described in

the below sections.

2.2.1 Simulating Resistive sensors

Two-wire sensors

Two-wire sensors are loop-powered and do not require a separate supply voltage. The sensor

may be read via a Wheatstone bridge in the ECU for resistance-based sensors, such as thermistors.

Potentiometers can be used to create arbitrary resistance values to emulate these by disconnecting

terminal A and connecting terminal B to the ground, as shown in Figure 2.1. By modifying the

wiper position we can change the resistance value. This can be used to let the ECU detect current

flow which is expected for some actuators or to emulate switches to ground, like idle validation.

Figure 2.1: Two wire sensor configuration where terminal A is not connected.

2.2.2 Generation of Analog DC Signals

A potentiometer is a variable resistor with three terminals, a knob or slider, which can be moved

or rotated to vary the resistance between the middle terminal and either of the remaining terminals.

Digital potentiometers have similar functionality, but instead of a mechanical slider or knob, the

resistance can be controlled using digital signals.

14

Three-wire sensors

Three wire sensors usually have one additional terminal connected to supply voltage compared

to a two wire sensor. Modifying the wiper position creates a voltage divider which provides analog

voltages on the wiper connector. By modifying the wiper position The voltage divider can produce

a desired analog voltage. A schematic of a three-wire sensor emulator can be found in Figure 2.2.

Figure 2.2: Three wire sensor configuration

2.2.3 PWM signal generation

An anti-lock braking system (ABS) is a common feature in most vehicles. This prevents the

wheels from locking up during a hard brake event. Wheel speed sensors play an essential role in

providing information to the ABS and other systems such as traction control and stability control.

The wheel speed sensors on most vehicles are magnetic and generate an alternating current signal

or a variable DC signal, that changes its frequency and amplitude based on the wheel speed. The

teeth of the tone ring rotate and changes the magnetic field around the sensor, which induces a

current in the sensor. This results in a harmonic wave pattern that changes frequency with wheel

speed. Generating periodic waves in the digital world is only possible through pulse-width mod-

ulated signals. To be able to simulate rotary sensors the system needs to have a functionality to

generate PWM signals. The system shall also provide options to adjust PWM parameters such as

the duty cycle and frequency.

15

2.2.4 Monitoring voltage on the output

Based on the Requirement 2.1.6 the system shall have a periodic function that updates the

voltages of the output pins. This information can be helpful for the user to have real-time feedback

on the changes they perform.

2.2.5 CAN Read/Write messages

Modern vehicles have more than one controller module. An engine controller is solely re-

sponsible for looking after the engine’s functionality, A brake controller looking after all the brake

applications, and a body controller for controlling all the electronic components inside the cabin

such as the switch states, air conditioning, etc. All these different modules communicate over the

CAN. The system shall be able to send out periodic CAN messages simulating the presence of an

electronic control module.

2.2.6 User Interface

The users should have a way to interact and control various peripherals of the Mini SSS3

device. The user needs to be able to see the status of the different settings on the device and be

able to read the output values on the different pins of the device. The user interface should also be

accessible remotely.

16

2.3 Functional Allocation

After carefully analyzing the requirements and functions of the system, Teensy 4.0 develop-

ment board was deemed a right fit for this application. Teensy 4.0 is an ARM Cortex-M7 based

development board that works with the Arduino development environment. Some features that

make the Teensy 4.0 an effective solution for the Mini-SSS3 include three inbuilt CAN channels

with one channel supporting CAN FD, seven serial, three SPI and three I2C interfaces. It also has

1984Kb Flash, 1024Kb RAM, 1Kb EEPROM (emulated). The Teensy 4.0 processor operates at

600 MHz, which is fast enough to support most requirements.

Figure 2.3: Mini-SSS3 function allocation

The following sections describe how each functions discussed in Section 2.2 are allocated over

hardware and software.

2.3.1 Generating PWM signals

PWM signals can be generated by toggling digital signals on and off. This could be achieved

through software methods but a major disadvantage is that any interrupts will affect the timing,

which can cause jitter in the signal. Many micro-controllers utilize hardware timers and registers

to generate PWM signals which make them more timing critical and not have to depend on the

17

software execution. By manipulating the chip’s timer registers directly, This provides more control

than toggling digital signals through software.

The use of hardware based PWM signals allows the system to generate signals with high fre-

quencies. The software allows us to then configure the hardware timers and registers for the desired

frequency and duty cycle.

2.3.2 Controlling digital potentiometers

Microchip’s MCP41HV51 digital potentiometer were chosen for resistance based outputs that

can tolerate voltages up to +18V. It has an 8-bit resolution for the wiper position giving us 256

distinct resistance values. The device also provides us with an option to connect and disconnect

the other two terminals. This provides us the ability to emulate both 3-wire and 2-wire sensors as

required in 2.2.1. The functionality of generating the DC signals has been offloaded to an external

IC but configuration of the IC is controlled by the main microprocessor over SPI.

2.3.3 Communication over CAN bus

The next major functionality for the device is to send and receive CAN messages from the CAN

bus. The Teensy 4.0 has 3 CAN controllers, with one channel supporting CAN FD. An external

CAN transceiver chip is added to complete the electrical interface between Teensy 4.0 and the

external CAN bus. The Teensy 4.0’s Flexible Controller Area Network (FLEXCAN) module is a

communication controller that follows the CAN 2.0B protocol specification and implements the

CAN protocol on hardware.The FLEXCAN module supports both standard and extended message

frames. The FLEXCAN module supports 64 message buffers. The interface to the FLEXCAN

modules is through memory mapped input/output.

2.3.4 Monitor Voltage

To provide users with real-time feedback about the changes on the output terminals, Mi-

crochip’s PAC1934 was incorporated in the design. The PAC1934 is a four-channel power/energy

monitor that includes a current sensor amplifier and bus voltage monitors that feed high-resolution

18

ADCs. The embedded controller can retrieve bus voltage, sense shunt resistor voltage, and accu-

mulated proportional power from registers over I2C. To reduce offset and gain errors, the PAC1934

uses real-time calibration.

2.3.5 Application Programming Interface

An API allows other systems/users to interact with Mini-SSS3 programatically. HTTP API is a

protocol that describes how a client can access information from the server. It works as a request-

response protocol between a client and server. It specifies the types of calls or requests that can

be made, how they should be made, the data formats that should be utilized, and the protocols

that should be followed, among other things. An HTTP API deemed necessary for the Mini-SSS3

design as it would help develop a user interface (UI) on top of it.

2.3.6 User Interface

The graphical user interfaces builds upon the API to fetch and update state of the different

peripherals on the Mini-SSS3. The user interface is further discussed in Section 4.4. This is

allocated to software only as it is portable and relies on the hardware for networking layers as a

foundation.

2.4 Architecture

The Mini-SSS3 provides two modes of operations, one where the user can locally connect to

the device and use the web-based front end served on the device to control all the peripherals of the

Mini-SSS3. In the second mode, the device can be operated remotely through the internet using

AWS IoT. The second mode utilizes the Microchip’s ATECC608 hardware security module, which

involves an initial provisioning process. The provisioning process involves the generation of a

certificate signing request (CSR) and registering it with AWS IoT. We assume that the following

things are uncompromised to ensure the security and privacy of this model are intact.

1. The program used for the initial provisioning process

19

2. The Internet connection over TLS

3. The third-party cloud party (Amazon Web Services in this case)

4. The ATECC608 hardware device.

Figure 2.4: Mini-SSS3 architecture overview

Figure 2.4 gives an overview of the system level architecture. The Hardware Abstraction layer

controls the hardware peripherals like generating PWM signals, controlling potentiometers, read-

20

ing voltage values and, reading and writing CAN messages. The API layers acts like an interface

for accessing the functionalities of the Mini-SSS3. The react webpage interact with API to allow

the users to control the device and, also enable the users to understand the current state of the

device. BearSSL is used for implementing TLS which is essential for establishing secure commu-

nication with third party cloud servers to provide users with secure remote access.

2.5 Conclusion

In this section the overall system requirements were gathered and the main functions of the

Mini-SSS3 were formulated. These functions were then allocated to hardware, software or both

respectively. The following section dives deep into the hardware design of the Mini-SSS3.

21

Chapter 3

Hardware Design

3.1 Introduction

In this section, the hardware design of Mini-SSS3 will be explained in detail. Based on the

functional allocations from the previous chapter, the hardware requirements of Mini-SSS3 were

gathered. Further, depending on the requirements, the hardware design of Mini-SSS3 was formu-

lated. A deep dive into the requirements, hardware components used, and their schematics will be

discussed in detail in the upcoming sections.

3.2 Requirements

The major hardware requirements based on the system requirements are the following:

1. The device should utilize hardware timer peripherals to offload the generation of PWM sig-

nals from the main microprocessor and give the users an option to change both the duty cycle

and the frequency.

2. Generate variable DC signals, emulating a three-wire sensor with support for varying voltage

ranges from 0 to 5 volts.

3. The device should be able to emulate passive resistive sensors with resistance from 100 ohms

to 200,000 ohms.

4. The device should read CAN messages at bus speeds of 125k, 250k, 500k, 666k, and 1M,

giving the user an option to monitor messages on the CAN bus.

5. The sensor simulator should be able to generate an extended frame CAN message mimicking

a control module.

22

6. The device should be able to provide +12V power, ground, and switched ignition control to

the ECM.

7. The device should have a way to store total configurations in non-volatile memory so it can

accommodate different settings for various ECMs.

8. The device shall have voltage and current monitors that can provide real-time feedback on

the output pins of the device.

3.3 Hardware Building Blocks

In the previous section, the hardware requirements were discussed in detail. Based on these

requirements, the hardware design of Mini-SSS3 is explained in a top-down approach. Figure 3.1

shows the different layers of the hardware design of the Mini-SSS3.

The top layer is the main processor for the Mini-SSS3. Based on the requirements, it was de-

cided to choose a microcontroller that had sufficient peripherals. The NXP iMXRT1062, an Arm®

Cortex®-M7 processor, was deemed a better option due to its support for multiple communication

protocols, including three CAN Bus (1 with CAN FD), three SPI, three I2C ports, and one USB

port. The processor also has 40 digital input/output pins, of which 31 pins support PWM output.

Therefore, due to the above-mentioned features offered by the NXP iMXRT1062, the Teensy

4.0 development board was selected. The development board has all the hardware components

necessary to program and run the iMXRT1062 chip such as a Micro USB port for programming

and serial communication. A voltage regulator to reduce the USB’s 5 volts to 3.3 volts was used.

The board has 2 Mb of SPI flash memory intended for storing the user code. The board also has

a bootloader chip that is responsible for uploading bootloader code to the main MCU’s RAM and

start executing the user code. A 24 Mhz crystal is present on Teensy 4.0 which is used by the

system and other peripherals. A phase-locked loop (PLL) raises the system clock speed from 24

MHz to the desired system clock speed. Another 32 kHz crystal is used by the real-time clock

(RTC).

23

Figure 3.1: Different layers of hardware components

In the next stage, the Teensy 4.0 was integrated into a printed circuit board (PCB) along with

other integrated circuits such as

1. A voltage regulator and power protector to power and protect the circuit from any high

voltage spikes from the raw input.

2. Microchip’s MCP41HV51, a digital potentiometer [22] used for analog signal generation.

24

3. Microchip’s PAC1934, [23] a voltage and power management IC was used for voltage and

current monitoring.

4. Texas Instruments TLV4171, a general-purpose operational amplifier was used to amplify

PWM signals generated by the Teensy 4.0 from 3.3 to 5 volts.

5. Microchip’s MCP2562, a CAN transceiver is used to interface between the CAN controller

on the Teensy 4.0 and the physical two-wire CAN bus [24].

6. The Wiznet WIZ850io, an Ethernet module to provide Ethernet capabilities to the Teensy

4.0 [25].

7. Microchip ATECC608B crypto authentication device was used for secure key storage and to

perform cryptographic operations [26].

