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ABSTRACT

STEADY-STATE CIRCULATIONS FORCED BY DIABATIC HEATING AND

WIND STRESS IN THE INTERTROPICAL CONVERGENCE ZONE

A number of studies have shown the importance of using idealized models to gain

insight into large-scale atmospheric circulations in the tropics, especially when investigating

phenomena that are not well understood. The recent discovery of the Shallow Meridional

Circulation (SMC) in the tropical East Pacific and West Africa is a perfect example of a

phenomenon that is not well understood (Zhang et al., 2004). The vertical structure of the

SMC is similar to the Hadley circulation, but its return flow is located at the top of the

boundary layer. The current theory of the SMC is entirely different dynamically than the

Hadley circulation because it has been thought of as a large-scale ”sea-breeze” circulation

rather a geostrophic balance in the meridional momentum equation. The SMC is a vital

aspect of the general circulation since it can transport more moisture than the traditional

deep Hadley circulation. Climate models often misrepresent the SMC, making many model

simulations incomplete (Zhang et al. 2004; Nolan et al. 2007). We aim to better understand

the dynamics near the Intertropical Convergence Zone (ITCZ) that involve both deep and

shallow circulations using a steady-state linearized model on the equatorial β-plane that is

solved analytically.

The model is forced by prescribed diabatic heating and boundary layer wind stress

curl. The circulations that arise from deep diabatic heating profiles suggest that both
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the Hadley and Walker circulations are always present, with the Hadley circulation being

more prevalent as the deep heating is elongated in the zonal direction, similar to the ITCZ

in the East Pacific. The Hadley circulation strengthens because the horizontal surface

convergence increases in the meridional direction. Also, the zonal and meridional surface

wind anomalies enhance as the deep heating is displaced farther from the equator. The

surface wind field associated with this deep heating also forces a significant wind stress curl

north of the equator. The atmosphere responds to the wind stress curl by opposing the

initial dynamical fields, and generating Ekman pumping in the boundary layer. For example,

the surface consists of anomalous negative vorticity in a region that previously contained

positively vorticity. This is often referred to as spin down. The Ekman pumping in the

boundary layer forces shallow circulations when the frictional forcing is zonally-elongated

and sufficiently displaced off of the equator. This shallow circulation makes sense in the

East Pacific, where the ITCZ is always north of the equator and is often zonally-elongated.

There are two SMCs that develop, one north of the Ekman pumping, and the other to its

south. The cross-equatorial SMC is shallower and is stretched in the meridional direction

compared to the SMC north of the Ekman pumping since the Rossby length is very large

near the equator.

It turns out that the frictional forcing does not provide enough vertical or meridional

motion to be seen when deep diabatic heating is also present using our simple model. Since

the ITCZ is a transient phenomenon and the frictional forcing is more steady, there are

days where this Ekman pumping can be seen when deep convection is suppressed. Future

research should concentrate on better understanding the effect of the wind stress and sur-

face temperatures on the buildup of subsequent convection using idealized models.
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Chapter 1

INTRODUCTION

1.1 Relevence of Idealized Models

There is no doubt that the importance of improving the accuracy of future climate

change simulations continues to increase due to the decision-making of many industries.

Making strides in modeling the Earth’s climate system is a huge challenge since it involves

chaotic processes that arise from sets of equations that even the world’s fastest computers

have a difficulty processing. As computers become more efficient, climate models will include

more complex processes. It will be nearly impossible to completely understand the results

from these complex models without improving our understanding of physical processes in

idealized scenarios (Held, 2005). We aim to improve understanding of one specific area of

study, large-scale atmospheric circulations in the tropics.

Large-scale tropical circulations are vital to climate because they transport mass,

heat, energy, momentum, and moisture within the tropics and between the tropics and the

subtropics, helping to drive the general circulation of the atmosphere. One of the main

reasons why tropical circulations are not well understood is due to the lack of observational

data in the tropics (Ẑagar, 2004). Therefore, many studies use reanalysis products, data

assimilation techniques, and an array of models with different levels of complexity, including

General Circulation Models (GCMs), to study phenomena in the tropics. When simpler

methods are used we must also consider reasonable approximations. The first approximation

to the primitive equations (PEs) used in many tropical models is the equatorial β-plane

approximation. The next approximation involves linearizing the equations about a basic



resting state, which seems to be a large assumption, but past studies suggest that nonlinear

process are not of first-order importance for large-scale tropical circulations (Gill and Phlips

1986; Raupp and Silva Dias 2006). Also, without linearizing the equations, one would

not be able to solve them analytically. Being able to solve the equations analytically is

quite convenient because numerical complications are reduced and solutions of multiple

experiments with varying forcings may be superimposed in order to illustrate their combined

effects. The linearized analytical model solutions in this study are made up of multiple

experiments with different forcings, involving a superposition of atmospheric equatorial

waves.

1.2 Atmospheric Equatorial Waves

Atmospheric equatorial waves are characterized by oscillations in a number of atmo-

spheric variables (e.g., winds, pressure, temperature). Atmospheric waves can be either free

waves or forced waves. A free wave is one for which there is no forcing present (e.g., a ther-

mal forcing), whereas a forced wave can only persist when it there is a forcing present. The

main atmospheric forcing in the tropics is diabatic heating produced by latent heat release.

Latent heat release occurs as a result of the sun heating the upper ocean and evaporating

water in the lower atmosphere, which condenses into liquid in convective clouds. This con-

vection can have many forms; it can be described as having a bimodal structure, shallow or

deep in the vertical. Associated with heating in the vertical plane are atmospheric waves.

Waves in the atmosphere are anisotropic, i.e., their response is not the same in all directions,

producing different types of wave structures. There are four types of equatorially trapped

waves: Kelvin waves, inertia-gravity waves, Rossby waves, and mixed Rossby-gravity waves

(Fig. 1.1). The first scientific papers to present comprehensive mathematical solutions for

all equatorial waves were Matsuno (1966) and Blandford (1966).

Matsuno (1966) derived and solved the linearized shallow-water equations of motion

on the equatorial β-plane, often referred to as the PEs model since it does not filter any of
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Figure 1.1: The dispersion diagram for all wave types - Rossby waves (blue), Kelvin waves
(red), inertia-gravity waves (green), and mixed Rossby-gravity waves (black). The Lamb’s
parameter is used here, ǫ = 4Ω2a2/c2 = 500.
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the equatorial waves. The shallow-water approximation assumes that the depth of the fluid

in each layer is much smaller than the horizontal length, which is quite appropriate for the

Earth. The equatorial β-plane approximation assumes that the Coriolis parameter varies

linearly with latitude, which is sufficiently accurate near the equator. Matsuno’s solution

illustrated free and forced equatorial waves in physical space and in spectral space. The

spectral space solutions are displayed in terms of what is often called a dispersion diagram,

illustrated in Fig. 1.1. Matsuno’s dispersion diagram illustrates the characteristics of waves

in terms of wave frequency and zonal wavenumber. From the dispersion diagram, one can

calculate many important variables, including wave phase speed and group velocity.

After Matsuno (1966) many other studies, such as Webster (1972) and Gill (1980),

used the linearized shallow-water equations on the equatorial β-plane to study atmospheric

circulations in the tropics. These models and other simple models demonstrated that simple

linearized models can accurately explain the essential dynamics of many types of large-scale

tropical circulations. A few examples of these large-scale circulations include monsoon

circulations, the deep Walker circulation (DWC), the El Niño Southern Oscillation (ENSO),

the Madden-Julian Oscillation (MJO), the Quasi Biennial Oscillation (QBO), and mean

meridional circulations (MMCs).

1.3 Mean Meridional Circulations

MMCs play a major role in the general circulation of the Earth’s climate system.

Their role is to transport mass, momentum, moisture and energy between the tropics and

subtropics. In the Intertropical Convergence Zone (ITCZ) there is low-level wind conver-

gence with rising air from the surface to the tropical tropopause that is transported pole-

ward, sinking in the subtropics. This overturning circulation is often referred to as the deep

Hadley circulation (DHC), and is usually associated with deep convection near the equator.

The DHC is vital to the general circulation of the atmosphere because it transports mass,

momentum, and energy between the tropics and the subtropics.
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One of the simplest models of the DHC solves the zonally-symmetric PEs forced by

deep diabatic heating in the ITCZ. The hydrostatic approximation can be made, as well as

geostrophic balance of the zonal flow. This zonal flow balance is between the meridional

pressure gradient force and the Coriolis force in the meridional momentum equation. The

form of this balance on the equatorial β-plane is as follows:

βyu = −
∂φ

∂y
, (1.1)

where β = 2Ω/a is the variation of the Coriolis parameter, Ω the angular velocity of the

Earth, a the radius of the Earth, y the meridional position, u the zonal wind, and φ the

geopotential. Note that the acceleration of the meridional momentum, v, following the flow,

Dv/Dt has been neglected even though v 6= 0. One can combine (1.1) and the hydrostatic

equation with a result of the thermal wind equation:

βy
∂u

∂z
= −

g

T0

∂T

∂y
, (1.2)

where z = H ln(p0/p) is the vertical log-pressure coordinate, H = RT0/g the constant scale

height, and p0 and T0 denote the constant reference pressure and temperature, g is the

acceleration of gravity, and T the temperature. The thermal wind relation (1.2) is vital to

understanding the atmospheric general circulation because it implies that the zonal wind

becomes more westerly with height where the temperature field decreases with latitude.

This means not only does these set of equations help explain the DHC, they also suggest

that zonal jet streams exist where meridional temperature gradients are large (i.e., between

the tropics and subtropics), due to some diabatic forcing. The main diabatic forcing of this

simplified model is deep heating simulating the main properties of deep convection in the

ITCZ.

Even though deep convection dominates over other vertical profiles of convection in

the ITCZ, there has been increasing interest in shallow convection, and its transition to deep

convection since it is also common in and around the ITCZ region. The recent discovery

of a shallower MMC, called the Shallow Meridional Circulation (SMC) (Zhang et al., 2004)
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is helping bring more attention to this topic. The current theory of the dynamics in the

SMC is quite different than the traditional DHC, therefore it has not been referred to a the

shallow Hadley circulation. We will discuss the observations and proposed theory behind

the dynamics of the SMC in the next two sections.

1.4 Discovery of the Shallow Meridional Circulation

The SMC was discovered in modeling studies long before it was first observed. These

modeling studies focused on gaining insight into the DHC, and did not have a comprehensive

explanation of why the SMC was produced. One of the first studies to produce a SMC was

Schneider and Lindzen (1977).

They examined steady-state solutions of the linearized, hydrostatic, PEs on the sphere

with a variety of forcings - diabatic heating, frictional forcings, and surface temperature

gradients. Their goal was to produce a deep MMC comparable to the observed DHC

using a variety of forcings. They were able to produce the DHC with diabatic heating

and cumulus friction forcings. With only surface temperature gradients as a forcing, they

were also able to produce a shallower overturning circulation below 800 hPa. They explain

that the circulation is confined to a surface layer due to their assumed vertical variation of

small-scale vertical mixing (Fig. 1.2). They also mention that the SMC could lead to upper

level heating by cumulus convection. Since there were no observations of such a shallow

MMC at the time, the implications of the SMC were not discussed in much detail.

Another study that produced a SMC before it was first observed is Trenberth et al.

(2000). They performed an Empirical Orthogonal Function (EOF) analysis on the diver-

gent part of the tropical wind field in two global model analysis products, in which EOFs

determine the leading modes of variability of the data. The first EOF mode represents deep

circulations, such as the DHC and the DWC. The second EOF mode represents shallower

circulations confined near the surface (Fig. 1.3). This result was found in many tropical

regions, such as the East Pacific Ocean, West Africa, the Atlantic Ocean, and over the
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Figure 1.2: The steady-state SMC produced in Schneider and Lindzen (1977) driven by
surface temperture gradients. The streamfunction is contoured with a contour interval of
1013g s−1.

Figure 1.3: The vertical structure functions of the mass weighted divergent velocity field
from (left) NCEP and (right) ECMWF reanalyses seasonal mean fields for 1979-1993 for
the first two EOFs of Trenberth et al. (2000). The units of the vectors are kg m−1 s−1.
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Americas. They questioned the result for the second EOF, stating that a shallow tropical

circulation has yet to be observed.

It was not until recently that the SMC was seen in observations - in the tropical East

Pacific Ocean (Zhang et al., 2004). Zhang et al.(2004) used four independent datasets: the

Tropical Atmosphere-Ocean (TAO) ship sounding dataset, the East Pacific Investigation of

Climate Processes (EPIC2001) dropsonde dataset, the First Global Atmospheric Research

Program (GARP) Global Experiment (FGGE) dropsonde dataset, and the dataset from

wind profilers at Christmas Island and San Cristóbal, Galápagos. These datasets illustrate

vertical-meridional cross sections of the meridional wind field for individual days, as well

as time-averaged meridional wind fields with an emphasis from late boreal summer until

early boreal winter. They define the SMC as an overturning circulation consisting of cross

equatorial low-level inflow (LLI) at the surface from 10◦S until 10◦N, where the air rises

in the ITCZ, but only reaches the top of the atmospheric boundary layer (BL). Therefore

a northerly shallow return flow (SRF) crosses the equator and completes its circulation by

sinking around 10◦S (Zhang et al., 2004) (Fig. 1.4).

Figure 1.4: A vertical-meridional cross section schematic illustrating the Hadley cell (dashed
lines) and the recently observed SMC (solid). From Zhang et al. (2004).

They suggest that the depth of MMCs may be related directly to the depth of con-

vection in the ITCZ, where the DHC is associated with deep convection and the SMC is

associated with shallow convection. The time-mean meridional flow shows that the LLI is

most dominant when the SRF and ULO are significantly weaker (Fig. 1.5). An interesting

feature is the existence of mid-level winds below the ULO, referred to as the mid-level inflow

(MLI). They illustrate that the SRF and ULO vary quite a bit on a day-to-day basis, but
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Figure 1.5: vertical-meridional cross sections of the meridional winds (vector) and relative
humidity (shaded) from TAO soundings: (a) time mean at 95◦ and 110◦W from August-
December 1995-2002; (b) November 2-11 2000 at 95◦W. From Zhang et al. (2004).
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that they can also coexist. This implies that shallow convection and stratified heating may

be present at the same time as well. Since global model simulations tend to misrepresent

shallow convection, it makes sense that the SRF is being misrepresented.

Nolan et al. (2007) examined the SMC using two simplified models to theorize on

the existence of the SMC in the tropical East Pacific Ocean, and to analyze its moisture

budget. The first model is an analytical single-hemispheric model where temperature and

pressure have a simple logarithmic relationship and there are larger lapse rates in the BL.

The theory posed is as follows: in the ITCZ there is enhanced low-level convergence and

there are relatively warm surface temperatures, therefore generally low surface pressure.

Outside of the ITCZ region temperatures are cooler and surface pressures are higher, further

enhancing the low-level convergence in the ITCZ. The warmer air in the atmospheric BL

of the ITCZ allows for the thickness between pressure levels to be larger, and the BL to be

deeper. Since the BL in the ITCZ is deeper, the pressure gradient reverses near the top

of the BL, leading to meridional flow away from the ITCZ. Therefore, the theory deems

the SMC as a large-scale sea-breeze-type circulation (Fig. 1.6). The flow balance in this

theory of the SMC is fundamentally different than the balance in the DHC. The meridional

momentum equation is a balance between the meridional pressure gradient force and the

acceleration of the meridional momentum following the flow instead of a balance between

the meridional pressure gradient force and the Coriolis force,

Dv

Dt
= −

∂φ

∂y
, (1.3)

where all variables have the same definitions defined previously. If this theory holds, then

the observed SMC cannot be directly related to convection, or in other words be called a

shallow Hadley circulation.

The other model is a single-hemispheric version of the Weather Research and Fore-

casting (WRF) model. It is a three dimensional, compressible atmospheric model that

includes a longwave radiation scheme (Rapid Radiative Transfer Model), but no shortwave

radiation scheme. For microphysics the WRF single-moment (WSM) five-class microphysics
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Figure 1.6: A vertical-meridional cross section of the (a) pertubation pressure and (b)
horizontal pressure gradient force computed from the analytical sea-breeeze model. The
contour interval in (a) is 0.25 hPa, and is 10−4 m s−2 in (b). From Nolan et al. (2007) .

11



scheme was used. The schemes used for the planetary BL were the Yonsei University (YSU)

scheme and the Mellor-Yamada-Janjic (MYJ) scheme. Cumulus convection was parameter-

ized using either the Kain-Fritsch scheme or the Grell ensemble scheme. The initial state

consists of a mean tropical sounding that contains a large sea surface temperature (SST)

gradient. After taking the time and zonal mean the SMC produced from these simulations

is quite similar to the one observed in the East Pacific Ocean in Zhang et al. (2004) and the

structure of the pressure field compares well with the analytical sea-breeze model. These

simulations show four main components/layers of the vertical-meridional cross section: the

LLI, the SRF, the MLI, and upper level outflow (ULO) (Fig. 1.7).

Figure 1.7: A vertical-meridional cross section schematic illustrating the four main layers
of the mean meridional circulation: LLI, SRF, MLI, and ULO. From Nolan et al. (2007).

