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ABSTRACT 
 
 

ACUTE BEET JUICE INGESTION IMPROVES ESTIMATES OF INSULIN 

SENSITIVITY IN OBESE ADULTS 

 
Poor glucose regulation is strongly associated with low nitric oxide (NO) 

bioavailability; a characteristic that may be improved with stimulation of NO generating 

pathways.  For example, endothelial nitric oxide synthase null mice demonstrate 

improved glucose metabolism following sodium nitrate ingestion.  Dietary nitrates are 

sequentially reduced in the oral and gastric cavities to NO, a process that is attenuated 

by rinsing with an antibacterial mouthwash.  We hypothesized that acute dietary nitrate 

consumption will improve glucose tolerance.  9 sedentary, healthy, obese adults (2 

male; body mass index: 33.7 ± 4.0 kg/m2: age: 45±7 years; mean ± SE) were studied.  

Using a randomized crossover design, four oral glucose tolerance tests were performed 

(equal carbohydrate load).  To assess the influence of dietary nitrate, subjects 

consumed either 500mL of beet juice + 25g glucose, or 500mL of water + 75g glucose, 

with and without prior antibacterial mouthwash use.  Beet juice was selected because it 

is rich in nitrate.  Venous blood samples were collected for the determination of glucose 

and insulin concentrations.  Neither the circulating glucose nor insulin responses were 

influenced by beet juice and/or mouthwash (P>0.05).  However, the Matsuda Index, an 

estimate of insulin sensitivity, was greater for beet juice compared with beet juice 

preceded by mouthwash (104.6 ± 11.7 vs. 83.5 ± 11.1; P<0.05).  These preliminary data 

suggest that acute dietary nitrate ingestion may promote insulin sensitivity in obese 

adults. 
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CHAPTER I  

 
 
 

REVIEW OF LITERATURE 

 
 
 

Type 2 Diabetes  

 25.8 million (8.3%) Americans currently have type 2 diabetes (1); this is roughly 

double the number of cases in 1970 (2).  This trend is expected to continue, leading to 1 

in 3 adults diagnosed by 2050 (1,2).  In response, numerous treatment options have 

been developed for those affected.  Oral anti-diabetic agents are being prescribed to 

over half of patients with type 2 diabetes (3).  However, lifestyle modification through 

diet and exercise remains to be a commonly recommended treatment for diabetes (4). 

 

Glucose Homeostasis and the Pancreatic Hormones 

 Regulation of whole body glucose homeostasis is central to human metabolism 

and is the fundamental insufficiency in diabetes.  The rates of appearance (Ra) and 

disappearance (Rd) ultimately determine the concentration of glucose in the blood.  The 

glucose Ra is primarily determined by intestinal absorption of glucose and hepatoportal 

glucose uptake during the postprandial period, whereas in a fasted state, hepatic and 

renal glucose production and release are the primary determinants.  The glucose Rd is 

controlled by the rate of uptake into tissues; this occurs in insulin-dependent and 



	
  2	
  

independent tissues.  During the postprandial period, insulin-dependent glucose 

disposal is much more influential than during a fast.    

 The pancreas plays a pivotal role in glucose homeostasis by sensing the plasma 

glucose concentration and releasing hormones in response.  The pancreatic Islets of 

Langerhans contain specialized cells called α and β-cells that produce glucagon and 

insulin, respectively.  When plasma glucose concentrations fall, such as during a fast, 

the α cells respond by secreting glucagon.  A primary target of glucagon is the 

hepatocytes in the liver where it stimulates gluconeogenesis and glycogenolysis, which 

together act to supply glucose for the plasma.  When plasma glucose rises such as 

during the postprandial period, the β-cells secrete insulin.  Insulin has numerous 

actions, but with regard to glucose homeostasis its main actions are at the hepatocyte, 

adipose tissue and skeletal muscle.  In hepatocytes, insulin opposes the actions of 

glucagon by stimulating glycogenesis and glycolysis.  In skeletal muscle and adipose 

tissue, insulin stimulates glucose uptake and inhibits lipolysis.  The absolute magnitude 

of glucose uptake into the skeletal muscle is larger than other organs due to the skeletal 

muscle's large mass and its ability to store glucose as glycogen.  Although glycogen 

concentrations are highest in skeletal muscle when expressed as an absolutely 

quantity, liver glycogen stores are a great deal larger on a per unit mass basis.  When 

these processes are disrupted, homeostasis is lost and hyper- or hypoglycemia result. 
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Pancreatic Hormones 

Insulin Secretion 

 After a meal, insulin is the most abundant hormone in circulation and facilitates 

proper storage of the nutrients absorbed from a meal.  Insulin is synthesized and 

released from the β-cells in the Islets of Langerhans of the pancreas in response to 

elevated glucose (5).  Insulin exocytosis is inherently linked to glucose metabolism in 

the β-cell (5).  In the β-cells, glucose absorption occurs by facilitated diffusion, through 

the insulin-independent glucose transporter, GLUT-2 (6) and is subsequently 

phosphorylated by glucokinase (7).  Glucokinase is considered a "glucose sensing" 

enzyme and is the rate limiting step in glucose metabolism in pancreatic β cells (8).  

Glucokinase has a high Km of ~14.7mM (9), compared with a normal physiologic blood 

glucose concentration range of  4-7mM (10).  This relationship allows β-cell glucose 

metabolism to increase throughout the physiologic range and is critical to maintaining 

glucose homeostasis (11) and glucose-stimulated insulin secretion (GSIS) in the β-cells 

(12,13).   