The Mini-SSS3 PCB design is further illustrated through the block diagram in Figure 3.2. The

individual components are discussed in detail in the following sections.

Next, in stage 3 an aluminum housing was designed to protect the internal circuitry of the PCB

from any kind of damage. The housing exposes external connectors such as the Kycon female

power connector to power the device, the ethernet jack to connect an ethernet cable, and the 24 pin

Molex connector to connect to the ECM harness.

Finally, a kit with other necessary accessories, like a power supply module and a harness, was

included to connect the device to an electronic control module.

25

Figure 3.2: High-level printed circuit board block diagram

3.4 Detailed Schematics

Altium software was used to design the schematics and the printed circuit board of the Mini-

SSS3. The schematics for the Teensy 4.0 development board are publicly available at [27]. The

individual components from the architecture were then incorporated into the schematics. These

components are also carefully distinguished on the schematics with the help of bounding boxes

based on their functionality. The schematic PDFs are made available on Github [28].

26

1

1

2

2

3

3

4

4

D D

C C

B B

A A

1

Ram Rohit Gannavarapu
Research Assistant
Systems Engineering Dept.
Colorado State University
Fort Collins, CO2

Mini SSS3

Teensy 4.0 Connections 1

12/8/2021 2:21:24 AM
Mini_SSS3.SchDoc

Title:

Subtitle:

Date:
File:

Revision:

Sheet ofTime:
Drawn with Altium

3V3

Vcc
1

SCK
2

!CS
3

SDI
4

SDO
5

!WLAT
6

!SHDN
7

NC
8

DGND
9

V-
10

P0B
11

P0W
12

P0A
13

V+
14

Potentiometer
P1

MCP41HV51-10k

Vcc
1

SCK
2

!CS
3

SDI
4

SDO
5

!WLAT
6

!SHDN
7

NC
8

DGND
9

V-
10

P0B
11

P0W
12

P0A
13

V+
14

Potentiometer
P2

MCP41HV51-10k

U1 P0A

U2 P0A

GND

3V3

GND

Port 2 Prot

Port 1 Prot

3V3

3V3

3V3

Vcc
1

SCK
2

!CS
3

SDI
4

SDO
5

!WLAT
6

!SHDN
7

NC
8

DGND
9

V-
10

P0B
11

P0W
12

P0A
13

V+
14

Potentiometer
P3

MCP41HV51-10k

Vcc
1

SCK
2

!CS
3

SDI
4

SDO
5

!WLAT
6

!SHDN
7

NC
8

DGND
9

V-
10

P0B
11

P0W
12

P0A
13

V+
14

Potentiometer
P4

MCP41HV51-10k

U3 P0A

U4 P0A

GND

3V3

GND

Port 4 Prot

Port 3 Prot

3V3

3V3

GND

GND

GND

GND

U1 P0B

U2 P0B

U3 P0B

U4 P0B

GND

5V/12V

Port 1 Prot
Port 2 Prot
Port 3 Prot
Port 4 Prot

R13 2
R14 2

R15 2
R16 2

PRJC Teensy 4.0 Digi-Key1568-DEV-15583-ND

D12/MISO
D11/MOSI
D10/CS
D9/PWM
D8/TX2
D7/RX2
D6/PWM
D5/PWM
D4/PWM
D3/PWM
D2/PWM
D1/CANTX2
D0/CANRX2

GND

3.3V

D13/SCK/LED
D14/A0/TX3
D15/A1/RX3

D16/A2/RX4/SDA2
D17/A3/TX4/SDA1

D18/A4/SDA0
D19/A5/SCL0

D20/A6/TX5
D21/A7/RX5

D22/A8/CANTX1
D23/A9/CANRX1

GND

VinTeensy 4.0
Arduino-Compatible
iMX Microcontroller 3.3V

GND

VBat
Program
On/Off

VUSB

USB D+
USB D-

D31/CANTX3
D30/CANRX3

Interior Pads

Teensy 1

SCK_1

SCK_1

SCK_1

SCK_1

MOSI
MISO

MOSI
MISO

MOSI
MISO

MOSI
MISO

CS_U1

CS_U2

CS_U3

CS_U4

SCK_1

PWM_INout to 5 V

14
12

13

11
4

O1D
TLV4171

PWM_IN4

8
10

9

11
4

O1C
TLV4171

PWM_IN3

R9

100k

R10
51k

GND

5V

R12
51k

GND

5V

7
5

6

11
4

O1B
TLV4171

PWM_IN2

1
3

2

11
4

O1A
TLV4171

PWM_IN1

R2

100k

R3
51k

GND

5V

R4

100k

R5
51k

GND

5V

GND

PWM_IN1

PWM_IN2
PWM_IN3

CAN Transceivers

RXCAN1
TXCAN1 TXD

1
VSS

2

VDD
3

RXD
4

VIO
5

CANL
6

CANH
7

SILENT
8

EP

T1

MCP2562
GND

3V3

TXD
1

VSS
2

VDD
3

RXD
4

VIO
5

CANL
6

CANH
7

SILENT
8

EP

T2

MCP2562
GND

3V3

TXCAN2
RXCAN2

RXCAN1
TXCAN1

C4

0.1uF

GND

3V3

C5

0.1uF

GND

C6

0.1uF

3V3

C7

0.1uF

GND GND

GND

3V3

Silent 2

Silent 1

Silent 2

SCL0
SDA0

1
2
3
4
5
6

J1

2.54mm 1x6 Pin Header DIP

1
2
3
4
5
6

J2

GND

GND

3V3 3V33V3

3V3

These headers must be 20.32 mm apart

WIZ850io Ethernet Module
See https://www.pjrc.com/store/wiz820_sd_adaptor.html

R6
4.7k

R7
4.7k

R8
4.7k

U1 P0A
U2 P0A
U3 P0A
U4 P0A

U1 P0B
U2 P0B
U3 P0B
U4 P0B

GND
GND
GND
GND

WizCS
WizINT

W
iz

R
E

S
E

T

W
iz

C
S

W
iz

IN
T

WizRESET
SCK_1
MOSI

MISO

CAN1H
CAN1L

CAN2H
CAN2L

PWM1

PWM2

PWM3

PWM4

GND

3V3
C1

0.1uF

GND

SLOW 1

i2C Addr: 0010 000

SCL0
SDA0

Exposed Molex Connector

1
1

2
2

10
10

4
4

5
5

6
6

7
7

8
8

9
9

3
3

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

CON2

24 Pos Mini-Fit Jr.
GND

+12

GND

+5
+5
+5

+5

+5

+5

+12

+12

+12

IgnitionCTL

V +
1

V +
3

V -
2

V -
4

CON1

Kycon KPJX-4S

GND

Raw

+5

+5

Port 1
Port 2
Port 3
Port 4

Raw Raw

+12

SENSE1+
11

SENSE1-
12

SENSE2+
13

SENSE2-
14

SENSE3+
8

SENSE3-
7

SENSE4+
10

SENSE4-
9

VDD_I/O
15

VDD
2

ADDRSEL
6

SM_CLK
4

SM_DATA
5

SLOW/!ALERT
1

PWRDN
16

GND
3

U1

PAC1934T-I/JQ

R11

100k

Port 1 Prot

Port 2 Prot

Port 3 Prot

Port 4 Prot

+5

Digital Potentiometers

Kyon Connector - 12V

Port 2

Port 3

Port 1

Port 4

MOSI
MISO

PWM_IN4

R19

4.7k
Key Switch

CS_U1
CS_U2

CS_U3
CS_U4

LED1
LED2

TXD
1

VSS
2

VDD
3

RXD
4

VIO
5

CANL
6

CANH
7

SILENT
8

EP

T3

MCP2562
GND

3V3

TXCAN3
RXCAN3

Silent 3

CAN3H
CAN3L+5

C3

0.1uF

3V3

C10

0.1uF

GND GND

+5

TXCAN3
RXCAN3

PWM1
PWM2

CAN2H
CAN2L

PWM3
PWM4

Ignition Out

CAN1H

Key Switch

CAN1L

Port 4

Port 1
Port 2
Port 3

CAN2H
CAN2L

CAN3H
CAN3L

CAN1L
CAN1H

RXCAN2
TXCAN2

SLOW 1

Silent 3 Silent 1

R22
4.7k

GND

PWRDN R23

4.7k
3V3PWRDN

PWRDN

Voltage and Power Monitor

Primary Microcontroller

PIC101 PIC102

COC1

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC1001

PIC1002
COC10

PICON101

PICON102

PICON103

PICON104

COCON1

PICON201

PICON202

PICON203

PICON204

PICON205

PICON206

PICON207

PICON208

PICON209

PICON2010

PICON2011

PICON2012

PICON2013

PICON2014

PICON2015

PICON2016

PICON2017

PICON2018

PICON2019

PICON2020

PICON2021

PICON2022

PICON2023

PICON2024

COCON2

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ206

COJ2

PIO101

PIO102

PIO103

PIO104

PIO1011 COO1A

PIO104

PIO105

PIO106

PIO107

PIO1011

COO1B

PIO104

PIO108

PIO109

PIO1010

PIO1011

COO1C

PIO104

PIO1011
PIO1012

PIO1013

PIO1014

COO1D

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

PIP107 PIP108

PIP109

PIP1010

PIP1011

PIP1012

PIP1013

PIP1014

COP1

PIP201

PIP202

PIP203

PIP204

PIP205

PIP206

PIP207 PIP208

PIP209

PIP2010

PIP2011

PIP2012

PIP2013

PIP2014

COP2

PIP301

PIP302

PIP303

PIP304

PIP305

PIP306

PIP307 PIP308

PIP309

PIP3010

PIP3011

PIP3012

PIP3013

PIP3014

COP3

PIP401

PIP402

PIP403

PIP404

PIP405

PIP406

PIP407 PIP408

PIP409

PIP4010

PIP4011

PIP4012

PIP4013

PIP4014

COP4

PIR201 PIR202

COR2

PIR301

PIR302

COR3

PIR401 PIR402

COR4

PIR501

PIR502

COR5

PIR601

PIR602

COR6
PIR701

PIR702

COR7
PIR801

PIR802

COR8

PIR901 PIR902

COR9

PIR1001

PIR1002

COR10

PIR1101 PIR1102

COR11

PIR1201

PIR1202

COR12

PIR1301 PIR1302
COR13

PIR1401 PIR1402

COR14

PIR1501 PIR1502

COR15

PIR1601 PIR1602

COR16

PIR1901 PIR1902

COR19

PIR2201

PIR2202

COR22

PIR2301 PIR2302

COR23

PIT100

PIT101 PIT102

PIT103

PIT104

PIT105

PIT106

PIT107

PIT108

COT1

PIT200

PIT201 PIT202

PIT203

PIT204

PIT205

PIT206

PIT207

PIT208

COT2

PIT300

PIT301 PIT302

PIT303

PIT304

PIT305

PIT306

PIT307

PIT308

COT3

PITeensy 100

PITeensy 101

PITeensy 102

PITeensy 103 PITeensy 103V3a

PITeensy 103V3b

PITeensy 104

PITeensy 105

PITeensy 106

PITeensy 107

PITeensy 108

PITeensy 109

PITeensy 1010

PITeensy 1011

PITeensy 1012

PITeensy 1013

PITeensy 1014

PITeensy 1015

PITeensy 1016

PITeensy 1017

PITeensy 1018

PITeensy 1019

PITeensy 1020

PITeensy 1021

PITeensy 1022

PITeensy 1023

PITeensy 10CRX3

PITeensy 10CTX3

PITeensy 10D0

PITeensy 10G1

PITeensy 10G2

PITeensy 10G3

PITeensy 10On

PITeensy 10P

PITeensy 10VBat

PITeensy 10Vin

PITeensy 10VUSB

COTeensy 1

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

COU1

PIC102

PIC502

PIC702

PIC1002

PIJ202

PIJ203

PIP101

PIP107

PIP201

PIP207

PIP301

PIP307

PIP401

PIP407

PIR601 PIR701 PIR801

PIR2302

PIT105

PIT205

PIT305

PITeensy 103V3a

PITeensy 103V3b

PIU102

PIU1015

PIC302

PIC402

PIC602

PIP1013

PIP2013

PIP3013

PIP4013

PIT103

PIT203

PIT303

PITeensy 10Vin

PITeensy 10VUSB

POU1 P0A

POU2 P0A
POU3 P0A
POU4 P0A

PIO104

PIP1014

PIP2014

PIP3014

PIP4014

PIC101

PIC301

PIC401 PIC501

PIC601 PIC701

PIC1001

PICON102

PICON104

PICON2012 PICON2024

PIJ101

PIJ102

PIJ201

PIJ204

PIO1011

PIP106 PIP109

PIP1010

PIP1011

PIP206 PIP209

PIP2010

PIP2011

PIP306 PIP309

PIP3010

PIP3011

PIP406 PIP409

PIP4010

PIP4011

PIR202

PIR402

PIR902

PIR1102

PIR2202

PIT102

PIT202

PIT302

PITeensy 10G1

PITeensy 10G2

PITeensy 10G3

PIU103

PIU106

POU1 P0B

POU2 P0B
POU3 P0B
POU4 P0B

PICON201

PIO108

PIR1002 POPWM3
PICON202

PIO1014

PIR1202

POPWM4
PICON203

PICON2022

PIT107 POCAN1H

PICON204

PICON2021

PIT106 POCAN1L

PICON205 PICON2017

PIT206 POCAN2L

PICON206 PICON2018

PIT207 POCAN2H

PICON207

PIR1302
PIU1012 POPort 1

PICON208

PIR1402

PIU1014 POPort 2

PICON209

PIR1502

PIU107 POPort 3

PICON2010

PIR1602

PIU109 POPort 4

PICON2013

PIO101

PIR302

POPWM1
PICON2014

PIO107

PIR502

POPWM2
PICON2015

PIT307 POCAN3H

PICON2016

PIT306 POCAN3L

PICON2019

PIR1902 POKey Switch

PICON2020 POIgnition Out

PIJ103

PIP104

PIP204

PIP304

PIP404

PITeensy 1011

POMOSI
PIJ104

PIP102

PIP202

PIP302

PIP402

PITeensy 1013

POSCK01
PIJ105

PIR702
POWizCS

PIJ106 PIR802 POWizINT

PIJ205

PIR602
POWizRESET

PIJ206

PIP105

PIP205

PIP305

PIP405

PITeensy 1012 POMISO

PIO102 PIR201

PIR301

PIO103

PITeensy 102 POPWM0IN1

PIO104

PIO105

PITeensy 104 POPWM0IN2

PIO106 PIR401

PIR501

PIO109 PIR901

PIR1001

PIO1010

PITeensy 105 POPWM0IN3

PIO1011

PIO1012

PITeensy 106 POPWM0IN4

PIO1013 PIR1101

PIR1201

PIP103

PITeensy 107 POCS0U1

PIP108

PIP1012

PIR1301

PIU1011 POPort 1 Prot

PIP203

PITeensy 108 POCS0U2

PIP208

PIP2012

PIR1401

PIU1013 POPort 2 Prot

PIP303

PITeensy 1010 POCS0U3

PIP308

PIP3012

PIR1501

PIU108 POPort 3 Prot

PIP403

PITeensy 109 POCS0U4

PIP408

PIP4012

PIR1601

PIU1010 POPort 4 Prot

PIR1901 PITeensy 1017

PIR2201

PIT108

PIT208

PIT308

PITeensy 1015

POSilent 1

POSilent 2

POSilent 3

PIR2301

PITeensy 1014

PIU1016 POPWRDN

PIT100

PIT101

PITeensy 1022

POTXCAN1
PIT104

PITeensy 1023

PORXCAN1

PIT200

PIT201

PITeensy 101

POTXCAN2
PIT204

PITeensy 100

PORXCAN2

PIT300

PIT301

PITeensy 10CTX3

POTXCAN3
PIT304

PITeensy 10CRX3

PORXCAN3

PITeensy 103

PIU101

POSLOW 1

PITeensy 1016 POIgnitionCTL

PITeensy 1018

PIU105 POSDA0

PITeensy 1019

PIU104 POSCL0

PITeensy 1020 POLED2

PITeensy 1021 POLED1

PITeensy 10D0

PITeensy 10D0

PITeensy 10On

PITeensy 10P

PITeensy 10VBat

PICON101

PICON103

PICON2011 PICON2023

POCAN1H
POCAN1L

POCAN2H

POCAN2L

POCAN3H

POCAN3L

POCS0U1

POCS0U2

POCS0U3
POCS0U4

POIgnition Out

POIgnitionCTL
POKey Switch

POLED1

POLED2
POMISO

POMOSI

POPort 1
POPort 1 Prot

POPort 2
POPort 2 Prot

POPort 3
POPort 3 Prot

POPort 4

POPort 4 Prot

POPWM1

POPWM2
POPWM3

POPWM4

POPWM0IN1

POPWM0IN2
POPWM0IN3
POPWM0IN4

POPWRDN

PORXCAN1

PORXCAN2

PORXCAN3

POSCK01

POSCL0
POSDA0

POSilent 1

POSilent 2

POSilent 3

POSLOW 1

POTXCAN1

POTXCAN2

POTXCAN3

POU1 P0A

POU1 P0B

POU2 P0A

POU2 P0B

POU3 P0A

POU3 P0B

POU4 P0A

POU4 P0B

POWizCS
POWizINT

POWizRESET

Figure 3.3: Mini-SSS3 schematic page-1

27

1

1

2

2

3

3

4

4

D D

C C

B B

A A

2

Ram Rohit Gannavarapu
Graduate Assistant
Systems Engineering Dept.
Colorado State University
Fort Collins, CO 805212

Mini SSS3

Voltage Regulator 1

12/8/2021 2:35:43 AM
Mini_SSS3_Sheet2.SchDoc

Title:

Subtitle:

Date:
File:

Revision:

Sheet ofTime:
Drawn with Altium

Vin
1

Vout
3

GND

2

DC/DC Converter
V1 OKI-78SR

GND
GND

+5

GND

Voltage Regulator

+12Raw

C8
220uF

C9

220uFGND

Ignition Signal Control

COM
5

Coil
2

N.O.
10

N.C.
1Coil

9
COM

6

RL1

HY1-5V

3

1

2

S

D

G Q1NUD3124

GND

R1
100k

GND

+5

D1
SHTKY

PTC

F1

PTC 750mA

+12

+5

IgnitionCTL

Ignition Out

3V3

C2
0.1uF

GND

GND
4

SDA
5

SCL
6

VCC
8

Crypto

U2

ATECC608A

R17
4.7k R18

4.7k

3V3

3V3
3V3

GND

Security Module

SCL0
SDA0

D2
SHTKY

D4

Red
GND

D3

Green
GND

R20

470

R21

470

LED Indicators

LED1

LED2

IN
1

Out
2

GND
3

TVS1

Varistor 14V

PIC201

PIC202
COC2

PIC801

PIC802

COC8 PIC901

PIC902

COC9

PID101

PID102
COD1

PID201 PID202

COD2

PID301 PID302

COD3

PID401 PID402

COD4

PIF101 PIF102

COF1

PIQ101

PIQ102

PIQ103

COQ1

PIR101

PIR102
COR1

PIR1701

PIR1702

COR17
PIR1801

PIR1802

COR18

PIR2001 PIR2002

COR20

PIR2101 PIR2102

COR21

PIRL101

PIRL102

PIRL105

PIRL106

PIRL109

PIRL1010

CORL1

PITVS101 PITVS102

PITVS103

COTVS1

PIU204

PIU205

PIU206

PIU208

COU2
PIV101

PIV102

PIV103

COV1

PIC202

PIR1701
PIR1801

PIU208

PIC901

PID102 PIRL102

PIV103

PIC801

PIF101

PITVS102

PIV101

PIC201
PIC802 PIC902

PIQ102
PIR101

PIR2002

PIR2102

PITVS103

PIU204 PIV102

PID101
PIQ103
PIRL109

PID202

PITVS101

PID301 POLED1 PID302 PIR2001

PID401 POLED2 PID402 PIR2101

PIF102 PIRL105

PIRL106

PIQ101

PIR102
POIgnitionCTL

PIR1702
PIU205 POSDA0 PIR1802
PIU206 POSCL0

PIRL101

PIRL1010 POIgnition Out

PID201

POIgnition Out

POIgnitionCTL

POLED1

POLED2

POSCL0

POSDA0

Figure 3.4: Mini-SSS3 schematic page-2

28

3.4.1 Voltage Regulation and power protection

Figure 3.5: 12 volts to 5 volts step down circuit

Figure 3.5 shows the schematics for voltage regulation and power protection on the smart

sensor simulator 3. A transient voltage suppression (TVS) device was used to protect the device

from any high voltage spikes coming in from the raw input. A Schottky diode was used to protect

the device from any reverse polarity. The Schottky diode allows current flow only in a single

direction while only dropping about 0.3 volts (compared to 0.7 V for a traditional PN junction

diode). The TVS diode is bi-directional and helps protect sensitive electronic equipment from

voltage transients induced by transient voltage events.

Most microcontrollers and other peripherals operate on much lower voltages, usually 5 or 3.3

volts. DC to DC converter is used to achieve such voltages. In this case, we have used an OKI-

78SR voltage regulator, which steps down the voltage to 5V, which is used to power the Teensy

4.0 development board. Even though the iMX processor runs on 3.3V, the 5V feed works for

the Teensy 4.0 because it has a low dropout voltage regulator built into the development board to

supply power for the microprocessor.

Figure 3.6 shows the schematic of PAC1934 connections. Precision voltage measurement is

provided by PAC1934’s four-channel, bidirectional, high-side current sensing capabilities [23].

The four sense channels are connected in parallel with the digital potentiometer output and the

29

24-pin Molex connector along with a 2-ohm sense resistor which is recommended in the datasheet

[23]. The PAC1934 communicates with the microprocessor over I2C and hence pins SM_CLK and

SM_DATA pins on the PAC1934 are connected to SCL0(19) and SDA0 (18) pins of the Teensy

4.0. The PAC1934 also has a low power mode during which the IC is set to sleep mode and can be

controlled by the PWRDN pin. The pin is pulled high with help of a pull-up resistor making the

device powered on by default. The SLOW/ALERT pin is used to decide the sampling rate on the

PAC1934. if the SLOW/ALERT pin is pulled high the sampling rate is set to 8 samplers per/second

and when the pin is pulled low the sampling rate is set to 1024 samples per second.

Figure 3.6: PAC1934 power and voltage monitoring device.

3.4.2 Development Board

The Mini-SSS3 was designed with the Teensy 4.0 development board as its primary processing

unit. Teensy 4.0 has 40 input/output signal pins, out of which 24 are accessible as through-hole

headers with 0.100" spacing. The Mini-SSS3 uses female headers to connect the Teensy 4.0 to

the PCB. When pin headers are attached, this makes it easy for swapping out development boards

during the prototype phase. The Teensy 4.0 houses an NXP iMXRT1062 chip which is an ARM

Cortex-M7 processor. The development board also offers power on/off management, a real-time

clock for date and time, dynamic clock scaling support, and can be overclocked above 600 MHz.

Furthermore, the Teensy 4.0 board consists of 1024K RAM, 2048K flash, 3 CAN buses, 3 SPI

ports, and 3 I2C ports. A complete device specification can be found at [29].

30

Figure 3.7: Primary Microcontroller evaluation board Teensy 4.0

3.4.3 Digital Potentiometers

Microchip’s MCP41HV51 chip supports one potentiometer in each integrated circuit chip and

four of them are used in the Mini-SSS3 design. The MCP41HV51 communicates over the SPI

interface, so for each device to connect over the SPI, four pins are required, which are the Clock

(SCK), Master In Slave Out (MISO), Master Out Slave In (MOSI), and the Chip Select (CS) pins.

