
THESIS

TOPOLOGY INFERENCE OF SMART FABRIC GRIDS - A VIRTUAL COORDINATE

BASED APPROACH

Submitted by

Gayatri Arun Pendharkar

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2020

Master’s Committee:

Advisor: Anura P. Jayasumana

Anthony A. Maciejewski
Yashwant K. Malaiya

Copyright by Gayatri A. Pendharkar 2020

All Rights Reserved

ABSTRACT

TOPOLOGY INFERENCE OF SMART FABRIC GRIDS - A VIRTUAL COORDINATE

BASED APPROACH

Driven by increasing potency and decreasing cost/size of the electronic devices capable

of sensing, actuating, processing and wirelessly communicating, the Internet of Things (IoT)

is expanding into manufacturing plants, complex structures, and harsh environments with

the potential to impact the way we live and work. Subnets of simple devices ranging from

smart RFIDs to tiny sensors/actuators deployed in massive numbers forming complex 2-D

surfaces, manifolds and complex 3-D physical spaces and fabrics will be a key constituent

of this infrastructure. Smart Fabrics (SFs) are emerging with embedded IoT devices that

have the ability to do things that traditional fabrics cannot, including sensing, storing,

communicating, transforming data, and harvesting and conducting energy. These SFs are

expected to have a wide range of applications in the near future in health monitoring, space

stations, commercial building rooftops and more.

With this innovative Smart Fabric technology at hand, there is a need to create algorithms

for programming the smart nodes to facilitate communication, monitoring, and data routing

within the fabric. Automatically detecting the location, shape, and other such physical

characteristics will be essential but without resorting to localization techniques such as Global

Positioning System (GPS), the size and cost of which may not be acceptable for many large-

scale applications. Measuring the physical distances and obtaining geographical coordinates

becomes infeasible for many IoT networks, particularly those deployed in harsh and complex

environments. In SFs, the proximity between the nodes makes it impossible to deploy

technology like GPS or Received Signal Strength Indicator (RSSI) for distance estimation.

This thesis devises a Virtual Coordinate (VC) based method to identify the node positions

ii

and infer the shape of SFs with embedded grids of IoT devices.

In various applications, we expect the nodes to communicate through randomly shaped

fabrics in the presence of oddly-shaped holes. The geometry of node placement, the shape

of the fabric, and dimensionality affect the identification, shape determination, and routing

algorithms. The objective of this research is to infer the shape of fabric, holes, and other non-

operational parts of the fabric with different grid placements. With the ability to construct

the topology, efficient data routing can be achieved, damaged regions of fabric could be

identified, and in general, the shape could be inferred for SFs with a wide range of sizes.

Clothing and health monitoring being two essential segments of living, SFs that combines

both would be a success in the textile market. SFs can be synthesized in space stations as

compact sensing devices, assist in patient health monitoring, and also bring a spark to the

showbiz.

Identifying the position of different nodes/devices within SF grids is essential for appli-

cations and networking functions. We study and devise strategic methods for localization of

SFs with rectangular grid placement of nodes using the VC approach, a viable alternative

to geographical coordinates. In our system, VCs are computed using the hop distances to

the anchors. For a full grid (no missing nodes), each grid node has predictable unique VCs.

However, a SF grid may have holes/voids/obstacles that cause perturbations and distortion

in VC pattern and may even result in non-unique VCs. Our shape inference method adap-

tively selects anchors from already localized nodes to compute VCs with the least amount of

perturbation. We evaluate the proposed algorithm to simulate SF grids with varied sizes (i.e.

number of nodes) and the number of voids. For each scenario, e.g. a SF grid with length X

breadth dimensions - 19X19, 10% missing nodes, and 3 voids, we generate 60 samples of the

grid with random possible placements and sizes of voids. Then, the localization algorithm is

executed on these grids for all different scenarios. The final results measure the percentages

of localized nodes as well as the total number of elected anchors required for the localization.

We also investigate SF grids with triangular node placement and localization methods for

iii

the same. Additionally, parallelization techniques are implemented using an Message Parsing

Interface (MPI) mechanism to run the simulations for rectangular and triangular grid SFs

with efficient use of time and resources. To summarize, an algorithm was presented for the

detection of voids in smart fabrics with embedded sensor nodes. It identifies the minimum

set of node perturbations to be consistent with VCs and adaptively selects anchors to reduce

uncertainty.

iv

ACKNOWLEDGEMENTS

As I approach the successful completion of my Master’s Thesis, I experience a lot of

mixed emotions. I fall short of words when I say that this journey would not have been

possible without the constant support and guidance of my advisor, Dr. Anura Jayasumana.

He has been the most important person in shaping my work and my personality. He helped

me see my abilities in times when I lost faith and always had confidence in the paths that

I pursued through this process of personal change and development. I am deeply grateful

to have found an opportunity to work with an amazing mentor, insightful researcher, and a

person with a beautiful soul.

I sincerely thank my committee members, Dr. Anthony Maciejewski for his valuable

teachings and insights in the field of Robotics and Dr. Yashwant Malaiya for his teachings

in Fault-Tolerant Computing. They helped me learn and explore various domains outside

my research topic. I would also like to thank Dr. Jade Morton for introducing me to

the innovative field of Global Navigation Satellite Systems and Dr. Ann Hess for helping

me understand the importance and applicability of statistical analysis in my research. My

deepest gratitude to my colleagues; Gunjan Mahindre who has been a mentor and a great

friend, Savini Samarasinghe, Shashika R. Muramudalige, Sridhar Ramasamy, and Aly Boud.

Thank you so much for being patient with my doubts, questions and giving repeated reviews

and feedback on my work. All these people have contributed to the foundations of my career

and future.

A lot of friends in my life have made this journey so much easier, joyful, and worth

the time, my RamFam, my home away from home. I will always cherish all the vacations,

birthdays, parties, and so many other times that I spent with them and look forward to

more. Difficult times make it hard to look at the positive side of things and see the light

at the end of the tunnel. I am so thankful to have Yashad Samant by my side during these

times providing love, support, and help in seeing my worth. Last but not the least, my family

v

is the one who made me the person I am today. They gave me the strength to keep going

and fighting. My grandpa, Baburao Pendharkar always had a smile on his face irrespective

of him missing me dearly which motivated me to complete my work righteously. My father,

Arun taught me that nothing comes easy and there is no limit to what you can achieve with

hard work. My mother, Jayashree set an amazing example for me to look up to. She has

relentlessly worked all her life; juggling the family and her career to give us a wonderful

upbringing. My little sister, Rutuja has been my greatest critique. She has been the most

understanding, non-judgemental, and caring person whom I could rely on to look after my

family while I worked here care-free.

vi

DEDICATION

To my Grandparents, Baburao and Vimal; my parents, Arun and Jayashree; and my sister,

Rutuja

vii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . v

DEDICATION . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

1 INTRODUCTION . 1

1.1 Virtual Coordinate System for Smart Fabrics 3

1.2 Outline . 5

2 LITERATURE REVIEW . 6

2.1 Smart Fabrics . 6

2.2 Virtual Coordinate Systems . 8

2.3 Anchor Selection and Anchor Placement . 11

2.3.1 Random Anchor Placement . 11

2.3.2 Single Mobile based anchor . 12

2.3.3 Extreme Node Search (ENS) . 13

3 PROBLEM STATEMENT AND CONTRIBUTION 15

3.1 Problem Statement . 16

viii

3.2 Contribution . 17

4 SMART FABRIC SIMULATOR . 19

4.1 Introduction . 19

4.2 Simulator Design . 20

4.2.1 Grid Simulator . 21

4.2.2 Utility Modules . 23

4.2.3 Helper Modules . 25

4.3 Results . 29

5 ADAPTIVE LOCALIZATION IN SMART FABRICS WITH RECTAN-

GULAR GRID . 32

5.1 Location vs. Virtual Coordinates . 32

5.2 Adaptive Localization Algorithm . 35

5.2.1 Delta Minimization . 36

5.2.2 Neighbor Verification . 40

5.2.3 Localization using Anchor addition & Coordinate Optimization . . . 43

5.3 Results & Analysis . 46

6 SMART FABRICS WITH TRIANGULAR GRIDS 53

6.1 Introduction . 53

6.2 Triangular Smart Fabric Grids . 54

ix

6.3 Localization for Triangular Smart Fabric Grids 55

6.3.1 Polygon shaped Smart Fabric Grids 56

6.3.2 Angular Strip shaped Smart Fabric Grids 59

7 PARALLELIZATION . 64

7.1 Introduction . 64

7.2 Parallel Programming Approaches . 65

7.2.1 Multiprocessing . 65

7.2.2 Message Parsing Interface (MPI) . 68

7.3 Analysis of Parallelization Techniques . 73

BIBLIOGRAPHY . 76

APPENDIX A — LOCALIZATION AND ANCHOR DATA 87

APPENDIX B — SOURCE CODE . 91

APPENDIX C — A SURVEY OF VIRTUAL COORDINATE SYSTEMS119

x

LIST OF TABLES

2.1 List of Abbreviations . 6

6.1 Notations used for Chapter 6 . 54

7.1 Notations use to define parallelization equations 73

7.2 Analysis data for 20 samples (hours) - Serial vs. Pool vs. MPI Programming for

grid simulator . 74

A.1 Localization and Anchor data for SF Grid with size 19X19 (60 samples) 88

A.2 Localization and Anchor data for SF Grid with size 24X24 (60 samples) 88

A.3 Localization and Anchor data for SF Grid with size 29X29 (60 samples) 89

A.4 Localization and Anchor data for SF Grid with size 34X34 (60 samples) 89

A.5 Localization and Anchor data for SF Grid with size 39X39 (60 samples) 90

C.1 Comparison of virtual coordinate systems embedding a graph/tree topology (cat-

egory A) . 136

C.2 Comparison table for decentralized virtual coordinate systems (category B) . . . 139

C.3 Comparison table for virtual coordinate systems using network measurement pa-

rameters (category C + category D) . 142

xi

LIST OF FIGURES

1.1 Smart Fabric in sportswear [1] . 2

1.2 Virtual Coordinate System (VCS) with two anchors Aj and Ak for a rectangular

grid . 4

2.1 Random election of anchors in a network with 496 nodes 12

2.2 Single Mobile based Anchor . 12

2.3 Anchor Placement using Extreme Node Search (ENS) algorithm [2] 13

3.1 Virtual Coordinate System with grid patch or void 16

4.1 Rectangular-shaped Smart Fabric Grid . 19

4.2 Sample Smart Fabric Grids with dimensions (a) (9X5) and (b) (7X10) 20

4.3 Adjacency Matrix Generation . 24

4.4 Smart Fabric Grid with Voids that have a shared border 26

4.5 Breadth First Search Graph Traversal . 28

4.6 Expansion & Creation of new voids . 29

4.7 29X29 Smart Fabric Grids with (a) 10% missing nodes with 1 void, (b) 30%

missing nodes with 2 voids, (c) 10% missing nodes with 3 voids, (d) 30% missing

nodes with 4 voids, (e) 10% missing nodes with 5 voids, (f) 30% missing nodes

with 6 voids . 30

4.8 59X59 Smart Fabric Grids with (a) 50% missing nodes with 5 voids, (b) 70%

missing nodes with 6 voids, (c) 50% missing nodes with 7 voids, (d) 70% missing

nodes with 8 voids, (e) 50% missing nodes with 9 voids, (f) 70% missing nodes

with 10 voids . 31

5.1 Addressing in a Complete Network . 33

5.2 Addressing in a network with missing nodes . 35

5.3 Voids affecting VCS path . 36

5.4 Bound calculation (a) Case I (b) Case II (c) Case III 39

xii

5.5 Identification of Neighbors for a node . 41

5.6 Weight computation based on elected Anchors 46

5.7 (a) Smart Fabric Grid with 320 nodes and 1 void, (b) Smart Fabric Grid with

960 nodes and 3 voids, (c) Smart Fabric Grid with 1012 nodes and 4 voids, (d)

Smart Fabric Grid with 1440 nodes and 5 voids, (e) Number of adaptive anchor

addition steps vs % of localized nodes for (a), (b), (c), (d) 47

5.8 Localization and Anchor data for 19X19 SF Grid for 60 samples 50

5.9 Localization and Anchor data for 24X24 SF Grid for 60 samples 50

5.10 Localization and Anchor data for 29X29 SF Grid for 60 samples 51

5.11 Localization and Anchor data for 34X34 SF Grid for 60 samples 51

5.12 Localization and Anchor data for 39X39 SF Grid for 60 samples 52

6.1 Triangular Smart Fabric Grid placement . 53

6.2 Triangular Smart Fabric Grid sectioning . 55

6.3 (a) Equilateral Triangle SF Grid (6 units) and (b) Trapezoidal SF Grid (13 X 7

X 6 units) . 56

6.4 Rectangular SF Grid (16 X 10 units) . 58

6.5 (a) Acute-angle Strip of Smart Fabric (12 X 6 units) and (b) Obtuse-angle strip

of Smart Fabric (22 X 8 units) . 59

6.6 (a) Infinite Acute-angle Strip of Smart Fabric (16 X 6 units) and (b) Infinite

Obtuse-angle strip of Smart Fabric (26 X 5 units) 61

7.1 Pool-multiprocessing Illustration . 65

7.2 Process-multiprocessing Illustration . 67

7.3 Parallelization on HPC cluster Illustration . 69

7.4 Pool vs. MPI implementation on grid simulator method 75

C.1 The logical coordinate framework for LCR-VCS for a rectangular network with

triangular grid placement . 137

C.2 Establishment of Axes - Parallel of Latitude and Meridians 138

xiii

C.3 Mapping of Internet space to the virtual space 140

xiv

CHAPTER 1

INTRODUCTION

The textile industry has expanded and altered beyond recognition due to industrialization

and innovative manufacturing techniques. In addition to that, the increasing applications for

Wireless Sensor Networks (WSNs) have led to constant miniaturization and cost reduction of

the electrical sensors. Smart Fabrics (SFs) are a notable breakthrough in the textile industry

with their capabilities to perform tasks that traditional fabrics cannot. SFs are embedded

with small digital components like sensors, batteries or similar electronic components called

Smart Fabric Nodes. These SF systems provide an added value to the customer due to

the ability of embedded nodes to sense, communicate, transform, grow, compute and store

data. These advances in SF technology is a seamless blend of two approaches – “technology-

push”, in which the technological innovations are leading to new systems and products,

and the “application-pull”, due to the rising demand of users for solutions. Technology has

now enabled us to carry around our own personal Body Area Network (BAN) [3]. SFs are

assorted into a pool of applications in the field of sports, entertainment, media, medical, and

military.

According to the Global Health Observatory Data on Current health expenditure (CHE)

as a percentage of gross domestic product (GDP) (%) for the year of 2015, $7.2 trillion or

10% of the global GDP was spent on healthcare in 2015 [4]. The U.S. spent about 16.8

percent of its GDP on healthcare in 2015. As per the reports by the Centers for Medicare &

Medicaid Services (CMS), U.S. healthcare spending marked an increase in 2017 accounting to

17.9 percent of the GDP [5]. The WHO reports also mention the increase in the global aging

population as a severe issue. It is said that the amount of people over the age of 60 years

is set to double by 2050 leading to a surge in healthcare expenditures. Accounting to these

1

statistics and the current medical needs, it is projected that the healthcare expenditures will

reach almost 20% of the GDP in the next few years, threatening the welfare of the economy

[6]. These anticipated changes have generated a huge demand for affordable and proactive

healthcare services. Numerous Smart Wearable Systems (SWS) have been developed for

ubiquitous health monitoring, ambient assisted living or even motion capture. Due to their

ability of remote monitoring, the expense of personal medical visits can be highly minimized.

Figure 1.1: Smart Fabric in sportswear [1]

Athletes, health professionals, and people who exercise on a regular basis would highly

appreciate SF products. Figure 1.1 shows an illustration of smart fabric wearables for ath-

letes. It would be vital even on a preliminary basis to monitor heart rate, calorie count,

respiratory rates, core body temperatures, etc. Marathon runners or athletes participating

in tournaments such as the Olympics would highly benefit from this technology. For tour-

naments of this level, it would be crucial to obtain data at high accuracy to determine the

participant’s performance and also to monitor their health. It is conceivable that future

smart suits can convey information from one user to the other, e.g., allowing a trainer to

detect the pressure or pain felt by an athlete.

2

Individuals in professions such as soldiers, submarines, astronauts, and miners are sus-

ceptible to dangers, fatigue and sensitive environments all the time. Additionally, they have

to attend vigorous training and keep up with a heavy schedule. With the amount of mo-

bility and vulnerability in the occupation, it could be unsafe and infeasible to have medical

personnel come in for health check-ups. This demands an application to remotely monitor

the health of the individuals in these sensitive areas. A vest can be designed using SF to

monitor the vitals of the patients and provide them with feedback to help the individuals

maintain optimal health status.

This thesis anticipates a future in which SF would exist with a large number of embedded

devices. In such fabrics, it would be desirable to determine the shapes of the fabric auto-

matically and for the network of devices to be self-configurable. We investigate an approach

centered on Virtual Coordinate System (VCS) which is based on connectivity rather than

physical distance metric. This is a major advantage as it reduces the cost and complexity.

1.1 Virtual Coordinate System for Smart Fabrics

Sensor nodes in SF need to be localized using scalable and robust algorithms and proto-

cols for computational purposes. Localization and routing are among the essential functions

for SF network operations. Node localization in a sensor network alludes to identifying the

positional coordinates of network nodes. In complex and condensed networks, location infor-

mation by itself cannot facilitate routing. On the other hand, obtaining location information

in the form of physical coordinates is expensive and unreliable at best, or highly infeasible.

Thus, we use Virtual Coordinates (VCs) which are economical to compute and less suscepti-

ble to parametric variations and interference, and in many scenarios, provide equal or better

routing performance compared to physical coordinates.

The VC system essentially defines node data points in the given space identified for a

specified number of base nodes called anchors. As per the Figure 1.2, node n is a node in the

3

Figure 1.2: Virtual Coordinate System (VCS) with two anchors Aj and Ak for a rectangular grid

network, Aj and Ak are the anchors. The VCS for this network is a hashmap with structure,

Vn1
: (hn1Aj

, hn1Ak
), Vn2

: (hn2Aj
, hn2Ak

), ..., VnN
: (hnNAj

, hnNAk
) (1.1)

where,

N ← Total number of network nodes

n,Aj, Ak ∈ N

These VC vectors for smart fabrics are computed using node connectivity (hops) and anchor

information. Thus, for node n in 1.2, the VCs are,

(hnAj
, hnAk

) = (7, 6) (1.2)

In this thesis, we use the concept of VCs to characterize the nodes in a given SF. Our

goal is to use these VCs to identify embedded voids in the SF. These voids can be specifically

introduced or caused by failure of nodes.

4

1.2 Outline

The rest of the thesis is organized as follows. Chapter 2 entails the literature review in

the field of Smart Fabrics. Chapter 3 explains the problem statement and motivation for

the thesis. Chapter 4 describes the Grid Simulator designed for the purpose of detecting

voids for this thesis. Chapter 5 narrates the algorithm for Adaptive Localization. Chapter

6 discusses the proposed localization model for Triangular Grid Smart Fabrics. Chapter 7

addresses the parallelization module used speedup the computations. Chapter 8 concludes

the thesis.

5

CHAPTER 2

LITERATURE REVIEW

This section comprises background research on Smart Fabrics; the recent advances and

prospective research on them. We also review Virtual Coordinate Systems and the existing

models that use them. Lastly, we present the literature on anchor election and placement.

It discusses algorithms to achieve efficient localization. The list of abbreviations used in the

description is summarized in Table 2.1.

Table 2.1: List of Abbreviations

SF Smart Fabric

WSN Wireless Sensor Network

IoT Internet of Things

VCS Virtual Coordinate Systems

MPI Message Parsing Interface

VC Virtual Coordinate

GR Greedy Routing

BFS Breadth First Search

RSSI Received Signal Strength Indicator

ENS Extreme Node Search

2.1 Smart Fabrics

Miniaturized wireless sensors with the capability to sense, compute, store and forward

the data in the fabric can be placed strategically over the human body to monitor the vitals

and have a huge demand in the medical field. The renowned wearable textile project by

6

the Information and Communication (ICT) program of the EC, namely MyHeart [7] unites

inter-disciplinary research institutes, academia, and medical centers in Europe to fabricate

solutions for cardiovascular diseases. This project was an early effort to empower the citizens

to take control of their own health through the use of smart wearable systems. Such systems

would potentially allow preventing at-risk diseases by early-diagnosis.

Another venture funded by the EU, namely WEALTHY [8] involves SF technology, ad-

vanced signal processing techniques and modern telecommunication systems. Conducting

and piezo-resistive materials are used to fabricate the sensors and the connecting links be-

tween them. This prototype senses, pre-processes, transmits, processes and provides data

management. It manages to achieve simultaneous recording of multiple biomedical signals

like ECG, EMG, respiration rate, and body movements.

Gesture capture or recognition via SFs can be used in academia, sporting and physiother-

apy [9] to determine useful information about the users’ body movement. Smart clothing

in association with Cloud and Big Data can be used for monitoring health through mobil-

ity. Applications such as medical emergency response, emotion care, disease diagnosis, and

real-time tactile interaction have introduced that work with big data clouds [10]. These ap-

plications, for instance, can record electrocardiograph (ECG) signals collected through the

SF to monitor moods and emotions of the subject. A prototype smart shirt described in [11]

using SF for ubiquitous health and activity monitoring. It measures ECG and acceleration

signals for continuous and real-time health monitoring and has conductive fabrics to receive

the body signal as electrodes. The measured physiological ECG and activity data are trans-

mitted in an ad-hoc network via IEEE 802.15.4 communication standard through compatible

miniature devices to a base-station or a server PC for remote monitoring. The Lab of to-

morrow designed a Smart Vest for remote health monitoring of users with less intervention

and discomfort in their daily movements. As per the experimental results, the vest was able

to extract accurate data better than other systems that can be uneasy to wear [11].

Several localization techniques have been proposed for WSNs to compute the physical

7

coordinates of a node. Insight about the physical coordinate of the node helps to reconstruct

the shape of the grid and be aware of the exact location on the Fabric from where the

data is sensed or collected. The traditional methods use GPS and Receiver Signal Strength

Indicator (RSSI) for localization purposes [12] [13] [14]. However, GPS becomes obsolete

in these Fabric Networks due to limitations in cost per unit and energy budget demanded

by GPS devices. Additionally, due to the dense placement of nodes on Fabric, the GPS

resolution may not be sufficient for localization. Alternatively, Time-of-Arrival (TOA) or

RSSI are used to estimate distances to other nodes, and thereby obtain node positions.

However, these techniques fail to provide accuracy and are susceptible to phenomena such

as noise, fading, multipath and interference, and errors in localization tend to accumulate.

These techniques could potentially fail to work in large-scale networks outside laboratory

settings, and of course in harsh and complex environments.

The advancements in the sensor network and textile industry fields have fueled the re-

search to find definitive solutions to the newly introduced challenges and issues. In health-

care, several applications and prototypes are proposed to monitor body issues like dia-

betes [15], cardiac arrest early detection [16], vital signs monitoring using 3G networks [17],

monitoring multiple biomedical signs of the body [18] [19]. In addition to health monitor-

ing, smart fabric technology can be used for smart fitness and training for athletes, emotion

monitoring [10] and for remotely monitoring the soldiers’ locations and physical activity [11].

2.2 Virtual Coordinate Systems

To subjugate problems due to physical coordinates in IoT, developments are in place that

can facilitate operations such as routing and self-organization without any physical location

information. In addition, these coordinates can also provide a passage to localization [20].

A VCS structure defined in 1.1 has all nodes in the sensor network with a coordinate vector

of dimension equal to the number of anchors which may or may not be different from the

SF grid space dimension. VCS elects the anchors and its VCs based on parameters such

8

as connectivity, packet loss, topology and more. VCS usually are associated with Euclidean

frameworks where node connectivity is preserved (hops) but not the actual physical distances.

Thus, a measure of 1 hop does not necessarily correspond to 1 unit.

Several techniques have emerged that use VCS for efficient localization and routing.

Graph embedding is a technique that uses VCS wherein network nodes hold node connectivity

information that is embedded inside them [21]. In this case, each node carries a map or

a sub-map of the network topology with connectivity information which can be used for

routing purposes while capturing the voids or patches in the grid. The most commonly

used VC assignment techniques elect a set of anchor nodes for constructing the coordinate

framework. These anchors are network nodes that are elected randomly or by a defined

process or algorithm as shown in Figure 1.2. The number of anchors determine the dimension

of the vector coordinate. Greedy Forwarding (GF) or some other technique is used in routing

algorithms using the defined VCs. These VCs are also used for distance evaluation as well

as for node identification [22].