 Insulin secretion is pulsatile (14) and biphasic (15).  The size of each secretory 

burst is determined by the magnitude of the hyperglycemia (16).  GSIS involves a series 

of intracellular events that are triggered by a rise in glucose phosphorylation by 

glucokinase and leads to calcium influx, membrane depolarization and insulin granule 

exocytosis (17).  Membrane depolarization is mediated by adenosine triphosphate 

(ATP) -sensitive potassium channels (Katp), which close in response to an increase in 

the ATP:ADP ratio (18).  Depolarization opens the L-type Calcium channels, located 

next to the insulin granules, allowing calcium to enter the cell (19).  Mitochondrial 
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proteins such as the α ketoglutarate carrier (20) and reduced cytochrome c (21) are 

released into the cytosol during calcium influx and stimulate insulin exocytosis, but the 

exact mechanism of calcium-induced insulin release remains unclear.  We do know, 

however, that extracellular calcium influx is required for granule exocytosis (22). 

 

Glucagon Secretion 

 Glucagon is an important counter-regulatory hormone that responds to 

decreasing blood glucose concentrations.  As expected, glucagon release from the α-

cells is inhibited by glucose in isolated cells (23), mouse pancreatic α-cells(24) or insulin 

in mouse pancreatic α-cells (24).  In support, glucokinase is also present in the α-cells 

(25) and, similar to the β-cells, links glucose metabolism to Katp channel closure and 

subsequent depolarization (26).  Intriguingly, this mechanism has an inhibitory role on 

glucagon secretion (26,27) whereas it stimulates insulin release.  Although currently an 

area of intense interest, much remains to be revealed on the mechanisms of glucagon 

secretion.   

 

Major Glucoregulatory Tissues 

Hepatocytes 

 The liver is responsible for maintaining blood glucose concentrations during a 

fast and storing glucose during the postprandial period.  This role is central to whole-

body glucose homeostasis.  The liver is one of the few tissues that express glucose 6 

phosphatase (G6P), which removes a phosphate from glucose 6 phosphate creating 
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free glucose (28); this allows glucose to be released into circulation during a fast.  

Alternatively, skeletal muscle does not express this enzyme.  Glycogen stored within the 

skeletal muscle must be metabolized in the myocyte and is not available for other 

tissues.  In addition, hepatocytes have first pass access to the glucose absorbed in the 

gut via the hepatoportal circulation.  Similar to the pancreas, the GLUT-2 transporter 

(29) and glucokinase (2) are expressed in the liver.  Due to the kinetic properties of 

these enzymes (High Km and High Vmax) the liver clears a significant portion of the 

glucose from a meal while it is in portal circulation (28).   

 Postprandially, insulin is the primary circulating hormone.  Because insulin is 

secreted directly into the portal circulation, a large portion of the insulin is also cleared 

by the hepatocytes (16).   Although glucose transport into the hepatocyte is insulin-

independent, insulin is important in many aspects of glucose metabolism in these cells. 

Circulating insulin interacts with the extracellular α-subunits of its receptor causing the 

intracellular β-subunits to dimerize and autophosphorylate on tyrosine residues (30).  

Phosphorylation of the β-subunits permits the docking of the insulin receptor substrates 

(IRS) 1 and 2 and activation of phosphoinositol 3 kinase PI3K (31).  PI3K binds the IRS 

protein and phosphorylates Protein kinase B (PKB, also known as Akt) and protein 

phosphatase-1 (PP-1), in the hepatocytes (31).  PKB regulates glycogen synthase (GS), 

the rate-limiting step in glycogen synthesis by phosphorylating and inactivating glycogen 

synthase kinase 3 while PP-1 activates GS by removing a phosphate (28).  PKB also 

suppresses gluconeogenesis by phosphorylating the forkhead box protein O1 (FOXO1) 

which then migrates out of the nucleus reducing transcription of the key gluconeogenic 

enzymes G6P and phosphoenolpyruvate carboxykinase (PEPCK) (28).  Coupled with 
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insulin's depression of glucagon release at the pancreas, insulin has a profound impact 

on the uptake of glucose for storage and the prevention of its release from the 

hepatocyte.   These actions greatly reduce glucose concentrations in the blood.  

Although glucose transport into the hepatocyte is insulin-independent, insulin is 

important in many aspects of glucose metabolism in these cells.  Hepatic glucose 

metabolism is depicted in figure 1 (28).  

 Glucagon is elevated during a fast and opposes the actions of insulin to promote 

the release of glucose from hepatocytes.  In the hepatocytes, glucagon binds its G-

protein coupled receptor stimulating adenylate cyclase and the production of cyclic 

adenosine monophosphate (cAMP) (32).  In response to rising cAMP concentrations, 

protein kinase A (PKA) phosphorylates and activates glycogen phosphorylase which is 

responsible for glycogenolysis and gluconeogenesis in the hepatocyte (32).   Further, 

glucagon stimulated PKA the expression of G6P and PEPCK for greater abundance of 

the enzymes for gluconeogenesis (28).  These processes stimulate glucose release into 

the blood to maintain normoglycemia.     

 

Skeletal Muscle 

 Skeletal muscle is another important tissue in the regulation of glucose 

metabolism.  Skeletal muscle is a large reservoir for glucose due to its high capacity to 

synthesize glycogen and its absolute tissue mass (33).  After a meal, insulin stimulates 

glucose transport and storage into skeletal muscle.  Unlike the liver, the primary glucose 

transporter in the skeletal muscle is the insulin-dependent GLUT-4 (34).  GLUT-4 

proteins are sequestered in intracellular vesicles and translocate to the sarcolemma in 
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response insulin (31,34).  Insulin binding to its receptor leads to activation of PI-3K and 

subsequently PKB, which stimulates GLUT-4 translocation (35).  Glucose is 

phosphorylated by hexokinase II to form G6P (36), which prevents its escape from the 

myocyte and allosterically stimulates GS (37,38).  Insulin increases the activity and 

protein content of hexokinase II (39) which further supplements glucose uptake.  In 

addition, insulin stimulated PKB activation also leads to greater GS activity (40).  

Collectively skeletal muscle is primed to store the glucose from the blood in response to 

a meal. 

 

Adipose tissue 

 In adipocytes, opposing insulin's action, glucagon acts to stimulate lipolysis 

during a fast.  Glucagon activates adenylate cyclase stimulating the formation of the 

second messenger cAMP, increased PKA activity, and phosphorylation of hormone-

sensitive lipase (HSL) (10,32).  HSL activity leads to the release of NEFAs into the 

circulation. 