Although the Teensy 4.0 has 3 SPI channels, all the devices were connected to the SPI0 interface

with MOSI on pin 11, MISO on pin 12, SCK on pin 13, and the CS pins at 7,8,9,10 respectively.

In SPI communication, the master can decide which slave to talk to, by pulling the chip select (CS)

pin low, allowing for multiple slaves on the same SPI bus. The drawback with SPI is that each

slave requires a separate chip select pin.

The V+ and V- pins on the MCP41HV51 are the analog power rails used to power the resis-

tor network terminal pins. Analog switch resistances increase when the analog supply voltage

decreases, impacting the limits on the input voltage range. The V+ is connected to 12 volts and

31

Figure 3.8: MCP41HV51 Ter-

minal connections

Figure 3.9: Microchip MCP41HV51 Digital Potentiometers

schematic

32

the V- is connected to ground. Pin P0A of the MCPHV51 is connected to 5 volts and pin P0B is

connected to ground as shown in Figure 3.8.

The MCP41HV51 has a Terminal Control (TCON) Register, which connects/disconnects ter-

minals A, B, and Wiper individually from the resistor network based on the bit value in the TCON

register. This allows the system to emulate both two-wire and three-wire sensor configurations as

described in Section 2.2.1.

The contents of the TCON register are shown in Figure 3.10. Bits 7–4 are reserved, and Ter-

minal A is connected to the resistor network if bit 2 (R0A) is set to 1 and disconnected if set to 0.

Similarly, Terminal B is based on R0B (bit 0), and Wiper is based on R0W (bit 1).

Figure 3.10: MCP41HV51 TCON register

MCP41HV51 also has a register for wiper position at address 0x00. The device has two vari-

ants with 7 and 8-bit registers for the wiper resistor network. Each resistor network allows zero-

scale to full-scale connections. Figure 3.11 shows a block diagram for the resistive network of

MCP41HV51. The resistor network has three external connections: Terminal A, Terminal B, and

the wiper (or Terminal W). The RAB resistor ladder is composed of the series of equal value Step

resistors (RS) and the Full-Scale (RFS) and Zero-Scale (RZS) resistances.

RAB = RZS + n ∗RS +RFS

The RFS and RZS resistances are artifacts of the RAB resistor network implementation. In the

ideal model, the RFS and RZS resistances would be 0. More information about RFS and RZS is

available in the data sheet [22].

33

Figure 3.11: MCP41HV51 block diagram

34

3.4.4 Pulse Width Modulated Signals

Figure 3.12: PWM Signal Generator Schematic

Pulse Width modulated signals are generated by toggling the digital pins at high frequency.

Most of the Teensy 4.0 pins can generate PWM signals. The pins on the Teensy generate an output

voltage of 3.3 volts. To step up the voltage to 5 volts, a non-inverting operation amplifier as shown

in Figure 3.13 is used.

35

Gain = 1 +
Rf

Rin

Gain = 1 +
51k

100k
= 1.51

Gain =
Vout

Vin

Vout = Gain ∗ Vin = 1.51 ∗ 3.3 = 4.983V ≈ 5V

Figure 3.13: Non Inverting operational amplifier configuration

On the iMXRT1062 microcontroller, PWM signals are created by hardware timers. Internally,

set of pins are tied to a timer and, when frequency of one of the pin is changed, the frequency of all

the other pins tied to the same timer also change. This means each PWM output may have unique

duty cycles, their frequencies may be shared, depending on which timer is providing the trigger for

the PWM signal.

3.4.5 Ethernet Module

The main requirement for the Mini-SSS3 is to be able to control it remotely over the internet.

A lot of thought went into deciding the network interface between Ethernet and WiFi. Ethernet

36

Figure 3.14: Mini-SSS3 Schematic for Wiznet850i Ethernet module

supports larger bandwidths and also gives us an option to route CAN data over Ethernet for future

works. The WIZ850io network adapter was selected for the Mini-SSS3. The device has a hard-

wired TCP/IP and a PHY layer embedded in it, making it a plug-in system for developing internet

enabled systems rapidly. The device communicates over the Serial Peripheral Interface (SPI) over

the MOSI, MISO, SCK and CS pins of the SPI0 interface.

3.4.6 CAN Transceivers

The Microchip’s MCP2562 [24] CAN transceiver were used for all three CAN channels on the

Teensy 4.0, as shown in the schematics in Figure 3.15. The chip supports CAN FD with speeds up

to 8Mbps. Besides the normal functions of a CAN transceiver, it also provides a silent mode which

gives the Mini-SSS3 the ability to enable/disable CAN channel transmission. The MCP2562 meets

the ISO-11898-1:2015 specifications [30]. On the Teensy 4.0, pins 22 and 23 were used for the

CAN1 controller, pins 0 and 1 were used for the CAN2 controller and pins 30 and 31 were used

for CAN3 controller.

37

Figure 3.15: Mini-SSS3 schematic for CAN Transceivers

3.4.7 Crypto Trust Platform

Figure 3.16: ATECC608A cyrptographic co-processor Schematic

To add hardware security to the Mini-SSS3 a cryptographic co-processing unit was deemed

necessary. Microchip ATECC608B was chosen for this project because of its hardware-based

38

cryptographic key storage and cryptographic countermeasures that eliminate back doors tied to

firmware flaws. The device integrates the Elliptic Curve Diffie Hellman (ECDH) security protocol,

enabling secure communication on an unsecure channel. The device is agnostic of any micropro-

cessor (MPU) or microcontroller (MCU) and communicates using the I2C protocol over the SCL

and SDA pins. The device can store up to 16 keys, and once the device is locked in the EEPROM,

only the internal hardware functions have access to the private keys. This feature ensures that the

secrets are maintained confidentially and reduces the risk of exposing and compromising systems.

The ATECC608A also supports the following cryptographic operations:

1. SHA-256 and HMAC hash.

2. AES-128 encryption and decryption

3. Store compressed X.509 certificates

4. 256-bit ECC following NIST standard with Elliptic-Curve Digital Signature Algorithm (ECDSA)

following FUPS186-3.

3.4.8 External Connections

A 24-pin Molex Mini-Fit Jr. male right angle pin header was used to interface the connection

to the cabling for the connection to the arbitrary external vehicle electronic control unit. The pin

mapping were kept uniform with the earlier version of the smart sensor simulator allowing for

re-usability of harness connectors [31]. A Kycon power connector was used for the power and

ground connections for the Mini-SSS3 [32].A Meanwell GST220A12-R7B desktop power supply

provided up to 15 amps of 12V power through a matching Kycon connector.

39

Figure 3.17: Pin definitions for the external connections

3.5 Enclosure and Printed Circuit Board

With the engineering of the system completed, the last step was shifting to manufacturing and

assembly. The PCB Gerber files and NC Drill File were then exported from Altium designer soft-

ware and sent out to Oshpark LLC for PCB manufacturing. Based on the earlier design of the Smart

Sensor Simulator, an Aluminium extruded enclosure made by Hammond (PN: 1455k120BK) was

determined the best fit for this system [33]. The printed circuit board for the Mini-SSS3 was de-

signed using Altium Designer software, and the resulting 3-D rendering is shown in Figure 3.19.

The PCB was built with two layers with a dimension of 75mm L by 120mm H. Since the Mini-

SSS3 was a prototype board for the SSS3, there may be room available for more improvements

and additions.

40

Figure 3.18: Mini-SSS3 Printed Circuit Board

Figure 3.19: Assembled Mini-SSS3 circuit card assembly

41

As the Mini-SSS3 development board was a prototype, most of the components were through

hole and all of these components were soldered manually by using soldering iron. Further, a few

components such as MCP41HV51 Digital Potentiometer, PAC1932 voltage and power monitering

IC, and ATECC608B hardware security module were surface mounted onto the Mini-SSS3 using

a hot air soldering station.

Figure 3.20: Mini-SSS3 enclosure Ethernet side

42

Figure 3.21: Mini-SSS3 enclosure Molex side

43

3.6 Bill of Materials

The complete Bill of Materials is shown in Table 3.1 for the printed circuit board.

Table 3.1: Mini-SSS3 bill of materials(BOM)

44

3.7 Functional Unit Tests

This section covers a series of unit tests to ensure the proper functionality of the Mini-SSS3.

Since some of the hardware is driven by software based commands, code snippets for each of the

test is shown below. The complete code for all the test cases is made available on Github at [34].

3.7.1 Digital Potentiometer test

Simulating analog signals is a crucial feature of the Mini-SSS3. This test covers all the func-

tionalities of the MCP41HV51 digital potentiometer. A triangle signal was generated to test if the

device covers all the desired voltage ranges. The Terminal A is hard wired to a 5 volt supply on

the Mini-SSS3 and hence for this test the values range between 0-5 volts. To test the terminal

disconnection feature terminal A and Terminal B were disconnected one after the other to check

their behavior. The complete test code is available at [35].

#include <SPI.h>

byte address = 0x00;

void setup(){SPI.begin();}

void loop()

{

int i = 0;

for (i = 0; i <= 255; i++)

{

digitalPotWrite(i, 7);

delay(10);

}

delay(50);

// Wiper and Terminal B are only connected when TCON value is 3

MCP41HV_SetTerminals(3, 7);

delay(1000);

// All Terminals are connected when TCON value is 7

45

MCP41HV_SetTerminals(7, 7);

for (i = 255; i >= 0; i--)

{

if (i == 128) {

// Wiper and Terminal A are only connected when TCON value is 6

MCP41HV_SetTerminals(6, 7);

delay(1000);

MCP41HV_SetTerminals(7, 7);

}

digitalPotWrite(i, 7);

delay(10);

}

}

Figure 3.22 shows the output from the logic analyzer. Channel 0 of the logic analyzer was

connected to Potentiometer 1 whose chip select is connected to pin 7 on the Teensy 4.0. During

the first half cycle the wiper position was constantly increased from 0 to 255 and the signal also

constantly increases from 0 to 5 volts which can be observed in Figure 3.22. After reaching the

maximum wiper position i.e. the output reaching 5 volts, Terminal A was disconnected and it can

be observed from Figure 3.22 the output is pulled low. When only Terminal A is disconnected the

circuit no longer behaves like a voltage divider and now directly connects to ground and a same

behaviour is observed on the signal. After one second the terminal A was connected back to 5

volts and it can be observed that the signal jumps to 5 volts. During the second half cycle the

wiper position was constantly decreased from 255 to 0 and since terminal A was connected back

the circuit behave like a voltage divider and the same behaviour is observed on the output. Midway

through the second half terminal B was disconnected and we can observe the output is pulled to 5

volts. When Terminal B is disconnected the output is directly connected to 5 volts and the same

behaviour is evident from this test.

46

Figure 3.22: Mini-SSS3 digital potentiometer test

3.7.2 PWM test

AnalogWrite() function can be used to generate PWM signals on the Arduino. The function

configures the hardware timers and registers to produce the desired duty cycle and frequency of the

PWM signal. A digital logic analyzer was connected to the output ports 1, 2, 13, 14 on the Mini-

SSS3 to observe the PWM outputs. The following code snippet was used to test the capability of

Mini-SSS3 to generate the PWM signals with varying frequencies and duty cycles.

const uint8_t numPWMs = 4;

const int8_t PWMPins[numPWMs] = {2, 4, 5, 6};

uint16_t pwmValue[numPWMs] = {500, 1000, 2048, 4096};

uint16_t pwmFrequency[numPWMs] = {245, 245, 200, 200};

void setup() {

uint8_t i;

for (i = 0; i < numPWMs; i++)

pinMode(PWMPins[i], OUTPUT);

// analogWrite value 0 to 4095, or 4096 for high

47

analogWriteResolution(12);

analogWrite(PWMPins[0], 512);

analogWrite(PWMPins[1], 1024);

analogWrite(PWMPins[2], 2048);

analogWrite(PWMPins[3], 3500);

analogWriteFrequency(PWMPins[0], 500);

analogWriteFrequency(PWMPins[1], 500);

analogWriteFrequency(PWMPins[2], 500);

analogWriteFrequency(PWMPins[3], 500);

}

void loop() {

// put your main code here, to run repeatedly:

}

Figure 3.23: Mini-SSS3 PWM signal generation test observations from the Saleae Logic analyzer.

