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ABSTRACT

SECURE REMOTE SENSOR SIMULATOR FOR HEAVY VEHICLE ELECTRONIC
CONTROL UNITS

Heavy Vehicle Event Data Recorders (HVEDRSs) have the capability to record crash-related
data and are valuable tools for traffic crash investigators. The data extracted from HVEDRSs con-
tain information to help reconstruct the driver’s behaviors and determine the events leading to a
crash.Data extraction is commonly performed using diagnostic tools when the electronic control
unit (ECU) with the HVEDR is available on the vehicle’s network. In the cases where the electrical
system of the vehicle is compromised, the ECU is often removed and connected to a harness for
power and communications. These harnesses are not designed to preserve fault codes or diagnostic
trouble codes which can result in overwriting data related to a particular crash event.

This thesis describes the open-source hardware and software design of a remotely accessible
sensor simulator used to create a fault-free environment for a bench download of an HVEDR.
The sensor simulator device reduces the chance of any alteration of the original fault code data
inside the HVEDRSs by emulating the presence of actuators and sensors to the ECU. It does this
using analog voltage outputs, pulse-width modulated signals, digital potentiometers, and CAN
messages. The settings for these are adjustable remotely through a web-based interface.

A contribution of the thesis focuses on a process to increase the security posture of the embed-
ded IoT devices wherein it utilizes a hardware security module to offload cryptography operations.
The hardware security module was also used for secure key storage and implement Elliptic Curve
Digital Signature Algorithm (ECDSA) to sign and verify messages for integrity, which is a key
process in Transport layer security (TLS). The device also securely connects to a cloud infras-

tructure using TLS, enabling investigators to operate these devices remotely using a web-based

il



graphical user interface. Secure remote access enables further research and investigation of heavy

vehicle electronic systems.
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Chapter 1

Introduction

1.1 Background

A statistical projection of traffic fatalities shows that an estimated 2,811,185 people were in-
volved in motor vehicle accidents in the United States in 2018 [1]. Different agencies, such as law
enforcement, attorneys, and accident investigators, need to find the actual cause of those accidents.
Determining critical information that happened just a few seconds before and during the accident is
crucial. For passenger vehicles, Event Data Recorders (EDRs) can aid investigations of the causes
of crashes [2]. For heavy vehicles, Heavy Vehicle Event Data Recorder (HVEDR) functionality is
integrated into one or more Engine Control Modules (ECMs) [3].

Even though ECMs were initially designed to improve fuel efficiency and achieve optimal
engine performance while meeting emission regulations, they also serve to store critical informa-
tion such as vehicle speed, driving logs, diagnostic fault codes, brake status, and throttle posi-
tion [4], [5]. Modern ECMs record event data related to diagnostic faults, hard or quick stops, and
the vehicle’s last or most recent stop [5]. This information is stored in a manner that allows reports
to be generated and may be of value in an accident investigation and the data must be preserved in
a forensically sound manner [6].

The early designs of the smart sensor simulator [7] were concentrated on understanding the
different types of sensors and actuators that are needed to be simulated to create a fault free en-
vironment which would reduce the likelihood of data alterations during a bench download from a
HVEDR. Cércega’s work focused on validating this process on seven different ECM’s and creating
a fault free environment for those modules. Later a new version the smart sensor sensor simulator 2
(SSS2) was designed as a commercial solution by Dr. Daily at Synercon Technologies. The SSS2
had some hardware improvements with a smaller form factor compared to the SSS. SSS2 also had

a windows based graphical user interface application which communicated over USB. Those were



later open sourced and were made available at [8]. Both the SSS and SSS2 only communicated
through USB and had an overhead of installing additional software to interface with them. In this
thesis we also focus on creating a web based graphical user interface making it compatible with
any operating system and removing the overhead of installing additional software/drivers. With
the addition of a web interface and remote access, cybersecurity controls will need to be designed
into simulator solutions going forward.

Internet of Things (IoT) devices are deployed in a variety of domains, including public and
private networks. Cybersecurity is becoming critical to avoid the threat of leakage of sensitive
information. Unfortunately, many low-end IoT devices become vulnerable due to the lack of im-
plementation of security measures. A hacker who gains access to one device can replicate the same
attack on the others. Because embedded device (IoT) firmware architects prioritize functionality
over security, exploiting SPI flash and other device components is becoming common [9] [10].
That could be due to various factors requiring high processing power for performing cryptographic
operations, which require high memory requirements and optimizing costs [11]. Once we have
access to the hardware, it is possible to dump data from a serial flash or a JTAG debugger and gain
access to stored secrets or code [9] [10]. Once someone gets access to this sensitive information,
the whole network could be compromised. This thesis aims to utilize hardware security mod-
ules(HSMs), also commonly known as Trusted Platform Modules, to implement security measures

on microcontrollers with comparatively low memory and processing power.

1.2 Related Research

The preferred method for obtaining HVEDR records is to download the information directly
from the vehicle via the in-cab Deutsche connector, using an RP1210 compliant Vehicle Diagnostic
Adapter (VDA) and Original Equipment Manufacturer (OEM) software [3]. However, this cannot
be accomplished in some instances due to the extent and nature of the damage to the vehicle,
particularly if the electrical or communications networks have been compromised. Suppose this

information cannot be downloaded directly from the truck. In that case, there are three alternative



methods for obtaining the data: using a surrogate vehicle, performing a benchtop download without
a simulator harness, or performing a benchtop download with a simulator harness [5].

In the surrogate vehicle method, the ECM(s) are removed from the vehicle involved in the
accident and placed into an undamaged vehicle of the same make and model. Finding a suitable
surrogate can be difficult and is often only feasible for large fleet operators. Additionally, there is
the opportunity cost of having the surrogate vehicle out of service while the ECMs are swapped,
and the data is retrieved [12]. An alternate method is to perform a benchtop download, in which
the event data is retrieved from the ECM(s) while out of the vehicle. When an ECM is powered on
while disconnected from the vehicle, the absence of sensor inputs can create new fault codes; these
new faults may overwrite potentially valuable information [13], [14]. A simulator harness can be
connected to the ECM using actual and emulated truck components. However, these are typically
limited to a specific truck configuration and are expensive [12]. Some simulator harness solutions,
such as [15], can only simulate passive sensors, although many ECMs require active signals to be
fault free [14].

A similar subsystem often called the "Truck-in-a-Box" (TIB), allows investigators to emulate
sensors and actuators often seen in different engine configurations to create a fault-free environ-
ment [3]. The TIB renders all signals to the ECM by using the actual sensors or utilizing equivalent
electrical components. The setup in [13] is used as a teaching tool for technical schools. It can also
be used to simulate sensor malfunctions, typically seen in crash events, and to study the ECM’s

response without an actual truck.

1.3 Objective

The initial motivation for the remote sensor simulator builds upon the work done by Corgega [7]
where he initially designed a smart sensor simulator, a hardware tool for bench top downloads that
is able to simulate both passive and active signals in order to create a fault-free environment. Later
another version called the smart sensor simulator 2 (SSS2) was designed by Synercon technologies

[16] making it a commercial product.



The remote sensor simulator or called as Mini Smart Sensor Simulator 3 (Mini-SSS3) is de-
signed to be general purpose and able to work with various ECMs - across different manufacturers
but most importantly give the investigators an option to operate these devices remotely. Various
passive and active signals are simulated via a combination of digital potentiometers and Pulse
Width Modulated (PWM) outputs. Additionally, the Mini-SSS3 supports common vehicle com-
munications standards, such as Controller Area Network (CAN). The hardware is paired with
software that enables users to simulate different sensors and actuators through a Graphical User
Interface (GUI). Both the hardware and software solutions are open source and available at [17].
The key objective of the Mini-SSS3 was to give the device a way to be controlled remotely in a

S€cure manner.

1.4 Approach

Figure 1.1 shows a V-diagram followed during the product development of the Mini smart
sensor simulator. Cryptography was given importance at every design, development, test, and
validation stage following the ISO/SAE21434 standard [18]. During the initial phase of system
design, we did system-level analysis to understand the initial requirements for the overall system
and this analysis was then used to do a system level planning to include new features.Then, based
on the resulting requirements the functionalities were further allocated to hardware and software
design or both respectively.Further, Cybersecurity requirements were then drafted to make sure
the communication between the IoT device (Mini-SSS3) and cloud infrastructure secure. Finally,
at the last the stage of the design process all the functionalities were translated into hardware and
software components. This concludes the design phase of the Mini-SSS3 system.

In the testing phase, initially each of the individual component were tested for validating their
functionalities. Then, the whole system was integrated and tested again to make sure the function-
alities were delivering the results as per the requirements. Finally, after the feature integration and

system validation the Mini-SSS3 was released for production.
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1.5 Background on Heavy Vehicle Systems

Electronic Control Units (ECUs) are designed for many tasks, including:
* Improve fuel efficiency.

* Meet emission regulations.

Aid with troubleshooting and diagnostics.

Protect the system/asset they monitor (i.e., Engine, Transmission, among others).

There are numerous sensors and switches throughout the truck that allow these ECUs to make
decisions based on electrical inputs. The truck’s battery and the ignition switch power these ECUs.
After then, the ECU(s) will utilize this voltage as a reference for the 5V, 8V, and 12V sources
used to power the various sensors and switches triggered by these units. J1708/J1587 [20] [21], or
J1939 [27] are common protocols used by ECUs to connect with other modules. For example, the

vehicle’s diagnostic port provides access to at least one of these communication protocols

1.5.1 Standard sensors found in heavy vehicles

The ECM monitors engine sensors. Sensor outputs monitored by the ECM take many forms,
including resistance, analog, Pulse Width Modulated (PWM), or a communication standard such
as CAN, J1708, etc. The ECM is the most common ECU across all OEMs. This module contains
all the timing calibrations needed to drive fuel injectors and maximize fuel efficiency [28]. It also
monitors all the engine sensors and switches to protect this asset. There are at least two harnesses
connected to an ECM. These harnesses are often referred to as vehicle side and engine side. Among

the sensors connected to the engine side harness, there are:
* Engine Oil Pressure Sensor
* Intake Manifold Pressure Sensor

* Intake Manifold Temperature Sensor



¢ Barometric Pressure Sensor

* Engine Coolant Temperature Sensor

* Fuel Temperature Sensor

* Engine Oil Temperature Sensor

* Inlet Air Temperature Sensor

* Inlet Air Temperature Sensor

¢ Crankcase Pressure Sensor

* Ambient Air Temperature Sensor

These are commonly thermistors (temperature) or variable capacitance (pressure) sensors. Some
sensors have built-in signal conditioning and provide a voltage output. Therefore, the signal ex-
pected by the ECM is within a voltage range, usually from 0.25V and 4.75V.

The engine harness is also connected to variable reluctance sensors that help the ECM deter-
mine what position the engine is in at any given time during its cycle. The ECM uses two sensors

located near the crankshaft and camshaft. These sensors often include:

* Engine Position Sensor 1

* Engine Position Sensor 2

Crankshaft position sensor

Camshaft position sensor

* Timing reference sensor

Synchronous reference sensor

The engine uses the input from these sensors to make decisions and drive different actuators

such as:



EGR Valve Motor

Variable Geometry Turbocharger Actuator

* Engine compression Brake Solenoids

* Injectors

Engine Cooling Fan Solenoid

Stop Engine Lamp

Check Engine Lamp

The vehicle side harness enables the ECM to monitor sensors and switches available on the
truck’s dashboard. This harness also houses all the communications and power terminals needed
for the ECM to function. Through these communication lines, the ECM can obtain data, such as
vehicle speed, from other modules. One example of a sensor connected to the vehicle side harness
is the Pedal Position Sensor (PPS). This sensor can differ on the make an model of the vehicle and
engine. For example, Caterpillar uses a PPS that produces a single channel PWM signal to the
ECM. The PPS used by Detroit Diesel engines (from DDEC IV to DDEC X) utilizes a variable
resistance sensor (potentiometer) which provides an analog voltage signal, typically from 0.25V
to 5V, which the ECM reads to sense the position of the pedal.

Some actuators are controlled over CAN rather than an analog or PWM signal depending on
the engine configuration. However, neither engine CAN nor any standard CAN network (SAE
J1939) are used to actuate these sensors. Instead, modules such as the After-treatment Control
Module (ACM) or MCM have dedicated CAN lines to control these controllers. In some cases,

The device must emulate CAN frames in order to avoid fault codes.

1.5.2 Creating a fault-free environment

Fault codes are generated when any sensors on the vehicle side or the engine side harness

are missing. Missing sensors causes new diagnostic records to be written, and these new files



can potentially overwrite any existing records that may have collision-related data [13]. Existing
literature showed that active fault codes on the Mercedes-Benz ECMs had overwritten existing
diagnostic records on subsequent power cycles [13]. Hence its important to create a fault-free
environment before the data is extracted from the HVEDR to reduce the chance of overwriting

data.

1.5.3 Data extraction from ECMs

Under normal circumstances, communication with the ECM is done over the diagnostic port,
which is present inside the driver’s cabin. This connector is often the standardized 9-pin connector
described by the SAE J1939-13 standard [16]. This 9-pin connector is also called a Deutsch
connector. The OEM software and an RP1210 compliant device that serves as a translator are
necessary to establish communication between the computer and the truck.