 In adipocytes, insulin stimulates glucose uptake, triglyceride synthesis, and 

prevents lipolysis.  Similar to skeletal muscle, insulin stimulates glucose transport 

through the translocation of GLUT-4 to the cell membrane (10).  Glucose is stored in 

adipose primarily as glycerol on triglycerides (10) although not in large quantities.  

Perhaps the most important action Insulin's primary action on the adipocytes is to block 

lipolysis, primarily by inhibition of hormone-sensitive lipase (41); this occurs in part by 

activation of phosphodiesterase, the enzyme that converts cAMP to AMP (42).  These 

actions prevent the release of NEFAs in the blood.   
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Impaired Glucose Metabolism 

Insulin resistance 

 Insulin resistance is a hallmark of type 2 diabetes and is characterized by a 

failure of insulin to stimulate an appropriate reduction in blood glucose levels.  

Importantly, significant insulin resistance can exist without the presence of overt 

diabetes.  A detailed discussion of the mechanisms of insulin resistance and 

impairments to the insulin signaling pathway is not warranted here, but readers are 

directed to the following reviews (43–45).  In adipose tissue, insulin resistance leads to 

poor regulation of lipolysis and high postprandial circulating NEFAs; high NEFAs cause 

insulin resistance in the hepatocytes and skeletal muscle (46).  In hepatocytes, the 

primary defect is the inability of insulin to prevent the release of glucose into the blood 

(28).  Continued hepatic glucose release coupled with a lack of uptake leads to a 

profound extension of the glucose excursion during the postprandial period.  

Additionally, in skeletal muscle, disruption of the insulin signal prevents GLUT-4 

translocation and glycogen synthesis (44).  Altogether, these impairments lead to 

significantly longer glucose excursions and hyperglycemia.  With hyperglycemia, insulin 

secretion becomes chronically elevated in the early stages of diabetes.  

Hyperinsulinemia is a very strong predictor of the onset of diabetes and may play a 

pathogenic role in the progression of the disease (47).  In early stages of insulin 

resistance, the β cells are capable of responding with adequate insulin, but as this 

worsens the β-cells decompensate and fail to keep up; this marks the development of 

overt diabetes (48).   
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Insulin Signaling in the Endothelium 

 An important component of insulin-mediated glucose uptake into skeletal muscle 

is insulin's ability to recruit microvascular blood flow to the skeletal muscle (49,50).  

Insulin recruitment of blood flow to the muscle is through PKB-dependent production of 

nitric oxide (51,52).  Nitric oxide (NO) is an important regulator of blood flow to skeletal 

muscle (53).  Nitric oxide is produced by nitric oxide synthase (NOS) of which there are 

three isoforms: Inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS 

(eNOS) (54).  eNOS and nNOS are also referred to as constitutive or calcium-

dependent NOS (cNOS); these isoforms are constitutively expressed in mammalian 

tissues (54).  NOS catalyzes the reaction that converts molecular oxygen and the amino 

acid l-arginine to NO and l-citrulline.  In order for this reaction to proceed, the cofactor 

6R-5,6,7,8-tetrahydrobiopterin (BH4) is required and is an important regulator of NO 

production (55).  

 Cyclic guanylyl monophosphate (cGMP) is the second messenger responsible 

for initiating the cascade of nitric oxide signaling (56).  This second messenger is 

formed from guanosine triphosphate (GTP) by the soluble guanylyl cyclase (sGC) (57).  

The primary effector of the physiological response to nitric oxide is the cGMP-

dependent protein kinase (PKG) (58).  In the smooth muscle of the vasculature, PKG 

activates myosin light chain phosphatase and reduces intracellular calcium 

concentrations, which leads to smooth muscle relaxation and vasodilation (figure 2. 

from (53)) (for a detailed review see 54).  Insulin mediated vasodilation recruits blood 

flow to skeletal muscle for storage.  Additionally, in skeletal muscle, nitric oxide 

stimulates the phosphorylation of AMP-dependent protein kinase (AMPK) and greater 
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uptake of glucose through an insulin-independent mechanism (59).  Nitric oxide can 

also posttranslationally modify proteins in a process called S-nitrosylation.  S-

Nitrosylation refers to the addition of a NO group to a cysteine residue on target proteins 

(60).  For glucose homeostasis, nitrosylation of GLUT-4 vesicles facilitate greater 

trafficking to the sarcomere in the skeletal muscle (61), and increases glucokinase 

activity in the β cells of the pancreas (62).  In total, nitric oxide signaling facilitates 

glucose uptake through both insulin-dependent and insulin-independent mechanisms 

into skeletal muscle during the postprandial period.  Inhibition of NOS diminishes 

insulin-mediated glucose uptake in rat skeletal muscle (63,64).  Not surprisingly, poor 

NO bioavailability is a common feature in diabetes (49,65).  In support, patients with 

type 2 diabetes insulin fails to stimulate skeletal muscle NO production unlike their 

healthy counterparts (66).  BH4 and L-arginine have both been implicated in reduced 

NO bioavailability. 

 Bioavailability of L-arginine in some cases may limit NO synthesis.  In endothelial 

cells, arginase 1 and 2 catalyze the formation of ornithine from arginine (67) effectively 

reducing arginine's availability for the NOS enzyme.  This is supported by findings that 

arginase 1 activity is increased in human coronary arterioles (68) and in the plasma (66) 

of type 2 diabetics.  Correspondingly, it has been shown that arginase 1 activity is 

positively correlated with impaired vasodilation in diabetic mice (69,70), yet during a 

hyperinsulinemic euglycemic clamp, insulin reduced arginase activity in type 2 diabetics 

and healthy controls, but was unable to increase NO production in type 2 diabetics 

compared with an approximate doubling in normal controls (66).  These findings 
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suggest L-arginine may not be limiting in human diabetes; this is supported by the 

indefinite results of arginine supplementation (49). 