48

Figure 3.23 depicts the multiple test signals that can be produced through different PWM pins

present on Mini-SSS3. Channels 0-3 on the digital logic analyzer were connected to PWM pins

0-3 on Mini-SSS3. All the signals produced have varying pulse widths and duty cycles at a fixed

frequency. This helps us emulate a wide range of sensors with varying characteristics.

Figure 3.24: Mini-SSS3 PWM signal frequency test

Figure 3.20 depicts the multiple test signals produced through different PWM pins present on

Mini-SSS3. Channels 0-3 on the digital logic analyzer were connected to PWM pins 0-3 on Mini-

SSS3. All the signals produced have varying pulse widths and duty cycles at varying frequencies.

This helps us emulate a wide range of sensors with varying characteristics.

3.7.3 Voltage monitoring test

Microchip PAC1934’s main functionalities on the Mini-SSS3 are to monitor voltages. The

PAC1934 gives users a real-time feedback on the desired changes. In the following test, the digital

potentiometers are configured on different wiper positions, and the corresponding voltages were

measured from the PAC1934 chip. The complete code for the following test case is available at [36]

49

#include <Microchip_PAC193x.h>

#include <Wire.h>

#include <SPI.h>

byte address = 0x00;

int i = 0;

Microchip_PAC193x PAC;

void setup()

{

Wire.begin();

PAC.begin();

SPI.begin();

Serial.begin(9600);

while (!Serial)

}

void loop()

{

digitalPotWrite(10, 7);

digitalPotWrite(100, 8);

digitalPotWrite(255, 9);

digitalPotWrite(200, 10);

PAC.UpdateVoltage();

Serial.print("\n\nRead start:");

Serial.print("\n Voltage1 (mV) = ");

Serial.print(PAC.Voltage1);

Serial.print("\n Voltage2 (mV) = ");

Serial.print(PAC.Voltage2);

Serial.print("\n Voltage3 (mV) = ");

50

Serial.print(PAC.Voltage3);

Serial.print("\n Voltage4 (mV) = ");

Serial.print(PAC.Voltage4);

delay(2000);

}

An approximated formula to calculate the output voltage from digital potentiometer is

VOut =
Wipervalue

28
∗ (VP0A−P0B)

However, there are other resistances such as RFS and RZS which play role in the calculation of the

output voltage but are neglected for approximation purposes.

V1 =
10

255
∗ 5 = 196.07mV

V2 =
100

255
∗ 5 = 1960.78mV

V3 =
255

255
∗ 5 = 5000mV

V4 =
200

255
∗ 5 = 3921.56mV

Table 3.2: PAC1934 voltage measurement results

Wiper Setting PAC1934 Voltage Multimeter Reading Difference

Pot-1 10/255 334.36 mV 337 mV 3 mV

Pot-2 100/255 2018.07 mV 2026 mV 8 mV

Pot-3 255/255 4908.20 mV 4906 mV 1 mV

Pot-4 200/255 3935.06 mV 3930 mV 5 mV

51

Wiper position value on each of the potetntiometer were set to 10,100,255,200 respectively. The

voltage on the potentiometer outputs on the Mini-SSS3 was measured using both a multimeter and

PAC9134 and are tabulated in the Table 3.2. The PAC1934 has

Figure 3.25: Mini-SSS3 voltage monitor test

3.7.4 CAN Test

Read CAN messages

Teensy 4.0 has 3 CAN channels which enable users to monitor CAN messages on the bus. In

the following test script, channels 1 and 2 were tested. The channels were initialized to a 250kbps

bit rate. To test the CAN functionality, a brake controller module was connected to the Mini-SSS3

over the 24-port Molex connector. The test script reads messages on the bus and prints them on

the serial monitor. The complete code for this test case can be found at [37].

#include <FlexCAN_T4.h>

FlexCAN_T4<CAN1, RX_SIZE_256, TX_SIZE_16> can1;

FlexCAN_T4<CAN2, RX_SIZE_256, TX_SIZE_16> can2;

52

CAN_message_t msg;

void setup(void) {

can1.begin();

can1.setBaudRate(250000);

can2.begin();

can2.setBaudRate(250000);

}

void loop() {

if (can1.read(msg)) {

digitalWrite(21, HIGH);

Serial.print("CAN1 ");

Serial.print("MB: "); Serial.print(msg.mb);

Serial.print(" ID: 0x"); Serial.print(msg.id, HEX);

Serial.print(" LEN: "); Serial.print(msg.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 8; i++) {

if (msg.buf[i]<16) Serial.print("0");

Serial.print(msg.buf[i],HEX); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msg.timestamp);

delay(10);

digitalWrite(21, LOW);

}

}

53

Figure 3.26: Mini-SSS3 CAN message viewer test

We can observe in Figure 3.29 that the messages coming from the brake controller have the J1939

format with a 29-bit message identifier. The brake controller is currently not connected to any

sensors and hence we see all 0’s is most of the data fields.

Generate CAN messages

The following code is used to test out the CAN Message generation functionality on the Teensy

4.0. The CAN channel 1 and channel 2 were physically connected to the same CAN bus. To test

the CAN Generation functionality, a dummy CAN message was generated on channel 1 and was

read on channel 2. The complete code for this test case can be found at [38].

#include <FlexCAN_T4.h>

FlexCAN_T4<CAN1, RX_SIZE_256, TX_SIZE_16> can1;

FlexCAN_T4<CAN2, RX_SIZE_256, TX_SIZE_16> can2;

CAN_message_t msg;

CAN_message_t msg1;

void setup(void) {

54

can1.begin();

can1.setBaudRate(250000);

can2.begin();

can2.setBaudRate(250000);

}

void loop() {

msg1.id = 0xDEADBEEF;

msg1.len = 8;

for (uint8_t i = 0; i < 8; i++) {

msg1.buf[i] = i;

}

msg1.flags.extended = 1;

can1.write(msg1);

if (can2.read(msg)) {

Serial.print("CAN2 ");

Serial.print("MB: "); Serial.print(msg.mb);

Serial.print(" ID: 0x"); Serial.print(msg.id, HEX);

Serial.print(" EXT: "); Serial.print(msg.flags.extended);

Serial.print(" LEN: "); Serial.print(msg.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 8; i++) {

Serial.print(msg.buf[i]); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msg.timestamp);

}

delay(100);

}

55

Figure 3.27: Mini-SSS3 CAN message generation test

We can observe from Figure 3.28 that the messages transmitted on CAN Channel 1 are being

read by CAN Channel 2.

3.7.5 ATECC608B test

The following test case checks for proper connectivity between Teensy 4.0 and the ATECC608B

over I2C. The main processor tries to retrieve the serial number from the ATECC608B module.

Each ATECC608B module has a unique serial number.

#include <ArduinoECCX08.h>

void setup() {

Serial.begin(9600);

while (!Serial);

if (!ECCX08.begin(0x60)) {

Serial.println("No ECCX08 present!");

while (1);

}

else {

Serial.println("Found ECCX08 at address 0x60");

56

}

String serialNumber = ECCX08.serialNumber();

Serial.print("ECCX08 Serial Number = ");

Serial.println(serialNumber);

Serial.println();

}

Figure 3.28: ATECC608 get serial number test

3.7.6 Ethernet test

The primary functionality of the remote sensor simulator is to operate it remotely. The follow-

ing test focuses on the significant functionalities related to the Wiznet850i Ethernet module on the

Mini-SSS3. The test initializes the Wiznet850i module and tries to assign an IP address through

DHCP.

57

#include <SPI.h>

#include <Ethernet.h>

// Enter a MAC address for your controller below.

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };

void setup() {

Ethernet.init(14); // 14 is the CS pin

// start the Ethernet connection:

Serial.println("Initialize Ethernet with DHCP:");

if (Ethernet.begin(mac) == 0) {

Serial.println("Failed to configure Ethernet using DHCP");

if (Ethernet.hardwareStatus() == EthernetNoHardware) {

Serial.println("Ethernet shield was not found. Sorry, can't run

without hardware. :(");→֒

} else if (Ethernet.linkStatus() == LinkOFF) {

Serial.println("Ethernet cable is not connected.");

}

// no point in carrying on, so do nothing forevermore:

while (true) {

delay(1);

}

}

// print your local IP address:

Serial.print("IP address: ");

Serial.println(Ethernet.localIP());

}

void loop() {

}

58

Figure 3.29: Mini-SSS3 Ethernet test

59

3.8 Hardware Design and Testing Summary

Table 3.3: Hardware test case summary

In this section the overall hardware requirements were gathered and the main hardware func-

tions of the Mini-SSS3 were designed. Further, individual components were tested to verify their

functionalities. The following section dives deep into the software design of the Mini-SSS3.

60

Chapter 4

Software Design

4.1 Introduction

In this section, the software design of Mini-SSS3 is discussed in detail. Based on the functional

allocations from the system design chapter, the software requirements of Mini-SSS3 were gathered.

Further, depending on the requirements, the software design of Mini-SSS3 was formulated. A deep

dive into the requirements, API design, graphical user interface design, and the functional unit tests

are discussed in detail.

4.2 Requirements

The primary software requirements for the system are enumerated below:

1. The system should provide an API to control and configure all the hardware peripherals such

as the PWM, Digital Potentiometers, CAN message generation.

2. The system should provide a graphical user interface for users to interact with the device and

modify various parameters related to the hardware peripherals

3. The system should provide digital feedback allowing users to look at the changes that take

place in real-time.

4.3 API Design

The earlier version, i.e., the smart sensor simulator, could only be operated through serial

commands, which are not always user-friendly. The Mini-SSS3, with the option to connect to an

Ethernet port, opens up multiple ways to communicate with it. An HTTP API lets users control

the different peripherals on the Mini-SSS3 programmatically. The HTTP API is a protocol that

describes how a client can access information from a server. It works as a request-response protocol

61

between a client and a server. The HTTP API also allows us to build a web interface to control

the different functionalities of the Mini-SSS3. The web interface also eliminates the overhead of

installing additional drivers or software, which was required earlier. An Arduino library called

aWOT [35] [39] that provides essential web application features on memory-constrained micro-

controllers, is used in designing the HTTP API.

Multiple API endpoints were set up for each peripheral of Mini-SSS3 to let clients communi-

cate, get status and also update parameters.

1. <ip-address-of-Mini-SSS3>/pots

2. <ip-address-of-Mini-SSS3>/pwm

3. <ip-address-of-Mini-SSS3>/can

4. <ip-address-of-Mini-SSS3>/cangen

5. <ip-address-of-Mini-SSS3>/voltage

62

Figure 4.1: Mini-SSS3 HTTP API flow diagram

The above flowchart explains how an HTTP request is processed. message received from the

client is in the form of a JSON message. The following checks are performed to ensure its a valid

request.

63

• Check for Valid JSON structure

• Check for required key value pairs

• Check if the values are within limits

• Check if the value is different from the current setting on the local device

64

4.3.1 PWM process flow

Figure 4.2: PWM process flow diagram

65

If the JSON message is valid, then it is further processed and goes to the next step. Otherwise,

it reports a 400 bad request status to the client. The validation process checks for the following

conditions:

• Check for valid JSON structure

• Check for required key value pairs

• Check if the values are within limits

• Check if the value is different from the current setting on the device

If the current and received values are different for the duty cycle, the system updates the duty

cycle value in the global variable and then modifies it on the hardware by calling the analogWrite

function for the specific pin. Similarly, if the frequency value is changed the system updates

the frequency value in the global variable and modifies the frequency on the hardware by calling

the analogWriteFrequency() function. The analogWriteFrequency() makes it easy to use as the

function calculates and sets the prescaler and divisor for the timer related to the specific pin. The

switch enables the user to globally enable/disable the PWM signal that is being generated on a

particular pin. Once each of the following conditions are met and the values are successfully

modified the system responds to the client with a 200 OK status message.

