
Dissertation

Robust Health Stream Processing

Submitted by

Kathleen Ericson

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2014

Doctoral Committee:

Advisor: Shrideep Pallickara

Daniel Massey
Daniel Turk
Charles Anderson

Copyright by Kathleen Ericson 2014

All Rights Reserved

Abstract

Robust Health Stream Processing

As the cost of personal health sensors decrease along with improvements in battery life

and connectivity, it becomes more feasible to allow patients to leave full-time care environ-

ments sooner. Such devices could lead to greater independence for the elderly, as well as for

others who would normally require full-time care. It would also allow surgery patients to

spend less time in the hospital, both pre- and post-operation, as all data could be gathered

via remote sensors in the patients home. While sensor technology is rapidly approaching

the point where this is a feasible option, we still lack in processing frameworks which would

make such a leap not only feasible but safe.

This work focuses on developing a framework which is robust to both failures of processing

elements as well as interference from other computations processing health sensor data. We

work with 3 disparate data streams and accompanying computations: electroencephalogram

(EEG) data gathered for a brain-computer interface (BCI) application, electrocardiogram

(ECG) data gathered for arrhythmia detection, and thorax data gathered from monitoring

patient sleep status.

ii

Acknowledgements

This research is supported by a grant from the US National Science Foundations Com-

puter Systems Research Program (CNS-1253908).

This dissertation is typset in LATEX using a document class designed by Leif Anderson.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

Chapter 1. Introduction . 1

1.1. Monitoring Health Stream Data . 1

1.2. Challenges in Robust Processing of Health Streams. 2

1.3. Research Contributions . 4

1.4. Dissertation Organization . 6

Chapter 2. Background . 7

2.1. Evaluating Replication Schemes Across Distributed Systems. 7

2.2. Replication in Distributed File Systems . 14

2.3. Replication in Cloud Runtimes . 23

2.4. Replication in Distributed Hash Tables . 35

2.5. Replication in Distributed Stream Processing Systems . 42

2.6. Discussion . 52

Chapter 3. Requirements . 56

3.1. Computation Support . 56

3.2. Real-time Requirements . 57

3.3. Robust to Failures . 58

3.4. Robust to Interference . 60

iv

3.5. Throughput. 61

Chapter 4. Components . 63

4.1. Datasets . 63

4.2. Sample Computations. 64

4.3. System Elements . 67

4.4. Communications . 70

4.5. Summary . 72

Chapter 5. Detecting Failures . 74

5.1. Introduction . 74

5.2. Approach Synopsis . 79

5.3. Fault-Tolerant Stream Processing . 79

Chapter 6. Replication. 83

6.1. Failure Analysis . 83

6.2. BCI Experiments . 86

6.3. Leveraging Replicas for BCI. 98

6.4. Summary . 102

Chapter 7. Detecting Interference . 104

7.1. Defining Interference . 104

7.2. Clustering Interference . 105

7.3. Clustering Overheads . 107

7.4. Intelligent Placement . 110

Chapter 8. Migration . 112

v

8.1. Soft Migration . 112

8.2. Hard Migration . 114

8.3. Summary . 116

Chapter 9. Contributions and Future Work . 118

9.1. Conclusions . 118

9.2. Contributions . 120

9.3. Future Work . 123

Bibliography . 127

vi

List of Tables

2.1 A summary of the distributed systems discussed in this paper . 52

5.1 This table describes the heartbeat approach in Granules with 6 heartbeat groups.

For each timestep (T*), every group sends a heartbeat to one other group. After

sending a heartbeat to group 0 (bold and italicized), it performs a check to make

sure all expected heartbeats were received. 81

6.1 Predicted and actual computation losses as machines fail . 86

6.2 Response Times for 30 Concurrent Users on a Single Node (ms) 88

6.3 Response Times for 35 Concurrent Users on a Single Node (ms) 89

6.4 Response Times for 40 Concurrent Users on a Single Node (ms) 89

6.5 Time to recover from failure in a small cluster with 30 concurrent users (ms) 93

6.6 Re-Replication Overheads. 94

7.1 Small-Scale Clustering as Hosted Computations Increase (ms) . 109

7.2 Large-Scale Interference Clustering as Hosted Computations Increases (ms) 110

8.1 Small Scale BCI Migration Overheads. 116

vii

List of Figures

2.1 Flow of communications for GFS . 18

2.2 Flow of communications for HDFS . 20

2.3 Flow of communications for MapReduce, Hadoop, and Dryad . 26

2.4 Flow of communications for BOINC . 34

2.5 Flow of communications for latency-reducing active replication 48

2.6 Flow of communications for active standby. 48

2.7 Flow of communications for amnesia approach . 51

2.8 Flow of communications for a checkpointing DSPS . 51

4.1 This figure shows components deployed on two distinct machines. The dashed

lines denote control traffic; here, we see this as bidirectional communications

between the HeartBeat components, from the hosted computations to the

ResourceMonitors, and from the ResourceMonitors to the CoordinatorNode.

The solid lines denote data traffic; We show one hosted computation both receiving

data from an external sensor, and then passing results out to an actuator. Our

framework puts no limits on either the source or sync of incoming data. We also

show a hosted computation sharing state information with a replica. 72

6.1 Density functions of passing response times in milliseconds for 35 and 40 users on

a single node (ms) . 90

6.2 Probability density functions of passing response times in milliseconds for 1000

and 1400 users on a cluster of 40 nodes (ms) . 96

viii

7.1 Small-scale clustering overheads across 2 machines with increasing computation

loads (ms). 109

7.2 Small-scale clustering overheads across 2 machines with increasing computation

loads (ms). 110

ix

CHAPTER 1

Introduction

The idea of remote health monitoring has been gaining traction over the last few years

[1–8]. Health sensors are becoming cheaper and lighter, with greater connectivity and longer

battery life. As these devices become more readily available to the average consumer, the

possibility of remote health monitoring grows.

Remote health monitoring offers a variety of advantages over traditional health care.

Primarily, it allows patients to spend less time in a hospital setting, as well as reducing the

amount of man-hours needed to provide a safe environment. This reduces costs to both the

patients and care facilities, as well as reducing the stress of extended hospital stays, and also

the chance of contracting new diseases in the hospital itself.

Remote health monitoring also has the potential to provide more independence to those

who would otherwise need full-time care. Instead of living in a full-time care facility, if their

health status could be reliably processed, it would be possible to continue to live in their

own homes. This again can result in substantial savings in medical expenditures by both

the healthcare system and its patients.

1.1. Monitoring Health Stream Data

Several studies so far have explored the possibility of monitoring health and environment

sensors to assist in patient monitoring. In [8], several experiments were conducted where

patients were monitored in their own condos, while still meeting regularly with their doctors.

One finding was that computer models could often detect small changes in patient behavior

that indicated the onset of new symptoms often before the patients themselves felt that

1

something was awry. Their main focus was developing a system which could aid doctors in

the diagnosis and treatment of their patients.

In [3], programmers worked with doctors to produce a framework for computations that

more actively monitors patient status. This framework is designed to allow doctors to use

already existent monitoring code to actively monitor streaming data from sensors and raise

alerts once patient status has breached predefined thresholds.

These previous efforts have shown us several things. First, this is a field that is rapidly

growing, and one which will become increasingly necessary as the health care industry be-

comes more and more stressed. Second, such approaches are actually useful in the diagnosing

and treatment of patients; and from [7] we know that customization is important, as is the

ability to process health sensor data in real time, without waiting to run batch processes

on previously collected data. For many illnesses, early detection and treatment can greatly

impact quality of life. Processing data in real time to raise emergency alerts is vital in the

timely detection of illnesses.

The goal of this work is to provide a framework to perform custom computations on

health stream data in real time. This framework needs to be able to process incoming data

at least as quickly as it is generated, and needs to be safe and reliable for patients to use.

In order to provide any guarantee of safety for patients, it is important to implement robust

behavior through fault-tolerance.

1.2. Challenges in Robust Processing of Health Streams

Health stream data can be difficult to handle for several reasons. First and foremost,

patients are relying on their data being processed correctly and in a timely manner. Loss of

data or delays in processing could lead to user injury. A framework which supports health

2

stream computations needs to be robust to both failures and interference—it needs to be

able to adapt to changes in the state of the resource pool as well as to changes in data arrival

patterns on each and every stream that it is responsible for.

The data itself is the second major challenge. Health sensors typically generate data at

sub-second rates. In order to prevent a backlog of data, this data needs to be processed

at least as quickly as it is generated. This means we need to be able to process data

despite any fluctuations in data volume and arrival rates, failures of either whole machines or

communications between machines, and any interference between collocated computations.

1.2.1. Stream Fluctuations. We must expect health streams to change over time.

While this may occur slowly, over a period of weeks or months, for example in response to

changes in when the patient is most active as a response to changes in daylight hours, it can

also occur quite rapidly. For example, we can expect to see bursts during periods of interest,

sometimes unexpectedly triggered by the data itself. For example, sampling rates may be

increased for a cardiac patient if there is a chance that a cardiac event is occurring. This

holds true for other, non-health, streaming datasets as well. For example, the sampling rates

of sensors designed to track tectonic activity should be able to increase their sampling rate

if seismic activity has been detected.

1.2.2. Machine Failures. In distributed systems, as the number of machines compris-

ing the system increases, the likelihood of one of these machines failing increases significantly.

Since data is streaming in real time, we cannot simply wait for a machine to come back up

after failure. First, failures may not be transient, i.e., it is not guaranteed that that the

machine will come back up. Second, any data destined for a failed computation will be lost.

Since this is streaming data, and voluminous in nature, it is not amenable to buffering, so

3

data cannot simply be ‘replayed’ in the event of a failure. This also means that any com-

putations which rely on state will have a similar problem – once that computation fails, its

state is lost with it. Even if data has been stored to help ‘replay’ inputs in order to rebuild

state after a failure, such an approach is still infeasible, as the computation would need to

stay on top of incoming data, as well a processing previous data in order to rebuild state.

In such a situation, it is unlikely that the computation would ever manage to catch up on

its processing.

1.2.3. Interference between Computations. Computations would suffer no ad-

verse affects from interference if each machine hosted only a single computation. This would

also, however, be an incredible waste of resources as well as pose serious scaling problems.

In order to make more efficient use of our resource pool, multiple computations – sometimes

hundreds – are placed on the same machine. These computations need to share the same

limited set of resources, and any one computation which is using more resources than it was

originally allocated could cause delays in the processing of other computations. In a health

stream processing environment, such delays could lead to dangerous situations for patients,

and must be avoided.

1.3. Research Contributions

This dissertation contributes to both the field of distributed stream processing systems,

as well as the field of health stream processing. With respect to distributed stream processing

systems, we have incorporated support for failure-resilient real-time stream processing. This

includes a novel failure-detection scheme that is scalable while amortizing the control-traffic

costs associated with failure detection. Our failure resiliency relies on using replication for

redundancy. The replication levels are configurable on a per-computation basis, as are the

4

replication schemes. We include support for both passive and active schemes, alongside a

hybrid approach that strikes a balance in achieving fast failovers while minimizing duplicate

processing.

We have also designed a novel approach to interference detection and avoidance, lever-

aging machine learning techniques to not only infer computation placements with minimal

interference, but to try to predict future interference and take measures to avoid it. Current

approaches [2–8] have focused on much smaller scales, typically with more lax processing

constraints as well; where processing needs to be done on the order of seconds, not subsec-

onds.

The field of health stream processing has seen a boom in recent years, mostly focusing

on case studies proving that remote monitoring can be beneficial for patients [8, 1]. These

studies happen at extremely small scales, usually evaluating the performance of a single

computation for a single user, nowhere near the scale that we are working to support. Such

studies have usually been run from a health care background, meaning better knowledge of

what needs to be supported, as well as access to applications which are currently being used

to monitor health data, and have been vetted by professionals. We expand on previous work

by exploring the problem from a computing background – how can we leverage what we have

learned so far to support larger numbers of patients? How can we ensure that this is a safe

transition for patients? How much of this process can be automated?

1.3.1. Contributions to Computer Science. This work extends the field of com-

puter science in several ways. First, it adds fault-tolerance capabilities to Granules [9, 10]

stream processing system. This is the first fault-tolerant system which supports arbitrary

computations.

5

Aside from fault-tolerance for arbitrary computations, we have also developed a system

which detects interference between collocated computations. Our system takes into account

data arrival rates at sub-second intervals and uses this information to not only help detect

current interference, but also predict future interference.

We use a novel approach which blends both machine learning techniques as well as

traditional distributed systems responses to fault-tolerance. This work not only expands the

field of health stream processing, it also represents an important step forwards for generic

stream processing as well. Our framework is suited to any stream processing paradigm, and

can provide support for any system that needs to process data in real time.

1.4. Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we survey the use

of replication across various distributed systems. Chapter 3 outlines the requirements of a

system that needs to support real time health stream processing, the goal we are trying to

accomplish with this work, while Chapter 4 introduces the components we have developed to

meet these requirements. In Chapter 5 we describe our failure detection and recovery system.

Chapter 6 describes our replication system and how it works with the failure detection system

to prevent data loss during failures. Chapter 7 introduces our interference detection system,

while Chapter 8 focuses on how we mitigate detected interference. In Chapter 9 we conclude,

discussing the contributions of this work and its place in the current literature, as well as

our plans for future work.

6

CHAPTER 2

Background

Many distributed systems solve problems with fault-tolerance and load balancing through

the use of replicas. We also use replication as the basis of our robust framework. This chapter

is devoted to an exploration of replication schemes across distributed systems.

2.1. Evaluating Replication Schemes Across Distributed Systems

Distributed systems harness many machines together to perform a task which would be

either impossible or impractical on a single machine. In such a system, failure is expected,

so steps must be taken to ensure failures are not catastrophic and do not violate service

level agreements. The predominant approach to solving this problem of fault tolerance is to

create copies of processes and data across multiple machines, a technique called replication.

With this approach, if the machine which is running the initial or primary version fails, one

of the copies, or replicas, can take over and either restart or finish the task. This approach

is utilized across many types of distributed systems. In this paper we take a close look at

various replication schemes across traditional distributed systems, such as distributed file

systems (DFSs), cloud runtimes such as Hadoop [11] and Dryad [12], as well as explore

several approaches found in distributed stream processing systems (DSPSs).

DFSs, cloud runtimes and DSPSs have different baseline requirements and service needs,

and tend to leverage their replicas in slightly different ways. For example, a DFS would

need to handle multiple accesses to a single file, but can generally handle short periods of

interruption. A DSPS, on the other hand, needs to deal with continuously streaming data,

and can suffer drastically from even a short failure. Systems such as Hadoop and Dryad

share some similarities with both of these approaches.

7

Replication approaches to fault tolerance have been developed independently in these

systems, with little work studying their crossover [13] applications. Here we perform a

deeper study focused on specific implementations of replication-based fault tolerance.

Eric Brewer’s CAP theorem [14] is an important factor to consider when comparing dis-

tributed systems and their tradeoffs. In short, this theorem states that large-scale distributed

systems need to sacrifice in either Consistency or Availability when there is a network parti-

tion. Databases choose consistency and make the entire system unavailable during a network

partition. Cloud scale systems choose availability and compromise on consistency by relying

on what is referred to as the eventual consistency model. This is a very important concept

when analyzing the effectiveness of various replication approaches.

Previously, Wiesmann, et al. ,[13] performed a brief study comparing basic replication

schemes from both replicated databases and distributed systems. In this paper, the authors

developed a neutral model to help explain replication schemes at a high level in order to

classify replication schemes from different fields. Their work assumes a traditional replicated

database, and a distributed system such as a DFS.

In a replicated environment, there is a primary instance which is responsible for all trans-

actions. The primary instance then has a number of replicas, placed on different machines

so they can continue running even if the primary dies. In active replication, the primary as

well as all backup nodes are constantly active. Alternatively, in passive replication only the

primary is active at a given time.

2.1.1. Active Replication. Within the broad definition of active replication, several

variations can be found. For example, while every replica generates results, some implemen-

tations may only send results from the primary replica. In other situations, generated results

may be compared before achieving a consensus and deciding on a result. Active replication

8

allows state to be built easily among all replicas as inputs arrive, which means it is a good

choice for stateful computations where the increased resource footprint balances out the cost

of losing state.

In general, active replication will always have a larger resource footprint than passive

approaches. At the minimum, an active replication scheme requires the memory, CPU, and

inbound networking bandwidth to be scaled up with the replication level. For a replication

level of three, essentially three times the resources are required. In the cases where not all

replicas forward results to the producer, the outbound networking bandwidth is reduced, but

this may be relatively small gain. Active replication tends to have much quicker fail-overs –

the time until the system can detect and recover from a failure – than passive approaches;

where passive approaches need to start up a replica and then redirect input and outputs,

the active approach generally takes no longer to fail-over than the initial failure detection.

Active replication is a good choice for computations where state needs to be built up over

time. This is a trait which is most often found in distributed stream processing systems,

where data is constantly streaming into the network. By letting all replicas see all inputs,

we should not have any consistency problems after a failure. The one caveat to this is the

case where processing involves a non-deterministic or stochastic operation at each replica.

In this case a passive replication scheme which can pass state information to replicas may

be the best way to achieve near-consistent results.

2.1.2. Passive Replication. Passive replication has a much smaller resource footprint

than active replication schemes. In these approaches, only one replica is active at a time: the

primary. There are two main ways in which passive replication is implemented. In the first,

all replicas are instantiated, yet remain dormant until needed. Once the failure has been

detected, inputs and outputs are redirected to point to and from the replica which takes the

9

primary’s place. In the second case, the replicas may not even be instantiated until needed.

This approach has the lowest overheads, but the highest cost with respect to failover time.

To help reduce failover time, passive replication schemes can transfer state from the

primary to the replicas, in a process commonly called distributed synchronization. It is

important to realize that by performing this synchronization operation we are bringing the

replicas up to a full processing footprint for a portion of time. In this case we are again

creating a bigger memory, CPU, and network I/O footprint, losing some of the benefits of

using passive replication.

Passive replication is well-suited for stateless operations in environments where resources

are at a premium and some delay in processing is acceptable. Delays occur during synchro-

nization (if implemented), as well as when recovering from failure. Unlike an active approach,

where the replicas are all fully active and have been receiving inputs and generating outputs

all along, passive replicas need to spend some time recovering functionality – as they are

usually in a dormant state – and all inputs and outputs need to be redirected to point to the

new primary. Passive replication schemes can support stateful operations if checkpointing is

implemented, but this comes at the cost of an increased resource footprint.

2.1.3. A Framework to Compare Replication Schemes. [13] discuss a method

for analyzing distributed file systems (DFSs) and distributed databases. By abstracting the

idea of replication into a neutral model, we can see a direct and fair comparison of these two

types of systems. Here, we expand on the work first discussed by [13] to look at specific,

current DFSs, the cloud computing frameworks which run on these DFSs, as well as several

replication schemes implemented in DSPSs.

In the original work, operations were broken down into a five-phase process:

: Request – the client submits an operation to the replicas.

10

: Server Coordination – the replicas coordinate to synchronize execution (to pre-

serve order of concurrent operations).

: Execution – the operation is executed.

: Agreement Coordination – operation outcome is agreed upon (to preserve atom-

icity).

: Response – the outcome is transmitted back to the client.

The authors claim that the order in which these processes execute helps to define the

replication approach of the distributed file system or distributed database operation. With

several approaches, some of these phases are iterated over, while other phases may be skipped

entirely. For example, in a purely passive replication scheme where only one replica is active

at a time, there is no need for the Server Coordination or Agreement Coordination phases.

While we can use this notion of an abstract execution of phases which makes up repli-

cation, [13] were interested in comparing distributed file systems and distributed databases.

We are focusing on distributed file systems, cloud computing frameworks, and distributed

stream processing systems. While these phases do not directly translate into the distributed

systems we discuss, we have used this idea to develop a new set of phases to help describe the

communication patterns in these systems. The biggest differences arise because the original

work assumes a much stronger consistency model than we see in the distributed systems

discussed here (hence the multiple, distinct coordination phases), as well as assumed client

interaction. The client interaction phases are most confusing in the context of DSPSs where

data is constantly streamed. To remove some of this ambiguity we have developed a slightly

different set of stages:

11

: Data Entry – Data enters the replicated process. This data may be supplied by a

user, an orchestration process, an upstream replicated unit, or some other producer

of data.

: Coordination – Replicas may contact each other and share information. In some

implementations, this stage may not appear at all, while in others it may appear

multiple times.

: Execution – Data is processed. With a cloud runtime or distributed stream pro-

cessing system, this means performing the specified operation on the data. With

the distributed file systems, this means writing/reading the data.

: Results/Response Generated – In the case of a write in a DFS, a confirmation

is sent signifying the write proceeded correctly. In the case of a read, the data is

returned to the user. With a cloud runtime or DSPS, this generally means that

the results are then passed on to the next stage of the computation or some other

consumer of the results.

In the rest of this chapter, we use this framework to help analyze and classify replication

schemes across distributed systems. For each replication scheme we discuss, we will be

investigating the following specific points:

: Replication Goal – What is the ultimate goal of replication in this system? Repli-

cation may be used to provide increased availability, fault-tolerance, correctness, or

to increase processing speed. An important aspect of each replication approach is

understanding the primary purpose of the replication scheme.

: Replica Placement – How does this approach place replicas? Replicas should not

all reside on the same machine, as this would negate any fault-tolerance gained by

12

instantiating replicas. Additionally, the system load needs to remain balanced. If a

single machine is overloaded, a weak point has just been introduced into the system.

: Replication Level – How many copies are made of the process/data? While a

larger number of copies means a smaller chance of complete, unrecoverable fail-

ure, maintaining excessive copies means that less data/computations overall can be

stored in the system. Finding a balance of resilience while avoiding redundancy is

a difficult problem.

: Synchronization – When stateful information needs to be passed between replicas,

the synchronization policy becomes vital. Replication is not effective if a backup

does not produce correct results. Synchronization schemes help to ensure that fail-

ures do not affect correctness. This is directly related to the coordination phase

described above.

For each distributed system analyzed in this paper, we explore how these four factors

interact. By understanding how these factors work together, we reveal the various tradeoffs

inherent to each approach. The goal of this work is to provide a comparison across a broad

selection of distributed systems, providing a unique insight into the strengths and weaknesses

of these systems. As we analyze each approach to replication we will also look at the cross-

cutting tradeoffs of:

• Memory Utilization

• CPU Utilization

• Network I/O

• Consistency and Availability in the presence of failures

13

2.2. Replication in Distributed File Systems

Distributed file systems have several unique characteristics. They manage files on disk,

but also need to handle incoming requests from multiple users in real time. Each system may

have very different ideas about what user interaction will look like, such as long, sequential

reads and writes vs. short, random reads and writes. Each system is then designed around

these assumptions. They also may need to handle situations where there are partial network

disconnects – can a user continue modifying a file while they are disconnected from the

network? An example where this behavior is desirable is when working with a file on a

mobile device. Even if a mobile device holding the primary copy of a file is disconnected

from the network, users connected to the network should be able to view even modify the

file. In this section, we will be focusing on writes, the more challenging process in DFSs.