 A loss of NO bioavailability can also occur when the cofactor BH4 is limiting.  

When BH4 concentrations are insufficient, NOS becomes uncoupled and leads to 

superoxide generation rather than NO (71–73).  Superoxide can further react with NO to 

form the highly reactive peroxynitrite leading to further degradation of the intracellular 

NO and BH4 pools (74). BH2 is the product of oxidized BH4 and can begin to 

accumulate in cells with unusually high oxidative stress (74).  In fact, the ratio of BH4 to 

7,8 dihydrobiopterin (BH2) is an important mediator of NO synthesis due to competitive 

BH2 binding by the NOS enzyme (71).  In rats with fructose-induced endothelial 

dysfunction, BH4 administration restored NO-dependent vasodilation in a similar 

manner to the NO donor sodium nitroprusside (75).  Further, the pharmaceutical analog 

for BH4, sapropterin improves blood flow to human skin in an NO-dependent manner 

(73).  In diabetic rodent models, BH4 supplementation suppresses NOS-dependent 

hepatic gluconeogenesis and reduced blood glucose during a glucose tolerance test 

(76).  These findings suggest that supplementation with BH4 may be attractive 

therapeutic option for increasing NO bioavailability.  In humans however, oral BH4 

treatment may lack efficacy due to oxidation while in circulation (77). 

 Insulin secretion is also responsive to NO signaling.  Insulin secretion is both 

inhibited and stimulated by NO in the β-cell in a concentration-dependent manner.  At 

high concentrations insulin secretion is depressed, but when the concentration is below 

50 nM insulin secretion is stimulated (78,79).  The stimulatory action on the β-cells is 

mediated, in part, by PKG-dependent phosphorylation and inactivation of the Katp 
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channel (79).  At high concentrations, NO appears to blunt glucose metabolism at 

phosphofructokinase and the mitochondria (80).  Further, NOS co-localizes with the 

insulin granules of the β-cell and is activated by increased intracellular calcium 

concentrations (81).  Similarly, glucokinase also associates with insulin granules; when 

glucose concentrations rise glucokinase dissociates from the insulin granules and has 

greater enzymatic activity (82) facilitated by the post translational modification of 

glucokinase by S-nitrosylation leading to its dissociation from the secretory granule (62).   

 

Dietary Nitrate as a Nutriceutical 

 Recently, dietary nitrate has gained considerable interest as a means to improve 

NO bioavailability in symptomatic and healthy subjects independent of NOS.  Dietary 

nitrate is available in most vegetables and is highly concentrated in beets, cured meats, 

and spinach (83).  In the oral cavity, there are bacteria that possess the enzyme nitrate 

reductase which convert nitrate to nitrite (84–88).  Nitrite produced in the oral cavity is 

then either further reduced to NO in the acidic environment of the stomach (88,89) or 

absorbed as nitrite (87).  Once in circulation, the mechanisms of nitrite bioactivation are 

still relatively unclear, but several potential interactions have been proposed including 

interactions with hemoglobin, myoglobin, and carbonic anhydrase (90),  and circulation 

to the salivary glands for excretion into the oral cavity for additional bacterial reduction 

(88).  The importance of oral nitrate reduction is highlighted by the ability of antibacterial 

mouthwash to lower the plasma nitrite response to nitrate ingestion (87).  Regardless, 

dietary nitrate increases the bioavailability of NO in a variety of models, including 

humans.   
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 With respect to diabetes, numerous models have been used to study the effects 

of dietary nitrate on glucose homeostasis.  Dietary sodium nitrate has been shown have 

positive effects in eNOS-deficient mice.  In this model sodium nitrate ingestion 

significantly reduced the glucose excursion after an intraperitoneal glucose tolerance 

test compared with water (91).  The blood pressure in these mice was also reduced 

following dietary nitrate administration.  Addition of the NOS inhibitor N (G)-nitro-L-

arginine methyl ester (L-NAME) increased blood pressure in both groups, but the 

dietary nitrate group resisted this increase for several hours indicating a substantial role 

for dietary nitrate in generating NO independent of the NOS pathway in these mice (91).  

In human participants with elevated risk of cardiovascular disease a 30-day dietary 

nitrate supplementation increased plasma nitrite and nitrate concentrations (92).  

Plasma nitrite is associated with improved glucose homeostasis in rodents (91) and 

increased cGMP concentrations and lower blood pressure in humans (93).  Moreover, 

potassium nitrate reduced the area under the insulin and glucose curves during an oral 

glucose tolerance test in healthy subjects (94). 

 In opposition, beet juice ingestion has also been shown to have no effect on 

blood pressure or insulin sensitivity in patients with type 2 diabetes (95).  In this study, 

subjects were given either 250mL of beet juice or placebo for two weeks.  However, 

these subjects were tested after an overnight fast.  These data suggest that short-term 

supplementation with dietary nitrate may be insufficient to elicit long-term adaptation.  

Alternatively, due to the rapid metabolism of the NO, the beneficial effects of dietary 

nitrate ingestion could be limited to the postprandial period.  Indeed, a recent meta-

analysis assessing both supplementation and acute treatments with dietary nitrate 
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found that inorganic nitrate/beet juice ingestion to be significantly associated with 

reduced blood pressure in humans (96).  Despite this, the potential therapeutic benefit 

of nitrate ingestion on glucose homeostasis remains unclear.  There is currently a great 

deal of evidence supporting a role of acute dietary nitrate metabolism improving the NO 

bioavailability in humans.  Moreover, NO bioavailability has been shown to have a large 

role in the pathology of type 2 diabetes.  Still, more studies are needed to clarify the 

potential for dietary nitrate to acutely improve glucose tolerance. 

 

Hypothesis. 

NO is an important physiological determinant of glucose tolerance.  

 

Specific aim.  