When communications with the ECM(s) cannot be established through the diagnostic port,
the ECM can be removed and a Direct to Module (DTM) or bench download is performed. This
process requires the investigator to remove the engine and vehicle side harness and retrieve the
ECM from the truck. Using an OEM Reprogramming Harness and an external source of power,
the download can be performed. However, this method will certainly introduce new diagnostic
fault codes that will alter the original image of the ECM and could potentially overwrite crash-
related records. A bench download can also be done without an OEM reprogramming harness.

Instead of using a reprogramming harness to perform a bench download, sockets crimped to
wires are used to connect to the ECM. Opposite to the crimped end, banana plugs are used to
connect to a breakout box. A power source and RP1210 compliant device connect to this breakout
box to power the system and carry out the download. Similar to the bench download using a
reprogramming harness, this download will also introduce diagnostic fault codes. Moreover, the
sockets are not mechanically fastened, which risks losing electrical continuity with the ECM’s

terminals.



In cases when a bench download is required, a fault-free environment must be created to guar-
antee that all data records available within the ECM are preserved. Based on the practices for
ECM downloads shown in the previous section, the only way to achieve a fault-free environment
is to simulate the different sensors and actuators available to the ECM through both the engine and
vehicle side harnesses. A miniature Smart Sensor Simulator 3 (Mini-SSS3) was designed to be
able to perform this task.

The Mini-SSS3 integrates the adaptability of the TIB and the ability to repeat an identical bench
download of the fault-free cables described in previous sections. Even though the Mini-SSS3
allows the investigator to emulate a great variety of sensors, actuators, switches, and modules,
the fault-free environment must be constructed before the actual forensic download is performed.
The crash-related events stored in the ECM can be overwritten seconds after a fault code is set.
Therefore, investigators must follow a proper method to create a fault-free environment must be
followed to minimize opportunities for data tampering. Also, due to the Mini-SSS3’s smaller size,
multiple units may be necessary to simulate all the sensors necessary for an actual engine control

module.

1.6 Contribution

The key contributions of this thesis involve:

1. Documentation of the hardware and software design of the Mini Smart Sensor Simulator

(Mini-SSS3).

2. creating a web based graphical user interface for the Mini-SSS3 making it a standalone

device without the need of installing additional drivers or software.

3. Implementing a voltage feedback loop and providing users with a real time feedback of the

current state of the device.

4. Implementing cybersecurity protocols on memory-constrained micro-controllers with the

purpose of increasing security posture.

10



5. Connecting the sensor simulator to cloud infrastructure allowing users to control the sensor

simulator remotely.

1.7 Organization of Thesis

The thesis is divided into five chapters:

» Chapter 1 provides a basic introduction to the project, literature review of related researches,
objective and motivation of the project, background on sensors on a heavy vehicle, an ap-

proach to achieve the objective, and the contribution.

* Chapter 2 provides the hardware design, which lists the project requirements, system block
diagram, detailed component schematics showing how the electrical components are con-
nected, housing and printed circuit board (PCB) layout displaying the placement of those
components on the device, bill of materials (BOM) listing all required parts, and results

from hardware functional tests.

* Chapter 3 reviews the software design, which consists of the process overview indicating the
interactions between all the system components. The chapter also talks about the embedded

firmware of the device, the interface of the cloud services for each of the operation modes.

* Chapter 4 talks about securely connecting the sensor simulator to third-party cloud services

such as Amazon Web Services utilizing the ATECC608 cryptographic co-processor.

* Chapter 5 concludes the thesis with a restatement of the abstract, contribution and lists some

future works for project improvement.

11



Chapter 2

System Design

2.1 Requirements

To create a fault-free environment, the device should simulate a wide range of sensors and
actuators. The solution should also be highly generalized and universal, such that a wide variety
of vehicle makes and models are supported. Allowing most of the configuration to happen via
software makes the solution more user-friendly and limits room for user error - a configuration
representing a specific vehicle make, and model can be saved and reloaded as needed. While some
requirements have not been vetted against industry standards, they have worked for laboratory

uses. A few major requirements are summarized below.

2.1.1 Fault free environment

All sensors, actuators, switches, and other modules required for a heavy vehicle control unit
to behave as if they were connected to an actual sensor must be emulated by the system to ensure
a fault-free environment. Most sensors that are present in any commercial truck can be classified

into the following categories:

¢ Two-wire sensors

Three-wire sensors

Pulse Width Modulation

¢ Actuators or Solenoids to +12V

¢ Actuators or Solenoids to Ground

Switches

12



2.1.2 Remote connection

The next primary requirement is that users can securely connect to cloud infrastructure and

control these devices remotely. The system should have an interface to connect to the internet.

2.1.3 Compatibility

The system shall be backward compatible with the pinouts from the earlier versions of the

smart sensor simulator. This allows re-use of the Molex connectors built for various ECM’s.

2.1.4 Cybersecurity requirements

The system shall have a way to securely store private keys to maintain confidentiality. The
system shall also have integrity of the keys stored on these devices

and while also ensuring the uniqueness of those keys.

2.1.5 Provisioning

The system shall have a provisioning process that shall involve configuring and locking the
hardware security modules. This process also involves registering certificates from the device with

the cloud provider.

2.1.6 Real-time feedback

The system shall have a way to provide real-time feedback to the user about changes taking

place on the device. The settings on the device must be accurately reflected in a user interface.

2.1.7 Open Source

An open-source solution that allows third parties to investigate and validate the underlying
source code lends credibility and transparency to the process and bolsters the forensic soundness

of the results.
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2.2 Functions

Based on the system requirements a few key functionalities for the Mini-SSS3 are described in

the below sections.

2.2.1 Simulating Resistive sensors
Two-wire sensors

Two-wire sensors are loop-powered and do not require a separate supply voltage. The sensor
may be read via a Wheatstone bridge in the ECU for resistance-based sensors, such as thermistors.
Potentiometers can be used to create arbitrary resistance values to emulate these by disconnecting
terminal A and connecting terminal B to the ground, as shown in Figure 2.1. By modifying the
wiper position we can change the resistance value. This can be used to let the ECU detect current

flow which is expected for some actuators or to emulate switches to ground, like idle validation.

+V

Terminal A~

Port|—s—
Wiper

Terminal B |

Figure 2.1: Two wire sensor configuration where terminal A is not connected.

2.2.2 Generation of Analog DC Signals

A potentiometer is a variable resistor with three terminals, a knob or slider, which can be moved
or rotated to vary the resistance between the middle terminal and either of the remaining terminals.
Digital potentiometers have similar functionality, but instead of a mechanical slider or knob, the

resistance can be controlled using digital signals.
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Three-wire sensors

Three wire sensors usually have one additional terminal connected to supply voltage compared
to a two wire sensor. Modifying the wiper position creates a voltage divider which provides analog
voltages on the wiper connector. By modifying the wiper position The voltage divider can produce

a desired analog voltage. A schematic of a three-wire sensor emulator can be found in Figure 2.2.

+V

Terminal A ]

Port ——
Wiper

Terminal B ]

GND

Figure 2.2: Three wire sensor configuration

2.2.3 PWM signal generation

An anti-lock braking system (ABS) is a common feature in most vehicles. This prevents the
wheels from locking up during a hard brake event. Wheel speed sensors play an essential role in
providing information to the ABS and other systems such as traction control and stability control.
The wheel speed sensors on most vehicles are magnetic and generate an alternating current signal
or a variable DC signal, that changes its frequency and amplitude based on the wheel speed. The
teeth of the tone ring rotate and changes the magnetic field around the sensor, which induces a
current in the sensor. This results in a harmonic wave pattern that changes frequency with wheel
speed. Generating periodic waves in the digital world is only possible through pulse-width mod-
ulated signals. To be able to simulate rotary sensors the system needs to have a functionality to
generate PWM signals. The system shall also provide options to adjust PWM parameters such as

the duty cycle and frequency.
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2.2.4 Monitoring voltage on the output
Based on the Requirement 2.1.6 the system shall have a periodic function that updates the
voltages of the output pins. This information can be helpful for the user to have real-time feedback

on the changes they perform.

2.2.5 CAN Read/Write messages

Modern vehicles have more than one controller module. An engine controller is solely re-
sponsible for looking after the engine’s functionality, A brake controller looking after all the brake
applications, and a body controller for controlling all the electronic components inside the cabin
such as the switch states, air conditioning, etc. All these different modules communicate over the
CAN. The system shall be able to send out periodic CAN messages simulating the presence of an

electronic control module.

2.2.6 User Interface

The users should have a way to interact and control various peripherals of the Mini SSS3
device. The user needs to be able to see the status of the different settings on the device and be
able to read the output values on the different pins of the device. The user interface should also be

accessible remotely.
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2.3 Functional Allocation

After carefully analyzing the requirements and functions of the system, Teensy 4.0 develop-
ment board was deemed a right fit for this application. Teensy 4.0 is an ARM Cortex-M7 based
development board that works with the Arduino development environment. Some features that
make the Teensy 4.0 an effective solution for the Mini-SSS3 include three inbuilt CAN channels
with one channel supporting CAN FD, seven serial, three SPI and three 12C interfaces. It also has
1984Kb Flash, 1024Kb RAM, 1Kb EEPROM (emulated). The Teensy 4.0 processor operates at

600 MHz, which is fast enough to support most requirements.

- ~ , “\ , “\
Functions Hardware Software

Generate PWM @ ] FlexPWM [c] © Set DutyCycle and Frequency

Control NN _ Set WiperPosition

Potentiometer =~ @ © MCP4IHVS! - SPI @ . and TerminalConnection

Communicate

over CAN bus (C, © FlexCAN @ © Read and Write CAN Messages
Monitor Voltage ® 0} PAC1934 - 12C @ © Read PAC1934 Voltage

API ® o Ethernet - SPI @ ® Request Handler (AWOT)

AWS |OT Connection ® Ethernet - SPI © BearSSL

Handler ATECC608 - 12C

Power the ECU © © Voltage Protection

User Interface © © API

Figure 2.3: Mini-SSS3 function allocation

The following sections describe how each functions discussed in Section 2.2 are allocated over

hardware and software.

2.3.1 Generating PWM signals

PWM signals can be generated by toggling digital signals on and off. This could be achieved
through software methods but a major disadvantage is that any interrupts will affect the timing,
which can cause jitter in the signal. Many micro-controllers utilize hardware timers and registers

to generate PWM signals which make them more timing critical and not have to depend on the
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software execution. By manipulating the chip’s timer registers directly, This provides more control
than toggling digital signals through software.

The use of hardware based PWM signals allows the system to generate signals with high fre-
quencies. The software allows us to then configure the hardware timers and registers for the desired

frequency and duty cycle.

2.3.2 Controlling digital potentiometers

Microchip’s MCP41HV51 digital potentiometer were chosen for resistance based outputs that
can tolerate voltages up to +18V. It has an 8-bit resolution for the wiper position giving us 256
distinct resistance values. The device also provides us with an option to connect and disconnect
the other two terminals. This provides us the ability to emulate both 3-wire and 2-wire sensors as
required in 2.2.1. The functionality of generating the DC signals has been offloaded to an external

IC but configuration of the IC is controlled by the main microprocessor over SPI.

2.3.3 Communication over CAN bus

The next major functionality for the device is to send and receive CAN messages from the CAN
bus. The Teensy 4.0 has 3 CAN controllers, with one channel supporting CAN FD. An external
CAN transceiver chip is added to complete the electrical interface between Teensy 4.0 and the
external CAN bus. The Teensy 4.0’s Flexible Controller Area Network (FLEXCAN) module is a
communication controller that follows the CAN 2.0B protocol specification and implements the
CAN protocol on hardware.The FLEXCAN module supports both standard and extended message
frames. The FLEXCAN module supports 64 message buffers. The interface to the FLEXCAN

modules is through memory mapped input/output.

2.3.4 Monitor Voltage

To provide users with real-time feedback about the changes on the output terminals, Mi-
crochip’s PAC1934 was incorporated in the design. The PAC1934 is a four-channel power/energy

monitor that includes a current sensor amplifier and bus voltage monitors that feed high-resolution
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ADCs. The embedded controller can retrieve bus voltage, sense shunt resistor voltage, and accu-
mulated proportional power from registers over I2C. To reduce offset and gain errors, the PAC1934

uses real-time calibration.

2.3.5 Application Programming Interface

An API allows other systems/users to interact with Mini-SSS3 programatically. HTTP APl is a
protocol that describes how a client can access information from the server. It works as a request-
response protocol between a client and server. It specifies the types of calls or requests that can
be made, how they should be made, the data formats that should be utilized, and the protocols
that should be followed, among other things. An HTTP API deemed necessary for the Mini-SSS3

design as it would help develop a user interface (UI) on top of it.

2.3.6 User Interface

The graphical user interfaces builds upon the API to fetch and update state of the different
peripherals on the Mini-SSS3. The user interface is further discussed in Section 4.4. This is
allocated to software only as it is portable and relies on the hardware for networking layers as a

foundation.