Reads are usually a much simpler operation, and often involve only communicating with a

single node, and does not generally create conflicts.

In [15], Gray, et. al. explore the challenges of replication in a distributed file system.

To understand the tradeoff space of a distributed file system, they work with a fictitious

file system with naively implemented replication schemes. Most importantly, the focus was

on replication schemes where all replicas had very strong consistency needs. This means

that all replicas need to reply that the changes have been successfully performed before any

modifications can be finalized. The authors are assuming that these operations have strong

ACID (atomicity, consistency, isolation, durability) guarantees, which are normally relaxed

in a distributed environment due to the difficulty of maintaining consistency [16].

While there is the obvious problem of making headway while users are concurrently

connected and attempting to update the same pool of files, the slightly subtler problem

occurs with an explosion of networking overhead seen in this type of environment. If the

14

primary and all replicas need to pass messages before and after any change is made to a file,

each transaction cost is multiplied by the number of replicas. If transactions are expected to

come at a steady rate, the number of deadlocks arising from attempts at concurrent writes

will grow at the same speed. From [15]: “A ten-fold increase in nodes and traffic gives a

thousand fold increase in deadlocks or reconciliations.” The bottom line is that fully active

replication in a DFS is impractical and doesn’t scale.

2.2.1. Google File System. The Google File System (GFS) [17] has been designed

to handle long, sequential reads and writes. This means the system may have reduced

performance when trying to perform many short, random reads and writes. GFS was also

designed under the assumption that the primary users would be applications attempting to

read and write files, instead of humans. The advantage of this approach is that there is some

built-in leniency for consistency. Where a file which needs to be read by humans can have

no extra or garbage bits, this is an acceptable approach when applications are expected to

be the primary users of a file system. It is simply then a requirement that any application

using the file system is capable of recognizing and skipping over any garbage bits which are

left as the result of inconsistencies when writing data.

GFS is able to store extremely large files by breaking these files into pieces, or chunks.

This means that even an extraordinarily large (as in multiple petabyte) file can be easily

stored in GFS. These chunks are also more easily loaded in memory, meaning that heavily

accessed files can remain in memory, reducing the amount of time needed to obtain a file

from GFS by cutting out the bottleneck of reading from disk. While replication levels are

set at the folder level, each chunk of every file is independently replicated across multiple

machines. This dispersion allows for concurrent parsing of files using MapReduce [18].

15

Replication Goals. The primary goals of replication in GFS are fault-tolerance and avail-

ability for concurrent processing with MapReduce. In the event that a machine fails or

a replica becomes corrupted, there is another copy somewhere else in the system. When

one replica is lost, the remaining copies are responsible for making sure another replica is

introduced to the system to return to the appropriate replication level.

Replication is prioritized based on whether the chunk belonged to a live file that is being

actively read/written to and how far the replication level for the chunk is from its desired

replication level.

While it is not the main goal, replicas in GFS can also help provide decreased latency.

Replicas are spread between geographically disparate data centers, so the primary can be

chosen as the replica closest to the client. This is possible due to Google’s internal IP

assignment scheme, which allows the system to infer location from IP address.

Replica Placement. Google assumes that their datacenters are safe and controlled envi-

ronments. Part of this means that they can trust the IP addresses of the servers to accurately

reflect server placement. Google makes use of rack awareness to ensure that all replicas are

not lost with a single failure. While the exact behavior of this mechanism is not detailed by

[17], it is clear that: a) replicas are never located on the same machine, and b) some effort

is put into making sure that replicas are located in different failure zones – meaning they

may be placed in different data centers entirely. This approach ensures that no data is lost

for small, localized failures – such as loss of power to an entire rack; as well as large-scale

failures – such as the loss of an entire data center.

Replication Level. By default, GFS has a replication level of three for every file. This

replication level is maintained across all chunks which comprise this file. GFS also allows

users to set a default replication level on a per-directory basis. This allows users to designate

16

a /tmp directory which is not replicated. This helps to avoid unnecessary replication of files

for which replication guarantees are not needed.

Synchronization. When a user is writing to GFS, a single replica is chosen as the primary.

This one node is then responsible for synchronizing file modification across the group of

replicas. GFS streamlines communications by having all interactions between replicas occur

in a chain which leverages internal network topology information. The client only sends data

to the closest replica, which then forwards any data to the other replicas. This streamlined

approach allows large amounts of data to be written quickly, while having a single replica

take the lead for synchronizing writes simplifies the task of concurrent writes.

GFS also provides availability by reducing the constraints on consistency. GFS will not

block writes, so there is the chance that concurrent write requests may append data in an

inconsistent manner. Because of this, replicas in GFS are never guaranteed to be byte-wise

identical.

Supporting Concurrent Writes. At first glance, GFS appears to be an active replication

scheme – all replicas are constantly active, and a user may communicate directly with any of

the replicas. This view is a bit simplistic, however. In GFS, a client only ever communicates

with one replica at a time, the primary. This primary is responsible for ordering concurrent

operations as well as ensuring that writes are successful across all replicas. This supports the

model of a passive replication scheme, where the primary performs operations, and pushes

state information to the replicas as necessary.

Using the stages developed by [13], we see the outline of communications shown in Figure

2.1. As we can see, the client first pushes data to one of the replicas, in the Data Entry phase.

After that, we see the first Coordination phase where the data is pushed to all other replicas.

Once this has happened, the client can tell the primary to write. In the second coordination

17

Client

Data Entry Coordination Execution Coordination Results/Response
Generated

Replica 1

Replica 2

Replica 3

Client Client

Figure 2.1. Flow of communications for GFS

phase, the primary passes the write command along to the other replicas. The replicas then

respond to the primary once all data has been written, and the primary informs the client of

the successful write. These two stages of communication make GFS stand out in this study

– all other DFSs discussed here only contain a single stage of coordination among replicas.

While this does mean that GFS incurs a higher communications overhead, this two-phased

coordination step allows GFS to handle concurrent writes gracefully and actually helps to

increase the availability of the system.

2.2.2. Hadoop Distributed File System. The Hadoop Distributed File System

(HDFS) [19] is an open source implementation of GFS. While based on GFS, the fact that

HDFS is expected to run in a variety of environments (instead of solely a safe, known envi-

ronment), leads to several distinct differences between the two file systems. HDFS also has

stricter consistency guarantees, as its clients are not expected to be able to handle garbage

bits, or segments of failed concurrent writes.

Replication Goal. As with GFS, the primary goal of replication in HDFS is fault toler-

ance. HDFS is capable of making sure that replicas of each data chunk are kept on different

physical machines to ensure that a single machine failure is not catastrophic. Given that

HDFS needs to run in an unknown environment, this is a more difficult task in HDFS than

in GFS.

18

Replica Placement. Like GFS, HDFS can make sure that replicas are not on the same

machine, and it tries to make sure replicas do not all exist on the same rack. Unlike GFS,

however, HDFS cannot determine machine location from IP address – since HDFS can be

run by anyone anywhere, it is impossible for the system to automatically detect machine

location. From [19], the general approach to replica placement (when there are 3 replicas) is

to place the second replica on the same rack, but a different node than the primary. This can

help to cut down on increased inter-rack communication, which may be costly. The third

replica is then placed on a different rack entirely. HDFS is able to ensure this only when

users supply rack information, otherwise the system has no way of knowing which machines

are on which rack.

Another interesting problem HDFS faces with replica placement arises from the oppor-

tunity to run it on resources such as Amazon’s Elastic Compute Cloud (EC2) resources as

explored by [20]. This is particularly troublesome if Amazon’s small resource is used [21].

In an elastic environment, where more machines are added as needed, it is difficult to ensure

replicas are not stored in virtual machines (VMs) hosted by the same physical machine.

Replication Level. Like GFS, HDFS has a default replication level of 3, which may be

reconfigured when starting up the cluster. HDFS allows a replication level to be specified as

files are produced or even modified after the file has been created. While this seems to allow

more options than discussed in GFS [17], it is not clear whether or not similar behavior is

supported in GFS.

Synchronization. HDFS assumes long, sequential, write-once behavior. It also assumes

that there will only ever be a single writer. This immediately reduces the number of consis-

tency problems which will arise, as failures occurring during concurrent writes is the primary

cause of consistency problems. While this strengthens consistency guarantees, it also reduces

19

Client

Data Entry Execution CoordinationResults/Response
Generated

Replica 1

Replica 2

Replica 3

Write

Client

Write

Write

Figure 2.2. Flow of communications for HDFS

the availability of the cluster. If another client already has a write-lock on a file, it is simply

unavailable for another user to write to the file.

HDFS also employs a pipelined approach to writing data, which is outlined in Figure 2.2:

The coordination phase can be seen as occurring throughout the results/response generated

phase as well as the coordination phase since the primary will report success to the client

as it sends on data to the replicas. This approach appears to leave a loophole for potential

errors if only the primary performs a successful write.

Sacrificing Availability for Concurrency. HDFS is more clearly an example of passive

replication than GFS. Where in GFS the client may initially push data to any of the replicas,

the client in HDFS only ever communicates with the primary. This again arises from HDFSs

need to function in an unknown environment. Where GFS can speed up writes by allowing

the client to start pushing data to the replica which is physically closest, in HDFS this isn’t

known so all communications must go through the primary. As clients only communicate

with the primary, this is a passive replication scheme with quick state updates – data is

passed on as soon as it has been processed.

As discussed above, we also see some interesting problems arising from the ability to

run HDFS on almost any platform. From EC2 instances where what appear to be different

machines may be the same physical device, to a hole in the write procedure – the primary

20

will report success back to the client before all writes have completed successfully. The

approach of only writing through the primary does let HDFS provide a stronger consistency

guarantee, but at the cost of availability since users are blocked from performing concurrent

writes.

2.2.3. Azure. Azure [22, 23] is Microsoft’s cloud computing framework. It has a tiered

architecture, where the storage solution runs on top of a fabric layer. This underlying fabric

layer is then responsible for monitoring individual system health and status. Through this

monitoring system, Azure is able to recognize machine failures and work to re-replicate data

as soon as failures are detected. Azure is not very well defined, so there are many open-ended

questions raised in this section.

Replication Goal. In the Azure storage system, the goal of replication is purely for fault

tolerance. As far as a client is aware, there is only ever one copy of the data – clients are

not aware of replication on any level. Azure guarantees read-what-you-write consistency, so

it seems likely that all read and write operations pass through a single, primary node.

Replica Placement. Replicas are spread across fault domains to ensure no data is lost

entirely should replication fail. A fault domain is defined as a group of machines which

will fail together should a single piece of hardware fail. From the whitepapers available

[22, 23], it appears that there are multiple fault domains in a single data center, and one

fabric controller per data center. Since the fabric controller is responsible for detecting failed

machines and replicating processes, it appears that Azure does not support inter-datacenter

replicas, meaning data may be lost if an entire data center goes offline.

Replication Levels. From [22, 23], Azure has three replicas for all data, so it has a repli-

cation level of three. This does not seem to be a modifiable value, though it is difficult to

be certain given the available documentation.

21

Synchronization. From the read-what-you-write guarantees, it seems likely that Azure

employs a pipelined write approach like in HDFS – once data has been successfully written

to the primary, it is forwarded and written to all replicas. It is unclear whether or not Azure

may suffer from the same loophole we see in HDFS where a write may not be able to achieve

full replication.

Azure Replication. It is difficult to classify Azure with confidence given the dearth of

information published so far. As discussed in the previous section, Azure’s read-what-you-

write guarantees seem to imply that passive replication is implemented here. The user is

expected to interact with only a single node at a time, and this node is responsible for passing

along information to the replicas.

Without specific details, it is difficult to fully understand the strengths and weaknesses

of Azure. One key point which was hinted at in [22, 23] is that replicas may not be able

to exist across different data centers. This means the fault-tolerance guarantees of Azure

are limited, possibly weaker than both GFS and HDFS. Additionally, if we assume that the

write strategy is closer to HDFS than GFS (limiting concurrent writes), Azure also suffers

from reduced availability in favor of stronger concurrency guarantees.

2.2.4. Distributed File Systems Trending Toward Passive Replication. The

distributed file systems discussed in this section are a cross-cutting example of modern DFSs.

These systems have seen extended usage and have withstood production workloads. In

general, we see that DFSs tend to fall into the category of passive replication solely for the

purpose of fault-tolerance. While all are looking to solve essentially the same problem, we

see that consistency and availability guarantees vary across approaches.

One trait which these DFSs all share is the requirement for a single node to be in charge

of returning replica location to clients and choosing primaries. GFS has a single master

22

node, HDFS the namenode, and Azure has the fabric controller. These all represent single

points of failure, and can cause delays to the system when one of these controller nodes fail.

While a single point of failure can limit system availability, it also makes the system simpler

to manage, and helps the systems remain partition-tolerant.

2.3. Replication in Cloud Runtimes

Cloud runtimes are generally designed to take advantage of a distributed file system,

allowing computations to be run where the data is, reducing communications overhead. We

see this pattern with the Google File System (GFS) and MapReduce, Hadoop Distributed

file system (HDFS) and Hadoop, and Azure and Dryad.

Cloud runtimes need to handle the same situations as a DFS where machines may un-

expectedly fail, as they are often running on top of DFS instances. Cloud runtimes often

rely on an underlying DFS, so we see a different approach to fault-tolerance than what we

have seen in distributed file systems so far. In this section we look at four different cloud

runtimes: MapReduce, Hadoop, Dryad, and BOINC volunteer computing.

2.3.1. MapReduce. MapReduce was developed by Google to handle the processing

of voluminous data. While the code to process the data may be simple, such as a grep

operation, the code to properly distribute the process, manage failures and recombine results

makes otherwise simple code unwieldy and difficult to understand or produce. MapReduce

builds off of primitives found in functional languages, such as Lisp, which allow the user to

split input data and run in separate processes, then recombine the results – a map, then

a reduce. Google’s MapReduce, as presented by [18], sets the basis for the MapReduce

paradigm.

23

When the user starts a MapReduce job, several processes are spawned. One of these

processes becomes the master, and is then responsible for coordinating the MapReduce

operation. The rest of the processes are then workers, which are assigned the map and

reduce tasks which make up the process. The master is responsible for detecting and handling

worker failure. Failure of this master means unrecoverable failure of the entire job.

Replication Goal. The primary goal of replication in MapReduce is to provide fault tol-

erance. Once the master decides that a worker node has failed, it will shift processing to

accommodate failure. Any map task which has been completed, yet not consumed by a

reduce task will be rescheduled to run, as will any task which was in progress when the

failure occurred. MapReduce stores intermediate results locally, so any completed yet un-

consumed tasks need to be rerun. Should a reduce node fail, only in progress tasks need to

be restarted – any completed tasks are stored in GFS, so are not lost when a single machine

fails. MapReduce can also make use of replicas to speed up processing as discussed below in

Replication Levels.

Replica Placement. MapReduce is expected to run on top of GFS, so the master node

will attempt to push computations to machines holding a copy of the input data. This is

applicable to map functions, but not to reduce functions. When a map task cannot be placed

on a machine which contains a copy of the data it needs to process, it will put the map task

as close to the data as physically possible (a possibility since Google can infer rack location

from IP address). When multiple replicas are live, the master will make sure that there are

never two identical tasks running on the same physical machine.

Replication Levels. MapReduce assumes GFS is the underlying file system, so it never

needs to work with a case where inputs are lost – there will always be a copy somewhere in

the cloud. To speed up intermediate writes, MapReduce writes these to local disk which is

24

relatively fast, but will not survive node failure. This means that MapReduce can successfully

run with a replication level of 1, simply restarting any failed process from the beginning.

By default, MapReduce has backup tasks [18] enabled, since this ability has shown that

it can provide a 44% increase in completion rates. Backup tasks allows processes which are

running slower on average to be scheduled across multiple workers. In this way, a faster

machine may be able to pick up the slack from a machine running more slowly – possibly an

effect of failing hardware, or overscheduling. This results in a replication level somewhere

between 1 and N, where N is the number of backup tasks launched. This reveals a side goal of

replication for MapReduce, as processing speed may be increased by introducing additional

replicas to the system. This approach helps to reduce the impact of processing bottlenecks,

but cannot help in an ideal environment.

Synchronization. MapReduce has no concept of synchronization. In a best-case scenario,

only one replica of any process is ever active at a time. When a backup task is started, these

replicas have no communication with each other and run in parallel until the task has been

completed.

Active Replication and a Single Point of Failure. MapReduce is an active replication

scheme – all replicas receive inputs and generate outputs. In a best-case scenario there is

only ever one replica active: the primary. While this also matches a passive scheme, where

only the primary receives inputs and generates outputs, when backup tasks are taken into

account MapReduce is clearly an example of active replication. An example of the flow of

communications in a MapReduce job can be seen Figure 2.3. The job is pushed to a single

replica, which performs the requested operation then passes on results to the next stage of

the computation. Should a backup task be started, the job will be pushed to a second replica

for processing, with no communications taking place between the replicas.

25

Data Entry Execution Results/Response
Generated

Replica 1

Client Client

Data Entry Execution Results/Response
Generated

Figure 2.3. Flow of communications for MapReduce, Hadoop, and Dryad

One weakness with this approach is the existence of a single master node. As discussed

previously, this master node is responsible for monitoring workers and orchestrating the

computation. If the master fails, however, there is no other node which can take over the

orchestration process – the computation simply fails. This single point of failure is a major

weakness of MapReduce, but was more than likely introduced to keep the approach simple. If

multiple masters are introduced to the system, the likelihood of problems due to partitioning

rise significantly.

2.3.2. Hadoop. Hadoop [11] is an open-source implementation of the MapReduce par-

adigm, originally started by Yahoo! but now an official Apache project. While based off of

MapReduce as defined by [18], Hadoop is more flexible due to its open-source nature, and

may be more advanced today than MapReduce.

Replication Goal. Much like MapReduce, the primary goal of replication in Hadoop is

fault tolerance. When speculative or backup tasks are enabled, Hadoop also uses replicas

to speed up processing times by running replicas in parallel in a winner-takes-all approach.

Results are taken from the task which finishes first, and passed on to the next stage of

execution.

26

Replica Placement. Like MapReduce, Hadoop attempts to place replicas on a machine

holding a copy of the input data. If a task fails in Hadoop’s map reduce framework, a new

task is simply relaunched on a different machine. While some effort is taken to find a node

which is not ‘overloaded’, this is not a well-defined term. It is important to stress again that

by default Hadoop does not launch additional replicas unless the master has determined that

a machine has failed, or backup tasks are enabled and a process is running slowly. While

Hadoop has a built-in speculative task launcher, there has been some research into developing

a more robust solution which performs more reliably in a heterogeneous environment [24].

This problem with heterogeneity becomes apparent when trying to run Hadoop on an

EC2 cluster. When using small instances, where multiple VMs may be sharing the same

physical machine, the processing power and resources available may differ drastically as the

VMs compete for resources. In such an environment, it is even possible that a job and its

backup task may end up sharing the same physical machine, causing the addition of more

backup tasks to create an even greater bottleneck.

Replication Level. Technically, Hadoop has a default replication level of 1, and a replica-

tion level somewhere between one and N (where N is the number of backup tasks launched)

if a speculative task launcher is used. The default behavior is to launch a new copy of a

task only after the original has failed, thus the default replication level of 1. When tasks

are speculatively launched (either with the built in scheduler, or with an external scheduler

such as LATE [24]), new tasks are speculatively launched once it is deemed that a previously

started task is running too slowly.

Synchronization. Like MapReduce, there is no synchronization between replicas. When

there is only one replica, there is nothing to synchronize with. When another replica is

launched (in the case of a failed/slow task), the task is restarted from the beginning with

27

the original inputs. In this sense, synchronization is handled by the underlying file system,

which is responsible for storing all inputs and providing them as needed.

Active Replication and Transient Failure. Like MapReduce, Hadoop is technically an

active replication scheme. In Hadoop, speculative tasks are disabled by default, so the situ-

ations where speculative tasks are assigned is assumed to be in a minority. Communications

in Hadoop follow the same pattern as we found in GFS, which can be seen in Figure 2.3.

White [11] states that the timeout for heartbeats (how long the system takes to detect

failures) is 10 minutes. This can reflect several different design decisions: 1) Hadoop jobs are

expected to be very long running – an average job is expected to take more than 10 minutes;

2) Hadoop expects short, intermittent network failures – even if the master loses contact

with a worker for a few minutes, there is still a good chance it is running successfully, so the

master should wait and see if it comes back before deciding that the machine has actually

failed.

While the LATE scheduler has been designed to work with Hadoop, it would be interest-

ing to see how it compares to Google’s MapReduce speculative scheduler. We do not have

access to Google’s MapReduce code, so we cannot actually perform this comparison, but

in theory the schedulers should be applicable across both Hadoop and MapReduce. Given

that LATE was designed specifically for a heterogeneous environment, it is likely that it

could outperform the MapReduce scheduler should they both be tested in a heterogeneous

environment.

2.3.3. Dryad. Unlike MapReduce and Hadoop, Dryad does not follow the MapReduce

paradigm. Instead, Drayad programs take the form of a directed acyclic graph (DAG) where

the vertices are operations (possibly DAGs themselves), and the edges are the communica-

tions bridges between stages of computation. Unlike MapReduce and Hadoop, Dryad does

28

not require Azure to be running underneath it. Drayad does, however, expect that large

inputs are broken up into pieces and spread among the machines in the cluster [12].

Replication Goal. The goal of replication in Dryad is fault tolerance, just as in both

Hadoop and MapReduce. In Dryad, it is assumed that every vertex on the execution graph

is a deterministic operation, so tasks can simply be restarted elsewhere in the cluster if a

machine fails. After a number of attempts to re-run a job, the job scheduler assumes there

is some unrecoverable error and cancels the job. From [12], it is not clear whether this limit

is configurable on a per-job basis, or something which needs to be set for the cluster on

startup.

Replica Placement. Much like MapReduce and Hadoop, Dryad has a single job manager

which is responsible for coordinating job execution. Additionally, the Dryad job manager is

expected to reside outside the cluster where the work is being performed. As such, if the

job manager machine fails the whole job terminates – there is no way to recover. This is

essentially the same as what happens in MapReduce and Hadoop if the master node dies.

Every program, or vertex of the job graph can specify a list of preferred machines in the

cluster to run on as well as minimum resource requirements. The job manager will then

perform greedy scheduling to place jobs – it works under the assumption that no other jobs

will be running on the same cluster. This means that a Dryad cluster will be underutilized,

and also hints that the average Dryad cluster is smaller than the average MapReduce cluster

– thousands of machines would be overkill for a cluster hosting only a single job at a time.

Replication Levels. Dryad has a replication level of one. While Dryad users are capable

of specifying where multiple instances of the same process should be run, they are expected

to operate on different portions of the input data, and Dryad does not treat them as inter-

changeable entities. Following this assumption: in an ideal situation, where the programmer

29

has perfectly designed execution graph and programs have been placed perfectly, there is a

replication level of 1. Dryad will start up replica processes in the event of failure, much like

MapReduce and Hadoop, but will not perform speculative scheduling.