To determine if acute dietary nitrate administration augments glucose disposal. 
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CHAPTER II 

 
 
 

INTRODUCTION 

 
 
 

 Type 2 diabetes mellitus is associated with impaired macronutrient metabolism 

and vascular dysfunction.  The primary metabolic defect is decreased insulin sensitivity 

resulting in elevated fasting blood glucose and insulin values (47).  It has been shown in 

rodents that increased microvascular perfusion is an early event in insulin-mediated 

glucose disposal, occurring within minutes; an effect regulated by nitric oxide dependent 

processes (50).  Indeed, nitric oxide (NO) -dependent vascular control has been shown 

to be impaired in type 2 diabetes mellitus (97).  Moreover, in rodent skeletal muscle, 

inhibition of Nitric Oxide Synthase (NOS) completely suppressed the insulin-mediated 

recruitment of the microvasculature and dramatically lower glucose disposal in response 

to insulin (63,98).  Dietary nitrate has recently gained interest as a means to improve 

NO bioavailability.  Dietary nitrate is reduced by bacteria possessing the enzyme nitrate 

reductase in the oral cavity reducing salivary nitrate and nitrite to nitrite and NO, 

respectively (88).  Nitrite can also be reduced in the stomach to NO due to the low pH 

(89).  In support, humans using antibacterial mouthwash prior to nitrate ingestion have 

significantly less salivary and plasma nitrite than when they consumed nitrate alone 

(87).  Additionally, dietary nitrite leads to nitrosylation of cysteine residues on GLUT-4, 

leading to GLUT-4 incorporation in the membrane (61).  Dietary nitrate also normalized 

glucose tolerance and fasting blood glucose in eNOS-deficient mice (91). 
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 Improvements to NO bioavailability have promising therapeutic value for patients 

with impaired glucose tolerance.  Specifically, dietary nitrate could provide an 

accessible and affordable alternative to medications.  Therefore, the purpose of this 

investigation is to determine the influence of dietary nitrate on glucose disposal during 

an oral glucose tolerance test (OGTT) in humans.  We hypothesize that NO is an 

important physiological determinant of glucose tolerance. 
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CHAPTER III 

 
 
 

METHODS AND MATERIALS 

 
 
 

Research Participants.  

 Research participants were 10 (2 male, 7 female) sedentary, apparently healthy, 

overweight or obese adults.  Study exclusion criteria consisted of fasting blood glucose 

concentration ≥ 100 mg/dL, pregnancy, regular use of tobacco products, and 

medications that might confound the interpretation of data such as blood pressure 

lowering medications or antihyperglycemic agents.  The experimental protocol 

conformed to the standards set by the Declaration of Helsinki of 1975, as revised in 

1983, and was approved by the Institutional Review Board at Colorado State University. 

The nature, purpose and risks of the study were explained to each research participant 

before written informed consent was obtained. 

 

Experimental Design. 

 On completion of health screening and baseline testing, research participants 

reported to the laboratory after an overnight fast.  Participants refrained from dental 

hygiene for the previous 12 hours, including gum chewing and avoided foods known to 

contain nitrates such as leafy green vegetables, beets, and cured meats for 24 hours 

prior to their visit.  Upon arrival to the laboratory, a Teflon catheter was placed in an 

antecubital vein for repeated blood sampling.  Using a crossover design, four oral 
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glucose tolerance tests (OGTT) were performed with a 7-day washout period.  To 

assess the influence of dietary nitrate, subjects consumed either 500mL of beet juice + 

25g glucose, or 500mL of water + 75g glucose, with (Beet Juice, Water) and without 

prior antibacterial mouthwash use (Beet Juice + MW, Water + MW).  Beet juice was 

selected due to its high concentration of nitrate.  Mouthwash conditions are intended to 

blunt the reduction of nitrate to nitrite in the oral cavity 

 

Oral Glucose Tolerance Testing 

 Glucose tolerance was determined in response to 500 mL of organic beet juice 

(Biotta; CAJ food products; Carmel, IN) sweetened with 25 grams of dextrose or 500 mL 

of water sweetened with 75 grams of dextrose.  The carbohydrate load for each 

condition was approximately 75 grams total.  During mouthwash trials subjects first 

rinsed with 10 mL of a hydrogen peroxide mouthwash (1.5% H2O2 Peroxyl; Colgate Oral 

Pharmaceuticals, Inc., NewYork, NY) for one minute followed by two, one-minute rinses 

with 10 mL of an antibacterial mouthwash (chlorhexidine digluconate; Corsodyl, BCM 

Ltd., Nottingham, UK).  Subjects then consumed their carbohydrate beverage and 

remained supine for the duration of testing. 

 

Blood Sampling.  

 Blood glucose was determined on arrival and at the following time-points 5, 10, 

20, 30, 45, 60, 90, and 120 minutes using a blood glucose analyzer (2300 Stat Plus, 

Yellow Springs Instruments, Yellow Springs, Ohio).  Blood Samples were collected 
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upon arrival and at time-points 10, 20, 30, and 120 minutes and placed into serum 

separator tubes for insulin analysis.  Samples were centrifuged within 30 minutes and 

serum was immediately separated into 1mL aliquots.  Serum was stored at -80° C for 

subsequent analysis.  Insulin was determined using a commercially available ELISA kit 

(Alpco; Salem, NH). 

 

Statistical Analyses. 

 This was a randomized crossover design with repeated measures, thus we 

examined the influence of dietary nitrate on blood glucose and serum insulin using a 

two-way repeated measures ANOVA (beet juice vs. water, mouthwash vs. no 

mouthwash).  The area under the curve (AUC) for glucose and insulin were determined 

using the trapezoidal method and then analyzed using a two-way repeated measures 

ANOVA.  Additionally, insulin sensitivity was estimated using the Matsuda Index, which 

is highly correlated (r = 0.73) with the hyperinsulinemic euglycemic clamp (99), using 

the following equation: 

      10000            
    √ (FBG x FSI) x (mean G x mean I) 
Where: 
FBG = fasting blood glucose  FSI = fasting serum insulin 
Mean G = two hour glucose mean Mean I = two hour insulin mean 

These estimations of insulin sensitivity were compared by two-way repeated measures 

ANOVA.  The level of statistical significance was set at P < 0.05.  Data within text and 

tables are expressed as mean ± SE.    
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CHAPTER IV 

 
 
 

RESULTS 

 
 
 
 Ten subjects were enrolled in the experiment, but one participant's results were 

excluded from the analysis due to substantially high fasting blood glucose (>126 

mg/dL).  Nine subjects completed all four conditions of the study without any adverse 

events and are included in all analyses.  The remaining participant's fasting blood 

glucose concentrations were in the healthy range, <100 mg/dL.  Participants were 

assessed for body composition using dual-energy x-ray absorptiometry (DXA-IQ; Lunar 

Radiation corp., Madison, WI, software version 4.1).  Selected physiological 

characteristics are presented in Table 1. 