66

4.3.2 Potentiometers process flow

Figure 4.3: Potentiometers process flow diagram

Figure 4.3 contains the flow diagram of how an HTTP POST request to control the digital

potentiometer is processed. Similar to the PWM process flow the JSON message is first validate

and only if its a valid message it proceeds to the next step, Otherwise, it reports a 400 Bad Request

67

status to the client. The system then updates the current values both on the hardware and software

levels for each of the Wiper Position, TCON registers and responds with a 200 OK status message

to the client.

68

4.3.3 CAN Message generation process flow

Figure 4.4: CAN generation flow diagram

69

Figure 4.4 contains the software flow of how the CAN messages are generated on the Mini-

SSS3. A thread based logic is implemented to better handle timing in generation of these messages.

Each CAN message thread has the following parameters that the user can modify.

1. CAN Message ID - It specifies the CAN message identifier.

2. DLC - It specfies the length of the CAN message field.

3. B0-B7 - it specifies the data fields of the 8 byte CAN message.

4. Stop_after_count - The CAN message thread is disabled after the transmission count(tx_count)

has reached the specified stop_after_count value.

5. TX Count - It specifies the current status of the number of message transmitted. this is not a

user modifiable field.

6. Period - It specifies the time delay between consecutive CAN messages.

7. Channel - It specifies the CAN channel on which the message has to be transmitted.

8. enabled - It specifies if the thread is currently enabled. Thread Label - It specifies the thread

name for each CAN message thread.

When initialized all the thread as running in idle. The actual logic of sending the message is only

entered when the enabled variable is set to True. After the thread is enabled the tx_count variable

is initialized to zero. The tx_count is incremented every time a CAN message is sent. A while

loop constantly compares the tx_count reaches stop_after_count value the enabled variable is set

to false and the thread is in idling mode.

When a HTTP POST request to control the digital potentiometer is processed. Similar to the

PWM process flow the JSON message is first validate and only if its a valid message it proceeds to

the next step. Otherwise, it reports a 400 Bad Request status to the client. The system then updates

the current values both on the hardware and software levels for each of the Wiper Position, TCON

registers and responds with a 200 OK status message to the client.

70

4.4 Graphical User Interface (GUI)

A react-based web page was designed to give users an interface to operate the Mini-SSS3. The

React framework was developed by facebook as a single page application (SPA) to enable dynamic

webpages running JavaScript. The aWOT Arduino library [39] also enables us to host react-based

web pages from memory-constrained devices. The library is compatible with most Arduino-based

microcontrollers. The GUI is split into multiple tabs each one for a separate peripheral of the Mini-

SSS3. The following sections talk about the graphical user interface for each of the peripherals of

the Mini-SSS3.

4.4.1 Digital Potentiometers

The GUI for the Digital Potentiometers is shown in Figure 4.5. The GUI offers the option to

change the wiper value and also control the terminal switches on the MCP41HV51 as shown in

Figures 2.1 and 2.2. The readings from the PAC1934 [23] is periodically queried using the HTTP

API and relayed on the GUI as shown in the blue box adjacent to the green "Apply" button in

Figure 4.5. The data from PAC1934 gives users real-time feedback about the actual voltage on the

24-pin Molex connector.

71

Figure 4.5: Digital Potentiometer GUI

4.4.2 Pulse width Modulation

The PWM tab allows users to modify the duty cycle and frequency for all the available pins, as

shown in Figure 4.6. Each PWM pin also has a toggle switch that allows users to enable/disable the

pin globally. The apply button then sends out an HTTP Post request to pwm enpoint the Mini-SSS3

72

Figure 4.6: PWM GUI

4.4.3 CAN message viewer

The CAN viewer tab shows the current running messages on the CAN bus. It gives out a

summary of all the unique messages filtered by CAN message identifier. Figure 4.7 shows the GUI

for the CAN viewer tab.

73

Figure 4.7: CAN viewer GUI

4.4.4 CAN Message Generator

The CAN Message generation tab is shown in Figure 4.8. This tab contains a table with dif-

ferent messages that can be transmitted from the Mini-SSS3. Each row in the table is a CAN

message thread that is responsible for generating CAN messages. Each CAN message thread has

the following prarameters that the user can modify.

1. CAN Message ID

2. DLC - It specfies the length of the CAN message field

3. B0-B7 - it specifies the data fields of the 8 byte CAN message

74

4. Stop_after_count - The CAN message thread is disabled after the transmission count(tx_count)

has reached the specified stop_after_count value.

5. TX Count - It specifies the current status of the number of message transmitted. (this is not

a user modifiable field)

6. Period - It specifies the time delay between consecutive CAN messages

7. Channel - It specifies the CAN channel on which the message has to be transmitted.

8. enabled - It specifies if the thread is currently enabled Thread Label - It specifies the thread

name for each CAN message thread.

Users have the option to edit the CAN message thread parameters as mentioned above.

Figure 4.8: CAN message generator GUI

75

4.5 Functional Unit Tests

The HTTP application programming interface is a main way the GUI gets information from

the Mini-SSS3. The following tests were performed using the requests library in Python 3.9.

4.5.1 GET method tests

/pwm

The following python code is used to test the response from the HTTP GET method for the

pwm endpoint. We can observe from the output below, that pwm endpoint returns a json document

enumerating different PWM parameters such as the duty cycle, frequency and switch values.

import requests

url = 'http://192.168.137.119/pwm'

x = requests.get(url)

print(x.text)

Output

{

"0": {

"duty": {"value": 500},

"freq": {"value": 300},

"sw": {"value": 1}

},

"1": {

"duty": {"value": 1000},

"freq": {"value": 245},

"sw": {"value": 1}

},

...

}

76

/pots

The following python code is used to test the response from the HTTP GET method for the

potentiometer endpoint(/pots). We can observe from the output below, that pots endpoint returns a

json document enumerating different parameters such as the wiper position and terminal connec-

tions on the MCP41HV51 (TCON registers). The output is truncated for readability.

import requests

url = 'http://192.168.137.119/pots'

x = requests.get(url)

print(x.text)

Output:

{

"0": {

"wiper": {

"value": 21

},

"TCON": {

"value": 7,

"meta": "TBD"

}

},

"1": {

"wiper": {

"value": 56

},

"TCON": {

"value": 7,

"meta": "TBD"

}

},

...

}

77

/voltage

import requests

url = 'http://192.168.137.119/voltage'

x = requests.get(url)

print(x.text)

The following Python code is used to test the response from the HTTP GET method for the

voltage endpoint (/volts). This endpoint is constantly queried by the webpage to get real-time

voltage information. From the output below, we can observe that the voltage endpoint returns a

JSON document enumerating different channels on the PAC1934, and each channel has the voltage

and current information provided by the PAC1934. Current flow can be extracted from PAC1934

but is not currently implemented, but the API has a place holder for future versions.

Output:

{

"0": {

"voltage": 0.537109,

"current": -1

},

"1": {

"voltage": 1.183105,

"current": -1

},

"2": {

"voltage": 1.183105,

"current": -1

},

"3": {

"voltage": 4.86377,

"current": -1

}

}

78

/can

The following Python code is used to test the response from the HTTP GET method for the

CAN endpoint (/can). This endpoint is also constantly queried by the webpage to get a summary

of the message that are currently running on the CAN bus. From the output below, we can observe

that the CAN endpoint returns a JSON document enumerating different CAN IDs and the count of

messages with the same message ID and also the last received data packet information. This API

endpoint only provides the users with the type of message ID’s running on the CAN bus.

import requests

url = 'http://192.168.137.119/can'

x = requests.get(url)

print(x.text)

Output:

{

"8fe6e0b": {

"count": 317,

"LEN": 8,

"ID": "8fe6e0b",

"DATA": ["00","00","00","00","00","00","00","00"]

},

"18f0010b": {

"count": 64,

"LEN": 8,

"ID": "18f0010b",

"DATA": ["CF","FF","F0","FF","FF","DC","FF","FF"]

},

"18febf0b": {

"count": 64,

"LEN": 8,

"ID": "18febf0b",

"DATA": ["00","00","7D","7D","7D","7D","FF","FF"]

},

"18feca0b": {

79

"count": 3,

"LEN": 8,

"ID": "18feca0b",

"DATA": ["04","FF","00","00","00","00","FF","FF"]

},

...

}

/cangen

The following Python code is used to test the response from the HTTP GET method for the

CAN message generator endpoint (/cangen). This endpoint is queried by the webpage to get a

summary of the CAN threads that are currently running on the Mini-SSS3. From the output below,

we can observe that the cangen endpoint returns a JSON document enumerating different message

thread ID’s along with all the thread parameters. The output is truncated for readability.

import requests

url = 'http://192.168.137.119/cangen'

x = requests.get(url)

print(x.text)

Output:

{

"00": {

"ThreadName": "CI from SSS2",

"ThreadID": 0,

"enabled": false,

"num_messages": 6,

"message_index": 0,

"transmit_number": 6,

"cycle_count": 0,

"channel": 0,

"tx_period": 1,

"tx_delay": 0,

"stop_after_count": 6,

80

"extended": true,

"ID": "18ECFFFA",

"DLC": 8,

"DATA": [

"20",

"1d",

"0",

"5",

"ff",

"eb",

"fe",

"0"

]

},

"01": {

"ThreadName": "CI from SSS2",

...

}

}

81

4.5.2 POST method tests

/pwm

The following Python code is used to test the functioning of the HTTP POST method for the

PWM endpoint (/pwm). A json payload similar to the one received during a HTTP GET message

with the desire frequency and duty cycle values are sent to the Mini-SSS3. The Mini-SSS3 then

processes that request and responds back with the current state of the all PWM channels. Output

on the serial monitor of the Mini-SSS3 is shown in Figure 4.9.

import requests

import json

url = "http://192.168.137.119/pwm"

payload = json.dumps({

"0": {

"duty": {"value": 500},

"freq": {"value": 300},

"sw": {"value": 1}

}

})

headers = { 'Content-Type': 'application/json' }

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

>>>

{

"0": {

"duty": {

"value": 500

},

"freq": {

"value": 300

82

},

"sw": {

"value": 1

}

},

"1": {...},

...

}

Figure 4.9: POST request serial monitor output

/pots

The following Python code is used to test the functioning of the HTTP POST method for the

Potentiometer endpoint (/pots). A JSON payload similar to the one received during a HTTP GET

message with the desire wiper position and terminal connection values are sent to the Mini-SSS3.

The Mini-SSS3 then processes that request and responds back with the current state of the all

Potentiometer channels.

import requests

import json

url = "http://192.168.137.119/pots"

83

payload = json.dumps({

"0": {

"wiper": {"value": 22},

"TCON": {"value": 7},

}

})

headers = { 'Content-Type': 'application/json' }

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

>>>

{

"0": {

"wiper": {

"value": 22

},

"TCON": {

"value": 7

}

},

"1": {...},

...

}

4.6 Conclusion

In this section the overall software requirements were gathered and the main software functions

of the Mini-SSS3 such as, the API and GUI were designed. Further, these software components

were tested to verify their functionalities. The following section discusses in detail about securing

the cloud based communication.

84

Chapter 5

Securing Cloud and External Communication

5.1 Introduction

Around 21 Billion smart IoT devices are expected to be in the market by the end of 2020, [40]

and a lot of these devices are vulnerable to security attacks and tend to be the weakest point in

any network. A robust IoT security mechanism allows designers to protect devices from all types

of vulnerabilities while deploying the product to production. Implementing cryptography adds

overhead on both execution time and energy consumption and is usually costly to implement, as not

everyone is skilled to implement them on constrained embedded devices. This section describes

the use of Microchip’s ATECC608B security module to store private keys and establish a TLS

connection to a server. Often, building and maintaining your server infrastructure could be complex

and time-consuming. Therefore, third-party cloud providers offer ready-to-go infrastructure at

affordable prices. For this thesis, Amazon Web Services (AWS) enables remote connectivity on

the Mini-SSS3. AWS IoT Core is a cloud service to enable connected devices to communicate with

cloud applications and other devices. Amazon IoT Core is capable of handling billions of devices

and trillions of communications reliably and securely, routing them to AWS endpoints and other

devices. AWS IoT Core requires devices to use X.509 certificates with TLS for authentication.