One unique ability of Dryad is a runtime refinement of the execution graph. These

refinements take into account program placement, communication format, and graph layout.

For example, Drayad may add replicas for a fan-in operation. This approach can reduce

inter-rack communication costs by compressing results. In other instances, Dryad may decide

to replicate an existing vertex on the execution graph for the same purpose. While these

two cases are close to true replication, they are treated as unique computations by Dryad,

meaning a new replica will be instantiated should one of these operations fail.

Synchronization. Dryad has a replication level of 1, so no synchronization is needed.

Identical copies of a program, such as the result of a fan-out or -in operation, have no

communication and operate on different portions of the input space. This justifies labeling

Dryad with a replication level of 1. Again, this replication level means no excess processing

in a best-case scenario, but an increased cost of needing to restart from the beginning should

a process fail.

Active Replication with Underutilized Resources. Dryad is another example of active

replication. While no replicas are started until a failure occurs, all replicas (the primary)

receive all inputs and generate output. Due to the lack of speculative scheduling in Dryad,

it is more difficult to come to this conclusion than in MapReduce and Hadoop. While the

runtime refinements may appear to be replicas, they do not behave like replicas and are

treated as individual computations. Dryad shares the same communications footprint as

MapReduce and Hadoop, which can be seen in Figure 2.3.

30

One major inefficiency in Dryad is the assumption that only a single job is being run on

a cluster at a time. While this does reduce the amount of information which needs to be

shared between the worker nodes and the job manager, it also implies wasted resources. If

you are only running one job at a time on a cluster you are wasting processing power – in

MapReduce and Hadoop, it is assumed that many jobs may be concurrently running, allowing

computations to be interleaved across machines. It also suggests that Dryad clusters are

expected to be much smaller than MapReduce or Hadoop clusters (an average MapReduce

job may use 2,000+ machines [18]).

Another concern with Dryad’s approach is data loss. Dryad does not require Azure to be

running underneath it, so data is not necessarily replicated throughout the cluster. While

large data inputs are assumed to be partitioned across the machines, it is not clear if there

is any replication associated with the underlying DFS.

2.3.4. Berkeley Open Infrastructure for Network Computing. BOINC [25],

the Berkeley Open Infrastructure for Network Computing, is unique in this analysis. Unlike

the other cloud runtimes discussed here, it does not have an associated file system. It is

designed to allow scientists to easily distribute data and computations to a pool of volunteers,

hosting projects such as SETI@home, Proteins@Home, and Climateprediction.net.

The open nature of BOINC leads to several distinct design decisions. First of all, BOINC

jobs are expected to run in an untrusted environment. This means that unlike Hadoop,

MapReduce, and Dryad BOINC operators have no control over the machines in their work

pool. Machines operate solely on free CPU time donated by users, so machines may unex-

pectedly join or leave the pool of available workers. Additionally, BOINC operations may be

paused, delayed, or completely halted by volunteers unexpectedly. This notion of pausing a

process has no equivalent in the other runtimes we have discussed here.

31

Aside from a far less stable environment than other cloud runtimes, BOINC has to face

the additional problems of erroneous or malicious results. Erroneous results may arise from

impending hardware failures, such as a faulty hard drive corrupting data, or even flaws in the

hardware. Aside from erroneous results, users may attempt to return malicious responses.

Malicious responses may range from bogus results, to bogus processing times – an attempt

to claim more CPU cycles were donated than actually used. Because of this, replication in

BOINC plays two roles: fault tolerance to handle losses from the worker pool, and verification

to handle potential erroneous or malicious results.

Replication Goal. BOINC uses replication not only for fault-tolerance, but to surpass

the difficulties arising from operating in an untrusted environments. The approach of using

replication to verify results makes this framework stand out. BOINC also uses replication

to handle cases where clients are not able to continue processing – which can occur often

in a volunteer computing environment where the volunteer computation may be abruptly

dropped so that another process can use those cycles.

Replica Placement. Replicas of a specific task are never sent to the same machine, as this

would invalidate any verification steps. Computations can further affect replica placement

by designating a specific architecture or operating system on which to run replicas. This can

help when precision is needed and different hardware may return slightly different results.

Replication Level. In BOINC, two values are specified on a per-project basis: N and M.

For every unit of work which needs to be done, N replicas are generated and scheduled for

execution. M is some value where M ≤ N . After M results are in, the managing program will

then compare results in an attempt to determine a consensus. If there is no consensus, or

too many of the original N computations fail (such that M cannot be reached), another N set

32

of replicas will be scheduled for execution. This cycle will continue until either a maximum

limit on the number of replicas created is hit, or the scheduling attempt is timed out.

Synchronization. Synchronization in BOINC does not occur between replicas. Replicas

are simply created for one-shot computations – all data needed resides at a central server and

is sent out with the computation to be run on volunteer machines. Synchronization, such as

it is, occurs on the server side. When results are returning in from clients, the validater [25]

is responsible for verifying results against other replicas, and deciding if more replicas need

to be spawned off to determine a definitive result. When a definitive result has been found,

the volunteers who contributed to the result are awarded participation incentives, while any

still running processes are sent terminate commands.

Active Replication in a Volunteer Environment. Like the other cloud runtimes discussed

in this section, BOINC is an example of active replication. All replicas receive all inputs,

and are expected to run any processing in parallel. This fits the ultimate goal of BOINC

– verification through replication. All replicas receive the same inputs and run the same

process, so all results from the replicas should match. While variations between systems

may cause small differences in results, they all should fall within a margin of error. By

pruning results which fall outside this range, BOINC can identify erroneous or malicious

results. The flow of communications in BOINC differs from what we saw in the other cloud

runtimes, and can be seen in Figure 2.4.

BOINC is unique in expecting to run in an untrusted environment, meaning extra mea-

sures must be taken to ensure that valid results are returned, per the quorum method

described above. This approach is, however, wasteful: there will at a minimum be N −M

wasted replicas. While setting N and M to the same value means no work is wasted, it also

means that the entire job may be held back if a single replica is running more slowly than

33

Data Entry Execution Results/Response
Generated

Replica 1

Client Client

Data Entry Execution Results/Response
Generated

Replica 2

Replica N

Figure 2.4. Flow of communications for BOINC

the others – a likely scenario given that BOINC is designed to run in idle time on personal

computers. This difference between N and M is essentially the leeway that describes the

speculative or backup task space we see with MapReduce and Hadoop.

2.3.5. Cloud Runtimes: Active Replication in Stages. Cloud runtimes generally

rely on a replicated, external source for fault-tolerance with respect to inputs, and it is

assumed that it is cheaper to restart a job than to launch multiple replicas at the start.

With the exception of Dryad, all these approaches also have some leeway designed into

the system to help speed up processing. In MapReduce, stragglers are common, enabling

speculative or backup tasks can lead to a 40% increase in processing speed [17]. Should a

similar feature be designed for Dryad it stands to reason that it could lead to an equivalent

increase in performance.

An interesting trait revealed in this work is the tendency for cloud runtimes to be ex-

amples of active replication schemes, usually with a very low replication level. This is most

likely due to the assumption of an underlying replicated system responsible for holding in-

puts as well as a result of the type of applications expected to run in this environment. In

general, cloud runtimes assume that processes are one-shot computations which have a long

runtime.

34

One other trait inherent in all these approaches is that there are assumed stages to

computations. These stages do not execute in parallel, but sequentially. In the case of

MapReduce and Hadoop, the map phase is run and then the reduce phase is scheduled. In

the case of Dryad, the execution graph is broken down into stages which can be performed

in parallel – ones which do not rely on outputs of anything currently running to execute

correctly. Even in BOINC, there is never a case where programs are sent out which require

output from anything else currently running. This means that these approaches do not make

a good candidate for streaming data, where inputs are continuous and programs are made

up of chains of individual computations which feed into each other.

2.4. Replication in Distributed Hash Tables

Distributed hash tables (DHTs) are designed for persistent storage of data. All DHTs

support 2 main types of operations: a get(key) and a put(key, data). By introducing a

hashing function on all keys, it is possible to easily distribute data evenly among a pool of

available servers.

DHTs are designed to allow efficient lookup of data obtained through a consistent hashing

scheme. They are often used in place of traditional database schemes which do not scale

well in a distributed environment.

DHTs typically rely on an active replication scheme, much like a DFS. Replicas are

hosted on several disparate machines, and any can be accessed by a user for speedier lookups

(double-check). Peer to Peer (P2P) systems typically take advantage of replicas to reduce

the search space for objects stored in their network.

2.4.1. Chord. Chord [26] was designed as an efficient peer-to-peer lookup scheme. It

is a protocol which allows a user to quickly identify a node in a cluster given a key. This

35

approach is robust enough to handle lookups even when a cluster is in constant flux. By

associating data with these keys, Chorrd becomes a scalable storage solution in a distributed

environment even when cluster membership changes often.

Chord relies on each node knowing about a subset (logN) of its neighbors that are

organized in a hash ring. Any datastore built on the Chord protocol can implement a

replication level r simply by enforcing copies of data to be stored at any nodes r successors.

As this follows Chord’s default lookup path in the face of failures, this is a natural solution

to the problem of fault tolerance.

2.4.2. PNUTS. PNUTS (Platform for Nimble Universal Table Storage) is a storage

solution developed by Yahoo! PNUTS allows both a hash storage function as well as a more

traditional database storage with a table and row structure.

PNUTS supports replication at a data center level. This means that no single data

center will ever contain replicas, replicas only exist in geographically disparate locations.

By ensuring replicas are broadly dispersed, no single failure will completely destroy data.

Furthermore, PNUTS defines the primary copy as the replica geographically closest to the

user – through this method, PNUTS uses replication to cut down on latency. PNUTS is

designed to run as a hosted cluster which supports multiple different applications concur-

rently. Fault-tolerance and consistency guarantees are determined on a per-application basis,

so individual data items may have different numbers of replicas and consistency guarantees.

Replication Goal. The goal of replication in PNUTS is for both low-latency access and

fault-tolerance. An inability to respond to a client request for either of these reasons can

result in lost revenue, so it is important to avoid both. Specifically, PNUTS focuses on

achieving global low-latency guarantees. Their motivating application is a social networking

storage system. While the owner of information may live in one country, it is quite likely

36

that friends or colleagues may be trying to access this information from different continents

entirely.

Replica Placement. PNUTS is designed to have a replica stored in each PNUTS region.

“Backup regions” may be placed geographically close to the region they are serving, but they

are typically expected to be in different datacenters, spread across the globe. This allows

the system to achieve extremely low-latency reads no matter where the request originates.

This approach ensures that no replicas are on the same rack, or even the same datacenter,

providing excellent fault tolerance. One weakness of this approach is then the time needed

to query a replica that is geographically distant, which is necessary when failures occur.

Synchronization. PNUTS is built with the belief that eventual consistency is too weak. A

perfect example of this can be seen from their motivating application of a social networking

backend: A user wishes to post pictures from spring break, but does not want their parents

to see them. First, the user removes the parents access to their photo feed, then posts the

photos.

In a system which only supports transactions with eventual consistency guarantees, it is

possible that the parents will be able to see the photos before the access change is processed.

For such operations, PNUTS needs to be able to ensure that updates will be applied serially

at all replicas.

Fine Grained Replication Providing Stronger Consistency Guarantees. While all data in

PNUTS is replicated, it is actually tracked at a per-record level. Other database-styled

replication schemes typically replicate at the table (or portion of) level. At these scales,

latency needs to be sacrificed in order to provide stronger consistency guarantees – a user

would need to lock out the whole table until an update operation is complete. Since PNUTS

tracks replication on such a small-scale, it can provide the stronger consistency guarantees

37

without sacrificing latency. The primary copy is automatically chosen as the one closest to the

most write accesses. PNUTS utilizes this in combination with its underlying communications

system, YMB (Yahoo! Message Broker). YMB ensures that all updates to a single broker

will be applied in order at all other brokers. Each replica is connected to only one broker,

meaning that all updates to a primary are guaranteed to occur in order at all other replicas.

Using a fine grained approach to replication ensures that the majority of writes are occurring

through the primary.

2.4.3. Cassandra. Cassandra was developed by Facebook, with the primary goal of

providing high write throughput. This runs counter to the approach found in many dis-

tributed storage solutions, where the paradigm is more focused on read throughput.

Cassandra is designed to store highly structured data accessible by a hashed row key.

Any operation on a row of data is considered atomic, even if the operation affects multiple

columns in this row. Cassandra nodes are expected to undergo transient failures, so relies on

a journaling system to persist data to local disk. In the event of permanent failures, replicas

can be used to reconstruct lost data.

Replication Goal. Replication is used in Cassandra to ensure high availability and dura-

bility. Each row in the table is replicated across multiple data centers so that even the

complete failure of a single data center will not result in outages. Cassandra assumes that

most failures are temporary and requires an admin to launch rebalancing operations, so

nodes rely on both data persisted on disk as well as any changes that are currently being

held in memory.

Replica Placement. Each Cassandra instance has a unique replication policy. Cassandra

currently supports three different policies: “Rack Unaware”, “Rack Aware”, and “Datacenter

Aware”. “Rack Unaware” schemes are the easiest to implement, and simply involve having

38

the primary host choose N − 1 successors along the hash ring to host the replicas. For both

the “Rack Aware” and “Datacenter Aware” approaches, Cassandra relies on a Zookeeper

node to coordinate replicas.

Synchronization. Replicas are synchronized on both reads and writes. Synchronization

is achieved through the simple process of “last write wins”. On both read and write opera-

tions, the system will query all nodes hosting replicas. Using timestamps, it determines the

latest data and will schedule a repair of data for any replica which does not have the latest

timestamp. For systems which need higher throughput, Cassandra will allow asynchronous

writes, which can result in more repairs of data if replicas did not successfully perform the

write by the time the next synchronization check occurs.

High Write Throughput for Structured Data. Cassandra was designed to allow the storage

of more traditional, structured data in a distributed fashion. While it supports the idea of

tables, with rows and columns, it is stored by an order preserving hash of the row keys. This

means it can be easily stored with a DHT, while remaining searchable.

Cassandra further stands out in the fact that it can be optimized for high write through-

put. This is far different from the ‘write once read often’ paradigm we saw with distributed

file systems, and can put considerable stress on the hardware in a distributed system. Cassan-

dra gets around this problem by using a journaling approach, where all writes are sequential,

minimizing wear and tear on the hardware, while greatly increasing write throughput.

2.4.4. Dynamo. Dynamo [27] is Amazon’s custom DHT designed to provide highly avail-

able key-value lookups for a variety of applications. While Amazon’s Shopping Cart feature

is the most notable customer of this tool, it is used across a variety of applications, including

the catalog, which requires vastly different guarantees and use-case scenarios. Dynamo is

designed to be versatile, and customizable based on a per-application basis.

39

Replication Goal. The primary goal of replication in Dynamo is availability. Regardless

of natural disasters destroying data centers, routing problems, or hardware failures, users

need to be able to view and modify their shopping cart. Any degredation in performance

can be directly linked to monetary losses as customers cannot be satisfied and will take their

business elsewhere. At all times, at least one replica needs to be available so users will not

simply lose all data.

Furthermore, Dynamo is designed to guarantee quick responses. A slow response time

could again result in lost revenue. Replicas are also leveraged to ensure quick response times

to user requests. Instead of seeking to satisfy an average response rate to all queries, Dynamo

seeks to meet a response rate in milliseconds for 99.9% of all queries.

Replica Placement. In Dynamo, replication is specified on a per-instance basis, setting

a replication level of N for all data. Dynamo guarantees that this data is contained on N

different physical machines. Dynamo refers to these replica nodes as a preference list which

all other nodes in the system can easily compute. This means any single node in the system

can quickly find all replicas of a data item.

In order to achieve better balance of data access across the hash ring, Dynamo makes

use of “Virtual Nodes”, where a single physical device is actually responsible for multiple

hash regions. Systems which use virtual nodes need to take this information into account to

make sure that no replicas are hosted on the same physical device.

Synchronization. Dynamo allows consistency guarantees to be set on a per-application

basis. For applications such as the shopping cart which needs to be always write and readable,

this results in very low consistency guarantees, where reads and writes will succeed with very

low quorum requirements – in the case of the shopping cart, only a single replica needs to

report success before success is reported to the client. While Dynamo is capable of resolving

40

inconsistencies between replicas without outside intervention by simply using the ‘last write

wins’ paradigm, this is inadequate in many situations. Dynamo’s true strength lies in the

ability to keep track of versions of data. When Dynamo has multiple available versions, it can

pass off the decision of which version to keep to the client. While this results in more business

logic on the application side, it also means client applications have much more control over

their data, and can take full advantage of Dynamo’s loose consistency guarantees.

Customizable Storage Solution. Dynamo’s goal is to provide storage for a large number

of disparate applications. This need to fulfill a variety of different roles makes Dynamo stand

out in this review. Instead of being developed to solve a particular problem or use case, it is

designed from the ground up for multiple use cases. One of the motivating use cases is as a

catalog store. This is a write once, read often use case, where the contents are uploaded in a

batch process, then remain mostly unchanged for long periods of time. Another motivating

use case is the shopping cart – this application requires more writes than anything else.

Yet another use case is to retain user state across sessions, which requires an equal read

to write ratio. By giving clients access to more of the inner workings, such as allowing

application owners to set their own read/write quorum numbers, and even implement their

own synchronization logic, Dynamo becomes a powerful tool.

2.4.5. Alternative Methods to Achieve Fault Tolerance. While replication is

an effective method of achieving fault tolerance, it also is a drain on resource usage. With a

replication level of 3, it is only possible to utilize 1
3

of your total disk space. This tradeoff of

availability and resource usage is inherent in replication schemes. In order to alleviate this

problem, erasure and network coding schemes have been explored in the context of DHTs.

2.4.5.1. Erasure Coding and Network Coding. Erasure and network coding involve dif-

ferent implementations, but the baseline premise is the same. If you have a replication level

41

of 3 for all data items you store, you can only store up to 1
3

of the data you could potentially

hold. Erasure and network coding ensure that data is still recoverable in the face of multiple

failures, but allows a reduced storage footprint. With smaller footprints, data can be stored

more efficiently, and the overall cluster utilization is improved.

Network and erasure coding can build an entire data item from a subset of pre-computed

codes. These fragments can also be used to increase throughput – a user can ask the cluster

for the data item, and only needs to receive subset data items before the original requested

data can be constructed in its entireity.

2.4.5.2. Why not in other approaches? At first glance, erasure or network coding seem

like an ideal solution for storage. These approaches, however, are only seen in the area of

distributed hash tables. One problem with erasure and network coding is lack of flexibility.

An entirely new encoding must be calculated if the encoded data is modified. In a distributed

file system, files are written incrementally by running computations. While these systems

eventually hit a stable point (they generally follow the write once, read many times paradigm)

the initial creation and update process would swamp the system with continuous changes

needed for erasure or network codes.

2.5. Replication in Distributed Stream Processing Systems

Where fault tolerance through replication has several concrete examples in both dis-

tributed file systems and cloud runtimes, it is more of an open problem in the field of

distributed stream processing systems. Constantly incoming data adds a new dimension of

difficulty to the problem of fault-tolerance. Unlike cloud runtimes where input data is saved

to file, simply restarting a process in a DSPS implies a heavy loss of data. While an active

approach would ensure no data is lost in the event of failure, it also implies a replication of

42

resource usage. This may be a problem in a system which is hosting many computations si-

multaneously. If a passive approach is used, there is a much smaller footprint, but extra care

needs to be taken to ensure that no incoming data is missed after failure has been detected.

A passive replication scheme may also need to negotiate the transfer of state information

between replicas if the computation builds state while executing.

Processing in a DSPS is further complicated due to the way computations are typically

staged. As mentioned previously, a DSPS computation generally consists of multiple smaller

processes chained together. All these stages of a computation need to remain active at all

times, to handle streaming inputs. This means that any single machine may be hosting

portions of multiple computations at a single time, so the failure of a single machine may

disrupt multiple computations managed by the DSPS.

DSPSs expect a continuous flow of incoming data, and have been designed to perform

SQL-like queries on these streaming datasets. They have been deployed in fields such as

stock analysis, telecommunications management, as well as host threat detection [28]. These

approaches rely on distributed stream processing middleware such as Synergy [29], Borealis

[30], or System S [31] as a basis for communications, which help forward data correctly, and

can help place primary replicas. Work on replication in this environment has been extensive,

with several different approaches analyzed.

In this section, we use a slightly different format for our analysis. Much of the research

on replication in DSPSs focuses on a portion of the replication space, such as placement or

synchronization schemes. Due to this, we have altered our analysis format accordingly.

2.5.1. Replication Goals in Distributed Stream Processing Systems. In DSPSs,

the goal of replication in passive schemes is purely for fault-tolerance; should the primary

fail, there is another replica willing to step up and take over processing. In active replication

43

schemes, however, there is usually more variation in replication goals. For example, the main

goal of replication in [28] is to increase processing speed. It is able to increase processing by

a factor of N, where N is the number of replicas in the system. One interesting thing to note

about this approach is that it assumes a stateless computation as well as a large amount

of incoming data. In this approach the incoming data is split up among the replicas and

processed independently at each. Since there is no state maintained at any of the replicas,

only allowing a replica to see a portion of the input will not effect later computations.

One weakness to this approach is that by using all replicas in unison we are essentially

losing some measure of fault-tolerance. Instead of a typical active replication scheme where

any replica can step up in case of failure, we are now in a situation where losing one replica

can mean the loss of a portion of the input data.

Active replication schemes can also leverage replication to help reduce latency. Instead

of waiting for the primary node to provide a result, the consumer can simply use the first

result provided – this helps to alleviate any network delays. The program flow for this type

of active replication is shown in Figure 2.5: The upstream client sends inputs to all replicas,

and the downstream client receives output from all the replicas. This approach has the

highest overheads, as all replicas are running all the time and every replica is receiving all

inputs and producing outputs (for N replicas, N times the networking bandwidth is used).

On the other hand, there is no cost if failure occurs – inputs and outputs are already set up

and the correct state has been built up at each replica. The system then doesn’t even need

to recognize that one of the replicas has failed, the consumer simply continues to choose the

first output produced.

There are also active replication schemes which exist solely for fault tolerance. An ex-

ample of this is active standby as explored by [32]. While losing the ability to speed up

44

processing by splitting inputs across all replicas or reduce latency with a winner-takes-all

approach to output, active standby maintains the ability to build consistent state at each

replica. All replicas receive all inputs, but only the outputs produced by the primary are

passed along to the next stage of the operation. This helps to reduce networking overheads,

while maintaining the lower failover times found with active replication schemes. The pro-

gram flow for active standby is shown in Figure 2.6: While all replicas receive inputs, only

the primary is passing a result to the downstream client, which can add a slight delay to

recovery times – once a failure has been detected, the outputs from the new primary need

to be redirected.