 

Acute Dietary Nitrate and Blood Glucose 

 Circulating glucose responses are presented in figure 3.  Acute dietary nitrate 

ingestion does not influence the circulating glucose concentrations during an oral 

glucose tolerance test (figure 3.).  However, both Beet Juice conditions had a modestly 

lower glucose AUC, 9% (figure 4) and the final glucose concentration (figure 5) was 

17% lower in the Beet Juice and Beet Juice + MW conditions as compared with the 

Water conditions (main effect of beet juice, P < 0.05).  Intriguingly, there was also a 

main effect of mouthwash resulting in an approximate 6% lower glucose AUC and 9% 

lower circulating glucose at 120 minutes compared with the no mouthwash conditions, 
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figures 4 and 5, respectively (P < 0.05).  The differences in peak glucose failed to attain 

significance at P = 0.08. 

 

Acute Dietary Nitrate and Serum Insulin 

 Circulating insulin levels were not different between conditions (figure 6).  Insulin 

AUC in both Beet Juice conditions was lower compared with the Water conditions (main 

effect of Beet Juice. P < 0.05).  Peak insulin was 18% lower in Beet Juice compared 

with Water (P < 0.05).   

 

Insulin Sensitivity 

 The results of the Matsuda Index calculations are presented in Figure 8.  The 

Matsuda Index was approximately 25% greater in the Beet Juice condition than the 

Water condition (P < 0.05 vs. water) indicating greater insulin sensitivity.  There were no 

other interactions or main effects for the Matsuda Index.   
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CHAPTER V 

 
 

DISCUSSION 

 
 
 

 The primary findings of the current investigation are: 1) Estimated insulin 

sensitivity is greater when 75g of carbohydrate is consumed in beet juice compared with 

75g of carbohydrate in water. 2) Improved insulin sensitivity is evidenced by reduced 

area under both the glucose and insulin curves when 75g of carbohydrate is consumed 

in beet juice. 

 To our knowledge, we are the first to evaluate the influence of acute dietary 

nitrate intake on insulin sensitivity in an obese population.  Central to the strength of our 

study design is the timing of the nitrate ingestion in a meal-like setting within a naturally 

occurring food source.  This design accounts for the short half-life of NO in circulation 

by delivering the nitrate concurrently with the carbohydrate.  We hypothesized that 

dietary nitrate is the primary bioactive component in beet juice that improves insulin 

sensitivity, however, beet juice is rich in many nutrients and phytochemicals. To 

evaluate the effect of the nitrate in the beet juice, we used an antibacterial mouthwash 

to attenuate the reduction of nitrate to nitrite.  Importantly, the nitrate load was the same 

in both Beet Juice conditions. 

 Plasma nitrite concentrations and time-to-peak concentrations increase dose-

dependently for several hours following beet juice ingestion (100).  Consumption of 280 

mL of beet juice elicits an approximate four-fold increase in plasma nitrite after one 

hour, which rises to a seven-fold increase after two hours (100).  Additionally, no further 
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lowering of blood pressure is detected when volumes of beet juice greater than 140 mL 

are consumed (100).  Therefore, the volume of beet juice consumed in this study, 500 

mL, is expected to be sufficient to elicit a physiological response. 

 We witnessed a lower postprandial glucose excursion with Beet Juice that 

persisted for two hours.  In order to explain these observations we considered the 

specific carbohydrate composition of the carbohydrates in the beverages.  The main 

effect of Beet Juice on the glucose AUC and 120 minute glucose values indicates 

improved glucose tolerance when 75g of carbohydrate is consumed in beet juice 

compared with 75g of carbohydrate in water.  However, approximately two-thirds of the 

carbohydrate in the Beet Juice trials was sucrose (101), which is catalyzed into glucose 

and fructose by sucrase-isomaltase located in the brush border of the intestinal mucosa 

(102).  Fructose metabolism in humans is quite different than glucose in that fructose is 

primarily cleared by the liver and does not elicit a significant insulin response (103).  

This fact may explain a portion of our current findings, but there was not a main effect of 

Beet Juice on insulin sensitivity indicating other mechanisms.  A main effect of Beet 

Juice on the final glucose concentration is clinically relevant in that this test is often 

used to diagnose diabetes.  It has been suggested that peripheral insulin resistance is 

the primary cause for blunted responses during an OGTT (99).  Our results indicate that 

beet juice likely influences the uptake of glucose into skeletal muscle. 

 In the current investigation Beet Juice, and potentially dietary nitrate, was 

associated with a lower postprandial insulin excursion.  With respect to insulin secretion, 

nitric oxide is stimulatory at lower concentrations, but inhibitory at greater 

concentrations (80).  Possibly, blood nitrite concentrations in the Beet Juice condition 
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were sizeable enough to inhibit insulin secretion, an effect diminished in the mouthwash 

condition.  This is supported by our findings that insulin secretion in the Beet Juice was 

significantly lower compared with Water, but the Beet Juice + MW condition was not.  

Inhibition of insulin secretion could be an important aspect of how dietary nitrate 

regulates glucose metabolism.  The lower area under the glucose curve could also 

account for this observation due to reduced glucose stimulated insulin secretion in β-

cells.  