2.4 Architecture

The Mini-SSS3 provides two modes of operations, one where the user can locally connect to
the device and use the web-based front end served on the device to control all the peripherals of the
Mini-SSS3. In the second mode, the device can be operated remotely through the internet using
AWS IoT. The second mode utilizes the Microchip’s ATECC608 hardware security module, which
involves an initial provisioning process. The provisioning process involves the generation of a
certificate signing request (CSR) and registering it with AWS IoT. We assume that the following

things are uncompromised to ensure the security and privacy of this model are intact.

1. The program used for the initial provisioning process
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2. The Internet connection over TLS

3. The third-party cloud party (Amazon Web Services in this case)

4. The ATECC608 hardware device.

/ Mini-SSS3 Secure TLS €p AWS loT
BQHTSSL React VWebpage
on AWS Amplify
Internet
/pwm @

i fpots

IGET

JPOST API _fg:;gen < React Webpage

Hardware Abstraction Layer

L | /

ECU

Figure 2.4: Mini-SSS3 architecture overview

Figure 2.4 gives an overview of the system level architecture. The Hardware Abstraction layer

controls the hardware peripherals like generating PWM signals, controlling potentiometers, read-

20



ing voltage values and, reading and writing CAN messages. The API layers acts like an interface
for accessing the functionalities of the Mini-SSS3. The react webpage interact with API to allow
the users to control the device and, also enable the users to understand the current state of the
device. BearSSL is used for implementing TLS which is essential for establishing secure commu-

nication with third party cloud servers to provide users with secure remote access.

2.5 Conclusion

In this section the overall system requirements were gathered and the main functions of the
Mini-SSS3 were formulated. These functions were then allocated to hardware, software or both

respectively. The following section dives deep into the hardware design of the Mini-SSS3.
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Chapter 3

Hardware Design

3.1 Introduction

In this section, the hardware design of Mini-SSS3 will be explained in detail. Based on the
functional allocations from the previous chapter, the hardware requirements of Mini-SSS3 were
gathered. Further, depending on the requirements, the hardware design of Mini-SSS3 was formu-
lated. A deep dive into the requirements, hardware components used, and their schematics will be

discussed in detail in the upcoming sections.

3.2 Requirements

The major hardware requirements based on the system requirements are the following:

1. The device should utilize hardware timer peripherals to offload the generation of PWM sig-
nals from the main microprocessor and give the users an option to change both the duty cycle

and the frequency.

2. Generate variable DC signals, emulating a three-wire sensor with support for varying voltage

ranges from O to 5 volts.

3. The device should be able to emulate passive resistive sensors with resistance from 100 ohms

to 200,000 ohms.

4. The device should read CAN messages at bus speeds of 125k, 250k, 500k, 666k, and 1M,

giving the user an option to monitor messages on the CAN bus.

5. The sensor simulator should be able to generate an extended frame CAN message mimicking

a control module.
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6. The device should be able to provide +12V power, ground, and switched ignition control to

the ECM.

7. The device should have a way to store total configurations in non-volatile memory so it can

accommodate different settings for various ECMs.

8. The device shall have voltage and current monitors that can provide real-time feedback on

the output pins of the device.

3.3 Hardware Building Blocks

In the previous section, the hardware requirements were discussed in detail. Based on these
requirements, the hardware design of Mini-SSS3 is explained in a top-down approach. Figure 3.1
shows the different layers of the hardware design of the Mini-SSS3.

The top layer is the main processor for the Mini-SSS3. Based on the requirements, it was de-
cided to choose a microcontroller that had sufficient peripherals. The NXP iMXRT1062, an Arm®
Cortex®-M7 processor, was deemed a better option due to its support for multiple communication
protocols, including three CAN Bus (1 with CAN FD), three SPI, three I12C ports, and one USB
port. The processor also has 40 digital input/output pins, of which 31 pins support PWM output.

Therefore, due to the above-mentioned features offered by the NXP iMXRT1062, the Teensy
4.0 development board was selected. The development board has all the hardware components
necessary to program and run the iMXRT1062 chip such as a Micro USB port for programming
and serial communication. A voltage regulator to reduce the USB’s 5 volts to 3.3 volts was used.
The board has 2 Mb of SPI flash memory intended for storing the user code. The board also has
a bootloader chip that is responsible for uploading bootloader code to the main MCU’s RAM and
start executing the user code. A 24 Mhz crystal is present on Teensy 4.0 which is used by the
system and other peripherals. A phase-locked loop (PLL) raises the system clock speed from 24
MHz to the desired system clock speed. Another 32 kHz crystal is used by the real-time clock

(RTC).
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Microcontroller &
Development Board

Figure 3.1: Different layers of hardware components

In the next stage, the Teensy 4.0 was integrated into a printed circuit board (PCB) along with

other integrated circuits such as

1. A voltage regulator and power protector to power and protect the circuit from any high

voltage spikes from the raw input.

2. Microchip’s MCP41HVS51, a digital potentiometer [22] used for analog signal generation.
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3. Microchip’s PAC1934, [23] a voltage and power management IC was used for voltage and

current monitoring.

4. Texas Instruments TLV4171, a general-purpose operational amplifier was used to amplify

PWM signals generated by the Teensy 4.0 from 3.3 to 5 volts.

5. Microchip’s MCP2562, a CAN transceiver is used to interface between the CAN controller

on the Teensy 4.0 and the physical two-wire CAN bus [24].

6. The Wiznet WIZ850i0, an Ethernet module to provide Ethernet capabilities to the Teensy

4.0 [25].

7. Microchip ATECC608B crypto authentication device was used for secure key storage and to

perform cryptographic operations [26].

The Mini-SSS3 PCB design is further illustrated through the block diagram in Figure 3.2. The

individual components are discussed in detail in the following sections.

Next, in stage 3 an aluminum housing was designed to protect the internal circuitry of the PCB
from any kind of damage. The housing exposes external connectors such as the Kycon female
power connector to power the device, the ethernet jack to connect an ethernet cable, and the 24 pin
Molex connector to connect to the ECM harness.

Finally, a kit with other necessary accessories, like a power supply module and a harness, was

included to connect the device to an electronic control module.
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Figure 3.2: High-level printed circuit board block diagram

3.4 Detailed Schematics

Altium software was used to design the schematics and the printed circuit board of the Mini-
SSS3. The schematics for the Teensy 4.0 development board are publicly available at [27]. The
individual components from the architecture were then incorporated into the schematics. These
components are also carefully distinguished on the schematics with the help of bounding boxes

based on their functionality. The schematic PDFs are made available on Github [28].
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3.4.1 Voltage Regulation and power protection
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Figure 3.5: 12 volts to 5 volts step down circuit

Figure 3.5 shows the schematics for voltage regulation and power protection on the smart
sensor simulator 3. A transient voltage suppression (TVS) device was used to protect the device
from any high voltage spikes coming in from the raw input. A Schottky diode was used to protect
the device from any reverse polarity. The Schottky diode allows current flow only in a single
direction while only dropping about 0.3 volts (compared to 0.7 V for a traditional PN junction
diode). The TVS diode is bi-directional and helps protect sensitive electronic equipment from
voltage transients induced by transient voltage events.

Most microcontrollers and other peripherals operate on much lower voltages, usually 5 or 3.3
volts. DC to DC converter is used to achieve such voltages. In this case, we have used an OKI-
78SR voltage regulator, which steps down the voltage to 5V, which is used to power the Teensy
4.0 development board. Even though the iMX processor runs on 3.3V, the 5V feed works for
the Teensy 4.0 because it has a low dropout voltage regulator built into the development board to
supply power for the microprocessor.

Figure 3.6 shows the schematic of PAC1934 connections. Precision voltage measurement is
provided by PAC1934’s four-channel, bidirectional, high-side current sensing capabilities [23].

The four sense channels are connected in parallel with the digital potentiometer output and the
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24-pin Molex connector along with a 2-ohm sense resistor which is recommended in the datasheet
[23]. The PAC1934 communicates with the microprocessor over I2C and hence pins SM_CLK and
SM_DATA pins on the PAC1934 are connected to SCLO(19) and SDAO (18) pins of the Teensy
4.0. The PAC1934 also has a low power mode during which the IC is set to sleep mode and can be
controlled by the PWRDN pin. The pin is pulled high with help of a pull-up resistor making the
device powered on by default. The SLOW/ALERT pin is used to decide the sampling rate on the
PAC1934. if the SLOW/ALERT pin is pulled high the sampling rate is set to 8 samplers per/second

and when the pin is pulled low the sampling rate is set to 1024 samples per second.
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Figure 3.6: PAC1934 power and voltage monitoring device.

3.4.2 Development Board

The Mini-SSS3 was designed with the Teensy 4.0 development board as its primary processing
unit. Teensy 4.0 has 40 input/output signal pins, out of which 24 are accessible as through-hole
headers with 0.100" spacing. The Mini-SSS3 uses female headers to connect the Teensy 4.0 to
the PCB. When pin headers are attached, this makes it easy for swapping out development boards
during the prototype phase. The Teensy 4.0 houses an NXP iMXRT1062 chip which is an ARM
Cortex-M7 processor. The development board also offers power on/off management, a real-time
clock for date and time, dynamic clock scaling support, and can be overclocked above 600 MHz.
Furthermore, the Teensy 4.0 board consists of 1024K RAM, 2048K flash, 3 CAN buses, 3 SPI

ports, and 3 I12C ports. A complete device specification can be found at [29].
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Figure 3.7: Primary Microcontroller evaluation board Teensy 4.0

3.4.3 Digital Potentiometers

Microchip’s MCP41HV 51 chip supports one potentiometer in each integrated circuit chip and
four of them are used in the Mini-SSS3 design. The MCP41HV51 communicates over the SPI
interface, so for each device to connect over the SPI, four pins are required, which are the Clock
(SCK), Master In Slave Out (MISO), Master Out Slave In (MOSI), and the Chip Select (CS) pins.
Although the Teensy 4.0 has 3 SPI channels, all the devices were connected to the SPI0 interface
with MOSI on pin 11, MISO on pin 12, SCK on pin 13, and the CS pins at 7,8,9,10 respectively.
In SPI communication, the master can decide which slave to talk to, by pulling the chip select (CS)
pin low, allowing for multiple slaves on the same SPI bus. The drawback with SPI is that each
slave requires a separate chip select pin.

The V+ and V- pins on the MCP41HVS51 are the analog power rails used to power the resis-
tor network terminal pins. Analog switch resistances increase when the analog supply voltage

decreases, impacting the limits on the input voltage range. The V+ is connected to 12 volts and
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the V- is connected to ground. Pin POA of the MCPHVS51 is connected to 5 volts and pin POB is
connected to ground as shown in Figure 3.8.

The MCP41HVS51 has a Terminal Control (TCON) Register, which connects/disconnects ter-
minals A, B, and Wiper individually from the resistor network based on the bit value in the TCON
register. This allows the system to emulate both two-wire and three-wire sensor configurations as
described in Section 2.2.1.

The contents of the TCON register are shown in Figure 3.10. Bits 7—4 are reserved, and Ter-
minal A is connected to the resistor network if bit 2 (ROA) is set to 1 and disconnected if set to O.

Similarly, Terminal B is based on ROB (bit 0), and Wiper is based on ROW (bit 1).

R-1 R-1 R-1 R-1 RW-1 RAW-1 R/W-1 RIW-1
pr | o6 | D5 | D4 | ROHW | ROA | Row ROB
bit 7 bit 0

Figure 3.10: MCP41HVS51 TCON register

MCP41HVS51 also has a register for wiper position at address 0x00. The device has two vari-
ants with 7 and 8-bit registers for the wiper resistor network. Each resistor network allows zero-
scale to full-scale connections. Figure 3.11 shows a block diagram for the resistive network of
MCP41HV51. The resistor network has three external connections: Terminal A, Terminal B, and
the wiper (or Terminal W). The RAB resistor ladder is composed of the series of equal value Step

resistors (RS) and the Full-Scale (RFS) and Zero-Scale (RZS) resistances.

Rap = Rzs +nx* Rg + Rpg

The RFS and RZS resistances are artifacts of the RAB resistor network implementation. In the
ideal model, the RFS and RZS resistances would be 0. More information about RFS and RZS is

available in the data sheet [22].
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3.4.4 Pulse Width Modulated Signals
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Figure 3.12: PWM Signal Generator Schematic

Pulse Width modulated signals are generated by toggling the digital pins at high frequency.
Most of the Teensy 4.0 pins can generate PWM signals. The pins on the Teensy generate an output
voltage of 3.3 volts. To step up the voltage to 5 volts, a non-inverting operation amplifier as shown

in Figure 3.13 is used.
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the PWM signal.

‘ Ry
G =1
amm + R

51k
Gain =1+ 2 — 151
amn =1+ 50k

‘/out
Vin

Gain =

Vour = Gain * Vi, = 1.51 % 3.3 = 4.983V ~ 5V

Rf

Gain = Vout/Vin = 1 + Rf/Rin

Figure 3.13: Non Inverting operational amplifier configuration

On the iIMXRT 1062 microcontroller, PWM signals are created by hardware timers. Internally,
set of pins are tied to a timer and, when frequency of one of the pin is changed, the frequency of all
the other pins tied to the same timer also change. This means each PWM output may have unique

duty cycles, their frequencies may be shared, depending on which timer is providing the trigger for

3.4.5 Ethernet Module

The main requirement for the Mini-SSS3 is to be able to control it remotely over the internet.