2.5.2. Replica Placement in Distributed Stream Processing Systems. Plac-

ing replicas in a DSPS is not a simple task. Unlike DFSs or cloud runtimes, DSPSs generally

have a chain of tasks which all need to be performed sequentially, in real time to success-

fully process incoming data. The placement of replicas for all the tasks which make up a

processing chain can be vital to the performance of the overall process as well as any other

processes hosted by the cluster.

This problem is discussed in detail by [33], who design a scheme where replicas are

placed in a distributed manner, using a distributed hash table. This removes the need for a

centralized machine which is responsible for all replica placement – an approach we see in

every distributed system discussed so far in this chapter. In this approach replicas are placed

in series on a per-process basis. First, the primaries of each task in the process are placed

one at a time in the cluster. Once all primaries have been placed, each primary negotiates

for placement of its replicas.

While this is an interesting approach which could prove valuable to many implementations

of replication, there are questionable assumptions the authors make in this paper. First, the

45

authors base their placement algorithms on a simple experiment: processes of 3, 5, and 10

components are placed with a replication level of 2. The authors varied the number of nodes

in the cluster holding tasks and calculated the application availability given all combinations

of 5 nodes failing. From this experiment the authors decided that all tasks in a process

should ideally be placed on the same machine. This assumption then drives their placement

strategy.

If all tasks in a process are placed on the minimal amount of machines, you are actually

increasing your chance of catastrophic failure – there is a greater chance that failure will

remove all replicas, instead of leaving a chance for re-replication and recovery. While with

only two replicas there is a good chance that the process will not survive if enough machines

fail, trying to reduce the number of nodes which host a process is too simplified of an

approach.

What this approach does do, however, is cut down on latency and reduce networking

overhead. Instead of passing data between possibly distant machines, all tasks in a process

may be hosted on a single machine. Their algorithm will additionally attempt to place

tasks which make up a process as well as their replicas as physically close to each other as

possible. Most distributed systems recognize the possibility of machines which are physically

near failing together – from machines in a rack losing power simultaneously to the possibility

of losing an entire data center due to a natural disaster. These tests are run on PlanetLab

[34], which could mean that nodes are spread around the world and reduce the worry that

physically near nodes will necessarily fail together. Unfortunately, the authors do not list

where their PlanetLab nodes were located, so it is not clear that the machines chosen for

replicas were spread out enough to ensure they were located in different failure zones.

46

The distributed method of placing tasks and their replicas is an interesting approach, but

it is not clear that their tests support this placement scheme. From the initial assumptions, it

seems like this approach would not be a good fit for a cluster within a company or institution

– the replicas would be placed close to their primaries, and would then be susceptible to

complete failure should a rack or data center be subject to an outage.

Another approach to replica placement is described in [35]. This approach involves first

splitting up tasks into minimal logical sections, or atomic units. The idea behind this is that

smaller computation units means less state per unit. As the goal is to use checkpointing to

assure no state or messages are lost due to failures, lowering this cost helps to speed up the

checkpointing process. By splitting up tasks, the authors are also introducing the notion

that a single machine may hold parts of different tasks – this is a major difference from

their previous work, as well as from that found in most DSPSs. Generally, tasks are kept

as atomic units, so little work has been done to explore this idea of breaking a process into

smaller pieces.

After a task has been split, the atomic query units are then placed on separate machines.

Once each atomic unit has been placed, each unit then looks for other machines to use as

backups. The authors claim that their system is capable of analyzing these atomic pieces,

and can co-locate similar streams, while ensuring no single machine becomes a bottleneck.

The placement strategy relies on servers volunteering to take on more load when under-

loaded, meaning an overloaded system may struggle to maintain replication levels. From the

paper, it seems that there is a possibility that a single computation may be offered hosting

opportunities across the cluster, so some work was done to ensure that the atomic units are

‘fairly’ replicated and no one unit exists on every machine.

47

Data Entry Execution Results/Response
Generated

Replica 1

Client Client

Data Entry Execution Results/Response
Generated

Replica 2

Replica 3

Figure 2.5. Flow of communications for latency-reducing active replication

Data Entry Execution Results/Response
Generated

Replica 1

Client Client

Data Entry Execution Results/Response
Generated

Replica 2

Replica 3

Figure 2.6. Flow of communications for active standby

2.5.3. Replication Levels in Distributed Stream Processing Systems. Most

DSPSs have a replication level of 2 [35, 32, 28], with others using a replication level of 3

[36]. This is very different from DFSs where the default level of replication is three across

the board. This is most likely a result of the lower latency requirements inherent in DSPSs

– data usually needs to be processed in real time and it may not be worth the gains in fault

tolerance to overload the system with replicas.

One interesting approach mimics what we see with Hadoop and MapReduce, where only

one replica is active at a time. This approach is discussed in [37], which presents a novel

approach to fault tolerance through replication. To keep a minimal footprint, replicas are

only instantiated when failure is imminent. To test this theory, the authors introduced two

types of predictable failure: user error and impending machine failures such as overheating

or failing hard drives.

48

The key to this approach is to only start a new replica when necessary (and even then

only a single one). The primary can then perform a checkpoint to ensure the replica is up

to the current state. All input and output streams are then redirected to utilize the replica.

Once all processing has fully switched over, the old primary can be gracefully halted.

2.5.4. Synchronization in Distributed Stream Processing Systems. With ac-

tive replication approaches [36, 28] in DSPSs we again see no synchronization systems in

place, just as in cloud runtimes. The passive replication schemes in DSPSs, however, often

involve some synchronization or checkpointing scheme in order to preserve state. Before

reviewing these schemes, it is important to note that not all passive schemes implement

checkpointing. An example of this is found in [32], where the approach is referred to as gap

recovery, or amnesia. As soon as a replica detects that the primary has failed, the replica

promotes itself to the primary instance and redirects inputs. The amnesia layout can be seen

in Figure 2.7. There are 3 replicas in this approach, but the client is only communicating

with the primary, replica 1. While replicas 2 and 3 have been instantiated, and are taking up

the required memory footprint to remain at a ready state, there is no communications with

these replicas reducing the I/O overhead. In the amnesia approach, replicas periodically

send heartbeat messages to the primary to determine if they need to take over processing

inputs. At that point in time the client input stream and results stream will be redirected

to make use of the new primary. In an approach where some external mechanism is used

to track whether the primary is alive, even the minimal heartbeat messages from the offline

replicas can be foregone.

[32, 35] explore several checkpointing options to transfer state between replicas. Where

DFSs constantly apply updates, these approaches use a delayed checkpointing scheme. In

a checkpointing approach, the primary periodically pauses operations and saves state. It

49

then pushes the state information to all of its replicas. Once the replicas have updated, it

is safe for the primary to delete the last checkpoint and start to create a new one. One of

the major research areas of this problem is when to perform the checkpoints and subsequent

updates. By delaying a checkpoint/update cycle, it takes significantly longer for the system

to recover from failure. Alternatively, a constant update schedule leads to the reduction

any gains made by using a delayed checkpoint – every replica requires a larger processing,

network, and memory footprint.

The generic program flow for a passive, stateful replication scheme can be seen in Figure

2.8. While the client only communicates with the primary replica, the primary will push

state information to the replicas between rounds of execution. This communication step may

occur at any point in the program flow. It halts any new processing while state is saved on

the primary, then continues after the save point has been made. It is then up to the primary

to negotiate writes of state information to the backup replicas. Since we are assuming a

constant, streaming environment, it is likely that data will be incoming while a checkpoint is

taking place as well as between checkpointing breaks. Implementations can choose to either

ignore any missed state from a failure between checkpoints – assuring an inconsistent state

after failure, or upstream clients can be responsible for keeping a queue of inputs between

checkpoints. While this may drastically increase overall recovery time, due to the need to

‘replay’ data, it also provides the strongest consistency guarantees.

The work in [35] is a follow-up of their previous work [32], focusing entirely on what was

previously described as a passive standby approach. In this work they pay close attention

to the checkpointing schedule, and compare two different approaches to checkpointing. A

round-robin approach as discussed in their previous paper [32] and a new min-max approach.

50

Data Entry Execution Results/Response
Generated

Replica 1

Client Client

Data Entry Execution Results/Response
Generated

Replica 2

Replica 3

Figure 2.7. Flow of communications for amnesia approach

CoordinationData Entry Execution

Replica 1

Client Client

Results/Response
Generated

Replica 2

Replica 3

Figure 2.8. Flow of communications for a checkpointing DSPS

While the round-robin approach provides a fair schedule for checkpointing, it can easily

lock up waiting for free cycles to create a checkpoint, and then wait for all machines hosting

replicas to find the time to apply the checkpoint update. To alleviate the long delays between

checkpoints seen in the round-robin approach, the authors proposed a min-max scheme. In

this approach, a primary creates a checkpoint, then lets replicas update when they have

free processing power. Every atomic unit further keeps a log of all outgoing data, which is

periodically flushed once replicas confirm receipt and application of checkpoints. By using

this approach there is a tradeoff between memory usage and delays in processing.

2.5.5. Distributed Monitoring in Distributed Stream Processing Systems.

In this section we have seen several different replication approaches from distributed stream

processing systems. Since DSPSs have a wide variety of needs depending on application,

51

Table 2.1. A summary of the distributed systems discussed in this paper

System Replication
type

Replication
Goal

Replica
Placement

Replication
Level

Synchronization

GFS Passive Fault-Tolerance
and Availability

Centralized 3 Constant
Checkpoints

HDFS Passive Fault-Tolerance Centralized 3 Constant
Checkpoints

Azure Passive Fault-Tolerance Centralized 3 Constant
Checkpoints

MapReduce Active Fault-Tolerance Centralized 1 None
Hadoop Active Fault-Tolerance Centralized 1 None
Dryad Active Fault-Tolerance Centralized 1 None
BOINC Active Correctness and

Fault-Tolerance
Controller N None

DSPSs Active
and Pas-
sive

Fault-Tolerance,
Reduce Latency,
Increase
Processing
Speed

Distributed
and
Centralized

2 or 3 None or
Delayed
Checkpoints

replication approaches in DSPSs are similarly varied. The need to handle continuously

streaming data leads to the need of much stronger processing speed requirements than seen in

DFSs and cloud runtimes. DSPSs also have a unique need to have all stages of a computation

active and running constantly, leading to tighter resource constraints in general.

Another trend found in DSPSs is the need for distributed control. In Hadoop, GFS,

and Dryad there is a single node which is responsible for orchestrating the computation, as

well as monitoring the health of nodes in the system. Several of the DSPSs discussed here

[35, 32] have a distributed monitoring system, removing the single point of failure that a

single master node represents resulting in a more robust environment.

2.6. Discussion

In most distributed settings, replication is used solely for fault-tolerance. In this survey

we have explored additional uses, such as increased availability, decreased latency, correct-

ness, and faster processing speeds. A summary of the distributed systems discussed here

52

can be seen in Table 2.1. While we can broadly classify replication schemes as belonging

to either a passive or active approach, within these definitions there is a lot of room for

variation. Each approach has strengths it was designed to handle, and weaknesses which my

not be initially apparent.

Where many cloud compute runtimes generally forsake replication when backed by a

distributed file system, this can be disastrous in a distributed stream processing system

where inputs are not backed by any storage system and may be coming in at a continuous

rate. Most DSPS computations are assumed to be well-defined SQL-like queries which

can handle streaming data. MapReduce and Hadoop, on the other hand, are expected to

handle arbitrary computations which fit the mapreduce paradigm making them more flexible

frameworks, but without the ability to handle streaming data. While Dryad was designed

to work with SQL-like queries, it still needs to be able to handle generic programs and again

cannot support streaming data. BOINC supports completely arbitrary computations, with

data and executables sent to volunteer nodes as needed. BOINC is not, however, designed

to handle streaming data. It assumes all data arrives with the computation at the beginning

of the processing phase.

Through this work, we have seen several trends emerge. For example, the distributed

file systems discussed here all have passive replication schemes, with quick checkpoints this

matches the conclusions from [15]. All the cloud runtimes we looked at have active replication

schemes, generally with low levels of replication. While initially they appear to be passive

replication schemes, all replicas receive all data meaning they are ultimately active replication

schemes. When moving to DSPSs, on the other hand, we finally see variation in replication

schemes.

53

This trend does seem to hint that we simply may not have performed a broad enough

sweep of DFSs and cloud runtimes in order to fully capture what schemes are available. This,

however, is simply not the case. With DFSs, we have looked at the premier open source

solution [19] as well as Microsoft’s solution [22, 23]. While there are rumors of a redesigned

GFS2, no work has been officially published as of this writing. For cloud runtimes, Hadoop

is widely accepted as the de facto standard for cloud runtime performance. To flesh out

the section, we looked at MapReduce, which is the basis for Hadoop, as well as Dryad and

BOINC which follow drastically different paradigms.

One major gap in distributed systems is an environment which supports arbitrary com-

putations in a streaming environment. This gap is filled by Granules [9, 10, 38]. To fully

support arbitrary computations, it is also important to support many different replication

schemes simultaneously. For example, a system which only supported passive replication

schemes would not be a good choice for any computation which cannot afford long failover

times. On the other hand, if the system only supports active replication non-deterministic

computations would have no consistency guarantees. As of this writing, no work has been

done exploring the support of disparate replication policies in a single environment. Fur-

thermore, such an environment cannot assume a DFS backend, so it cannot leverage the

cloud computing approach of a default of only one replica. It should additionally be able

to support correctness schemes such as found in BOINC: allowing functionality within an

unsafe environment as well as the ability to adapt to drastic changes in resource availability.

We also found an interesting trend with respect to replication levels. DFSs tend to

have three replicas, while DSPSs lean towards two replicas. One area for research would be

implementing a hybrid replication scheme of three replicas. In this scheme two of the three

replicas would be processing inputs in parallel (an active approach), while the third replica

54

waits in a dormant state. On the failure of one of the active replicas, the passive replica could

promote itself to an active scheme. This means a resource overhead just slightly greater

than having 2 actively replicated tasks, and we can assure quick fail-overs and stronger

consistency guarantees than with a purely passive approach. While this would not work in

a DFS environment, and would be overkill for a cloud runtime such as Hadoop or Dryad, it

could be a worthwhile approach in a streaming environment with the need to quickly respond

to failures while resources are at a premium.

Another area for expansion is using a passive or active standby approach to support mi-

gration of processes from overloaded machines. If the machine which is holding the primary

copy of a replicated computation becomes overloaded, it should be possible to transfer pri-

mary responsibilities to one of the replicas. This could be a useful load balancing technique

in an overloaded cluster where there is no room to migrate the replica, but moving commu-

nications responsibility away from a machine may help improve overall cluster performance.

55

CHAPTER 3

Requirements

In order for a stream processing system to become a viable solution to relieving stress

on the health care system, such a framework needs to fulfill several requirements. These

requirements need to be met in order to ensure patient safety; such as to continue processing

with a minimum of lost packets in the face of failure, or preventing collocated computations

from causing interference which precludes real-time processing of data. While there are many

other concerns, mostly relating to patient privacy, we consider those concerns to be outside

the scope of this dissertation.

3.1. Computation Support

Before discussing in detail aspects of the framework that we need to support, it is im-

portant to discuss the types of computations we are expecting to support. We expect that

computations build and maintain state over time. This requirement arises due to the na-

ture of health streams – each individual data packet is small, but the associative stream is

long-running. The amount of information that can be gained from any one data packet is

relatively low when compared to the information gained from observing packets over time.

Take, for example, monitoring thorax extension for a sleep study. While “awake” breathing

patterns are normal when a person is awake, seeing such a pattern in the middle of “deep

sleep” breathing patterns may be a sign of sleep apnea and would need to be studied fur-

ther. This base assumption that we need to ensure state is maintained drives our remaining

requirements. An in depth look at each of the computations we support, as well as the

underlying data streams for each, is provided in Chapter 4.

56

3.2. Real-time Requirements

One major requirement to this system is the ability to process streams in real time.

Many current health stream processing systems are fully capable of batch processing large

quantities of medical data after the data has already been recorded. While this can be

very useful for diagnosis after the fact as well as long-term studies and trend detection, it

is inadequate when it comes to timely interventions, particularly in cases where a patient

has left the hospital for in-home recuperation, or elderly preferring to age at home instead

of moving to a full-time care facility. If a sensor-based system cannot react to changes in

patient state when they occur, this system will not be able to provide a safe alternative to

full-time care.

Part of providing a safe transition from a full-time care facility where the patient may

be constantly monitored by caregivers, to a more independent lifestyle backed by sensors,

involves a system that can reliably process data in real time. One example of why this

requirement is necessary is in the case of a stroke. With a stroke, time lost is brain lost –

if EEG data is not being processed in real-time, stroke detection may not occur until after

irreparable damage has already been done. Similar arguments can be made for heart attacks,

or even falls in the home. Emergency situations need to be detected as soon as possible to

ensure appropriate responses are launched in time to prevent patient injury.

Another problem arises due to the nature of streaming health data. Health sensors

generally produce small amounts of data at sub-second rates. While each packet is generally

on the small side, the rate at which packets arrive can easily overwhelm a system that is

running slowly. If data cannot be processed as fast as it is being collected, there is the risk

of losing data – eventually queues will overflow, resulting in dropped packets. Since this

57

is a streaming environment, any dropped packets are lost forever, possibly resulting in a

misdiagnosis or missing a medical emergency.

3.3. Robust to Failures

Another requirement for such a system is the ability to recover quickly and gracefully

from failure. This is a challenging problem in distributed systems due to the inability to

detect the difference between a failed machine and a slow machine. As stated above, since

we are working in a streaming environment any data that is lost is lost forever. Failures need

to be detected and recovery measures need to take place as soon as possible to minimize

data loss. This means that any solution needs to include two parts: (1) How do we reliably

detect failures? (2) How do we respond to these failures?

3.3.1. Reliably Detecting Failures. There are two extremes which can be used to

approach the first part of this challenge. First, we can be overly sensitive to failures. A

failure can be declared as soon as there is any slowdown in communications. While this

means that we will always respond to a true failure as fast as possible, it also means that

we are wasting a lot of time on false positives, i.e., declaring a failure when one has not

actually occurred. Reacting to false positives strains a cluster with needing to instantiate

new computations that have not actually failed, and state synchronization messages to try

to bring these new computations up to speed. In a large-scale environment, this approach

is infeasible due to the heavy price of reacting to false positives.

At the other end of the spectrum, one can choose to put off declaring a failure for as long

as possible. The longer the wait to declare a failure, the more certain one can be that it is

a true failure, and not simply a result of network congestion or a slowdown at the machine

being contacted. This can lead to instances where a computation has failed with no alert

58

raised. All communications to that computation are effectively lost, meaning irreplacible

data is now gone forever. This is not a suitable solution for any streaming system, and far

worse for a system involved in a health care setting.

Our approach balances these two concerns – generating a large number of false positives

which overwhelm the system against losing important data as a failure goes undetected.

Our system uses a decentralized heart beat approach, where every machine in the system

is responsible for detecting failures on every other machine in the system. This is done in

a way that prevents strenuous loads on the system, while also limiting false positives. It is

configurable with metrics defining the sensitivity of the system to failures. This approach is

discussed in detail in Chapter 5.

3.3.2. Responding to Failures. After we have detected that a failure has occurred,

we need to respond to it. For this, we make use of replicas, or duplicate copies of com-

putations. We fully define and analyze this approach in Chapter 6. For situations where

replicas are not already processing incoming data, the first step to failure recovery is to

ensure that communications are redirected. Once failure is detected, all replicas are noti-

fied that this has occurred, so another can take over the role of processing incoming data.

The next step involves starting up a new computation to replace the one which was lost.

This process is called re-replication, and preserves the redundancy levels associated with a

particular computation. This ensures that the next failure will not wipe out a computation

entirely.

Choosing where to place new replicas can be a difficult task and is fully explored in Chap-

ter 7. In the most basic terms, replicas should be placed on failure independent machines.

Placements should ensure that a new replica is not placed on the same machine as any other

replica – this would preclude failure-independence of replicas, as it would mean that now

59

not one, but two replicas are lost on a machine failure. The task of effectively placing a new

replica can be complex, and needs to take into consideration not only the location of existing

replicas, but also the load and capabilities of all potential replica locations.

3.4. Robust to Interference

The system additionally needs to be robust to interference. Computations that are co-

located should not affect each other. This is a problem which is a result of trying to fully

utilize each resource. While a single machine could easily host a single computation, this

is a highly inefficient use of resources. Such an approach would also preclude the ability to

support a hospital or nursing home on a small cluster, with even a small number of patients

requiring dozens if not hundreds of physical machines. To effectively utilize each resource, we

use Granules’ ability to effectively interleave hundreds of computations on a single machine.

While we will not be able to scale at this rate for all computations, as each has its own profile

of resource requirements, we can still hope to support dozens of co-located computations on

a single machine.

In order to effectively interleave computations, we need to be able to perform three

tasks: (1) effectively profile each computation, (2) use this profiling information to detect

interference, and (3) take action to mitigate interference.

Data generation rates on different health streams may be different. Each patient will have

a slightly different schedule, i.e., patient A is more active between X and Y hours of the day,

resulting in higher sampling rates during these hours; while patient B needs to be monitored

more closely while sleeping, between the hours of Y and Z. While patient A and B may be

using the same set of computations, their usage patterns would result in computations with

vastly different profiles. It is not enough to simply profile each type of computation and use

60

these statistics to drive all interference detection, instead we need to profile computations

on a per-patient basis, with continuous monitoring. We expect these computations to be

extremely long-running, on the order of months to possibly several years. Over the lifetime

of these computations, usage patterns are expected to change, at the very least with the

change of seasons if nothing else, as daylight hours fluctuate.

After we have profiled each computation, we next need to be able to utilize this infor-

mation. By using information about past behaviors, we can extrapolate future trends, and

create both current and expected future profiles of each computation. Our exact approach

is outlined in Chapter 7. Using this information, we then take the next step of both reacting

to current detected interference as well as avoiding predicted future interference. This is

done through a process called migration, where a computation is moved between physical

machines. This task is difficult since it needs to be performed while continuing to process

incoming streaming data in real time. We describe our approach to migration in Chapter 8.

3.5. Throughput

The throughput of a stream processing system is defined as the number of packets pro-

cessed in a timely fashion over a period of time. A system which cannot maintain a high

throughput will not be able to meet any of the previously discussed requirements: real-time

processing, robustness to failures, and robustness to interference. A failure to meet any of

these requirements would result in a corresponding drop in throughput, making it both a

goal to be met as well as a measure of success.

Our success in implementing a framework for robust health stream processing will be

measured via throughput. For the purposes of our work, we are measuring throughput as:

the number of completely processed packets per second. For computations that require a

61

response to be sent to a patient, we do not count a packet as fully processed until the patient

has received the response. Given both the different data generation rates and different

processing requirements of each computation, each computation will also have a related

“best” rate, which would be the theoretical best possible throughput if network overheads

are ignored.