VCs could provide utility in the form of network parameters in the Internet and overlay

networks [23]. These VCs are computed from network properties such as the latency, packet

loss or any other network measurement parameters. It is vital in network operations to

preserve the network topology like in overlay networks it is needed to optimally trace the

neighboring nodes and communication paths keeping in account the proximity, network

delays, and round-trip time (RTT) [23]. However, capturing such information in real-time

would cause measurement traffic in the network and result in a large overhead. To overcome

these issues, Network Coordinate Systems (NCS) have been proposed. This technique couples

network measurement parameters to the parameters of interest for the VCS. E.g. Maximum

Likelihood Topology Maps [24] proposes a packet reception probability function that helps

capture the graph topology. Topology preserving maps [25] too retain the graph topology,

yet are also homeomorphic to physical layout [2].

9

A.-M. Kermarrec et al. [26] propose an algorithm that helps the network nodes to self-

structure thus identifying its position and collaboratively impose a geometric structure to the

network. Shah and Sardana [27] have invented a parameter computation and search approach

using VCS for IoT. This method uses VCS to compute and obtain network statistics like

delays, latency, etc. using a decentralization technique. Li et al. [28] present a fascinating

real-time raveling path tracking algorithm for smart vehicles that have encoders installed on

opposite sides of the wheels that computes the distance that a vehicle rolled over. Thus, the

VCS for this system is fixed on the ground. The results comprise the vehicle path contributed

by the position and heading angle of the vehicle. The techniques give efficient results even

in the presence of obstacles, fog, rain, snow, etc.

Leone and Samarsinghe [29] propose an algorithm to use Greedy Routing (GR) on a

Virtual Raw Anchor Coordinate (VRAC) System. The VRAC coordinate is calculated using

roughly three raw node distances to be used as coordinates. Given that a saturated graph or

network exists, greedy routing provides guaranteed packet delivery using VRAC system [2].

Jayasumana et al. [30] proposed techniques for the extraction of topology maps of the network

graphs using anchor-based VCs. This paper uses the low-rank matrix completion theory in

which the topology network maps are extracted for 2-D or 3-D networks by using the partial

VC information. However, it is observed that geographical information alone does not suffice

to overcome obstacles or voids in-network as they disrupt the routing algorithms. Sheu et

al. [31] have presented a distributed algorithm called Hexagonal Virtual Coordinate (HVC)

to construct a VCS. Using this HVC, the source node is able to find an auxiliary routing path

to the defined destination. This algorithm overcomes the issue of obstacles as it provides

with aptly placed anchors or landmarks spread across the network irrespective of any voids.

The listed VCS examples use diverse parameters and schemes to construct a coordinate

framework. VCS has many advantages over traditional coordinate schemes like high routing

capability with the ability to provide consistent performance regardless of voids and minimal

localization errors. Issues such as identical coordinates and local minima can occur due to

10

lost directionality [20] in VCS. The problem of the identical coordinate election for multiple

voids may happen due to an insufficient number of anchors and the local minima in these

systems are virtual voids in the network.

The survey presented in the Appendix C ”Virtual Coordinate Systems and Coordinate-

Based Operations for IoT” gives a brief overview of many such VCS, their operations, and

advantages and dis-advantages [2].

2.3 Anchor Selection and Anchor Placement

As discussed in Section 2.2 most of the VCs are elected based on a set of anchor nodes

in the network. The coordinate dimension depends on the number anchors e.g. with M

anchors, a node would have an M-tuple coordinate vector. The number of anchors and their

placements plays a vital role in optimal localization and efficient implementation of routing

algorithms using these coordinates. Many of the protocols have been evaluated with random

anchor placement while others have specific declarations about the selection of anchors. Some

algorithms propose placing the anchors on the network border given that we have knowledge

about the border nodes [32]. Other techniques depend on electing anchors nodes with hop

distances as far as possible from one another which would potentially make them fall on the

borders. Additionally, the single anchor-based VCS [33] uses Depth First Search (DFS) to

compute the node position coordinates wherein the anchor is placed at the center in this

scheme.

2.3.1 Random Anchor Placement

This is the most common and straightforward procedure that elects random nodes from

the network as the anchors. It works in a distributed manner such as each node carries a

certain probability to become an anchor. Most of the time, the anchor nodes are chosen to

be furthest apart from each other. The further the anchor nodes are located, it increases the

coverage area for the coordinate computation for the algorithm. Another important aspect

is to select the optimum number of anchors. There is no ideal number defined for the same

11

Figure 2.1: Random election of anchors in a network with 496 nodes

and it highly depends on the number of network nodes, network topology, the density of

nodes in the network, etc. To avoid identical coordinate computation problems and achieve

good performance, it is advised to select a reasonably high number of anchors rather than

trying to minimize the number of anchors. However, as Figure 2.1 shows, even with random

anchors chosen several hops away, it does not guarantee full network coverage.

2.3.2 Single Mobile based anchor

Figure 2.2: Single Mobile based Anchor

12

For the single mobile-based anchor, the physical coordinates for each node are derived

from hop distance from an anchor node. This anchor node is a mobile robot that traverses

around the network to assist with the coordinate assignment. The robot device is GPS-

enabled and thus, the location is known. Using the location information for the robot, it is

feasible to find out VCs for network nodes concerning the robot. During the traversal, the

robot transmits its position coordinates to the neighboring sensor nodes that lie within its

communication range. This distance between the robot transmitter and the sensor node n is

determined using the RSSI. The algorithm computes Barycentric coordinates for the network

nodes and a distributed routing algorithm is used [33]. Using this technique, unique VCs can

be assigned for all the nodes in the network successfully. However, distance measurement

error due to RSSI can lead to inaccuracy in results. Figure 2.2 shows the example of a single

mobile anchor robot navigating through the sensor field.

2.3.3 Extreme Node Search (ENS)

Figure 2.3: Anchor Placement using Extreme Node Search (ENS) algorithm [2]

This is a simple yet effective anchor election and placement scheme. Anchor election in

this technique corresponds to choosing extreme nodes of the network like corner and border

13

nodes. Unlike the above-described algorithm, it does not rely on prior knowledge about node

being on a border [20]. ENS follows three major steps for anchor election,

Step 1: Two random nodes are elected from the network to serve as initial anchors. The

network is then flooded with beacons that originate from these two nodes hence providing

every node a two-tuple VC. Using these coordinates, each node computes its DVC using the

DVCS algorithm [22].

Step 2: In this step, each node identifies whether it is a local minimum/maximum

in terms of the DVC within its h-hop neighborhood [22]. This is performed in parallel

and involves communication between nodes in the h-hop neighborhood. The value of h is

typically very small (range of 2–5), and the value typically determines the total number of

self-identified extreme nodes.

Step 3: Any node that identifies itself as local minima or maxima in its h-hop neigh-

borhood becomes a new anchor in the network. Thus, VC generation now begins with this

newly elected set of anchors. As the VCs are pre-computed for the two random anchors

elected originally, they could be considered as a part of the anchor set without any addi-

tional cost and overhead though they may not be extreme nodes. Figure 2.3 shows anchors

in the network identified through ENS scheme for an odd-shaped network.

14

CHAPTER 3

PROBLEM STATEMENT AND CONTRIBUTION

As stated in Chapter 2, the demand for Smart Fabrics is increasing rapidly while they

are also getting ”smarter”. As of today, the fashion industry sees the most applications

of these textiles, along with medical and sportswear companies that have discerned the

potential of this technology and have dived into it. Applications of SFs will extend far

beyond such industries to areas such as construction, automobiles and military.t SFs provide

an innovative field with high prospects of research and development to create sustainable and

efficient products for mankind. They have empowered us to modernize the health appliances

by integrating intelligent hardware and the Internet into the appliances.

Soldiers in combat demand for intelligent weapons for fighting and safeguard devices

for survival. As of today, the safeguard clothing like the bullet-proof vests have several

shortcomings. They can be uncomfortable to wear, intervene in natural body movements

and weigh down the person wearing it due to the heavy texture. In the future, vests can be

designed to accommodate a layer of SF with the sensors nodes attached below the bullet-

proof surface. The actual vest would be designed from a transformable textured material

that can mold its strength. This can be achieved by the alteration of the electron structure

and is a breakthrough in material sciences [34]. Additionally, the SF sensors in the layer

below would have a very high and fast sensing capability. Whenever a hard object such as

a bullet strikes the outer surface of the Fabric, the sensors would send across an electrical

transmission to the bullet-proof surface underneath requesting it to temper.

These ideas produce a great deal of motivation for experimentation and analysis in various

fields and industries such as medical, fashion, military, smart wear, material sciences, etc.

15

3.1 Problem Statement

Automatic Identification of the shape of active areas of smart fabrics is important for

many applications related to SFs. They include routing, faulty node location, and reconfig-

uration. The goal of this research is to detect the shapes of holes in a smart fabric with a

regular grid (lattice) structure. Achieving this goal requires maximizing the localization for

the sensor nodes embedded in the smart fabric. To be scalable for large fabrics, the nodes

have to be simple and cost effective. Furthermore, we anticipate that the shape detection

will need to be carried out on-demand via remote access. The nodes may be densely de-

ployed in certain applications. These considerations preclude the use of devices such as GPS

and manual intervention. Automatic algorithms are needed that does not rely on physical

distance estimation, which is difficult or unfeasible in many scenarios.

Figure 3.1: Virtual Coordinate System with grid patch or void

VCSs as discussed in Chapter 2 have resulted in several techniques for localization or node

16

identification. The most commonly discussed VCSs use anchor-based techniques. However,

the major issue is such computations arise while dealing with grids that have voids or patches.

In such grids, identical VCs and local maxima and minima issues are likely to occur. As

Figure 3.1 shows, both nodes n and n′ have identical VCs due to the void created by missing

nodes in the grid. Usually, it is advisable to elect more anchors than less to avoid such

problems. With more anchors, we gain more information about each node’s placement in

the grid.

This criterion of electing the right number and optimal placement for anchors is con-

sidered to be an NP-hard problem [35]. According to Wolfram Mathworld, a problem is

NP-hard if an algorithm for solving it can be translated into one for solving any NP-problem

(nondeterministic polynomial time) problem. NP-hard therefore means ”at least as hard as

any NP-problem,” although it might, in fact, be harder [36]. The most common NP-hard

problem is the Traveling Salesman in which the salesman has n cities to visit and there

is a cost to travel a unit distance. The problem statement needs to find an itinerary for

the salesman such as he only visits each city exactly once with minimum expenditure which

would require checking all the combinations of cities depending on the path cost and number

of places.

Similarly, the optimal anchor election and placement depends on several factors such as

the size of SF, Shape of SF, Grid Placement, voids/patches/obstacles in SF, etc. Considering

all of these parameters, it can be a NP-Hard problem to acquire an optimal set of anchors to

achieve the best possible localization [35] [37]. NP-complete is the intersection of NP-hard

problem and NP problem. It is the class of decision problems in NP to which all other

problems in NP can be reduced to in polynomial time by a deterministic Turing machine.

3.2 Contribution

An algorithm for the localization of nodes and detecting the shapes of voids in a rectan-

gular grid deployment of nodes in a SF with patches or voids is presented. Proposed method

17

uses anchor-based VCs and an adaptive and iterative anchor selection technique to gradually

eliminate the uncertainty of node positions. We extend the approach to localization method

for triangular grid fabrics and discuss an MPI technique for parallelization.

An adaptive anchor selection and placement algorithm is proposed that attempts to

capture the voids in the grid and achieve maximum localization coverage for grid nodes. A

set of linear equations is derived that identifies the VCs of every node. Using these VCs,

We find the solution space that contains the location information for the node and then

identify the solution that minimizes the perturbation from a full-grid of nodes. Additionally,

we achieve further optimization based on the adjacency matrix using a neighbor detection

algorithm.

The localization of the Smart Fabric nodes helps recognize the shape of the fabric or the

voids. We initiate the algorithm with two known anchors and try to localize the grid nodes

by adaptively adding additional anchors. A new anchor is chosen based on the node weight

from the pool of nodes localized in the earlier step. Now, using these anchors, we try to

localize the remaining grid nodes that could not be localized in the previous step. We repeat

this localization technique until,

• All grid nodes are localized

• All nodes that can be used as anchors are exhausted.

• All grid nodes have been exhausted.

• Number of adaptive anchor addition steps reach 1/3rd of the number of nodes in grid.

This algorithm is tested for different SF grid sizes with varying percentages of missing nodes

and random void sizes and shapes. The grid simulator generates sample SF grids with

random shaped voids for testing the adaptive localization method.

18

CHAPTER 4

SMART FABRIC SIMULATOR

4.1 Introduction

A Smart Fabric simulator is designed which generates a grid of sensor nodes satisfying a

given set of specifications. The main focus of this work is on the generation and evaluation

of SF grids with retained border nodes. When a SF is constructed, the placement of nodes

can be varied with connectivity established amongst them via conductive threads. Here, we

work on simulating grids with rectangular placement of nodes.

Figure 4.1: Rectangular-shaped Smart Fabric Grid

Figure 4.1 shows an example SF sensor grid with rectangular grid placement. In this

placement, each of the sensor nodes is connected to at least one neighbor node in +x,+y,−x,

or −y direction. As shown in the Figure 4.1, node n1 has 4 neighbors and n2 has only 1

neighbor due to nature of the voids/patches in the network. Thus, an internal node will have

a maximum of four neighbors, a border node will have a maximum of three neighbors and a

corner node will have a maximum of two neighbors. In this and the following chapters, we

19

work with SF grids that posses an intact border, i.e., no missing nodes on the border and

have varied percentages of internal missing sensor nodes with random shaped voids as shown

in Figure 4.1. In the following sections, we discuss the algorithm to simulate these grids.

4.2 Simulator Design

As discussed, the SF Grids are designed with a rectangular-grid placement of nodes.

These algorithms generate a grid based on basic inputs such as Length of the grid (L),

Breadth of the network (B) and additional special inputs like percentage of missing nodes

(PM) and the number of voids (V). Figures in 4.2 show two Smart Fabric Grids of different

sizes generated using the algorithm. The connection between two nodes is the sensor link or

the conductive threads which carry information.

(a) (b)

Figure 4.2: Sample Smart Fabric Grids with dimensions (a) (9X5) and (b) (7X10)

However, Figure 4.2 show ”full” SF Grids, i.e., with no missing nodes. Missing nodes

in the grid cause a void which leads to a loss in connectivity information and deviation of

virtual coordinates relative to a full grid. We design an algorithm that provides an approach

to create a disintegrated network in accordance with the user input for the percentage of

missing nodes (PM) and the number of voids (V).

20

4.2.1 Grid Simulator

The grid simulator is implemented using specially designed modules, i.e., utility and

helper modules. It follows a systematic approach verifying each step to design a grid true to

the given specification.

Algorithm 4.2.1 Grid Simulator

Inputs
L← Grid Length
B ← Grid Breadth
PM ← Percent missing nodes in Grid
V ← Number of Voids in Grid

Outputs
GAM ← Adjacency Matrix of Simulated Grid

Variables
IN ← Inner nodes
BN ← Border nodes
DcN ← Disconnected nodes
AM ← Adjacency Matrix for full grid

procedure Simulate a Grid with given Inputs

Simulate Full Grid using L & B

Recompute PM for IN
Compute BN and AM

while true do
if GAM is valid then

break
else

Re-initialize BN

end if
VD ← node distribution/void
GenVoid using VD

Extract the GAM

Find DcN
end while
Return← GAM

end procedure

The algorithm 4.2.1 gives a brief overview of the grid simulator for generating SF grids.

In the following sections, we will discuss in detail all the utility and helper modules used by

21

the simulator. The algorithm generates a full 2D coordinate set for the grid with the given

length, breadth and other additional parameters. For example, the Figure 4.2 show the SF

grid plots constructed using the physical coordinates.

TN = (L+ 1) ∗ (B + 1) (4.1)

IN = TN − (2 ∗ (L+ 1) + (2 ∗ (B + 1)− 4)) (4.2)

Here TN is the total number of nodes in the grid. and IN are the inner nodes in the SF

,i.e., not considering border nodes. From these values, the total number of nodes that must

be deleted, DeN to create the void(s) are calculated i.e. PM% of the IN . Thus, for a 19X19

grid, if we wish to create 1 void with 10% missing nodes, the total number of nodes to be

deleted would be 10% of 324 i.e. ≈ 32. In order to identify the nodes to be deleted, the

algorithm first computes the AM for the full grid.

After initializing and computing the necessary values, the algorithm repetitively runs to

generate the grid with given number of voids V with the percent of missing nodes equal to

PM . The major steps involved here are listed as follows,

• Create a random node distribution per void using V , PM and total number of nodes

to be deleted.

• Generate a grid with voids and return the corresponding adjacency matrix.

• Find any disconnected nodes from the generated Adjacency matrix and delete them.

In the last step, the Grid Simulator performs a validation of the generated grid using its

adjacency matrix to verify that the generated grid is true to the input specifications. The

validation passes if equations 4.3 and 4.4 hold true.

GAM .length = BN + (IN −DeN) (4.3)

22

DcN = ∅ (4.4)

If validation fails, the variables are re-initialized and a new grid is simulated. The process

repeats itself until a precise grid is generated that passes the validation test. As per the

equations 4.3 and 4.4, the generated grid is valid if the length of the adjacency matrix

for the grid is equal to the sum of all border nodes, and the difference between the inner

nodes and deleted nodes. Also, the adjacency matrix for a valid grid must not have any

disconnected nodes as they must have been deleted if present.

4.2.2 Utility Modules

The Grid Simulator uses utility modules for intermediate computational steps. In order to

generate a grid with a void, the simulator initially generates a full grid with 2D coordinates

using given L and B using the module. Then, another helper module is used to create

the adjacency matrix and fetch the border nodes for the grid created by the earlier step.

Additionally, the helper module for manual void creation deletes the nodes returned by the

simulator to create a void. Further, there are modules that help with the computation of

adjacency matrix and graph modules which provide assistance in finding the disconnected

nodes in the simulated grid.

4.2.2.1 Adjacency Matrix

The adjacency matrix of a SF grid is the connection matrix for the data points (sensor

nodes) placed adjacent to each other or the nodes that have connectivity established between

them. It is a matrix with rows and columns with labels as the node IDs. The item value in

the matrix is either 1 or 0 depending on whether the nodes are adjacent or not.

23

Figure 4.3: Adjacency Matrix Generation

For example, the SF grid in Figure 4.3 would have an adjacency matrix as follows,

AdjMat =

0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0

(4.5)

Thus, a value of 1 conveys connectivity and 0 states no direct connection between the

nodes. A module is presented that computes an adjacency matrix for the grid using given

node positions or coordinates.

4.2.2.2 Graph Modules

The simulator uses a graph generator module which creates a graph of the grid using the

python inbuilt library networkx [38]. This module facilitates the usage of graph algorithms.

It also helps in easy plotting of nodes and edges or connections between them. Then a shortest

path computation module uses the single source dijkstra method from the networkx

library to discover the shortest path between nodes. These modules in combination provide

information to derive disconnected nodes. If no path exists to the node, it is disconnected

from the SF grid.

24

4.2.3 Helper Modules

Given the percentage of missing nodes (PM) and the number of voids (V), a partition

helper module creates a random distribution for nodes to be deleted. This module takes

inputs DeN and V and returns a list with a random distribution of DeN nodes in V buckets.

Following this, the void generator module iterates through the list creating one void at a

time in the SF grid. The algorithm 4.2.2 states in brief the steps for void(s) creation.

Algorithm 4.2.2 Generate Void

Inputs
TN ← Total number of nodes in Grid
BN ← Border nodes
PN ← Partition of nodes for V void(s)

Variables
DeN ← Deleted nodes
SN ← Start Node for void

procedure Generate a void for all partitions

Set DeN to empty
for p in PN do

while true do
Find SN & validate
if SN is valid then

break
end if

end while
DeN+ = Find DeN using bfsVoid
for d in DeN do

BN+ = Add new borders using voidBorders
end for

end for
Create void using utility module

end procedure

For the void generation, the algorithm 4.2.2 uses the PN information. For a given number

of voids V if DeN number of nodes must be deleted to create a void, partition variable PN

25

is defined as,

PN = [p1, p2, .., pV] (4.6)

where V ← Number of voids and,

V
∑

i=1

pi = DeN (4.7)

Figure 4.4: Smart Fabric Grid with Voids that have a shared border

The equations 4.6 and 4.7 imply that the summation of the partitions in PN is equal to

the total number of nodes that need to be deleted. The void generator loops through the

partitions to create voids. Initially, it attempts to find a start node SN to create a void

such that the SN is not a BN and is not in any previously deleted nodes DeN . As soon as

an eligible SN is found, the algorithm uses the Breadth First Search (BFS) module for

graph traversal to efficiently find out the nodes to be deleted to create a void in the given

iteration of p in PN . Once those nodes are derived, the border nodes for the newly created

void are computed. These derived nodes are added to the original set of BN . Hence, the

border of the grid is updated with the internal border for voids as well as the outer grid

border. It is important to update the borders to avoid unification of voids while creating

26

them. For example, Figure 4.4 shows a scenario for a 19X19 Smart Fabric grid with 2 voids

due to 30% missing nodes. Here, as we keep track of updated border nodes as the void is

being created, we can see distinct voids that share a border. This algorithm recurs for all

partitions and ultimately provides coordinates for a grid with V voids due to PM missing

nodes.

We use the BFS Graph traversal algorithm that ensures each node is visited exactly once

in the defined order. In a SF grid, to determine the nodes to be deleted, it is crucial to

traverse through the graph marking a node as it is visited and making a decision about

removing or keeping it. Also, the order in which the vertices are visited are important.

Algorithm 4.2.3 Breadth First Search (BFS) Graph traversal

Inputs
SN ← Start node to create void
P ← Number of nodes to be deleted

Output
DeN ← Nodes to be deleted

Variables
visited← Visited Nodes
queue← Queue of nodes to be checked

procedure Traverse in BFS fashion

Set visited, queue to [SN]
while queue exists do

n = pop the first element from queue

neighbors← Find random nodes to expand void
for ne in neighbors do

if visited.length ≥ P then
Return visited

end if
if ne not in visited then

Add ne to visited & queue

end if
end for

end while
Return visited

end procedure

27

In the BFS traversing algorithm, we initiate the traversal from the start node, SN and

keep traversing layer by layer, exploring the neighbour nodes of the source. Neighbors are

the immediately connected nodes that can be reached in 1-hop. Once all the neighbors are

explored, we move towards the next-level neighbour nodes (i.e. more than 1-hop distances).

Figure 4.5: Breadth First Search Graph Traversal

As the Figure 4.5 shows, we have a SF grid or a graph with random nodes and edges.

According to the algorithm 4.2.3, we select a start node SN . We then explore the nodes

within 1-hop for level 1 traversal. Graph traversal can be a cyclic and cause you to visit

same node again. To avoid that, explored nodes are recorded as visited. So, neighbors of

the source/start node are N1 and N2 which are stored in queue while being traversed in a

defined order i.e. N1 before N2. Following the same, the child nodes of N1, viz. N3 and

N4 are traversed followed by child of N2, viz. N3. This allows us to explore the graph and

choose a set of nodes to be deleted to create a void. Now, as the algorithm 4.2.3 states, there

is an additional step where we compute the neighbors.

Since the motive is to create a random void, we do not wish the void to expand in an

orderly fashion deleting all the neighbors every layer. Hence, we keep a track of visited

28

nodes and only choose the neighbors such that it is a subset or equal to all the neighbors

belonging to the node. Additionally, any neighbors that are border nodes, already deleted

or visited are excluded.

Figure 4.6: Expansion & Creation of new voids

Figure 4.6 shows a grid with a void already being created and also shows the border. Now,

to create a new void from a start node, SN , for BFS expansion, we can only choose neighbors

N2−4 since N1 is already a part of border nodes and so on for neighbors of these neighbors.

However, to keep the approach random, we only chose random number of neighbors from the

set of available neighbors i.e. in this scenario, we can choose 1, 2 or all 3 out of 3 available

neighbors.

4.3 Results

A SF Grid simulator that creates random sized voids for given percentage of missing

nodes, length and breadth dimensions has been presented. SF grids generated from these

simulators are used as data-sets for the Adaptive Anchor placement algorithm for localization

that is explained in the Chapter 5. Figures 4.7 and 4.8 show heterogeneously sized SF

29

grids with voids induced by specified percentages of missing nodes as generated by the Grid

Simulator.