The implications of the SMC are substantial - air lofted in the ITCZ in the SMC has

significantly more moisture than air lofted in the DHC; therefore they look closely at the

moisture transport. They produce time and zonal mean vertical moisture profiles of cases

that have a strong SRF, a weak SRF, and the overall time and zonal mean at three different

latitudes: 4◦N, 6◦N , and 8◦N (Fig. 1.8). In general, the water vapor content of parcels is
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Figure 1.8: Vertical profiles of the mean meridional water transport (water and condensate)
at three different latitudes: 4◦N, 6◦N , and 8◦N for (a) time-zonal mean, (b) strong SRF
composite, and (c) weak SRF composite. From Nolan et al. (2007).
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largest in the BL, with the MLI and ULO having negligible moisture content. The BL inflow

decreases in cases where the SRF is strong, while MLI and ULO remain about the same.

The amount of moisture advection in the LLI is balanced by moisture transport in the SRF,

where it is the largest, and by precipitation by clouds. The strength of this weak moisture

source to the ITCZ is comparable to the magnitude of the moisture sink of the outflow in

the upper troposphere of the DHC. As the SRF intensifies, the water content transported

out of the ITCZ increases. For a more in-depth analysis of the vertical-meridional moisture

budget of the ITCZ, refer to Nolan et al. (2010).

A follow up study to Nolan et al. (2007) was published just a year later, by Zhang

et al. (2008), where more extensive global reanalysis products producing the SMC were

examined (the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40), the National Centers for Environmental Prediction-National Center for

Atmospheric Research (NCEP-NCAR) reanalysis 1, and the NCEP-Department of Energy

(DOE) Atmospheric Model Intercomparison Project (AMIP II) reanalysis). They used

these reanalyses over all of the tropical ocean basins and over some tropical land surfaces.

The most prevalent SMCs being over the tropical East Pacific Ocean and West Africa.

They note that SMCs have a seasonal cycle, can be located on either side of the ITCZ, and

all have distinct structures. The SMC over the tropical east Pacific Ocean is defined as a

marine ITCZ type of SMC, while the SMC over West Africa is defined as a monsoon type

of SMC (Fig. 1.9).

The marine ITCZ type of SMC is essentially the same as the one described in Zhang

et al. (2004) and Nolan et al. (2007). The monsoon type of SMC involves southerly surface

flow on either side of the ITCZ with rising motion in the ITCZ and over the heated land

surface, or heat low that develops before and during the West African monsoon. At the top

of the BL the SRF is northerly, and there is sinking motion south of the equator and north

of the heat low. The SMC aids in providing moisture to the relatively dry region just north

of the ITCZ over West Africa. This additional moisture allows for the development of deep
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Figure 1.9: A vertical-meridional cross section schematic illustrating the two types of SMCs:
(a) marine ITCZ type SMC and (b) monsoon type SMC. From Zhang et al. (2008).
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convection from shallow convection (Zhang et al., 2006). The SMC and DHC tend to not

be present simultaneously in the time-zonal mean over West Africa, unlike the SMC over

the East Pacific Ocean (Fig. 1.10). The SMC over the tropical East Pacific Ocean does not

Figure 1.10: The annual march (repeated once for clarity) of the vertical structure of the
meridional wind field for the East Pacific Ocean (left) and Wes Africa (right) in three global
reanalyses: (a) 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA40), (b) the National Centers for Environmental Prediction-National
Center for Atmospheric Research (NCEP-NCAR) reanalysis 1 (NCEP1), and (c) NCEP-
Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP II) re-
analysis (NCEP2). The contour interval is 1 m s−1. From Zhang et al. (2008).

provide as much moisture north of the ITCZ; therefore there is no monsoon that develops

after the SMC peaks in strength. The SMC over the tropical East Pacific Ocean is strongest

in late boreal summer until early boreal winter when ITCZ is farthest north of the equator

(Waliser and Gautier, 1993), with the SRF located around 700-800 hPa. The SMC over

West Africa is strongest in boreal winter and spring, and West Africa is relatively deep in

the vertical, with its SRF located around 650-750 hPa. It is interesting to note that this is

a similar level as the African easterly jet.
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1.5 Current Theory of Shallow Circulations

The lack of observations in the tropics is part of the reason why shallow MMCs have

taken so long to recognize, as well as the lack of theories to why they should occur. A

few theories have been proposed by Nolan et al. (2007) and Schubert and McNoldy (2010).

Nolan et al. (2007) argue the SMC exists due to strong variations in SSTs in the meridional

direction, as discussed in the previous section. The majority of the tropics are observed

to have small horizontal temperature gradients, so there are a few regions with relatively

large meridional SST gradients. The tropical East Pacific Ocean tends to exhibit a feature

that enhances meridional SST gradients known as the cold tongue, which is strongest from

July-November, and is weakest during boreal spring (Fig. 1.11).

Figure 1.11: Mean winds and SSTs in the tropical East Pacific during September 2000-2007.
This data was recorded using Quikscat data. From Mora (2008).

The SMC in this region is observed to peak in strength from late boreal summer until

early boreal winter, agreeing well with the Nolan et al. (2007) theory. The cold tongue is due
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to ocean upwelling the forms west of South America along the equator as the thermocline

in the ocean becomes shallower and may be further enhanced when colder water along the

coast of South America is brought equatorward with the easterly trades.

Another theory on shallow MMCs involves the inherently large Rossby length and

small Rossby depth in the tropics in the absence of tropical cyclones. In the ITCZ of the

tropical East Pacific Ocean and the East Atlantic Ocean there is significantly large Ekman

pumping out of the BL. This vertical motion is implied due to the significant zonally-

elongated bands of the wind stress curl in the ITCZ of these regions (Fig. 1.12). Since the

inertial stability near the equator is small, the Rossby length will be relatively large and the

Rossby depth will be relatively small. The Rossby length in Schubert and McNoldy (2010)

is defined as

Lℓ =

(

A

C

)1/2 zT
ℓπ
, (1.4)

where A is the static stability, C the inertial stability, zT the height of the top of the

troposphere, and ℓ the vertical wavenumber. Parcels in the ITCZ tend to rise to the top of

the BL, where they diverge horizontally, producing a shallower MMC. The only way parcels

may rise to the top of the troposphere and complete a deep MMC is when there is either

small static stability, such as in deep convection, or large inertial stability, such as during a

tropical cyclone.

Schubert and McNoldy (2010) demonstrated the importance of these concepts of

Rossby length, Rossby depth, and Ekman layer dynamics in relation to hurricane strength.

They produced idealized analytical solutions of the transverse circulation equation that

arises in the balanced vortex model of tropical cyclones. They solved the transverse circu-

lation three ways:

(i) performing a vertical transform requiring that a radial structure equation is solved;

(ii) performing a radial transform requiring that a vertical structure equation is solved;

(iii) solving the elliptic PDE directly, without regard to boundary conditions, and then

enforcing the lower boundary condition using the method of image circulations.
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Figure 1.12: Global Scatterometer Climatology of Ocean Winds (SCOW) and (bottom)
NCEP99 wind stress curl maps for (left) January and (right) July. The wavelike variations
that appear throughout the NCEP99 fields are artifacts of spectral truncation of mountain
topography in the spherical harmonic NCEP-NCAR reanalysis model (Milliff and Morzel,
2001). From Risien and Chelton (2008).
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The first method allows the concept of Rossby lengths to be introduced while the second

method allows the concept of Rossby depth to be introduced. For strong vortices, Rossby

lengths are small and Rossby depths are large, therefore the secondary circulation is more

vertically elongated and horizontally compressed. For weak vortices, Rossby lengths are

large and Rossby depths are small, therefore the secondary circulation is more horizontally-

elongated and vertically compressed (Fig. 1.13). These same concepts can be generalized to

the zonally-symmetric tropical atmosphere, especially in regions where there is large-scale

positive wind stress curl, such as the tropical East Pacific Ocean.

1.6 The Tropical East Pacific Ocean

The tropical East Pacific has some unique characteristics in that the magnitude of the

curl of the wind stress at the surface is enhanced over zonal-elongated bands in the ITCZ

(Risien and Chelton, 2008), the ITCZ stays north of the equator during almost all months

of the year (Waliser and Gautier, 1993), and there are relatively large SST gradients. The

ITCZ in the tropical East Pacific Ocean can also exhibit features of a double ITCZ (DITCZ)

during some years - one just north of the equator and another just south of the equator.

This occurs when the cold tongue weakens and narrows, in boreal spring and when El Niño

is weak. The ITCZ north of the equator generally has more deep convective clouds than the

ITCZ south of the equator, since the warmest SSTs are slightly north of the ITCZ north of

the equator (Wallace et al., 1989). The cold tongue reaches its peak intensity in August-

September in the East Pacific Ocean warming up until March. These unique characteristics

in and around the East Pacific ITCZ will be investigated in more detail using our simplified

model in this study.

The theory we look to explore more involves the concepts of Rossby length and Rossby

depth. Parcels have the ability to rise to the tropopause in the ITCZ when the atmosphere

has a deep heating profile. Without a deep heating forcing, parcels cannot penetrate deep

above the BL; parcels will instead diverge in the horizontal. The main reason for this is
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Figure 1.13: Line contours of rψ forced solely by Ekman pumping. The sense of the
circulation is clockwise. The four panels are created for zB = 1 km, zT = 5π km, α = 0.0465
k m−1, w0 = 3.75 m s−1, and Γ = 256, 64, 16, 4. Colored contours indicate the vertical
pressure velocity ω. Warm colors are upward, cool colors are downward, and the contour
interval is 20 hPa hr−1. From Schubert and McNoldy (2010).
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that the Rossby length in the tropics is always large and the Rossby depth is always small,

and Ekman pumping is constantly occurring in the ITCZ. The tropics have small inertial

stability, requiring the Rossby length of parcels to be large and the Rossby depth to be small.

Therefore, a SMC should be present throughout the all ITCZs in the tropical atmosphere,

especially where deep heating is not dominant. Regions where shallower heating profiles

exist due to cooler SSTs, such as the East Pacific Ocean, may be more susceptible to the

SMC simply because vertical heating profiles are shallower. This would possibly support

the notion that the SMC is more like a shallow Hadley circulation than a sea-breeze type

circulation.

It is quite possible that both the theory on surface temperature gradients and the

theory of Rossby length both help in enhancing the SMC over the East Pacific Ocean and

West Africa; in fact they may be very closely related. The strong SST gradients and large

Ekman pumping definitely do exist in the SMC regions, and have seasonality, just like the

SMC.

These unique features of tropical ocean basins such as the East Pacific have led to a

number of simplified modeling studies delving into the relationships between surface winds,

SSTs, and vertical motion related to deep convection (e.g., Lindzen and Nigam 1987, Back

and Bretherton 2009).

Lindzen and Nigam (1987) devised a simple steady-state one-layer model on the

sphere, where they concentrate on the trade cumulus boundary layer (below 700 hPa). The

surface temperature field is given, and acts to drive low-level pressure gradients. These

pressure gradients, along with a cumulonimbus mass flux, act to enhance horizontal wind

convergence near the surface in order to reduce pressure gradients. Overall, they show that

low-level winds over the tropical oceans are largely determined by SST distribution.

Back and Bretherton (2009) attempts to generalize the work of Lindzen and Nigam

(1987) by using a linear mixed layer model (Stevens et al., 2002) that examines not only the

influence of boundary layer processes, but also free-tropospheric processes on the surface
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winds in the tropics. They modify their model’s cumulus boundary layer to be shallower

(850 hPa), to include both the zonally asymmetric part and the symmetric part (not in-

cluded in Lindzen and Nigam (1987)), and to a set of equations where surface convergence

is not a consequence of deep convection to first-order. They find some interesting results:

(1) Zonal surface winds are determined by free-tropospheric pressure gradients and down-

ward momentum mixing;

(2) Horizontal wind convergence is due to boundary layer temperature gradients (including

SSTs);

(3) SST gradients more likely to cause deep convection rather than SSTs being a cause of

deep convection.

Overall, we see that SSTs, winds, and convection are related, but getting into causalities is

not easy using analytical models.

We will not delve into causalities in this study; we simply aim to study large-scale

shallow and deep circulations in and around the East Pacific ITCZ. Therefore we have

formulated an analytical linear equatorial β-plane model that includes stratification and

prescribed frictional and heat sources. The frictional sources are prescribed to have a large

wind stress curl, to show the effects of Ekman pumping in the BL. The heat sources are

prescribed to simulate characteristics of either shallow non-precipitating or deep heating

profiles. Other heating profiles are discussed as future work.

The paper is organized in the following manner. In Chapter 2, we introduce the

stratified model and perform a series of spectral transforms in the three spatial directions

in order to solve the equations analytically. Chapter 3 discusses the specific forms of the

frictional forcings and heat sources that drive the model solutions. We also give the values

for constants and varying parameters, and provide the necessary framework for our exper-

iments. Chapter 4 illustrates the model solutions for relevant experiments and elaborates

on their significance to understanding large-scale flows in the ITCZ. Chapter 5 concludes

the study by reviewing the model formulation, the current understanding of shallow and
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deep circulations in the ITCZ before this paper, and the insight gained by carrying out the

various experiments. The last section also explores what future work can be done in order

to better understand both shallow and deep circulations.
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Chapter 2

METHODS - STRATIFIED MODEL OF THREE-DIMENSIONAL TROPICAL

CIRCULATIONS

2.1 Linearized Primitive Equations on the Equatorial β-plane

The diabatically-forced linearized primitive equations on the equatorial β-plane can

help describe many aspects in the tropical atmosphere and ocean, e.g., the deep Walker

circulation (DWC), El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation

(MJO), and mean meridional circulations (MMCs). The goal of this chapter is to study

MMCs in the tropical atmosphere that arise from shallow and deep diabatic heating pro-

files, as well as planetary boundary layer (BL) frictional forcings. More specifically, we

would like to determine which forcings most prominently drive the Shallow Meridional Cir-

culation (SMC). Deriving solutions of the linearized primitive equations involves solving a

cubic equation for the equatorial wave frequencies. We superpose the spectral space wave

frequencies and use inverse mathematical transforms to compute solutions for anomalies of

the physical space winds, geopotential height, and temperature fields.

Consider small amplitude motions about a resting basic state (e.g., ū, v̄ = 0) in a

stratified, compressible, quasi-static atmosphere on the equatorial β-plane. For the vertical

coordinate we use z = H ln(p0/p), where H = RT0/g is the constant scale height, and p0

and T0 denote the constant reference pressure and temperature. We can write the forced

linearized primitive equations as



∂u

∂t
− βyv +

∂φ

∂x
= F − αu, (2.1)

∂v

∂t
+ βyu+

∂φ

∂y
= G− αv, (2.2)

∂φ

∂z
=

g

T0
T, (2.3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
−
w

H
= 0, (2.4)

∂T

∂t
+
T0N

2

g
w =

Q

cp
− αT, (2.5)

where x is the zonal position, y the meridional position, t time, u the zonal wind anomaly, v

the meridional wind anomaly, w = Dz/Dt the perturbation “vertical log-pressure velocity”,

φ the geopotenial anomaly, T the perturbation temperature, F the prescribed frictional force

per unit mass in the zonal direction, G the prescribed frictional force per unit mass in the

meridional direction, and Q the prescribed diabatic heat source. The independent variables

are x, y, z, t and the dependent variables are u, v, w, φ, T,Q, F, and G. In order to use the

equatorial β-plane approximation, since the approximation is only valid sufficiently close

to the equator, we assume that all of the fields u, v, w, φ, T,Q, F,G → 0 as y → ±∞. The

numerical constants in (2.1)–(2.5) are as follows: N2 = (g/T0)
(

dT̄ /dz + κT̄/H
)

is the basic

state static stability computed from the basic state temperature profile T̄ (z), β = 2Ω/a the

variation of the Coriolis parameter, f = βy, with respect to meridional displacement from

the equator, Ω the angular velocity of the Earth, a the radius of the Earth, α the coefficient

for Rayleigh friction and Newtonian cooling, g the acceleration of gravity, and cp the specific

heat capacity at constant pressure. The numerical values for the constants just mentioned

are displayed in Chapter 3. The derivation from the nonlinear primitive equations to (2.1)–

(2.5) is shown in Appendix A.

The model that we have just introduced is quite idealized, but for the goals expressed

it is more than capable of providing us with valuable insight. The equation set (2.1)–(2.5)

is quite similar to Schubert and Masarik (2006), except (2.1)–(2.5) incorporates frictional

forcings and allows for more complicated vertical structures. The equatorial β-plane ap-

proximation is valid since the SMC has been observed to take place sufficiently close to
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the equator (-15◦S, 15◦N). The observed horizontal circulation patterns are O(10,000 km),

making the quasi-static approximation also acceptable. The lack of a moisture budget may

seem like a very crude assumption, but a prescribed diabatic heat source shall be sufficient

for investigating the large-scale dynamical features of the shallow and deep overturning

circulations.