While it is important to try to maximize the overall throughput of the system, we also

need to ensure that throughput is maintained on a per-computation basis as well. For

example, take a machine which is hosting multiple computations, among them computation

A and computation B. The machine may have a high overall throughput, but an extremely

high throughput for computation A may be masking the poor performance of computation B.

This could be a result of the processing for A interfering with the processing of computation

B. Because of this, we cannot rely solely on overall throughput, but need to take into account

individual computation throughput as well.

62

CHAPTER 4

Components

This chapter provides a high-level overview of the components developed for this disser-

tation. These components will be described in more detail in the appropriate sections.

4.1. Datasets

We use three distinct datasets to test and motivate our framework. These datasets are

all publicly available health stream datasets, and have been selected to provide a broad

spectrum of data types and generation rates.

4.1.1. Electroencephalogram. The electroencephalogram (EEG) dataset we use in

this work was gathered by Colorado State University’s Brain Computer Interface (BCI) lab

http://www.cs.colostate.edu/eeg/. This particular dataset was generated by an able-

bodied male in his 20s, using a NeuroPulse Mindset 24R amplifier with 19 electrodes in

the international 10-20 configuration, at a 512 Hz sampling rate. The dataset was gath-

ered specifically for a BCI application – it records multiple 5 second bursts of each of 4

different tasks. These tasks involve: counting backwards from 100 by 3s, imagined right

hand movement, imagined left leg movement, and visualizing a rotating computer screen in

3 dimensions. This dataset was gathered across 5 trials, where 10 sequences of each task

was performed for 5 seconds. Each of these tasks should involve higher levels of activity in

different sections of the brain, making them good tasks for a 4-way classification problem.

4.1.2. Electrocardiogram. We use the MIT-BIH arrhythmia dataset [39], publicly

available through the physiobank database [40]. This dataset has been developed with

the express purpose of evaluating arrhythmia detectors and training doctors to recognize

63

arrhythmias. It has also been used in several machine learning competitions. This dataset

contains recordings from 47 patients, and contains 48 half-hour excerpts of two-channel

ambulatory ECG recordings. This dataset has been hand annotated by trained professionals,

and the digital version was originally intended to develop tools for real-time ECG rhythm

analysis.

4.1.3. Thorax Extension. The thorax extension dataset [41] we use was gathered by

Dr. J. Rittweger at Institute for Physiology, Free University of Berlin. Thorax extension

data monitors the expansion and contraction of the chest – it monitors respiration rates.

This information can be used at higher level scales such as: is the patient breathing properly

on their own? It can also be used for more fine-grained information such as: What stage of

sleep is the patient in? This information can be useful for both sleep studies and pre- and

post-operative patients. This dataset represents a class of single-dimension output health

sensors, where a relatively small amount of data is generated at a steady rate.

4.2. Sample Computations

In order to utilize our datasets for testing, we have developed a set of sample com-

putations. Each dataset has its own computation, with unique processing and resource

requirements.

4.2.1. Brain-Computer Interface Application. The EEG computation we use

[42] has been developed to process raw EEG data in real-time. It assumes that this data is

being processed for a BCI application, so will return a classification to the user. We are using

a group of experts approach for each user. Each user has several artificial neural networks

(ANNs) which have been trained on previously recorded user data. Each ANN will learn a

slightly different thing about the dataset, become an expert about their portion of the input

64

space. The ANNs then all ‘vote’ on a final classification, providing a group of experts. These

ANNs each have a single hidden layer, and we limit the number of training rounds that each

network undergoes. This has a two-fold benefit. First, it reduces the amount of training time

needed – as users will need to periodically stop and retrain a network over extended periods

of use, this limits the amount of time the system needs to spend in the training process,

unable to process new data. Secondly, it also prevents overfitting. Overfitting occurs when

an ANN becomes unable to handle new, unseen data patterns.

Using our group of experts approach, each ANN is randomly assigned different starting

weights. This means that each ANN will react to incoming data in a different way. The goal

of such an approach is to allow each ANN to learn a slightly different part of the solution

space. While no single ANN would be able to answer everything, working as a group we

should be able to get decent results. Each ANN will ‘vote’ on a classification, with a final

classification coming from the group consensus.

Each user has a single, unique computation that comprises multiple ANNs all imple-

mented in the programming language R. These ANNs return a consensus, which is then

returned to the user. In addition to user computations, each machine also runs a generic

trainer. The generic trainer is trained on new data as soon as any user with a computation

hosted on the same machine submits new data for training. This allows each machine to

become a reflection of the users hosted on it – it will become more capable of providing

a ‘generic’ set of ANNs to new users, providing a boost to both initial user startup, while

also providing new insights into how the brain works. We leverage Granules bridges [43] to

communicate between the Java-based framework and the R-based ANNs.

4.2.2. ECG Anomaly Detection. The ECG computation we have developed has

been designed to detect arrhythmias. Upon detection, the computation will store the last

65

10 seconds of data to disk for later analysis, and continue to store all incoming data to disk

until 10 seconds have elapsed without an arrhythmia. Such a computation would be useful

in a situation where a patient is under observation. By storing data preceeding and following

the event, it would allow a professional to analyze what led up to the event, helping with the

diagnosis and treatment process. This computation has a single monitor per patient, and

does not report data back to a user. Its primary purpose would be as a tool to help doctors

diagnose patients by filtering the raw ECG data.

This computation requires that each second of data be sent to an artificial neural network

(ANN) for classification as either a possible arrhythmia, or normal data. This ANN is also

implemented in R, so we again make use of Granules bridges [43] for communication between

our Java-based framework and R. When each computation starts, a stored ANN is loaded

into its associated R computation. Each computation needs to store the last 10 seconds

of data in memory, meaning that this computation has a high memory footprint. During

periods where it needs to write to disk, it will also have high disk I/O accesses.

4.2.3. Respiration Monitor. The thorax monitoring computation we use here is de-

signed to act as a backend for a visual monitoring application. It retains the last 10 seconds

of data in memory for display purposes, while also maintaining a running average, minimum

and maximum of the values seen so far. All this information would be useful for a visual

display of the patients respiratory rates. While it also stores 10 seconds of information in

memory, just like the ECG computation, it requires significantly less resources. This is pri-

marily because the thorax dataset is one dimensional; unlike the EEG dataset where data

is being gathered simultaneously from 19 electrodes, and the ECG dataset which has two

electrodes generating readings at each timestep.

66

4.3. System Elements

Our framework relies on a series of system elements which provide both information

gathering and the ability to make system-wide decisions about how the resource pool reacts

to changes. We gather information about machine and computation state and then leverage

this information to recover from failures, make informed migration decisions, and decide

where to place new computations.

4.3.1. HeartBeat System. The HeartBeat system underpins the system’s ability to

identify and respond to failures. Our system is unique in that it is a completely decentralized

approach. Furthermore, it is tunable as needed. For example, a power user would be able

to trade off between the certainty of a failure claim and the amount of time it takes to

make such a decision. This level of customization is unique in our approach, and makes it

amenable to a variety of situations. For example, different guarantees may be required for a

retirement home than for a hospital’s surgical center.

While this was designed with monitoring health sensors in a care environment in mind,

it is also generally applicable to sensor processing systems. For example, a system which

connects multiple autonomous robots may use this to allow the robots to keep track of each

others liveness. The system can be adjusted to allow only intermittent communication of

state, allowing the robots to preserve battery power. Alternatively, it may be used to back

a sensor system which monitors seismic activity. During ‘interesting’ periods, the failure

detection system could be kicked into high gear, to ensure no data is lost. Otherwise, the

system could revert to a reduced detection rate to preserve battery life.

4.3.2. Resource Monitors. Each machine in the resource pool is additionally respon-

sible for hosting a ResourceMonitor. This component is responsible for tracking the current

67

load on a system. It gathers information from each hosted computation that is eligible for

migration. This excludes the HeartBeat Monitors, generic trainers from the BCI applica-

tion, and the Resource Monitor itself. Based on the numbers and types of computations

currently hosted, it develops a load profile for itself, and self-labels as either underloaded,

stable, or overloaded. An underloaded machine is willing to accept new computations and

migrations, while an overloaded machine will actively try to migrate computations away

from itself.

4.3.3. Computation Statistics. Each computation gathers computation statistics about

itself, and periodically sends this information to the collocated ResourceMonitor. These sta-

tistics are used to detect interference between computations, and combine information about

activation schedules and resources used. Each ComputationStatus gathers:

• Queue Length: The average amount of packets waiting for processing seen over

the last sampling period

• Run Time: How long the computation has spent executing

• Data Packets: Average number of incoming data packets needed for processing

seen over the last sampling period

• Control Packets: Average number of incoming internal communication packets

seen over the last sampling period

• Data Bytes: Average size of data packets

• Control Bytes: Average size of control packets

• Activation Times: Tracks when the computation has been activated in 10ms

intervals

• Completed Count: Tracks the number of data packets that have been fully pro-

cessed in the last sampling interval

68

• Replica Locations: Used when working with replication levels grater than one

These statistics are updated every time an event occurs which modifies the values, and

is reset after the ResourceMonitor requests the current status. For example, when a data

packet arrives, the Data Packets field is updated, as well as the Data Bytes and Activation

Times fields. This approach allows statistics to be gathered on a configurable basis. This

affects the rate at which the system can adjust to changes in load as well as the amount of

overhead generated by systems communications.

4.3.4. Interference Detector. The InterferenceDetector is designed to gather

information from all computations to detect and predict interference. It uses the information

from the ComputationStatus reports from each computation to develop an activation profile.

Based on the current activation profile, it then predicts future execution statistics. We then

perform clustering on a vector of current and predicted activation profiles. Computations

which have similar activation schedules and receive similar amounts of data will be in the

same cluster, meaning that they are more likely to interfere with each other. The system

will attempt to migrate interfering computations away from each other to reduce overall

interference.

4.3.5. Coordinator Node. The CoordinatorNode is responsible for coordinating in-

teractions between system components. As it gathers information from all the components,

it is also responsible for using this information to both guide initial computation placements

and coordinate and orchestrate migrations. In order to ensure that no conflicting decisions

are made, we ensure that there is only a single node responsible for making all these deci-

sions. While this may be seen as a single point of failure, a system of passive replication and

failover can ensure that a failure will not bring down the system.

69

4.4. Communications

In our system, we have two main types of communications occurring at all times: Data

and Control. While the primary purpose of the system is to support the processing of

incoming data packets, the additional control packets are what allow us to adjust to changes

in either system state or changes to the flow in data. These types of communications are

competing for limited network bandwidth, requiring a balancing of priorities to ensure the

system can still maintain a high throughput of data traffic while retaining the ability to

respond quickly and reliably to changes.

4.4.1. Data Traffic. Data traffic is the traffic generated by sensors, which is being

fed into our system for processing. As discussed above, it may be subject to changes in data

arrival rates, as dictated by an external source. Additionally this includes information which

needs to be passed between replicas: both state updates and any replication in raw data and

processing. We consider data traffic to be all communications needed by the computation –

including communications which are needed as a result of replication. We differentiate this

from control traffic, which exists solely to keep our framework running and allow intelligent

placement – communications between user computations and system computations, as well

as communications between system components.

The main purpose of our system is to support the processing of data traffic robustly.

System performance is measured by the amount of unique data packets processed. This is

a tricky measurement because it does not directly take into account either communications

between replicas or replicated data processing. Communications between replicas and repli-

cated data processing are, however, still vital data traffic which has precedence over control

traffic.

70

4.4.2. Control Traffic. We consider all communications which are necessary for sys-

tem functionality to be control traffic. The throughput of these messages is not considered

directly when measuring system performance, but the flexibility of the system and speed of

response to changes is. Our system has 4 main sources of control messages: deployments,

heartbeats, migrations, and interference detection.

Deployment messages are sent whenever a new computation requests to join the system.

It can be expected that such a request comes from an external source outside the resource

pool, and is directed to the CoordinatorNode. The CoordinatorNode then uses information

about the current state of the resource pool, as well as expected computation overheads, to

generate an informed placement plan. It then pushes the new computation, along with all

requested replicas, to the designated machines.

Heartbeats are one of the continuously running control messages that our system requires.

Heartbeats are sent out regularly to determine the liveness of each machine in the resource

pool. These types of messages are discussed in more detail in Chapter 5.

Migrations are performed when interference has been detected, and the system is taking

steps to mitigate this interference. Depending on the type of migration, this can involve

multiple messages between the CoordinatorNode and all computations affected by the mi-

gration. Migration messages are not continuous, but only occur when a migration begins,

and will end once the migration is complete. Unlike the heartbeat messages, it does not

represent a continuous load on the system. Migration details are discussed in Chapter 8.

Interference detection messages are the second type of continuously running control traf-

fic. This includes information about each computation currently supported by the system, as

well as resource usage and statistics for each machine in the resource pool. These messages

require the most overhead, as they contain more information than the heartbeats, which are

71

Hosted
Computation

Computation
Statistics

Machine A
HeartBeat Monitor

Resource Monitor

Machine B
HeartBeat Monitor

Resource Monitor

CoordinatorNode

InterferenceDetector

External
Sensor

Actuator

Data Communications
Control Communications

Figure 4.1. This figure shows components deployed on two distinct ma-
chines. The dashed lines denote control traffic; here, we see this as bidirectional
communications between the HeartBeat components, from the hosted compu-
tations to the ResourceMonitors, and from the ResourceMonitors to the
CoordinatorNode. The solid lines denote data traffic; We show one hosted
computation both receiving data from an external sensor, and then passing
results out to an actuator. Our framework puts no limits on either the source
or sync of incoming data. We also show a hosted computation sharing state
information with a replica.

essentially just pings. These messages represent another trade-off. We need to balance the

amount of information sent, which could improve our decision making, with how much of

our bandwidth we are willing to allow to be consumed by control traffic as opposed to data

traffic.

4.5. Summary

This chapter has introduced the tools we have developed to test and support the real-time

processing of health stream data in a robust manner. The computations we have developed

use publicly available health sensor data, and have been designed to not only represent a

wide variety of application types and loads, but to do so realistically.

In order to enable robust behavior, we have developed multiple applications to monitor

liveness of machines, the resource usage of each computation, and measure interference

72

between computations. Figure 4.1 shows a small sample of all the components working

together, along with different examples of each type of communications.

73

CHAPTER 5

Detecting Failures

In distributed systems, it is impossible to tell the difference between a failed system and

a slow system. As such, any failure detection system needs to balance swift detection with

limiting false positives of failure reporting.

5.1. Introduction

Sensor networks are becoming ubiquitous as sensors become smaller, cheaper, and more

power efficient. These sensors are deployed across a wide range of environments, from moni-

toring for early earthquake detection [44] to smart condos [1] and personal health monitoring

[2–8]. Sensors produce data intermittently or at regular intervals, creating data streams that

are a set of correlated packets. Sensor data can be difficult to work with as data generation

rates may spike due to external stimuli, e.g., increased tectonic activity or a person entering

a room. Due to such stimuli, sensors may generate data at a higher rate, leading to bursty

behavior.

Sensors designed to monitor health are standard in the diagnosis and monitoring of

many health conditions. As the cost and size of these sensors decreases, the feasibility

of monitoring patients as they go about their daily lives increases. Should a patient have

multiple live sensors, the data gathered from these disparate devices can be combined to gain

a clearer picture of overall patient status. As we come to rely on sensors and technology for

our well-being, we must also cope with failures in the backend machines where the streams

are processed.

Health sensors generate data streams that must be processed in real time; typically,

packets need to be processed faster than the rates at which they are produced. Processing

74

such data streams is challenging because the generation may be periodic, intermittent, or

bursty. Inability to process streams in a timely and accurate fashion can lead to injury,

so it is important that we continue processing streams even during failures of one or more

machines. Care must be taken to avoid overprovisioning where the majority of the resources

would idle most of the time, or underprovisioning where processing requirements outpace

available resources. The data generation in several cases is long-running (taking days or

weeks) meaning that the computations that operate on them must also be long running.

Our runtime, Granules, is designed for processing data streams generated by sensors

[9, 10]. To maximize resource utilization, Granules interleaves the execution of several stream

processing computations on the same machine. The runtime allows each computation to have

a dynamic scheduling strategy where they can be scheduled for execution periodically (at

intervals specified in milliseconds) or when data is available. A given stream processing

computation can have multiple rounds of execution and retain state across each round of

execution. In each round of execution, the computation operates on the available data,

updates its state, and then becomes dormant awaiting activation when data is available.

Issues relating to state retention and interleaving of stream processing computations at

a resource compound the difficulty of failure resilient processing of data streams. All data is

lost from the time a computation fails to the time a new computation can be instantiated

and connected to the appropriate streams. Even temporary failures can mean the loss of

irreplaceable data. Computations build state over time and the outcome of processing a

stream packet relies on this retained state – the same packet may result in different outputs

depending on the retained state. For example, consider a computation monitoring electro-

cardiogram (ECG) signals. Where a steady increase in heart rate while exercising is normal,

75

a sudden increase in heart rate may indicate cardiac problems. Should such an ECG mon-

itoring computation lose state while a user was exercising, an erroneous heart attack alert

may be generated. The problem of losing data is only compounded as several stream pro-

cessing computations are interleaved on any given machine, a failure at any one machine

impacts all its hosted computations.

One approach to cope with failures is to build redundancy into the system via replication.

The trade-off space for any scheme that relies on replication for processing these streams in

the presence of failures involves the following dimensions: (1) network I/O, (2) processing

overheads, (3) memory utilization, (4) system throughput per cluster measured in terms of

packets that were processed per unit of time, excluding any duplicate processing that might

be performed on copies of a packet, (5) speed of failure recovery, and (6) the amount of state

loss.

Consider the extreme ends of this trade-off spectrum. A brute force, or active approach

that relies on maintaining r active replicas of a computation results in an r -fold increase

in the network and processing footprint; this approach provides the fastest recovery with

no loss of state. At the other end of the spectrum, we could have an approach that trades

off state for network and processing efficiency; a passive approach. Upon failure detection

a computation is launched without any built-in state with the expectation that over time

state will build up and eventually converge as a result of the stream processing.

In this chapter, we explore the trade-off space that accompanies fault-tolerant stream

processing. We present an empirical evaluation of our schemes using real health stream

datasets.

76

5.1.1. Challenges. Failure resilient real time stream processing is challenging because:

• Streams arrive continually and the arrival rates may be bursty. Processing must be

timely and faster than the rate at which data is generated.

• Stream processing computations are stateful, with processing decisions being made

based on the state built over time. For a given input, the output may be different

depending on the state that has been built up within the computation.

• State loss may be inevitable when failures occur. Mitigating such state losses is

important.

• Given the behavior of streams, we interleave multiple computations on the same

machine to maximize resource utilization. This also means that the failure of a

single node will impact multiple computations and lead to corresponding state loss.

Health streams tend to be long-running and the arrival patterns over streams can be

dynamic. While these are long-running streams, the typical amount of data that needs to

be processed at each timestep is relatively small. Given their arrival patterns, setting aside

a resource per stream would lead to underutilization of resources. This creates the need to

interleave multiple computations on a single machine.

To achieve scalability, we need to interleave multiple computations on a single machine.

This means that the failure of a single machine will directly affect all these computations.

Failures may also have rippling affects, where downstream computations will be affected

by the loss of data from failed upstream nodes. Furthermore, if recovery measures are not

well-orchestrated, failure recovery measures may end up overloading other nodes, resulting

in cascading failures.

To accurately process health streams, it is important to build and maintain state. For

example, consider a patient who is wearing a gyroscope reporting whether the wearer is

77

standing upright or not. Any computation processing the data from this sensor needs to be

able to differentiate between a person taking a nap and someone who has just fallen down

a flight of stairs. Data sent to a failed node for processing is lost, so quickly detecting and

recovering from failures is necessary to ensure the safety of those relying on our framework.

To the best of our knowledge, no system has tried to address recovery in such an envi-

ronment. Other distributed databases [30, 28, 45–47] do not rely on stateful computations

for processing, and previous work in the realm of health stream processing [2–8] does not

explore solutions at scale, and does not address fault-tolerance concerns at all.

5.1.2. Fault-Tolerance in Granules. Our current focus is fault-tolerance through

the use of replication. In systems that do not process streaming data it is possible to simply

restart a computation in the face of failure. If this approach is applied to a streaming

environment there is a risk of: (1) losing data while detecting failure and starting up a new

computation and (2) loss of state. In many cases it is pointless to restart a sensor-based

computation from a blank state. To reduce the amount of data lost, backup computations

may be started beforehand to maintain a stateful copy of the computation on different

machines. The cost of such an approach is an additional strain on the cluster as we now

need to keep extra copies, or replicas, of a computation running at all times. Depending on

the type of replication used, we may be increasing network, memory, and CPU load with

every replica.

An alternate approach to replication is checkpointing. In this approach, processing is pe-

riodically frozen as state information is saved. While this can be accomplished in a streaming

environment [47] by buffering data that arrives during the checkpointing process, it is not a

good solution for health stream monitoring where delayed responses may lead to user injury.

78

5.2. Approach Synopsis

There are two aspects to failure resilient real-time stream processing. First, redundancy

needs to be built into the system. Computations build state over time, and per-packet

processing depends on this state. A significant loss of state may lead to incorrect results.

Redundancy schemes try to minimize failover delays and reduce the amount of state lost

during failure. Second, we need to have a fast, decentralized resource failure detection

scheme in place to allow counter measures to be initiated. This chapter focuses on the task

of reliably detecting failures in a decentralized fashion.

There are two inter-related issues for replication: customization and re-replication. Cus-

tomization allows each computation to specify the degree of failure resilience. A higher

replication level means that more failures can be sustained before a computation may be

lost completely. To preserve redundancy, replication levels need to be maintained even

during failures. The system achieves this using a combination of resource-level fast failure

detection and re-replication that targets all affected computations. When a resource failure

occurs, both primaries and secondaries hosted on that machine need to be re-replicated.

5.3. Fault-Tolerant Stream Processing

A heartbeat system underpins replication in Granules. This system monitors the state

of all registered machines in the cluster, allowing the cluster to detect failures in a fully

distributed fashion – no single node needs to orchestrate communications. The fault-tolerant

system is responsible only for monitoring liveness, ensuring a compact heartbeat message

size to control the CPU, memory, and networking footprint of the HeartBeat scheme.

5.3.1. HeartBeat Groups. In our HeartBeat scheme, we introduce the notion of

heartbeat groups. A heartbeat group is a subcluster of machines that send heartbeats

79

together, as well as checks for machine liveness in sync. For example: in a cluster with

two heartbeat groups, A and B, all machines in group A will send heartbeats to group B

in the same timestep. This approach is particularly suited to Granules, since we can take

advantage of its communications system which allows multiple machines to subscribe to a

single stream of data such as “heartbeats/groupB”.

At every timestep T, each group pushes heartbeat data to the next group, and one group

is responsible for checking the liveness of the whole system. While every machine is checked

for liveness every T, not every machine in the cluster is checking liveness at the same time t.