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: 29X29 Smart Fabric Grids with (a) 10% missing nodes with 1 void, (b) 30% missing nodes
with 2 voids, (c) 10% missing nodes with 3 voids, (d) 30% missing nodes with 4 voids, (e) 10% missing nodes
with 5 voids, (f) 30% missing nodes with 6 voids

30

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: 59X59 Smart Fabric Grids with (a) 50% missing nodes with 5 voids, (b) 70% missing nodes
with 6 voids, (c) 50% missing nodes with 7 voids, (d) 70% missing nodes with 8 voids, (e) 50% missing nodes
with 9 voids, (f) 70% missing nodes with 10 voids

31

CHAPTER 5

ADAPTIVE LOCALIZATION IN SMART FABRICS

WITH RECTANGULAR GRID

Localization is an important aspect of smart fabric sensor grids. It facilitates identifi-

cation, estimation of spatial distribution of sensed data, evaluation of spatial correlation of

data, estimation of grid density and coverage, and data routing. However, there are chal-

lenges for achieving accurate localization using traditional techniques such as GPS due to

limitations on node battery, installation costs, and computational power. Additionally, for

SF grids, it is even more difficult to have GPS embedded sensor nodes due to high density

of the nodes that results in inadequate resolution of GPS due to node spacing, and unavail-

ability of GPS in many indoor environments of interest. To overcome these issues, we use a

Virtual Coordinate System which does not rely on any physical measurements to determine

nodes’ positions in SF sensor grids. Several VCSs have been proposed over time each with

its advantages and disadvantages as discussed in Chapter 2. In this chapter, we propose an

adaptive localization which identifies the locations of nodes in SFs where the rectangular

grid formation is disrupted. e.g., due to holes in the fabric either intentionally created or

caused by defects. The technique rely on an iterative technique, which identifies the node lo-

cations with some initial anchors and then adaptively places anchors to determine remaining

node locations.

5.1 Location vs. Virtual Coordinates

Figure 5.1 shows a SF Grid with a length L and breadth B that comprises N = 48

nodes. A designated number of these nodes is elected as anchor nodes A (Aj, Ak). Our

initial anchor placement consists of the two anchors that are placed at the extreme corners

32

along the length of the fabric. These nodes (also referred to as landmark nodes) are used for

VCs computation. Every node has a 2-tuple virtual coordinate associated with two anchors.

In case of a full rectangular grid, we can find the associated 2D position coordinates “(x,

y)” for each node i.e. achieve localization of all the nodes. These coordinates can facilitate

inference of topology of the SF grid. Given the grid topology in Figure 5.1, every node lies

on the intersection of a grid made up of row and column.

Figure 5.1: Addressing in a Complete Network

The anchor Aj is the base node of the topology is considered to be positioned at (0,

0). Consider a node a in the smart fabric network in Figure 5.1. The VCs for this node

with reference to the anchors is (haAj, haAk) = (7, 6). Additionally, the node a has physical

coordinates (x, y) = (4, 3). These physical coordinate positions can be determined uniquely

as long as the shortest path exists to the anchors. Similarly, node y in the network has a

VC of (bAj, bAk) = (6, 9) and has a 2D physical coordinate of (x’, y’) = (2, 4). Using

these physical coordinates, it is easy to compute the linear distance between the nodes x and

33

y. Additionally, this coordinate data also facilitates routing algorithms with information to

route the packets.

For a given node in a SF grid, the row number (rowni
) and column number(colni

) can be

evaluated from the corresponding VCs using the following equations,

rowni
=

hniAj
+ hniAk

− hAjAk

2
(5.1)

colni
= |hAjAk

2
| − |hniAk

− hniAj

2
| (5.2)

These equations provide us with the 2D physical coordinate for node a as (4, 3) and

node b as (2, 4). From our earlier observations, these values are correct and the nodes lie

on these locations in the topology of Figure 5.1. In more complex networks, or with some

other anchor placement, it is possible for different nodes to have identical VCs. However, to

be able to uniquely identify a node, each node must have an unique set of VCs. This anchor

selection plays a huge role in identifying unique coordinates for all the nodes of the SF grid

and therefore localization of the nodes. These placement of anchors substantially helps to

localize the nodes in the grid [39].

Now, consider the Figure 5.2, a SF of the same length L and breadth B with two anchors

located at the same positions as shown in Figure 5.1. However, in this case there are a few

nodes that are missing in the grid creating a void. In practice, voids could be of any random

shape and there could be more than one void in the grid. Due to this, the VCs of the nodes

concerning the anchors are affected. In Figure 5.2, the VCs of the node a′ are (ha′Aj, ha′Ak)

= (9, 6). According to the equations 5.1 and 5.2, the equivalent 2D physical coordinate for

the node a′ evaluates to (x, y) = (4, 5). However, as we can see, this is incorrect and the

coordinates conflict with the 2D physical coordinates of the node a′′.

Localization is computationally expensive and many algorithms cause overheads. Hence,

it is a complex issue to have a grid with void that is completely localized. When the nature of

voids becomes irregular, the shortest distance hop count of nodes gets affected. To overcome

34

Figure 5.2: Addressing in a network with missing nodes

these limitations, a new localization scheme is proposed in the following sections.

5.2 Adaptive Localization Algorithm

The VCs for a node in a SF grid with void may be different from that in the full grid due

to missing nodes. Anchor placement and the voids affect the shortest path between the node

and anchor(s). Consider Figure 5.3. Here we have anchors Aj and Ak placed as shown. This

grid has the same length, breadth and node a′ at the same position as in Figures 5.1 and 5.2.

Now, the VCs for node a′ would be (Aj, Ak) = (9, 6) due to the missing nodes in the grid. In

the case when there are no missing nodes in the grid, the VCs would have been (7, 6). This

shows that a message from anchor Aj requires an extra distance of 9− 7 = 2 hops to travel

to node a′. This additional distance traveled is defined as delta (δ). Any additional distance

traveled from the anchors would be a δ addition in the actual VC for the node. Also, node

a′′ has the same VC as node s′ causing an overlap or conflict in achieving unique physical

coordinates. As voids are developed in the grid, the algorithm fails to converge leading to

35

incorrect localization. The VCs for the nodes can fluctuate depending on the size, shape,

and location of these voids.

Figure 5.3: Voids affecting VCS path

The following sections explain the delta Minimization and neighbor verification tech-

niques used by the Adaptive Localization algorithm.

5.2.1 Delta Minimization

This section describes in detail the delta (δ) minimization technique used in Adaptive

Localization Algorithm. Considering the SF grids from the Figure 5.3. Following equations

state the VC computation for the grid nodes. For a grid node n,

Vj(hnAj
) = x+ y + δj (5.3)

Vk(hnAk
) = L− x+ y + δk (5.4)

where,

• Vj and Vk are the hop distances from node n to anchors Aj and Ak respectively. To

keep the explanation simple, we use Vj and Vk to denote Vj (hnAj
) and Vk (hnAk

)

respectively.

36

• x, y are the horizontal and vertical distances traveled by the node respectively. (0 ≤

x ≤ L) and (0 ≤ y ≤ B).

• δj and δk are the additional distances to be traveled by the node to anchors Aj, and

Ak respectively. Note that, δj, δk ≥ 0.

Once the VCs for the grid nodes are computed, we have x, y, and δ parameters as the

unknowns in the equations 5.3, 5.4. Additionally, there are multiple shortest paths that can

be taken to reach the anchors from the base node n. When a node has the shortest path

to an anchor that is unaffected by any external parameters, x, and y are computed to be

consistent with that of the full grid and all the δ parameters would be ‘0’ as there would be

no additional hops to be traveled to reach the anchors. However, in a scenario when a node

cannot reach an anchor with the shortest path due to a void, δ has a non-zero value.

Consider Figure 5.3 with a complete grid with length L = 7 and breadth B = 4 with

anchors Aj and Ak where node n has a VCs (Vj, Vk) = (7, 6). Since we are working with a

complete grid with no voids, we can guarantee that the VCs are according to the shortest

path. We use Dijkstra’s algorithm to compute the hop distance. Analyzing with respect to

5.3 and 5.4 we can see that,

• 7 = 4 + 3 + δ1

• 6 = 7 - 4 + 3 + δ2

Solving these equations, we get δj, δk = 0. This shows that for a SF grid with no voids,

the shortest path is determined by x and y units. Now, consider Figure 5.3 grid with same

L, B, and anchors. The difference here is that there are a few missing nodes in the grid

now creating a void. Due to this void, the VCs of node n are affected. VCs can be deduced

to (Vj, Vk) = (9, 6). Here, the VC Vj is affected. In this case, we know that the minimized

shortest path values of x and y are 4 and 3 respectively. Analyzing with respect to 5.3 and

5.4 we can see that,

37

• 9 = 4 + 3 + δj

• 6 = 7 - 4 + 3 + δk

Solving these equations, we get δj = 2, δk = 0. Thus, for node n to travel to anchor

Aj, it needs to cover an additional distance of 2 hops. Thus, δ is an additional distance the

node has to travel to reach the anchor due to the void created by missing nodes in the SF

grid. We devise a technique to minimize the delta value. Thus, the distance δ could be a

combination of hops traveled in x plus the distance traveled in y by the node towards the

anchor. Hence, for all the δ parameters (δj and δk), we can resolve them as,

δ = δj + δk (5.5)

For a given SF grid with elected anchors and void(s), with the given adjacency matrix,

there are several combinations of x, y, and δs that would provide a shortest path. How-

ever, only one value in that set would provide the correct shortest path. With the above

speculations, we can find all the possible combinations of x, y, and δs given that any of

the δs is non-zero. Let’s take a look at equations 5.3 and 5.4. In a case when we have the

correct shortest path, the δs will be 0 or minimized value of δ. As stated earlier, δ1, δ2 >= 0.

Rearranging the equations 5.3 and 5.4 and adding constraints for x and y we get,

x ≥ 0 (5.6)

y ≥ 0 (5.7)

x+ y ≤ Vj (5.8)

−x+ y ≤ Vk − L (5.9)

Here, x and y are the hop distances from the base node and are all positive values. Vj,

Vk and L are constants and known. Hence, we can plot these equations as four lines and find

out the intersection points around the area of interest. Consider Figure 5.4 that shows all

possible scenarios in which we have the area of interest or the solution space. We find the

38

Figure 5.4: Bound calculation (a) Case I (b) Case II (c) Case III

intersection points of these lines given that they abide by equations 5.6, 5.7, 5.8, and 5.9.

We have examples of three scenarios where we get a bound for x and y values that help us

in minimizing δs.

Hence, from Figure 5.4 (a), we can see that x1 ≤ x ≤ x2 and 0 ≤ y ≤ y1. Similarly, in

39

5.4 (b), 0 ≤ x ≤ x1 and 0 ≤ y ≤ y1. In 5.4 (c), 0 ≤ x ≤ x1 and 0 ≤ y ≤ y2. Once these

bounds are computed, using the equations 5.3 and 5.4 we can achieve minimization for all

the δs such that 0 ≤ δn ≤ max(x− coor, y− coor). We further narrow down the solution set

to the best possible combination of (x, y) that achieves the required minimization.

Once we have the optimized deltas, most of the nodes that have the shortest path to the

anchors will be localized with unique (x, y) values. Depending upon the void in the SF grid,

we would still have a few nodes that would not be localized due to multiple possible values

or identical nodes that share the same subset of values with it. These unassigned nodes may

have several possible δ and (x, y) values even after minimization. These conditions would

create conflicts in assigning a unique (x, y) coordinate from the derived coordinates.

After the delta minimization, whenever a node is assigned a (x, y) coordinate, the data is

filtered to remove the corresponding (x, y) value as a possibility from the data sets of other

nodes. This helps us optimize the individual data-sets to find the correct (x, y) coordinate

per node gradually. Each time, post-filtering, any node(s) might be optimized to it’s unique

(x, y) coordinate. The algorithm checks at every iteration if a node elects its own (x, y)

through the elimination from filtering and identical node identification. If in an iteration

no node is updated, we break the loop. The result is all the nodes that we can be localized

using two anchors. Since using two anchors there is a limit to the number of nodes that

can be localized, we have adaptive anchor addition to achieve further localization. Here, we

update the solution space of node coordinates using adaptive anchor addition. Each of the

newly added anchors is from the previously localized nodes.

5.2.2 Neighbor Verification

Once the nodes are localized using delta minimization method, we use the neighbor

verification algorithm to rectify any incorrectly determined node coordinates. We compare

the neighbors of the node determined by the new localization coordinates vs the neighbors

determined by the initial adjacency matrix. The algorithm depicts the neighbor verification

40

process.

Consider figure 5.5 with a node n as the node of interest. From the connectivity matrix

information, we can derive the neighbor IDs for a node. The deltaOptimization algorithm

gives us a subset of possible (x, y) coordinates for node n. E.g. The subset of possible values

for node n are (x′, y′), (x”, y”) = (2, 2), (3, 3). Hence, we have two possible positions i.e.

node with ID 14 or 20 of which only one given position is correct.

Figure 5.5: Identification of Neighbors for a node

Now, from the subset for node n, by analysis it can be said that, depending on the position

of node n it would either have neighbors as nodes 13, 19, 15, and 8 for coordinates (2, 2)

i.e. node ID 14 or 19, 25, and 15 for position at (3, 3) i.e. node ID 20. Thus, the neighbors

for node 14 or node 20 would have positions (x− 1, y), (x, y + 1), (x + 1, y), and (x, y − 1)

respectively where (x, y) = (x′, y′)or(x′′, y′′) and number of neighbors depends on the void

placement. The coordinates help us compute the neighbor coordinates for the subset. From

the adjacency matrix, we can derive the neighbor node IDs for the given node. Comparing

41

Algorithm 5.2.1 Neighbor Verification

OLD: Find Old Neighbors using Adjacency Matrix

Inputs
n← Node ID in the network
GAM ← Adjacency Matrix of the Network

Outputs
O Neighbors← indexes: (-y, -x, +x, +y)

procedure Find O Neighbors with directions

for ne, con in GAM do
if 0 < con ≤ 1 then

c = n− ne

if c > 1 then
O Neighbors[0] = ne

else if c = 1 then
O Neighbors[1] = ne

else if c = −1 then
O Neighbors[2] = ne

else if c < −1 then
O Neighbors[3] = ne

end if
end if

end for
end procedure

NEW: Find New Neighbors using Localized Coordinates

Inputs
(x, y)← Computed node coordinates
LN ← Localized grid nodes

Outputs
N Neighbors← indexes: (-y, -x, +x, +y)

procedure Find N Neighbors with directions

neighbors = (x, y − 1), (x− 1, y), (x+ 1, y), (x, y + 1)
for ne in neighbors do

if ne in LN then
Append ne to N Neighbors

end if
end for

end procedure

42

these values would help us eradicate the incorrect subset of nodes and achieve localization.

If any node is localized in this process, filtering is initiated that removes the localized

nodes’ (x, y coordinate from the subsets of other nodes that haven’t been assigned a physical

coordinate yet. There is a limitation here that not all the neighbors of the node would be

assigned which would result in ambiguity and a node having multiple possible (x, y) values.

However, the filtering in collaboration with the neighbor identification process helps localize

some unassigned nodes with a unique coordinate and assists the rest of the nodes to optimize

the subset of (x, y) values substantially.

5.2.3 Localization using Anchor addition & Coordinate Optimization

This section presents the algorithm for the adaptive anchor placement method for lo-

calization. The algorithm attempts to compute the solution space for the node physical

coordinates; initially using two fixed anchors and adaptively adding more anchors to pro-

gressively improve localization. Algorithm 5.2.3 invokes the Grid Simulator algorithm 4.2.1

to simulate a SF Grid with given dimensions. It uses the adjacency matrix provided by

the simulator algorithm to compute VCs. The algorithm initiates by executing the com-

puteVCs method that computes the VCs for the grid using anchors A with coordinates

(0, 0) and (0, L) across the L of grid. Additionally, the weights for all grid nodes are com-

puted using computeWeights and are recorded. The weight computation for nodes is

carried out for the borders of the grid; outer and inner border if a void is present. In the

first step, only extreme border nodes with Wn = 0 are identified using the information that

only border nodes have less than 4 neighbors.

In the first loop of adaptive addition, two anchors A are initialized. Then, the algorithm

performs deltaOptimization to compute localized nodes Ln for that step. Then, these

localized nodes are refined by refineLocalized to find any additional localized nodes and Ln

is updated. After this step, neighborVerification method performs for each Ln a neighbor

verification based on GAM and it’s existing coordinates. This provides with all localized

43

Algorithm 5.2.2 Localization by adaptive anchor placement

Simulating a Smart Fabric Grid

Inputs
L← Length of Grid
B← Breadth of Grid
PM ← Percent missing nodes in Grid
V← Number of Voids

procedure Grid Simulator

GAM ← Adjacency Matrix of Simulated Grid
end procedure

Grid Localization: Adaptive approach

Inputs
GAM ← Adjacency Matrix
A← Set of Anchors
NA← Set of nodes not be elected as Anchors

Outputs
S← Adaptive Steps
A← Updated Anchor Set
Ln ← Localized Nodes
In ← Identical Nodes

Variables
Ln ← Localized Nodes
Wn ← Weight of Nodes
V Cn ← VCs of the grid w.r.t A

procedure Adaptive anchor addition for Localization

V Cn = computeVCs

Wn = computeWeights

while true do
S ← S + 1
if S = 1 then

A = [(0, 0), (0, L)]
else

if A.length > 2 then
NA ← adaptiveCheck

end if
if Ln = GAM .length || Ln = A + NA || iter = GAM .length/3 then

break
end if

44

Wn ← updateWeights

A ← adaptiveAnchorAdd

V Cn ← updateVCs

end if
for n← 1 to GAM .length do

Ln ← deltaOptimization

end for
Ln ← refineLocalized

Ln, In ← neighborVerification

end while
end procedure

nodes in the first step using set A with 2 anchors. This procedure follows a validation check

wherein the algorithm stops execution if,

• All grid nodes are localized

• All possible nodes have been tested as anchors

• Number of iterations exceed 1/3rd of the grid size

The last condition only keeps a check on the computational complexity and the value can

be moderated. If this validation check fails, we proceed to update the weights Wn for all

the grid nodes (newly localized) based on elected anchors. Figure 5.6 shows a SF grid with

a void and weight values for nodes. As we proceed, the grid nodes are assigned weights

based on their proximity to the already elected anchors (2 or more). Hence, as we can see,

nodes form a weight spectrum around the elected anchors. Then, the algorithm follows to

elect a new anchor adaptiveAnchorAdd from already localized nodes such that it is not

been discarded already NA. Then, the VC V Cn is updated based on new anchors and the

algorithm resumes to further computations as described. After we receive updated Ln from

3 anchors, a adaptiveCheck is performed which essentially checks if adding a new anchor

improves the localization. If there is an improvement, the set A and the weights Wn are

updated with new anchor addition. Else, the anchor is discarded kept in memory to not be

used for future steps. This again follows a validation check and the steps repeat until we

find a set of anchors to localize the maximum number of nodes.

45

Figure 5.6: Weight computation based on elected Anchors

Two of the most important methods described earlier, deltaOptimization and neigh-

borVerification will be discussed in detail in the following sections.

5.3 Results & Analysis

This section entails the analysis and result plots for the localization algorithm. As stated

earlier, the algorithm adaptively selects anchors that are used to localize nodes. The fol-

lowing results include the plots for analysis, comparison with traditional localization, and

localization values for SF grids with varied sizes, percentages of missing nodes, and voids.

Figure 5.7 shows three SF grids with dimensions (LXB) as (a) 19X19 with 1 void and

10% missing nodes (b) 29X29 with 3 voids and 30% missing nodes (c) 44X44 with 4 voids

and 40% missing nodes (d) 59X59 with 5 voids and 60% missing nodes. These are SFs with

varied grid sizes, void sizes, and the number of voids. Figure 5.7 (e) plots the number of

adaptive anchor placement steps vs. the % localized nodes per adaptive step.

With every adaptive step, we elect a new anchor from one of the localized nodes depending

on its weight value. If the anchor addition improves the localization, we retain the anchor

or else discard it. Even if the number of anchors elected to achieve efficient localization is

higher, as we are choosing new anchors from the nodes that were localized in earlier steps.

Thus, we do not require prior knowledge of physical coordinates for any of the newly elected

46

(a) (b)

(c) (d)

(e)

Figure 5.7: (a) Smart Fabric Grid with 320 nodes and 1 void, (b) Smart Fabric Grid with 960 nodes and
3 voids, (c) Smart Fabric Grid with 1012 nodes and 4 voids, (d) Smart Fabric Grid with 1440 nodes and 5
voids, (e) Number of adaptive anchor addition steps vs % of localized nodes for (a), (b), (c), (d)

47

anchors.

As every new anchor has been elected from the localized set of nodes, we have a closed-

loop system that takes in feedback and elects an anchor based on earlier stated conditions.

It then uses the old anchors in combination with the new ones to achieve maximum local-

ization. In the Figure 5.7 (e), we see that 19X19 size SF grid achieves 74.63% localization

with initial 2 anchors. With the subsequent addition of anchors, the localization progresses

reaching 86.57% until we exhaust the number of steps for computation i.e. ≈ 38 additional

localized nodes. Similarly, for the SF grid in 5.7 (b) with size 39X39, there is a localization

improvement from 72.21% to 90.12% which is an efficiency of 17.91% i.e. ≈ 172 additional

nodes being localized compared to step 1. The 44X44 SF grid in 5.7 (e) improves localiza-

tion by 18.44% i.e. ≈ 187 nodes additionally localized. Lastly, in Figure 5.7 (d) we have a

59X59 grid in which the adaptive anchor addition enhances the localization from ≈ 66% to

74%. Finally, the plot in Figure 5.7 (e) shows the improvements in localization with adaptive

anchor addition steps.

Following figures, Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11 show the analysis

plots for % Localized Nodes and Anchors for SFs grids. Each plot contains a data-set with

60 samples for each data point. Each plot has two subplots - Plot 1: % of Localized Nodes

vs. Number of voids in Smart Fabric and Plot 2: Number of elected anchors vs. Number

of voids in Smart Fabric. Plot 1 shows the Confidence Interval (C.I.) for the data points as

explained in Appendix A. For all the plots we can see that there is a gradual decline in the

percentages of localized nodes with an increase in the number of voids. However, it is to

be noted that despite the increasing size, the algorithm manages to localize approximately

more than or equal to 65% nodes for all the SF grid sizes.

For all varied grid sizes for 10% missing nodes, and up to 5 voids, ≈ 95% nodes are

localized. For 20%, we have a localization percentage value of greater than 85%. In fact,

we can see that the localization value rises with an increase in grid size. In SF grids with

less number of nodes, with increasing percentages of missing nodes, it becomes challenging

48

to introduce voids as we lose a lot of information which essentially affects the ability of the

adaptive localization algorithm. Further, for 30%, 40%, and 50% missing nodes as well we

can see that the algorithm localization performance improves. Additionally, in Figure 5.12,

we evaluate SF grids with higher percentages of missing nodes. In this scenario, we do see a

steep decline in the percentages of localized nodes for a higher percentage of missing nodes

(70%) but the algorithm manages to localize up to 50% of the nodes. This shows us the

scalability and efficiency of the algorithm.

The second plot in each Figure shows the mean of number of anchors adaptively required

to achieve the given localization. We expect the number of elected anchors to increase with

number of voids, increase in percentages of missing nodes, and increasing grid size. However,

for grids with small sizes (19X19), there is not a substantial increase in the number of elected

anchors as we achieve the maximum localization possible in the given number of anchors.

However, as the grid size increases, we see a gradual rise in the number of elected anchors (e.g.

in SF grid with size 39X39) as expected which helps us in achieving maximum localization.

These plots show that SF grids with voids due to certain percentages of missing nodes

can be localized efficiently by using the adaptive anchor election algorithm. Detailed plotting

data for all the figures is presented in the Appendix A for all grid sizes. It also lists the

Confidence Interval (C.I.) for percentages of localized nodes and the elected anchors to

illustrate the sample distribution.

49

Figure 5.8: Localization and Anchor data for 19X19 SF Grid for 60 samples

Figure 5.9: Localization and Anchor data for 24X24 SF Grid for 60 samples

50

Figure 5.10: Localization and Anchor data for 29X29 SF Grid for 60 samples

Figure 5.11: Localization and Anchor data for 34X34 SF Grid for 60 samples

51

Figure 5.12: Localization and Anchor data for 39X39 SF Grid for 60 samples

52

CHAPTER 6

SMART FABRICS WITH TRIANGULAR GRIDS

6.1 Introduction

Chapters 4 and 5 address Rectangular grid Fabrics i.e. SFs with node placement in

rectangular fashion. However, node placement in SFs could be in any geometric pattern

depending on the application requirement. In this section, we address SF grids with node

placement in a triangular fashion. We generate the triangular grids with defined shapes

and use localization equations defined in the following sections to compute the position

coordinates for the SF grid given the adjacency matrices for those patterns.

Figure 6.1: Triangular Smart Fabric Grid placement

Figure 6.1 shows a sample SF grid with triangular node placement. Each node except

the border nodes has six neighbors connected in a triangular fashion. A sample node n is

shown with its neighbors. It can be seen that there is triangular connectivity between the

53

nodes. All the 6 neighbors of a node are located at a 1-hop distance from the node. Hence,

we can say that the nodes are connected in an equilateral-triangle geometric pattern.