A lot of thought went into deciding the network interface between Ethernet and WiFi. Ethernet
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Figure 3.14: Mini-SSS3 Schematic for Wiznet850i Ethernet module

supports larger bandwidths and also gives us an option to route CAN data over Ethernet for future
works. The WIZ850i0 network adapter was selected for the Mini-SSS3. The device has a hard-
wired TCP/IP and a PHY layer embedded in it, making it a plug-in system for developing internet
enabled systems rapidly. The device communicates over the Serial Peripheral Interface (SPI) over

the MOSI, MISO, SCK and CS pins of the SPIO interface.

3.4.6 CAN Transceivers

The Microchip’s MCP2562 [24] CAN transceiver were used for all three CAN channels on the
Teensy 4.0, as shown in the schematics in Figure 3.15. The chip supports CAN FD with speeds up
to 8Mbps. Besides the normal functions of a CAN transceiver, it also provides a silent mode which
gives the Mini-SSS3 the ability to enable/disable CAN channel transmission. The MCP2562 meets
the ISO-11898-1:2015 specifications [30]. On the Teensy 4.0, pins 22 and 23 were used for the
CANI1 controller, pins 0 and 1 were used for the CAN2 controller and pins 30 and 31 were used

for CAN3 controller.
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Figure 3.15: Mini-SSS3 schematic for CAN Transceivers

3.4.7 Crypto Trust Platform
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Figure 3.16: ATECC608A cyrptographic co-processor Schematic

To add hardware security to the Mini-SSS3 a cryptographic co-processing unit was deemed

necessary. Microchip ATECC608B was chosen for this project because of its hardware-based
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cryptographic key storage and cryptographic countermeasures that eliminate back doors tied to
firmware flaws. The device integrates the Elliptic Curve Diffie Hellman (ECDH) security protocol,
enabling secure communication on an unsecure channel. The device is agnostic of any micropro-
cessor (MPU) or microcontroller (MCU) and communicates using the I2C protocol over the SCL
and SDA pins. The device can store up to 16 keys, and once the device is locked in the EEPROM,
only the internal hardware functions have access to the private keys. This feature ensures that the
secrets are maintained confidentially and reduces the risk of exposing and compromising systems.

The ATECC608A also supports the following cryptographic operations:
1. SHA-256 and HMAC hash.
2. AES-128 encryption and decryption
3. Store compressed X.509 certificates

4. 256-bit ECC following NIST standard with Elliptic-Curve Digital Signature Algorithm (ECDSA)
following FUPS186-3.

3.4.8 External Connections

A 24-pin Molex Mini-Fit Jr. male right angle pin header was used to interface the connection
to the cabling for the connection to the arbitrary external vehicle electronic control unit. The pin
mapping were kept uniform with the earlier version of the smart sensor simulator allowing for
re-usability of harness connectors [31]. A Kycon power connector was used for the power and
ground connections for the Mini-SSS3 [32].A Meanwell GST220A12-R7B desktop power supply

provided up to 15 amps of 12V power through a matching Kycon connector.
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Figure 3.17: Pin definitions for the external connections

3.5 Enclosure and Printed Circuit Board

With the engineering of the system completed, the last step was shifting to manufacturing and
assembly. The PCB Gerber files and NC Drill File were then exported from Altium designer soft-
ware and sent out to Oshpark LL.C for PCB manufacturing. Based on the earlier design of the Smart
Sensor Simulator, an Aluminium extruded enclosure made by Hammond (PN: 1455k120BK) was
determined the best fit for this system [33]. The printed circuit board for the Mini-SSS3 was de-
signed using Altium Designer software, and the resulting 3-D rendering is shown in Figure 3.19.
The PCB was built with two layers with a dimension of 75Smm L by 120mm H. Since the Mini-
SSS3 was a prototype board for the SSS3, there may be room available for more improvements

and additions.
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Figure 3.18: Mini-SSS3 Printed Circuit Board
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Figure 3.19: Assembled Mini-SSS3 circuit card assembly
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As the Mini-SSS3 development board was a prototype, most of the components were through
hole and all of these components were soldered manually by using soldering iron. Further, a few
components such as MCP41HV51 Digital Potentiometer, PAC1932 voltage and power monitering
IC, and ATECC608B hardware security module were surface mounted onto the Mini-SSS3 using

a hot air soldering station.

Figure 3.20: Mini-SSS3 enclosure Ethernet side
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Figure 3.21: Mini-SSS3 enclosure Molex side
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3.6 Bill of Materials

The complete Bill of Materials is shown in Table 3.1 for the printed circuit board.

Table 3.1: Mini-SSS3 bill of materials(BOM)

Designator Comment Description Quantity Manufacturer
0.1pF -20%, +80% 25V Ceramic Capacitor Y5V (F)
C1,C2, C3, C4, C5, C6, 0603 (1608 Metric), 0.1uF £10% 50V Ceramic
C7,C10 0.1uF Capacitor X7R Radial 8|AVX Corporation, TDK Corporation
C8,C9 220uF Polarized Capacitor (Radial) 2|'AVX Corporation, TDK Corporation
DC Power Connectors 4P JACK SKT SHIELDED
CON1 Kycon KPJX-4S SNAP AND LOCK 1|Kycon
24 Positions Header Shrouded Connector
CON2 24 Pos Mini-Fit Jr. 0.165in (4.20mm) Through Hole Right Angle Gold 1[Molex
Diode Schottky 40V 2A Surface Mount DO-214AC
(SMA), Diode Schottky 40V 2A Surface Mount DO-|
D1,D2 SHTKY 214AC (SMA) CDBA240LL-HF 2|Comchip Technology
Green 569nm LED Indication - Discrete 2.1V
D3 Green Radial 1|Lite-On Inc.
D4 Red Red 623nm LED Indication - Discrete 2V Radial 1|Lite-On Inc.
F1 PTC 750mA PTC RESTTBLE 0.75A 16V CHIP 1206 1|Bel Fuse Inc
2.54mm 1x6 Pin Header
J1,J)2 DIP 2.54mm 1x6 Pin Header DIP 1(WIZnet
Quad Low-Power JFET-Input General-Purpose
Operational Amplifier, 7 to 36 V, 0 to 70 degC, 14-
01 TLV4171 pin SOP (PW14), Green (RoHS & no Sb/Br) 1|Texas Instruments

7/8-Bit Single, +36V (+18V) Digital POT with SPI

P1,P2,P3,P4 MCP41HV51-10k Serial Interface and Volatile Memory 4|Microchip Technology
Ql NUD3124 IC INDCT LOAD DRVR AUTO SOT23 1[ON Semiconductor
100 kOhms +1% 0.1W, 1/10W Chip Resistor 0603
R1, R2, R4, R9, R11 100k (1608 Metric) Automotive AEC-Q200 Thick Film 5|Panasonic Electronic Components
R3, R5, R10, R12 51k RES SMD 51K OHM 1% 1/10W 0603 4|Panasonic Electronic Components
4.7 kOhms £1% 0.1W, 1/10W Chip Resistor 0603
(1608 Metric) Automotive AEC-Q200 Thick Film,
4.7 kOhms £5% 0.25W, 1/4W Through Hole
R6, R7, R8, R17, R18, Resistor Axial Flame Retardant Coating, Safety
R19, R22,R23 4.7k Carbon Film 8|Panasonic Electronic Components
2 Ohms +1% 0.125W, 1/8W Chip Resistor 0805
R13, R14, R15,R16 2 (2012 Metric) Automotive AEC-Q200 Thick Film 4Stackpole Electronics Inc.
330 Ohms +1% 0.1W, 1/10W Chip Resistor 0603
(1608 Metric) Automotive AEC-Q200, High
R20, R21 470 Voltage Thick Film 2[Stackpole Electronics Inc
RL1 HY1-5V Telecom Relay SPDT (1 Form C) Through Hole 1|Panasonic Electric Works
T1,7T2,T3 MCP2562 Microchip CAN FD Transceiver with Silent Mode 3|Microchip
Teensy 1 Teensy 4.0 32 Bit Arduino-Compatible iMX Microcontroller 1[PRIC
TVS1 Varistor 14V VARISTOR CAP FEEDTHRU 14V 0805 1|AVX
Current Monitor Regulator High-Side 16-UQFN
U1l PAC1934T-1/1Q _4x4_ 1|Microchip Technology
Authentication Chip IC Networking and
u2 ATECC608A Communications 8-SOIC 1|Microchip Technology
Linear Regulator Replacement DC DC Converter 1
V1 OKI-78SR Output 5V 1.5A 7V - 36V Input 1|Murata Power Solutions
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3.7 Functional Unit Tests

This section covers a series of unit tests to ensure the proper functionality of the Mini-SSS3.
Since some of the hardware is driven by software based commands, code snippets for each of the

test is shown below. The complete code for all the test cases is made available on Github at [34].

3.7.1 Digital Potentiometer test

Simulating analog signals is a crucial feature of the Mini-SSS3. This test covers all the func-
tionalities of the MCP41HVS51 digital potentiometer. A triangle signal was generated to test if the
device covers all the desired voltage ranges. The Terminal A is hard wired to a 5 volt supply on
the Mini-SSS3 and hence for this test the values range between 0-5 volts. To test the terminal
disconnection feature terminal A and Terminal B were disconnected one after the other to check

their behavior. The complete test code is available at [35].

#include <SPI.h>
byte address = 0x00;
void setup () {SPI.begin();}
void loop ()
{
int i = 0;
for (i = 0; i <= 255; i++)
{
digitalPotWrite (i, 7);
delay (10);
}
delay (50);
// Wiper and Terminal B are only connected when TCON value is 3
MCP41HV_SetTerminals (3, 7);

delay (1000);

// All Terminals are connected when TCON value 1is 7

45



MCP41HV_SetTerminals (7, 7);
for (i = 255; i >= 0; i—-)
{
if (1 == 128) {
// Wiper and Terminal A are only connected when TCON value is 6
MCP41HV_SetTerminals (6, 7);
delay (1000);
MCP41HV_SetTerminals (7, 7);
}
digitalPotWrite (i, 7);

delay (10);

Figure 3.22 shows the output from the logic analyzer. Channel O of the logic analyzer was
connected to Potentiometer 1 whose chip select is connected to pin 7 on the Teensy 4.0. During
the first half cycle the wiper position was constantly increased from 0 to 255 and the signal also
constantly increases from 0 to 5 volts which can be observed in Figure 3.22. After reaching the
maximum wiper position i.e. the output reaching 5 volts, Terminal A was disconnected and it can
be observed from Figure 3.22 the output is pulled low. When only Terminal A is disconnected the
circuit no longer behaves like a voltage divider and now directly connects to ground and a same
behaviour is observed on the signal. After one second the terminal A was connected back to 5
volts and it can be observed that the signal jumps to 5 volts. During the second half cycle the
wiper position was constantly decreased from 255 to 0 and since terminal A was connected back
the circuit behave like a voltage divider and the same behaviour is observed on the output. Midway
through the second half terminal B was disconnected and we can observe the output is pulled to 5
volts. When Terminal B is disconnected the output is directly connected to 5 volts and the same

behaviour is evident from this test.
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Figure 3.22: Mini-SSS3 digital potentiometer test

3.7.2 PWM test

AnalogWrite() function can be used to generate PWM signals on the Arduino. The function
configures the hardware timers and registers to produce the desired duty cycle and frequency of the
PWM signal. A digital logic analyzer was connected to the output ports 1, 2, 13, 14 on the Mini-
SSS3 to observe the PWM outputs. The following code snippet was used to test the capability of

Mini-SSS3 to generate the PWM signals with varying frequencies and duty cycles.

const uint8_t numPWMs = 4;
const int8 t PWMPins[numPWMs] = {2, 4, 5, 6};
uintl6_t pwmValue [numPWMs] = {500, 1000, 2048, 4096};

uintl6é_t pwmFrequency[numPWMs] = {245, 245, 200, 200};

void setup() {
uint8_t i;
for (i = 0; i < numPWMs; i++)
pinMode (PWMPins[i], OUTPUT) ;

// analogWrite value 0 to 4095, or 4096 for high
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analogWriteResolution(12);

analogWrite (PWMPins[0], 512);
analogWrite (PWMPins[1], 1024);
analogWrite (PWMPins[2], 2048);
analogWrite (PWMPins[3], 3500);
analogWriteFrequency (PWMPins[0], 500);
analogWriteFrequency (PWMPins[1], 500);
analogWriteFrequency (PWMPins[2], 500);

analogWriteFrequency (PWMPins[3], 500);

void loop () |

// put your main code here, to run repeatedly:

© Logic 2 [Logic Pro 8 - Connected]
File Edit Capture Measure View Help

4 Channels 4

po Channel 0

Channel 1

999.52 s |

oz Channel 2

1.70928 ms
pz Channel 3

width 585.042 Hz

Figure 3.23: Mini-SSS3 PWM signal generation test observations from the Saleae Logic analyzer.
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Figure 3.23 depicts the multiple test signals that can be produced through different PWM pins
present on Mini-SSS3. Channels 0-3 on the digital logic analyzer were connected to PWM pins
0-3 on Mini-SSS3. All the signals produced have varying pulse widths and duty cycles at a fixed

frequency. This helps us emulate a wide range of sensors with varying characteristics.

o

File Edit Capture Measure View Help
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width™: 571.507 Hz
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p3 Channel 3
Duty: 12]58 %
Freq:2 K
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Figure 3.24: Mini-SSS3 PWM signal frequency test

Figure 3.20 depicts the multiple test signals produced through different PWM pins present on
Mini-SSS3. Channels 0-3 on the digital logic analyzer were connected to PWM pins 0-3 on Mini-
SSS3. All the signals produced have varying pulse widths and duty cycles at varying frequencies.