2.2 Vertical Normal Mode Transform

The first step to solving (2.1)–(2.5) is to separate the vertical structure from the

horizontal and temporal structure by computing the vertical transform of (2.1)–(2.5). We

assume that the solutions of (2.1)–(2.5) have a separable horizontal, vertical, and temporal

structure of the form

u(x, y, z, t) = X(x)Y (y)Z(z)T (t). (2.6)

Basically, we want to replace any vertical derivatives, which cannot be derived analytically,

with derivatives of vertical wavenumber ℓ that can be derived analytically. Since (2.1) and

(2.2) do not have any vertical derivatives, we can ignore them for now. First we rewrite

(2.4) and eliminate T from (2.3) and (2.5)

∂u

∂x
+
∂v

∂y
+ ez/H ∂

∂z

(

e−z/Hw
)

= 0, (2.7)

−

(

∂

∂t
+ α

)

∂φ

∂z
+N2w =

g

T0

Q

cp
. (2.8)

To solve (2.7) and (2.8) we need to consider appropriate boundary conditions in the vertical

direction. We require an upper boundary condition that reflects vertically propagating

waves so that the phase speed spectrum of the waves is discrete (Fulton, 1980). We choose

the so called, “rigid lid” condition that the vertical log-pressure velocity, w, vanishes at the

top boundary z = zT . At the lower boundary z = 0 we require that the actual vertical

velocity vanishes, i.e., Dφ/Dt = 0. If the Earth’s surface is assumed to be flat, this condition

should be applied at Earth’s actual surface and not at H ln(p0/p) = 0; therefore our lower
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boundary condition is approximate since H ln(p0/p) = 0 is technically not the Earth’s

surface. The boundary conditions are

w = 0 at z = zT , (2.9)

Dφ

Dt
= 0 at z = 0. (2.10)

Eliminating w from (2.7) and (2.8) yields

−

(

∂

∂t
+ α

)

ez/H ∂

∂z





e−z/H

N2

∂
(

φ− φ̃
)

∂z



+
∂u

∂x
+
∂v

∂y
= 0, (2.11)

where
(

∂

∂t
+ α

)

∂φ̃

∂z
=

g

T0

Q

cp
. (2.12)

Using (2.8) and (2.12) to modify the boundary conditions results in

∂

∂z

(

∂

∂t
+ α

)

(

φ− φ̃
)

= 0 at z = zT , (2.13)

(

∂

∂z
−
N2

g

)(

∂

∂t
+ α

)

(

φ− φ̃
)

= 0 at z = 0. (2.14)

Equation (2.11) must be solved using the vertical normal mode transform pair given below















u(x, y, z, t)

v(x, y, z, t)

φ(x, y, z, t)















=
∞
∑

ℓ=0















uℓ(x, y, t)

vℓ(x, y, t)

φℓ(x, y, t)















Zℓ(z), (2.15)















uℓ(x, y, t)

vℓ(x, y, t)

φℓ(x, y, t)















=

∫ zT

0















u(x, y, z, t)

v(x, y, z, t)

φ(x, y, z, t)















Zℓ(z)e
−z/Hdz, (2.16)

where Zℓ(z) = NℓΨℓ(z)e
z/2H are the vertical structure functions, Nℓ is a normalization

constant, and Ψℓ(z) is the kernel of the integral transform (2.16), and e−z/2H is the weight

of the integral transform. So far, Nℓ and Ψℓ(z) are yet to be determined, but we will solve

for them in the next section. We apply the vertical normal mode integral transform (2.16),
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which requires us to multiply (2.11) by Zℓ(z)e
−z/H and integrate over the entire vertical

plane

−

(

∂

∂t
+ α

)∫ zT

0
ez/H ∂

∂z





e−z/H

N2

∂
(

φ− φ̃
)

∂z



Zℓ(z)e
−z/Hdz +

∂uℓ

∂x
+
∂vℓ

∂y
= 0. (2.17)

The integral of the first term on the left hand side of (2.17) must be solved by integrating

by parts twice

(

∂

∂t
+ α

)∫ zT

0
ez/H ∂

∂z





e−z/H

N2

∂
(

φ− φ̃
)

∂z



Zℓ(z)e
−z/Hdz

=

{

e−z/H

N2
Zℓ(z)

∂

∂z

[

(

∂

∂t
+ α

)

(

φ− φ̃
)

−
e−z/H

N2

dZℓ(z)

dz

(

∂

∂t
+ α

)

(

φ− φ̃
)

]}zT

0

+

∫ zT

0

(

∂

∂t
+ α

)

(

φ− φ̃
) d

dz

[

e−z/H

N2

dZℓ(z)

dz

]

dz.

(2.18)

Using (2.13) and (2.14), we can easily show that the boundary term in (2.18) vanishes.

Now we focus our attention on simplifying the integral in (2.18). In order to expand

any vertical structure, we need to solve the Sturm-Liouville eigenproblem with the boundary

conditions (2.13) and (2.14). We begin with a second order ordinary differential equation

(ODE) for the vertical structure Zℓ(z) = NℓΨℓ(z)e
z/2H

ez/H d

dz

[

e−z/H

N2

dZℓ

dz

]

+
1

c2ℓ
Zℓ = 0, (2.19)

dZℓ

dz
= 0 at z = zT , (2.20)

dZℓ

dz
−
N2

g
Zℓ = 0 at z = 0. (2.21)

The inverse transform may be obtained by considering the properties of the solutions of

(2.19)–(2.21). It can be shown (e.g., Morse and Feshback 1953) that if N2(z) is strictly

positive and continuously differentiable for 0 ≤ z ≤ zT then (2.19)–(2.21) have a countably

indefinite set of solutions (eigenvalues and eigenvectors) with the following three properties
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(Fulton, 1980):

(i) The eigenvalues cℓ are real and may be ordered such that c0 > c1 > · · · cℓ > 0 with

cℓ → 0 as ℓ→ ∞.

(ii) The eigenfunctions Ψℓ(z) are orthogonal and may be chosen to be real.

(iii) The eigenfunctions Ψℓ(z) form a complete set. We assume that N2 is constant with

respect to z and therefore we are able to solve the differential equation analytically. We

split up the solution into three separate cases.

Case 1 involves evanescent solutions, where (2.19) becomes

(

d

dz
−

1

H

)

dZℓ

dz
+
N2

cℓ2
Zℓ = 0. (2.22)

The general solution of this ODE using the characteristic equation is

Zℓ(z) = [C cosh (µℓz) +D sinh (µℓz)] e
z/2H , (2.23)

where µ2
ℓ ≥ 0, and

µ2
ℓ =

1

4H2
−
N2

c2ℓ
. (2.24)

The boundary conditions become

γC + µℓD = 0 (2.25)

at z = 0, where γ = 1/2H −N2/g, and

C

(

µℓ tanh (µℓzT ) +
1

2H

)

+D

(

µℓ +
1

2H
tanh (µℓzT )

)

= 0 (2.26)

at z = zT when the general solution is substituted. In order for a nontrivial solution to be

obtained from this homogeneous linear system of equations one must solve for µℓ when the

determinant of the matrix A equals zero, where

A =







µℓ tanh (µℓzT ) + 1
2H µℓ + 1

2H tanh (µℓzT )

γ µℓ






. (2.27)

There is only one solution when the determinant of A equals zero, therefore we set the

subscript to ℓ = 0. We shall refer to this mode as the external mode, where

tanh(µ0zT ) −
µ0zT

g
N2

(

zT

4H2 − (µ0zT )2

zT

)

− zT

2H

= 0 (2.28)
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is an equation for µ0zT that must be solved using iteration techniques. We choose to

use Newton’s iteration since the derivative of this equation is sufficiently large. Newton’s

iterative method uses the equation

xk+1 = xk +
f(xk)

f ′(xk)
, (2.29)

where k is the iteration number and f(x) is a function that must equal zero, e.g., (2.28).

The resulting gravity wave speed for the external mode is c0 = 271.2708 ms−1, shown in

Table 2.1. Using the z = 0 boundary condition, γC + µ0D = 0, and (2.28) we can rewrite

(2.23) as

Z0(z) = C

[

cosh (µ0z) −
γ

µ0
sinh (µ0z)

]

ez/2H . (2.30)

In order to solve for C, we must return to properties (ii) and (iii) of our solution. We

normalize Ψ0(z) so that we use the orthonormality relation

∫ zT

0
Zℓ′(z)Zℓ(z)e

−z/Hdz =



















1 ℓ′ = ℓ,

0 ℓ′ 6= ℓ.

(2.31)

We find that the normalization constant, C2, is

C2 = N 2
0 =

2µ3
0

sinh(µ0zT ) cosh(µ0zT )
(

µ2
0 + γ2

)

+ µ0zT
(

µ2
0 − γ2

)

− 2µ0γ sinh2(µ0zT )
. (2.32)

Therefore, our solution is

Z0(z) = N0

[

cosh (µ0z) −
γ

µ0
sinh (µ0z)

]

ez/2H . (2.33)

Case 2 involves sinusoidal solutions, where λ2
ℓ ≥ 0 and

λ2
ℓ =

N2

c2ℓ
−

1

4H2
. (2.34)

The general solution of (2.22) when incorporating the new variable λℓ is

Zℓ(z) = [E cos (λℓz) + F sin (λℓz)] e
z/2H . (2.35)

The boundary conditions become

γE + λℓF = 0 (2.36)
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at z = 0 and

E

(

1

2H
− λℓ tan (λℓzT )

)

+ F

(

λℓ +
1

2H
tan (λℓzT )

)

= 0 (2.37)

at z = zT when the general solution is substituted. In order for a nontrivial solution to be

obtained from this homogeneous linear system of equations one must solve for λℓ when the

determinant of the matrix B equals zero, where

B =







1
2H − λℓ tan (λℓzT ) λℓ + 1

2H tan (λℓzT )

γ λℓ






. (2.38)

There are infinite solutions (λℓ = λ1, λ2, · · ·λ∞) when the determinant of B equals

zero; we shall refer to these modes as the internal modes, where

tan(λℓzT ) −
λℓzT

g
N2

(

zT

4H2 + (λℓzT )2

zT

)

− zT

2H

= 0 (2.39)

is an equation for λℓzT that must be solved using iteration techniques. Since the derivative

Table 2.1: External and the first ten internal gravity wave speeds computed using iterative
methods for (2.28) and (2.39).

ℓ cℓ [ms−1]

0 271.2708
1 51.6651
2 26.8124
3 18.0068
4 13.5404
5 10.8454
6 9.0439
7 7.7550
8 6.7874
9 6.0343
10 5.4315

of (2.39) is quite small, Newton’s iterative method cannot be used. Therefore we use the

Bisection method, which converges more slowly than Newton’s method, but can be used

for almost any function. The first ten internal modes are displayed in Table 2.1. Using the

z = 0 boundary condition, γE + λℓF = 0, and (2.28) we can rewrite (2.35) as

Zℓ(z) = E

[

cos (λℓz) −
γ

λℓ
sin (λℓz)

]

ez/2H . (2.40)
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In order to solve for E, we must satisfy (2.31), and we solve for the normalization constant,

E2,

E2 = N 2
ℓ =

2λ3
ℓ

sin(λℓzT ) cos(λℓzT )
(

λ2
ℓ − γ2

)

+ λℓzT
(

λ2
ℓ + γ2

)

− 2λℓγ sin2(λℓzT )
. (2.41)

Therefore,

Zℓ(z) = Nℓ

[

cos (λℓz) −
γ

λℓ
sin (λℓz)

]

ez/2H . (2.42)

Case 3 occurs when 1/4H2 = N2/c2, e.g., λ = µ = 0, involving linear solutions. This

case is only included when zT = zcrit and is described in more detail in Appendix B.

The vertical structure functions Zℓ(z) for the external and first four internal modes

are plotted in Fig. 2.1. After applying the vertical normal mode transform to the governing
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Figure 2.1: Zℓ(z) for ℓ = 0, 1, 2, 3, 4. These functions were computed using (2.33) and
(2.42).

equations (2.1), (2.2), and (2.11) we arrive at a set of shallow-water equations (linearized

divergent barotropic model) for each vertical wavenumber ℓ

(

∂

∂t
+ α

)

uℓ − βyvℓ +
∂φℓ

∂x
= Fℓ, (2.43)
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(

∂

∂t
+ α

)

vℓ + βyuℓ +
∂φℓ

∂y
= Gℓ, (2.44)

(

∂

∂t
+ α

)

φℓ + cℓ
2

(

∂uℓ

∂x
+
∂vℓ

∂y

)

=

(

∂

∂t
+ α

)

φ̃ℓ. (2.45)

2.3 Zonal Fourier Transform

Another simplifying procedure of (2.43)–(2.45) is to take the Fourier transform of each

equation in the zonal direction. The zonal Fourier transform allows one to decompose our

equations into their constituent zonal wavenumbers, converting derivatives with respect to

x into algebraic factors involving the zonal wavenumber. The form of the Fourier transform

pair is

uℓm(y, t) =
1

2πa

∫ πa

−πa
uℓ(x, y, t)e

−imx/adx, (2.46)

uℓ(x, y, t) =
∞
∑

m=−∞

uℓm(y, t)eimx/a, (2.47)

where the integer m denotes the integer zonal wavenumber. Similar Fourier transform pairs

exist for vℓm and φℓm. Note that (2.46) and (2.47) incorporate the concept of Earth’s

periodicity in the zonal direction, which is a more accurate approximation of the Fourier

transform than a Fourier transform in an infinite domain, since wavenumbers can only have

integer values in the more realistic spherical coordinates. In this way the system of equations

(2.43)–(2.45) reduces to

(

∂

∂t
+ α

)

uℓm − βyvℓm +
im

a
φℓm = Fℓm, (2.48)

(

∂

∂t
+ α

)

vℓm + βyuℓm +
∂φℓm

∂y
= Gℓm, (2.49)

(

∂

∂t
+ α

)

φℓm + cℓ
2

(

im

a
uℓm +

∂vℓm

∂y

)

=

(

∂

∂t
+ α

)

φ̃ℓm. (2.50)
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2.4 Meridional Hermite Transform

We simplify (2.48)–(2.50) even further to arrive at an ordinary differential equation

in time by using a normal mode transform in the meridional direction. First, it is most

convenient to write (2.48)–(2.50) in a matrix/vector form for reasons discussed below. The

matrix/vector form is
(

∂

∂t
+ α

)

ηℓm + Lηℓm = Eℓm, (2.51)

where L is the matrix operator

L =















0 −βy im/a

βy 0 ∂/∂y

cℓ
2im/a cℓ

2∂/∂y 0















, (2.52)

ηℓm(y, t) is a vector that includes the horizontal wind and geopotential fields

ηℓm(y, t) =















uℓm(y, t)

vℓm(y, t)

φℓm(y, t)















, (2.53)

and Eℓm(y, t) is a vector that represents the forcing fields

Eℓm(y, t) =















Fℓm(y, t)

Gℓm(y, t)

(

∂
∂t + α

)

φ̃ℓm(y, t)















. (2.54)

The derivation of the meridional normal mode transform involves taking the inner product

of (2.51). Therefore, we define the inner product as

(f ,g) =

∞
∫

−∞

(f1g
∗
1 + f2g

∗
2 +

1

c2ℓ
f3g

∗
3)dŷℓ, (2.55)

where f(ŷℓ, t) and g(ŷℓ, t) are complex three component vector functions of the dimensionless

meridional coordinate ŷℓ = (β/cℓ)
1/2y = ǫℓ

1/4(y/a). The * symbol in (2.55) denotes the

complex conjugate and ǫℓ = 4Ω2a2/c2ℓ is Lamb’s parameter for each vertical wavenumber ℓ.

The inner product (2.55) is suggested by the total energy principle associated with (2.51),
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explained in more detail in Schubert and Masarik (2006). The adjoint of L, denoted by L†

and defined by (Lf ,g) = (f ,L†g), is related to L by L† = −L. In other words, the linear

operator L is skew-Hermitian with respect to the inner product (2.55) (discussed in more

detail in the Appendix C). The skew-Hermitian property dictates that the eigenvalues of

L are pure imaginary and that the eigenvalues form a complete (Wu and Moore, 2004),

orthogonal set, as long as degeneracy does not occur. Degeneracy occurs when two distinct

eigenfunctions (wave types) have the same eigenvalue (frequency). We define an eigenvalue

by iνℓmnr and a corresponding eigenfunction by Kℓmnr(ŷℓ). These definitions help introduce

the eigenproblem

LKℓmnr = iνℓmnrKℓmnr, (2.56)

where

Kℓmnr(ŷℓ) =















Uℓmnr(ŷℓ)

Vℓmnr(ŷℓ)

Φℓmnr(ŷℓ)















(2.57)

are the eigenfunctions for the horizontal wind and geopotential fields. The eigenvalues of

L yield the dispersion relation for equatorially-trapped waves satisfying the cubic equation

(Matsuno, 1966)

ǫℓν̂
2
ℓmnr −m2 −

m

ν̂ℓmnr
= ǫℓ

1/2 (2n+ 1) , (2.58)

where n = 0, 1, 2, . . . is the index for the meridional mode and ν̂ℓmnr = νℓmnr/2Ω is the

dimensionless wave frequency. This dispersion relation can be found by solving the unforced

(F , G, and Q = 0), non-dissipative (α = 0) version of (2.51). We also define r = 0, 1, 2 as

the three roots of the dispersion relation (2.58), so that the eigenfunctions and eigenvalues

are characterized by the indices ℓmnr. Special care is required for the case n = 0, where

(2.58) can be factored into (ǫℓ
1/2ν̂ℓmnr + m)(ǫℓ

1/2ν̂2
ℓmnr − mν̂ℓmnr − 1) = 0. The root

ν̂ℓmnr = −ǫℓ
−1/2mmust be discarded because the corresponding eigenfunction is unbounded

in ŷℓ, which violates our assumption that all fields → 0 as ŷℓ → ±∞. Thus, when n = 0,
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only the two solutions of ǫℓ
1/2ν̂2

ℓmnr − mν̂ℓmnr − 1 = 0 are retained and are indexed by

r = 0 and r = 2. The index r = 0 corresponds to the mixed Rossby-gravity wave, and

r = 2 corresponds to an eastward inertia-gravity wave. The eigenfunctions for Kelvin waves

can be found separately by setting Vℓmnr to zero in (2.57). The Kelvin wave eigenvalues

ν̂ℓmnr = ǫℓ
−1/2m can be formally considered as solutions to (2.58) when n = −1. The root

of this solution is indexed as r = 2.