More information about the certificates and the TLS is discussed in the following sections.

5.2 Transport Layer Security 1.2 (TLS)

The TLS encryption protocol was designed to help protect Internet communication from eaves-

dropping. Starting a communication session using TLS encryption is called a TLS handshake.

During a TLS handshake, the client and the server exchange messages to verify each other, decide

on an encryption algorithm, acknowledge each other, and agree on the session keys. TLS hand-

85

shakes are also an integral and foundational part of how HTTPS works. The broad steps involved

during a TLS handshake are listed below:

Figure 5.1: TLS Handshake

1. Client hello: A hello message is sent by the client with the protocol version, the client

random, along with the list of cipher suites.

2. Server hello: Then server replies with the server random, SSL certificate, and the selected

cipher suite.

3. Server’s digital signature: In this, the private key is used by the server to encrypt the server

random, its DH parameter* and client random. The function of this encrypted data is to work

86

as the server’s digital signature for establishing that the particular server has a private key

that matches with the public key from the SSL certificate.

4. Digital signature confirmed: The client then decrypts the server’s digital signature with the

help of the public key and verify that the server controls the private key.

5. Client DH parameter: The DH parameter is sent by the client to the server.

6. Client and server calculate the premaster secret: The client and server use the DH parameters

they exchanged to calculate a matching premaster secret separately, instead of the client

generating the premaster secret and then sending it to the server.

7. Session keys created: The client and server calculate session keys from the premaster secret,

client random, and server random.

8. Client and Server are now set up to use symmetric encryption.

5.2.1 ECDSA sign and verify test

The following test is to validate the Elliptic Curve Digital Signature Algorithm on the Mi-

crochip’s ATECC608B chip. To truly validate the functionality, the logic has been tested over two

separate Teensy 4.0 devices with different ATECC608B chips. Device A signs a message with the

private key stored on the ATECC608B chip and then sends the public key (corresponding to the

private key used to sign the message), signature, and the message to the other device. Device B

then uses that information to verify the signature with the public key and the message to validate

that the message was actually sent from device A.

87

Device A code:

#include <ArduinoECCX08.h>

byte signature[64];

byte message[32] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,0x08, 0x09,

0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,0x10, 0x11, 0x12, 0x13,

0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,

0x1E, 0x1F

};

byte publicKey[64];

void setup()

{

Serial.begin(9600);

while (!Serial);

ECCX08.begin();

String serialNumber = ECCX08.serialNumber();

Serial.print("ECCX08 Serial Number = ");

Serial.println(serialNumber);

ECCX08.ecSign(0, message, signature);

ECCX08.generatePublicKey(0, publicKey);

printMessage();

printPublicKey();

printSignature();

}

88

Figure 5.2: ECDSA signature output

The message, signature, and public key from the output of device A are then passed on to the

code of Device B to verify. We can clearly distinguish both the outputs have different ATECC

serial numbers.

Device B code:

#include <ArduinoECCX08.h>

byte message[32] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,0x08, 0x09, 0x0A,

0x0B, 0x0C, 0x0D, 0x0E, 0x0F,0x10, 0x11, 0x12, 0x13, 0x14, 0x15,

0x16, 0x17,0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,0x1E, 0x1F,

};

byte publicKey[64] = {

0x98, 0x59, 0xFE, 0x69, 0x8D, 0x69, 0x82, 0x05, 0xEB, 0x3C, 0xCA,

0x40, 0x09, 0xC5, 0x4D, 0xA5, 0x01, 0xC1, 0xF9, 0x1E, 0xF5, 0x0B,

0xD3, 0x37, 0x33, 0x8F, 0xE5, 0xCE, 0xE7, 0x24, 0x83, 0xC6, 0x82,

89

0x93, 0x0A, 0x9D, 0x13, 0xAE, 0x27, 0x3B, 0xB9, 0x96, 0x3E, 0xD7,

0x82, 0x0F, 0xD7, 0xE7, 0xFD, 0x40, 0x9E, 0x40, 0x75, 0x6B, 0x15,

0xF2, 0x28, 0x35, 0x5C, 0x5F, 0x4D, 0x84, 0x51, 0x2D

};

byte signature[64] = {

0x8E, 0xB2, 0x5C, 0xE7, 0x7A, 0x1A, 0x2B, 0x87, 0xF7, 0x37, 0x30,

0x6A, 0x2F, 0xA9, 0xE5, 0x70, 0x14, 0x52, 0x7B, 0x0D, 0x36, 0xED,

0xD7, 0xB0, 0x7B, 0xA4, 0x60, 0x7F, 0xF0, 0xB9, 0xEF, 0x30, 0x8B,

0x9D, 0x0C, 0x69, 0x40, 0x10, 0x8D, 0xC3, 0x5B, 0x9E, 0x83, 0x07,

0x2F, 0x55, 0x65, 0xF0, 0x83, 0x82, 0x95, 0xBB, 0x95, 0x03, 0x76,

0x31, 0x24, 0x16, 0xED, 0x98, 0x16, 0xB4, 0x9E, 0xC3

};

void setup()

{

Serial.begin(9600);

while (!Serial);

ECCX08.begin(0x35);

String serialNumber = ECCX08.serialNumber();

Serial.print("ECCX08 Serial Number = ");

Serial.println(serialNumber);

if(ECCX08.ecdsaVerify(message, signature, publicKey))

{

Serial.println("Signature Verified");

}

else

{

Serial.println("Signature Failed");

90

}

}

Figure 5.3: ECDSA verify output

X.509 Certificates

An X.509 certificate document is used to prove ownership of a public key. To generate a new

X.509 certificate, the program needs to create a certificate signing request (CSR) and provide it to

a certificate authority (CA). The CSR is a digital document that contains the public key and other

identifying information. The CA validates the identifying information, and once the identity has

been verified, the CA creates a certificate and signs it with a private key. Anyone can now validate

the certificate by checking its digital signature with the CA’s public key. [41]

AWS IoT provides three different options to create a new certificate. The easiest option is to use

one-click generation. Here, AWS will create a public and private key and create a new certificate

signed by the AWS IoT CA. The second option is to provide an own CSR. This gives the advantage

91

of not sharing the private key. The new certificate generated from the CSR is then signed by the

AWS IoT CA. The final option is to bring your own certificate signed by your own trusted CA.

A CSR is generated for the public key, which is generated from the private key stored in the

ATECC608B chip during the initial provisioning process. This CSR is provided to AWS IOT,

which then provides us with a signed X.509 certificate. This process makes sure that the private

key has not been compromised even during the provisioning process. The Figure 5.4 shows how a

new X.509 certificate is generated from a CSR by AWS IoT.

92

Figure 5.4: AWS Certificate Registration

ATECC608B CSR generation test

Generating a certificate signing request (CSR) is a crucial step in the provisioning process. A

modified version of the ArduinoECCX08 library [42] was used to interface the ATECC608B chip

with Teensy 4.0. The ATECC608 chip communicates with the Teensy over I2C at address 0x60.

The following test generates a CSR based on the information about the device (e.g. common name,

organization, country), which is then used by the certificate authority (CA) to create a signed X.509

93

certificate. The certificate also contains the public key and a signature generated from the private

key.

#include <ArduinoECCX08.h>

#include <utility/ECCX08CSR.h>

void setup() {

Serial.begin(9600);

while (!Serial);

ECCX08.begin(0x60);

String serialNumber = ECCX08.serialNumber();

Serial.print("ECCX08 Serial Number = ");

Serial.println(serialNumber);

Serial.println();

ECCX08CSR.begin(0, 0);

ECCX08CSR.setCountryName("US");

ECCX08CSR.setStateProvinceName("CO");

ECCX08CSR.setLocalityName("Fort Collins");

ECCX08CSR.setOrganizationName("CSU");

ECCX08CSR.setOrganizationalUnitName("SystemCyber");

ECCX08CSR.setCommonName(serialNumber.c_str());

String csr = ECCX08CSR.end();

Serial.println("Here's your CSR, enjoy!");

Serial.println(csr);

}

94

Figure 5.5: Certificate signing request test

5.3 Implementation

Multiple open-source implementations of SSL/TLS protocol (RFC 5246) [43] are available

which help secure the communication over the Internet. BearSSL was one such implementation

that was focused on implementing SSL/TLS protocol on embedded devices. ArduinoBearSSL a

port of BearSSL for Arduino compatible platforms was used in this project. Initially, during the

provisioning process, each device generates a CSR from the private key which is locked in the

ATECC608B chip. The CSR is then registered with the AWS IOT and AWS returns a signed

X.509 certificate. This certificate is then stored on to the device. The signed X.509 certificate is

used to establish TLS communication with AWS.

It is possible for devices to communicate with AWS IoT Core via HTTP, WebSockets, and

MQTT. In the current implementation, the Mini-SSS3 communicates with AWS IoT core using

the MQTT protocol. MQTT (Message Queuing Telemetry Transport) is an extremely lightweight

M2M (machine-to-machine) connection protocol that provides a messaging subscription and pub-

95

lish transport. To enable access to the device remotely, a similar react webpage as shown in Section

4.4 is implemented on the AWS side.

User login

When the user first enters the webpage [44] a login screen is presented to the user providing a

username and password dialog boxes as show in Figure 5.6. New users can also sign up on this

webpage and requires approval by an administrator. An email verification process is implemented

to prevent the system from becoming overloaded with invalid email addresses. On completion of

account registration and approval from an administrator, the new user is added to the AWS User

Pool and is granted access to the web interface to control the Mini-SSS3.

Figure 5.6: AWS user login screen

96

Figure 5.7: AWS user signup

Once the user login’s using their username and password, they are authenticated with the AWS

user pool, which then returns accessKeyID, session, and secretAccessKey tokens. These tokens

are then used to determine which user has access to a particular AWS-IOT (Mini-SSS3) device.

The login procedure is implemented in accordance with AWS recommended practices [45]. The

webpage to access the Mini-SSS3 is remotely hosted on AWS Amplify, a serverless architecture

that enables faster deployments for both front-end and back-end applications. The user interface

is similar to that shown in Section4.4. The main difference is how it retrieves information from

the device. The Mini-SSS3 and the webpage are subscribed to a common MQTT topic, and they

share information on that topic. Any change in parameters on the webpage is communicated to the

device, and similarly, the device updates its state to the webpage over the common MQTT topic

they are subscribed to.

97

Figure 5.8: Access control with AWS Cognito user pool

5.4 Cloud Communications Summary

In this Section, the technicalities about securing the cloud-based communication over TLS uti-

lizing hardware security modules were discussed. Further, buffer length, and a few function proto-

types were modified in the Wire library, [46] which is responsible for handling the I2C communi-

cation of the Teensy 4.0 for compatibility with the AurdinoECCX08 library for ATECC608 [42],

The following Section gives us a brief conclusion of the thesis and the significant contributions

and limitations.

98

Chapter 6

Conclusion

The Mini-SSS3 was designed following the SAE J3061 guidebook and the following are the

major contributions in this thesis:

1. An approach that utilizes hardware security modules to increase the security posture of the

embedded IoT devices was presented. This approach can be implemented for various other

IoT applications. During the entire process of provisioning, the private keys are never ex-

posed and are only accessible to the functions within the hardware security module.

2. A new hardware sensor simulator Mini-SSS3 was designed with improvements over earlier

generation devices. As part of the new design, a voltage feedback loop was added to provide

users with the actual state of the device. Also, an Ethernet module was added to offer remote

operability.