This helps us emulate a wide range of sensors with varying characteristics.

3.7.3 Voltage monitoring test

Microchip PAC1934’s main functionalities on the Mini-SSS3 are to monitor voltages. The
PAC1934 gives users a real-time feedback on the desired changes. In the following test, the digital
potentiometers are configured on different wiper positions, and the corresponding voltages were

measured from the PAC1934 chip. The complete code for the following test case is available at [36]
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#include <Microchip PAC193x.h>

#include <Wire.h>

#include <SPI.h>

byte address = 0x00;

int i = 0;

Microchip_PAC193x PAC;

void setup ()

{
Wire.begin () ;
PAC.begin();
SPI.begin();
Serial.begin (9600) ;

while (!Serial)

void loop ()

{
digitalPotWrite (10, 7);
digitalPotWrite (100, 8);
digitalPotWrite (255, 9);
digitalPotWrite (200, 10);
PAC.UpdateVoltage();

Serial.print ("\n\nRead start:");

Serial.print ("\n Voltagel (mV) =

Serial.print (PAC.Voltagel);

Serial.print ("\n Voltage?2 (mV)

Serial.print (PAC.Voltage?2);

Serial.print ("\n Voltage3 (mV)
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Serial.print (PAC.Voltage3);
Serial.print ("\n Voltage4 (mv) = ");
Serial.print (PAC.Voltaged);

delay (2000) ;

An approximated formula to calculate the output voltage from digital potentiometer is

Wipervalue

* (VPUA—POB)

However, there are other resistances such as Rrg and Rzg which play role in the calculation of the

output voltage but are neglected for approximation purposes.

Vi = % * 5 = 196.07mV
Vo= % x5 = 1960.78mV
Vi = %*5:5000mv
Vi= % * 5 = 3921.56mV

Table 3.2: PAC1934 voltage measurement results

Wiper Setting PAC1934 Voltage | Multimeter Reading Difference
Pot-1 | 10/255 334.36 mV 337 mV 3mV
Pot-2 | 100/255 2018.07 mV 2026 mV 8 mV
Pot-3 | 255/255 4908.20 mV 4906 mV I mV
Pot-4 | 200/255 3935.06 mV 3930 mV SmV
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Wiper position value on each of the potetntiometer were set to 10,100,255,200 respectively. The
voltage on the potentiometer outputs on the Mini-SSS3 was measured using both a multimeter and

PAC9134 and are tabulated in the Table 3.2. The PAC1934 has

& COM12 (Teensy) Serial

Read start:

Voltagel (mV) = 334.47
Voltage2 (mV) = 2018.07
Voltage3 (mV) = 4503.20
Voltaged (mV) = 3935.0¢

Figure 3.25: Mini-SSS3 voltage monitor test

3.7.4 CAN Test

Read CAN messages

Teensy 4.0 has 3 CAN channels which enable users to monitor CAN messages on the bus. In
the following test script, channels 1 and 2 were tested. The channels were initialized to a 250kbps
bit rate. To test the CAN functionality, a brake controller module was connected to the Mini-SSS3
over the 24-port Molex connector. The test script reads messages on the bus and prints them on

the serial monitor. The complete code for this test case can be found at [37].

#include <FlexCAN_T4.h>

FlexCAN_T4<CAN1l, RX_SIZE_256, TX_SIZE_16> canl;

FlexCAN_T4<CAN2, RX_SIZE_256, TX_SIZE_16> can2z;
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CAN_message_t msg;

void setup (void) {
canl.begin();
canl.setBaudRate (250000) ;
can2.begin();

can2.setBaudRate (250000) ;

void loop() {
if ( canl.read(msg) ) {
digitalWrite (21, HIGH);
Serial.print ("CAN1 ");

Serial.print ("MB: "); Serial.print (msg.mb);

Serial.print (" ID: 0x"); Serial.print (msg.id, HEX );
Serial.print (" LEN: "); Serial.print (msg.len);
Serial.print (" DATA: ");

for (uint8_t i = 0; i < 8; i++ ) {

if (msg.buf[i]<16) Serial.print ("0");
Serial.print (msg.buf[i],HEX); Serial.print ("

}

Serial.print (" TS: "); Serial.println(msg.timestamp);

delay (10);

digitalWrite (21, LOW);

")
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r
&) TeensyMonitor: COM12 Online — O x
Send
00:00:50.963 -> CAN]1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: CO 00 CO 00 CO 00 CO 00 T5: 31658
00:00:50.963 -> CAN]1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 00 T5: 3667% I
00:00:50.963 ->»> CAN]1 MB: 4 TID: 0x18F0010B LEN: & DATA: CF FF F0 FF FF DC FF FF TS: 38185
00:00:50.963 -> CAN]1 MB: 4 ID: Ox13FEBFOB LEN: & DATA: 00 00 7D 7D 7D 7D FF FF T5: 417089
00:00:50.963 -> CAN]1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 0O T3: 54533
00:00:50.963 -> CAN1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 0O I5: 53421
00:00:50.963 -> CAN1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 00 I53: ©444¢
00:00:50.963 ->»> CAN1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 0O I5: 35948
00:00:50.963 -> CAN1 MB: 4 TID: Ox3FE6EOB LEN: & DARTA: 00 00 00 00 00 00 00 0O I5: 8969
00:00:50.963 -> CAN]1 MB: 4 TID: Ox18F0010B ©LEN: &8 DATA: CF FF FO FF FF DC FF FF  T5: 11480
00:00:50.963 -> CAN]1 MB: 4 TID: Ox1SFEBFOB LEN: & DATA: 00 00 7D 7D 7D 7D FF FF TSz 13885
00:00:50.963 ->»> CAN]1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 00 T3: 14140
00:00:50.963 ->»> CAN]1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 0O T3: 13024
00:00:50.963 -> CAN1 MB: 4 TID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 0O T5: 24053
00:00:50.987 -> CAN]1 MB: 4 1ID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 00 I5: 23087
00:00:50.987 -> CAN]1 MB: 4 1ID: Ox3FE6EOB LEN: & DATA: 00 00 00 00 00 00 00 00 I5: 34110
off (B Show timestamp Mewline w | (115200 baud - Clear output
[

Figure 3.26: Mini-SSS3 CAN message viewer test

We can observe in Figure 3.29 that the messages coming from the brake controller have the J1939
format with a 29-bit message identifier. The brake controller is currently not connected to any

sensors and hence we see all 0’s is most of the data fields.

Generate CAN messages

The following code is used to test out the CAN Message generation functionality on the Teensy
4.0. The CAN channel 1 and channel 2 were physically connected to the same CAN bus. To test
the CAN Generation functionality, a dummy CAN message was generated on channel 1 and was

read on channel 2. The complete code for this test case can be found at [38].

#include <FlexCAN _T4.h>

FlexCAN T4<CAN1l, RX _SIZE 256, TX_SIZE_ 16> canl;
FlexCAN_T4<CAN2, RX_SIZE_256, TX_SIZE_16> canz;
CAN_message_t msg;

CAN_message_t msgl;

void setup (void) {
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canl.begin () ;
canl.setBaudRate (250000) ;
can2.begin () ;
can2.setBaudRate (250000) ;
}
void loop() {
msgl.id = OxDEADBEEF;
msgl.len = §;
for (uint8 t i = 0; 1 < 8; 1i++ ) {
msgl.buf[i] = 1i;
}
msgl.flags.extended = 1;
canl.write (msgl);
if ( can2.read(msg) ) {

Serial.print ("CAN2 ");

Serial.print ("MB: "); Serial.print (msg.mb);
Serial.print (" ID: Ox"); Serial.print (msg.id, HEX );
Serial.print (" EXT: "); Serial.print (msg.flags.extended );
Serial.print (" LEN: "); Serial.print (msg.len);
Serial.print (" DATA: ");
for (uint8_t i = 0; i < 8; i++ ) {

Serial.print (msg.buf[i]); Serial.print(" ");
}
Serial.print (" TS: "); Serial.println(msg.timestamp);

}

delay (100);
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@ COM12 (Teensy) Serial — m] b4
Send

CAN2 MB: & 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 T5: 48045

CANZ2 MB: 7 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 01 2 3 4 56 7 T5: 41748

CANZ MB: 4 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 I5: 32574

CANZ MB: 5 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 3456 7 T5: 57528

CAN2 MB: ¢ 1ID: OxlEADBEEF EXT: 1 LEN: 8 DATA: 01 23 43567 I5: 17103

CANZ MB: 7 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 I5: 10306

CENZ2 MB: 4 1ID: Ox1EADBEEF EXT: 1 LEN: 8 DATA: 012 34567 T5: 1477

CAN2 MB: 5 1ID: Ox1EADBEEF EXT: 1 LEN: 8 DATA: 0 1 2 34 56 7 T5: 26587

CAN2 MB: & 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 I5: 51542

CANZ MB: 7 1ID: Ox1EADBEEF EXT: 1 LEN: 8 DATA: 01 2 34 56 7 T3: 45245

CANZ MB: 4 1ID: Ox1ERDBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 I5: 3591¢€

CANZ MB: 5 1ID: Ox1EADBEEF EXT: 1 LEN: & DATA: 0 1 2 34 56 7 T5: 61026

CAN2 MB: & 1ID: Ox1EADBEEF EXT: 1 LEN: 8 DATA: 0 1 2 34 56 7 I5: 20445

CANZ MB: 7 1ID: Ox1EADBEEF EXT: 1 LEN: 8 DATA: 0 1 2 34 56 7 T5: 14148

CENZ MB: 4 1ID: Ox1ERDBEEF EXT: 1 LEN: 8 DATA: 012 34567 T5: 45874 I

CAN2 MB: 5 1ID: Ox1EADBEEF EXT: 1 LEN: § DATA: 0 1 2 34 56 7 T5: 259929

B Autoscroll MNewline w Clear output

Figure 3.27: Mini-SSS3 CAN message generation test

We can observe from Figure 3.28 that the messages transmitted on CAN Channel 1 are being

read by CAN Channel 2.

3.7.5 ATECC608B test

The following test case checks for proper connectivity between Teensy 4.0 and the ATECC608B
over 12C. The main processor tries to retrieve the serial number from the ATECC608B module.

Each ATECC608B module has a unique serial number.

#include <ArduinoECCXO08.h>
void setup () {
Serial.begin (9600);
while (!Serial);
if (!ECCX08.begin(0x60)) {
Serial.println ("No ECCX08 present!");

while (1);

else {

Serial.println ("Found ECCX08 at address 0x60");
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}

String serialNumber = ECCX08.serialNumber () ;
Serial.print ("ECCX08 Serial Number = ");
Serial.println (serialNumber) ;

Serial.println();

&) COM3 (Teensy) Serial — O X

| i Send

Found ECCE0E2 at address 0xe&0
ECCX08 Serial Number = 01234ESFS5936FF28EE

B Autoscroll Mewline v Clear output

Figure 3.28: ATECC608 get serial number test

3.7.6 Ethernet test

The primary functionality of the remote sensor simulator is to operate it remotely. The follow-
ing test focuses on the significant functionalities related to the Wiznet8501 Ethernet module on the

Mini-SSS3. The test initializes the Wiznet850i module and tries to assign an IP address through

DHCP.
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#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address for your controller below.
byte mac[] = { 0x00, OxAA, 0xBB, 0xCC, 0OxDE, 0x02 };
void setup () {
Ethernet.init (14); // 14 is the CS pin
// start the Ethernet connection:
Serial.println("Initialize Ethernet with DHCP:");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
if (Ethernet.hardwareStatus () == EthernetNoHardware) {

Serial.println ("Ethernet shield was not found. Sorry, can't run

— without hardware. :(");
} else if (Ethernet.linkStatus() == LinkOFF) {
Serial.println ("Ethernet cable is not connected.");

}

// no point in carrying on, so do nothing forevermore:
while (true) {

delay (1);

}

// print your local IP address:
Serial.print ("IP address: ");

Serial.println (Ethernet.locallIP());

void loop () {

}
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&) TeensyMonitor: COM12 Online — E x

|| Send
Initialize Ethernet with DHCP:

IF address: 192.165.137.114

B autoscrall [ Show timestamp |New|ine w i 115200 baud -~ Clear output
| = e

Figure 3.29: Mini-SSS3 Ethernet test
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3.8 Hardware Design and Testing Summary

Table 3.3: Hardware test case summary

Device Test Description Status Notes

PAC1934 voltage and power
monitor

verifies proper I2C connections

M It tsf PAC1934 Passed
easure voltage measurements from asse on the PAC1934

Modify wiper settings and observe change in output

MCP41HV51 Digital X . . verifies proper SPI connections
) voltage, connect/disconnect terminal settings and Passed
potentiometer . on the MCP41HV51
observe output behavior

Wiznet850io Ethernet Initialize Ethernet and obtain IP address Passed verifies proper SPI connections
module on the MCP41HV51
The CAN controller on the
MCP2562 CAN transceiver |Read and Write CAN messages on the CAN bus Passed Teensy was also tested as part
of this test

The PWM generation

Amplify signals from 3.3 to 5 volts for the generated functionality of the teensy was

OLV1471 Op-Amp . Passed .
PWM signals also tested as part of this test

case

ATECC608B HSM Initialize device on 12C and read device serial number [Passed
The Mini-SSS3 was designed as
a prototype board to test out

Heat and environmental Test the device functionality at various p i yp o

. s Not Tested [functional feasiblility and

extremes environmental situations )
hence this test was not
conducted

shock and vibration Test the device stability at sudden impacts Not Tested [same as above

There were a handfull of
prototype boards assembled
Test the device voltage protection systems Not Tested |and as this test has a chance of
burning out the PCB. The test
has been put on hold.