Table 6.1: Notations used for Chapter 6

NOTATION DESCRIPTION

N Smart Fabric Grid Nodes

ni Node ni in grid {ni | i ∈ N }
Ai Elected Anchors {Ai | i ∈ (j, k, l) }

hniAj
Minimum hop distance between node ni and Anchor Aj

hAjAk
Minimum hop distance between anchors Aj and Ak

Dl
Level of Region 2 nodes w.r.t Equilateral Region border
{Dl | l ∈ Z : l 6= 0 }

Zl
Level of Region 3 nodes w.r.t Equilateral Region border
{Zl | l ∈ Z : l > 0 }

θf Angle factor for Smart Fabric { θf | θf ∈ A : A = [1, -1] }

6.2 Triangular Smart Fabric Grids

SF grids with sensor nodes placed in the triangular pattern can be divided into 4 sections

as defined by [39]. According to Shah, the anchors in the grid must not be placed along

the zig-zag border to avoid identical VCs as shown in 6.1. Figure 6.2 shows the various

regions for triangular grids as defined by Shah [39]. The regions 1 and 2 define a region

where each node has a unique VC and regions 3 and 4 have nodes with identical VC due

to their hop-distances from the anchors. These regions are determined based on the nodes’

distances from the anchors. In addition to the regions, we introduce level parameters which

help in localization for SF grids for the shapes mentioned in the following sections. Table

6.1 describes the notations used in this chapter.

We introduce a parameter, Dl which determines the levels of Region 2 nodes w.r.t to

the Equilateral (Region 1) border. Additionally, Dl for a node can be positive or negative

depending on the distance of the node from the corresponding anchors. In the scenario in

Figure 6.2, nodes n2, n3, n4, n5 have level determined by Dl as, +1, +2, −1, −3.

54

Figure 6.2: Triangular Smart Fabric Grid sectioning

In the following section, we define the localization equations for triangular SF grids of

specified shapes given the adjacency matrix of the grid. Here, we define additional parameters

to localize the nodes in a 2D format.

6.3 Localization for Triangular Smart Fabric Grids

SFs with varied shapes can be useful in applications wherein the area of interest is the

respective shape. Depending on the coverage area, localization techniques stated below can

be used for reconstructing the grid and computing the position of the sensor nodes. As

discussed in Section 6.2, the sensor nodes have restrictions depending on the region they’re

located in to achieve unique VCs. Varied shapes with triangular grid node placement have

been discussed. For these grids, given a certain number of elected anchors, all the grid nodes

55

in the grid can be localized. The localization coordinates in these grids are depicted as row

and col coordinates and they are analogous to y and x coordinates in a 2D Cartesian system

respectively.

6.3.1 Polygon shaped Smart Fabric Grids

In this section, we will discuss SF Grids with triangular, trapezoidal and Rectangular

shapes. Given an adjacency matrix for a SF Grid with any polygon as shapes as described in

the following sections with triangular node placement and specified number of anchors with

designated positions, we can localize the sensor nodes with the following defined equations.

We will be discussing - equilateral triangle, trapezoidal, and rectangular of SF Grids.

6.3.1.1 Equilateral Triangle & Trapezoid Shaped SF

(a) (b)

Figure 6.3: (a) Equilateral Triangle SF Grid (6 units) and (b) Trapezoidal SF Grid (13 X 7 X 6 units)

Here, we discuss the localization technique for Equilateral and Trapezoidal shaped Smart

Fabric Grids. Figure 6.3 shows two Smart Fabric Grids; (a) Equilateral triangle and (b)

Trapezoid with triangular node placement. As per the explanation in Section 6.2, the node

VCs highly depend on the region that it is located in and these VCs of the nodes are used

for the localization. Hence, the localization technique depends on the region in which the

node is located. In the SF grids shown in Figure 6.3, all the nodes of the grid lie in Region

56

1 - Equilateral Triangle region even in case of the Smart Fabric in 6.3 (b). Hence, the

same localization equations can be applied to all the nodes in the region 1.

Theorem I: Given a Smart Fabric with triangular node placement, if the shape of the fabric

is an Equilateral Triangle, 2D localized coordinates for grid nodes can be computed using

anchors Aj and Ak placed along any one of the triangle sides at the corners by using the

equations 6.1 and 6.2.

Theorem II: Given a Smart Fabric with triangular node placement, if the shape of the

fabric is a Trapezoid such that, the length of the angular side of the Trapezoid is less than

or equal to the largest side of the Trapezoid, 2D localized coordinates for grid nodes can

be computed using anchors Aj and Ak placed along the largest parallel side by using the

equations 6.1 and 6.2.

rowni
=
(

hniAj
+ hniAk

− hAjAk

)

×
√
3

2
(6.1)

colni
=

(

hAjAk

2

)

−
(

hniAk
− hniAj

2

)

(6.2)

Note that the physical coordinate as per 2D Cartesian system is (x, y) = (colni
, rowni

).

Hence, using the equations 6.1 and 6.2, we can localize all the nodes for the SF grids in

Figures 6.3.

6.3.1.2 Rectangle Shaped SF

In this section, we discuss localization techniques for rectangular shaped SFs in detail to

prove how this shape provides an efficient way to localize grid nodes using minimal anchors

with pre-defined placement. Figure 6.4 shows the Rectangular shaped SF grid.

For a rectangular shaped fabric, as the Figure shows, we can divide the grid nodes in two

regions viz. Region 1: Equilateral triangle region and Region 2: Deterministic region. In

this placement, all the SF grid nodes have a unique combination of VCs which can be used

57

Figure 6.4: Rectangular SF Grid (16 X 10 units)

in combination with an additional parameter Dl; the level of a node in the Deterministic

Region w.r.t to Equilateral Region border (as explained in figure 6.2) for localization.

Theorem III: Given a Smart Fabric with triangular node placement, if the shape of the

fabric is aRectangle, 2D localized coordinates for grid nodes can be computed using anchors

Aj and Ak placed along the Length of the fabric by using the following equations.

Equilateral Region Nodes

All the nodes for the Equilateral Region of a Rectangular shaped SF can be localized using

the same equations 6.1 and 6.2 stated for the Section 6.3.1.1.

Deterministic Region Nodes

rowni
=
(

hniAj
+ hniAk

− hAjAk
− |Dl|

)

×
√
3

2
(6.3)

colni
=

(

hAjAk

2

)

−
(

hniAk
− hniAj

2

)

−
(

Dl

2

)

(6.4)

Here, the level of the node in the Deterministic Region is dependent on the hop distance

of the node from the anchors Aj and Ak, computed using the following equations 6.5 and

6.6.

58

if
(

hniAj
< hniAk

)

Dl = 1 ∗
(

hniAk
− hAjAk

)

(6.5)

elif
(

hniAk
< hniAj

)

:

Dl = −1 ∗
(

hniAj
− hAjAk

)

(6.6)

Note that none of the nodes of the deterministic region have the same VC towards both

anchors. i.e. hniAj
6= hniAk

for all the nodes in the Deterministic Region. Thus, levels of the

nodes are determined as shown in Figure 6.2.

6.3.2 Angular Strip shaped Smart Fabric Grids

In addition to the SF grids discussed in 6.3.1.1, we have derived localization techniques

for SF grids in the form of strips. In this section, we will be working with “angular” strips

as shown in Figure 6.5.

(a)

(b)

Figure 6.5: (a) Acute-angle Strip of Smart Fabric (12 X 6 units) and (b) Obtuse-angle strip of Smart
Fabric (22 X 8 units)

In Figure 6.5 (a) we have a strip with acute angle orientation w.r.t the horizontal base

with a width of 6 units and length of 12 units and (b) has an obtuse angle oriented strip

with 22 unit length and 8 unit width. The grid nodes lie in three different regions in this

59

case. The nodes in Region 3: Zero-Gap Region all have the same hop distance from both

the anchors Aj and Ak. Hence, we propose an additional parameter 6.9 to compute the level

of nodes in the Zero-Gap region. Additionally, the angled orientation of the strip accounts

for the angle factor θf of the SF strip. If the strip has acute orientation, θf = (−)1 else, θf

= (+)1.

Theorem IV: Given a Smart Fabric with triangular node placement, if the shape of the

fabric is a strip with Length ≥Width andAcute (60◦) orObtuse (120◦) angle orientation,

2D localized coordinates for grid nodes can be computed using anchors Aj and Ak placed

along the width and at the base of the fabric by using the following equations.

Equilateral Region Nodes

All the nodes for the Equilateral Region of a Strip shaped SF can be localized using the

same equations 6.1 and 6.2 stated for the Section 6.3.1.1.

Deterministic Region Nodes

All the nodes for the Deterministic Region shaped SF can be localized using the same

equations 6.3 and 6.4 stated for the Section 6.3.1.2.

Zero-Gap Region Nodes

rowni
=
(

hniAj
+ hniAk

− hAjAk
− Zl

)

×
√
3

2
(6.7)

colni
=

(

hAjAk

2

)

− θf ×
(

Zl

2

)

(6.8)

Here, the level of the node in the Zero-Gap Region is dependent on the hop distance of

the node from the anchors Aj or Ak and distance between the anchors themselves i.e. hAjAk
.

The level Zl is computed using the following equation 6.9.

Zl =
(

hniAj
∨ hniAk

)

− hAjAk
(6.9)

60

and,

θf = (+)1 ∨ (−1) (6.10)

Thus, using two anchors as stated, we can localize all the grid nodes in a strip with

infinite “length” given that the anchors are placed at the base of the strip and along it’s

width.

(a)

(b)

Figure 6.6: (a) Infinite Acute-angle Strip of Smart Fabric (16 X 6 units) and (b) Infinite Obtuse-angle
strip of Smart Fabric (26 X 5 units)

In addition to placing anchors at the base of the strip, we propose additional placement

to achieve efficient localization. Figure 6.6 shows similar pattern SF strips as Figure 6.5.

Here, since the anchors are placed along the width of the strip and NOT at the base, we

have a mirroring condition. We split the grid nodes in Regions 1, 2, and 3 as shown and

perform localization using the following equations.

61

To proceed with the localization, we compute a third anchor using the anchors Aj and

Ak. The third anchor Al is computed as,

Al = {ni | ni ∈ N : hniAj = hniAk = hAjAk } (6.11)

Now, given the structure of the SF in discussion from Figures 6.6, the equation 6.11 gives

us two eligible nodes as anchor Al due to the mirroring condition. We can choose any one of

these as the Anchor Al. Now, we use the information of anchor Al to localize all the nodes

on the strip.

Theorem V: Given a Smart Fabric with triangular node placement, if the shape of the

fabric is a strip with Length ≥Width andAcute (60◦) orObtuse (120◦) angle orientation,

2D localized coordinates for grid nodes can be computed using anchors Aj and Ak placed

anywhere along the Width of the strip and an additional chosen anchor along the Length by

using the following equations.

Equilateral Region Nodes

ROW:

if
(

hniAl
≤ hAjAk

)

:

rowni
=
(

hniAj
+ hniAk

− hAjAk

)

×
√
3

2
(6.12)

else:

rowni
= −

(

(

hniAj
+ hniAk

− hAjAk

)

×
√
3

2

)

(6.13)

COL:

colni
=

(

hAjAk

2

)

−
(

hniAk
− hniAj

2

)

(6.14)

Deterministic Region Nodes

ROW:

62

if
(

hniAl
≤ max

(

hniAj
, hniAk

))

:

rowni
=
(

hniAj
+ hniAk

− hAjAk
− |Dl|

)

×
√
3

2
(6.15)

else:

rowni
= −

(

(

hniAj
+ hniAk

− hAjAk
− |Dl|

)

×
√
3

2

)

(6.16)

COL:

colni
=

(

hAjAk

2

)

−
(

hniAk
− hniAj

2

)

−
(

Dl

2

)

(6.17)

Zero-Gap Region Nodes

ROW:

if
(

hniAl
<
(

hniAj
∨ hniAk

))

:

rowni
=
(

hniAj
+ hniAk

− hAjAk
− Zl

)

×
√
3

2
(6.18)

else:

rowni
= −

(

(

hniAj
+ hniAk

− hAjAk
− Zl

)

×
√
3

2

)

(6.19)

COL:

colni
=

(

hAjAk

2

)

− θf ×
(

Zl

2

)

(6.20)

Thus, using the above stated conditions for anchor placement and equations, localization

can be achieved for all the grid nodes for an infinitely long angular strip.

63

CHAPTER 7

PARALLELIZATION

7.1 Introduction

In today’s world where complex algorithms, heavy computations, and time efficiency are

considered to be of great significance, computing systems have evolved to be capable of han-

dling heavy-duty tasks methodically and systematically. Before 2005, most of the computing

systems were serial processes until Intel introduced their first Dual-core processor [40]. This

idea served the purpose of multiple single-core processors deployed on a single system work-

ing together to serve serial processes. Modern computers perform numerous tasks with each

core only running through a single process at a time. It requires the processor to constantly

switch between the processing threads or instruction streams called concurrency. This re-

sults in the wastage of processor cycles during the switching leading to the low efficiency of

the computing system.

To utilize the core capacity of these systems to the fullest, multiprocessing or parallel

programming approach is introduced. The core idea behind both these approaches is to have

tasks of similar type running in parallel across multiple cores. In a traditional serialized

approach, all the computing instructions are lined up and interface with the processor using

a single thread. Hence, all the tasks are queued and need to wait for the previous task to

finish. Parallel programming uses the data from the user to divide the main task into the

required number of sub-tasks that run on separate cores and are re-assembled into a queue

or any other similar data structure once completed. This provides flexibility and efficiency

to the users. In this chapter, we discuss a few ways in which parallel programming can be

implemented based on the application requirement.

64

7.2 Parallel Programming Approaches

Parallel programming can be achieved in many ways by exploiting the cores on a single

physical machine or across a High-Performance Computing (HPC) cluster with multiple

nodes; each with its processors. In this thesis, we successfully implemented and tested the

two popular parallelization modules in python viz. multiprocessing and mpi4py.

7.2.1 Multiprocessing

The python multiprocessing module is one of the most popular packages used to im-

plement parallelization on a single multi-core system. It provides spawning of sub-processes

using the API instead of using traditional “threading”. This allows the user to leverage the

multiple cores on a given system. The multiprocessing module can be roughly utilized using

either the Pool or the Process class. Mane [41] in his article gives a brief overview and

ideal implementation scenarios for both classes.

7.2.1.1 POOL for multiprocessing

Figure 7.1: Pool-multiprocessing Illustration

65

Although the function of the multiprocessing module as a whole stays the same (spawning

multiple processes) for Pool and Process, the Pool class works differently than the Process

class and they both have different use cases. In the Pool class, the number of sub-processes

spawned depends on user input and it is ideally equal to the number of CPU cores in

the system. Figure 7.1 shows a task queue with N tasks and a Quad-core system (i.e. 4

processors). Here, we invoke the maximum number of processes equal to the CPU count

in a pool and the tasks from the task queue are distributed/assigned to these processes in

a First In First Out (FIFO) manner. Each core is running a process and hence we achieve

parallelization. However, note that each sub-process is performing multiple tasks and they

are lined up in a serialized fashion.

import multiprocessing as mp

import numpy as np

with mp.Pool(processes=mp.cpu_count ()) as task_pool:

process_output = [task_pool.apply_async(adaptive_localization , args=

(i)) for i in range(samples)]

result = np.array([p.get() for p in process_output])

Listing 7.1: Pool Example

The Pool multiprocessing module is efficient in scenarios where a large number of tasks

need to execute in parallel. A Pool with a number of processes as many as CPU cores can be

created and a list of the tasks can be passed to the processes. Pool collects the return values

from the processes in the form of a list and passes it to the parent process. The code snippet

in Listing 7.1 shows an implementation of the adaptive localization method discussed in

Chapter 5 using the Pool class of multiprocessing.

66

7.2.1.2 PROCESS for multiprocessing

Figure 7.2: Process-multiprocessing Illustration

The Process module works in a slightly different manner such that it spawns a separate

process for each task in the task queue. Figure 7.2 shows a task queue with 4 tasks for

simplicity. The Process class creates a separate process for each task in the queue and hence

we see 4 individual processes P1, P2, P3, and P4 working on one task each in the system.

import multiprocessing as mp

import numpy as np

q = mp.Queue ()

processes = [mp.Process(target=adaptive_localization , args=(i)) for i in

range(samples)]

67

for p in processes: p.start()

for p in processes: p.join()

result = array ([q.get() for p in processes if p is not None])

Listing 7.2: Process Example

The Process class is efficient if you have a small number of tasks to execute in parallel

as setting up a Pool has an additional overhead. However, if the number of tasks is large

in number, spawning a process for each task will result in a memory error. Additionally, in

Pool, the allocated processes per core execute serially. Hence, in case of a long IO operation,

it has a wait time until the IO operation is completed leading to an increase in execution

time. However, the Process class suspends the process of executing IO operations once it

has generated the output and schedules another process.

7.2.2 Message Parsing Interface (MPI)

As mentioned earlier, processes can be executed that run across cores from separate ma-

chines to achieve parallelization for scalable applications. “High-Performance Computing”

(HPC) is the application of ”supercomputers” or a cluster of powerful computers to solve

computationally heavy problems that are either too large for standard computers or would

take too long. Also, it is difficult to find a single powerful machine with high RAM to

run a single application. HPC is also becoming an affordable resource to the research in-

dividuals in the scientific community due to the availability of quality open-source software

and commodity hardware. This analogy gave birth to Beowulf class clusters and cluster of

workstations [42]. A cluster of computer workstations can be viewed as a set of computers

connected through fast local area networks (LANs), with each node (computer used as a

server) running its instance of an operating system that work together constituting a single

powerful system [43].

In our research, we exploit the Keck Cluster provided by the College of Engineering for

parallelization. Unlike the multiprocessing module, thempi4py module is a message passing

68

library standard based on the consensus of the MPI Forum. It is considered to be a portable

message-passing interface designed to work between the parallel computers in a cluster. The

main advantage of working with a cluster is to have access to large computational power

over a distributed domain.

Figure 7.3: Parallelization on HPC cluster Illustration

Figure 7.3 shows a rough illustration of an HPC cluster. It is a collection of multiple

server nodes connected via Fast LAN. Different kinds of server nodes are present that serve

various user requirements. The Login Node, as the name states are used to access the

cluster as a whole. Once, logged in, the user can write job scripts with specifications on

the number of cores and types of computing nodes needed to run the tasks. The clusters

use various batch queuing systems like Univa Grid Engine, Slurm, etc. as job schedulers.

These jobs are then submitted to the regular Compute Nodes or the Special Compute

69

nodes (GPU, Fat) per user requirements. The Storage Unit stores the user data from

the completed jobs or intermediate data created during the job. All these components are

interconnected using Fast LAN. Additionally, there could be a SandBox Node or a Compile

node which can be used for development purposes to test-run the code.

from mpi4py import MPI

import numpy as np

tags = enum(’READY’, ’DONE’, ’EXIT’, ’START’, ’IDLE’, ’CONTINUE ’)

cw = MPI.COMM_WORLD # get MPI communicator object

size = cw.size # total number of processes

rank = cw.rank # rank of this process

status = MPI.Status () # get MPI status object

if rank == 0:

s = 0

c = 0

nJobs = 10 # User Input

samples = 60 # User Input

processes = size -1

pids = []

result = []

for j in range(1, jobs +1):

while c < processes:

data = cw.recv(source=MPI.ANY_SOURCE , tag=MPI.ANY_TAG ,

status=status)

source = status.Get_source ()

tag = status.Get_tag ()

if tag == tags.READY:

70

if source not in pids:

if s < len(samples):

cw.send(obj=[samples[s]], dest=status.Get_source ()

, tag=tags.START)

s += 1

else:

if (j == nJobs):

cw.send(obj=None , dest=source , tag=tags.EXIT)

else:

cw.send(obj=None , dest=source , tag=tags.IDLE)

proc_ids.append(source)

else:

cw.send(obj=None , dest=source , tag=tags.CONTINUE)

elif tag == tags.DONE:

result.append(data)

elif tag == tags.IDLE or tag == tags.EXIT:

c += 1

output = np.array([p for p in result])

else:

while True:

cw.send(None , dest=0, tag=tags.READY)

args = cw.recv(source=0, tag=MPI.ANY_TAG , status=status)

tag = status.Get_tag ()

if tag == tags.START:

p_result = adaptive_localization(args [0])

cw.send(p_result , dest=0, tag=tags.DONE)

71

elif tag == tags.IDLE:

cw.send(None , dest=0, tag=tags.IDLE)

elif tag == tags.CONTINUE:

continue

elif tag == tags.EXIT:

break

cw.send(None , dest=0, tag=tags.EXIT)

Listing 7.3: MPI Implementation

Listing 7.3 shows the implementation of adaptive localization method using the MPI

module. This is the approach developed to run multiple samples of SF grids on an HPC

cluster. Here, we have a parent process number 0 which sends and receives data from child

processes. Tags are initiated with commands to be sent and received between master-child

processes. The parent process issues five commands - START, EXIT, IDLE, CONTINUE,

DONE and receives four commands - READY, DONE, IDLE, EXIT. The parent process

actively monitors the job status and the child-process queue and issues command to the

child based on queue status. e.g. when it receives a READY command from the child, it

sends the task over given that there are tasks in the task queue. If the task queue is empty,

it issues an EXIT command to the child.

On the other hand, the child process issues three commands - READY, DONE, IDLE,

EXIT and receives four commands - START, IDLE, CONTINUE, EXIT. The child initiates

a START command to let the parent know that it is ready to receive the tasks. Once it

receives a task, it performs computations and sends it back to the parent using the tag

DONE. The child process gracefully terminates when it receives the EXIT tag from the

parent. These results from individual processes (for respective samples) are consolidated on

the parent.

72

7.3 Analysis of Parallelization Techniques

This section states the analysis of the above-discussed techniques for parallelization.

Here, we use sample SF grid data and analyze the processing time for these grids using (a)

serial, (b) multiprocessing, and (c) MPI approach. Table 7.1 shows the notations used to

define the processing time equations for each of these approaches.

Table 7.1: Notations use to define parallelization equations

NOTATION DESCRIPTION

TS Processing time for serially programmed method

TP Processing time for a method programmed using multiprocessing (Pool)

TM Processing time for a method programmed using MPI (mpi4py)

nSamples Number of samples to be processed

nCores Number of cores requested at Login

TS =

nSamples
∑

i=1

Ti (7.1)

IF (nCores < nSamples)

TP = max(Ti) +max(Tj) (7.2)

where,

∀ i ∈ {1, 2, ... , nCores}

∀ j ∈ {nCores, ... , nSamples}

ELSE:

TP = max(Ti) (7.3)

where,

∀ i ∈ {1, 2, ... , nSamples}

TM = max(Ti) (7.4)

73

where,

∀ i ∈ {1, 2, ... , nSamples}

The equations 7.1, 7.2, 7.3, and 7.4 state the processing times required for each of the

modules described in 7.2 to run an algorithm on SF grid data-sets. Let’s say we have

nSamples of a Smart Fabric grid with PM percentage missing nodes and V voids. Now,

even if PM and V are the same for all samples, the structure of the grid varies due to the

varied placement of voids and the shape of voids. Due to that, the processing time is different

for each sample.

For a serialized computation, the processing time would be the sum of processing time

for all samples as shown in 7.1. Now, for the Pool multiprocessing module, depending on

the system configurations, if we have enough cores to run a process for each sample, the

processing time is the maximum time taken by a sample in the set. Else the time taken is

the summation of the maximum time taken by a sample in each set as shown in 7.3. However,

note that it is not an ideal scenario to have one powerful system to run scalable applications.

Hence we will be considering the equation 7.2 henceforth. In MPI, the nCores are requested

such as nCores = nSamples + 1. Thus, the processing time taken is the maximum time

taken by a sample in that set.

Table 7.2: Analysis data for 20 samples (hours) - Serial vs. Pool vs. MPI Programming for grid simulator

GRID SIZE (#nodes)

9X9 (58) 19X19 (292) 29X29 (706) 39X39 (1300) 49X49 (2074) 59X59 (3028)

Serial 1.16 6 16.33 38.33 82.66 174.33

MODULE Pool 0.14 0.7 2.03 4.8866 10.5213 18.765

MPI 0.0783 0.43 1.134 2.26 4.93 10.1775

Table 7.2 shows the analysis data for different types of computing modules. As we can

see, the serial computing numbers are exceptionally high as the time for each sample is

added to the processing time. The Pool takes less time for computation but some overhead

to create a process pool. Although Pool can have the same number of cores as MPI, note

74

Figure 7.4: Pool vs. MPI implementation on grid simulator method

that a cluster has dedicated nodes for computation, unlike a single machine that has multiple

processes running. Hence, even with the same number of cores, the Pool cannot exploit the

system efficiently. On the other hand, MPI guarantees the job to start with the requested

number of cores with high computational power. Figure 7.4 shows a plot of Pool vs. MPI

module for the grid simulator method for 20 samples. For a smaller grid size, we do not

see much difference in the processing time. However, as the grid size increases, we see that

the processing time for MPI is approximately half as compared to Pool.

75

BIBLIOGRAPHY

[1] N. Tyler, “While smart textiles for wearables remains in its infancy, its potential is

huge,” newelectronics, The site for electronic design engineers, pp. 14–16, 2016.