This concept is shown in more detail in Table 5.1. In this example we have six heartbeat

groups, numbered 0-5. This table walks through 6 timesteps, showing where messages are

sent for each timestep. For example, in timestep T3, group 4 is sending heartbeats to group

2, while group 2 is sending heartbeats to group 0. After a group sends heartbeats to group

0, it performs a check to make sure that all the nodes from which it has previously received

heartbeats have sent a heartbeat in the last 6 timesteps – since the last time this check took

place.

An additional variable is S, the number of timesteps in which a node is in a state of

failure suspicion. In this state, the machine has missed some number of heartbeats (up

to S), but the system has not yet declared the node dead. This allows for drift in clocks,

where a node may miss sending a heartbeat by a fraction of a second, as well as possible

network congestion. This also helps to limit the number of false positives, or erroneous

failure notifications, generated by the cluster.

We can now analyze the detection interval in our scheme. Consider a cluster of N ma-

chines with M heartbeat groups, which has an update rate of T and failure suspicion count

of S. The units for this measurement is determined by the units of T. In a best case scenario

80

Table 5.1. This table describes the heartbeat approach in Granules with 6
heartbeat groups. For each timestep (T*), every group sends a heartbeat to
one other group. After sending a heartbeat to group 0 (bold and italicized),
it performs a check to make sure all expected heartbeats were received.

T0 T1 T2 T3 T4 T5
0→ 1 0 → 2 0→ 3 0 → 4 0→ 5 0 → 0
1→ 2 1→ 3 1→ 4 1→ 5 1 → 0 1→ 1
2→ 3 2→ 4 2→ 5 2 → 0 2→ 1 2→ 2
3→ 4 3→ 5 3 → 0 3→ 1 3→ 2 3→ 3
4→ 5 4 → 0 4→ 1 4→ 2 4→ 3 4→ 4
5 → 0 5→ 1 5→ 2 5→ 3 5→ 4 5→ 5

it will take TSM time in order to identify failures – where the failure is immediately de-

tected upon the next heartbeat check, and enters failure suspicion for S rounds of checks. In

a worst case scenario, it could take (M − 1)T + TSM time to detect failures. This case will

occur should the system need to make a full cycle of checks. Using Table 5.1, assume that

a machine in heartbeat group 5 fails and does not send a heartbeat to heartbeat group 0

(while this happens at T0 in this table, we’re assuming that the system has been running for

some time, and has completed several cycles of sending and checking aliveness). Heartbeat

group 0 does not again check for aliveness until T5, M-1 timesteps later.

The HeartBeat scheme underlies all computation communications in a fault-tolerant en-

vironment. Not only can a poorly configured HeartBeat scheme impair all communications

across the cluster, but the HeartBeat timestep and duration of the failure suspicion state

define the amount of time the system needs to identify failures.

As T decreases, liveness checks are performed more often. While this does mean the

system will recognize failure and recover from it faster, it also means the network is more

likely to become congested with heartbeat messages. Should the congestion interfere with

the messages getting through, delays could cause the system to emit false positives, deciding

that a machine has failed when the messages were only delayed.

81

If we increase T, the amount of heartbeat messages sent throughout the cluster is de-

creased, which keeps the system from becoming congested and leads to less false negatives.

On the other hand, it also has the drawback of a proportional delay in recognizing failed

machines, leading to delays in fail-over maneuvers.

S also has a strong impact on the speed of failure detection. Where T determines how

often heartbeats are sent, S determines how many iterations of T are allowed to pass before

a node is officially declared dead. The impact of S is actually dependent upon M, the number

of heartbeat groups. To clarify, a given group will do a full check of the system every M

timesteps. When a node has failed to send a heartbeat within those M timesteps, it enters

the failure suspicion state. Once within this state, it has S full system checks to start

responding before being declared dead. This means that it will take at least SM timesteps

before the node is officially declared dead. In walltime, this results in a delay of SMT before

fail-over actions can be taken.

82

CHAPTER 6

Replication

Replication is a well-known solution for circumventing failures in distributed systems. It

is used in distributed file systems to help resolve inconsistencies in stored data [17], and in

processing systems for a variety of purposes – from preventing data loss in the face of failures

[11, 18], to increasing throughput [25].

Replication schemes broadly fall into one of three categories: (1) Active – where all

computations actively receive and process data simultaneously; (2) Passive – where only

one of the computations, the primary receives and processes data, with the secondaries

ready to assume a primary role should failure occur at the primary; and (3) Hybrid – Some

mix of the previous two categories.

6.1. Failure Analysis

This section is devoted to an analysis of failure rates given our HeartBeat scheme. We

look at both the probability of a computation failing entirely given an individual machine

failure rate, as well as the number of lost computations as machines fail.

6.1.1. Individual Computation Failure. For the purposes of this discussion, we

assume that machine failures are independent; i.e., the probability of machine A failing does

not relate to the probability of machine B failing. This is not necessarily true in cases where

machines on a rack share the same power strip. Rack-awareness in replica placements can

alleviate this.

For this analysis, our computations have a replication level of 3 spread across 3 machines:

A, B, and C ; and we assume that each machine has an X % chance of failure. This includes

all hardware, as well as network connections. The overall probability of failure of an entire

83

computation is: P (Afail)×P (Bfail)×P (Cfail). For a machine failure rate of 1%, the complete

failure of a computation has a probability of only 0.0001%.

Even with high machine failure rates (such as 50%), we see a very low probability of losing

a specific computation entirely (only 12.5%). Through rack awareness and given that the

probability of a particular machines failure is quite low, the probability of complete failure

of a particular computation quickly decreases. The ability of the system to re-replicate, e.g.

add a replica on machine D should machine A fail, reduces the probability of complete failure

even further.

6.1.2. Computation Failure Rate. We now look at the probability that computa-

tions will fail should Y machines fail. For this section, we are assuming that there are U

distinct computations with an arbitrary replication level of R, and N total machines sup-

porting them. While we support replication levels set on a per-computation basis, for this

analysis we are assuming that R is constant across all computations in order to simplify our

calculations.

With U distinct computations, there are actually RU computations in the system in

total (due to the replicas). Assuming that the machines are equally loaded, each machine

will have about RU
N

computations on it. For both a best and worst-case scenario, replicas

for at least RU
N

computations are all co-located. Essentially, machines A, B, and C would

be loaded with exactly the same set of computations. In the worst-case scenario, these RU
N

computations would fail after just R machines failed. In a best-case scenario, (R − 1)U

computations could be lost before a distinct computation failed entirely. Since there are RU
N

computations per machine, this means that we can still run when RU
N
× Y = (R − 1)U , or

when Y = R−1
R
× N machines fail. At this point, the failure of just one more machine will

84

guarantee the complete failure of computations. When Y = R−1
R

N + 1, we will lose distinct

computations completely.

Looking further into this behavior, we can derive the expected average failure given Y,

N and U. For Y failed machines, the probability of any given computation failing is Y
N

.

Since each distinct computation is replicated R times, all R replicas need to fail for the

computation to fail. The probability for the complete failure of a computation is R Y
N

. To

find the average number of failures, we multiply by the number of distinct computations:

R Y
N
× U .

To test this, we work with the thorax extension dataset, which monitors respiration rates

[41, 48], collected by Dr. J. Rittweger, at Institute for Physiology, Free University of Berlin.

This dataset monitors thorax extension at 10Hz. To simulate a live dataset, we stream the

inputs every 100ms, matching the original 10Hz frequency.

In this set of experiments, we are looking at the number of failed distinct computations

given the number of failed machines. The HeartBeat settings are as follows: we use 24 nodes

(N), 6 groups (M), a timestep (T) of 2s, and a failure suspicion count (S) of 2. We deploy

800 distinct computations (U) to this cluster, with a constant replication level (R) of 3.

This means each machine has RU
N

, or 100 computations running on it. In this experiment,

we are looking at the number of failed distinct computations after killing 5, 8, 12, and 18

randomly selected machines. Using the equations above, we can show the theoretical best,

average, and worst cases alongside the experimental best, average and worst cases. We ran

each test 10 times, recording the number of computations lost.

From Table 6.1, we see that we managed to hit the best case scenario in every experiment,

and we usually stay below the worst case. We had almost no losses when almost a quarter

of the machines had failed, and we still maintained 50% functionality even after 75% of the

85

Table 6.1. Predicted and actual computation losses as machines fail

Predicted Actual
Machines
Failed

Best Average Worst Best Average Worst SD

5 0 7.23 100 0 0.10 1 0.32
8 0 29.63 200 0 40 200 69.92
12 0 100.00 400 0 90 200 73.79
18 200 337.50 600 200 330 400 67.49

cluster had died. Even in the case of catastrophic failure, we are seeing functional behavior.

An interesting trend we found was an increase in standard deviation up to losing 50% of the

network, after which the standard deviation began to decrease again. This seems to be a

combination of losing computations on the order of 100s at a time, as well as the increasing

gap between best and worst case scenarios, leaving more room for variation. By the time

75% of the network has been lost, the likelihood of all replicas of a computation being lost

are much higher – this means that there is a chance no burst of communications can take

place to activate a passive replica.

6.2. BCI Experiments

After an initial analysis of our fault-tolerance approach with the respiratory dataset, we

move on to working with our EEG dataset. EEG data is more complex than the thorax

extension dataset, involving many more sensors simultaneously generating data. EEG data

is also typically produced at a much higher rate. In order to gain more temporal insight

from the EEG data (as well as to avoid overloading the network), we send out EEG data for

processing every 250ms. While this slows down the rate of transmission of EEG signals below

that of the respiratory dataset, it also increases the amount of data sent out for processing

in each packet.

86

6.2.1. Small Cluster Testing. It is important to determine our maximum support

capabilities at a smaller scale before introducing the extra communications overheads in-

herent in larger resource pools. First, we determine the maximum number of users we can

stably support on a single machine, then we move to a small cluster of 3 machines to test

our ability to support fault-tolerance on this scale.

6.2.1.1. Experimental Setup. For these experiments, we are using nodes with 2.4 GHz

quad-core processors and 12 GB of RAM. Each node hosts a Granules Resource [9, 10] which

manages all computations on the machine. The resource is connected to a stream routing

broker [49] which resides on another identical machine. EEG signals are fed into the system

from a third identical machine which is responsible for recording round-trip classification

times.

The generic trainers are deployed first, one to each node, and immediately begins batch

training from the training sets. Once they have finished, the user computations are deployed

in a round-robin configuration. Each computation receives an initial, generic group of experts

from the trainer collocated on the same machine. For our fault-tolerance experiments, we

additionally launched a HeartBeat Listener on each node. With only 3 nodes, we set M to

3. This means that each node is within its own heartbeat group. In these tests we are focusing

on a best-case scenario, so no further training is performed. In the previous section we focused

on failure rates given our replication scheme. Our goal in this section is to determine the

effects of replication on the throughput of our system. We use the BCI computation as a

baseline as it requires much more resources than the thorax computation. We determine the

maximum number of users we can support while ensuring that classifications are returned

in a timely manner.

87

Table 6.2. Response Times for 30 Concurrent Users on a Single Node (ms)

Mean (ms) Min (ms) Max (ms) SD (ms)
23.600 7.026 484.669 15.419

A user cannot be supported when classifications fail to return before the next segment of

EEG signals are sent out. As we are classifying 250ms streams, when responses take longer

than 250ms we consider them failed classifications.

We launch a number of programs which simulate individual users who independently

stream EEG signals and record round-trip classification times. These signals are sent out

every 250ms, but only after a classification for the previous timestep has been returned. This

means that if a classification fails (takes more than 250ms to return to the user), the next

signal is sent only after receiving the previous classification. While this is not what would

occur in a live scenario this helps to prevent network congestion and makes round-trip timing

of individual EEG streams easier to analyze, both of which are beneficial when stress-testing

the system. Each user submits 5000 EEG streams for classification, roughly 21 minutes of

continuous EEG signals.

6.2.1.2. Single Machine Stress Tests. For this test we focus on a single machine which

has a single generic trainer instance. We are attempting to determine the maximum number

of concurrent users we can support before we start to breach our 250ms real-time guaran-

tee. Initially, we attempted to support 30 individual users – a significant increase over the

maximum 17 users found in our previous experiments [42]. With these settings, we found

that only one message out of the 150,000, i.e., 0.0006%, failed to return to the user in time

(Table 6.2).

On further analysis, we found that this failed message was among the first ones sent by

a user. This message was probably delayed due to initialization overheads, a very likely case

given that it was not a lasting problem. In the next test we added 5 extra users; with 35

88

users, we saw an increase in the number of failed messages, from 1 to 426 failed messages,

or a failure rate of 0.2% instead of 0.0006%. Overall statistics can be seen in Table 6.3. In

our best case, we can return results in just under 7ms, but in the worst case, responses took

over 9.5 seconds. In the same table, we also show a break down for the passing and failing

responses.

Table 6.3. Response Times for 35 Concurrent Users on a Single Node (ms)

Mean (ms) Min (ms) Max (ms) SD (ms)
Overall 26.292 6.993 9564.874 97.953

Passing 23.225 6.993 249.852 17.172
Failing 1283.038 250.638 9564.874 1497.543

Analyzing the probability density of the passing response times (Figure 6.1), we do see

some promising trends. The majority of passed classifications return to the user in under

50ms. While we do have a worst-case scenario of 9.5 seconds, most of our computations are

well within the passing range.

Our overall failed classification rate was still relatively small, at only 0.2%. To stress the

system even further, we ran one more test with 40 users per machine. The results for this

experiment are shown in Table 6.4. We again saw an increase in failures: from 426 to 1005

failed messages, while the failure rate increased from 0.2% to 0.5%. While this is still a very

small value, the number of failures has more than doubled when only adding 5 additional

users. We again decided to look at a breakdown of the response times of the failed and

passing computations, shown in Table 6.4.

Table 6.4. Response Times for 40 Concurrent Users on a Single Node (ms)

Mean (ms) Min (ms) Max (ms) SD (ms)
Overall 33.982 6.762 30565.040 298.482

Passing 23.487 6.762 249.961 18.605
Failing 2112.003 250.176 30565.040 3651.625

89

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Passing Response Times for 35 and 40 Users

Response Time (ms)

D
en

si
ty

35 Users
40 Users

Figure 6.1. Density functions of passing response times in milliseconds for
35 and 40 users on a single node (ms)

Figure 6.1 shows the probability densities of passing response times for both 35 and 40

users. Looking closely, we see very similar response times. With 40 users, there seems to be

more of a smaller, secondary clustering of response times between 50ms and 100ms, possibly

showing a small secondary wave of classifications. This could be a sign that incoming data

streams are getting clustered together, leading to computations being processed in waves.

Essentially, data is arriving simultaneously, meaning computations are queuing up to be

activated to process their data. While most computations finish processing between 10 and

50ms, other computations need to wait for this initial processing to conclude before starting,

leading to a little bump of straggler computations which finish 50 to 100ms after the data

was sent.

We saw a small increase in the percentage of failures between 35 and 40 users, but also

a drastic increase in the amount of time it takes for these delayed messages to get back to

the sender; increasing from 9.5 seconds to 30 seconds. Performing a closer analysis of these

failed messages, it becomes clear that they are occurring in waves: all clients report overdue

90

communications at approximately the same time. In the 35 user case, these waves occur less

often than in the 40 user case. As we attempt to support more users on a single resource,

we are exacerbating interference problems between these collocated computations.

Analyzing resource usage on the machine, it becomes clear that delayed messages occur

when data needs to be shifted in and out of swap space. The node is utilizing all 12GB

RAM maintaining the dedicated R instances, and has needed to start storing data which is

actively needed in swap.

Looking at only the percentage of failed messages, it seems likely that we would be able

to support even more concurrent users. In the case of BCI applications, however, timeliness

is a priority. For example, you would not want to be using a system which may have a 30

second delay when using EEG signals to drive a wheelchair. Being stuck in the middle of a

street for half a minute could be disastrous. Due to the drastic difference in response times

as swap needs to be utilized, we decided to set a cap at 35 users on a single machine. Our

current bottleneck is memory usage, so one avenue of future work is to explore methods of

decreasing the footprint of R. Alternatively, we are also interested in exploring the memory

overheads when using different implementations, such as in C or Java. Any implementation

outside of Java, however, has the potential to suffer from the problem of not knowing the

difference between the primary and backup replicas.

6.2.1.3. Passive and Active Fault-Tolerance Schemes. For our initial experiments in fault-

tolerance for EEG streams, we first looked at the simplest possible case: 3 resources with 30

users hosted on each. While this is a bit below the maximum support case we found for small

clusters (35 users), we are introducing extra communications in the form of the heartbeat

approach. Each resource was in its own failure group (M = 3), has a failure suspicion level

(S) of 2, and a transmission rate (T) of 2 seconds. Based on this information, and the

91

algorithms defined in chapter 5, we can predict best, worst and average case scenarios with

respect to how long it takes to recognize and recover from failures.

Full Passive Replication Experiments. In a fully passive approach, only the primary

replica receives inputs and generates outputs. The other replicas simply remain dormant

until failure of the primary has been detected. At that time one of the remaining replicas

is promoted to primary status and inputs are then redirected to the new primary. While

this approach has the lowest cost to maintain with respect to resource usage, it also has

the highest cost with respect to the amount of time it takes to recover. Once a passive

replica detects failure of the primary, it needs to initiate communications streams. For this

experiment, we implemented a resend message which allows the replica to request a resend

of the last data from the user. This allowed us to measure the time it takes to recognize,

recover, and start processing new data after failures.

The results of this experiment are displayed in Table 6.5. Our approach limits the

potential for flagging false positives (labeling that a failure has occurred when one has not),

at the cost of increasing the time to notice failure. In a fully passive approach, new channels

of communication need to be set up in order to resume the processing of data, leading to

potential recovery times that are very high.

Full Active Replication Experiments. For this set of experiments, we are setting all com-

putations in the cluster as active replicas. In our implementation, this means that all replicas

receive all inputs, but only the primary is responsible for processing the data and generating

a result to pass on to the user. In short, we are pushing three times as much data for inputs

as we would in an unreplicated environment. With 30 users, we would originally be gener-

ating data at a rate of 2.3MB/s, but since all replicas need to see all inputs, we are instead

generating data at a rate of 7MB/s.

92

In our initial experiments, we relied on the replicas saving state from the previous inputs

to recover from failures. This should have resulted in an increased recovery time from

failure, since they do not need to request a resend. With this approach, we actually found

our recovery time to be well over 16 seconds. By having all replicas store the last EEG

signal sent to it, the node was forced to store computations in swap space, leading to much

larger overheads when a failure occurred. We switched to the model we used in the passive

replication approaches, where a replica requests a resend of data from a client when it is

promoted to primary. The results from a fully active cluster can be seen alongside the passive

results in Table 6.5.

While this approach can offer the strongest fault-tolerance guarantees, it also incurs the

greatest overheads. In a live system, a fully active replication approach can be limiting, as

we begin to hinder our scaling capabilities.

Table 6.5. Time to recover from failure in a small cluster with 30 concurrent
users (ms)

Mean (ms) Min (ms) Max (ms) SD (ms)
Active 14740.98 14609.79 14864.52 72.657

Passive 15898.75 15794.50 16023.19 67.414

6.2.1.4. Re-Replication of BCI Computations. For this experiment, we worked with a

fully loaded small cluster of 4 machines. After all computations had been loaded, we then

killed one resource, and recorded the amount of time it took the backup replica to launch a

new computation and send it all needed state information (for the BCI example, this includes

the replica ID number and neural network for processing). In this process, we are looking to

isolate the time it takes from the “Launch a new computation on machine X ” message to

be sent out in the system until the new computation is capable of processing data packets

from the client. We further break down this period into 3 distinct times: (1) computation

93

instantiation – the time it took the computation to start up and request state information;

(2) basic state transfer – the time it takes to receive basic computation state; and (3) neural

network transfer – the time it takes to compress, send, and decompress the neural network.

As we can see from the results in Table 6.6, the re-replication process can be quite long,

with an average overhead of 23.5 seconds. Given that EEG data is streamed every 250ms,

this means that approximately 94 data packets have been sent during this time period.

Looking at a breakdown of the times, we saw that the amount of time it took to actually

instantiate a replica and get it ready for the neural network transfer was negligible – the vast

majority of our overheads are compressing and sending the neural network to the new replica.

We are hitting a bottleneck in our network and processing capacities, where attempting to

get better times would begin to interfere with other computations. However, since this is a

re-replication task and outside the path of critical processing for incoming data, it should

pose a minimal risk to user safety.

Table 6.6. Re-Replication Overheads

Mean (ms) Min (ms) Max (ms) SD (ms)
Initialized 108.28 0.15 891.48 276.73
Basic State 628.65 501.32 925.24 153.96
Compress NN 11808.06 8746.83 22697.82 4021.34
Transmit NN 10024.36 8922.81 12818.59 1170.94
Decompress
NN

1309.56 1261.52 1593.22 100.190

Overall 23578.92 19158.78 35513.15 5184.55

6.2.2. Full Scale Cluster Stress Tests. Previously, we found our network to be

an effective bottleneck at 150 concurrent users. In Section 6.2.1, we found that memory

started to became the bottleneck on a single node without replication at 35 users. In this

subsection we explore the maximum number of concurrent users we can support as we scale

up the number of nodes in our cluster. As the number of users increases, we increase the

94

chances that the network becomes a bottleneck as communications increase. Ideally, we

should be able to maintain the rate of 35 users per machine.

6.2.2.1. Changes in Approach. For these experiments, we needed to switch to a more

streamlined approach to generating EEG signals due to a lack of system resources. Using

a threaded approach, data is streamed every 250ms regardless of whether or not a previous

response has been returned. When the delay is long enough, this can lead to lost messages

as buffers overflow. In such situations, we are unable to properly asses worst case scenarios.

6.2.2.2. Full Scale Stress Tests. As a baseline starting point we first look to the question

of supporting 1000 concurrent users. Due to the current cost of amplifiers, this is far beyond

the rate at which EEG signals are typically gathered by a single lab. Supporting this many

concurrent users means that we can support multiple BCI labs and their user base on a

single cluster. Amalgamating this much data from disparate users could allow us to learn

much more about raw EEG data than ever before.

We spread these 1000 computations across 40 machines. While this will undershoot our

findings from the previous section (25 users per machine instead of the 35 maximum we

found before), this allows us some leeway to take into account any problems that may arise

from a networking standpoint due to congestion and spikes) as we scale up.

We found that we could support 1000 users with a minimal failure rate (0.005%). A

closer analysis of the data revealed that our worst-case scenario involved a maximum delay

of just over 1 second. As we discussed in Section 6.2.1, this length delay is unlikely to be

noticed by a user, so falls within an acceptable limit. Looking at the probability density of

passing responses in Figure 6.2, we see that there is a significant shift in response times from

our tests with a single node. This makes it apparent that we are starting to see a problem

with communications overheads as we scale up our experiments.

95

0 50 100 150 200 250

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

Passing Response Times for 1000 and 1400 Users

Response Time (ms)

D
en

si
ty

1000 Users
1400 Users

Figure 6.2. Probability density functions of passing response times in mil-
liseconds for 1000 and 1400 users on a cluster of 40 nodes (ms)

The next step we took was to see if we could support the 35 users per machine we saw in

the previous tests. We used the same setup for this test: 40 resources, a dedicated broker,

and external machines to generate EEG streams. We distributed 1400 computations, so each

resource hosted 35 computations.