For a given value of n, Kℓmnr(ŷℓ) is the eigenfunction corresponding to the eigenvalue

νℓmnr. The form of Kℓmnr(ŷℓ) for all waves, except Kelvin waves, is given by

Kℓmnr(ŷℓ) =

Aℓmnr















ǫℓ
1

4

[

(

n+1
2

)
1

2 (ǫℓ
1

2 ν̂ℓmnr +m)Hn+1(ŷℓ) +
(

n
2

) 1

2 (ǫℓ
1

2 ν̂ℓmnr −m)Hn−1(ŷℓ)
]

−i(ǫℓν̂
2
ℓmnr −m2)Hn(ŷℓ)

cℓǫℓ
1

4

[

(

n+1
2

)
1

2 (ǫℓ
1

2 ν̂ℓmnr +m)Hn+1(ŷℓ) −
(

n
2

) 1

2 (ǫℓ
1

2 ν̂ℓmnr −m)Hn−1(ŷℓ)
]















,

(2.59)

and the form of Kℓm−12(ŷℓ) for Kelvin waves is

Kℓm−12(ŷℓ) = Aℓm−12e
− 1

2
ŷ2

ℓ















1

0

cℓ















, (2.60)

where

Aℓmnr =






















[

ǫ
1

2

ℓ (n+ 1)

(

ǫ
1

2

ℓ νℓmnr +m

)2

+ ǫ
1

2

ℓ n

(

ǫ
1

2

ℓ νℓmnr −m

)2

+
(

ǫℓν
2
ℓmnr −m2

)2

]− 1

2

, n ≥ 0

2−
1

2π−
1

4 , n = −1,

(2.61)

is the normalization factor of the orthonormality property

(Kℓmnr(ŷℓ),Kℓ,m,n′,r′(ŷℓ)) =



















1 (n′, r′) = (n, r),

0 (n′, r′) 6= (n, r).

(2.62)
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The normalization factor and its orthonormality property make the mathematical derivation

more convenient. The normality part of (2.62) is confirmed by substituting (2.59) into the

left hand side of (2.51) and then using

∫ ∞

−∞

Hn(ŷℓ)Hn′(ŷℓ)dŷℓ =



















1 n′ = n,

0 n′ 6= n,

(2.63)

in order to evaluate the three resulting integrals. The Hermite functions Hn(ŷℓ) are related

to the Hermite polynomials Hn(ŷℓ) by

Hn(ŷℓ) = (π
1

2 2nn!)−
1

2Hn(ŷℓ)e
− 1

2
ŷ2

ℓ . (2.64)

The Hermite functions Hn(ŷℓ) satisfy the recurrence relation

ŷℓHn(ŷℓ) =

(

n+ 1

2

) 1

2

Hn+1(ŷℓ) +
(n

2

) 1

2

Hn−1(ŷℓ), (2.65)

and the derivative relation

dHn(ŷℓ)

dŷℓ
= −

(

n+ 1

2

) 1

2

Hn+1(ŷℓ) +
(n

2

) 1

2

Hn−1(ŷℓ). (2.66)

The first two Hermite functions are H0(ŷℓ) = π−
1

4 e−
1

2
ŷ2

ℓ and H1(ŷℓ) = 2
1

2π−
1

4 ŷℓe
− 1

2
ŷ2

ℓ ,

from which all succeeding structure functions can be computed using the recurrence relation

(2.23). Computing Hn(ŷℓ) via its recurrence relation is much preferable to computingHn(ŷℓ)

via its recurrence relation and then computing Hn(ŷℓ) by evaluation of the right hand side

of 2.64, because the former method avoids explicit calculation of the factor 2nn! for large

n. Plots of Hn(ŷ1) for n = 0, 1, 2, 3, and 4 are shown in Fig. 2.2.

One should also note that there is a degeneracy in the zonally symmetric Rossby

modes when m = 0, n > 0, r = 0, and for zonally symmetric Kelvin waves when m = 0, n =

−1, r = 2 in which case (2.59) is indeterminant because both m and ν̂ℓ0n0 vanish. However,

orthonormal eigenfunctions are easily constructed in this case

Kℓ0n0(ŷℓ) = (2n+ 1)−
1

2















[

(

n
2

) 1

2 Hn+1(ŷℓ) −
(

n+1
2

)
1

2 Hn−1(ŷℓ)
]

0

cℓ

[

(

n
2

) 1

2 Hn+1(ŷℓ) +
(

n+1
2

)
1

2 Hn−1(ŷℓ)
]















. (2.67)
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Figure 2.2: Hn(ŷℓ) for ℓ = 1 (ǫ1 = 323.42, equivalent depth = 272.23 m) and n = 0, 1, 2, 3, 4
over the equatorial band (35◦S, 35◦N). These satisfy the orthonormality condition (2.63).
Note that ŷℓ gets larger as ℓ increases.
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Due to the orthonormality and completeness of the eigenfunctions Kℓmnr(ŷℓ) we can set up

the transform pair (Silva Dias et al. 1983; DeMaria 1985)

ηℓmnr(t) = (ηℓm(ŷℓ, t),Kℓmnr(ŷℓ)) , (2.68)

ηℓm(ŷℓ, t) =
∞
∑

n=−1

∑

r

ηℓmnr(t)Kℓmnr(ŷℓ), (2.69)

where ηℓmnr are the scalar coefficients in the normal mode expansion of the vector ηℓm(ŷℓ).

Note that (2.68) can be computed by taking the inner product of (2.69) with Kℓmn′r′(ŷℓ)

using the orthonormality property (2.62).

Now we have the tools needed in order to solve (2.51). Begin by taking the inner

product of (2.51) with the eigenfunction Kℓmnr(ŷℓ),

((

∂

∂t
+ α

)

ηℓm(ŷℓ),Kℓmnr(ŷℓ)

)

+ (Lηℓm(ŷℓ),Kℓmnr(ŷℓ)) = (Eℓm(ŷℓ),Kℓmnr(ŷℓ)) ,

next use the Skew-Hermitian property of L and take the constants outside of the inner

products,

(

∂

∂t
+ α

)

(ηℓm(ŷℓ),Kℓmnr(ŷℓ)) + (ηℓm(ŷℓ),−LKℓmnr(ŷℓ))) = (Eℓm(ŷℓ),Kℓmnr(ŷℓ)) .

Now we can use the relations (2.56), (2.68) and the inner product relation

Eℓmnr = (Eℓm(ŷℓ),Kℓmnr(ŷℓ)) and obtain

∂ηℓmnr

∂t
+ (α+ iνℓmnr) ηℓmnr = Eℓmnr(t). (2.70)

This first order differential equation in time must be solved for the unknown scalar field

ηℓmnr(t) using the integrating factor method, which yields

ηℓmnr(t) =

∫ t

0
e−(α+iνℓmnr)(t−t′)Eℓmnr(t

′)dt′. (2.71)

2.5 Final Solution of the Prognostic Fields

We have reduced the set of vector form partial differential equations for fluid motion

(2.51) to one ordinary differential equation in time (2.70), which can be easily solved.
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The solutions correspond to the time evolution of ηℓmnr; initially ηℓmnr = 0 and then

exponentially decays as t evolves according to α + iνℓmnr. The physical space fields now

can be computed using the inverse vertical normal mode, Fourier, and Hermite transforms:

(2.15), (2.47), and (2.69) of the spectral space fields, i.e.,















u(x, y, z, t)

v(x, y, z, t)

φ(x, y, z, t)















=
∞
∑

ℓ=0

∞
∑

m=−∞

∞
∑

n=−1

∑

r

Zℓ(z)e
imx/a















Uℓmnr(ŷℓ)

Vℓmnr(ŷℓ)

Φℓmnr(ŷℓ)















ηℓmnr(t). (2.72)

We can use (2.7) to compute the physical space “vertical log-pressure velocity” field and

(2.3) to recover the temperature field. We can also calculate the vertical pressure-velocity

(hPa day−1) using the relationship ω = −p0

H e
−z/Hw.

In the next section we will explain the different experiments that will be analyzed

and the motivation behind the model formulation. Numerical values for constant variables

will be given, as well as the exact forms of the diabatic heating and BL frictional forces.
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Chapter 3

METHODS - EXPERIMENT LAYOUT AND MODEL FORCINGS

In this chapter we specify the exact form of the forcings and the numerical values of

all variables and constants. The setup for each model run will be described as well as the

model solutions of the primitive equations that were given in Chapter 2.

We begin by introducing the form of the horizontal and vertical structure of the

prescribed diabatic forcings Q(x, y, z). The diabatic forcing is of the form of a localized

heat source. The heat source may have two forms, one for deep heating profiles and the

other for shallow heating profiles.

3.1 Deep Heating Profile

The prescribed deep heating profile has a spatial structure of the form

Q(x, y, z) = Q0X(x)Y (y)Z(z), (3.1)

where Q0 is the peak heating,

Z(z) = sin

(

πz

zT

)

, (3.2)

zT is the height of the top of the troposphere, and X(x) and Y (y) are the zonal and merid-

ional structure of the deep heating which will be described later. The vertical structure of the

deep heating that we have assumed is strictly positive and normalized for convenience. We

shall assume Q0 = 3.75 or 7.5 K day−1 (explained in next chapter) and zT = H ln(pT /p0),

where pT = 200 hPa. The maximum heating rate and the pressure level of the top of

the troposphere are based on their respective values observed in Yanai et al. (1973). The



vertical profile for our prescribed deep heating Q and the deep heating profiles observed

in Yanai et al. (1973) are illustrated in Fig. 3.1. The vertical structure projects mostly
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Figure 3.1: The vertical structure of the normalized prescribed deep heating profile, Z(z),
(left) and the deep heating observed in Yanai et al. (1973), Q1(z), (right). The maximum
heating for both profiles is in the mid-troposphere and the tropopause is around 100-200
hPa. Note that QR stays relatively constant with height.

on the external ℓ = 0 mode and the first three internal modes (ℓ = 1 − 3). This agrees

well with the findings of Fulton and Schubert (1985), where Q1 profiles from the Global

Atmospheric Research Project (GARP) Atlantic Tropical Experiment (GATE) for “undis-

turbed” and “disturbed” periods were compared. Deep heating profiles consist of positive

heating throughout most of the troposphere with a peak amplitude in the mid-troposphere.

Yanai et al. (1973) suggest that this peak occurs in the 400-550 hPa layer near a secondary

maximum in entrainment.

The prescribed zonal structure of the deep heating profile is of the form

X(x) =
1

2



















1 + cos
(

πx
a0

)

|x| ≤ a0,

0 |x| ≥ a0,

(3.3)

where a0 is the zonal half width. The zonal structure is a strictly positive half cosine wave

with a maximum value at x = 0 km, and has been normalized for convenience.

The meridional structure of the deep heating profile is of the form

Y (y) = exp

[

−

(

y − yd

b

)2
]

, (3.4)
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where yd is the center of the heat source and b the meridional e-folding width. We have

assumed that (3.4) is also strictly positive and normalized for convenience. The meridional

structure is Gaussian with a maximum value at y = 0 km and Y (y) → 0 as y → ∞ as

required by the equatorial β-plane approximation. The horizontal structure X(x)Y (y) is

in the shape of an ellipse, acting to simulate the Intertropical Convergence Zone (ITCZ).

This horizontal structure of this forcing is simple, but has been shown to represent the

atmosphere well in many other theoretical studies.

3.2 Shallow Non-Precipitating Heating Profile

The prescribed shallow heating profile has a spatial structure of the form

Q(x, y, z) = Q0X(x)Y (y)Z(z), (3.5)

where Q0 is the peak heating,

Z(z) =



















sin
(

2πz
zI

)

0 ≤ z ≤ zI ,

0 zI ≤ z ≤ zT ,

(3.6)

where zI is the value of z at the trade-wind inversion, and X(x) and Y (y) are the same as

in (3.3) and (3.4). The horizontal structure X(x)Y (y) is illustrated in Fig. 3.2. We shall

assume Q0 = 2.5 K day−1 and zI = H ln(pI/p0), where pI = 700 hPa. The maximum

heating rate and pressure level of the trade-wind inversion are based on the respective val-

ues observed in Nitta and Esbensen (1974). The heating profile for our prescribed shallow

heating Q and the “undisturbed” shallow heating observed in Nitta and Esbensen (1974)

are illustrated in Fig. 3.3. The vertical structure of the shallow heating is based on numer-

ous studies suggesting that shallow non-precipitating heating is defined with a trade-wind

inversion near or just above the top of the boundary layer (BL). Nitta and Esbensen (1974)

suggest that just below the trade-wind inversion there is significant cooling and moistening

associated with detrainment of clouds during the “undisturbed” (shallow heating) period.

Below this cooling and moistening is heating and drying associated with the buildup of
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Figure 3.2: The horizontal structure Q0X(x)Y (y) used in the prescribed deep and shallow
heating profiles. The constants are Q0 = 7.5 K day−1, a0 = 2500 km, b = 500 km, and
yd = 1000 km. The contour interval is 0.01 J kg−1s−1.
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Figure 3.3: The vertical structure of the prescribed shallow heating profile, Z(z),(left) and
the deep heating observed in Nitta and Esbensen (1974), Q1, (right). The maximum heating
for both profiles is within the first 100 hPa of the surface and the trade inversion is in the
vicinity of 150-400 hPa above the surface. Note that the vertical axis in the figure on the
left is p and the right figure is p∗ = ps − p, where ps is the surface pressure and that QR

stays relatively constant with height.
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non-precipitating shallow cumulus clouds. Vertical eddy transport of total heat decreases

rapidly just above the inversion while the moisture sink and heat source terms go to zero.

According to Nitta and Esbensen (1974) the differences between “disturbed” ver-

sus “undisturbed” convective days depends greatly on BL processes. If convection can

break through the trade-wind inversion, then heating profiles can transition from shallow

non-precipitating to either shallow precipitating, stratiform, and/or deep, emphasizing the

importance of representing planetary BL forcings accurately. More complicated heating

profiles are to be looked at in future studies. Since we have already introduced the spatial

structure of the diabatic heating forcings, we will now introduce the PBL frictional forcings.

3.3 Planetary Boundary Layer Frictional Profile

The prescribed PBL frictional forcings have a spatial stucture of the form

F (x, y, z) = F0X(x)Y (y)Z(z), (3.7)

G(x, y, z) = G0X(x)Y (y)Z(z), (3.8)

where X(x) is the same as (3.3), F0 and G0 are the peak amplitudes of the zonal and

meridional BL frictional forcings, respectively. The vertical structure Z(z) is

Z(z) =
1

2



















1 + cos
(

πz
zB

)

0 ≤ z ≤ zB,

0 zB ≤ z ≤ zT ,

(3.9)

where zB = H ln(pB/p0) is the value of z at the top of the BL, and pB = 800 hPa. The

vertical structure of F and G is shown in Fig. 3.4. The meridional structure Y (y) of the

frictional forcings is slightly different than the meridional structure of the diabatic heating

forcings, since we prescribe its derivative to be an ellipse, corresponding to a localized curl

of the frictional forcings, or a curl of the wind stress. The zonal winds tend to have a large

easterly component just north of the ITCZ and a small westerly component just south of
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Figure 3.4: The normalized vertical structure Z(z) used in the prescribed BL frictional
profiles, where pB = 800 hPa.
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the ITCZ (Fig. 1.11), therefore we define the meridional structure of F to be

Y (y) = −21/2e1/2

(

y − yd

b

)

exp

[

−

(

y − yd

b

)2
]

. (3.10)

It turns out that the meridional winds tend to be much more variable around the

ITCZ, but in general they have some component of convergence (Fig. 3.5). Therefore, the

Figure 3.5: Mean winds and divergence in the tropical East Pacific during September 2000-
2007. This data was recorded using Quikscat data. From Mora (2008).

meridional structure of G may be the same as F . It turns out that this form of meridional

structure for G alone has no effect on the wind stress curl, since the wind stress curl

involves ∂G/∂x, depending rather on the zonal structure of G. It does affect the wind

stress divergence though, because the wind stress divergence involves ∂G/∂y. Overall, the

contribution of G is more complicated, and because of this we will only concentrate on the

effect of a zonal frictional forcing, F .

The form of the meridional structure we have prescribed happens to produce positive

wind stress curl and Ekman pumping in the simulated “ITCZ” region, but has a byproduct

of two areas of weaker Ekman suction to the north and south (Fig. 3.6). This byproduct

is inevitable with the simple analytical meridional structure we have prescribed. However,
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Figure 3.6: The horizontal structure of the prescribed wind stress curl of F , where a0 = 2500
km, b = 500 km, yd = 1000 km, pB = 800 hPa, F0 = -6.5 × 10−5 m s−2, and ρ = 1.2 kg
m−3. The contour interval is 1 N m−2 per 104 km.

the prescribed horizontal structure of the wind stress curl does look similar to observations

from Risien and Chelton (2008) that were plotted in Fig. 1.12.