[2] G. A. Pendharkar and A. P. Jayasumana, Virtual Coordinate Systems and Coordinate-

Based Operations for IoT. Cham: Springer International Publishing, 2019, pp.

159–207. [Online]. Available: https://doi.org/10.1007/978-3-319-93557-7 10

[3] R. Negra, I. Jemili, and A. Belghith, “Wireless body area networks: Applications and

technologies,” Procedia Computer Science, vol. 83, pp. 1274 – 1281, 2016, the 7th

International Conference on Ambient Systems, Networks and Technologies (ANT 2016)

/ The 6th International Conference on Sustainable Energy Information Technology

(SEIT-2016) / Affiliated Workshops. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S187705091630299X

[4] W. H. O. (WHO), “Current health expenditure as a percentage of gross

domestic product (gdp),” Global Health Observatory (GHO), 2015. [Online]. Available:

https://www.who.int/gho/health financing/health expenditure/en/

[5] CMS, “National health expenditure data - historical,” U.S. Centers for

Medicare and Medicaid Services, 2017. [Online]. Available: https://www.

cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

NationalHealthExpendData/NationalHealthAccountsHistorical

[6] W. H. O. (WHO), “World report on ageing and health,” Ageing and life-course, 2015.

[7] J. Habetha, “The myheart project - fighting cardiovascular diseases by prevention and

early diagnosis,” in 2006 International Conference of the IEEE Engineering in Medicine

and Biology Society, vol. Supplement, Aug 2006, pp. 6746–6749.

76

[8] R. Paradiso, G. Loriga, N. Taccini, A. Gemignani, and B. Ghelarducci, “Wealthy, a

wearable health-care system: New frontier on etextile,” Journal of Telecommunications

and Information Technology, vol. 4, pp. 105–113, 01 2005.

[9] A. Mazzoldi, D. de rossi, F. Lorussi, E. Scilingo, and R. Paradiso, “Smart textiles for

wearable motion capture systems,” AUTEX Res. J., vol. 2, pp. 199–203, 12 2002.

[10] M. Chen, Y. Ma, J. Song, C.-F. Lai, and B. Hu, “Smart clothing: Connecting

human with clouds and big data for sustainable health monitoring,” Mobile

Networks and Applications, vol. 21, no. 5, pp. 825–845, 2016. [Online]. Available:

https://doi.org/10.1007/s11036-016-0745-1

[11] P. Pandian, K. Mohanavelu, K. Safeer, T. Kotresh, D. Shakunthala, P. Gopal, and

V. Padaki, “Smart vest: Wearable multi-parameter remote physiological monitoring

system,” Medical Engineering & Physics, vol. 30, no. 4, pp. 466 – 477, 2008. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S1350453307000975

[12] B. Mukhopadhyay, S. Sarangi, and S. Kar, “Novel rssi evaluation models for accurate

indoor localization with sensor networks,” in 2014 Twentieth National Conference on

Communications (NCC), Feb 2014, pp. 1–6.

[13] D. Turner, S. Savage, and A. C. Snoeren, “On the empirical performance of self-

calibrating wifi location systems,” in 2011 IEEE 36th Conference on Local Computer

Networks, Oct 2011, pp. 76–84.

[14] P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. Jha, “Node localization using mobile

robots in delay-tolerant sensor networks,” IEEE Transactions on Mobile Computing,

vol. 4, no. 3, pp. 285–296, May 2005.

[15] R. Hovorka, L. Chassin, M. Wilinska, V. Canonico, J. Akwe, M. Federici, M. Massi-

Benedetti, I. Hutzli, C. Zaugg, H. Kaufmann, M. Both, T. Vering, H. Schaller,

77

L. Schaupp, M. Bodenlenz, and T. Pieber, “Closing the loop: The adicol experience,”

Diabetes technology & therapeutics, vol. 6, pp. 307–18, 07 2004.

[16] P. Rubel, F. Gouaux, J. Fayn, D. Assanelli, A. Cuce, L. Edenbrandt, and C. Malossi,

“Towards intelligent and mobile systems for early detection and interpretation of cardi-

ological syndromes,” in Computers in Cardiology 2001. Vol.28 (Cat. No.01CH37287),

Sep. 2001, pp. 193–196.

[17] A. Halteren, R. Bults, K. Wac, N. Dokovsky, G. Koprinkov, I. Widya, D. Konstantas,

V. Jones, and R. Herzog, “Wireless body area networks for healthcare: the mobihealth

project,” Studies in health technology and informatics, vol. 108, pp. 181–93, 02 2004.

[18] R. Paradiso, A. Gemignani, E. P. Scilingo, and D. De Rossi, “Knitted bioclothes for car-

diopulmonary monitoring,” in Proceedings of the 25th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439),

vol. 4, Sep. 2003, pp. 3720–3723 Vol.4.

[19] M. Di Rienzo, F. Rizzo, G. Parati, G. Brambilla, M. Ferratini, and P. Castiglioni,

“Magic system: a new textile-based wearable device for biological signal monitoring.

applicability in daily life and clinical setting,” Conference proceedings : ... Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society. IEEE

Engineering in Medicine and Biology Society. Conference, vol. 7, pp. 7167–9, 02 2005.

[20] D. C. Dhanapala and A. P. Jayasumana, “Anchor selection and topology preserving

maps in wsns — a directional virtual coordinate based approach,” in 2011 IEEE 36th

Conference on Local Computer Networks, Oct 2011, pp. 571–579.

[21] J. Newsome and D. Song, “Gem: Graph embedding for routing and data-centric

storage in sensor networks without geographic information,” in Proceedings of the

1st International Conference on Embedded Networked Sensor Systems, ser. SenSys ’03.

78

New York, NY, USA: Association for Computing Machinery, 2003, p. 76–88. [Online].

Available: https://doi.org/10.1145/958491.958501

[22] D. C. Dhanapala and A. P. Jayasumana, “Directional virtual coordinate systems for

wireless sensor networks,” in 2011 IEEE International Conference on Communications

(ICC), June 2011, pp. 1–6.

[23] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network coordinates systems,

design, and security,” IEEE Communications Surveys Tutorials, vol. 12, no. 4, pp. 488–

503, Fourth 2010.

[24] A. Gunathillake, A. V. Savkin, and A. P. Jayasumana, “Maximum likelihood topol-

ogy maps for wireless sensor networks using an automated robot,” in 2016 IEEE 41st

Conference on Local Computer Networks (LCN), Nov 2016, pp. 339–347.

[25] D. C. Dhanapala and A. P. Jayasumana, “Topology preserving maps—extracting layout

maps of wireless sensor networks from virtual coordinates,” IEEE/ACM Transactions

on Networking, vol. 22, no. 3, pp. 784–797, June 2014.

[26] A.-M. Kermarrec, A. Mostefaoui, M. Raynal, G. Tredan, and A. C. Viana, “Large-

scale networked systems: From anarchy to geometric self-structuring,” in Distributed

Computing and Networking, V. Garg, R. Wattenhofer, and K. Kothapalli, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 25–36.

[27] M. Shah and A. Sardana, “Searching in internet of things using vcs,” in Proceedings of

the First International Conference on Security of Internet of Things, ser. SecurIT ’12.

New York, NY, USA: Association for Computing Machinery, 2012, p. 63–67. [Online].

Available: https://doi.org/10.1145/2490428.2490437

[28] M. Li, P. Jia, Y. Xu, and Y. Yuan, “Traveling path tracking algorithm in virtual co-

ordinate system for intelligent vehicle,” in 2012 IEEE 2nd International Conference on

Cloud Computing and Intelligence Systems, vol. 03, Oct 2012, pp. 1183–1187.

79

[29] P. Leone and K. Samarasinghe, “Greedy routing on virtual raw anchor coordinate (vrac)

system,” in 2016 International Conference on Distributed Computing in Sensor Systems

(DCOSS), May 2016, pp. 52–58.

[30] A. P. Jayasumana, R. Paffenroth, and S. Ramasamy, in 2016 IEEE International Con-

ference on Communications (ICC), May 2016, pp. 1–6.

[31] J. Sheu, M. Ding, and K. Hsieh, “Routing with hexagonal virtual coordinates in wireless

sensor networks,” in 2007 IEEE Wireless Communications and Networking Conference,

March 2007, pp. 2929–2934.

[32] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic

routing without location information,” in Proceedings of the 9th Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’03. New York, NY,

USA: Association for Computing Machinery, 2003, p. 96–108. [Online]. Available:

https://doi.org/10.1145/938985.938996

[33] P. Cheng, T. Han, X. Zhang, R. Zheng, and Z. Lin, “A single-mobile-anchor based dis-

tributed localization scheme for sensor networks,” in 2016 35th Chinese Control Con-

ference (CCC), July 2016, pp. 8026–8031.

[34] H.-J. Jin and J. Weissmüller, “A material with electrically tunable strength and

flow stress,” Science, vol. 332, no. 6034, pp. 1179–1182, 2011. [Online]. Available:

https://science.sciencemag.org/content/332/6034/1179

[35] J. Bensmail, F. M. Inerney, and N. Nisse, “Metric dimension: from graphs to oriented

graphs,” 10th Latin & American Algorithms, no. 02098194, pp. 111–123, 2019.

[36] E. W. Weisstein, “Np-hard problem,” http://mathworld.wolfram.com/

NP-HardProblem.html, accessed: 2020-17-03.

80

[37] J. D´iaz, O. Pottonen, and E. J. van Leeuwen, “Planar metric dimension

is np-complete,” CoRR, vol. abs/1107.2256, 2011. [Online]. Available: http:

//arxiv.org/abs/1107.2256

[38] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,

and function using networkx,” in Proceedings of the 7th Python in Science Conference,

G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 –

15.

[39] S. Pritam, “Virtual coordinate based techniques for wireless sensor networks: A simu-

lation tool and localization & planarization algorithms,” Master’s thesis, Walter Scott,

Jr. College of Engineering, 2013.

[40] A. Marowka, “Performance study of the first three intel multicore processors.” Scalable

Computing: Practice and Experience, vol. 10, 01 2009.

[41] P. Mane. (2017) Python multiprocessing: Pool vs process – comparative analysis.

[Online]. Available: https://www.ellicium.com/python-multiprocessing-pool-process/

[42] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman,

“High performance computing using mpi and openmp on multi-core parallel

systems,” Parallel Computing, vol. 37, no. 9, pp. 562 – 575, 2011, emerging

Programming Paradigms for Large-Scale Scientific Computing. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167819111000159

[43] wiki, “Computer cluster,” 2019, [Online; accessed 22-February-2019]. [Online].

Available: https://en.wikipedia.org/wiki/Computer cluster

[44] J. Andreu-Perez, D. R. Leff, H. M. D. Ip, and G. Yang, “From wearable sensors to

smart implants-–toward pervasive and personalized healthcare,” IEEE Transactions on

Biomedical Engineering, vol. 62, no. 12, pp. 2750–2762, Dec 2015.

81

[45] M. J. Gardner and D. G. Altman, “Confidence intervals rather than p values:

estimation rather than hypothesis testing.” BMJ, vol. 292, no. 6522, pp. 746–750,

1986. [Online]. Available: https://www.bmj.com/content/292/6522/746

[46] T. H. Illangasekare, Q. Han, and A. P. Jayasumana, “Environmental underground

sensing and monitoring,” in Underground Sensing, S. Pamukcu and L. Cheng,

Eds. Academic Press, 2018, pp. 203 – 246. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/B9780128031391000047

[47] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with guaranteed delivery

in ad hoc wireless networks,” Wirel. Netw., vol. 7, no. 6, p. 609–616, Nov. 2001.

[Online]. Available: https://doi.org/10.1023/A:1012319418150

[48] Qing Cao and T. Abdelzaher, “A scalable logical coordinates framework for routing in

wireless sensor networks,” in 25th IEEE International Real-Time Systems Symposium,

2004, pp. 349–358.

[49] D. B. Johnson, D. A. Maltz, and J. Broch, DSR: The Dynamic Source Routing Protocol

for Multihop Wireless Ad Hoc Networks. USA: Addison-Wesley Longman Publishing

Co., Inc., 2001, p. 139–172.

[50] R. Jin, H. Wang, B. Peng, and N. Ge, “Research on rssi-based localization in wireless

sensor networks,” in 2008 4th International Conference on Wireless Communications,

Networking and Mobile Computing, 2008, pp. 1–4.

[51] B. Karp and H. T. Kung, “Gpsr: Greedy perimeter stateless routing for

wireless networks,” in Proceedings of the 6th Annual International Conference on

Mobile Computing and Networking, ser. MobiCom ’00. New York, NY, USA:

Association for Computing Machinery, 2000, p. 243–254. [Online]. Available:

https://doi.org/10.1145/345910.345953

82

[52] C. Finn and D. L. Williams, “An aeromagnetic study of mount st. helens,” Journal of

Geophysical Research: Solid Earth, vol. 92, no. B10, pp. 10 194–10 206, 1987. [Online].

Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB092iB10p10194

[53] I. Bose, J. Irazoqui, J. Moskow, E. Bardes, T. Zyla, and D. Lew, “Assembly of scaffold-

mediated complexes containing cdc42p, the exchange factor cdc24p, and the effector

cla4p required for cell cycle-regulated phosphorylation of cdc24p,” The Journal of bio-

logical chemistry, vol. 276, pp. 7176–86, 04 2001.

[54] D. Niculescu and B. Nath, “Dv based positioning in ad hoc networks,” Telecommuni-

cation Systems, vol. 22, pp. 267–280, 01 2003.

[55] E. Parnell, M. Viering, K. Rhodes, and P. Geyer, “A test of insulator interactions in

drosophila,” The EMBO journal, vol. 22, pp. 2463–71, 06 2003.

[56] H. Frey, S. Ruehrup, and I. Stojmenović, Routing in Wireless Sensor Networks, 05 2009,

pp. 81–111.

[57] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a

survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6–28, 2004.

[58] I. Amundson and X. Koutsoukos, A Survey on Localization for Mobile Wireless Sensor

Networks, 09 2009, vol. 5801, pp. 235–254.

[59] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual sensor networks - a re-

source efficient approach for concurrent applications,” in Fourth International Confer-

ence on Information Technology (ITNG’07), 2007, pp. 111–115.

[60] R. Flury and R. Wattenhofer, “Randomized 3d geographic routing,” in IEEE INFO-

COM 2008 - The 27th Conference on Computer Communications, 2008, pp. 834–842.

[61] T. R. Babu, A. Chatterjee, S. Khandeparker, A. V. Subhash, and S. Gupta,

“Geographical address classification without using geolocation coordinates,” in

83

Proceedings of the 9th Workshop on Geographic Information Retrieval, ser. GIR ’15.

New York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:

https://doi.org/10.1145/2837689.2837696

[62] J. Dong, K. E. Ackermann, B. Bavar, and C. Nita-Rotaru, “Secure and robust virtual

coordinate system in wireless sensor networks,” ACM Trans. Sen. Netw., vol. 6, no. 4,

Jul. 2010. [Online]. Available: https://doi.org/10.1145/1777406.1777408

[63] J. Seibert, S. Becker, C. Nita-Rotaru, and R. State, “Newton: Securing virtual coor-

dinates by enforcing physical laws,” IEEE/ACM Transactions on Networking, vol. 22,

no. 3, pp. 798–811, 2014.

[64] D. Zage and C. Nita-Rotaru, “Robust decentralized virtual coordinate systems in

adversarial environments,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, Dec. 2010.

[Online]. Available: https://doi.org/10.1145/1880022.1880032

[65] S. Beckery, J. Seibert, D. Zage, C. Nita-Rotaru, and R. Statey, “Applying game theory

to analyze attacks and defenses in virtual coordinate systems,” in 2011 IEEE/IFIP 41st

International Conference on Dependable Systems Networks (DSN), 2011, pp. 133–144.

[66] Qing Fang, Jie Gao, L. J. Guibas, V. de Silva, and Li Zhang, “Glider: gradient

landmark-based distributed routing for sensor networks,” in Proceedings IEEE 24th

Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 1,

2005, pp. 339–350 vol. 1.

[67] J. Bruck, J. Gao, and A. Jiang, “Map: Medial axis based geometric routing in sensor

networks,” Wireless Networks, vol. 13, pp. 835–853, 2007.

[68] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing for dynamic

graphs,” in IEEE INFOCOM 2009, 2009, pp. 1647–1655.

84

[69] M. . Tsai, H. . Yang, and W. . Huang, “Axis-based virtual coordinate assignment

protocol and delivery-guaranteed routing protocol in wireless sensor networks,” in IEEE

INFOCOM 2007 - 26th IEEE International Conference on Computer Communications,

2007, pp. 2234–2242.

[70] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network

coordinate system,” ACM SIGCOMM Computer Communication Review, vol. 34, 08

2004.

[71] L. Lehman and S. Lerman, “A decentralized network coordinate system for robust

internet distance,” in Third International Conference on Information Technology: New

Generations (ITNG’06), 2006, pp. 631–637.

[72] T. S. E. Ng and H. Zhang, “A network positioning system for the internet,” in Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference, ser. ATEC

’04. USA: USENIX Association, 2004, p. 11.

[73] T. S. E. Ng and Hui Zhang, “Predicting internet network distance with coordinates-

based approaches,” in Proceedings.Twenty-First Annual Joint Conference of the IEEE

Computer and Communications Societies, vol. 1, 2002, pp. 170–179 vol.1.

[74] P. Francis, S. Jamin, Cheng Jin, Yixin Jin, D. Raz, Y. Shavitt, and L. Zhang, “Idmaps:

a global internet host distance estimation service,” IEEE/ACM Transactions on Net-

working, vol. 9, no. 5, pp. 525–540, 2001.

[75] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti, “Lighthouses for scalable

distributed location.” 01 2003, pp. 278–291.

[76] M. Costa, M. Castro, R. Rowstron, and P. Key, “Pic: practical internet coordinates

for distance estimation,” in 24th International Conference on Distributed Computing

Systems, 2004. Proceedings., 2004, pp. 178–187.

85

[77] L. J. Guibas, C. Holleman, and L. E. Kavraki, “A probabilistic roadmap planner for

flexible objects with a workspace medial-axis-based sampling approach,” in Proceedings

1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human

and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat.

No.99CH36289), vol. 1, 1999, pp. 254–259 vol.1.

[78] N. Amenta, M. Bern, and D. Eppstein, “The crust and the beta-skeleton: Combinatorial

curve reconstruction.” Graphical Models and Image Processing, vol. 60, pp. 125–135, 01

1998.

[79] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust, unions of balls, and the

medial axis transform,” Comput. Geom. Theory Appl., vol. 19, no. 2–3, p. 127–153,

Jul. 2001. [Online]. Available: https://doi.org/10.1016/S0925-7721(01)00017-7

[80] H. Choi, S. Choi, and H. Moon, “Mathematical theory of medial axis transform,” Pacific

J Math, vol. 181, 12 1997.

[81] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A scalable location

service for geographic ad hoc routing,” in Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’00. New York, NY,

USA: Association for Computing Machinery, 2000, p. 120–130. [Online]. Available:

https://doi.org/10.1145/345910.345931

[82] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Proceedings of the

3rd ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’03. New York,

NY, USA: Association for Computing Machinery, 2003, p. 143–152. [Online]. Available:

https://doi.org/10.1145/948205.948223

[83] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling internet topology,” IEEE

Communications Magazine, vol. 35, no. 6, pp. 160–163, 1997.

86

APPENDIX A

LOCALIZATION AND ANCHOR DATA

This section entails the data for the plots in Chapter 5 for all the network sizes - 19X19,

24X24, 29X29, 34X34. Here, we have the information about the percentages of localized

node for each void corresponding to a certain percentages of missing nodes in the Smart

Fabric. The data has been rounded up to 2 decimal points.

The average value or the mean of data is presented in addition to the confidence interval

for the designated value. In statistics, a confidence interval (C. I.) is defined as an estimated

range of values which is likely to include an unknown population parameter (in this case the

mean), the estimated range being calculated from a given set of sample data (from the 60

samples). This is called an estimation approach [45].

Additionally, the selection of a confidence level (%) for an interval determines the proba-

bility that the confidence interval produced will contain the true parameter value. Confidence

levels that are commonly used are 0.90, 0.95, and 0.99. These levels correspond to percent-

ages of the area of the normal density curve. Hence, for a confidence level of 95% (0.95), the

probability of observing a value outside of this area is less than 0.05. In our example, we

have a confidence level of 95%. The C.I. is calculated using the scipy.stats library.

Following tables A.1, A.2, A.3, and A.4 hold the data for all the plots from Chapter 5.

87

Table A.1: Localization and Anchor data for SF Grid with size 19X19 (60 samples)

PERCENTAGES OF MISSING NODES (%)

10 20 30 40 50

% Ln Anchors % Ln Anchors % Ln Anchors %Ln Anchors %Ln Anchors

NUMBER

OF VOIDS

Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I.

1 95.72 95.06 96.38 6 5 6 93.75 92.52 94.97 6 5 6 92.57 91.1 94.04 6 6 7 90.93 89.06 92.8 6 6 7 89.34 86.74 91.94 7 6 7

2 93.67 93.05 94.29 6 6 7 90.56 89.53 91.59 7 7 8 87.02 85.54 88.5 7 7 8 81.65 79.78 83.52 8 7 9 74.09 70.8 77.37 7 7 8

3 94.08 93.44 94.71 6 6 7 88.43 87.37 89.49 7 7 8 83.21 81.62 84.81 8 7 9 77.83 75.71 79.94 8 7 9 69.35 66.43 72.28 7 6 8

4 94.6 94.07 95.13 6 6 7 88.2 87.15 89.26 8 7 8 83.03 81.46 84.6 8 8 9 75.33 72.84 77.82 8 8 9 65.59 63.08 68.11 8 7 9

5 94.54 93.87 95.21 7 6 7 87.43 86.44 88.42 8 8 9 80.98 79.27 82.67 8 7 9 71.39 69.24 73.54 8 8 9 64.26 61.18 67.34 7 6 8

Table A.2: Localization and Anchor data for SF Grid with size 24X24 (60 samples)

PERCENTAGES OF MISSING NODES (%)

10 20 30 40 50

% Ln Anchors % Ln Anchors % Ln Anchors %Ln Anchors %Ln Anchors

NUMBER

OF VOIDS

Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I.

1 96.2 95.63 96.71 6 6 7 94.9 93.91 95.9 6 5 6 93.71 92.35 95.07 7 6 8 92.1 90.42 93.78 7 6 7 91.16 88.8 93.52 7 6 8

2 94.85 94.22 95.48 8 7 8 91.74 90.79 92.69 8 7 9 88.9 87.47 90.34 8 7 9 85.02 83.02 87.01 8 7 9 79.43 76.84 82.02 9 7 10

3 94.28 93.8 94.76 8 7 8 88.92 88.02 89.81 9 8 9 84.97 83.54 86.4 9 8 10 81.83 80.28 83.38 10 9 11 74.89 72 77.77 9 8 10

4 93.37 92.82 93.91 8 7 8 88.4 87.27 89.54 9 8 10 83.11 81.6 84.63 10 9 10 77.88 76.21 79.56 10 9 11 71.81 69.5 74.12 10 9 11

5 93.72 93.19 94.25 8 7 9 88.44 87.64 89.24 10 10 11 81.14 79.54 82.75 10 9 11 74.6 72.66 76.55 11 10 12 68.06 65.7 70.41 10 9 11

88

Table A.3: Localization and Anchor data for SF Grid with size 29X29 (60 samples)

PERCENTAGES OF MISSING NODES (%)

10 20 30 40 50

% Ln Anchors % Ln Anchors % Ln Anchors %Ln Anchors %Ln Anchors

NUMBER

OF VOIDS

Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I.

1 97.04 96.54 97.55 6 6 7 96.91 96.14 97.68 7 6 8 95.03 93.97 96.1 7 6 7 93.33 91.75 94.91 7 6 8 94.67 92.81 96.52 7 6 8

2 95 94.56 95.41 7 7 8 92.68 91.83 93.54 8 7 9 89.91 88.63 91.19 9 8 10 87.39 85.61 89.2 10 9 11 80.23 77.36 83.23 10 9 11

3 94.81 94.33 95.3 9 8 9 90.63 89.77 91.5 9 8 10 85.77 84.09 87.44 10 10 11 81.78 79.67 83.89 10 9 11 75.52 72.58 78.45 10 9 12

4 93.7 93.22 94.14 9 8 9 89.54 88.77 90.31 10 9 11 84.58 83.29 85.86 11 10 12 79.93 78.06 81.79 12 11 13 68.13 64.41 71.85 12 11 13

5 93.93 93.47 94.40 9 9 10 89.49 88.7 90.27 11 10 12 83.16 81.86 84.47 12 11 13 76.56 74.79 78.33 13 11 14 70.31 67.89 72.72 13 11 14

Table A.4: Localization and Anchor data for SF Grid with size 34X34 (60 samples)

PERCENTAGES OF MISSING NODES (%)

10 20 30 40 50

% Ln Anchors % Ln Anchors % Ln Anchors %Ln Anchors %Ln Anchors

NUMBER

OF VOIDS

Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I.