Reverse polarity and over
voltage

The following feature is not

PAC1934 voltage and power implemented in the current
) Measure current measurements from PAC1934 Not Tested .
monitor design but PAC1934 has the

ability to measure current

In this section the overall hardware requirements were gathered and the main hardware func-
tions of the Mini-SSS3 were designed. Further, individual components were tested to verify their

functionalities. The following section dives deep into the software design of the Mini-SSS3.
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Chapter 4

Software Design

4.1 Introduction

In this section, the software design of Mini-SSS3 is discussed in detail. Based on the functional
allocations from the system design chapter, the software requirements of Mini-SSS3 were gathered.
Further, depending on the requirements, the software design of Mini-SSS3 was formulated. A deep
dive into the requirements, API design, graphical user interface design, and the functional unit tests

are discussed in detail.

4.2 Requirements

The primary software requirements for the system are enumerated below:

1. The system should provide an API to control and configure all the hardware peripherals such

as the PWM, Digital Potentiometers, CAN message generation.

2. The system should provide a graphical user interface for users to interact with the device and

modify various parameters related to the hardware peripherals

3. The system should provide digital feedback allowing users to look at the changes that take

place in real-time.

4.3 API Design

The earlier version, i.e., the smart sensor simulator, could only be operated through serial
commands, which are not always user-friendly. The Mini-SSS3, with the option to connect to an
Ethernet port, opens up multiple ways to communicate with it. An HTTP API lets users control
the different peripherals on the Mini-SSS3 programmatically. The HTTP API is a protocol that

describes how a client can access information from a server. It works as a request-response protocol
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between a client and a server. The HTTP API also allows us to build a web interface to control
the different functionalities of the Mini-SSS3. The web interface also eliminates the overhead of
installing additional drivers or software, which was required earlier. An Arduino library called
aWOT [35] [39] that provides essential web application features on memory-constrained micro-
controllers, is used in designing the HTTP APL.

Multiple API endpoints were set up for each peripheral of Mini-SSS3 to let clients communi-

cate, get status and also update parameters.

1. <ip-address-of-Mini-SSS3>/pots

2. <ip-address-of-Mini-SSS3>/pwm

3. <ip-address-of-Mini-SSS3>/can

4. <ip-address-of-Mini-SSS3>/cangen

5. <ip-address-of-Mini-SSS3>/voltage
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is a valid request

PWM
Check request type
L i v
Process PWM Process CAN
request. request Process Pots request.

End

Figure 4.1: Mini-SSS3 HTTP API flow diagram

The above flowchart explains how an HTTP request is processed. message received from the
client is in the form of a JSON message. The following checks are performed to ensure its a valid

request.
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Check for Valid JSON structure

Check for required key value pairs

Check if the values are within limits

Check if the value is different from the current setting on the local device
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4.3.1

PWM process flow

is a valid request

if change in Duty Cycle
value

if change in Frequency
value

if change in Switch value

.

‘;/’ 400 Bad Request )

Change Duty Cycle

and update local
device value

Change Frequency
and update local
device value

Change switch
value and update
local device value

Figure 4.2: PWM process flow diagram
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If the JSON message is valid, then it is further processed and goes to the next step. Otherwise,
it reports a 400 bad request status to the client. The validation process checks for the following

conditions:

Check for valid JSON structure

Check for required key value pairs

Check if the values are within limits

Check if the value is different from the current setting on the device

If the current and received values are different for the duty cycle, the system updates the duty
cycle value in the global variable and then modifies it on the hardware by calling the analogWrite
function for the specific pin. Similarly, if the frequency value is changed the system updates
the frequency value in the global variable and modifies the frequency on the hardware by calling
the analogWriteFrequency() function. The analogWriteFrequency() makes it easy to use as the
function calculates and sets the prescaler and divisor for the timer related to the specific pin. The
switch enables the user to globally enable/disable the PWM signal that is being generated on a
particular pin. Once each of the following conditions are met and the values are successfully

modified the system responds to the client with a 200 OK status message.
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4.3.2 Potentiometers process flow

Mo I/'
if a valid request ‘;.\ 400 Bad Request )

Update Wiper Position on
MCPHV51 and —
local device value

if change in
Wiper Position

Update TCOMN register on
MCPHVY51 and |
local device value

if change in
Terminal Connection

Figure 4.3: Potentiometers process flow diagram

Figure 4.3 contains the flow diagram of how an HTTP POST request to control the digital
potentiometer is processed. Similar to the PWM process flow the JSON message is first validate

and only if its a valid message it proceeds to the next step, Otherwise, it reports a 400 Bad Request
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status to the client. The system then updates the current values both on the hardware and software
levels for each of the Wiper Position, TCON registers and responds with a 200 OK status message

to the client.
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4.3.3 CAN Message generation process flow

Thread ID = 3

Thread ID = 2

Thread ID =1

Thread Label = "Thread Name”
stop_after_count: 10

if enabled

t_count =0

if D¢_count ==

b_couni++

A

No

Y

stop_after_count

if elapsed_time == period

Send CAMN Message

A 4

enabled = Falze

ealpsad time is incremented
based on hardware
timers for accuracy
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Figure 4.4: CAN generation flow diagram




Figure 4.4 contains the software flow of how the CAN messages are generated on the Mini-
SSS3. A thread based logic is implemented to better handle timing in generation of these messages.

Each CAN message thread has the following parameters that the user can modify.

1. CAN Message ID - It specifies the CAN message identifier.

2. DLC - It specfies the length of the CAN message field.

3. B0O-B7 - it specifies the data fields of the 8 byte CAN message.

4. Stop_after_count - The CAN message thread is disabled after the transmission count(tx_count)

has reached the specified stop_after_count value.

5. TX Count - It specifies the current status of the number of message transmitted. this is not a

user modifiable field.

6. Period - It specifies the time delay between consecutive CAN messages.

7. Channel - It specifies the CAN channel on which the message has to be transmitted.

8. enabled - It specifies if the thread is currently enabled. Thread Label - It specifies the thread

name for each CAN message thread.

When initialized all the thread as running in idle. The actual logic of sending the message is only
entered when the enabled variable is set to True. After the thread is enabled the tx_count variable
is initialized to zero. The tx_count is incremented every time a CAN message is sent. A while
loop constantly compares the tx_count reaches stop_after_count value the enabled variable is set
to false and the thread is in idling mode.

When a HTTP POST request to control the digital potentiometer is processed. Similar to the
PWM process flow the JSON message is first validate and only if its a valid message it proceeds to
the next step. Otherwise, it reports a 400 Bad Request status to the client. The system then updates
the current values both on the hardware and software levels for each of the Wiper Position, TCON

registers and responds with a 200 OK status message to the client.
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4.4 Graphical User Interface (GUI)

A react-based web page was designed to give users an interface to operate the Mini-SSS3. The
React framework was developed by facebook as a single page application (SPA) to enable dynamic
webpages running JavaScript. The aWOT Arduino library [39] also enables us to host react-based
web pages from memory-constrained devices. The library is compatible with most Arduino-based
microcontrollers. The GUI is split into multiple tabs each one for a separate peripheral of the Mini-
SSS3. The following sections talk about the graphical user interface for each of the peripherals of

the Mini-SSS3.

4.4.1 Digital Potentiometers

The GUI for the Digital Potentiometers is shown in Figure 4.5. The GUI offers the option to
change the wiper value and also control the terminal switches on the MCP41HVS51 as shown in
Figures 2.1 and 2.2. The readings from the PAC1934 [23] is periodically queried using the HTTP
API and relayed on the GUI as shown in the blue box adjacent to the green "Apply" button in
Figure 4.5. The data from PAC1934 gives users real-time feedback about the actual voltage on the

24-pin Molex connector.
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(A 5553 X +

& C A Notsecure | 192.168.137.39

ii Apps W Bookmarks [l MATLAB Unit Testing [l Matiab&Word [l MLand Al [l Excel VBA [ Other bookmarks Reading list

Key Switch
Off . On
CAN MESSAG
PWIM POTENTIOMETER CAN gé;wéﬁl CEE
Wiper Value
Pot1 21 0.538574 V
test_child 21
Wiper Value
Potz W | 56 1.191895 V
test_child 56
Wiper Value
Pot3 W | 56 1197754 v
test_child 56
Wiper Value
Pot4 ) 255 4.867676 V

test_child 255

Figure 4.5: Digital Potentiometer GUI

4.4.2 Pulse width Modulation

The PWM tab allows users to modify the duty cycle and frequency for all the available pins, as
shown in Figure 4.6. Each PWM pin also has a toggle switch that allows users to enable/disable the

pin globally. The apply button then sends out an HTTP Post request to pwm enpoint the Mini-SSS3
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X
C A Not 192.168.137.39
fif Apps W Bookmarks [ MATLAB Unit Testing [l MatabZWord [l MLand Al | Excel VBA » | [ Other bookmarks Reading list
Key Switch
off @) On
VUM OTENTIOMETER A
PWN POTENTIOMETER CAN GENERATOR
Duty Cycle Frequency
PWM1 @@ | 500 245 APPLY
Freguency
PwM2 @@ 245 APPLY
Freguency
PWM3 @@ 200 APPLY
Freguency
PWMs @@ 200 APPLY
Freguency
PWM5 331 APPLY
test_child
Duty Cycle Frequency
PWM6 50 331 APPLY
test_child 50 test_child

Figure 4.6: PWM GUI

4.4.3 CAN message viewer

The CAN viewer tab shows the current running messages on the CAN bus. It gives out a
summary of all the unique messages filtered by CAN message identifier. Figure 4.7 shows the GUI
for the CAN viewer tab.
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< C A Notsecure | 192.168.137.242
i Apps % Bookmarks [l MATLAB Unit Testing [ Matiab8Word [l MLand Al | Excel VBA || Essp8266 & 10T » | [ Other bookmarks Reading list
& Smart Sensor Simulator 3
Key Switch
off @@ on
PWM POTENTIOMETER CAN CAN MESSAGE GENERATOR
CAN ID Count Length BO Bl B2 B3 B4 BS Bé B7
gfedelb 1318 8 00 00 00 00 00 0o 00 00
18f0010b 258 8 CF FF FO FF FF poc FF FF
18febfob 256 8 00 00 7D 7D 7D 7D FF FF
18fecalb 3 8 04 FF 00 00 00 0o FF FF
18ecffob 25 8 20 12 00 03 FF CA FE 00
18ebffob 72 8 01 04 FF 73 02 04 7F 73

Figure 4.7: CAN viewer GUI

4.4.4 CAN Message Generator

The CAN Message generation tab is shown in Figure 4.8. This tab contains a table with dif-
ferent messages that can be transmitted from the Mini-SSS3. Each row in the table is a CAN
message thread that is responsible for generating CAN messages. Each CAN message thread has

the following prarameters that the user can modify.
1. CAN Message ID
2. DLC - It specfies the length of the CAN message field

3. BO-B7 - it specifies the data fields of the 8 byte CAN message
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N

. Stop_after_count - The CAN message thread is disabled after the transmission count(tx_count)

has reached the specified stop_after_count value.

5. TX Count - It specifies the current status of the number of message transmitted. (this is not

a user modifiable field)

6. Period - It specifies the time delay between consecutive CAN messages

Y

. Channel - It specifies the CAN channel on which the message has to be transmitted.

[0¢]

. enabled - It specifies if the thread is currently enabled Thread Label - It specifies the thread

name for each CAN message thread.

Users have the option to edit the CAN message thread parameters as mentioned above.