The vertical structure of the BL frictional forces have a simple form that excludes

mixing properties, but are sufficient for this type of theoretical study. In order to get a better

visual picture of what the frictional forcing represents, we derive the vertical profile of the

zonal and meridional wind stress. First we integrate the equation of the zonal frictional

forcing
∫ z

0
F (x, y, z)dz =

∫ z

0

1

ρ

∂τx(x, y, z)

∂z
dz. (3.11)

We have prescribed Z(z), so the left hand side of (3.11) can be solved. If we assume

that ρ = 1.2 kg m−3 is constant, the zonal wind stress vanishes at the top of the BL

τx(z = zB) = 0, and that we know τx(z = 0) from typical or observed values, then we can

compute F0, G0, and τx(z). We follow the same procedure for computing τy(z). Typical

values of τx(0) and τy(0) can be taken from observations and/or approximated by the bulk

aerodynamic formula, as done below

|τx(0)| = ρcd|V||ū|, (3.12)

|τy(0)| = ρcd|V||v̄|. (3.13)
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If cd = 0.0015, |V| = 7.25 m s−1, u = 6.5 m s−1, v = 3.25 m s−1, then |τx(0)| ≈0.08 N m−2,

|τy(0)| ≈ 0.04 N m−2. The vertical structure of the zonal wind stress τx(z) is

τx(z) =
F0ρ

2

(

z +
zB
π

sin

(

πz

zB

))

+ τx(0), (3.14)

where F0 = -6.5 × 10−5 m s−2, zB = H ln(p0/pB), pB = 800 hPa, and the vertical structure

of the meridional wind stress is

τy(z) =
G0ρ

2

(

z +
zB
π

sin

(

πz

zB

))

+ τy(0), (3.15)

where G0 = -3.25 × 10−5 m s−2. The vertical structure of the zonal wind stress τx(z) is

shown in Fig. 3.7.
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Figure 3.7: The vertical structure of the zonal wind stress τx(z) used for the BL frictional
forcing F . The constants used are pB = 800 hPa, F0 = -6.5 × 10−5 m s−2, and ρ = 1.2 kg
m−3.

3.4 Accuracy of Forcings in Spectral Space

The horizontal and vertical structure of our prescribed forcings may have many forms,

but with our simple model formulation these forms must be accurately represented in spec-

tral space. Therefore we must validate that the zonal, meridional, and vertical structure of

all of the forcings can be properly represented. The way we shall do this is by comparing the

form of the forcings before taking any spectral transforms to the form of the forcings after
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computing a spectral transform and their associated inverse transform. The errors that are

presented are computed as the magnitude of the difference between the two spatial profiles

at each point divided by the maximum amplitude of the original prescribed forcing. Since

the maximum amplitude of the spatial structure for all of the forcings equals one (except

for the vertical structure of the deep and shallow heating), the error can also be interpreted

as the difference between the two spatial profiles.

First we shall view the spectral transforms of the zonal structure. Remember, the

zonal structure X(x) is the same for all of the prescribed forcings. After computing a

Fourier transform we obtain

Xm =
1

2πa

∫ πa

−πa
X(x)e−imx/adx =

π

2

sin(ma0/a)

m
(

π2 −m2a2
0/a

2
) , (3.16)

and after computing the inverse Fourier transform we come to

X(x) =
M
∑

m=−M

Xme
imx/a. (3.17)

We find that using M = 40 is sufficient to represent the zonal structure of the forcings. The

maximum error associated with M = 40 is ≈ 0.36% (Fig. 3.8).
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Figure 3.8: The zonal structure of all of the forcings before taking the Fourier transform
(black) and after taking the Fourier transform (red). The percent error (or difference)
between the zonal structure before and after taking the Fourier transforms (blue).

Now we shall view the spectral transforms of the meridional structure. The compu-

51



tation of the Hermite transform for the deep and shallow heating profiles yields

Yℓn =

∫ ∞

−∞

Yℓ(ŷ)Hn(ŷ)dŷ =

(

2πb̂2ℓ
2 + b̂2ℓ

) 1

2

exp

(

b̂2ℓ ŷ
2
0

4 − b̂4ℓ

)(

2 + b̂2ℓ
2 − b̂2ℓ

)n

2

Hn







2ŷ0
(

4 − b̂4ℓ

) 1

2






,

0 ≤ b̂ℓ < 2
1

2 ,

(3.18)

and taking an inverse Hermite transform gives the result below

Yℓ(y) =
N
∑

n=0

YℓnHn(ŷ). (3.19)

We find that using N = 250 is sufficient to represent the meridional structure of the deep

and shallow heating forcings. The maximum error associated with N = 250 is ≈ 2.5×10−6%

(when ℓ = 1) (Fig. 3.9). Note that the errors decrease as vertical wavenumber ℓ increases
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Figure 3.9: The meridional structure of the deep and shallow heating forcings before taking
the Hermite transform (black) and after taking the Hermite transform (red). The percent
error (or difference) between the meridional structure before and after taking the Hermite
transforms (blue).

for the internal modes. Despite the exceptional accuracy for internal modes, the accuracy of

the external mode (ℓ = 0) isn’t nearly as good, with a maximum error of ≈ 2%. One would

need to use N = 400 to attain a maximum error < 1%, which is too expensive for such a

simple model. This owes to the fact that the equatorial β-plane model breaks down for the

external (barotropic) mode, where the gravity wave speed is very large (c0 = 271.2708 m

s−1).
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Now after we compute a Hermite transform for the frictional forcing profiles we arrive

at

Yℓn =

∫ ∞

−∞

Yℓ(ŷ)Hn(ŷ)dŷ, (3.20)

Yℓn = − 2e1/2

(

π

2 + b̂2ℓ

) 1

2

exp

(

b̂2ℓ ŷ
2
0

4 − b̂4ℓ

){

(

n+ 1

2

)1/2
(

2 + b̂2ℓ
2 − b̂2ℓ

)
n+1

2

Hn+1


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2ŷ0
(
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) 1

2


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(
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) 1

2




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}

0 ≤ b̂ℓ < 2
1

2 ,

(3.21)

and after taking an inverse Hermite transform we are able compute

Yℓ(y) =
N
∑

n=0

YℓnHn(ŷ). (3.22)

We find that using N = 350 is sufficient to represent the meridional structure of the BL

frictional forcings. The maximum error associated with N = 350 is about 1.8 × 10−6 %,

when ℓ = 1 (Fig. 3.10). Once again, the errors decrease as vertical wavenumber ℓ increases
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Figure 3.10: The meridional structure of the frictional forcings before taking the Hermite
transform (black) and after taking the Hermite transform (red). The percent error (or
difference) between the meridional structure before and after taking the Hermite transforms
(blue). Note that yd = 1000 km in both plots.

for internal modes, and the maximum error for the external mode is ≈ 3%.
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Now we shall view the vertical structure and its spectral transforms. The deep heating

profile is composed mostly using the external mode and the first three internal modes

(ℓ = 1 − 3), as mentioned before. The normal mode transform of the deep heating forcing

is

Vℓ =

∫ z∗

0
V(z)Zℓ(z)e

−z/Hdz =
N0

2

[

−I1 − I2 + I3 + I4 −
γ

µ0
(−I1 + I2 + I3 − I4)

]

+
Nℓ

2

[

−I5 − I6 + I7 −
γ

λℓ
(−I8 + I9 + I10)

]

,

(3.23)

where we have defined V(z) as

V(z) =

(

∂

∂t
+ α

)

φ̃(z), (3.24)

I1 =
(µ0 − 1/2H)

(π/z∗)2 + (µ0 − 1/2H)2

(

e(µ0−1/2H)z∗ + 1
)

,

I2 = −
(µ0 + 1/2H)

(π/z∗)2 + (µ0 + 1/2H)2

(

e−(µ0+1/2H)z∗ + 1
)

,

I3 =
1

(µ0 − 1/2H)

(

e(µ0−1/2H)z∗ − 1
)

,

I4 = −
1

(µ0 + 1/2H)

(

e−(µ0+1/2H)z∗ − 1
)

,

I5 =
1

(π/z∗ − λℓ)
2 + 1/4H2

{

e−z∗/2H

[

( π

z∗
− λℓ

)

sin (λℓz
∗) +

1

2H
cos (λℓz

∗)

]}

,

I6 = −
1

(π/z∗ + λℓ)
2 + 1/4H2

{

e−z∗/2H

[

( π

z∗
+ λℓ

)

sin (λℓz
∗) −

1

2H
cos (λℓz

∗)

]}

,

I7 =
2

λ2
ℓ + 1/4H2

{

e−z∗/2H

[

λℓ sin (λℓz
∗) −

1

2H
(cos (λℓz

∗) + 1)

]}

,

I8 =
1

(π/z∗ + λℓ)
2 + 1/4H2

{

e−z∗/2H

[

1

2H
sin (λℓz

∗) +
( π

z∗
+ λℓ

)

(cos (λℓz
∗) + 1)

]}

,

I9 = −
1

(π/z∗ − λℓ)
2 + 1/4H2

{

e−z∗/2H

[

1

2H
sin (λℓz

∗) −
( π

z∗
− λℓ

)

(cos (λℓz
∗) − 1)

]}

,

I10 = −
2

λ2
ℓ + 1/4H2

{

e−z∗/2H

[

1

2H
sin (λℓz

∗) + λℓ (cos (λℓz
∗) − 1)

]}

,

and z∗ = zT . The inverse normal mode transform for the deep heating forcing is

V(z) =
L
∑

ℓ=0

VℓZℓ(z). (3.25)
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Figure 3.11: The vertical structure of the deep heating forcing before taking the normal
mode transform (black) and after taking the normal mode transform (red). The percent
error (or difference) between the vertical structure of the frictional forcings before and after
taking the normal mode transforms (blue).

Since 0 ≤ b̂ℓ < 21/2, L = 18 is the highest vertical wavenumber we can compute. The

maximum error associated with L = 18 is ≈ 1 × 10−3% (Fig. 3.11).

After computing a normal mode transform for the shallow heating forcing we have

Vℓ =

∫ z∗

0
V(z)Zℓ(z)e

−z/Hdz =
N0

2

[

−I1 − I2 + I3 + I4 −
γ

µ0
(−I1 + I2 + I3 − I4)

]

+
Nℓ

2

[

−I5 − I6 + I7 −
γ

λℓ
(−I8 + I9 + I10)

]

,

(3.26)

where z∗ = zI/2,

V(z) =

(

∂

∂t
+ α

)

φ̃(z), (3.27)

and the inverse normal mode transform is

V(z) =
L
∑

ℓ=0

VℓZℓ(z). (3.28)

Since 0 ≤ b̂ℓ < 21/2, from (3.18), L = 18 is the highest vertical wavenumber we can compute.

The maximum error associated with L = 18 is ≈ 1.8% (Fig. 3.12). Computation of the

normal mode transform for the frictional forcings yields

Vℓ =

∫ z∗

0
V(z)Zℓ(z)e

−z/Hdz =
N0

2

[

I1 + I2 + I3 + I4 −
γ

µ0
(I1 − I2 + I3 − I4)

]

+
Nℓ

2

[

I5 + I6 + I7 −
γ

λℓ
(−I8 − I9 + I10)

]

,

(3.29)
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Figure 3.12: The vertical structure of the shallow heating forcing before taking the normal
mode transform (black) and after taking the normal mode transform (red). The percent
error (or difference) between the vertical structure of the shallow heating forcing before and
after taking the normal mode transforms (blue).

where z∗ = zB, and V(z) is now defined as

V(z) =
1

2



















1 + cos
(

πz
zB

)

0 ≤ z ≤ zB,

0 zB ≤ z ≤ zT ,

. (3.30)

After taking an inverse normal mode transform

V(z) =
L
∑

ℓ=0

VℓZℓ(z). (3.31)

Since 0 ≥ b̂ℓ < 21/2, from (3.21), L = 18 is once again the largest vertical wavenumber we

can compute. The maximum error associated with L = 18 is ≈ 0.9% (Fig. 3.13).

We shall run a variety of experiments which include four different shapes of each

forcing, and four different displacements. Each experiment will have a different individual

forcing and we will analyze the effects of that particular individual forcing only. Then

the relative importance of each forcing can be assessed. Since the set of equations we are

solving are linearized, the corresponding solutions for each experiment can be superimposed

in order to analyze the combined effects of multiple experiments. The numerical values used

for the variables used in the experiments are given in Table 3.1 and the numerical values

for constants are shown in Table 3.2.
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Figure 3.13: The vertical structure of the frictional forcings before taking the normal mode
transform (black) and after taking the normal mode transform (red). The percent error
between the vertical structure of the frictional forcings before and after taking the normal
mode transforms (blue).

Table 3.1: Numerical values of variables used in the experiments.

F0 [10−5m s−2] Q0 [K day−1] a0 [km] b [km] yd [km]

-3.25 or -6.5 3.75 or 7.5 1250 500 ± 500
-3.25 or -6.5 3.75 or 7.5 2500 500 500
-3.25 or -6.5 3.75 or 7.5 5000 500 1000
-3.25 or -6.5 3.75 or 7.5 10000 500 1500

Table 3.2: Numerical values for constants introduced in Chapter 2.

Variable Value [Units] Variable Value [Units]

p0 1010 [hPa] a 6371 [km]
pT 200 [hPa] α 0.25 [day−1]
R 287 [J kg−1 K−1] g 9.8 [m s−2]
N 1.2 × 10−2 [s−1] cp 1004 [J kg−1 K−1]
Ω 7.292 × 10−5 [s−1] T0 300 [K]
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Chapter 4

RESULTS

In this chapter, we take a look at the experiments outlined in Chapter 3. These ex-

periments are insightful for understanding the dynamics near the Intertropical Convergence

Zone (ITCZ). We discern why deep and shallow mean meridional circulations (MMCs) ex-

ist, why they can coexist in the ITCZ, and how the surface wind field near the ITCZ can

affect the subsequent Ekman upwelling or wind stress curl. We also address the formation

of the double ITCZ (DITCZ) in the East Pacific. Note that only half of the zonal domain

is shown in these figures.

4.1 The Annual March of the Intertropical Convergence Zone

The first set of experiments involves moving the forcing of deep diabatic heating away

from the equator, in the northward direction. This acts to simulate the annual march of

the ITCZ in the East Pacific Waliser and Gautier (1993), shown in Fig. 4.1. The East

Pacific ITCZ tends to stay north of the equator for the entire year, with the exception

of the formation of a DITCZ during March and/or April. The DITCZ period is usually

characterized by relatively warmer SSTs, or a weaker “cold tongue” in between the two

ITCZs, where one ITCZ is north of the equator and a second ITCZ is south of the equator.

Recall that the “cold tongue” is a region of relatively cool equatorial SSTs; it intensifies as

the ITCZ travels north of the equator during the year.

In Fig. 4.2 we illustrate the horizontal structure of the steady-state wind and geopo-

tential height anomalies at the surface when the ITCZ is displaced at yd = ± 500, 500,



Figure 4.1: The annual march of the ITCZ over the tropical atmosphere (25◦S, 25◦N).
The vales represent the number of days per month the given grid point was “covered” by
deep convection (subjectively determined) using 17 years of monthly highly reflective could
(HRC) data. From Waliser and Gautier (1993).

59



1000, and 1500 km, without changing the shape of the deep heating (a0 = 1250 km and

b = 500 km are both constant). The most striking feature from this figure is that there

are relatively weak symmetric Rossby gyres when the heating is on the equator, but as the

heating is displaced north of the equator, the Rossby gyre north of the equator strengthens,

dominating the horizontal wind and geopotenial height anomaly fields. Since the ITCZ in

the East Pacific stays north of the equator throughout the entire year, one would think

that these regions will never have Rossby gyres that are symmetric about the equator, but

this may not be true. It is interesting to note that the steady-state surface fields when

yd = ±500 km, look very similar to the steady-state results when a prescribed diabatic

heating is centered on the equator, yd = 0 km, shown in Fig. 4.3. When yd = ±500 we aim

to simulate the DITCZ, prescribing a diabatic heating just to the north and south of the

equator, with each heat source containing Q0 = 3.75 K day−1.

The results suggest that even though the ITCZ is never centered on the equator in

the East Pacific, there still may be symmetric Rossby gyres. That is, when symmetric

ITCZs are north and south of the equator. Of course, in the real world, it is rare to have

both ITCZs be displaced at the same distance away from the equator and have the same

diabatic heating (magnitude and shape).

The take home message from Fig. 4.2 is that the wind and geopotential height

anomaly fields that are forced by a deep diabatic heating in the East Pacific are gener-

ally asymmetric in both the zonal and meridional plane, with a clear bias to the Northern

Hemisphere during most of the year. The general surface features of the wind anomaly field

involve cross-equatorial flow near the heating due to inertia-gravity and mixed Rossby-

gravity waves, strong westerly winds west of the heating due to Rossby waves, and weaker,

more homogeneous easterlies that spread far east of the heating due to Kelvin waves, and

significant horizontal convergence from the inertia-gravity and Kelvin waves. The results

agree very well with previous studies using linearized equatorial β-plane models, such as

Matsuno (1966), Gill (1980), and Schubert and Masarik (2006).
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Figure 4.2: The steady-state horizontal structure forced by a deep heating profile on the
p = 1010 hPa pressure level of the geopotential height anomaly field (m) and the wind
anomaly field (m s−1) with the same zonal half-width a0 = 1250 km and different meridional
displacements: yd = ± 500, 500, 1000, and 1500 km in (a)–(d). The geopotential height
field is shaded and contoured at an interval of 2 m. The solid contours represent positive
values while the dashed contours represent negative values. The zero contour line is in
bold. The maximum magnitude of the geopotential height is 15.457 m. The wind field is
illustrated using vectors, with a maximum wind speed of 6.747 m s−1 (used as a reference
vector).
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Figure 4.3: The steady-state horizontal structure forced by a deep heating profile on the
p = 1010 hPa pressure level of the geopotential height anomaly field (m) and the wind
anomaly field (m s−1) with the same zonal half-width a0 = 1250 km, but different meridional
displacements (yd = ± 500 km - top, yd = 0 km - bottom), and different diabatic heating
rates (Q0 = 3.75 K day−1 - top, Q0 = 7.5 K day−1 - bottom). The geopotential height
field is shaded and contoured at an interval of 0.5 m. The solid contours represent positive
values while the dashed contours represent negative values. The zero contour line is in bold.
The maximum magnitude of the geopotential height anomaly is 3.585 m.
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As the heating is displaced north of the equator, the westerlies west of the heating shift

northward and increase in magnitude, while the easterlies east of the heating experience

very minimal change, as shown in Fig. 4.4, where we have contoured the magnitude of

the difference in the zonal wind anomaly. The Rossby gyre vortex strengthens due to

the increase in westerlies south of the vortex center and an increase in easterlies north

of the vortex center. The strong westerlies help increase the zonal wind stress and the

strengthening of the Rossby gyre vortex helps increase the zonal wind stress curl.