1 97.16 96.77 97.55 7 6 7 95.69 94.91 96.46 7 6 8 95.7 94.72 96.69 8 7 9 94.77 93.53 96 8 7 9 95.33 93.88 96.79 7 6 8

2 95.6 95.2 96 8 8 9 93.17 92.46 93.89 10 9 11 92 91.05 92.95 9 8 10 88.86 87.34 90.38 10 9 11 85.44 83.29 87.58 11 9 12

3 95.27 94.9 95.63 9 9 10 91.95 91.24 92.66 10 9 11 88.4 87.07 89.73 11 10 12 84.45 82.34 86.55 12 10 13 77.89 75.02 80.73 12 11 14

4 94.52 94.1 94.94 10 9 10 90.83 90.12 91.54 11 10 12 85.92 84.96 86.88 12 11 13 81.77 80.13 83.42 13 12 14 74.94 72.47 77.41 12 11 14

5 94.34 93.9 94.77 11 10 11 90.55 89.89 91.21 12 11 12 84.76 83.75 85.77 13 12 15 77 74.17 79.79 15 13 16 69.67 66.28 73.06 15 13 16

89

Table A.5: Localization and Anchor data for SF Grid with size 39X39 (60 samples)

PERCENTAGES OF MISSING NODES (%)

10 25 40 55 70

% Ln Anchors % Ln Anchors % Ln Anchors %Ln Anchors %Ln Anchors

NUMBER

OF VOIDS

Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I. Avg C.I.

1 97.37 96.92 97.83 7 6 7 95.99 95.26 96.72 8 7 8 95.8 94.66 96.94 7 6 8 93.94 92.37 95.52 8 6 9 77.28 69.32 85.24 9 7 11

2 96.14 95.75 96.53 9 8 9 93.04 92.17 93.91 10 9 11 89.49 87.57 91.4 11 10 12 80.93 78.23 83.63 13 11 15 65.58 59.67 71.48 10 8 12

3 95.13 94.75 95.51 9 9 10 91.45 90.71 92.19 12 11 13 85.9 84.37 87.43 15 13 16 74.36 70.14 78.59 13 12 15 58.55 53.51 63.59 10 8 12

4 94.74 94.28 95.19 10 10 11 88.59 87.69 89.49 12 12 13 82.37 80.37 84.36 15 13 16 72.31 69.23 75.4 15 13 18 50.69 45.79 55.58 12 11 14

5 94.04 93.62 94.45 11 10 12 87.71 86.68 88.74 14 12 15 81.22 79.62 82.83 16 14 18 65.89 62.23 69.55 17 15 19 47.18 42.45 51.9 12 10 14

90

APPENDIX B

SOURCE CODE

This section contains the source code methods for the Thesis. The programming language

used is Python 3.6 and some of the main used libraries are - collections, numpy, warnings,

scipy, networkx, matplotlib, mpi4py. The code is divided in two main sections - Admin or

Driver Methods and Adaptive Localization Methods.

B.1 GRID SIMULATOR

This section contains the code for Grid Simulator including the Grid Generator and

helper methods for the same.

B.1.1 DRIVER METHOD

def simulate_network(L, B, sX , sY , percent_missing , voids):

’’’Simulates Grid based on user input

:param L: Length of Grid

:param B: Breadth of Grid

:param sX , sY: Base coordinates for the grid

:param percent_missing: Percentages of missing nodes in SF Grid

:param voids: Number of voids in SF Grid

:return Adjacency Matrix for the simulated grid

’’’

locations , totalNodes = rectangle(L, B, sX , sY)

innerNodes = totalNodes - (2 * (L + 1) + (2 * (B + 1) - 4))

node_densities = round((int(percent_missing) * innerNodes) / 100)

border_nodes , adjacency_matrix = init_comp(locations)

iterno = 0

bn_total = len(border_nodes)

91

b_nodes = border_nodes.copy()

while True:

iterno += 1

if iterno == 1:

pass

else:

if len(new_adjacency_matrix) == bn_total + (innerNodes -

node_densities) and not dis_nodes:

break

else:

b_nodes = border_nodes.copy()

ran_voids = multiple_voids_generator(node_densities , voids)

d_nodes = cont_void(L, B, percent_missing , totalNodes , locations ,

b_nodes , adjacency_matrix , ran_voids)

with open(str(L) + "x" + str(B) + "_" + str(percent_missing) +

"_Fabric_Network.txt") as file:

original_coor = np.array ([[float(digit) for digit in line.

split ()] for line in file])

new_adjacency_matrix = adj_matrix(original_coor)[0]

dis_nodes = find_disconn_nodes(L, new_adjacency_matrix)

if new_adjacency_matrix.size == 0:

return None

return new_adjacency_matrix

Listing B.1: Grid Simulator

B.1.2 HELPER METHODS

def rectangle(L, B, sX , sY):

’’’Method to plot the initial rectangular Grid

:param L: Length of Grid

:param B: Breadth of Grid

:param sX , sY: Base coordinates for the grid

92

’’’

nPoints = (L+1)*(B+1)

xval = sX

yval = sY

arraypoints = np.empty ([nPoints ,2])

f = open(str(L) + "x" + str(B) + "_Fabric_Network.txt", "w")

for rowElement in range(nPoints):

X, Y = xval , yval

arraypoints[rowElement] = int(X), int(Y)

yval += 1

if yval > (B+sY):

yval = sY

xval += 1

f.write(str(X) + ’\t’ + str(Y) + ’\n’)

else:

f.write(str(X) + ’\t’ + str(Y) + ’\n’)

f.close ()

return arraypoints , nPoints

Listing B.2: Rectangle plot

def init_comp(locations):

’’’Method to compute border nodes and the adjacency matrix for the

ploted rectangle

:param locations: physical coordinates

:return: border nodes , adjacency matrix

’’’

bn = []

adjacency_matrix = (adj_matrix(locations)[0]).tolist ()

for row in range(len(adjacency_matrix)):

for col in range(len(adjacency_matrix)):

if adjacency_matrix[row][col] > 1:

adjacency_matrix[row][col] = 0

for node in range(1, len(adjacency_matrix) + 1):

93

neighbor = adjacency_matrix[node - 1]. count (1)

if neighbor == 4:

pass

else:

bn.append(node)

return bn , adjacency_matrix

Listing B.3: Initial Rectangle Computation

def adj_matrix(pos_coor):

’’’Method to Compute the adjacency matrix using position

coordinates

:param pos_coor: physical coordinates

:return: adjacency matrix , list of nodes

’’’

pos = (())

nodes = []

if type(pos_coor) == np.ndarray:

a = pos_coor.tolist ()

else:

a = pos_coor

for i in range(len(a)):

tup = tuple(a[i])

pos = pos + (tup ,)

list_nodes = list(pos)

for i in range(1, len(list_nodes) + 1):

nodeid = i

nodes.append(nodeid)

dist_matrix = d.pdist(pos_coor)

adjacency_matrix = d.squareform(dist_matrix)

return adjacency_matrix , nodes

Listing B.4: Adjacency Matrix Computation

def manual_void_creator(L, B, missing , absent_nodes , points ,

node_locations):

94

’’’Method to manually create a void using given data points (used

by "cont_void" function)

:param L: Length of Grid

:param B: Breadth of Grid

:param missing: Percentages of missing nodes

:param: absent_nodes: Nodes to be deleted

:param: points: Data points

:param: node_locations: Physical Coordinates of data points

’’’

f = open(str(L) + "x" + str(B) + "_" + str(missing) + "_Fabric_Network

.txt", "w")

for i in range(points):

if i+1 in absent_nodes:

pass

else:

X, Y = node_locations[i]

f.write(str(int(X)) + ’\t’ + str(int(Y)) + ’\n’)

f.close ()

Listing B.5: Manual Void Creator

def random_node_neighbors(node , matrix , bn , visited_nodes , deleted_nodes):

’’’Method to sample random number of neighbors to expand the void.

This method expands from bfs method as it finds a path to expand the

void

:param node: The Grid node

:param matrix: Adjacency matrix

:param: bn: Border nodes

:param: visited_nodes: Already visited nodes

:param: deleted_nodes: Nodes selected for deletion

:return: random number of neighbors for the given grid node

’’’

neighbors = [ni + 1 for ni, x in enumerate(matrix[node - 1]) if x == 1

and ni + 1 not in bn and ni + 1 not in visited_nodes

95

and ni + 1 not in deleted_nodes]

if len(neighbors) > 1:

no_neighbors = random.randrange(1, len(neighbors) + 1)

elif len(neighbors) == 1:

no_neighbors = 1

else:

no_neighbors = 0

return random.sample(neighbors , k=no_neighbors)

Listing B.6: Random Neighbor

def find_node_neighbors(L, node , bn , deleted_nodes):

’’’Method to avoid deleting the boundaries of the void when

creating multiple voids

:param L: Length of Grid

:param: node: The grid node

:param: bn: Border nodes

:param: deleted_nodes: Nodes selected for deletion

:return: Nodes to be deleted to create a void

’’’

boundries = [node - (L + 1), node + (L + 1), node - 1, node + 1, node

+ L, node - L, node + (L + 2), node - (L + 2)]

return [x for x in boundries if x not in bn and x not in deleted_nodes

]

Listing B.7: Nodes to be deleted

def bfs_connected_component(graph , start , bn , missing_nodes , deleted):

’’’Breadth First Search (BFS) method to create a continuous void

:param graph: Grid graph created using networkx module

:param: start: The start node for void creation

:param: bn: Border nodes

:param: missing_nodes: Percentages of missing nodes

:param: deleted_nodes: Nodes selected for deletion

:return: Nodes to be deleted to create a void

’’’

96

explored = []

queue = [start]

visited = [start]

while queue:

node = queue.pop (0)

explored.append(node)

neighbours = random_node_neighbors(node , graph , bn, visited ,

deleted)

for neighbour in neighbours:

if len(visited) >= missing_nodes:

return visited

if neighbour not in visited:

queue.append(neighbour)

visited.append(neighbour)

return visited

Listing B.8: BFS for nodes to be deleted

def multiple_voids_generator(N, K):

’’’Method to generate random sized partition values for a given

percentage

:param N: Total percentage of missing nodes

:param K: required number of partitions

:return: partitioned value of N

’’’

res = np.ones(K, dtype=int)

positions = [i for i in range(K)]

while N - K > 0:

if positions == []:

positions = [i for i in range(K)]

pos = random.choice(positions)

positions.pop(positions.index(pos))

if N-K > 2:

97

x = random.randrange (1, (N-K+1) //2)

else:

x = N-K

res[pos] += x

N -= x

return res

Listing B.9: Random-sized voids

def cont_void(L, B, missing , nNodes , locations , bn , adjacency_matrix ,

partitions):

’’’Method to generate a single continuous void

:param L: Length of Grid

:param B: Breadth of Grid

:param: missing_nodes: Percentages of missing nodes

:param: nNodes: Total number of nodes in grid

:param: locations: Physical node coordinates

:param: bn: Border nodes

:param: adjacency_matrix: Adjacency Matrix of grid

:param: partitions: Partitions for given missing_nodes

:return: partitioned value of N

’’’

deleted_nodes = []

for p in partitions:

while True:

start_node = random.randrange (1, nNodes + 1, step =1)

if start_node not in bn and start_node not in deleted_nodes:

break

deleted_nodes += bfs_connected_component(adjacency_matrix ,

start_node , bn, p, deleted_nodes)

for d_node in deleted_nodes:

bn += find_node_neighbors(L, d_node , bn , deleted_nodes)

manual_void_creator(L, B, missing , deleted_nodes , nNodes , locations)

98

return len(deleted_nodes)

Listing B.10: Continuous voids

def short_path(G, source , target):

’’’Method to compute shortest path

:param G: Graph object created from networkx

:param source: source node

:param target: target node

:return: shortest path , path length

’’’

(length , path) = nx.single_source_dijkstra(G, source)

try:

a = path[target]

return len(a) - 1, a

except KeyError:

raise nx.NetworkXNoPath("node %s not reachable from %s" % (source ,

target))

Listing B.11: Shortest path

def graph_generator(adjacency_matrix , nodes):

’’’Method to construct the graph using adjacency matrix and node list

:param: adjacency_matrix: Adjacency Matrix of grid

:param: nodes: Node list

:return: Graph object

’’’

edges = []

r = 1

for i in range(len(adjacency_matrix)):

for j in range(len(adjacency_matrix)):

if 0 < adjacency_matrix[i][j] <= r:

edge = nodes[i], nodes[j]

edges.append(edge)

G = nx.Graph ()

G.add_nodes_from(nodes)

99

G.add_edges_from(edges)

return G

Listing B.12: Graph generator

def find_disconn_nodes(L, adjacency_matrix):

’’’Method to find any disconnected nodes in the grid

:param: L: Length of grid

:param: adjacency_matrix: Adjacency Matrix of grid

:return: Boolean

’’’

anchor_nodes = [1, L + 1]

node_IDs = [i for i in range(1, len(adjacency_matrix) + 1)]

G = graph_generator(np.array(adjacency_matrix).transpose (), node_IDs)

path_matrix = np.empty ([len(node_IDs), len(anchor_nodes)])

for node in node_IDs:

try:

path_matrix[node - 1] = int(short_path(G, node , anchor_nodes

[0]) [0]), int(

short_path(G, node , anchor_nodes [1]) [0])

except:

return True

return False

Listing B.13: Find disconnected nodes

def plot_edges(L, B, percent_missing , voids):

’’’Method to plot the grid with graph edges

:param: L: Length of gri

:param: B: Breadth of grid

:param: percent_missing: Percentages of missing nodes

:param: voids: Number of voids in grid

’’’

nodes = []

edges = []

points = np.loadtxt(str(L) + "x" + str(B) + "_" + str(percent_missing)

100

+ "_Fabric_Network.txt")

x, y = points.T

a = list(zip(x, y))

GnodeXY = np.asarray(a)

pos = (())

for i in range(len(a)):

tup = tuple(a[i])

pos = pos + (tup ,)

list_nodes = list(pos)

for i in range(1, len(list_nodes) + 1):

nodeid = i

nodes.append(nodeid)

dist_matrix = d.pdist(GnodeXY)

sqform_matrix = d.squareform(dist_matrix)

for i in range(len(sqform_matrix)):

for j in range(len(sqform_matrix)):

if 0 < sqform_matrix[i][j] <= 1:

edge = nodes[i], nodes[j]

edges.append(edge)

G = nx.Graph ()

for i in nodes:

G.add_node(i, pos=list_nodes[i - 1])

G.add_edges_from(edges)

posi = nx.get_node_attributes(G, ’pos’)

nx.draw(G, pos=posi , node_color = ’blue’, edge_color = ’lightsteelblue

’, node_size = 30)

plt.axis(’equal’)

plt.savefig(str(L) + ’x’ + str(B) + ’_’ + str(percent_missing) + ’_’ +

str(voids) + ’.png’ , dpi =200)

Listing B.14: Graph plot with edges

101

B.2 ADAPTIVE LOCALIZATION METHOD

This section contains the code for the Adaptive Localization algorithm. It includes the

driver script, MPI driver function, Adaptive Localization method, and the other helper

methods.

B.2.1 DRIVER METHODS

’’’

Script to create a job script and submit job with gievn inputs

’’’

#!/bin/bash

if [-f job.sh]; then

rm job.sh

fi

usage() {

echo ""

echo "Usage: $0 -n nCores -s nSamples -l nwLength -b nwBreadth -e eArgs

(y/n)"

echo -e "\t-n Number of processors needed"

echo -e "\t-s Number of samples needed"

echo -e "\t-l Length of the SFN"

echo -e "\t-b Breadth of the SFN"

echo -e "\t-e Additional arguements" 1>&2

}

while getopts ":n:s:l:b:t:e:" options; do

case "${options}" in

n)

nCores=${OPTARG}

;;

s)

nSamples=${OPTARG}

;;

102

l)

nwLength=${OPTARG}

;;

b)

nwBreadth=${OPTARG}

;;

e)

eArgs=${OPTARG}

;;

:)

echo "Error: -${OPTARG} requires an argument."

exit_abnormal

;;

*)

exit_abnormal

;;

esac

done

if [-z "$nCores"] || [-z "$nSamples"] || [-z "$nwLength"] || [-z "

$nwBreadth"]; then

echo "Required parameters are empty"

usage

fi

if [-f job.sh]; then

rm job.sh

fi

cp sub_script.sh job.sh

sed -i ’s/$nCores/’$nCores ’/g’ job.sh

sed -i ’s/$L/’$nwLength ’/g’ job.sh

sed -i ’s/$B/’$nwBreadth ’/g’ job.sh

if ["$eArgs" = "y"]; then

echo "Requesting additional parameters ..."

103

read -p "Enter the list of percentages of missing nodes (with spaces): "

per_missing

read -p "Enter the list of voids (with spaces): " voids

qsub job.sh -s $nSamples -l $nwLength -b $nwBreadth -p $per_missing -v

$voids

else

echo "No additional parameters"

qsub job.sh -s $nSamples -l $nwLength -b $nwBreadth

fi

exit 0

Listing B.15: Driver script

""" MPI Driver Method that gets triggered by the job. This method handles

inputs from spawned processes and the processing on master process """

Define MPI message tags

tags = enum(’READY’, ’DONE’, ’EXIT’, ’START’, ’IDLE’, ’CONTINUE ’)

Initializations and preliminaries

comm = MPI.COMM_WORLD # get MPI communicator object

size = comm.size # total number of processes

rank = comm.rank # rank of this process

status = MPI.Status () # get MPI status object

’’’===

Main Process

=== ’’’

if rank == 0:

L, B, per_missing_nodes , num_voids , void_type , startX , startY , colors ,

samples = get_inputs ()

res_dir = str(L) + "x" + str(B)

parent_dir = os.getcwd ()

path = os.path.join(parent_dir , res_dir)

try:

os.mkdir(path)

except OSError:

104

pass

os.chdir(path)

delete_missingper_files(L, B)

plt.figure(figsize =(14, 8))

data_f = open(str(L) + "x" + str(B) + "_data_file.txt", "w")

data_f.write(’Data Analysis for ’ + str(L) + ’x’ + str(B) + ’ network ’

)

data_f.write(’\n\nLength: {}, Breadth: {}’.format(str(L), str(B)))

total_nodes = (L + 1) * (B + 1)

for ind_1 , missing in enumerate(per_missing_nodes):

data_f.write("\n\n---")

data_f.write("\nTotal number of nodes in the network for {}%

missing nodes: {}".format(str(missing), str(total_nodes - round((

missing /100)*total_nodes))))

f_1 = open(str(L) + "x" + str(B) + "_correct_nodes.txt", "w")

f_2 = open(str(L) + "x" + str(B) + "_anchors.txt", "w")

for ind_2 , voids in enumerate(num_voids):

processes = size -1

s_index = 0

closed_processes = 0

result = []

proc_ids = []

while closed_processes < processes:

data = comm.recv(source=MPI.ANY_SOURCE , tag=MPI.ANY_TAG ,

status=status)

source = status.Get_source ()

tag = status.Get_tag ()

if tag == tags.READY:

if source not in proc_ids:

if s_index < len(samples):

comm.send(obj=[samples[s_index], startX ,

startY , L, B, void_type , missing , voids], dest

105

=status.Get_source (), tag=tags.START)

s_index += 1

else:

if (ind_1 == len(per_missing_nodes) - 1) and (

ind_2 == len(num_voids) - 1):

comm.send(obj=None , dest=source , tag=tags.

EXIT)

else:

comm.send(obj=None , dest=source , tag=tags.

IDLE)

proc_ids.append(source)

else:

comm.send(obj=None , dest=source , tag=tags.CONTINUE

)

elif tag == tags.DONE:

result.append(data)

elif tag == tags.IDLE or tag == tags.EXIT:

closed_processes += 1

per_correct_r = np.array ([p[0] for p in result])

anchors_r = np.array ([p[1] for p in result])

identical_r = np.array ([p[2] for p in result])

mean_correct , lower_correct , upper_correct =

confidence_interval(per_correct_r.mean(), per_correct_r.std(),

len(per_correct_r))

f_1.write(str(mean_correct) + ’ ’ + str(lower_correct) + ’ ’ +

str(upper_correct) + ’\n’)

mean_anchor , lower_anchor , upper_anchor = confidence_interval(

anchors_r.mean(), anchors_r.std(), len(anchors_r))

f_2.write(str(round(mean_anchor)) + ’ ’ + str(round(

lower_anchor)) + ’ ’ + str(round(upper_anchor)) + ’\n’)

mean_identical , lower_identical , upper_identical =

confidence_interval(identical_r.mean(), identical_r.std(), len

106

(identical_r))

data_f.write("\n\nVoid: {}".format(str(voids)))

data_f.write("\nAverage percentage of nodes placed correctly:

{}; Lower limit: {}; Higher limit: {}".format(str(mean_correct

), str(lower_correct), str(upper_correct)))

data_f.write("\nAverage number of anchors: {}; Lower limit:

{}; Higher limit: {}".format(str(round(mean_anchor)), str(

round(lower_anchor)), str(round(upper_anchor))))

data_f.write("\nAvergae number of identical nodes: {}; Lower

limit: {}; Higher limit: {}".format(str(round(mean_identical))

, str(round(lower_identical)), str(round(upper_identical))))

delete_void_files(L, B, missing , voids)

f_1.close()

f_2.close()

plot(L, B, num_voids , missing , colors[ind_1])

delete_missingper_files(L, B)

data_f.write(’\n-----------------EOF -------------------’)

data_f.close()

plt.subplots_adjust(bottom =0.2)

lgd = plt.legend(loc=’upper left’, bbox_to_anchor = (-1.15, -0.10),

fancybox=True , ncol =5)

plt.savefig(str(L) + "x" + str(B) + " network results.png",

bbox_extra_artists =(lgd ,), bbox_inches=’tight ’, dpi =200)

plt.clf()

’’’===

Child Processes

=== ’’’

else:

name = MPI.Get_processor_name ()

while True:

comm.send(None , dest=0, tag=tags.READY)

pos = comm.recv(source=0, tag=MPI.ANY_TAG , status=status)

107

tag = status.Get_tag ()

if tag == tags.START:

res_dir = str(pos [3]) + "x" + str(pos [4])

parent_dir = os.getcwd ()

path = os.path.join(parent_dir , res_dir)

try:

os.chdir(path)

except OSError:

pass

proc_result = network_computation(pos[0], pos[1], pos[2], pos

[3], pos[4], pos[5], pos[6], pos [7])

comm.send(proc_result , dest=0, tag=tags.DONE)

elif tag == tags.IDLE:

comm.send(None , dest=0, tag=tags.IDLE)

elif tag == tags.CONTINUE:

continue

elif tag == tags.EXIT:

break

comm.send(None , dest=0, tag=tags.EXIT)

Listing B.16: MPI Driver

def adaptive_network_reconstruction(pos , L, B, adjacency_matrix , m, v):

’’’Adaptive localization method for localization

:param pos: Sample number

:param: L: Length of Grid

:param B: Breadth of Grid

:param adjacency_matrix: Adjacency Matrix of Grid

:param m: Percentages of missing nodes

:param v: Number of voids

:return: Number of iterations , number of anchors , localized nodes

’’’

r_nodes = 0

iteration = 0

108

derived_nodes = []

no_anchors = []

corrected_positions = {}

anchors = OrderedDict ([])

weights = OrderedDict ([])

loc_nodes = []

steps = []

map_nodeids_vcs = vcs_two_anchors(L, adjacency_matrix)

node_IDs = [i for i in range(1, len(adjacency_matrix) + 1)]

weights [0] = compute_boundary(adjacency_matrix.tolist ())

inner_nodes = sorted(list(set(node_IDs) - set(weights [0])))

w = 0

while 1:

iteration += 1

if iteration == 1:

anchors = OrderedDict ([(1, [0, 0]), (L + 1, [0, L])])

filter_nodes = {}

else:

if len(anchors) > 2:

if r_nodes - temp <= 0:

del anchors[last_added]

no_anchors.append(last_added)

else:

temp = r_nodes

w = 0

else:

temp = r_nodes

if (r_nodes == 100) or (iteration > (len(adjacency_matrix) -

1) // 3):

pos_coor_1 , id_count = identical_node_placement(pos_coor_1

, positions)

if id_count:

109

r_nodes = len(derived_nodes) + id_count

r_nodes = round((r_nodes/len(corrected_positions)) *

100, 2)

break

if set(derived_nodes) == set(list(anchors.keys()) + no_anchors

):

pos_coor_1 , id_count = identical_node_placement(pos_coor_1

, positions)

if id_count:

r_nodes = len(derived_nodes) + id_count

r_nodes =

round((r_nodes/len(corrected_positions)) * 100, 2)

break

if not w:

weights = compute_weights(weights , inner_nodes ,

map_nodeids_vcs)

w_keys = list(weights.keys())

while 1:

anchor_elect = list(set(weights[w_keys[w]]).intersection(

set(derived_nodes)) - set(list(anchors.keys()) +

no_anchors))

if anchor_elect:

break

else:

w += 1

new_anchor = random.choice(anchor_elect)

anchors[new_anchor] = pos_coor_1[pos_IDs_1.index(new_anchor)]

last_added = new_anchor

path_matrix = vcs_multiple_anchors(list(anchors.keys()),

adjacency_matrix , node_IDs)

map_nodeids_vcs = dict(zip(node_IDs , path_matrix.tolist ()))

110

if corrected_positions and filter_nodes:

for node , value in corrected_positions.items():

filter_nodes = {key1: {key2: [val2 for val2 in val1 if

val2 != value] for key2 , val1 in filter_nodes[key1].

items()} for key1 , filter_nodes[key1] in filter_nodes.

items()}

for node in map_nodeids_vcs:

if node not in derived_nodes:

deltas = delta_calculator(map_nodeids_vcs , anchors , node ,

L, B)

corrected_pos , filter_nodes = delta_correction(node ,

filter_nodes , deltas)

corrected_positions[node] = corrected_pos

filter_nodes , corrected_positions = data_refiner(filter_nodes ,

corrected_positions)

similar_pairs , corrected_positions = node_identifier(

corrected_positions , filter_nodes)

unidentified_pairs_list = [item for sublist in similar_pairs for

item in sublist]

for node , values in corrected_positions.items():

if type(values) == dict:

if node not in unidentified_pairs_list:

similar_pairs.append ([node])

unidentified_pairs_list = [item for sublist in similar_pairs for

item in sublist]

positions = deepcopy(corrected_positions)

for node , values in corrected_positions.items():

if node not in unidentified_pairs_list and node not in

derived_nodes:

old = find_old_neighbors(node , adjacency_matrix)

new = find_new_neighbors(values , positions)

if old == new:

111

filter_nodes = {key1: {key2: [val2 for val2 in val1 if

val2 != corrected_positions[node]] for key2 , val1 in

filter_nodes[key1]. items()} for key1 , filter_nodes[

key1] in filter_nodes.items()}

if node in filter_nodes:

del filter_nodes[node]

filter_nodes = filter_node_refiner(filter_nodes)[0]

else:

corrected_positions[node] = []

temp_derived_nodes = []

for node , values in corrected_positions.items():

if type(values) == dict or not values:

corrected_positions[node] = []

else:

if node not in derived_nodes:

temp_derived_nodes.append(node)

derived_nodes += temp_derived_nodes

pos_coor_1 = []

pos_IDs_1 = []

for node , values in corrected_positions.items():

pos_IDs_1.append(node)

if values:

pos_coor_1.append ((values [0], values [1]))

else:

pos_coor_1.append(None)

r_nodes = len(derived_nodes)

r_nodes = round((r_nodes/len(corrected_positions)) * 100, 2)

loc_nodes.append(r_nodes)

steps.append(iteration)

return iteration , len(anchors.keys()), r_nodes

Listing B.17: Adaptive Localization

112

B.2.2 HELPER METHODS

def compute_weights(weights , inner_nodes , node_data):

’’’Method to compute node weights

:param: weights: empty weight list or previosly computed weights

:param: inner_nodes: Nodes that are not on the borders

:param: node_data: VCs of all grid nodes

:return: weights of nodes

’’’

for node in inner_nodes:

new_w = int(min(node_data[node]))

old_w = [k for k,v in weights.items () if node in v]

if old_w:

old_w = old_w [0]

if old_w > new_w:

weights[old_w]. remove(node)

if weights[old_w] == []:

del weights[old_w]

else:

continue

if new_w in weights.keys():

weights[new_w]. append(node)

else:

weights[new_w] = [node]

return weights

Listing B.18: Compute node weights

’’’Method to optimize the solution space and find corresponding deltas

:param: node_data: VCs of all grid nodes

:param anchors: Elected anchors for the grid

:param node: Node of interest

:param L: Length of grid

:param B: Breadth of grid

113

:return: deltas for the node of interest

’’’

def delta_calculator(node_data , anchors , node , L, B):

try:

test_ab = []

eq_delta = [None]*len(node_data[node])

deltas = {}

val_counter = 0

V_A = list(map(int , node_data[node]))

xl_bound , xu_bound = max(0, L - V_A [1]), V_A [0]

y = min((V_A[0] + V_A[1] - L) // 2, V_A [0])

anchors = list(anchors.items())

for b in range(y + 1):

a = xl_bound

while xl_bound <= a <= xu_bound:

eq_delta [0] = int(V_A[0] - (a + b))

eq_delta [1] = int(V_A[1] - L + (a - b))

if len(V_A) > 2:

for i in range(2, len(V_A)):

eq_delta[i] = int(V_A[i] - abs(a - anchors[i

][1][0]) - abs(b - anchors[i][1][1]))

if all ((0 <= eq_delta[n] <= V_A[n]) for n in range(len(V_A

))) and a <= L and b <= B:

delta = sum(eq_delta)

if [a, b] not in test_ab:

val_counter += 1

if delta in deltas.keys():

deltas[delta]. append ((a, b))

else:

deltas[delta] = [(a, b)]

if val_counter == 1:

temp = [a, b]

114

else:

pass

else:

pass

a += 1

if xl_bound == 0:

pass

else:

xl_bound += 1

xu_bound -= 1

if val_counter == 1:

test_ab.append(temp)

return deltas

except ValueError:

return None

Listing B.19: Delta Optimization

’’’Methods to refine the deltas and nodes

:param: filter_nodes: Nodes with multiple deltas

:param node_positions: VCs for the grid nodes

:return: refined sets of nodes with refined deltas

’’’

def filter_node_refiner(filter_nodes):

nodes = [k for k in filter_nodes.keys()]

updated_nodes = []

for node in nodes:

if len(filter_nodes[node]) == 0:

updated_nodes.append(node)

del filter_nodes[node]

else:

filter_nodes[node] = {key: value for key , value in

filter_nodes[node]. items() if value != []}

if filter_nodes[node] == {}:

115

updated_nodes.append(node)

del filter_nodes[node]

return filter_nodes , updated_nodes

def delta_refiner(filter_nodes , node_positions):

for node in node_positions:

if node in filter_nodes:

if len(filter_nodes[node]) == 1 and len(filter_nodes[node][min

(filter_nodes[node])]) == 1:

node_positions[node] = filter_nodes[node][min(filter_nodes

[node])][0]

filter_nodes = {k: {ki: [vi for vi in v if vi !=

node_positions[node]] for ki , v in filter_nodes[k]. items()

} for k, filter_nodes[k] in filter_nodes.items ()}

else:

node_positions[node] = deepcopy(filter_nodes[node])

return filter_nodes , node_positions

def data_refiner(filter_nodes , node_positions):

while True:

filter_nodes = filter_node_refiner(filter_nodes)[0]

filter_nodes , node_positions = delta_refiner(filter_nodes ,

node_positions)

filter_nodes = filter_node_refiner(filter_nodes)[0]

check_point = []

for k, v in filter_nodes.items():

if len(v) == 1:

for ki , vi in v.items():

if len(vi) == 1:

check_point.append(k)

else:

continue

116

else:

continue

if not check_point:

break

return filter_nodes , node_positions

Listing B.20: Node and Delta refinement

’’’Method to find neighbors from Adjacency Matrix

:param: node: Node of interest

:param ad_mat: Adjacency Matrix of the grid

:return: neighbors of the node of interest

’’’

def find_old_neighbors(node , ad_mat):

old_ne = [None]*4

for ne , x in enumerate(ad_mat[node - 1]):

if 0 < x <= 1:

check = node - (ne + 1)

if check > 1:

old_ne [0] = ne + 1

elif check == 1:

old_ne [1] = ne + 1

elif check == -1:

old_ne [2] = ne + 1

elif check < -1:

old_ne [3] = ne + 1

return old_ne

Listing B.21: Neighbors using Adjacency Matrix

’’’Methods to find neighbors from the deltas of a node

:param: ab_val: Given delta coordinate

:param node_positions: VCs of the grid nodes

:return: neighbors of the node of interest

’’’

def find_new_neighbors(ab_val , node_positions):

117

try:

a, b = ab_val

except TypeError:

return None

neighbors = [(a, b - 1), (a - 1, b), (a + 1, b), (a, b + 1)]

nei_node_IDs = []

for nei_node in neighbors:

if nei_node in node_positions.values ():

nei_node_ID = [ki for ki, vi in node_positions.items () if vi

== nei_node][0]

nei_node_IDs.append(nei_node_ID)

else:

nei_node_IDs.append(None)

return nei_node_IDs

Listing B.22: Neighbors using Deltas

118

APPENDIX C

A SURVEY OF VIRTUAL COORDINATE SYSTEMS

This appendix contains shortened version of the chapter, “Virtual Coordinate Sys-

tems and Coordinate-Based Operations for IoT” that appeared as a part of the

EAI/Springer Innovations in Communication and Computing book series (EAISICC) 1. The

complete publication with detailed algorithms can be found in the Springer book, “Per-

formability in Internet of Things” [2].

1G.A.Pendharkar A.P.Jayasumana
Department of Electrical and Computer Engineering, Colorado State University
Fort Collins, CO, USA
email: Gayatri.Pendharkar@Colostate.edu; Anura.Jayasumana@Colostate.edu

© Springer International Publishing AG, part of Springer Nature 2019
F. Al-Turjman (ed.), Performability in Internet of Things, EAI/Springer Innovations
in Communication and Computing, https://doi.org/10.1007/978-3-319-93557-7_10

119

C.1 Introduction

Internet of Things (IoT) is expanding into diverse environments including manufacturing,

environmental sensing (atmospheric, underground and underwater) [46], smart cities, smart

grids and precision agriculture. Wireless Sensor Networks (WSNs) are the key building block

in many of such IoT systems, where devices capable of sensing, actuating, communicating

and computing, provide the interface to physical plants, environments, terrains and phenom-

ena. Such IoT networks have greatly benefitted and created novel approaches in different

fields. Sensor nodes are deployed, for example, on farms to measure micro-climates and

soil conditions to improve yield, and for monitoring human presence in houses and offices

to reduce the wastage of energy for heating and lighting. Decreasing costs, increasing ca-

pabilities, and advances in sensor networking technologies now make it possible to deploy

large-scale networks of wireless sensor and actuator nodes that self-organize and adapt to

carry out needed functionality robustly and adaptively.

Large-scale WSNs embedded in complex physical spaces depend on scalable and robust

algorithms and protocols. Node localization and routing are among essential functions for

many such network operations. Node localization refers to identifying the positions of dif-

ferent nodes in the network. In complex 2D and 3D networks, node location information

by itself cannot facilitate routing. Furthermore, obtaining location information in the form

of physical coordinates is costly and unreliable at best, or is simply infeasible. Coordinate

systems also play a vital role in other IoT applications where a network is formed from het-

erogeneous devices, with each device acting as the fundamental node or unit. This chapter

focuses on Virtual Coordinates (VCs) that are more economical to obtain, less susceptible to

parametric variations and interferences, and in many cases, provide equal or better routing

performance compared to physical coordinates or geographical coordinates.

The outline of this chapter is as follows. In Section C.2, we discuss the physical coordi-

nates, complexities associated with obtaining them and their limitations. Next, we introduce

the concept of VCs, and how they serve as an alternative to physical coordinates. Section

120

C.3 describes a classification for VC schemes. In a network, several methodologies could be

used as a foundation for coordinate assignment. Election of arbitrary or selective anchor

nodes and structure embedding are examples of techniques that assist in VC selection. In

Section C.4, we present the attributes that distinguish the different Virtual Coordinate Sys-

tems (VCSs). These attributes also provide a set of metrics to compare the different VCSs

and analyze their strengths and deficiencies. Section C.5 describes in detail the different VC

techniques. It defines the techniques for coordinate assignment followed by a brief descrip-

tion of representative routing algorithms associated with it. We also provide comparison

tables using the parameters from Section C.4 to facilitate portrayal of weaknesses and assets

of each technique. Section C.6 summarizes and concludes the chapter.

C.2 Physical Coordinates vs. Virtual Coordinates

The common and familiar methods for dealing with points in a physical space are based

on physical coordinates, e.g., (X, Y) in case of 2D and (X, Y, Z) in case of 3D. Thus,

the use of physical or geographical coordinates (GC) for IoT networks deployed in 2D and

3D has been the obvious and default choice, and many of the WSN protocols rely on the

availability of accurate GCs. The process of obtaining the GCs of nodes is termed physical

localization [47], and the routing protocols based on these geographic coordinates are known

as Geographic Routing (GR).

Two categories of routing protocols have emerged for large-scale networks of sensors,

namely, address based protocols and content-based protocols. The former relies on explicit

node addresses, i.e. a set of coordinates defined using a specific algorithm. The latter

defines the set of destinations with the use of certain attributes [48]. The content based

protocols rely on the use of approaches such as flooding and random walks to reach the

destinations and hence have issues such as large overhead, limited scalability and excessive

uses of resources, e.g. excessive bandwidth and power consumption. The traditional Internet

in comparison, works on the principle of maintaining per node/subnet routing state, which

121

grows as a function of the network size and number of destinations [48] [49]. With constraints

related to memory space per node with IoT subnets such as WSNs, approaches requiring

such large amounts of data per node are infeasible.

Two fundamental limitations are faced by GCs in large-scale IoT subnets or WSNs.

First is the difficulty and infeasibility of obtaining the physical coordinates. Due to con-

fines in cost per unit and energy budget, it is unfeasible for individual sensors to be Global

Positioning System (GPS) enabled. GPS is not available indoors, and even outdoors its

resolution may not be sufficient for dense networks. The alternative is to use analog mea-

surements, such as RSSI or Time-of-Arrival (TOA) to estimate distances to other nodes,

and thereby obtain node positions [14] [13] [12]. Many such techniques have been pro-

posed in literature [12] [50], but they are not accurate as they are susceptible to phenomena

such as noise, fading, multipath and interference, and errors in localization tend to accu-

mulate [12]. Thus, such localization techniques have not been demonstrated in large-scale

networks outside laboratory settings, and of course not in harsh and complex environments.

The second limitation of geographic coordinates occurs even if one assumes the ability to

obtain coordinates with sufficient accuracy, e.g. with manual calibration or using GPS.

Specifically, GCs do not help achieve high routability in networks occupying complex phys-

ical shapes [51] [52] [53] [54] [55] [32] [56]. It is quite possible for two nodes to be physically

very close to each other but separated by a long distance in the communication topology.

Two nodes within proximity could be separated by obstacles or voids, e.g. a metal partition

or concrete floor, creating a hole in the communication topology; in such cases, the packets

will have to follow a long multi-hop path around the obstacle. Such scenarios are extremely

common in many 3D IoT application environments, including those inside buildings, facto-

ries, and warehouses. Thus, the routing schemes must be able to overcome local minima

created by concave geographical voids.

The existing geographic routing algorithms mostly focus on 2D networks [51] [57] [58].

However, these 2D algorithms are not effective nor scalable to 3D environments due to

122

many causes. The geometric differences between 2D and 3D networks results in significantly

increased computational complexity. Harsh and complex environments with 3D obstacles

reflect or absorb radio signals rendering the GF and RSSI methods ineffective, Complex

geographical topologies deployed on 3D surfaces or 3D volumes contains voids, causing the

decoupling of GCs from the communication topology making them ineffective for many

network operations [59]. A common element of most GR schemes is Greedy Forwarding

(GF), in which a packet is forwarded to a node that is physically closer to the destina-

tion [52] [53] [54] [55] [32]. Some of the GR protocols are Nearest Forward Progress and

Greedy Forwarding [32] [56]. In the presence of voids or obstacles in the network, these

protocols fail due to the inability to bypass complex shaped voids in the network. Overcom-

ing such local minima requires backtracking or some other scheme to navigate around the

voids. For example, Greedy Perimeter Stateless Routing (GPSR) algorithm [51] attempts to

navigate around the voids by following a certain direction. Such schemes become extremely

costly or inefficient when the voids have complex shapes even in 2D deployments. With 3D

deployments, such methods fail except in cases of very simple shapes of voids. A few proposed

approaches for 3D geographic routing work albeit with some flaws. Greedy Random Greedy

routing (GRG), a randomized geographic routing algorithm routes the packets based on a

random walk algorithm, but only for network with Unit Ball Graph (UBG) topology [60].

Greedy Hull Greedy (GHG) routing [47] constructs network hulls using planarization for

routing; again, it applies to specific network types such as UBG, and GHG, and must deal

with complexities due to planarization computation. Furthermore, errors in node positions

may lead to unrecoverable routing failures, which significantly degrades the performance

of GR protocols [48]. A method to obtain the geographical addresses of an area without

using geological information like GPS is addressed in [61]. This technique uses text pro-

cessing, address pre-processing, and clustering to achieve accurate positions. This approach

mostly provides an efficient but complex location discovery method for major e-commerce

organizations.

123

To overcome the challenges associated with measurement and use of physical coordinates

in IoT, coordinate frameworks have been developed that do not depend on measurement of

geographic location or distance information, yet can be used for functions such as routing

and as well as localization [20]. We call such coordinate systems Virtual Coordinate Systems.

A VCS defines each node in the sensor network with a coordinate vector of some dimension

that may be different from the dimension of the space the network is deployed in. Over the

years, different types of VCS have emerged that use different parameters of interest for VC

election. A VCS depends on measures such as connectivity, packet loss and topology. Some

of the systems are significantly different from the Euclidean coordinate framework while

others are Euclidean frameworks where node relationships and connections are preserved

but not the actual physical distances. We use the generic term Virtual Coordinate Routing

(VCR) to denote routing schemes specifically developed for or based on a VCS.

One of the fundamental techniques for VCS is the graph embedding. The nodes are

spread across the network with node connectivity information embedded inside. In this

technique, a map or a sub-map of the topology with connectivity information is embedded

which is later used by the routing algorithm to route the data efficiently around the network

while capturing the voids and obstacles.

Many of the VC assignment techniques use a set of anchor nodes to build the coordi-

nate framework. Anchors are nodes in the network selected randomly or through specific

techniques, and the coordinate vector of each node for example may be the shortest hop

distances to these anchors. The number of anchors becomes the VCS dimensionality of

the network hence making it a parameter of interest. Routing is achieved using these VCs

by Greedy Forwarding (GF) or some other technique. VCs of nodes are used for distance

evaluation between nodes as well as for node identification (ID) [22]. If the VCS is based

on anchors as the reference points, then the anchor selection could significantly affect the

routing performance. Selection of an adequate number of anchors with apt placement helps

acquire non-identical VCs for each node.

124

VCs have also been used in the context of Internet and overlay networks - to obtain maps

or coordinates that reflect or captures properties such as the delay or other network measure-

ment parameters. With the advent of several VCS, to preserve the network topology, most of

the overlay networks need optimum selection of the neighboring nodes and communication

paths depending on proximity, network delays, and round-trip time (RTT) [23]. Gathering

this sort of information in real-time could lead to a large amount of measurement traffic

in the network. To achieve this, Network Coordinate Systems (NCS) have been proposed.

This essentially couples network measurement parameters with the VCS. Maximum Likeli-

hood Topology Maps [24] rely on the packet reception probability function to capture the

graph topology. Topology preserving maps [25] too retain the graph topology, yet are also

homeomorphic to physical layout.

With increased interest on VCS for large-scale sensor and IoT networks, there have

been several related developments related to VCS. Several concepts are in place to develop

security means to address attacks on VCS. Several attacks that could potentially disrupt

the VC formation are identified and techniques for alleviating them are proposed in [62].

A decentralized VCS capable of withstanding any sort of insider attacks is proposed in

[63]. Technique to construct a robust coordinate assignment technique with less cost of

communication that can sustain malevolent attacks is presented in [64]. These methods use

spatial and temporal correlations for statistical analysis of real time data sets. A game theory

based model to detect the best attacks and defense strategies are presented in [65]. A self-

structuring algorithm that allows each node in a network to identify its position and all the

nodes to collaboratively impose a geometric structure to the network is presented in [26]. The

distributed algorithm runs on every entity or node without providing any prior knowledge

of geographical location. With IoT expected to connect a massive number of nodes in near

future, there is a significant need to have sophisticated searching criterions; such approaches

may also be VCS based as demonstrated in [27]. The method suggests the use of VCS in

finding network statistics like delays, latencies, etc. using a decentralized approach. The

125

real-time traveling path tracking algorithm for smart vehicles with encoders installed on the

left and right side of the wheels to capture the rolling distance of the vehicles [28] relies on

a VCS framework. The VCS in this case is fixed on the ground with factors such as the

vehicle position and heading angle accounting for the experimental results of the path. The

techniques give very accurate results despite obstacles, fog, rain, etc.

Several interesting schemes for routing and related operations using VCS have also ap-

peared in recent literature. A method to use Greedy Routing on a Virtual Raw Anchor

Coordinate (VRAC) System is considered in [29]. The VRAC coordinate computation in-

volves measurement of roughly three raw node distances to be used as coordinates. Given

that a saturated graph or network exists, greedy routing provides guaranteed packet delivery

using VRAC system. Physical coordinate computation is a costly and complex technique for

large scale networks. Technique presented in [30] for deriving topology maps of the networks

from the anchor based VCs does not require a complete VC set. Using the theory of low-

rank matrix completion, the topology maps are extracted for 2-D and 3-D networks using

small subsets of VCs. A distributed protocol viz. Hexagonal Virtual Coordinate (HVC)

to construct a VCS is presented in [31]. Using this HVC information, a source node can

find an auxiliary routing path to the destination. This algorithm provides suitably placed

landmarks and unique VCs throughout the network irrespective of any voids.

The above techniques are examples of VCS based or relate methods that make use of di-

verse parameters to devise coordinate schemes and thus network algorithms such as routing.

VCS based routing possesses certain advantages over traditional routing techniques such as

substantially high routing capability without relying on location information, consistent per-

formance regardless of presence of voids and no localization errors. They may face problems

such as identical coordinates and local minima due to lost directionality [22] which can be

resolved by modifying the VC assignment algorithms. Identical coordinates arise if sufficient

number of anchors are not deployed, and local minima in these coordinate spaces appear as

virtual voids in the network. In this chapter, we will review different VCSs, together with

126

their properties and the corresponding routing techniques.

C.3 Classification of Virtual Coordinate Systems

As mentioned in the previous section, Geographic Routing (GR) uses geographical co-

ordinates while Virtual Coordinate Routing relies on some VCS. Former depends on the

physical distance while latter depends on some distance measure defined in the correspond-

ing coordinate space. VCS approach relies exclusively on the relative distances (e.g., hop

count) among nodes in the network. The general idea is to define a VCS and use it to induce

a routing protocol based on the proposed VCs.

An anchor based VCS overlays VCs on the nodes of a network based on their network

distance from some fixed reference points (anchors or landmarks). The coordinates are

computed during an initialization phase. From then on, the VCs serve in place of the

geographic location for the purposes of network operations such as packet forwarding. As

a VCS does not require precise location information or distance measurements, it is not

sensitive to localization errors.

We classify the VCS into four categories as below,

C.3.1 Virtual Coordinate Systems embedding a graph/tree topology

This technique as the name suggests embeds a graph in the network; the graph may

be a tree (say) or a topology that is more complex. Based on that topology, the nodes in

the network are spread relative to each other with connectivity information as a part of the

embedding. Once the structure is established and the connectivity information is known,

a routing algorithm may be developed to route across the network acquiring maximum

efficiency and avoiding failures.

Examples: Gradient landmark based VCS (GL-VCS) [66], Medial Axis Protocol for VCS

(MAP-VCS) [67], Graph Embedding for VCS (GEM-VCS) [21], and Hyperbolic Embedding

in Dynamic Graphs for VCS (HEDG-VCS) [68].

127

C.3.2 Virtual Coordinate Systems based on Hop Distances to Anchors

The second approach is the most frequently used approach to establish a VCS. Each node

here is first characterized using its hop distance to a specific set of nodes called anchors. This

information may be used directly as a set of coordinates, or processed to extract a coordi-

nate system with more desirable properties. Due to its sheer simplicity and effectiveness of

the results, this category provides effective and flexible algorithms for VC assignment and

routing.

Examples: Anchor-Based Virtual Coordinate System [48], Axis-Based Virtual Coordi-

nate Assignment Protocol (ABVCap-VCS) [69], and Directional Virtual Coordinate System

(DVCS) [22].

C.3.3 Topological Coordinate Systems

This approach talks about the techniques that help extract the topology of the network

using node connectivity information and a few other parameters. It helps retrieve the infor-

mational graph that helps understand the network map without using any physical distance

information.

Example: Topology Preserving Maps (TPMs) [30].

C.3.4 Virtual Coordinate Systems using Network Measurement Parameters

This technique listed avails of the network measurement parameters such as delays, RTT

or hop distances to configure a VCS that captures specific underlying network properties.