< X @ M Notsecure | 10253231242 . ~N B B & © gl @ @
[ Bookmarks [ Light [3 10.253.231241/mjp.. [ MATLAB UnitTesting [l MatiabdtWord {ll MLand Al il ExcelVBA il Essp82668.10T il CSUResources il Crypto il Roboholics gannaramu (Ram R...  in (5) Ram Rohit Gann... [ Settings [3 Printer > | Ml Other favorites.
Smart Sensor Simulator 3
Key Switch
off @@ on
PWM POTENTIOMETER CAN CAN MESSAGE GENERATOR
Thread enabled  Thread Label num_messa Index TX Count cycle_count Channel Period txdelay  stopafterc.  extended CANID bLe '
1 DDEC MCM 01 1 0 10 0 2 10 0 0 true 8FF0001 8
2 DDEC TCM 01 1 0 10 0 2 10 0 0 true CF00203 8
3 DDEC TCM 02 1 o 10 0 2 10 0 0 true 8FF0303 8
4 DDEC TCM 03 1 0 1 0 2 100 0 0 tue 18F00503 8
5 HRW from Brake Controller 1 0 5 0 0 20 0 0 true CFE6EOB 8
6 EBC1 from Cab Controller 1 0 1 0 0 100 0 0 tue 18F00131 8
7 EBC1 from Brake Controller 1 0 1 0 0 100 0 0 true 18F0010B 8
8 CCVS1 from Instrument Cluster 1 0 1 0 0 100 0 0 tue 18FEF117 8
9 CCVS1 from Cab Display 1 1 0 1 0 0 100 0 0 e 18FEF128 8
10 X CCVs1 from Body Controller 1 0 1 0 0 100 0 0 true 18FEF121 8
1 CCVS1 from Cab Controller 1 0 1 0 0 100 0 0 true 18FEF131 8
12 CM1 from Instrument Cluster 1 0 1 0 0 100 0 0 tue 18E00017 8
13 CM1 from Climate Control 1 1 o 1 0 0 100 0 0 true 18E00019 8
14 CM1 from Body Controller 1 0 1 0 0 100 0 0 tue 18E00021 8
15 3 CM1 from Cab Display 1 0 1 0 0 100 0 0 true 18E00028 8
16 CM1 from Cab Controller 1 0 1 0 0 100 0 0 tue 18E00031 8
17 PTO from Instrument Cluster 1 0 1 0 0 100 0 0 tue 18FEFO17 8
18 X PTO from Body Controller 1 0 1 0 0 100 0 0 true 18FEF021 8
19 PTO from Cab Display 1 0 1 0 0 100 0 0 true 18FEF028 8 -
,
Rows per page: 100 v 1-260f 26

Figure 4.8: CAN message generator GUI
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4.5 Functional Unit Tests

The HTTP application programming interface is a main way the GUI gets information from

the Mini-SSS3. The following tests were performed using the requests library in Python 3.9.

4.5.1 GET method tests
/pwm

The following python code is used to test the response from the HTTP GET method for the
pwm endpoint. We can observe from the output below, that pwm endpoint returns a json document

enumerating different PWM parameters such as the duty cycle, frequency and switch values.

import requests
url = 'http://192.168.137.119/pwm'
x = requests.get (url)

print (x.text)

Output
{
"o": |
"duty": {"value": 500},
"freq": {"value": 300},
"sw": {"value": 1}
s
"1t |
"duty": {"value": 1000},
"freq": {"value": 245},
"sw": {"value": 1}
b
}
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/pots

The following python code is used to test the response from the HTTP GET method for the
potentiometer endpoint(/pots). We can observe from the output below, that pots endpoint returns a
json document enumerating different parameters such as the wiper position and terminal connec-

tions on the MCP41HV51 (TCON registers). The output is truncated for readability.

import requests
url = 'http://192.168.137.119/pots"

X = requests.get (url)

print (x.text)

Output:
{
"o": {
"wiper": {
"value": 21
by
"TCON": {
"value": 7,
"meta": "TBD"
}
by
"1t
"wiper": {
"value": 56
Hy
"TCON": {
"value": 7,
"meta": "TBD"
}
b
}
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/voltage

import requests
url = 'http://192.168.137.119/voltage’

x = requests.get (url)

print (x.text)

The following Python code is used to test the response from the HTTP GET method for the
voltage endpoint (/volts). This endpoint is constantly queried by the webpage to get real-time
voltage information. From the output below, we can observe that the voltage endpoint returns a
JSON document enumerating different channels on the PAC1934, and each channel has the voltage
and current information provided by the PAC1934. Current flow can be extracted from PAC1934
but is not currently implemented, but the API has a place holder for future versions.

Output:

"0": {

"voltage":

"current":

by
"1": {

"voltage":

"current":

by
"2": {

"voltage":

"current":

by
"3": {

"voltage":

"current":

0.537109,
-1

1.183105,
-1

1.183105,
-1

4.86377,
-1
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/can

The following Python code is used to test the response from the HTTP GET method for the
CAN endpoint (/can). This endpoint is also constantly queried by the webpage to get a summary
of the message that are currently running on the CAN bus. From the output below, we can observe
that the CAN endpoint returns a JSON document enumerating different CAN IDs and the count of
messages with the same message ID and also the last received data packet information. This API

endpoint only provides the users with the type of message ID’s running on the CAN bus.

import requests
url = 'http://192.168.137.119/can'
x = requests.get (url)

print (x.text)

Output:

"8feb6elOb": {

"count": 317,

"LEN": 8,

"ID": "8fe6elOb",

"DATA": [ "OO","OO","OO","OO","™OO","00O","00","00"]
bo
"18£0010b": {

"count": 64,
"LEN": 8,
"ID": "18f0010b",

"DATA": ["CF",llFF","FO","FF","FF","DC","FF","FF"]
by
"18febfOb": {

"count": 64,
"LEN": 8,
"ID": "18febfOb",

IIDATA": ["OO", "OO", "7D", "7DH, "7D", "7D", "FF", "FF"]
by
"18fecalb": {
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"count": 3,

"LEN": 8,
"ID": "18fecalb",
IIDATA": ["04", "FF", "OO", IIOO", HOO", "OO", IIFF", "FF"]

o

/cangen

The following Python code is used to test the response from the HTTP GET method for the
CAN message generator endpoint (/cangen). This endpoint is queried by the webpage to get a
summary of the CAN threads that are currently running on the Mini-SSS3. From the output below,
we can observe that the cangen endpoint returns a JSON document enumerating different message

thread ID’s along with all the thread parameters. The output is truncated for readability.

import requests
url = 'http://192.168.137.119/cangen’'
X = requests.get (url)

print (x.text)

Output:

"00": {
"ThreadName": "CI from SSS2",
"ThreadID": O,
"enabled": false,
"num_messages": 6,

"message_index": O,

"transmit_number": 6,
"cycle_count": O,
"channel": O,

"tx_period": 1,
"tx_delay": O,

"stop_after_count": ¢,
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"extended": true,
"ID": "18ECFFFA",

"DLC": 8,
"DATA": [
"20",
"1d",
non,
ngn
"EEN,
"eb",
"fe",

"O"

by
"01": {
"ThreadName" :

o

}

"CI from SSs2",
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4.5.2 POST method tests
/pwm

The following Python code is used to test the functioning of the HTTP POST method for the
PWM endpoint (/pwm). A json payload similar to the one received during a HTTP GET message
with the desire frequency and duty cycle values are sent to the Mini-SSS3. The Mini-SSS3 then
processes that request and responds back with the current state of the all PWM channels. Output

on the serial monitor of the Mini-SSS3 is shown in Figure 4.9.

import requests
import json
url = "http://192.168.137.119/pwm"
payload = json.dumps ({
"O": |
"duty": {"value": 500},

"freg": {"value": 300},

"sw": {"value": 1}
}
1)
headers = { 'Content-Type': 'application/json' }
response = requests.request ("POST", url, headers=headers, data=payload)

print (response.text)
>>>
{
"0": |
"duty": {
"value": 500
by
"freg": {

"value": 300
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by
"SW": {

"value": 1

by

nyn. {_'.},

TERMINAL

> BExecuting task: C:\Users\ganna\.platformio\penv\Scripts\platformio.exe device monitor <

--- Available filters and text transformations: colorize, debug, default, direct, hexlify, log2file, nocentrol, printable, send_on _enter, time
-— More details at https://bit.ly/pio-monitor-filters

--- Miniterm on COM3 200,8,N,1 ——-

-— Quit: Ctrl4C | Menu: Ctrl+T | Help: Ctrl+T followed by CtrlsH ———

1
¥
}Got POST Request for PWM: Entered update PWM function with idx: @, duty: 568, freq: 388:

Figure 4.9: POST request serial monitor output

/pots

The following Python code is used to test the functioning of the HTTP POST method for the
Potentiometer endpoint (/pots). A JSON payload similar to the one received during a HTTP GET
message with the desire wiper position and terminal connection values are sent to the Mini-SSS3.
The Mini-SSS3 then processes that request and responds back with the current state of the all

Potentiometer channels.

import requests
import Jjson

url = "http://192.168.137.119/pots"
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payload = json.dumps ({
"O": {
"wiper": {"value": 22},

"TCON": {"value": 7},

})
headers = { '"Content-Type': 'application/Jjson' }

response = requests.request ("POST", url, headers=headers, data=payload)

print (response.text)

>>>
{
"0": |
"wiper": {
"value": 22
by
"TCON": {
"value": 7

by

UL {.'.},

4.6 Conclusion
In this section the overall software requirements were gathered and the main software functions
of the Mini-SSS3 such as, the API and GUI were designed. Further, these software components

were tested to verify their functionalities. The following section discusses in detail about securing

the cloud based communication.
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Chapter 5

Securing Cloud and External Communication

5.1 Introduction

Around 21 Billion smart IoT devices are expected to be in the market by the end of 2020, [40]
and a lot of these devices are vulnerable to security attacks and tend to be the weakest point in
any network. A robust 0T security mechanism allows designers to protect devices from all types
of vulnerabilities while deploying the product to production. Implementing cryptography adds
overhead on both execution time and energy consumption and is usually costly to implement, as not
everyone is skilled to implement them on constrained embedded devices. This section describes
the use of Microchip’s ATECC608B security module to store private keys and establish a TLS
connection to a server. Often, building and maintaining your server infrastructure could be complex
and time-consuming. Therefore, third-party cloud providers offer ready-to-go infrastructure at
affordable prices. For this thesis, Amazon Web Services (AWS) enables remote connectivity on
the Mini-SSS3. AWS IoT Core is a cloud service to enable connected devices to communicate with
cloud applications and other devices. Amazon [oT Core is capable of handling billions of devices
and trillions of communications reliably and securely, routing them to AWS endpoints and other
devices. AWS IoT Core requires devices to use X.509 certificates with TLS for authentication.

More information about the certificates and the TLS is discussed in the following sections.

5.2 Transport Layer Security 1.2 (TLS)

The TLS encryption protocol was designed to help protect Internet communication from eaves-
dropping. Starting a communication session using TLS encryption is called a TLS handshake.
During a TLS handshake, the client and the server exchange messages to verify each other, decide

on an encryption algorithm, acknowledge each other, and agree on the session keys. TLS hand-
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shakes are also an integral and foundational part of how HTTPS works. The broad steps involved

during a TLS handshake are listed below:

 amazon
1 webservices™

0ms

e I
TLS Handshake
i e —— Server Hello
( Client Hello ) Bome b o Lo oWl
Server Hello Done
[ Client Key EXGhEng] .......... T_________ .................... 120ms
! Key Generation 150ms .. (W) .( Key Generation )
Cipher Exchange e ———
[ Finished ] i ——| K
_______________________________________________________ Cipher Exchange
o [ Finished

Figure 5.1: TLS Handshake

1. Client hello: A hello message is sent by the client with the protocol version, the client

random, along with the list of cipher suites.

2. Server hello: Then server replies with the server random, SSL certificate, and the selected

cipher suite.

3. Server’s digital signature: In this, the private key is used by the server to encrypt the server

random, its DH parameter* and client random. The function of this encrypted data is to work
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as the server’s digital signature for establishing that the particular server has a private key

that matches with the public key from the SSL certificate.

4. Digital signature confirmed: The client then decrypts the server’s digital signature with the

help of the public key and verify that the server controls the private key.
5. Client DH parameter: The DH parameter is sent by the client to the server.

6. Client and server calculate the premaster secret: The client and server use the DH parameters
they exchanged to calculate a matching premaster secret separately, instead of the client

generating the premaster secret and then sending it to the server.

7. Session keys created: The client and server calculate session keys from the premaster secret,

client random, and server random.