Also, southerlies form in the heated region, and increase as the heating is displaced

farther from the equator. These southerlies are located on the south and southeast side

of the Rossby gyre, aiding in intensifying the vortex. These southerlies continue to shift

northward as the heating is displaced northward (Fig. 4.5). In Fig. 4.5 we have contoured the

magnitude of the difference in the meridional wind anomaly. The increase in southerly flow

near the heating is due to the asymmetric Rossby and inertia-gravity waves and the added

contribution of mixed Rossby gravity waves when the heating is displaced off the equator,

both helping to enhance the cross-equatorial flow (Gill 1980; Schubert and Masarik 2006).

The mixed Rossby-gravity waves have zero contribution to any of the computed fields

when the atmosphere is forced solely by diabatic heating centered on the equator; their

contribution increases as the heating is displaced farther away from the equator.

The Rossby gyre to the north intensifies as the diabatic heating is displaced northward

given the lower geopotential heights as well as larger geopotential height gradients associated

with it. This implies that the surface pressure gradients will increase, agreeing with the

larger surface pressure (and SST) gradients observed in the East Pacific. The surface wind

stress and wind stress curl fields also change quite a bit as the heating is shifted northward.

The ITCZ naturally induces Ekman pumping due to the wind stress curl in the Rossby

gyres that form, but as the heating is shifted northward, the increased vorticity from the

dominant Rossby gyre also forces greater Ekman pumping out of the BL. This Ekman

pumping is due mostly to the meridional gradient of the zonal wind stress, and is located
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Figure 4.4: The magnitude of the difference in steady-state horizontal structure on the
p = 1010 hPa pressure level of the zonal wind anomaly field(m s−1) with the same zonal
half-width a0 = 1250 km between different meridional displacements: Fig. 4.2c - Fig. 4.2b,
Fig. 4.2d - Fig. 4.2c, and Fig. 4.2d - Fig. 4.2a (top to bottom). The zonal wind anomaly
field difference is shaded and contoured at an interval of 1 m s−1. The maximum difference
in zonal wind is 7.368 m s−1.
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Figure 4.5: The magnitude of the difference in steady-state horizontal structure on the
p = 1010 hPa pressure level of the meridional wind field field (m s−1) with the same zonal
half-width a0 = 1250 km between different meridional displacements: Fig. 4.2c - Fig. 4.2b,
Fig. 4.2d - Fig. 4.2c, and Fig. 4.2d - Fig. 4.2a (top to bottom). The meridional wind field
difference is shaded and contoured at an interval of 0.5 m s−1. The maximum difference in
meridional wind is 3.798 m s−1.
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slightly north of the deep diabatic heating center. This topic will be discussed in more

detail in Section 4.3.

4.2 The Deep Hadley and Walker Circulations

We now take a look at the steady-state solutions of the vertical-meridional and

vertical-zonal cross sections when the atmosphere is forced by a deep diabatic heating.

The meridional and zonal velocity anomaly and vertical-pressure velocity fields show both

a deep Hadley Circulation (DHC) and a deep Walker Circulation (DWC) when the horizon-

tal structure is least zonally-elongated (a0 = 1250 km), illustrated in Fig. 4.6 and Fig. 4.7.

There is large rising motion confined near the isolated heat source and weak and more

homogeneous sinking motion away from the heating for both the DHC and DWC.

In Fig. 4.6, when the heating is centered on the equator, there are two cells both west

(xs = −778 km) and east (xs = +778 km) of the heating: one of the two cells is north

of the equator and the other cell is south of the equator, for both the west and east sides.

Even though vertical-meridional circulation cells exist on both the west and east sides of

the heating, there is significant zonal asymmetry. The west side of the heating contains

strong meridional surface convergence near the center of the heating and meridional diver-

gence aloft while the east side of the heating contains weaker meridional surface divergence

and meridional convergence aloft near the center of the heating. The meridional surface

convergence on the west side of the heating is due mainly to the inertia-gravity waves since

the Rossby waves have a small change in meridional velocity in the meridional plane near

the heating (and mixed Rossby-gravity waves have zero contribution when yd = 0 km). The

meridional surface divergence on the east side of the heating is due mainly to the meridional

surface divergence from the Rossby gyres that intrude eastward of the center of the diabatic

heating, exceeding the surface convergence associated with the inertia-gravity waves. Recall

that there are also Kelvin waves on the east side of the heating, but their component of

the meridional velocity anomaly is zero in the equatorial β-plane, therefore they do not
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Figure 4.6: The steady-state vertical-meridional structure forced by deep diabatic heating
at xs = −778 km in (a), xs = +778 km in (b), and xs = 0 km in (c) of the vertical-pressure
velocity field (hPa day−1) and the wind field with the same zonal half-width a0 = 1250 km
and meridional displacement yd = 1000 km. The vertical-pressure velocity field is shaded
and contoured with the same contour specifications as Fig. 4.2, at an interval of 20 hPa
day−1. The maximum magnitude of the vertical-pressure velocity is 97.632 hPa day−1. Note
that in order to draw vectors of the meridional velocity anomalies and the vertical-pressure
velocity we have kept the meridional velocity in m s−1 and converted the vertical-pressure
velocity into Pa s−1, multiplying by 10. Therefore the wind vector units are meaningless.
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Figure 4.7: The steady-state vertical-zonal structure forced by deep diabatic heating at
ys = 600 in (a), ys = 1400 km in (b,) and ys = 1000 km in (c) of the vertical-pressure
velocity field (hPa day−1) and the wind field with the same zonal half-width a0 = 1250 km
and meridional displacement yd = 1000 km. The vertical-pressure velocity field is shaded
and contoured with the same contour specifications as Fig. 4.6. The maximum magnitude of
the vertical-pressure velocity is 97.632 hPa day−1. The same procedure applied in Fig. 4.6
is used for calculating wind vector magnitudes.
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contribute to the meridional convergence in the DHC in our steady-state model.

The DWC is also shown to be quite asymmetric in its corresponding horizontal (zonal)

plane, with larger gradients west of the heating (Fig. 4.7). The strong response on the west

side of the heating is due mainly to the strong westerlies that the Rossby waves produce,

as well as the zonal surface convergence of the inertia-gravity waves. The east side of the

heating also has a DWC, with significant contributions from both the surface zonal flow

and convergence of Kelvin and inertia-gravity waves.

As the deep heating is displaced farther north from the equator, the DHC cell that

crosses the equator becomes more dominant in the meridional wind anomaly field (Fig. 4.8).

The reason behind the increase in meridional wind anomalies can be explained by the

asymmetric Rossby and inertia-gravity waves and the added contribution of mixed Rossby

gravity waves as mentioned before. This means that the strength of the cross-equatorial

deep MMC increases as the ITCZ progresses north of the equator in the East Pacific. The

months of late boreal summer and early boreal fall are when the ITCZ has been observed

to be the farthest away from the equator Fig. 4.2, coincidently when the meridional surface

wind component is largest.

There is negligible change to the DWC as the heating is displaced north of the equator,

therefore their resulting figures will not be shown. As the zonal half width a0 increases, there

is a minimal strengthening to the DHC (Fig. 4.9), but the DWC becomes zonally-confined

near the heating (Fig. 4.10).

When there is a zonally symmetric heating, the Hadley circulation cell that crosses the

equator dominates, which agrees with zonally-symmetric models, such as Hack et al. (1989)

and Hack and Schubert (1990). Essentially, the more zonally symmetric the ITCZ region is,

the more that the DHC prevails as the vertical-horizontal circulation. This does not mean

that the DWC is not present, though. In fact, the zonal winds increase substantially when

the heating is elongated, but the region where this occurs becomes more confined. When the

heating is zonally-elongated the magnitude of the meridional winds and convergence only
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Figure 4.8: The steady-state vertical-meridional structure forced by a deep heating profile
at xs = 0 km of the vertical-pressure velocity field (hPa day−1) and the wind field with
the same zonal half-width a0 = 1250 km at different meridional displacements: yd = ±
500, 500, 1000, and 1500 km in (a)–(d). The vertical-pressure velocity field is shaded and
contoured with the same contour specifications as Fig. 4.6. The maximum magnitude of
the vertical-pressure velocity is 97.402 hPa day−1. The same procedure applied in Fig. 4.6
is used for calculating wind vector magnitudes.
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Figure 4.9: The steady-state vertical-meridional structure at xs = 0 km of the vertical-
pressure velocity field (hPa day−1) and the wind anomaly field at the same meridional
displacement yd = 1000 km with different zonal half-widths: a0 = 1250, 2500, 5000, and
10000 km in (a)–(d). The vertical-pressure velocity field is shaded and contoured with the
same contour specifications as Fig. 4.6. The maximum magnitude of the vertical-pressure
velocity is 96.638 hPa day−1. The same procedure applied in Fig. 4.6 is used for calculating
wind anomaly vector magnitudes.
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Figure 4.10: The steady-state vertical-zonal structure at ys = 1000 km of the vertical-
pressure velocity field (hPa day−1) and the wind anomaly field at the same meridional
displacement yd = 1000 km with different zonal half-widths: a0 = 1250, 2500, 5000, and
10000 km in (a)–(d). The vertical-pressure velocity field is shaded and contoured with the
same contour specifications as Fig. 4.6. The maximum magnitude of the vertical-pressure
velocity is 96.638 hPa day−1. The same procedure applied in Fig. 4.6 is used for calculating
wind anomaly vector magnitudes.
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increase slightly. The ITCZ in the East Pacific has been observed to be zonally-elongated,

especially during the months when the ITCZ is located farthest from the equator (Fig. 4.1).

The case where the deep heating is most zonally-elongated and farthest from the equator

would then have not only the most dominant DHC, but it would have the largest values of

the horizontal wind anomalies.
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4.3 Surface Wind Stress and Ekman Layer Dynamics

When the meteorological fields are forced by a boundary layer (BL) wind stress, the

horizontal structure of the wind and geopotential height fields oppose the original forcing.

This result can be derived by starting with the Boussinesq form of the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.1)

where the independent variables x, y, and z represent the zonal, meridional, and vertical

position and the dependent variables u, v, and w represent the zonal, meridional, and

vertical velocity. Integrating (4.1) from the surface z = 0 to the top of the atmospheric BL

z = Hatm, with the requirement that w = 0 at z = 0, we obtain

w(Hatm) = −

∫ Hatm

0

(

∂uag
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)

dz,

= −
1
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∂
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−
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)

dz,

=
1
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(

∂τy0

∂x
−
∂τx0

∂y

)

.

(4.2)

We have used the non-divergence property of the geostrophic wind on the f -plane, the

steady-state simplified version f -plane derivation of the wind stress curl, and the assumption

that stress vanishes at the top of the atmospheric BL, Hatm. We know that the ageostrophic

mass flux ρatmUatm is to the left of the surface wind stress in the Northern Hemisphere,

according to the vector equation

ρatmUatm =
1

f
k × τ 0, (4.3)

where Uatm = (Uatm, Vatm) and τ 0 = (τx0, τy0). The ITCZ region is generally a region of

high positive relative vorticity, especially in the zonal direction (Fig. 4.11). Therefore, the

winds just to its north are generally easterly and the winds to its south are generally westerly

when the ITCZ is positioned north of the equator. This wind stress is the basic result of the

Rossby wave vortex in the steady-state solutions shown earlier when the ITCZ is displaced

north of the equator, therefore we prescribe this form as our wind stress frictional forcing F .
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Figure 4.11: Mean winds and vorticity in the tropical East Pacific during September 2000-
2007. This data was recorded using Quikscat data. From Mora (2008).
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The horizontal structure of this wind stress contains a large positive wind stress curl at its

center, leading to Ekman layer convergence in the atmospheric BL, and by mass continuity,

an Ekman pumping out of the atmospheric BL. The Ekman pumping has important effects

in and above the atmospheric BL. Ekman pumping compresses the fluid columns above the

BL, in turn generating anticyclonic vorticity, higher pressure (geopotential heights), and

lower temperatures in a presently cyclonic, low pressure, and high temperature region. The

dynamical characteristics associated with this are often referred to as spin down. Regions of

Ekman suction also experience spin down effects since Ekman suction produces a stretching

of fluid columns above the BL, generating cyclonic vorticity in a presently anticyclonic

region.

Recall that the exact form of the frictional forcing, F , is defined by a strong positive

wind stress curl at the center of the forcing, with weaker areas of negative wind stress curl

to its north and south at the surface due to the decay of the zonal wind stress fields. This

setup has another important consideration when the frictional forcing is centered on or near

the equator. When the frictional forcing is centered on the equator, there is a region of

counterclockwise motion centered on the equator. This vortex is not only a cyclonic region;

it is cyclonic north of the equator, and anticyclonic south of the equator. A region where

the wind stress is easterly north of the equator and westerly south of the equator that

decays in the meridional direction leads to cyclonic wind stress curl south of the equator

and anticyclonic wind stress curl north of the equator (i.e., when yd = 0 km, a0 = 1250

km). This result is not shown or discussed in much detail since the ITCZ has not been

observed on the equator in the East Pacific, but the ITCZ can be centered on the equator

in other ocean basins.

Instead, we show the case where the wind stress forcing is due to a diabatic heating

north and south of the equator; the time of the year when a DITCZ is observed in the East

Pacific. When there is diabatic heating north and south of the equator there is one region of

high positive wind stress curl to the north of the equator and one to the south of the equator,
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(i.e., we must take the sum of the cases where yd = −500 km and yd = +500 km). When

a0 = 1250 km, the surface wind field responds with positive vorticity near the equator, with

a local minimum on the equator. There is also weaker negative vorticity poleward of the

regions of positive vorticity at the surface (Fig. 4.12, top panel). The geopotential height

field anomaly responds to the frictional forcing with positive geopotential height anomalies

where there is negative vorticity, and negative geopotential height anomalies where there

is positive vorticity. This confirms that a wind stress curl acts against the mean wind and

geopotential height fields, which should lead to spin down in both the Ekman pumping

and Ekman suction regions. These are spin down effects. The fact that the atmospheric

response opposes this wind stress forcing makes sense since the wind stress is related to

surface friction, which opposes the original flow field.

It is interesting to note that most of the atmospheric response is on the west side of the

forcing and that the response is symmetric, but opposite in magnitude in the meridional

direction when yd = ±500 km. We can show that the response on the west side is due

mostly to the Rossby waves by illustrating the contributions from each equatorial wave

type, shown in Fig. 4.13. In this figure we display the steady-state solution when the

atmosphere is forced by the frictional forcing F when yd = 1500 km and a0 = 1250 km for

all of the waves, and for each individual wave component - Rossby, inertia-gravity, mixed

Rossby-gravity, and Kelvin waves. We confirm that the contribution of the Rossby waves

dominates the horizontal surface fields, mostly because the prescribed frictional forcing

consists of high vorticity wind stress.

When the frictional forcing is displaced slightly north of the equator (yd = 500 km,

a0 = 1250 km), we notice that positive geopotential height anomalies form just south

of the equator on the west side of the forcing, making the response more asymmetric in

the meridional direction than when yd = ± 500 km. This is due to the fact that the

frictional forcing imposes a cyclonic wind stress curl south of the equator as the zonal wind

stress changes sign. The east side of the forcing contains a larger region of weak positive
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Figure 4.12: The steady-state horizontal structure forced by a wind stress curl on the
p = 1010 hPa pressure level of the geopotential height anomaly field (m) and the wind
anomaly field (m s−1) with the same zonal half-width a0 = 1250 km and different meridional
displacements: yd = 0, 500, 1000, and 1500 km (top to bottom). The geopotential height
field is shaded and contoured with the same contour specifications as Fig. 4.2, at an interval
of 0.5 m. The maximum magnitude of the geopotential height anomaly is 4.49 m.
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Figure 4.13: The same as Fig. 4.12, with the corresponding contributions by Rossby waves,
inertia-gravity waves, mixed Rossby-gravity waves, and Kelvin waves in the bottom four
panels. The maximum magnitude of the geopotential height anomaly is 4.54 m.
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geopotential height anomalies, mostly south of the equator.

For the cases when the frictional forcing is centered sufficiently north of the equator

(yd = 1000 and 1500 km, a0 = 1250 km), the surface wind field responds with strong

negative vorticity at the center of the frictional forcing and weaker positive vorticity to the

north and south at the surface (Fig. 4.12, bottom panels). The geopotential height field

responds to the frictional forcing with large positive geopotential height anomalies where

there is strong negative vorticity, and weaker negative geopotential height anomalies to

the north and south of the high geopotential height region. The area south of the main

Ekman pumping region has weaker geopotential height anomalies than the region north of

the Ekman pumping, but it is more zonally asymmetric, with most of the response in and

east of the forcing. As we will discuss in more detail in the next section, this asymmetry

between the Ekman suction regions is due to the concept of Rossby length. The Rossby

length is larger near the Ekman, enhancing horizontal flow fields.