 The Matsuda Index incorporates fasting and postprandial measures of glucose 

and insulin in order to more accurately depict insulin sensitivity (99).  We found that 

estimated insulin sensitivity was significantly greater in the Beet Juice trial when 

compared with the Water trial.  However, the Beet Juice + MW trial was not different 

from Water suggesting that dietary nitrate could have influenced insulin sensitivity, but 

the comparison within the Beet Juice conditions was not significant (P=0.16).  To verify 

that mouthwash had no impact on insulin sensitivity, we included the water conditions.  

Unexpectedly, we found that mouthwash significantly lowered the glucose AUC and the 

final glucose concentration.  The presence of carbohydrate sensors in the oral cavity 

(104) could explain this phenomenon, possibly through enhanced sweet taste sensitivity 

or greater access to the sensors, but this cannot be confirmed in the present study.  

However, the glucose response to mouthwash may be somewhat masking the effects of 

dietary nitrate on the estimates of insulin sensitivity.  

 We are not the first to investigate the influence of dietary nitrate on insulin 

sensitivity.  Recently, acute dietary nitrate was found to improve (94) and have no effect 

(105) on glucose tolerance.  Acute potassium nitrate supplementation reduced the 
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glucose AUC and increased the insulin response to an OGTT in healthy males (94).  

However, in these experiments the nitrates were administered to participants in the 

healthy weight range compared with the obese subjects in our study.  Alternatively, our 

results suggest that dietary nitrate blunts the insulin response. 

 

Conclusion 

 Beet Juice improves estimates of insulin sensitivity, partially mediated by a 

dramatic reduction of the insulin response to a carbohydrate challenge.  Importantly, our 

data suggest that consuming nitrate within the context of a meal is an important timing 

consideration when attempting to influence glucose metabolism.  While we selected 

beet juice for the present investigation, many vegetables are rich in nitrate.  Vegetables 

are an important component of a nutritious diet and our findings may have revealed 

another important benefit of vegetables.  
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APPENDIX I 

 
 
 

TABLES AND FIGURES 

 
 
 
Table 1.  Subject characteristics n=9 (2 males) 
 
Variable  Baseline 

Age (years)  45 ± 4  

Body mass (kg)   90.1 ± 10.9 

Height (m)  1.65 ± 0.02 

Body mass index (kg/m2)  33.7 ± 0.89 

Percent body fat  43.2 ± 5.3 

Fat free mass (kg)    51.4 ± 2.4 

Fat mass (kg)  38.8 ± 1.6 

Data: mean ± SE. 
  



	
  36	
  

 

 
Figure 1.  ⊥ = Block/inhibit.  ↓ = Stimulate/activate (28) 
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1. Introduction

Compounds absorbed in the gut pass through the
liver where they can be absorbed and metabolized.
To accomplish this, mature hepatocytes are arranged
into irregular folded sheets surrounding the sinusoids
where blood flows, separated only by a single layer of
endothelial cells, interspersed Kupffer cells, and hep-
atic stellate cells. Hepatocytes also maintain a connec-
tion to the gut via the formation of canaliculi and larger
ducts into which bile is secreted. While all hepatocytes
are capable of carrying out the necessary metabolic
and secretory tasks attributed to liver parenchymal
cells, there are some differences that exist in subcellu-
lar structure and function of hepatocytes with respect
of localization within in the liver (Tosh, Alberti, &
Agius, 1988). Afferent periportal hepatocytes report-
edly have higher gluconeogenic activity, whereas the
efferent perivenous hepatocytes have been shown

Fig. 1. Summary of glucose homeostatic pathways in the hepatocyte. In the fed state, the insulin-activated receptor signals primarily through
tyrosine phosphorylation of its substrates, IRS-1/2. Tyrosine phosphorylated IRS-1/2 associate with and activate signaling intermediates,
particularly phosphatidylinositol-3-kinase, which regulate downstream metabolic endpoints. The net effect promotes glucose utilization
and inhibits glucose output via regulation of enzyme activity and gene induction. In the fasted state, glucagon signals through its G
protein-coupled receptor to regulate metabolic endpoints which promote glucose output and suppress glucose utilization.

to possess higher activity of some glycolytic and li-
pogenic enzymes. Together, hepatocytes play a criti-
cal role in maintaining blood glucose levels within a
narrow range while responding to the changing de-
mands of the body. The focus of this review will be on
hormonal regulation of mature hepatocytes to accom-
plish glucose homeostasis, and hepatic-specific im-
pairments in this process that are related to obesity,
insulin resistance, and type 2 diabetes (Fig. 1).

2. Hepatocytes in the fasted state: net glucose
production

During fasting, increased glucagon release by the
! cells residing in the pancreatic islets of Langerhans
leads to a rise in plasma glucose levels. The binding
of glucagon to its cognate receptor on hepatocytes
activates the serine/threonine kinase PKA which
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Figure 2. Myosin Light Chain phosphorylation determines smooth muscle contractility 
(53). 
 
 
 
 
 
 
 

tested for inhibition of calcium release. Only the cGKI!-
containing cells exhibited calcium regulation by cGMP.19 A
potential limitation in this study is the possibility that the GFP
moiety interfered with cGKI targeting. In a recent study by
Christensen and Mendelsohn, the role of PKGI isoforms in
thrombin receptor-mediated calcium mobilization was studied in
both CHO cells stably expressing either cGKI isoform and
human aortic smooth muscle cells expressing primarily cGKI!
or cGKI". In CHO cells, cGKI! had a significantly greater
calcium-lowering effect, whereas in cultured human aorta
smooth muscle cells, only cGKI! lowered calcium in response
to cGMP.20 Thus neither of these cell culture-based studies that
manipulated the expression of cGKI isoforms confirmed the
expected isoform-specific functions based on cGKI targeting.