In this test case, we saw a significant increase in the number of failed classifications,

reaching 0.8% failure rate. This includes lost messages as well as messages received in over

250ms. Looking at the 1400 user case in Figure 6.2, we can see that there has been a drastic

shift in the mean response times. We are obviously hitting a communications threshold as

we scale up to a full cluster.

Even on a full scale cluster, our new approach can support a much larger number of con-

current users than our initial approach. We also found that we are hitting a communications

bottleneck as we increase the size of our cluster. The main problem appears to be with the

96

underlying communications framework. One avenue of expansion is to develop a more effi-

cient method of content distribution, such as one that relies on the use of minimum spanning

trees to disseminate content while making efficient use of the underlying bandwidth.

6.2.2.3. Replication in a Large Cluster. For the last set of experiments in this chapter,

we decided to analyze how our replication approach scales. We hosted 450 distinct BCI

computations. With a replication level of 3, this means 1350 computations in total. We

hosted this on a cluster of 45 nodes, so each node hosted 30 computations. It is important to

remember at this point that while computations running in Java can recognize the difference

between a primary and a replica, the R-based components of a computation cannot. Even

passive replicas can take up a significant portion of memory keeping their designated R

instance alive.

With respect to our HeartBeat framework, we set up our test environment to have 5

heartbeat groups M each containing 9 machines. Keeping a T of 2 seconds and a S of

2, this leaves our best (TSM) and worst ((M-1)T + TSM) case scenarios at a 20 and 28

seconds respectively. While we could have used only 3 message groups as in our small-scale

experiments, this would add to the probability of encountering communications bottlenecks,

leading to erroneous failure announcements.

In this experiment we utilize an 80/20 split of passive and active replication schemes

(360 passive and 90 active computations) as a cluster containing only active replicas causes

too much stress on the underlying communications framework to be feasible. The ability

to support multiple replication schemes in a single instance of a framework is uncommon

([11, 18, 45, 12]),and is a key functionality that we have built into the Granules framework.

In the context of BCI, not all computations are created equally. A computation perform-

ing classifications for a BCI controlled wheelchair should have stronger failure guarantees

97

than a BCI speller. Granules’ ability to host various replication approaches in a single

cluster allows for much more flexibility in deployments.

As in our previous stress tests we needed to use a modified generator with a threaded

approach. In the case of failures, we can only see the number of missed messages. As

messages are sent every 250ms, every second spent detecting failure means 4 lost messages.

This means in the best case scenario we will lose 80, while in the worst case we could lose

112 messages.

In our tests we found that our passive and active approaches both lost the same number

of messages, right at the theoretical average of 96 lost messages. This is most likely caused

by the lockstep nature of our generator approach. The cost to set up communications in

a passive approach only takes tens of milliseconds to occur. Unless the timing is perfectly

aligned, the odds of missing one of the regular 250ms bursts is relatively low.

6.3. Leveraging Replicas for BCI

While our HeartBeat scheme does allow us to accurately determine whether or not a

machine has failed, the cost of this approach is readily apparent in the amount of time needed

to recover from a failure. The purpose of this section is to explore several different approaches

to help reduce the amount of time a client is left without any new classifications. A key to

these approaches is the ability of the client to raise an alert if they are having problems

contacting their computation. Giving users the power to determine failure suspicion opens

up several complex fault-tolerance schemes, allows for basic load-balancing techniques, and

even opens up the possibility of detecting a new class of failures.

6.3.1. Multi-User Classifiers. Our current approach involves each user training up

an individualized group of experts in their own R instance. Previously, we looked at a

98

much more generalized approach where all users shared a single group of experts. While the

accuracy of a generic group of experts will be lower than an individually trained group of

experts, it should be better than leaving the user without any classifications.

This approach involves starting a single, unreplicated generic classifier on every machine

in the cluster. The generic classifiers would be tuned to listen for computations which do

not have any replicas hosted on the same node, as that would provide no additional support.

While evaluating various approaches to host groups of experts for BCI applications, we

considered using generic classifiers to host multiple users. Our experiments showed that we

could potentially support up to 40 users within a single generic classifier.

When a user has begun to miss classifications, they can begin to simultaneously transmit

data to a generic classifier. This way a user will not be left without any classifications while

waiting for the failure of a node to be confirmed with the HeartBeat approach.

6.3.2. Dual Processing of Inputs. In stream processing systems some research has

gone into exploring how replicas can reduce latency [28], this approach could also be adapted

to our process of classifying signals. This is a resource-intensive approach where multiple

replicas receive, process, and generate outputs. Clients are required to keep track of sent

messages, so they can determine whether they are receiving a timely or delayed classification.

Overall, this is a simple fix with a high return – a user never even notices when a replica

has failed as they continue to receive classifications from the other replicas. This would be

an ideal strategy for a BCI wheelchair application where even small outages may result in

disastrous consequences. Whether or not this outweighs the extra cost in resource usage can

be a more difficult question to answer. Using our replication strategy of hosting 3 replicas,

this would lead to lowering a clusters capacity to 1
3

of what it could otherwise host.

99

One possible solution to this resource usage is to use a hybrid approach: 2 replicas are

concurrently processing inputs and returning results, while the third exists solely as a passive

replica. Should one of the active replicas fail, the passive one would then be promoted to an

active role. All this could occur without the user even noticing that a failure has occurred.

A big problem in this approach is the slim, but not non-existent, possibility that a second

failure could occur causing the user to lose both active replicas before the passive replica

can be instantiated. This problem can be solved by the addition of the generic classifier

approach introduced above.

While waiting for the passive replica to acknowledge the failure and be promoted to

active status, the user can make use of a generic classifier (possibly giving preference to

results returned from the remaining active replica). Should both active replicas fail before

the passive replica can be promoted, the user would be able to rely entirely upon the generic

classifier – ensuring some processing of data is occurring.

6.3.3. Toggling Replicas. An alternative approach is to give users even more control

over their replicas by revealing computation hosting options. Instead of staying with a single

replica until failure, users switch between replicas periodically. Based on performance and

user requirements, the user can choose which replica to send the bulk of their data for

processing. This approach has several advantages:

• Load Balancing – over time, users will settle down to primarily use replicas re-

siding on nodes with the lowest loads. This will allow the system to keep itself load

balanced over time.

• Meeting User Needs – based on the particular BCI application, users may have

very different requirements. Some may prioritize lower latency, while others need to

100

limit variations in response times. Users can make informed decisions about which

replica to rely on based on previous behavior.

• Reduced Overheads – this approach uses less resources than the dual processing

approach, yet should still allow a user to detect failure more quickly than a naive

approach.

• Increased Knowledge Dispersal – as users are regularly switching between repli-

cas, different nodes in the cluster will be acting as the primary over time. This

means that different generic trainers will have access to new training data from

this user over time. Each node in the cluster will obtain broader access to training

data, potentially increasing the capabilities of the models developed by the generic

trainers.

This approach does, however, require a lot of processing and memory usage on the client

side. An approach this complex may not be a good choice for a mobile device such as

a smartphone with limited resources to begin with. This approach should only be imple-

mented after careful consideration of various parameters. Should the toggle function be

timed incorrectly, there is a chance that the system will never reach a stable state if all users

sync up unfortunately.

6.3.4. Determining Computation Level Failures. The HeartBeat system has been

designed to detect failures at a machine level. It is tuned to avoid false positives, and so it

tends to err on the side of caution taking seconds to confirm that a failure has actually oc-

curred. While we have been focusing on the task of detecting failure more quickly, a related

issue is to detect computation level failure.

This is a failure which does not effect other computations on the machine (such as the

HeartBeat computation), meaning it can never be detected by anyone other than the single

101

user connected to that instance. By allowing a user to independently switch to a different

replica when responses fall below an acceptable threshold, we solve the problem of partial

failures.

6.4. Summary

In this chapter we have described our approach to fault-tolerance through replication, as

well as the costs seen for re-replication. While replication is a well-understood solution to

fault-tolerance, we have developed a novel, distributed solution to detecting failures. This is

a core component of our framework, and fully tunable by users in order to meet the needs

of their clients. While our system has been designed specifically for the purpose of health

stream processing, there is nothing to preclude its use in any other system.

Our experiments with the thorax computation have shown that our approach not only re-

liably outperforms theoretical average, but often approaches the theoretical best performance

for failure detection and the amount of time needed to instantiate failover maneuvers.

With our EEG experiments, we explored the overheads associated with our failure detec-

tion system, and how these affect our overall system throughput. While the failure detection

system does reduce the number of concurrent computations a single machine can hold, the

ability to continue processing in the face of failures outweighs this decrease.

We have further benchmarked the re-replication process with the BCI computation, which

is the most costly of our motivating applications. Given the overheads associated with re-

replication, we have determined that: (1) re-replication tasks need to be taken outside the

path of critical processing; and (2) average time to failure in a given resource pool will

dictate the amount of replicas hosted computations require. Should the average time to

102

failure be significantly less than the re-replication timescale, we need a greater replication

level to ensure computations are not lost entirely.

103

CHAPTER 7

Detecting Interference

Assigning a single computation to a single machine would avoid interference entirely,

but would also mean that resources are being vastly underutilized. In order to prevent

underutilization, we take advantage of Granules’ ability to interleave computations on a

single machine. This means that instead of needing a server farm for only a few patients, we

would be able to support a hospital or nursing home with a small- to medium-sized cluster.

7.1. Defining Interference

Interference occurs when multiple computations are vying for the same set of limited

resources. Such resource contention can lead to increased context switching, queue lengths,

and computation times. As a cluster is expected to support more and more computations,

interference levels will rise, meaning that interference detection and avoidance become more

and more necessary. A related issue here is of resource imbalances – a small number of

resources may be responsible for a disproportionate share of the processing.

For our purposes, we define interference as occurring when an individual computations’

throughput suffers a decrease while a collocated computations’ throughput is increased.

There are several caveats to this case, however, the most prominent being that different

computations will have different data arrival rates, leading to different maximum possible

throughput.

The ultimate goal of our system is to ensure that no one computation prevents the

processing of another computation. This would both be unfair, and potentially create an

unsafe environment. In order to prevent this from happening, we need to take several

precautions. First, we need to quickly detect interference as it happens. The loss of a

104

small number of packets may be acceptable, depending on the application, but the loss of

a large number is not. So the ability to reactively respond to interference as it occurs is

necessary. Second, we need to take proactive steps to prevent interference from causing

problems. Relying on solely a reactive approach is far more likely to result in problems in

the future. For interference which we cannot detect, we can then fall back on our reactive

approach to resolve these problems as they occur.

7.2. Clustering Interference

When using a purely reactive approach, it is possible to detect interference by simply

observing degradation in performance, but there is still the problem of trying to figure out

how to reduce interference on the machine. We solve both the detection and placement

problems using the same approach: clustering on computation state.

We use information on the current state of each computation to detect interference.

Computations are expected to interfere if they have similar processing requirements, and

similar activation arrivals. Essentially, we expect to see interference between computations

that need the same resources and activate at the same time. Due to the fact that similarities

signal interference, we decided to use a clustering algorithm to detect interference. This

information is collected regularly from each computation as its ComputationStatus. Each

status is projected into multi-dimensional space. Similar computations will be physically

nearer to each other in this space, making a clustering algorithm a logical choice. This also

allows us to quantify the degree of interference. We rely on Euclidean distance measures in

this multi-dimensional space. Computations that are further apart are less likely to interfere

with each other.

105

Previous work in mitigating interference has largely been reactive, so this is a novel

approach. To our knowledge, no other system uses clustering on predicted interference to

decide computation placement or migrations.

7.2.1. Clustering approach. Our approach uses k-means clustering with Euclidean

distance measures. We have k set to 5, and cluster across all the information we collect from

each computation: Data arrivals, amount of data and internal communications packets,

and average size of data and internal communications packets. k was determined after

running several experiments and observing cluster centroid distances. For the current set of

computations that we are hosting, we found 5 to generally work well. One avenue of future

work would be to allow k to change over time as needed.

For our Kmeans implementation, we are utilizing the publicly available kmeansclustering

package: https://code.google.com/p/kmeansclustering/. Our data is relatively sparse,

which can cause difficulties in clustering without the proper implementation. We use the

default clustering parameters, which runs for X iterations, or until cluster centroids have

shifted less than Y. One avenue for future work is to explore the effects of different Kmeans

settings, as well as other clustering functions entirely.

7.2.2. Using Clustering. Clustering returns an assigned cluster ID as well as its dis-

tance from the assigned cluster centroid. We use the cluster ID information to determine

which computations interfere with each other. Computations which are in the same cluster

have similar activation times and resource requirements, so should be placed apart from each

other if possible.

Given our desire to host hundreds of computations on a small to medium-sized cluster,

completely avoiding all interference is impossible – such a situation would require close to

106

the single computation to a single machine idea. As eliminating all interference is infeasible,

we need to focus on minimizing interference. We focus on ensuring that all machines in the

system share an equivalent amount of interference. This means that each machine will share

an equal load, and all computations are given an equivalent share of resources.

No system can handle processing requirements that outpace what is available within

a collection of resources. In order to prevent the system from slowly sinking under more

computations than it can accommodate, it becomes the responsibility of the Coordinator

Node to alert system administrators when the load is greater than the current resource pool

can handle.

We can also use the information on distance from the cluster centroid to detect the

severity of interference. Computations which are further from the centroid are less likely to

interfere with computations which are closer to the centroid, and vice versa. On the other

hand, computations which are similar distances away are more likely to share the same plane

of multi-dimensional space – meaning that their statuses are more similar, and more likely

to interfere with each other.

7.3. Clustering Overheads

For clustering to be an effective measure of interference, we need to first make sure that

the overheads induced by clustering do not preclude use in a real-time system. For this

experiment, we explore the clustering overheads for converting computation statuses to clus-

terable points, the amount of time spent running clustering, and the amount of time looking

for potential migrations. This information lets us know how often we can run interference

detection without impacting overall cluster performance.

107

For these experiments, we ran both small- and large-scale tests, from 2 to 40 machines.

From previous experiments, we know the maximum number of thorax computations we can

reliably place on each machine to be around 100. For these experiments, we are only using

thorax computations, as they are most light-weight, and we can fit more thorax computations

on a single machine than any other type of computation. The clustering system is not

impacted by different types of computations, only the number of computations.

Based on the results of this experiment, we can determine both how often we can run

clustering, as well as how many computations a single Coordinator Node can reliably han-

dle. This value would be different for different clustering methods, but will tell us at what

point we need to develop a federated system to handle new computations. This would allow

us to determine the number of Coordinator Nodes that must be present as the scale of the

system increases.

For our small-scale tests, we deployed an increasing number of computations on 2 ma-

chines. We found the clustering time to increase linearly as more computations are added,

as shown in Figure 7.1. While our overheads are relatively noisy, this is still a promising sign

that we can achieve our goal of supporting a hospital or other institution on a medium-sized

cluster. We have further supplied the actual values for mean, minimum, maximum and

standard deviation of our benchmarks in Table 7.1. While it is important to ensure that the

mean clustering overheads remain manageable, it is also important to take into account the

frequency of significantly larger outliers. As with other aspects of our system, allowing this

process to consume too much time could ultimately result in lost patient data.

Following our small-scale experiments, we next moved on to a much larger scale, using

40 machines. The results of these experiments can be seen in figure 7.2. These experiments

show a drastic increase in the clustering overheads, with a sharp increase just above 1000

108

0 50 100 150 200 250 300 350

0
10

20
30

40

Small−Scale Clustering Overheads

Supported Computations

C
lu

st
er

in
g

O
ve

rh
ea

ds
 (

m
s)

Mean

Minimum

Maximum

Figure 7.1. Small-scale clustering overheads across 2 machines with increas-
ing computation loads (ms).

Table 7.1. Small-Scale Clustering as Hosted Computations Increase (ms)

Computations Mean (ms) Min (ms) Max (ms) SD (ms)
10 1.744 1.132 9.358 1.747
20 1.278 0.990 1.983 0.390
30 1.408 1.372 1.435 0.017
40 4.114 1.658 35.401 8.663
101 4.258 3.862 5.472 0.504
201 11.446 9.119 28.598 4.677
301 15.636 10.736 42.634 10.959
311 12.931 11.326 16.075 2.231
321 14.062 12.150 16.527 1.727
331 14.915 11.808 20.701 3.168
341 17.543 15.445 19.156 1.305
351 18.247 7.450 108.119 3.764

computations, and another, less drastic one at just over 3000 computations. At over 5000

supported computations, our interference detection system was able to cluster all compu-

tations in under 500ms in the worst case. We have also provided actual mean, minimum,

maximum, and standard deviation values in Table 7.2.

109

1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

Large−Scale Clustering Overheads

Supported Computations

C
lu

st
er

in
g

O
ve

rh
ea

ds
 (

m
s)

Mean

Minimum

Maximm

Figure 7.2. Small-scale clustering overheads across 2 machines with increas-
ing computation loads (ms).

Table 7.2. Large-Scale Interference Clustering as Hosted Computations In-
creases (ms)

Computations Mean (ms) Min (ms) Max (ms) SD (ms)
360 15.507 4.259 55.638 16.619
400 8.028 4.867 15.462 2.552
440 9.502 5.671 20.856 3.9723
480 8.765 5.699 11.560 1.767
600 11.003 6.722 17.535 2.234
700 14.341 8.125 26.207 5.084
800 12.909 9.479 16.040 2.007
1200 22.417 14.849 43.491 7.864
1203 45.125 41.209 48.751 2.503
2003 77.295 69.097 91.621 7.154
3203 126.217 109.986 145.891 17.324
5403 274.611 181.518 493.842 27.201

7.4. Intelligent Placement

We have developed our interference detection system to respond to interference both

reactively and proactively. We can also utilize the interference information we are generating

to aid in the initial placement of computations.

110

Previously, we have exclusively used a round robin approach to computation placement.

Assuming that each computation has a relatively equivalent load, such an approach guaran-

tees a balanced load. One thing that it cannot take into account, however, is computation

activation times. Should all collocated computations receive data at the same time, they

will all be competing for limited resources at the same time.

111

CHAPTER 8

Migration

Migrations serve many purposes. They can be used to alleviate current load on a ma-

chine, improve a computations throughput, or even avoid machines that are scheduled for

maintenance.

We have developed a migration system that responds to both detected and predicted

interference. To solve both problems effectively, we have developed two different migration

schemes: soft migration and hard migration

8.1. Soft Migration

Soft migration takes advantage of our hybrid replication scheme. This is suitable as a

quick response to either imminently impending interference, or currently detected interfer-

ence. If the machine which is hosting the primary computation is experiencing slowdowns, it

is possible to switch the replica that is acting as primary. While it will not completely remove

all load from the original primary’s machine, due to the computations update schedule, it

does reduce the current load, and increase throughput for the migrated computation.

One prerequisite for a soft migration is that one of the machines hosting a replica can

actually support the load of hosting the primary. If performing a soft migration will result

in another machine becoming overloaded, the system will consider a hard migration. Ad-

ditionally, hard migrations are a good choice when interference is detected further into the

future. A hard migration carries more overheads than a soft migration, meaning that it is

not a good choice when an immediate response is needed.

112

8.1.1. Small Scale Soft Migration. In our stress tests we overloaded the cluster

with identical BCI computations and continuously pushed data to the cluster for classifica-

tion. This is a worst-case scenario with respect to interference: computations with identical

footprints and resource needs are being activated continuously very closely together.

From our previous experiments, we see congestion occurring as we overload the system,

leading to failed responses. While some of this is undoubtedly due to network congestion, in-

terference between computations is likely exacerbating the situation. To relieve interference,

computations that are activating at the same time can be shifted to different machines. This

can be easily accomplished using our passive replication scheme. If the machine that the

primary is on is overloaded, one of the other replicas can be promoted to primary, shifting

the load to a different machine. This is very similar to the idea of allowing a user to toggle

replicas. The main difference is that instead of switching between replicas regularly, we are

essentially migrating the primary replica between machines as needed.

In this experiment we deployed 24 BCI computations with a replication level of 3 to a

small cluster of 3 machines. All computations were passive in order to take full advantage

of soft migrations. We are currently only looking at machine load and queue delays. On

the active replica, we gather information about the time that data packets spend waiting in

a queue for processing. All replicas have the ability to query their host machine about the

current CPU load.

When the user notices responses falling below a predefined threshold, it first checks the

queue delay on the primary. This helps determine: (1) if the problem is because the system

is overloaded, in which case shifting processing to another machine would be beneficial; or

(2) if the problem is due to network congestion, in which case a shift in processing may

cause more problems. Once it has determined that a shift in processing should occur, the

113

user can then have all replicas query for the status of their host machines, which includes

the amount of memory allocated as well as how much of it is used, the number of currently

hosted computations, and the number of data packets currently queued for processing. The

user then chooses the replica with the lowest overheads to host the primary computation.

In order to limit flapping, where the primary role is constantly being switched between

replicas, we have built in a 5 second “cooldown” period. After switching to a new primary, the

system is required to wait 5 seconds (for our BCI application, this means 20 data packets will

have been sent) before starting to look for a new primary. This approach prevented flapping

in our experiments, but a more detailed look into these settings is a subject of future work.

We first ran our basic stress test to determine a baseline passing rate. Given that all

the primaries are collocated on a single machine, we expected to see some failures of classi-

fications. We saw a failure rate of 8.26%, a rate much worse than we saw in our previous

experiments. Next, we ran a round of classification with our new user code, with interfer-

ence detection and mitigation abilities. We then ran a final round of classification with the

original stress testing code, finding that we had reduced the failure rate to 6.22%, a decrease

of over 2%. By providing more information to the user, we should be able to expand on this

to achieve greater improvements more efficiently.

8.2. Hard Migration

Hard migrations require much more overhead than a soft migration, as they involve de-

ploying a new computation and bringing it up to the current state. Hard migrations are

needed for situations where a soft migration will not solve imbalance problems. Hard migra-

tions are also useful in situations where a machine is going down for scheduled maintenance.

114

Instead of waiting for a computation to failover, computations can be proactively migrated

away from the machine which is about to reboot.

8.2.1. Small Scale Hard Migrations. For these sets of experiments, we explore

how hard migrations behave on a small scale. By using a smaller number of machines for

a testbed, it is easier to control when migrations are triggered, and where computations

will migrate to. In order to further simplify matters, we used computations with a single

replication level. While this ensures migrations occur, and that only hard migrations are

possible, it also means that we are reducing communications overheads as there are no

replicas which need to be informed of state updates.

8.2.1.1. Homogeneous BCI Migrations. Due to the nature of the state needed for the

BCI application – the ANN trained to that specific user – BCI computation migrations are

expected to have the highest overheads. For a computation to successfully migrate, the

current ANN needs to be transferred to the new computation. These are on the order of

60MB. The size is determined based on both the complexity of the ANN itself, the number

of inputs, and the outputs. It will vary depending on the type of amplifier being used, and

number of units in the hidden layer of the NN, and the number of classifications it is expected

to handle.