4.4 Shallow Circulations Forced by Ekman Pumping

The region where there is positive wind stress curl forces rising motion, or Ekman

pumping, while the regions of weaker negative wind stress curl just north and south of the

Ekman pumping consist of weaker sinking motion, referred to as Ekman suction. Even

though the negative wind stress curl to the north and the south extend over the same

horizontal distance, the Ekman suction to the north has a larger magnitude and is more

horizontally confined, while the Ekman suction to the south has a smaller magnitude, and

is broader in the meridional direction, crossing the equator.

In Fig. 4.14a and Fig. 4.14b, we illustrate the vertical-meridional cross section with

a meridional slice on the west and east side of the center of the forcing, at xs = ±278 km,

when yd = 1000 km, a0 = 1250 km.

The location of the meridional slice is where the maximum rising motion occurs, which

happens to be on the west side of the forcing. Just like the case where the deep diabatic
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Figure 4.14: The steady-state vertical-meridional structure forced by a wind stress curl
when taking a meridional slice at xs = ±278 km in (a) and (b) of the vertical-pressure
velocity field (hPa day−1) and the wind field with the same zonal half-width a0 = 1250
km and meridional displacement yd = 1100 km (c). The vertical-pressure velocity field is
shaded and contoured with the same contour specifications as Fig. 4.6, at an interval of 0.5
hPa day−1. The maximum magnitude of the vertical-pressure velocity is 3.731 hPa day−1.
The same procedure applied in Fig. 4.6 is used for calculating wind vector magnitudes.

81



heating was our forcing, there is significant zonal asymmetry in the vertical-meridional cross

section. Both sides have rising motion due to the contribution of inertia-gravity waves, but

the east side contains intruding Rossby waves that take away from the surface convergence.

The Ekman pumping/suction theoretical arguments happen to blow up at the equator

since f = βy = 0, so it is unclear what would happen to a source of Ekman suction near

the equator. Although, we know that the inertial stability is very small near the equator.

The inertial stability is included in a parameter called Rossby length (Lℓ =
(

A
C

)1/2
, where

A is the static stability, C is the inertial stability). The Rossby length increases and the

Rossby depth decreases as one approaches the equator. This means that parcels in the

Ekman suction region that crosses the equator are more likely to have relatively smaller

sinking motion and larger horizontal winds while parcels in the Ekman suction region to

the north are more likely to have relatively larger sinking motion and smaller horizontal

winds,as illustrated in Fig. 4.14a and Fig. 4.14b. Therefore, we have confirmed that there

are two SMCs, one shallower and broader SMC that crosses the equator, and the other

deeper and narrower poleward of the ITCZ.

We now would like to investigate the possibility of a shallower vertical-zonal circula-

tion. The left panel of Fig. 4.14c shows the vertical-zonal cross section, where ys = 1100 km,

a0 = 1250 km. There are significant zonal winds at the surface and vertical motion in the

BL near the frictional source, but no return flow. Therefore there is no shallow overturning

circulation in the zonal direction due to our frictional forcing F . One of the main reasons

why we tested this is because past studies, such as Trenberth et al. (2000) and Wu (2003),

have shown that a shallow ”Walker-like” circulation is possible in the vicinity of the ITCZ.

Despite the rising and sinking motion that the frictional forcing produces in the

vertical direction, neither the meridional or zonal winds are large enough to produce any

significant vertical-meridional or vertical-zonal MMCs when the frictional forcing is least

zonally-elongated (a0 = 1250 km).

The frictional forcing must be sufficiently elongated in the zonal direction to notice
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signs of a shallow vertical-meridional overturning circulation. There are some signs of this

shallow vertical-meridional circulation when yd = 1500 km, a0 = 2500 km, but it becomes

much more apparent when a0 = 5000, 10000 km (Fig. 4.15). As the frictional forcing is

Figure 4.15: The steady-state vertical-meridional structure forced by a wind stress curl
when taking a meridional slice at xs = −278,−333,−388, and -444 km of the vertical-
pressure velocity field (hPa day−1) at the same meridional displacement: yd = 1500 km,
and the wind field with the different zonal half-widths a0 = 1250, 2500, 5000, and 10000
km in (a)–(d). The vertical-pressure velocity field is shaded and contoured with the same
contour specifications as Fig. 4.2, at an interval of 1 hPa day−1. The maximum magnitude
of the vertical-pressure velocity is 7.788 hPa day−1. The same procedure applied in Fig. 4.6
is used for calculating wind vector magnitudes.

zonally stretched, the convergence is forced to increase in the meridional direction (and

decrease in the zonal direction), leading to larger meridional convergence at the surface and

divergence at the top of the BL. By the laws of mass continuity, as this Shallow Meridional
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Circulation (SMC) intensifies, so do the Ekman pumping, Ekman suction, and meridional

divergence at the top of the BL. Still, the vertical motion induced by the frictional forcing

is about 10 times smaller than the vertical motion induced by the deep diabatic heating.

Also, the meridional winds are quite weak, being on the order of 1 m s−1 when a0 = 10000

km. The weaker meridional winds are due mainly to the fact that we are working with a

three-dimensional model, and we have prescribed a zonal wind stress forcing that prefers

a response in the zonal wind over the meridional winds. For a zonally symmetric model,

we will have larger meridional winds than in our current model. As for the vetical motion,

the rising motion associated with Ekman pumping, even though small compared to deep

diabatic heating, is still relevant if we think of deep heating in the ITCZ to be variable on

the order of a few days. The ITCZ breaks down, then it forms easterly waves and possibly

tropical cyclones, and finally reforms on the order of days (Hack et al., 1989). Therefore

there are days where the deep heating profile is nonexistent in the ITCZ, but the wind stress

curl remains positive and zonally-elongated in the ITCZ. Therefore, this SMC associated

with wind stress curl is always present.

It is interesting to note that there are SMCs both north and the south of the center of

the positive wind stress curl that develop, with the SMC to the north containing relatively

larger and deeper sinking motion and being more meridionally confined while the SMC

to the south (cross-equatorial) consists of relatively smaller and shallower sinking motion

and is more elongated in the meridional direction, crossing the equator. This owes to the

concepts of Rossby length and Rossby depth that were mentioned before.

The vertical cross section on the west side of the center of the frictional forcing

exhibits the most robust SMC, while the SMC at the center and on the east side of the

frictional forcing show a weaker SMC. This is due mainly to the properties of Rossby waves

that the frictional forcing projects onto. Rossby waves are dominated by their vorticity

properties, which can be related to Ekman pumping and Ekman suction through wind

stress curl. Kelvin waves have smaller vorticity and more divergent properties, leading to
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weaker wind stress curl as seen in smaller values of the vertical pressure velocity. Also,

all of the meteorological fields on the east side of the frictional forcing have much weaker

response, as seen in the horizontal slices shown in (Fig. 4.12).

In the case where there are two localized regions both with positive wind stress

curl north and south of the equator (i.e., when there is a DITCZ present), there are two

shallow MMCs, one north of the equator and the other south of the equator (Fig. 4.16).

The Ekman pumping occurs near the equator, while the Ekman suction is poleward of the

Ekman pumping. There is a relative minimum in vertical motion on the equator due to the

westerly wind stress that the frictional forcing imposes. As mentioned before, the frictional

forcings north and south of the equator must be sufficiently elongated for the meridional

wind anomalies to reverse direction at the top of the atmospheric BL.

When the frictional forcing is centered near the equator (yd = 500 km), the wind

stress field that forces the atmospheric fields does not correspond to only positive wind

stress curl north of the equator and weaker negative wind stress curl away from the positive

wind stress curl (as discussed in last section). Instead, the wind stress field also produces

positive wind stress curl on and just south of the equator since the wind stress south of

the equator becomes more westerly as one approaches the equator from the south (cyclonic

wind stress curl). This atmospheric situation occurs in the East Pacific region in boreal

winter, as the cold tongue weakens. As the ITCZ approaches the equator a DITCZ does

appear in the East Pacific. For a deep heating centered on the equator, it turns out that

the surface winds and geopotential are similar to the case when there is a deep heating just

to the north and south of the equator, or a DITCZ. It is interesting to note that a DITCZ

sometimes forms during this time of the year when the cold tongue is the weakest. As deep

convection in the ITCZ marches equatorward (yd = 1500 → 500 km), the wind stress field

forces a small remote response south of the equator in the form of shallow rising motion due

to Ekman pumping. Whether this weak shallow rising motion can influence the buildup of

convection south of the equator helping form a DITCZ needs to investigated further.
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Figure 4.16: The steady-state vertical-meridional structure forced by a wind stress curl
when taking a meridional slice at xs = ±1779 km of the vertical-pressure velocity field (hPa
day−1) and the wind field with the same zonal half-width a0 = 10000 km at yd = ±500
km. The vertical-pressure velocity field is shaded and contoured with the same contour
specifications as Fig. 4.2, at an interval of 0.5 hPa day−1. The maximum magnitude of the
vertical-pressure velocity is 4.998 hPa day−1. The same procedure applied in Fig. 4.6 is
used for calculating wind vector magnitudes.
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Chapter 5

CONCLUSIONS

We have formulated a simple linear model that can be solved analytically in order to

better understand deep and shallow circulations, and the dynamics near the Intertropical

Convergence Zone (ITCZ) on the equatorial β-plane. The model can be forced by either

deep diabatic heating, shallow diabatic non-precipitating heating, a zonal frictional wind

stress field, or a meridional frictional wind stress field. We aimed to simulate the ITCZ

region of the East Pacific because this region has been observed to have both shallow and

deep vertical-horizontal circulations and convection, and a distinct ITCZ annual march.

The ITCZ remains north of the equator throughout the entire year, except when a double

ITCZ (DITCZ) that forms during the months of March and/or April.

When the diabatic heating forces the atmosphere the steady-state solutions at the

surface are as follows:

1) There are negative geopotential height anomalies in the majority of the domain, especially

near the center of the heating;

2) Rossby waves are located near and to the west of the heating, with large positive vorticity,

large negative geopotential heights, and strong westerly wind anomalies;

3) Kelvin waves are located near and to the east of the heating, with zonal convergence and

negative geopotential height anomalies;

4) Inertia-gravity waves and mixed Rossby-gravity waves are located near the heating center.

Inertia-gravity waves contain large horizontal convergence and mixed Rossby-gravity waves

have large merdional wind anomalies when the heating is displaced off the equator.



As the heating is displaced north of the equator (from yd = ± 500 km to yd =

500, 1000, 1500 km), the Rossby gyre north of the equator intensifies by increasing its

vorticity and by becoming more negative in the geopotential height anomaly field. All of

the waves intensify in the northern hemisphere. The east side of the heating experiences

minor changes when compared to the west side of the heating. Accompanied with these

changes, the zonal and meridional wind anomaly fields change dramatically. The westerlies

associated with the Rossby waves in the gyre north of the equator increase by over 7 m s−1,

and the meridional winds south and southeast of the heating center increase by over 3.5 m

s−1. The enhancement of the westerlies can be mainly attributed to the intensification of

the Rossby gyre, while the increases in the meridional wind anomalies are mainly due to

the increased contribution of mixed Rossby-gravity waves and asymmetric inertia-gravity

waves.

When analyzing the vertical-horizontal structure when the atmosphere is forced by

deep diabatic heating we find that both the deep Hadley (DHC) and deep Walker circu-

lations (DWC) are present. There is a clear horizontal asymmetry for both the DHC and

DWC, as expected when taking the asymmetry in the surface horizontal structure into

consideration.

The vertical-meridional cross sections show that most of the rising motion is con-

fined near the center of the heating with large meridional motions. The west side of the

heating contains strong meridional surface convergence near the center of the heating and

meridional divergence aloft while the east side of the heating contains weaker meridional

surface divergence and meridional convergence aloft near the center of the heating. When

there is a zonally symmetric heating, the Hadley circulation cell that crosses the equator

dominates, which agrees with zonally-symmetric models, such as Hack et al. (1989), Hack

and Schubert (1990).

The vertical-zonal cross sections also show that most of the rising motion is confined

near the center of the heating with two circulation cells on both the west and east sides
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of the heating. The circulation cell on the west side of the heating has larger zonal wind

anomalies than the east side, which makes sense since this side contains enhanced surface

westerlies. Just south of the heating there are also two circulation cells, one on the west

side and the other on the east side of the heating. To the north of the heating, there is

weaker horizontal motion, with only the east side of the heating containing a circulation

cell.

As the heating is displaced farther away from the equator, the meridional wind anoma-

lies increase, along with the increasing contribution of the mixed Rossby-gravity waves.

When the heating is elongated in the zonal direction, the DWC weakens and the DHC

strengthens as the horizontal convergence increases, especially in the meridional direction.

The ITCZ in the real atmosphere is elongated in the zonal direction, therefore the DHC

has a vital role in the general circulation.

The surface wind field that the deep diabatic heating forces leads to a frictional

forcing, with a large positive wind stress curl near the center of the heating. Therefore

we also force the atmosphere with a zonal wind stress frictional forcing. The wind stress

forcing has a region of strong cyclonic wind stress curl with weaker anticyclonic wind stress

curl to its north and south.

The wind stress field must be sufficiently displaced from the equator since the ITCZ

never is centered on the equator in the East Pacific. Its annual march stays north of the

equator except during some years when a DITCZ forms. Therefore, the frictional forcing is

displaced north of the equator in all of the sensitivity runs, except one run, where there are

two frictional forcings: one north and another south of the equator. The idealized frictional

forcing for the DITCZ case are located at the same latitude and have the same amplitude

for simplicity.

When a zonal wind stress curl forces the atmosphere, the steady-state solutions have

the following characteristics:

1) The wind stress curl opposes the original flow field, as expected. This is often referred
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to as spin down in the Ekman layer;

2) The majority of the atmospheric response can be attributed to Rossby waves, while the

rest of the wave spectrum has a small contributing to the steady-state solution;

3) The wind stress curl imposes Ekman pumping where there was cyclonic wind stress curl,

and Ekman suction where there was anticyclonic wind stress curl in the lower atmosphere,

or boundary layer;

4) The vertical motion, for both Ekman pumping and Ekman suction, increases as the

frictional forcing becomes more zonally-elongated;

5) Two shallow circulation cells are forced by the Ekman pumping, with the cross equatorial

shallow circulation cell being broader in the meridional direction and shallower due to the

large Rossby length near the equator.

Since the vertical motion is calculated using the vertical pressure-velocity, the mass

transport also increases as the frictional forcing becomes more zonally-elongated. Another

interesting result arises: the meridional wind anomalies experience minor changes when the

wind stress curl is zonally-elongated. This is quite different from the atmospheric response

to a zonally-elongated diabatic heating, where the mixed Rossby-gravity wave helps enhance

the meridional wind to significantly larger values. Instead, the zonal wind anomalies increase

due to the projection of the Rossby waves onto the wind stress curl. This is mainly because

we have a three-dimensional model that prefers to force the zonal wind field when forced by

a zonal wind stress curl. It would be interesting to see what a zonally-symmetric model’s

response to a zonal frictional forcing would be. In this case, we would analyze the mass flux

using a more convenient parameter than the vertical pressure-velocity. We would instead

use the streamfunction.

The original frictional forcing has both cyclonic and anticyclonic wind stress curl, but

despite the fact that the anticyclonic wind stress curl regions have the same magnitude, the

resulting magnitudes of Ekman suction are different. This can be explained by thinking

about the concepts of Rossby length and Rossby depth. The Ekman suction region to the

90



north of the center of the frictional forcing has larger vertical motion and is narrower in

the meridional direction than the Ekman suction region south of the center of the frictional

forcing. The Rossby length increases as one approaches the equator because f → 0, therefore

the Ekman suction region to the north will have a smaller Rossby length, and a larger Rossby

depth.

Despite the importance of the wind stress curl on the vertical pressure-velocity, the

values we have calculated for our experiments involving wind stress curl are quite small when

compared to the vertical motion imposed from a deep diabatic heating. In the ITCZ, there

are also regions where convection is shallower, and these regions may have more intense

SMC cells, depending on their vertical heating profile and other characteristics. These

regions may also be affected by the wind stress curl. How they are affected is still unknown

and a possible future research topic.

We also introduced a shallow diabatic heating as a forcing in our methodology, but

the vertical structure of this forcing corresponds to non-precipitating clouds with a strong

trade-wind inversion. The regions with this sort of vertical profile are located everywhere

outside of the ITCZ region, therefore investigating their response is not as important for

this particular study. However, a future model can use this diabatic heating profile.

For a future model, we propose there be a tropical region where diabatic heating in

the ITCZ is prescribed to initially be either shallow precipitating or deep (bottom or top

heavy), with the region outside of the ITCZ containing shallow non-precipitating heating.

Sensitivity experiments where the wind stress and sea surface temperature (SST) fields can

both be the initial forcing can be carried out. Therefore, the model solutions will have three

main forcings: wind stress, SSTs, and diabatic heating. The linearized, equatorial β-plane

transient model we have used in this study may be used, as well as a nonlinear version (with

the addition of advection).