Examples include coordinate systems motivated by the need to estimate delays without

performing direct delay measurements [70], hence reducing the consumption of network

resources considerably. It models the Internet as a geometric space, depicting the position of

all the present nodes in the Internet by a coordinate in the space. These techniques attempt

to retain the physical topology of the network, the connectivity, shape, delay or some other

property.

128

Examples: Vivaldi - A decentralized Network Coordinate System [70], and Maximum

Likelihood Topology Maps for Wireless Sensor Networks Using an Automated Robot [24].

In the following sections we will discuss examples from these three classes of VCs. Prior

to that we present parameters that are useful for comparison of the different VCS.

C.4 Attributes of Virtual Coordinate Systems

The purpose of a VCS, as stated earlier, is to serve one or more purposes related to

networking a large set of nodes. A VCS for example, often acts as a proxy for node locations

for efficient routing or topology control. A good VCS based on a parameter such as delay or

packet loss may allow estimation of such parameters with reduced network measurements,

i.e., with minimal cost and effort. Different systems have their own algorithms for assignment

of coordinates to the nodes in the network. Such attributes can also be used to compare

different VCSs, and to select the proper VCS for a given criterion.

C.4.1 Use of Anchors

Anchors correspond to a set of nodes in the network that act as intermediaries to the other

nodes in the network for calculating the VCs. Basically, the number of anchors determines

the coordinate dimension for the nodes in the network. Intuitively, the higher the number

of anchors, the higher the cost of generating coordinates and the more accurate the node

position in the corresponding space. In fact, if all the nodes are anchors, the coordinate

system corresponds to the (hop) distance matrix of the graph.

C.4.2 Efficiency of routing/measurements

The primary purpose of a VCS is to serve some network related function(s) such as

routing or delay estimation. Thus, the efficacy of the coordinate set to meet the stated

purpose is of importance. The efficiency may be quantified by performing routing or the

appropriate network measurement scheme. This parameter indicates the precision of the

coordinates that are assigned to the nodes in the network.

129

C.4.3 Susceptibility to local minima issue

Even with an ideal implementation of the algorithm of interest (e.g., routing) for which

the VCS is targeted, there could be cases that cause the algorithm to fail. These anomalies

impair the desired functionalities i.e., sensing and communication. Examples of issues with

VCS include the following: identical coordinate assignment, local minima, formation of

logical voids or holes, etc. which would lead to geographically correlated problem areas such

as coverage holes and routing voids.

C.4.4 Ability to deal with node failures and changing topologies

In an IoT or a WSN, a node may fail at random points in space and time, or new nodes

may be added to the network. As such events change the network topology and connectivity,

they may cause disruptive changes to the coordinate system or the resulting algorithms. This

attribute aims at capturing whether the VCS is susceptible to such changes, and if so the

ease or difficulty with which coordinate system may be restored following such an event. A

robust coordinate system will maintain performance within a narrow margin even when such

events occur in the network.

C.4.5 Ability to capture the network shape and voids

The node deployment could be of any shape and contain voids of different shapes dis-

rupting communication among the nodes. Ability to capture such topology properties is an

important aspect of a coordinate system. Hence, the efficacy of the coordinate system to

retain these topological assets is vital.

C.4.6 Applicability to 3-D networks

Node placement of a WSN in the physical space determines the kind of network it is.

A planar network with nodes along two axes is a 2-D network. If the surface on which the

nodes are placed is not planar, we may call it a 3-D surface network. A 3-D volume network

refers to a network deployed in a three-dimensional volume. We use the term 3-D networks

130

to refer to 3-D surface networks, 3-D volume networks, as well as networks containing both

3-D surfaces and 3-D volumes. It is also important to note that some of the VC techniques

have been extended to networks with no associated physical dimensionality such as social

networks [30]. Ability of the protocol to implement the VCS in these sort of networks

increases the number of application areas as well.

C.4.7 Distributed Computability of VCs

In a WSN, the computation can occur at every fundamental unit, i.e. at the individual

nodes or it could occur at a centralized unit, i.e. a centralized server. These are two

different types of methods for the WSNs. Consider for example a WSN consisting of many

nodes sensing the environmental conditions. In the centralized approach, these nodes send

the sensed data to a centralized server known as the Base Station (BS). Due to energy

constraints per node, centralized approach proves efficient in those terms. Here, all the

nodes are grouped into clusters and then, one representative node is assigned as the cluster

head (CH). This node collects all the data within the cluster and sends the data to the BS.

Now, only the CH nodes are required to perform long distance transmission hence saving the

energy consumption for the other nodes [71]. On the other hand, in the distributed approach,

the computation is autonomous; down to the single fundamental unit of the network. The

distributed approach takes into consideration the battery restraints per node and the density

of the WSN. Here the computations occur based on communication amongst the neighboring

nodes. Distributed approach is more desirable than the centralized one due to several reasons.

In centralized computing, if the BS fails, the entire network may fail. Additionally, in case of

individual node failures in the network, the recovery or repair must be done at the respective

central node unlike with distributed algorithms, where the node recovery can be done at

its own level. All the VCS discussed in this paper are based on a distributed computing

approach. The selection of these cluster heads or landmarks for centralized network is based

on a landmark selection algorithm. The set of anchors can be predetermined [72] [73] [74]

131

or randomly selected [75] [76]. Distributed VCS are independent of explicitly designated

infrastructure components, requiring any node in the system to act as a reference node.

Examples of such systems include PIC [76], Vivaldi [70], and PCoord [71] [72].

C.4.8 Directionality

VCS are an efficient way of characterizing the node locations thus replacing the geo-

graphical coordinate assignment approach. VCS offers a lot of attractive properties such as

high routability, consistent performance in presence of physical voids in the network and ef-

ficient connection information embedded in the VCs. In some VCS, when there is a mapping

of the physical domain to a virtual domain, coordinates become insensitive to directional

information. Many deficiencies associated with VCS are due to the missing directionality

information and the lack of knowledge of the physical layout. Some of the VCS techniques

discussed in this paper can capture or extract directionality information while others do not.

C.4.9 Applicability to WSNs

Certain VCS are not useful for resource limited networks such as WSNs or IoT subnets.

There are different performance metrics of interest such as routing performance, efficacy of

latency estimation, and boundary detectability, which are important in different contexts.

Although our focus is on IoT subnets and WSNs, coordinate systems are also of interest for

other applications, e.g. Coordinate spaces that captures latency information among devices.

C.5 Virtual Coordinate Systems

C.5.1 Virtual Coordinate Systems based on an Embedded Graph/Tree Topol-
ogy

In this section, we will consider several VCS which are based on discovery of the global

topological structure of the network, e.g., by embedding of a graph structure such as a tree

in the topology. Such a structure may then be used to characterize positions of the nodes

and for routing.

132

C.5.1.1 Gradient Landmark based VCS (GL-VCS)

GLIDER [66] is a novel technique which only uses the node connectivity information

and a few selected landmark (anchor) nodes to achieve distinctive node coordinates. This

approach is divided into two phases - the global planning phase and a local greedy routing

phase. The global pre-processing step helps in mapping the topology of the network using

the node connectivity to account for obstacles or holes in the sensor field. Following this

phase, the network is partitioned into tiles with each tile containing a subset of network

nodes. These tiles are expected to have a trivial topology and simple greedy forwarding

methods using local VCs that help achieve good routability.

Consider a communication graph G=(N,E) where, N is the set of sensor nodes and E is

the set of unweighted edges. The graph (hop) distance between two nodes is the shortest

hop count (number of edges) between them. For a packet traversing from a source node

to the destination node, the successor to the source node is always the node which reduces

the hop count to the destination node. An auxiliary atlas M(G) is constructed which is

shared with every node. It helps achieve awareness about the global topology of the network

and connectivity information by partitioning the nodes into tiles and mining the adjacency

relations between these tiles. Each of the partitions or tiles is uniquely identified by a

landmark or anchor node. It is critical to make an equitable selection of landmark nodes to

achieve best results for this algorithm.

C.5.1.2 Medial Axis Protocol for VCS (MAP-VCS)

Medial Axis Protocol (MAP) is a coordinate assignment and routing protocol that runs

without any geographic information and performs routing and load balancing efficiently.

MAP constructs the medial axis of the network field by selecting the set of nodes, each

of which has at least two closest nodes on the boundary. The routing algorithm uses these

coordinates to locally route the packets in the network. Many of the techniques discussed rely

on the optimum selection of landmark nodes that are used to compute the local landmark

133

coordinates of the nodes in the system. However, landmark selection is a complex problem

which doesn’t have a conventional method. MAP ensures the retention of the geometrical

and topological features of the network working as the backbone scheme. It is a protocol

serving many applications like robot path planning [77] and surface reconstruction [78] [79].

Medial axis for MAP uses only the connectivity information. This can be represented by a

graph whose size is directly proportional to the size of the sensor network.

MAP works without using any location information and uses only the graph connectivity

information. The protocol is extremely light weight and compact. The medial axis is repre-

sented by a graph whose size is directly proportional to the size, geometry and complexity

of the sensor network. It requires no maintenance whatsoever once constructed. Since the

medial axis serves as a skeleton, MAP has a good coverage throughout the network. It is

also robust to variations in the network model following the steps of naming and routing in

both discrete and continuous domains.

C.5.1.3 Graph Embedding for VCS (GEM-VCS)

With increasing size of WSNs, scalability is one of the main factors to be taken care

of. With a larger network, the number of measurements increase, causing a humungous

amount of data across the network. Also, each sensor node has limited memory, storage,

communication range, battery power and computational ability. Hence, it is important to

utilize resources per node efficiently. There are several techniques to retrieve the data sensed

by nodes – local storage, external storage and the data-centric approach. The data-centric

approach is the most energy efficient approach which relies on proficient routing mechanism.

The Graph Embedding (GEM) is a routing technique for a sensor network with data-centric

storage and information processing. GEM is devoid of any geographical information and

gives decent results even in presence of physical voids.

GEM is a basically a set-up that is a graph with labelled nodes, embedded in the original

sensor network topology in a distributed and efficient manner. Many of the existing overlay

134

protocols for routing are not suitable for sensor networks as each hop in the overlay could be

several hops in actual network. Hence, it is crucial to have an underlying system for routing.

GEM works in such a way that every node is aware of its neighboring nodes through the labels

assigned to them. These nodes can perform routing by exploiting these labels. Additionally,

the data names can be mapped to the labels to use data-centric storage. This approach

is based on constructing a Virtual Polar Coordinate Space (VPCS) without any physical

placement information of the topology. There are two techniques developed to embed this

virtual apace with the network topology – the first one requires for the nodes to find out

distances between them and their neighbors unlike the second one. Virtual Polar Coordinate

Routing (VPCR) is a routing algorithm that uses the VPCS.

C.5.1.4 Hyperbolic Embedding in Dynamic Graphs for VCS (HEDG-VCS)

This is a routing and embedding technique which allows for external addition of nodes

after the network has been formed without disturbing the existing network. To attain this,

a simple routing algorithm called as Gravity-Pressure (GP) routing is introduced. Given

that a path exists in the network between any two nodes, this method guarantees successful

routing even when a few nodes or links between the nodes are removed after the final graph is

formed. This method focuses on – constructing a graph with greedy embedding which allows

the addition of a random number of nodes to the network without making any changes to

the already formed graph. The second step follows with the greedy routing algorithm which

works even in the unexpected failures or downtimes of nodes or links in the graph.

C.5.2 Virtual Coordinate Systems based on Hop Distances to Anchors

This section describes VCS that rely on the hop distances to a subset of nodes. They

may be generated in a distributed manner, and therefore are especially useful for large-scale

networks where obtaining all the information centrally and distributing the coordinates back

to the networks are not trivial tasks.

135

Table C.1: Comparison of virtual coordinate systems embedding a graph/tree topology (category A)

Parameters
VCS technique
GL-VCS MAP-VCS GEM-VCS HEDG-VCS

Use of anchors X - - -
Efficient Routing X X X X

Asserting the local minima X - X X

Ability to deal with node failures and changing topologies - - X X

Ability to capture the network shape and voids - - X -
Use in 3D networks - - - -
Distributed computation of VCs X X X X

Directionality - - - X

WSN applicability X X X X

C.5.2.1 Anchor-based Virtual Coordinates

Anchor-based coordinate framework provides an efficient addressing mechanism for self-

organization and routing without the need for physical location information. In anchor-based

VC schemes, few of the nodes in the network are marked as landmarks or anchors. Once

the coordinates are evaluated, each node in the network is identified by a vector, called

its virtual coordinates or logical coordinates, consisting of the hop counts to each of the

anchors. Figure C.1 illustrates the anchor-based virtual coordinates for a network where the

four corner nodes are selected as anchors. This coordinate system is the basis for routing

schemes such as LCR-VCS [48] and CSR [80], as well as several derivative coordinate schemes

and routing methods [81].

C.5.2.2 Axis-based Virtual Coordinate Assignment Protocol (ABVCap)

ABVCap is another approach based on assignment of VCs in WSNs without the need for

geographical coordinates, generation of which requires GPS or distance measurement. It is a

VC Assignment technique that provides packet delivery across a network. ABVCap is based

on the VC Assignment Protocol with quite a few improvisations. Each node in the WSN is

static or quasi-static and has a unique ID and same transmission range (default = 1.5) [69].

It assigns at least one 5-tuple VC (u.lo, u.la, u.rp, u.up, u.dn) per node in the network by

following assigned steps. A node in the network may have more than one 5-tuple VC. Such

nodes are perceived as multiple virtual nodes at one location. Once the VC Assignment is

136

Figure C.1: The logical coordinate framework for LCR-VCS for a rectangular network with triangular grid
placement

complete, the routing protocol follows. It consists of two phases – Choosing a VC among

multiple VCs for the node, and routing the received packet based on that VC. Figure C.2

shows the ABVCap protocol.

C.5.2.3 Directional Virtual Coordinate Systems (DVCS)

With new emerging techniques for assignment of VCs in a system, there have been sev-

eral advances to overcome the limitations in the existing techniques. Directional Virtual

Coordinate System (DVCS) is a systematic approach designed to eliminate the problem of

lost directionality in the conventional anchor-based VCS. DVCS starts with the anchor based

VCs for all the nodes across the network. It uses a transformation that combines two anchor-

based coordinates at a time to regain the lost directional information, DVCS help mitigate

the logical voids associated with anchor-based VCS by providing more geographic-like set

of coordinates. This coordinate assignment technique also allows for novel routing strictly

with the help of deterministic algorithms for constrained tree network. DVCR significantly

outperforms existing VCS routing schemes Convex Subspace Routing (CSR) [80] and Logical

137

Figure C.2: Establishment of Axes - Parallel of Latitude and Meridians

Coordinate Routing (LCR) [48], while achieving a performance like or better than geograph-

ical routing scheme Greedy Perimeter Stateless Routing (GPSR), but without the need for

node location information [22].

DVCS proposes novel technique for transformation of traditional VCs to directional VCS.

Properties of DVCS are discussed with assignment of coordinates in a constrained tree net-

work. Also, an efficient DVCS routing protocol which uses DVCS coordinate assignment

is elucidated. The routing protocol is compared with other protocols like with CSR, LCR

and geographical routing scheme called Greedy Perimeter Stateless Routing (GPSR) [51].

DVCR outperforms, CSR and LCR with a noticeable value achieving similar performance

as GPSR.

C.5.3 Topology Preserving Maps

138

Table C.2: Comparison table for decentralized virtual coordinate systems (category B)

Parameters
VCS technique
LCR-VCS ABVCap DVCS

Use of anchors X X X

Efficient Routing X X X

Asserting the local minima X X X

Ability to deal with node failures and changing topologies - - -
Ability to capture the network shape and voids - X X

Distributed computation of VCs X X X

Directionality - - X

WSN applicability X X X

C.5.3.1 Topology Preserving Maps – Extracting Layout Maps of Wireless
Sensor Networks from Virtual

The elementary anchor-based VCS characterizes each node with a coordinate vector

consisting of distances to each of the anchor nodes. In the process, the layout information

of the WSN such as physical voids, obstacles, shape, and even relative physical positions

of sensor nodes with respect to (x,y) directions are lost. TPM technique uses the Singular

Value Decomposition (SVD) scheme to recover the network layout in 2D and 3D network

surfaces or volumes by isolating and removing the radial component that dominates the

VCs. The topological coordinates (TCs) are computed using the coordinates of a subset of

nodes. Topology preservation error (ETP), defined to capture the among and degree of node

flips, is used to evaluate 2-D TPMs. The defined method extracts TPMs with less than 2%

error. Topology coordinates provide an economical and efficient alternative to geographical

coordinates [30].

This scheme achieves a map that is homomorphic to the physical layout of the network

absorbent of the information about node connectivity, physical layout, and physical voids.

The topology map itself is not a physical map, but a distorted version of it taking into

consideration the connectivity parametric.

C.5.4 Coordinate Systems using Network Properties

139

Figure C.3: Mapping of Internet space to the virtual space

C.5.4.1 Vivaldi (Network Co-ordinate System)

Emerging network applications and services are highly intelligible and flexible due to

the ability of choosing their own communication paths amongst the available ones. These

communication paths are chosen based on certain network measurement parameters such as

latency. However, explicit measurements by injecting probes in network would generate a

huge amount of measurement traffic in the network making it infeasible to obtain measure-

ments. This is the conventional way of attaining network information for efficiently choosing

communication paths in a network. Network measurements benefit several areas such as

peer-to-peer file sharing applications, Content distribution systems and Decentralized web

caches. To make these measurements viable with minimum effort and cost, NCS have been

proposed. With constraints, such as limited resources per node, NCS allows the host to

perform measurements with minimal resource consumption [82].

The foundation of an NCS is to model the Internet as any geometric space and charac-

terize the position of all the nodes in the network by coordinate in this space [23] [83]. The

distance between any of the nodes could be given as the geometric distance between them.

Network systems usually involve construction of overlays and look-ups. With such struc-

tures, it proves to be difficult to take measurement as compared to measurement of node

distances in a standard planar network. Moreover, injecting probes in the network for these

proximity measurements would further lead to complications and unnecessary overheads.

Additionally, in the case of ever-changing topologies, it is impractical to take measurements

140

each time the node changes positions or fails in the network. The Fig. 14 shows modelling

the internet as a geometric space and mapping it to a virtual space.

In the real world, the hosts can be present anywhere. These hosts are connected to each

other and the distances shows one of the network measurement parameters (say round-trip

time). These distances are mapped into the virtual space using an estimate from a conversion

distance function in the geometric space.

To achieve a consent between requirements for optimum performance for the overlay

networks and scalability constraints imposed by underlying IP networks, NCS for estimating

network distances and latencies have been proposed [23].

C.5.4.2 Maximum Likelihood Topology Maps for Wireless Sensor Networks
Using an Automated Robot (ML-TM)

Topology maps play a vital role in characterization of a physical network of sensor nodes

while maintaining the node connectivity information. It’s a non-linear mapping of a physical

network to a topology map. Maximum Likelihood-Topology Maps (ML-TM) is a novel

concept that creates a topology map using a packet reception probability function, which

is sensitive to the distance between nodes [24]. This method retains the physical shape of

the network more accurately than other topology maps in comparison. It supersedes many

existing range-based and range-free localization scheme to determine node addresses in terms

of cost.

This technique proposes to generate a map of the network with the use of a mobile robot.

The robot traverses through network using a defined geometric path and hence, finding the

Maximum Likelihood-Topology Coordinates using a binary matrix. Whilst moving through

the deployed network, the robot gathers a binary matrix based on the packets received from

the nodes from different locations. Using that information, the topology coordinates are

calculated by the binary matrix and a packet receiving probability function which is sensitive

to the distance. It overcomes the flaws of RSSI algorithms [14] which extract the distances

from received power, hence comes across significant errors due to RF communication effects.

141

The proposed topology map preserves the dimensions and shapes of features such as physical

voids and network boundaries. It outperforms the RSSI geographical localization and hop

based topology maps.

Table C.3: Comparison table for virtual coordinate systems using network measurement parameters (cat-
egory C + category D)

Parameters
VCS technique
VIVALDI ML-TM TPMs

Use of anchors - - X

Efficient Routing X X X

Asserting the local minima - - X

Ability to deal with node failures and changing topologies - X X

Ability to capture the network shape and voids X X X

Use in 3D networks X - X

Distributed computation of VCs X X X

Directionality - X -
WSN applicability X X X

C.6 Conclusion

A Virtual Coordinate System provides an attractive and an economical method to charac-

terize the location of nodes in a network for networking functions such as routing, placement

and topology control. A VCS does not rely on geographical information such as GPS co-

ordinates or distance measurements, and thus can be useful in many harsh and complex

environments. This chapter surveyed three categories of VC assignment techniques. They

were compared with respect to parameters such as the level of computation involved, pres-

ence of directional information in the resulting coordinates, and the applicability to sensor

and IoT networks. There has been significant research to localize nodes in the geographic

domain as it is the familiar and obvious choice. However, it is important to note that the

performance of geographic coordinate systems for operations such as routing deteriorates

in the presence of concave voids. In fact, overcoming local minima in geographic domain

purely based on node locations is highly ineffective with 3D-volume and 3D-surface net-

works of complex shapes. Such networks can be expected to be very common with emerging

142

IoT applications. Connectivity based VCSs have shown to be much more effective in such

cases compared to geographical coordinates. While many of the V are based on connectiv-

ity information, others rely on parameters such as packet loss and path delay to determine

coordinates.

143

	Titlepage
	Abstract
	Acknowledgements
	Dedication
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 — Introduction
	Virtual Coordinate System for Smart Fabrics
	Outline

	Chapter 2 — Literature Review
	Smart Fabrics
	Virtual Coordinate Systems
	Anchor Selection and Anchor Placement
	Random Anchor Placement
	Single Mobile based anchor
	Extreme Node Search (ENS)

	Chapter 3 — Problem statement and Contribution
	Problem Statement
	Contribution

	Chapter 4 — Smart Fabric Simulator
	Introduction
	Simulator Design
	Grid Simulator
	Utility Modules
	Adjacency Matrix
	Graph Modules

	Helper Modules

	Results

	Chapter 5 — Adaptive Localization in Smart Fabrics with Rectangular Grid
	Location vs. Virtual Coordinates
	Adaptive Localization Algorithm
	Delta Minimization
	Neighbor Verification
	Localization using Anchor addition & Coordinate Optimization

	Results & Analysis

	Chapter 6 — Smart Fabrics with Triangular Grids
	Introduction
	Triangular Smart Fabric Grids
	Localization for Triangular Smart Fabric Grids
	Polygon shaped Smart Fabric Grids
	Equilateral Triangle & Trapezoid Shaped SF
	Rectangle Shaped SF

	Angular Strip shaped Smart Fabric Grids

	Chapter 7 — Parallelization
	Introduction
	Parallel Programming Approaches
	Multiprocessing
	POOL for multiprocessing
	PROCESS for multiprocessing

	Message Parsing Interface (MPI)

	Analysis of Parallelization Techniques

	BIBLIOGRAPHY
	Appendix A — Localization and Anchor data
	Appendix B — Source Code
	GRID SIMULATOR
	DRIVER METHOD
	HELPER METHODS

	ADAPTIVE LOCALIZATION METHOD
	DRIVER METHODS
	HELPER METHODS

	Appendix C — A Survey of Virtual Coordinate Systems
	Introduction
	Physical Coordinates vs. Virtual Coordinates
	Classification of Virtual Coordinate Systems
	Virtual Coordinate Systems embedding a graph/tree topology
	Virtual Coordinate Systems based on Hop Distances to Anchors
	Topological Coordinate Systems
	Virtual Coordinate Systems using Network Measurement Parameters

	Attributes of Virtual Coordinate Systems
	Use of Anchors
	Efficiency of routing/measurements
	Susceptibility to local minima issue
	Ability to deal with node failures and changing topologies
	Ability to capture the network shape and voids
	Applicability to 3-D networks
	Distributed Computability of VCs
	Directionality
	Applicability to WSNs

	Virtual Coordinate Systems
	Virtual Coordinate Systems based on an Embedded Graph/Tree Topology
	Gradient Landmark based VCS (GL-VCS)
	Medial Axis Protocol for VCS (MAP-VCS)
	Graph Embedding for VCS (GEM-VCS)
	Hyperbolic Embedding in Dynamic Graphs for VCS (HEDG-VCS)

	Virtual Coordinate Systems based on Hop Distances to Anchors
	Anchor-based Virtual Coordinates
	Axis-based Virtual Coordinate Assignment Protocol (ABVCap)
	Directional Virtual Coordinate Systems (DVCS)

	Topology Preserving Maps
	Topology Preserving Maps – Extracting Layout Maps of Wireless Sensor Networks from Virtual

	Coordinate Systems using Network Properties
	Vivaldi (Network Co-ordinate System)
	Maximum Likelihood Topology Maps for Wireless Sensor Networks Using an Automated Robot (ML-TM)

	Conclusion