3. A graphical user interface based on the React framework was designed which is served di-

rectly from the device’s firmware without having to install any additional software or drivers.

4. The Mini-SSS3 offers secure remote connection to third-party cloud service providers over

TLS utilizing the hardware security module for secure key storage.

6.1 Limitations and Future work

The Secure Ethernet-based connection enables the Mini-SSS3 to be utilized in advanced re-

search concepts like the software-defined truck, which can accelerate system-level testing for heavy

vehicle cybersecurity research. Microchip’s ATECC608B-TNGTLS variant is a pre-provisioned

variant of the ATECC608B. The device comes pre-configured and pre-provisioned with default

thumbprint certificates which can be used to make a connection to AWS IOT, Azure, and Google

99

cloud. Implementing them in the design can eliminate the steps of provisioning the device which

could be a great relief when deploying such devices at a large scale.

The current HTTP API is insecure and vulnerable an HTTPS version needs to be implemented

which can make the device standalone and serve secure web pages. A single Mini-SSS3 may not

be able to make a fault-free environment for all ECUs and might require multiple devices. Any

utilization of the Mini-SSS3 for forensic or investigative work is done at the risk of the user.

100

Bibliography

[1] National Highway Traffic Safety Administration, “Overview of the 2018 Crash Investigation

Sampling System,” 2020. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/

ViewPublication/812971

[2] United States: National Archives and Records Administration: Office of the Federal Register,

“EVENT DATA RECORDERS,” in Transportation. Title 49. Office of the Federal Register,

National Archives and Records Administration, Oct. 2011. [Online]. Available: https:

//www.govinfo.gov/app/details/CFR-2011-title49-vol6/CFR-2011-title49-vol6-part563

[3] J. Daily, A. Kongs, J. Johnson, and J. Corcega, “Extracting Event Data from Memory

Chips within a Detroit Diesel DDEC V,” SAE International, Warrendale, PA, SAE Technical

Paper 2015-01-1450, Apr. 2015, ISSN: 0148-7191, 2688-3627. [Online]. Available:

https://www.sae.org/publications/technical-papers/content/2015-01-1450/

[4] S. A. van Nooten and J. R. Hrycay, “The application and reliability of commercial vehicle

event data recorders for accident investigation and analysis,” SAE Transactions, pp. 1286–

1293, 2005.

[5] J. S. Ogden and M. Martonovich, “Forensic Engineering Tools and Analysis of Heavy Vehicle

Event Data Recorders (HVEDRs),” Journal of the National Academy of Forensic Engineers,

vol. 33, no. 2, 2016.

[6] X. Feng, E. S. Dawam, and S. Amin, “A new digital forensics model of smart city automated

vehicles,” in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2017, pp. 274–279.

[7] J. L. Córcega, “Design of a forensically neurtral electronic environment for heavy vehicle

event data recorders,” Master’s thesis, University of Tulsa, 2015.

101

[8] Smart Sensor Simulator 2 Github repository. [Online]. Available: https://github.com/

SystemsCyber/SSS2

[9] S. Hamdioui, J.-L. Danger, G. Di Natale, F. Smailbegovic, G. van Battum, and M. Tehra-

nipoor, “Hacking and protecting IC hardware,” in 2014 Design, Automation Test in Europe

Conference Exhibition (DATE), Mar. 2014, pp. 1–7, ISSN: 1558-1101.

[10] “Hardware Hacking 101: Interfacing With SPI.” [Online]. Available: https://www.

riverloopsecurity.com/blog/2020/02/hw-101-spi//

[11] H. Garg and M. Dave, “Securing IoT devices and securely connecting the dots using REST

API and middleware,” in 2019 4th International Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU), 2019, pp. 1–6.

[12] J. Daily, J. Johnson, A. Kongs, and J. Corcega, “Wheeled vehicle event data recorder forensic

recovery and preservation system,” Jan. 9 2018, US Patent 9,865,102.

[13] D. Plant, T. Austin, and B. Smith, “Data extraction methods and their effects on the retention

of event data contained in the electronic control modules of detroit diesel and mercedes-

benz engines,” SAE International Journal of Passenger Cars-Mechanical Systems, vol. 4, no.

2011-01-0808, pp. 636–647, 2011.

[14] J. Johnson, J. Daily, and A. Kongs, “On the digital forensics of heavy truck electronic con-

trol modules,” SAE International Journal of Commercial Vehicles, vol. 7, no. 2014-01-0495,

2014.

[15] B. M. Boggess, A. Dunn, D. Morr, T. Martin, A. Cornetto, and F. Bayan, “A New

Passive Interface to Simulate On-Vehicle Systems for Direct-to-Module (DTM) Engine

Control Module (ECM) Data Recovery,” SAE International, Warrendale, PA, SAE Technical

Paper 2010-01-1994, Oct. 2010, ISSN: 0148-7191, 2688-3627. [Online]. Available:

https://www.sae.org/publications/technical-papers/content/2010-01-1994/

102

[16] Synercon Technologies, Smart Sensor Simulator 2. [Online]. Available: https://

synercontechnologies.com/sss2/

[17] Mini-SSS3 Github repository. [Online]. Available: https://github.com/SystemsCyber/

Mini-SSS3

[18] “ISO/SAE21434: Road Vehicles - Cybersecurity Engineering - SAE International.” [Online].

Available: https://www.sae.org/standards/content/iso/sae21434/

[19] J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems - SAE International.

[Online]. Available: https://www.sae.org/standards/content/j3061_201601/

[20] “J1708: Serial Data Communications Between Microcomputer Systems in Heavy-Duty

Vehicle Applications - SAE International.” [Online]. Available: https://www.sae.org/

standards/content/j1708_201012/

[21] “J1587: Electronic Data Interchange Between Microcomputer Systems in Heavy-Duty

Vehicle Applications - SAE International.” [Online]. Available: https://www.sae.org/

standards/content/j1587_201301/

[22] Microchip MCP41HV51 digital potentiometer datasheet. [Online]. Available: https:

//ww1.microchip.com/downloads/en/DeviceDoc/20005207B.pdf

[23] Microchip’s PAC1934 Quad DC Power Monitor Datasheet. [Online]. Available: https://ww1.

microchip.com/downloads/en/DeviceDoc/PAC1931-Family-Data-Sheet-DS20005850E.pdf

[24] Microchip MCP2562 High-Speed CAN Transceiver Datasheet. [Online]. Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/20005167C.pdf

[25] Wiznet WIZ850io Ethernet module. [Online]. Available: https://docs.wiznet.io/img/

products/w5500/w5500_ds_v109e.pdf

103

[26] Microchip ATECC608B Crypto Trust platform Datasheet. [Online]. Available: https://

www.microchip.com/content/dam/mchp/documents/SCBU/ProductDocuments/DataSheets/

ATECC608B-CryptoAuthentication-Device-Summary-Data-Sheet-DS40002239A.pdf

[27] PJRC, Teensy 4.0 development board schematics. [Online]. Available: https://www.pjrc.

com/teensy/schematic.html

[28] Mini-SSS3 Schematics PDF. [Online]. Available: https://github.com/SystemsCyber/

Mini-SSS3/blob/main/docs/Mini_SSS3.pdf

[29] Teensy 4.0 Developemnt Board Specifications. [Online]. Available: https://www.pjrc.com/

store/teensy40.html

[30] International Standards Organization, 11898-2:2016 Road vehicles — Controller area

network (CAN) — Part 2: Highspeed medium access unit. December, 2016. [Online].

Available: https://www.iso.org/standard/67244.html

[31] 24-Pin Molex Connector. [Online]. Available: https://www.molex.com/pdm_docs/sd/

039301242_sd.pdf

[32] Kycon female power connector. [Online]. Available: http://www.kycon.com/

2013Catalogpage/DC%20Power/KPJX.pdf

[33] Hammond Aluminium enclosure specification (PN:1455K1201BK). [Online]. Available:

https://www.hammfg.com/part/1455K1201BK

[34] Mini-SSS3 hardware tests repository. [Online]. Available: https://github.com/SystemsCyber/

Mini-SSS3/blob/main/Tests/

[35] MCP41HV51 Digital potentiometer test. [Online]. Available: https://github.com/

SystemsCyber/Mini-SSS3/blob/main/Tests/Test_Pots/Test_Pots.ino

[36] Microchip PAC1934 voltage monitor test. [Online]. Available: https://github.com/

SystemsCyber/Mini-SSS3/blob/main/Tests/Test_PAC1934/Test_PAC1934.ino

104

[37] Mini-SSS3 Read CAN messages test. [Online]. Available: https://github.com/SystemsCyber/

Mini-SSS3/blob/main/Tests/Test_CAN1/Test_CAN1.ino

[38] Mini-SSS3 Generate CAN messages test. [Online]. Available: https://github.com/

SystemsCyber/Mini-SSS3/blob/main/Tests/Test_CAN1/Test_CAN1.ino

[39] L. Lukkari, AWOT: Arduino web server library. May, 2018. [Online]. Available:

https://github.com/lasselukkari/aWOT

[40] P. R. Gartner, Gartner Reveals Top Predictions for IT Organizations and Users in 2017 and

Beyond. October, 2016. [Online]. Available: http://www.gartner.com/newsroom/id/3482117

[41] N. Corbett, Understanding the AWS IoT Security Model. May, 2017. [Online]. Available:

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model

[42] ArduinoECCX08, ATECC608B Arduino library. [Online]. Available: https://github.com/

arduino-libraries/ArduinoECCX08.git

[43] [Online]. Available: https://datatracker.ietf.org/doc/html/rfc5246

[44] Mini-SSS3 webpage hosted on AWS. [Online]. Available: https://add-aws-front-end.

dalv93leipvmw.amplifyapp.com/

[45] Amazon Web Services, Access Resources with API Gateway and Lambda with a

User Pool. [Online]. Available: https://docs.aws.amazon.com/cognito/latest/developerguide/

cognito-scenarios.html

[46] Teensy 4.0 Wire library. [Online]. Available: https://github.com/PaulStoffregen/Wire.git

105

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background
	Related Research
	Objective
	Approach
	Background on Heavy Vehicle Systems
	Standard sensors found in heavy vehicles
	Creating a fault-free environment
	Data extraction from ECMs

	Contribution
	Organization of Thesis

	System Design
	Requirements
	Fault free environment
	Remote connection
	Compatibility
	Cybersecurity requirements
	Provisioning
	Real-time feedback
	Open Source

	Functions
	Simulating Resistive sensors
	Generation of Analog DC Signals
	PWM signal generation
	Monitoring voltage on the output
	CAN Read/Write messages
	User Interface

	Functional Allocation
	Generating PWM signals
	Controlling digital potentiometers
	Communication over CAN bus
	Monitor Voltage
	Application Programming Interface
	User Interface

	Architecture
	Conclusion

	Hardware Design
	Introduction
	Requirements
	Hardware Building Blocks
	Detailed Schematics
	Voltage Regulation and power protection
	Development Board
	Digital Potentiometers
	Pulse Width Modulated Signals
	Ethernet Module
	CAN Transceivers
	Crypto Trust Platform
	External Connections

	Enclosure and Printed Circuit Board
	Bill of Materials
	Functional Unit Tests
	Digital Potentiometer test
	PWM test
	Voltage monitoring test
	CAN Test
	ATECC608B test
	Ethernet test

	Hardware Design and Testing Summary

	Software Design
	Introduction
	Requirements
	API Design
	PWM process flow
	Potentiometers process flow
	CAN Message generation process flow

	Graphical User Interface (GUI)
	Digital Potentiometers
	Pulse width Modulation
	CAN message viewer
	CAN Message Generator

	Functional Unit Tests
	GET method tests
	POST method tests

	Conclusion

	Securing Cloud and External Communication
	Introduction
	Transport Layer Security 1.2 (TLS)
	ECDSA sign and verify test

	Implementation
	Cloud Communications Summary

	Conclusion
	Limitations and Future work

	Bibliography