This model we have proposed is more complex, but still not much more complex than

the model used in this study, and might gain some insight into wind stress, SSTs, diabatic
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heating in the tropics, and deep verses shallow MMCs. Once we have a better grasp of

these fundamental processes, we can improve our understanding of the general circulation

and climate of our atmosphere.
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Appendix A

DERIVATION FROM THE ORIGINAL PRIMITIVE EQUATIONS IN

CARTESIAN COORDINATES

We begin with the quasi-static primitive equations on the equatorial β-plane in carte-

sian coordinates,

Du

Dt
− βyv +

1

ρ

∂p

∂x
= F, (A.1)

Dv

Dt
+ βyu+

1

ρ

∂p

∂y
= G, (A.2)

∂p

∂z
+ ρg = 0, (A.3)

∂ρ

∂t
+ ∇ · (ρV) = 0, (A.4)

DT

Dt
+

1

ρcp
ω =

Q

cp
. (A.5)

The first two equations (A.1) and (A.2) are the zonal and meridional momentum equations,

respectively, (A.3) is the hydrostatic equation, (A.4) is the mass continuity equation, and

(A.5) is the thermodynamic energy equation. We now define a new vertical coordinate,

z∗ = H ln(p0/p), therefore p(z∗) = p0e
−z∗/H , and the hydrostatic equation can be rewritten

as

∂φ

∂z∗
=
RT

H
, (A.6)

where φ = gz, and we have used the ideal gas law p = ρRT to simplify further. We can

also use the definition of the scale height H = RT0/g to arrive at

∂φ

∂z∗
=

g

T0
T. (A.7)



This is the form of the hydrostatic equation in our new z∗ vertical coordinate system. It

can also be shown that

1

ρ
∇zp = ∇z∗φ, (A.8)

where ∇|z, ∇|z∗ are the horizontal gradient operators. Now we can rewrite the horizontal

momentum equations (A.1) and (A.2) as

Du

Dt
− βyv +

∂φ

∂x
= F − αu, (A.9)

Dv

Dt
+ βyu+

∂φ

∂y
= G− αv, (A.10)

which are their form in our new z∗ vertical coordinate system. We have added a linear

dissipation term to the horizontal frictional forcing (e.g. −αu) terms F and G, often

referred to as Rayleigh frictional terms. Now we aim to write the mass continuity equation

in our new coordinate system. It is convenient to write (A.4) in pressure coordinates

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0, (A.11)

where

ω = −
p

H

Dz∗

Dt
= −

p

H
w∗. (A.12)

We can rewrite ∂ω/∂p in terms of w∗

∂ω

∂p
= −

H

p

∂ω

∂z∗
=
∂w∗

∂z∗
−
w∗

H
. (A.13)

Here is the form of the mass continuity equation in our new z∗ vertical coordinate system

∂u

∂x
+
∂v

∂y
+
∂w∗

∂z∗
−
w∗

H
= 0, (A.14)

We have yet to convert the thermodynamic equation to our new coordinate system. We

first use (A.12) and H = RT0/g, simplifying to (A.5)

DT

Dt
+

g

T0

T

cp
w∗ =

Q

cp
. (A.15)

If we multiply (A.15) by R/H and use κ = R/cp, we obtain

g

T0

DT

Dt
+

g

T0

κT

H
w∗ =

g

T0

Q

cp
. (A.16)
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We shall now introduce the Brünt Vaisala frequency

N2 =
g

T0

(

dT̄

dz∗
+
κT̄

H

)

, (A.17)

where N2 is computed from a basic state temperature profile, T̄ (z). Now our thermody-

namic equation in the z∗ coordinate system is

DT

Dt
+
T0

g
N2w∗ =

Q

cp
− αT, (A.18)

where we have added a linear dissipation term −αT often referred to as a Newtonian cooling

term.

Now we have all of our primitive equations with z∗ as our vertical coordinate (A.7,

A.9, A.10, A.14, A.18). We now drop the * from all of the equations and linearize the

equations about a basic resting state, thereby arriving at

∂u

∂t
− βyv +

∂φ

∂x
= F − αu, (A.19)

∂v

∂t
+ βyu+

∂φ

∂y
= G− αv, (A.20)

∂φ

∂z
=

g

T0
T, (A.21)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
−
w

H
= 0, (A.22)

∂T

∂t
+
T0N

2

g
w =

Q

cp
− αT, (A.23)

which are the linearized primitive equations on the equatorial β-plane used in Chapter 2.

95



Appendix B

VERTICAL MODE TRANSFORM FOR CASE 3 WHEN ZT = ZCRIT

Case 3 occurs when µ2 = λ2 = 0, c = 4H2N2 = 210.857 m s−1. The second ordinary

differential equation and boundary conditions that need to be solved are

dΨ

dz
= 0, (B.1)

dΨ

dz
+

1

2H
Ψ = 0 at z = zT , (B.2)

dΨ

dz
+

(

1

2H
−
N2

g

)

Ψ = 0 at z = 0. (B.3)

The linear solution to this set of equations is

Ψ(z) = Az +B. (B.4)

Now we must solve for both A and B. We use the boundary conditions

A+
1

2H
(Az +B) = 0 at z = zT , (B.5)

A+

(

1

2H
−
N2

g

)

B = A+ γB = 0 at z = 0, (B.6)

where γ = 1
2H − N2

g . Using B.6 we obtain

Ψ(z) = B (1 − γz) . (B.7)

In order for a nontrivial solution to be obtained from this homogeneous linear system

of equations one must solve for zT when the determinant of the matrix C equals zero, where

C =







zT

2H + 1 1
2H

1 γ






. (B.8)



We find that zT = c2/2Hgγ, therefore we call the top height as zcrit. We realize that this

case only needs to be used when the atmosphere’s top height zT equals zcrit. Our derivation

is only for completeness. We have yet to solve for B, and we use properties (ii) and (iii)

from Chapter 2. We normalize Ψ(z) so that

∫ zT

0
Zℓ′(z)Zℓ(z)e

−z/Hdz =



















1 ℓ′ = ℓ,

0 ℓ′ 6= ℓ,

(B.9)

where Zℓ(z) = NℓΦℓ(z)e
z/2H . Since there is only one mode for this case, integrating

∫ zT

0 Z(z)Zz)e−z/Hdz = 1, always. We use this to arrive at

N = B =

{

zcrit

[

1 − γzcrit +
(γzcrit)

2

3

]}− 1

2

, (B.10)

therefore

Ψ(z) = N (1 − γz) when zT = zcrit. (B.11)
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Appendix C

SKEW-HERMITIAN PROPERTY OF L FOR THE EQUATORIAL β-PLANE

Consider the matrix operator

L =















0 −βy im/a

βy 0 ∂/∂y

c2ℓ im/a c2ℓ∂/∂y 0















, (C.1)

and the inner product of any two vectors f(y) and g(y)

(f ,g) =

∞
∫

−∞

(f1g
∗
1 + f2g

∗
2 +

1

c2ℓ
f3g

∗
3)dy, (C.2)

where * denotes the complex conjugate. We want to prove that the matrix operator L is

skew-Hermitian with respect to the inner product (C.2) first. Skew-Hermitian means that

L† = −L, where L†, the adjoint of L, is defined by

(Lf ,g) =
(

f ,L†g
)

. (C.3)

Let’s first figure out the form of L†. We first note that

Lf =















0 −βy im/a

βy 0 ∂/∂y

c2ℓ im/a c2ℓ∂/∂y 0





























f1

f2

f3















=















−βyf2 + imf3/a

βyf1 + ∂f3/∂y

c2ℓ imf1/a+ c2ℓ∂f2/∂y















. (C.4)

Then

(Lf ,g) =

∞
∫

−∞

[(

−βyf2 +
1

c2ℓ

im

a
f3

)

g∗1 +

(

βyf1 +
1

c2ℓ

∂f3

∂y

)

g∗2 +

(

im

a
f1 +

∂f2

∂y

)

g∗3

]

dy.

(C.5)



After integrating the two derivative terms by parts, applying the boundary conditions, and

rearranging, we obtain

(Lf ,g) =

∞
∫

−∞

[

f1

(

βyg2 −
im

a
g3

)∗

+ f2

(

−βyg1 −
∂g3
∂y

)∗

+
f3

c2ℓ

(

−
im

a
g1 −

∂g2
∂y

)∗]

dy.

(C.6)

By the definition (C.3), the right hand side of (C.6) is
(

f ,L†g
)

, so that

L† =















0 βy −im/a

−βy 0 −∂/∂y

−c2ℓ im/a −c2ℓ∂/∂y 0















. (C.7)

Since the comparison of (C.7) with (C.1) yields L† = −L, we have proved that L is skew-

Hermitian with respect to the inner product (C.2).

We now prove that the eigenfunctions of L are orthogonal and that the eigenvalues

of L are pure imaginary. Let Kℓmnr(ŷℓ) and Kℓ′m′n′r′(ŷℓ) represent two eigenfunctions of

L, i.e.,

LKℓmnr + iνℓmnrKℓmnr = 0, (C.8)

LKℓ′m′n′r′ + iνℓ′m′n′r′Kℓ′m′n′r′ = 0. (C.9)

Taking the inner product of (C.8) with Kℓ′m′n′r′(ŷℓ), and taking the inner product of

Kℓmnr(ŷℓ) with (C.9), we obtain

(LKℓmnr,Kℓ′m′n′r′) + (iνℓmnrKℓmnr,Kℓ′m′n′r′) = 0, (C.10)

(Kℓmnr,LKℓ′m′n′r′) + (Kℓmnr, iνℓ′m′n′r′Kℓ′m′n′r′) = 0. (C.11)

Using the skew-Hermitian property of L, (C.10) and (C.11) become

− (Kℓmnr,LKℓ′m′n′r′) + iνℓmnr (Kℓmnr,Kℓ′m′n′r′) = 0, (C.12)

(Kℓmnr,LKℓ′m′n′r′) − iν∗ℓ′m′n′r′ (Kℓmnr,Kℓ′m′n′r′) = 0. (C.13)

The sum of (C.12) and (C.13) yields

(νℓmnr − ν∗ℓ′m′n′r′) (Kℓmnr,Kℓ′m′n′r′) = 0. (C.14)

99



If ℓ = ℓ′, m = m′, n = n′, and r = r′, then (Kℓmnr,Kℓmnr) 6= 0 and we conclude from (C.14)

that νℓmnr = ν∗ℓmnr, i.e., νℓmnr is a pure real number, or, equivalently, the eigenvalue iνℓmnr

is pure imaginary. If νℓmnr 6= νℓ′m′n′r′ , we conclude from (C.14) that (Kℓmnr,Kℓ′m′n′r′) = 0,

i.e., the eigenfunctions corresponding to distinct eigenvalues are orthogonal. If the eigen-

functions are appropriately normalized we then obtain the orthonormality relation

(Kℓmnr(ŷℓ),Kℓ′m′n′r′(ŷℓ)) =



















1 if (ℓ′m′n′r′) = (ℓmnr)

0 if (ℓ′m′n′r′) 6= (ℓmnr)

. (C.15)

We can expand ŵ(y, t) in a series of the basis functions Kℓmnrŷℓ, i.e.,

ŵ(y, t) =
∑

ℓmnr

ŵℓmnr(t)Kℓmnr(ŷℓ). (C.16)

This can be considered a generalization of the familiar Fourier series, with the scalar coef-

ficients ŵℓmnr(t) being the analog of the Fourier coefficients and the vector basis functions

Kℓmnr(ŷℓ) being the analog of the Fourier basis functions (sines and cosines). Recall that

all transforms come in pairs, e.g., the Fourier series involving a sum and the formula for

the Fourier coefficients, involving an integral. Thus, (C.16) must have a companion, i.e.,

an integral formula to compute the coefficient ŵℓmnr(t) from ŵ(y, t). We can obtain this

companion formula from (C.16) and the orthonormality relation (C.15) as follows. Take

the inner product of (C.15) with Kℓ′m′n′r′(ŷℓ) to obtain

(ŵ(y, t),Kℓ′m′n′r′(ŷℓ)) =
∑

ℓmnr

ŵℓmnr(t) (Kℓmnrŷℓ,Kℓ′m′n′r′ ŷℓ) = ŵℓ′m′n′r′(t). (C.17)

From the first and last parts of (C.17), we obtain

ŵℓmnr(t) = (ŵ(y, t),Kℓmnr(ŷℓ)) . (C.18)

Equations (C.16) and (C.18) form a transform pair.

Now consider the computation of the normalization factor for the eigenfunctions of
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the operator L. Consider first the eigenfunction Kℓmnr(ŷℓ) for the n = −1 case

Kℓmnr(ŷℓ) = Aℓmnre
− 1

2
haty2

ℓ















1

0

cℓ















.

Using the definition of inner product (C.2) we have

(Kℓmnr(ŷℓ),Kℓmnr(ŷℓ)) = 2|Aℓmnr|
2

∫ ∞

−∞

e−ŷ2
ℓ dŷℓ,

where |Aℓmnr|
2 represents the modulus square of the normalization constant. For normaliza-

tion we want (Kℓmnr(ŷℓ),Kℓmnr(ŷℓ)) to be unity. The value of the integral of e−ŷ2
ℓ between

±∞ is equal to π
1

2 , so the normalization constant Aℓmnr is

Aℓmnr = 2−
1

2π−
1

4 (C.19)

for the case n = −1.

For the general case n ≥ 0 we have to do a little more work. First we need to

find a result involving the integral of two Hermite polynomials. Consider the functions

Yn = e−
1

2
y2

Hn(y) and Yn′ = e−
1

2
y2

Hn′(y). These satisfy

d2Yn

dy2
+ (2n+ 1 − y2)Yn = 0,

d2Yn′

dy2
+ (2n′ + 1 − y2)Yn′ = 0.

Multiplying the first equation by Yn′ and the second one by Yn and subtracting one from

the other, we obtain

d

dy

(

Yn′

dYn

dy
− Yn

dYn′

dy

)

+ 2(n− n′)YnYn′ = 0.

If we integrate this over the whole domain, the boundary terms vanish and we’re left with

2(n− n′)

∫ ∞

−∞

YnYn′dy = 2(n− n′)

∫ ∞

−∞

e−y2

Hn(y)Hn′(y)dy = 0.
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When n 6= n′ the integral must vanish, while for n = n′ the value is a finite number which

depends on n, so that

∫ ∞

−∞

e−y2

Hn(y)Hn′(y)dy =



















π
1

2 2nn! if n = n′

0 if n 6= n′.

(C.20)

Now we are ready to compute the normalization factor for the general n ≥ 0. For

n ≥ 0 the eigenfunction Kℓmnr(ŷℓ) is given by

Kℓmnr(ŷℓ) =

Aℓmnr















ǫℓ
1

4

[

(

n+1
2

)
1

2

(

ǫℓ
1

2 ν̂ℓmnr +m
)

Hn+1(ŷℓ) +
(

n
2

) 1

2

(

ǫℓ
1

2 ν̂ℓmnr −m
)

Hn−1(ŷℓ)
]

−i
(

ǫℓν̂
2
ℓmnr −m2

)

Hn(ŷℓ)

cℓǫℓ
1

4

[

(

n+1
2

)
1

2

(

ǫℓ
1

2 ν̂ℓmnr +m
)

Hn+1(ŷℓ) −
(

n
2

) 1

2

(

ǫℓ
1

2 ν̂ℓmnr −m
)

Hn−1(ŷℓ)
]















.

If we take the inner product of Kℓmnr(y) with itself, and apply (C.20), we have

(

Kℓmnr(ŷℓ),Kℓmnr(ŷℓ)

)

=

|Aℓmnr|
2

∫ ∞

−∞

e−ŷ2
ℓ

[

− ǫ
1/2
ℓ (n+ 1)

(

ǫ
1/2
ℓ ν̂ℓmnr +m

)2
(π1/22n+1(n+ 1)!)−1Hn+1(ŷℓ)Hn+1(ŷℓ)

+
(

ǫℓν̂
2
ℓmnr −m2

)2
(

π1/22n(n)!
)−1

Hn(ŷℓ)Hn(ŷℓ)

− ǫ
1/2
ℓ n

(

ǫ
1/2
ℓ ν̂ℓmnr −m

)2 (

π1/22n−1(n− 1)!
)−1

Hn−1(ŷℓ)Hn−1(ŷℓ)
]

dŷℓ =

|Aℓmnr|
2
[

− ǫ
1/2
ℓ (n+ 1)

(

ǫ
1/2
ℓ ν̂ℓmnr +m

)

)2 + n
(

ǫ
1/2
ℓ ν̂ℓmnr −m

)2
− ǫ

1/2
ℓ (ν̂2

ℓmnr −m2)2
]

.

Since we want the inner product (Kℓmnr(ŷℓ),Kℓmnr(ŷℓ) to equal unity, Aℓmnr must satisfy

Aℓmnr =

[

ǫ
1

2

ℓ (n+ 1)

(

ǫ
1

2

ℓ νℓmnr +m

)2

+ ǫ
1

2

ℓ n

(

ǫ
1

2

ℓ νℓmnr −m

)2

+
(

ǫℓν
2
ℓmnr −m2

)2

]− 1

2

.

(C.21)
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In summary, combining the results (C.19) and (C.21), we have

Aℓmnr =






















[

ǫ
1

2

ℓ (n+ 1)

(

ǫ
1

2

ℓ νℓmnr +m

)2

+ ǫ
1

2

ℓ n

(

ǫ
1

2

ℓ νℓmnr −m

)2

+
(

ǫℓν
2
ℓmnr −m2

)2

]− 1

2

, n ≥ 0

2−
1

2π−
1
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