In order to fully capture the breakdown of migration overheads for the BCI application,

we gather information for multiple steps in the process: time from initial migration decision

to new computation instantiation, time to compress the current ANN, time to transfer the

ANN, time to decompress the ANN, and then the complete overhead from the decision to

migrate the computation until the NN is fully transferred, and the computation is ready to

handle the processing of new data.

115

As we can see from the results in Table 8.1, the migration process can be quite long, with

an average overhead of 23.5 seconds. Given that EEG data is pushed out every 250ms, this

means that approximately 94 data packets have been sent during this time period. Looking

at a breakdown of the times, we saw that the amount of time it took to actually instantiate

a replica and get it ready for the neural network transfer was negligible – the vast majority

of our overheads are compressing and sending the neural network to the new replica. We are

hitting a bottleneck in our network and processing capacities, but attempting to get better

times would begin to interfere with other computations. From this we can see that a hard

migration task needs to be moved outside the path of critical processing for incoming data,

in order to reduce risk to user safety.

Table 8.1. Small Scale BCI Migration Overheads

Mean (ms) Min (ms) Max (ms) SD (ms)
Initialized 108.28 0.15 891.48 276.73
Basic State 628.65 501.32 925.24 153.96
Compress NN 11808.06 8746.83 22697.82 4021.34
Transmit NN 10024.36 8922.81 12818.59 1170.94
Decompress
NN

1309.56 1261.52 1593.22 100.190

Overall 23578.92 19158.78 35513.15 5184.55

8.3. Summary

In this chapter, we have presented our approach to migrations. Our work stands out in

that we differentiate between soft and hard migrations. Soft migrations are only available

in systems with either passive or hybrid replication schemes – in a fully active environment,

there is no passive replica to switch processing to. The closest parallel to our soft migrations

is seen in the concept of ‘speculative tasks’, where the same task is run in parallel and the

results from the first returned task are accepted. If a passive replica is located on a machine

with lower load, it is promoted to primary status.

116

Our hard migrations are more typical of the migrations discussed in other works, with the

caveat that our system is designed for a streaming environment. This adds extra complica-

tions to the process, since we cannot simply freeze a computation throughout the migration

process, but must continue to process data in real time. Hard migrations typically have over-

heads an order of magnitude higher than soft migrations, yet can offer a more permanent

solution to imbalance load.

Migration schemes are an important tool for load balancing. A good migration can

lead to a better balanced load, allowing the resource pool to safely support more patient

computations. Poor migration choices can exacerbate already existent problems in a cluster,

in some cases resulting in flip-flopping, or oscillating migrations where computations never

settle and are constantly migrating.

Our benchmarks of migration overheads tells us how often we can effectively use each type

of migration. Scheduling multiple, simultaneous migrations is more likely to lead to difficul-

ties in determining current load, possibly leading to an unstable situation where cascading

migrations are launched erroneously. It is important to find a balance between limiting how

often we launch new migrations with the systems ability to respond to changes in system

state.

117

CHAPTER 9

Contributions and Future Work

9.1. Conclusions

In this dissertation, we have presented a framework to support the robust processing of

streaming data in real time. Our motivating focus has been on health stream processing,

which requires strict constraints on response times, as well as very strong fault-tolerance

guarantees. While designed for health stream processing, there is nothing to preclude the

use of this framework for any other sort of real-time sensor processing.

Our framework is built upon the Granules stream processing runtime, and takes advan-

tage of its underlying communications and scheduling tools. To achieve fault-tolerance, we

have developed a distributed HeartBeat system which can be fine-tuned in order to meet

an institution’s requirements with respect to time to failure detection, robustness to false

negatives, and overall response time to failures.

In order to limit the amount of data lost in failure scenarios, we have also implemented

replication to work within our fault-tolerance approach. Replication is a well-understood

response to the possibility of failures, as has been thoroughly explored in Chapter 2. We

believe that we have expanded upon this basic concept to provide a more flexible framework

than previous works have provided. We support traditional active and passive approaches

to replication, as well as a hybrid approach which allows developers to specify how many

computations should be actively processing data, as well as how often state information

should be transferred to passive replicas. To the best of our knowledge, no other system

allows for this much flexibility. This provides the opportunity to developers to balance

resource utilization with the number of supportable users, while tweaking robustness on a

118

per-computation basis. This is an ideal environment for a patient care scenario, allowing

individualized guarantees not only on a per-patient level, but on a data stream level – a

single patient can have a different policy for every sensor.

While replication adds to the robustness of the system and allows us to handle failures

without affecting the user, this also makes the system more complicated. We now have X

times as many computations and communications streams to handle, where X is the current

replication level of a computation, as well as any additional state transfers which arise from

a hybrid scheme. As discussed in Chapter 7, in order to handle this more complex situation,

we have developed a novel system for interference detection and avoidance. Our system takes

into account previous computation activation schedules in order to predict future activation

times. A computation does not access system resources when dormant, meaning we now

have a load profile. This lets us not only react to current imbalances in system load, but

take proactive steps to limit the affects of future interference.

This interference system can then be leveraged to inform the placement of new com-

putations in the system as well as prompt migrations of existing computations. To take

advantage of the variety of replication schemes we support, we have developed two dis-

tinct migration operations: soft migrations and hard migrations, both of which have been

described in Chapter 8.

Our system builds upon previous works in the field of distributed stream processing, using

well understood techniques heartbeat systems to detect failures, and replication to reduce

the impacts of failures. Our system fills a niche by providing a distributed, fully tunable fault

tolerance system, and is unique in its ability to support a wide variety of replication schemes

on a per-computation basis, even allowing the ability to switch replication scheme after the

computation has been launched without impacting the user. We have further introduced

119

the novel blending of machine learning concepts with load balancing. To the best of our

knowledge, no other system has attempted to run clustering on computation resource usage

and activation in order to detect interference. We have further developed hooks allowing us

to use various learning algorithms in order to predict future loads and activation times on a

per-computation basis.

9.2. Contributions

This dissertation contributes to both the fields of stream processing and health stream

processing. It also has the potential for societal impact.

9.2.1. Stream Processing. This dissertation works with the Granules stream pro-

cessing framework to add fault-tolerance. While other stream processing frameworks have

implemented fault-tolerance, our work offers several unique benefits. First, we have devel-

oped a novel heartbeat system. Our approach has been designed to scale dynamically, while

limiting the amount of bandwidth consumed as the resource pool. This allows much larger

scales than can be feasibly supported by a more traditional gossip-based approach.

We have also developed a framework which allows replication levels to be set on a per-

computation basis. While this is found in both distributed file systems, such as HDFS and

in distributed hash tables, such as Dynamo it is usually not supported in distributed stream

processing systems, such as Borealis and Aurora. This means that a single resource pool

can support a wide variety of computations, where other approaches would need to have

separate resource pools for computations with different replication needs. This is ideal in

a hospital environment, where computations monitoring patients in the ICU would need a

higher replication level than for those monitoring patients who are staying for an overnight

study.

120

We have further improved upon existing replication schemes by allowing a mixture of

replication schemes within a single resource pool. To the best of our knowledge, previous

work only allows for a single replication scheme in a deployment – active, passive, or a hybrid

scheme. Our system allows for all types of replication within the same cluster. It is even

possible for computations to switch between replication schemes over time. This is again

particularly suited to a hospital environment where a patient may move from critical care

to recovery and thus require lower replication guarantees.

Our work has also extended the Granules framework by developing reactive interference

detection and resolution through soft migrations. The system is able to detect interference

and take steps to mitigate it autonomously. This is handled entirely in the back end, and

requires minimal code to ensure stateful computations properly handle state for this transi-

tion. While other systems have developed their own migration schemes, our work leverages

passive replicas for quick responses to detected interference.

We have expanded on our interference detection to not only react to currently detected

interference, but also predict interference in the future, and take measures to ensure that this

interference does not come to pass. This is a highly desirable trait in any stream processing

framework, as it means that data is far less likely to be dropped and lost forever. To the

best of our knowledge, we are the first group to explore active interference detection and

mitigation. Instead of simply waiting for interference to appear and affect computations, we

can prevent the interference from occurring in the first place.

9.2.2. Health Stream Processing. Health stream processing has been gaining trac-

tion in recent years, with several studies showing not only its potential worth, but also

121

exploring what is required of such a framework. The big gap in current health stream pro-

cessing research is simply the fact that no work has attempted to process health data both

at scale and in real time.

Our work is unique in that we test our framework at extremely large scales, with hundreds

of unique computations, while also enforcing strict processing constraints to ensure data is

processed in real-time. This dissertation represents a large step in the field of health stream

processing, as we have not only developed a framework which can support further research,

but also developed benchmarks by which to compare future frameworks.

Society. This framework has the potential to change the face of healthcare. Hospitals

would be able to provide care to larger numbers of patients with reduced direct monitoring

by professionals. This would free doctors for emergent cases, providing one-on-one care for

those needing it most. It also has the chance to provide better care for individuals with

“personalized healthcare”. Each patient would have a fuller, more complete history than

can often be obtained through questioning the patient alone – this could lead to better

diagnoses faster.

Our framework could also be applied to full-time care facilities. In many cases, it could

be used to better care for those staying at the facility, providing information about patient

status that the patient may not think to bring up, or isn’t able to discuss with care providers.

As in a hospital situation, it would allow healthcare professionals to provide better care to

patients, without increasing workload.

Some patients would be able to avoid entering full time care facilities and instead stay in

their own homes. In the case of convalescing patients, staying in a familiar environment can

reduce recovery time, as well as reducing the chance of an opportunistic infection contracted

at a hospital. It could also be used in situations such as when the elderly prefer to age at

122

home – patients get to stay in familiar surroundings, don’t need to relocate, and can avoid

the high costs of a full-time care facility.

In general, we are looking at the ability to provide better, more complete care with much

lower human overheads and, hopefully, costs. These savings have the potential to greatly

reduce healthcare costs for those who would otherwise need monitoring, a problem which

will become increasingly prevalent as the baby boomer generation approaches retirement.

9.3. Future Work

Throughout this work, we have already mentioned several avenues of future work. In

this section we both expand on these ideas, as well as present new avenues of exploration.

One big avenue of future work is to help improve the performance of bridged computa-

tions. While Granules is aware of which computations are dormant and can reduce their

processing footprint, computations which bridge to applications not contained within Java

are not able to take advantage of this information. We found this to be a problem with

both the ECG and BCI computations we are supporting. These computations both rely

on R-backed classification algorithms, and one bottleneck we have run into with respect to

the number of supportable users occurs with memory usage. The R instances of dormant

computations still take up as much memory as those which are actively being used. If we can

find a way to communicate which computations should be dormant to other frameworks, we

would be able to better support more users and with a wider variety of computation types.

We would also like to explore several aspects of our interference detection scheme. First

of all, we would like to explore allowing the k in our Kmeans function to vary over time.

Through our experiments, we have discovered 5 to be a good setting, given our current list

of supported computations. As we support new computations, and explore different settings

123

of other parameters, allowing k to vary could provide better interference predictions. We

would like to additionally explore other Kmeans settings, such as how we measure or scale

distances between computations. Should memory usage be weighed the same as disk I/O?

How should network I/O scale? Such explorations are beyond the scope of our current work,

and may warrant a dissertation in their own right.

Another modification to interference detection would be the incorporation of other clus-

tering approaches. Kmeans is well understood, but has certain limitations, such as a set K.

Other clustering algorithms, such as Dirichlet will determine how many clusters should be

formed while it is running. This value is then expected to change across iterations. This

seems like a particularly ideal approach for a cluster which experiences relatively large churn

over computation membership, hosting many short-lived computations.

We would also like to explore the application of other methods of predicting future

interference. While we have developed our system with the intent to allow more complex

predictors, in our current approach we simply assume that computations will continue their

current usage pattern. This is a far from ideal situation, particularly as we expand to work

with sensors which have different sampling rates available, and longer-running computations

which collect data over a period of weeks or months instead of hours.

In our experiments, we found a minimal amount of damping was needed to prevent oscil-

lations in migrations, where computations are periodically migrated between two machines

and never enter a balanced state. As we work with longer and longer running applications,

the possibility of such behavior increases. Our current approach of locking migrations from

a machine until all previous migrations have completed has prevented such behavior so far,

but it comes at the cost of limiting the speed with which we can react to current or predicted

interference. One avenue of future work is exploring more fine-grained approaches to this

124

damping behavior, which would lock down individual computations from migrating instead

of the hosting machine.

While we have conducted experiments on a much larger scale than previous forays into

health stream processing, our ultimate goal is to support whole hospitals, or even a town,

on a small to medium sized cluster. While such a grand scale is still a long ways off, working

with larger amounts of users would allow us to discover what new challenges appear as we

approach this goal.

All our current work has utilized publicly available health stream data sets. In order for

our work to grow into an application which is a public utility alternative to full-time health

care, we need to take the next step of working with live, streaming data from patients. If

we can maintain our processing guarantees that we have held up so far with simulated data

sets, we will be able to begin providing support for situations where full-time monitoring

would otherwise be needed. This would involve not only working closely with patients, but

their doctors and those who develop current monitoring applications as well.

Another avenue of future work involves making our system more robust to fluctuations

in resource pool churn. Our HeartBeat system currently relies on settings made when it is

initially launched to set up the HeartBeat Groups. Our framework could only be improved

by adding the ability to modify the heartbeat settings at runtime in response to changes in

both the resource pool membership and the hosted computations.

Our current implementation relies on previously benchmarked data about the hosted

computations to make decisions about not only the current load of each machine, but also

to predict how migrations will affect resource utilization. There are two possible directions

we can move from this point. First, we can continue to use our current implementation,

and focus on developing an automated benchmark tool. This would allow us to add new

125

types of computations to a resource pool which is already running. Our second option is to

revamp the entire load measurement and interference detection system to use raw resource

data about how much memory is being used, disk and network accesses, etc. While this

would require a large investment, it is most likely to have the biggest payoff since such a

system would not only be able to keep track of the computations we launch in it, but it

would also be able to monitor machine usage outside the scope of Java – it will capture the

impacts of background processes and tasks. Such a system would be able to migrate primary

computations away from machines which are running updates, possibly causing a slowdown

in response times.

126

Bibliography

[1] E. Stroulia, D. Chodos, N. M. Boers, H. Jianzhao, P. Gburzynski, and I. Nikolaidis,

“Software engineering for health education and care delivery systems: The smart condo

project,” in Software Engineering in Health Care, 2009. SEHC ’09. ICSE Workshop on,

pp. 20–28, 2009.

[2] F. Camous, D. McCann, and M. Roantree, “Capturing personal health data from wear-

able sensors,” in Applications and the Internet, 2008. SAINT 2008. International Sym-

posium on, pp. 153–156, 2008.

[3] C. Chung-Min, H. Agrawal, M. Cochinwala, and D. Rosenbluth, “Stream query pro-

cessing for healthcare bio-sensor applications,” in Data Engineering, 2004. Proceedings.

20th International Conference on, pp. 791–794, 2004.

[4] H. Fei, X. Yang, and H. Qi, “Congestion-aware, loss-resilient bio-monitoring sensor

networking for mobile health applications,” Selected Areas in Communications, IEEE

Journal on, vol. 27, no. 4, pp. 450–465, 2009.

[5] I. homed, A. Misra, M. Ebling, and W. Jerome, “Harmoni: Context-aware filtering

of sensor data for continuous remote health monitoring,” in Pervasive Computing and

Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference

on, pp. 248–251, 2008.

[6] A. Milenkovi, C. Otto, and E. Jovanov, “Wireless sensor networks for personal health

monitoring: Issues and an implementation,” Computer Communications, vol. 29,

no. 1314, pp. 2521–2533, 2006.

[7] H. Schuldt and G. Brettlecker, “Sensor data stream processing in health monitoring,”

Technical Report 422, ETH Zrich, October 2003.

127

[8] A. Wood, J. Stankovic, G. Virone, L. Selavo, H. Zhimin, C. Qiuhua, D. Thao, W. Yafeng,

F. Lei, and R. Stoleru, “Context-aware wireless sensor networks for assisted living and

residential monitoring,” Network, IEEE, vol. 22, no. 4, pp. 26–33, 2008.

[9] S. Pallickara, J. Ekanayake, and G. Fox, “An overview of the granules runtime for

cloud computing,” in IEEE International Conference on e-Science, (Indianapolis, USA),

pp. 412–413, 2008.

[10] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight, streaming runtime

for cloud computing with support for map-reduce,” in IEEE International Conference

on Cluster Computing, (New Orleans, LA), pp. 1–10, 2009.

[11] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 1 ed., 2009.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallel

programs from sequential building blocks,” in 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems, (Lisbon, Portugal), pp. 59–72, 2007.

[13] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understanding

replication in databases and distributed systems,” in 20th International Conference on

Distributed Computing Systems, 2000. Proceedings., pp. 464 –474, 2000.

[14] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services,” SIGACT News, vol. 33, pp. 51–59, June 2002.

[15] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a solu-

tion,” SIGMOD Rec., vol. 25, pp. 173–182, June 1996.

[16] D. J. Abadi, “Data management in the cloud: Limitations and opportunities,” in Bul-

letin of the Technical Committee on Data Engineering, pp. 3–12, IEEE Computer Soci-

ety.

128

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” SIGOPS Oper.

Syst. Rev., vol. 37, pp. 29–43, October 2003.

[18] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

ACM Commun., vol. 51, pp. 107–113, 2008.

[19] D. Borthakur, “The hadoop distributed file system: Architecture and design,” Hadoop

Project Website, vol. 11, p. 21, 2007.

[20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun.

ACM, vol. 53, pp. 50–58, April 2010.

[21] E. Amazon, “Amazon elastic compute cloud (amazon ec2),” Amazon Elastic Compute

Cloud (Amazon EC2), 2010.

[22] D. Chappel, “Introducing windows azure,” tech. rep., Microsoft Corporation, 2009.

[23] D. Chappel, “Introducing the windows azure platform: An early look at windows azure,

sql azure and net services,” tech. rep., Microsoft Corporation, 2009.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving mapre-

duce performance in heterogeneous environments,” in Proceedings of the 8th USENIX

conference on Operating systems design and implementation, OSDI’08, (Berkeley, CA,

USA), pp. 29–42, USENIX Association, 2008.

[25] D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in Pro-

ceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04,

(Washington, DC, USA), pp. 4–10, IEEE Computer Society, 2004.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scal-

able peer-to-peer lookup service for internet applications,” ACM SIGCOMM Computer

Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

129

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available

key-value store,” in ACM SIGOPS Operating Systems Review, vol. 41, pp. 205–220,

ACM, 2007.

[28] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available, fault-tolerant, paral-

lel dataflows,” in Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, (Paris, France), pp. 827–838, ACM, 2004.

[29] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: sharing-aware component

composition for distributed stream processing systems,” in Proceedings of the

ACM/IFIP/USENIX 2006 International Conference on Middleware, Middleware ’06,

(New York, NY, USA), pp. 322–341, Springer-Verlag New York, Inc., 2006.

[30] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik,

“The design of the borealis stream processing engine,” in Conference on Innovative Data

Systems Research (CIDR), (Asilomar, CA, USA), pp. 277–289, 2005.

[31] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venkatramani,

“Design, implementation, and evaluation of the linear road benchmark on the stream

processing core,” in Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, SIGMOD ’06, (New York, NY, USA), pp. 431–442, ACM, 2006.

[32] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik,

“High-availability algorithms for distributed stream processing,” in Data Engineering,

2005. ICDE 2005. Proceedings. 21st International Conference on, pp. 779–790, IEEE,

2005.

130

[33] T. Repantis and V. Kalogeraki, “Replica placement for high availability in distributed

stream processing systems,” in Proceedings of the second international conference on

Distributed event-based systems, DEBS ’08, (New York, NY, USA), pp. 181–192, ACM,

2008.

[34] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bow-

man, “Planetlab: an overlay testbed for broad-coverage services,” SIGCOMM Comput.

Commun. Rev., vol. 33, pp. 3–12, July 2003.

[35] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative, self-configuring

high-availability solution for stream processing,” in IEEE 23rd International Conference

on Data Engineering, 2007. ICDE 2007., pp. 176 –185, April 2007.

[36] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and highly-available stream process-

ing over wide area networks,” International Conference on Data Engineering, vol. 0,

pp. 804–813, 2008.

[37] X. Gu, S. Papadimitriou, P. Yu, and S.-P. Chang, “Toward predictive failure manage-

ment for distributed stream processing systems,” in The 28th International Conference

on Distributed Computing Systems, 2008. ICDCS ’08., pp. 825 –832, june 2008.

[38] K. Ericson, S. Pallickara, and C. W. Anderson, “Failure-resilient real-time processing of

health streams,” Concurrency and Computation: Practice and Experience, 2014.

[39] M. GB and M. RG, “The impact of the mit-bih arrhythmia database,” IEEE Eng in

Med and Biol, vol. 20, no. 3, pp. 45–50, 2001.

[40] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,

J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit,

and physionet : Components of a new research resource for complex physiologic signals,”

Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

131

[41] J. Rittweger, “physiodata,” 2000. ed: Institute for Physiology, Free University of Berlin.

[42] K. Ericson, S. Pallickara, and C. W. Anderson, “Analyzing electroencephalograms using

cloud computing techniques,” in IEEE Conference on Cloud Computing Technology and

Science, (Indianapolis, USA), pp. 185–192, 2010.

[43] K. Ericson and S. Pallickara, “Adaptive heterogeneous language support within a cloud

runtime,” Future Generation Computer Systems, vol. 28, no. 1, pp. 128–135, 2012.

[44] T. Rui, X. Guoliang, C. Jinzhu, S. Wen-Zhan, and H. Renjie, “Quality-driven volcanic

earthquake detection using wireless sensor networks,” in Real-Time Systems Symposium

(RTSS), 2010 IEEE 31st, pp. 271–280, 2010.

[45] D. J. Abadi, D. Carney, U. etintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,

N. Tatbul, and S. Zdonik, “Aurora: a new model and architecture for data stream

management,” The VLDB Journal, vol. 12, no. 2, pp. 120–139, 2003.

[46] J. G. Elerath, A. P. Wood, D. Christiansen, and M. Hurst-Hopf, “Reliability man-

agement and engineering in a commercial computer environment,” in Reliability and

Maintainability Symposium, 1999. Proceedings. Annual, pp. 323–329, 1999.

[47] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and

S. Zdonik, “Scalable distributed stream processing,” in Conference on Innovative Data

Systems Research (CIDR), (Asilomar, CA USA), pp. 257–268, 2003.

[48] K. Eamonn, “Hot sax: Efficiently finding the most unusual time series subsequence,”

vol. 0, pp. 226–233, 2003.

[49] S. Pallickara and G. Fox, “Naradabrokering: a distributed middleware framework and

architecture for enabling durable peer-to-peer grids,” in Middleware 2003, pp. 41–61,

Springer, 2003.

132