In the current study, Weber et al took the interesting approach
of creating mouse lines that express either cGKI! or cGKI" on
a cGKI null background. Expression of the cGKI genes was
driven by the endogenous SM22! promoter, resulting in smooth
muscle–specific expression. The cGKI isoforms were expressed
at levels and activity 1.5- to 2.0-fold greater than control mice.
The transgenic rescue mice had a life expectancy greater than the
cGKI null mice, but less than the wild-type control mice. Interest-
ingly, all of the tested smooth muscle functions in the cGKI
transgenics were equivalent to those in the wild-type mice.
These included intestinal transit of barium, jejunal, and aortic
smooth muscle relaxation and inhibition of norepinephrine-
induced calcium transients by cGMP. Although surprising, these
data could still be explained by the known interactions between
cGKI! and cGKI" with RGS2 and IRAG, respectively.

Weber et al performed a thorough examination of blood
pressure in the null, wild-type, and the cGKI! and cGKI" rescue
mice. The basal blood pressure was not different between
wild-type and rescue mice, but was elevated as expected in the
cGKI-null mice. Moreover, the hypotensive effect of nitrovaso-
dilators, carbachol, and the ROCK inhibitor Y27632 were all
preserved in the cGKI rescue mice. The latter manipulation is
particularly interesting because cGKI! opposes the inhibitory
effect of RhoA/ROCK on MLCP activity and inhibits RhoA
directly by phosphorylation at Ser188.21 One would therefore
expect that the cGKI! rescue mice would have less RhoA/
ROCK activity and therefore less hypotension from Y27632.

The elegant approach by Weber et al avoids many of the
pitfalls of the earlier studies of cGKI isoform-specific functions
in the vasculature, including reliance on cell culture models and
use of epitope-tagged cGKI isoforms. How then can we explain
the apparently equivalent physiologic effect of cGKI! and
cGKI" rescue? The authors provide two hypotheses. First, it is
possible that the specificity for each isoform for their respective
targets is less pronounced in vivo. This is possible because most
of the experiments that characterized the cGKI isoform specific
targets were performed in cell culture systems and with purified
proteins. If there were more overlap between cGKI isoforms and
their target interactions, then expression of individual cGKI
isoforms might exhibit subtle, if any, differences from wild-type
mice. Second, each cGKI isoform alone is sufficient to maintain
circulatory physiology based on its known interactions. For
example, cGKI! rescue can mediate cGMP-mediated vasodila-
tion because it can lower calcium via its interaction with RGS2,
and activate MLCP via its interaction with MYPT1. It is more
difficult to reconcile how cGKI" rescue can fully reconstitute
cGMP-mediated vasodilation without regulating MLCP.

There are several additional possibilities that may explain the
apparent functional equivalence of cGKI! and cGKI" to rescue
vascular function. The cGKI targets discussed here have well-
described isoform-specific interactions, yet there are additional
cGKI targets that do not bind in an isoform specific manner,
whose role in vascular physiology is less clear, and there are
likely more targets that are undiscovered.22,23 These cGKI
targets may allow functional overlap between the cGKI iso-
forms. Furthermore, although Weber et al observed similar
expression of the cGKI isoform targets, IRAG, MYPT1, and
RhoA, other critical proteins within these signaling pathways
may be upregulated. Moreover, posttranslational modification
(eg, phosphorylation) of these isoform-specific targets or splice
variation may also contribute to altered activity of these signal-
ing pathways without apparent differences in their protein
expression levels. A third possibility represents a limitation to
any transgenic approach when used to explore pathways regu-
lated by differential targeting. Even modestly increased levels of
protein overexpression may be adequate to obscure the specific-
ity of protein targeting, particularly if the protein in question is
present in excess of the targeting protein.

Figure. MLC phosphorylation determines
smooth muscle contractility. Contractile ago-
nists lead to inositol 1,4,5 triphosphate (IP3)
production or activation of RhoA (RhoA-GTP).
IP3 binding to its receptor in the sarcoplasmic
reticulum leads to release of Ca2!. Ca2!/cal-
modulin binds to and activates MLCK, which in
turn phosphorylates MLC (calcium-dependent
contraction). Activated RhoA binds to and acti-
vates ROCK, leading to phosphorylation and
inhibition of MLCP, inhibiting MLC dephosphor-
ylation (calcium-independent contraction). cGKI
mediates relaxation by inhibiting both calcium-
dependent and -independent contraction.
cGKI! activates MLCP by a direct interaction
and by inhibition of RhoA, and activates RGS2
to inhibit G!q signaling. cGKI" activates IRAG,
which then inhibits Ca2! release by the IP3

receptor.
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Figure 3. Effect of dietary nitrate on circulating glucose concentrations.  There 
was no effect of dietary nitrate on the circulating glucose response to an OGTT. P > 
0.05.  Data: mean ± SE. 
 
  



	
  39	
  

 
Figure 4. Effect of dietary nitrate on the area under the glucose curve.  †P < 0.05 
main effect of Beet Juice vs. Water.  ‡P < 0.05 main effect of Mouthwash vs. No 
Mouthwash.  Data: mean ± SE. 
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Figure 5. Effect of dietary nitrate on the final circulating glucose concentration.  
†P < 0.05 main effect of Beet Juice vs. Water.  ‡P < 0.05 main effect of Mouthwash vs. 
No Mouthwash.  Data: mean ± SE. 
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Figure 6. Effect of dietary nitrate on circulating insulin concentrations.  There was 
no effect of dietary nitrate on the circulating insulin response to an OGTT. P > 0.05.  
Peak insulin concentrations were greater in Water compared with Beet Juice.  *P < 0.05 
Beet Juice vs. Water.  Data: mean ± SE. 
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Figure 7.  Effect of dietary nitrate on the area under the insulin curve.  †P < 0.05 
main effect of Beet Juice vs. Water.  Data: mean ± SE. 
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Figure 8. Effect of dietary nitrate on the Matsuda Index of insulin sensitivity.  
There was no effect of dietary nitrate on the estimated insulin sensitivity. P = 0.15.  
Estimated insulin sensitivity was greater in Beet Juice as compared with Water.  *P < 
0.05 Beet Juice vs. Water.  Data: mean ± SE.  
 