8. Client and Server are now set up to use symmetric encryption.

5.2.1 ECDSA sign and verify test

The following test is to validate the Elliptic Curve Digital Signature Algorithm on the Mi-
crochip’s ATECC608B chip. To truly validate the functionality, the logic has been tested over two
separate Teensy 4.0 devices with different ATECC608B chips. Device A signs a message with the
private key stored on the ATECC608B chip and then sends the public key (corresponding to the
private key used to sign the message), signature, and the message to the other device. Device B
then uses that information to verify the signature with the public key and the message to validate

that the message was actually sent from device A.
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Device A code:

#include <ArduinoECCX08.h>
byte signature[64];
byte message[32] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,0x08, 0x09,
0x0A, 0xOB, 0Ox0C, 0Ox0D, O0xOE, OxOF,0x10, Ox11, O0Ox12, 0x13,
Ox14, Ox15, Oxle6, Ox17, 0x18, 0x19, O0OxlAa, Ox1B, Ox1C, O0x1D,
O0x1E, Ox1F
bi
byte publicKey[64];
void setup ()
{
Serial.begin (9600);
while (!Serial);
ECCX08.begin () ;
String serialNumber = ECCX08.serialNumber () ;
Serial.print ("ECCX08 Serial Number = ");

Serial.println (serialNumber) ;

ECCX08.ecSign (0, message, signature);
ECCX08.generatePublicKey (0, publicKey);
printMessage () ;

printPublicKey () ;

printSignature();
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1 &) COM3 (Teensy) Serial

Send

byte message[32]
0x00, 0x01, 0x02,
Ox10, 0xll1l, 0x12,
N

byte publicEey[64] = {
0x92, 0x59, OxFE, 0x€9,
0x01, 0xCl, 0xF9, OxlE,
0x82, 0x93, 0x0A, 0x9D,
0xFD, 0x40, 0x9E, 0=x40,
IH

byte signature[£4]
0x3E, 0xB2, 0x5C,
Ox14, 0x52, Ox7B,
0x8B, 0x9D, 0x0C,
0x83, 0x82, 0x95,
IH

{
0x03,
0x13,

0x04,
oxld,

0xED,
0xF5,
0x13,
0x75,

{

0xE7,
0x0D,
0x689,
0xBB,

0x7R,
0x36,
0x40,
0x95,

ECCE0& Serial Number = 01234E5F5936FF28EE

0x05,
0x15,

0x69,
0x0B,
0xAE,
0x6B,

0x1R,
0XED,
0x10,
0x03,

0x086,
0xle,

0x07,
0xl7,

0x08,
0xlsg,

0x089,
oxls,

0x0R,
0x1R,

0x0B,
0x1B,

0x0C,
oxlc,

0x0E,
0x1E,

0x0F,
0xlF,

oxez,
0xD3,
0x27,
0xls,

0x05,
0x37,
0x3E,
0xF2,

0xEB,
0x33,
0xB9,
0x28,

0x3c,
0xEF,
0x986,
0x35,

0xCR,
0xES,
0x3E,
0x5C,

0x40,
0XCE,
0xD7,
0x5F,

0x09,
0xE7,
0x82,
0x4D,

0x4D,
0x33,
0xD7,
0x51,

0xAS,
0xCé,
0xET7,
0x2D

0xZE,
0xD7,
0x8D,
0x7E,

0xe7,
0xBO,
0xC3,
0x3l1,

0xF7,
0X7TB,
0x5B,
0x24,

0x37,
OxRd,
0x9E,
0xlé,

0x30,
0x60,
0x83,
0xED,

0X6R,
0x7TF,
0x07,
0x98,

0x2F,
0XFO,
0x2F,
0xlé,

0xES,
0XEF,
0x635,
0x9E,

0x70,
0x30,
0xF0,
0xC3

0x55,
0xB4,

B 2utoscroll

-

MNewline Clear output

w

Figure 5.2: ECDSA signature output

The message, signature, and public key from the output of device A are then passed on to the

code of Device B to verify. We can clearly distinguish both the outputs have different ATECC

serial numbers.

Device B code:

byte message[32] = {
0x00, 0x01, 0x02, 0x03,
0x0B, 0x0C, 0x0D, OxO0OE,
0xl6, 0x17,0x18, 0x19,
Vi

byte publicKey[64] = {
0x98, 0x59, OxFE, 0x69,
0x40, 0x09, 0xC5, 0x4D,
0xD3, 0x37, 0x33, O0x8F,

#include <ArduinoECCX08.h>

0x04, 0x05, 0x06, 0x07,0x08, 0x09, 0xO0A,

0x0F,0x10, Ox11, 0Ox12, 0x13, 0x14, O0x15,

Oxla, Ox1B, 0Ox1C, 0Ox1D,0x1E, OxlF,

0x8D, 0x69, 0x82, 0x05, OxEB, 0x3C, 0xCA,
OxA5, 0x01, 0xCl, OxF9, OxlE, OxF5, 0x0B,
OxE5, 0xCE, OxE7, 0x24, 0x83, 0xCo6, 0x82,
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0x93, 0x0A, 0x9D, 0x13, OxAE, 0x27, 0x3B, 0xB9, 0x96, O0Ox3E,

0x82, 0xOF, 0xD7, OxE7, OxFD, 0x40, O0x9E, 0x40, 0x75, 0x6B,

Oxr2, 0x28, 0x35, 0x5C, O0x5F, 0x4D, 0x84, 0x51, 0x2D

}i

byte signature[64] = {

0x8E, 0xB2, 0x5C, OxE7, 0x7A, OxlA, 0x2B, 0x87, O0xF7, 0x37,

Ox6A, Ox2F, 0xA9, OxE5, 0x70, 0x14, 0x52, 0x7B, 0x0D, O0x36,

0xD7, 0xBO, 0x7B, 0xA4, 0x60, O0Ox7F, 0OxFO, 0xB9, OxEF, 0x30,

0x9D, 0x0C, 0x69, 0x40, 0x10, 0x8D, 0xC3, 0x5B, 0x9E, 0x83,

0x2F, 0x55, Ox65, OxFO, 0x83, 0x82, 0x95, 0xBB, 0x95, 0x03,

0x31, 0x24, 0x16, OxED, 0x98, 0x16, O0xB4, 0x9E, O0xC3

}i

void setup ()

{

Serial.begin (9600);

while (!Serial);

ECCX08.begin (0x35);

String serialNumber = ECCX08.serialNumber () ;
Serial.print ("ECCX08 Serial Number = ");
Serial.println (serialNumber) ;

if (ECCX08.ecdsaVerify (message, signature, publicKey))

{

Serial.println("Signature Verified");

else

Serial.println("Signature Failed");
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&) COM13 (Teensy) Serial — O b4
| Send
ECCE0S Serial Number = 0123545C3F06B4A301

Signature Verified

B sutoscrall Mewline w Clear output

Figure 5.3: ECDSA verify output

X.509 Certificates

An X.509 certificate document is used to prove ownership of a public key. To generate a new
X.5009 certificate, the program needs to create a certificate signing request (CSR) and provide it to
a certificate authority (CA). The CSR is a digital document that contains the public key and other
identifying information. The CA validates the identifying information, and once the identity has
been verified, the CA creates a certificate and signs it with a private key. Anyone can now validate
the certificate by checking its digital signature with the CA’s public key. [41]

AWS 10T provides three different options to create a new certificate. The easiest option is to use
one-click generation. Here, AWS will create a public and private key and create a new certificate

signed by the AWS IoT CA. The second option is to provide an own CSR. This gives the advantage
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of not sharing the private key. The new certificate generated from the CSR is then signed by the
AWS IoT CA. The final option is to bring your own certificate signed by your own trusted CA.

A CSR is generated for the public key, which is generated from the private key stored in the
ATECC608B chip during the initial provisioning process. This CSR is provided to AWS 10T,
which then provides us with a signed X.509 certificate. This process makes sure that the private
key has not been compromised even during the provisioning process. The Figure 5.4 shows how a

new X.509 certificate is generated from a CSR by AWS IoT.
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-
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s

Device Certificate

Figure 5.4: AWS Certificate Registration

ATECC608B CSR generation test

Generating a certificate signing request (CSR) is a crucial step in the provisioning process. A
modified version of the ArduinoECCXO08 library [42] was used to interface the ATECC608B chip
with Teensy 4.0. The ATECC608 chip communicates with the Teensy over I12C at address 0x60.
The following test generates a CSR based on the information about the device (e.g. common name,

organization, country), which is then used by the certificate authority (CA) to create a signed X.509
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certificate. The certificate also contains the public key and a signature generated from the private

key.

#include <ArduinoECCX08.h>

#include <utility/ECCX08CSR.h>

void setup () {
Serial.begin(9600);
while (!Serial);
ECCX08.begin (0x60) ;
String serialNumber = ECCX08.serialNumber ();
Serial.print ("ECCX08 Serial Number = ");
Serial.println (serialNumber) ;
Serial.println();
ECCX08CSR.begin (0, 0);
ECCX08CSR.setCountryName ("US") ;
ECCX08CSR.setStateProvinceName ("CO") ;
ECCX08CSR.setLocalityName ("Fort Collins");
ECCX08CSR.setOrganizationName ("CSU") ;
ECCX08CSR.setOrganizationalUnitName ("SystemCyber") ;
ECCX08CSR.setCommonName (serialNumber.c_str());
String csr = ECCXO08CSR.end();
Serial.println("Here's your CSR, enjoy!");
Serial.println(csr);

}
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Figure 5.5: Certificate signing request test

5.3 Implementation

Multiple open-source implementations of SSL/TLS protocol (RFC 5246) [43] are available
which help secure the communication over the Internet. BearSSL was one such implementation
that was focused on implementing SSL/TLS protocol on embedded devices. ArduinoBearSSL a
port of BearSSL for Arduino compatible platforms was used in this project. Initially, during the
provisioning process, each device generates a CSR from the private key which is locked in the
ATECC608B chip. The CSR is then registered with the AWS IOT and AWS returns a signed
X.509 certificate. This certificate is then stored on to the device. The signed X.509 certificate is
used to establish TLS communication with AWS.

It is possible for devices to communicate with AWS IoT Core via HTTP, WebSockets, and
MQTT. In the current implementation, the Mini-SSS3 communicates with AWS IoT core using
the MQTT protocol. MQTT (Message Queuing Telemetry Transport) is an extremely lightweight

M?2M (machine-to-machine) connection protocol that provides a messaging subscription and pub-
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lish transport. To enable access to the device remotely, a similar react webpage as shown in Section

4.4 is implemented on the AWS side.

User login

When the user first enters the webpage [44] a login screen is presented to the user providing a
username and password dialog boxes as show in Figure 5.6. New users can also sign up on this
webpage and requires approval by an administrator. An email verification process is implemented
to prevent the system from becoming overloaded with invalid email addresses. On completion of
account registration and approval from an administrator, the new user is added to the AWS User

Pool and is granted access to the web interface to control the Mini-SSS3.

Sign in to your account
Username *

Enter YOur username
Password *

Enter your password

Forgot your password?

Figure 5.6: AWS user login screen
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Create a new account

Usermname *

Usemame

Password *

Fassword

Email Address *

Email

Phone Number *

Figure 5.7: AWS user signup

Once the user login’s using their username and password, they are authenticated with the AWS
user pool, which then returns accessKeyID, session, and secretAccessKey tokens. These tokens
are then used to determine which user has access to a particular AWS-IOT (Mini-SSS3) device.
The login procedure is implemented in accordance with AWS recommended practices [45]. The
webpage to access the Mini-SSS3 is remotely hosted on AWS Amplify, a serverless architecture
that enables faster deployments for both front-end and back-end applications. The user interface
is similar to that shown in Section4.4. The main difference is how it retrieves information from
the device. The Mini-SSS3 and the webpage are subscribed to a common MQTT topic, and they
share information on that topic. Any change in parameters on the webpage is communicated to the
device, and similarly, the device updates its state to the webpage over the common MQTT topic

they are subscribed to.
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Figure 5.8: Access control with AWS Cognito user pool

5.4 Cloud Communications Summary

In this Section, the technicalities about securing the cloud-based communication over TLS uti-
lizing hardware security modules were discussed. Further, buffer length, and a few function proto-
types were modified in the Wire library, [46] which is responsible for handling the 12C communi-
cation of the Teensy 4.0 for compatibility with the AurdinoECCXO08 library for ATECC608 [42],

The following Section gives us a brief conclusion of the thesis and the significant contributions

and limitations.

98




Chapter 6

Conclusion

The Mini-SSS3 was designed following the SAE J3061 guidebook and the following are the

major contributions in this thesis:

1. An approach that utilizes hardware security modules to increase the security posture of the
embedded 10T devices was presented. This approach can be implemented for various other
IoT applications. During the entire process of provisioning, the private keys are never ex-

posed and are only accessible to the functions within the hardware security module.

2. A new hardware sensor simulator Mini-SSS3 was designed with improvements over earlier
generation devices. As part of the new design, a voltage feedback loop was added to provide
users with the actual state of the device. Also, an Ethernet module was added to offer remote

operability.

3. A graphical user interface based on the React framework was designed which is served di-

rectly from the device’s firmware without having to install any additional software or drivers.

4. The Mini-SSS3 offers secure remote connection to third-party cloud service providers over

TLS utilizing the hardware security module for secure key storage.

6.1 Limitations and Future work

The Secure Ethernet-based connection enables the Mini-SSS3 to be utilized in advanced re-
search concepts like the software-defined truck, which can accelerate system-level testing for heavy
vehicle cybersecurity research. Microchip’s ATECC608B-TNGTLS variant is a pre-provisioned
variant of the ATECC608B. The device comes pre-configured and pre-provisioned with default

thumbprint certificates which can be used to make a connection to AWS IOT, Azure, and Google
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cloud. Implementing them in the design can eliminate the steps of provisioning the device which
could be a great relief when deploying such devices at a large scale.

The current HTTP API is insecure and vulnerable an HTTPS version needs to be implemented
which can make the device standalone and serve secure web pages. A single Mini-SSS3 may not
be able to make a fault-free environment for all ECUs and might require multiple devices. Any

utilization of the Mini-SSS3 for forensic or investigative work is done at the risk of the user.
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