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ABSTRACT 
 
 
 

SNOW PERSISTENCE AND HYDROLOGIC RESPONSE ACROSS THE 
 

INTERMITTENT-PERSISTENT SNOW TRANSITION 
 
 
 

In mountainous regions and high latitudes, seasonal snow is a critical component of the 

surface energy balance and hydrologic cycle. Snowpacks have been declining in many mountain 

regions, but the hydrologic responses to snow loss have varied due to interactions of climatic, 

vegetative, topographic and edaphic factors. With continued climatic change, it remains 

uncertain whether the southwestern U.S. and other subtropical and mid-latitude dry areas may 

experience significant reductions in water yield. In this dissertation snow persistence and trends 

are mapped globally; relationships between snow persistence and annual water yield are 

examined in different climates, and snowmelt and rain partitioning in the critical zone are 

modelled to examine potential effects of snow loss on hydrologic response.  

Chapter 2 involves mapping the distribution of snow persistence (SP), the fraction of time 

that snow is present on the ground for a specific period, using MODIS snow cover data, 

classifying similar areas into snow zones, assessing how snow persistence relates to climatic 

variables and elevation, and testing for trends in annual SP. SP is most variable from year to year 

near the snow line, which has a relatively consistent decrease in elevation with increasing 

latitude across all continents. At lower elevations, SP is typically best correlated with 

temperature, whereas precipitation has greater relative importance for SP at high elevations. The 

largest areas of declining SP are in the seasonal snow zones of the Northern Hemisphere. Trend 

patterns vary within individual regions, with elevation, and on windward-leeward sides of 
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mountain ranges. This analysis provides a framework for comparing snow between regions, 

highlights areas with snow changes, and can facilitate analyses of why snow changes vary within 

and between regions.  

In Chapter 3, SP is used to evaluate how water yield relates to snow patterns at the annual 

time scale across the western U.S. in different climates. I first compare snow cover variables 

derived from MODIS to more commonly utilized metrics (snow fraction and peak snow water 

equivalent (SWE)). I then evaluate how SP and SWE relate to annual streamflow (Q) for 119 

USGS reference watersheds and examine whether these relationships vary for wet/warm 

(precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results show high 

correlations between all snow variables, but the slopes of these relationships differ between 

climates. In dry/cold watersheds, both SP and SNODAS SWE correlate with Q spatially across 

all watersheds and over time within individual watersheds. I conclude that SP can be used to map 

spatial patterns of annual streamflow generation in dry/cold parts of the study region.  

In Chapter 4 of the dissertation, I use a series of one-dimensional simulations to study 

how snow loss may impact hydrologic response in mountain areas at event to annual time scales. 

I use Hydrus 1-D simulations with historical inputs from fifteen SNOTEL snow monitoring sites 

to investigate how inter-annual variability of water input type (snowmelt, rainfall) and timing 

affect soil saturation and deep drainage in different soil types and depths. Greater input rate and 

antecedent moisture are observed for snowmelt compared to rain events, resulting in greater 

runoff efficiencies. At the annual scale runoff efficiencies increase with snowmelt fraction and 

decrease when all input is rainfall. In contrast, deep drainage has no clear correlation to 

snowmelt fraction. Input that is concentrated in time leads to greater surface runoff and deep 
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drainage. Soil texture and depth modify partitioning, but these effects are small compared to 

those caused by variability in climate.  

 This dissertation’s findings have direct implications for climate change impacts in cold 

dry areas globally. Through the synthesis of the chapters described above I highlight areas where 

hydrologic response to snow loss may be most sensitive, provide methods for comparing 

regional snow patterns, demonstrate how snow persistence can help estimate annual streamflow 

generation, and improve process-based knowledge of hydrologic response to rainfall and 

snowmelt in the western U.S. Collectively these findings indicate that annual water yield is not 

directly sensitive to whether input is snowmelt vs. rainfall; instead it is more dependent on the 

effect that snowpack accumulation has on input timing and rate. Loss of concentrated melt from 

persistent snowpacks may lead to lower streamflow and compromise deep drainage, and thus 

aquifer recharge, in semi-arid cold regions. The consequences of streamflow and groundwater 

recharge loss could be severe in regions already water-stressed, and this needs to be addressed in 

long-term water supply planning.  
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Chapter 1. Introduction 

 
 

1.1.The importance of snow to the hydrologic cycle in mountain areas 

In mountainous regions and high latitudes, seasonal snow is a critical component of the 

surface energy balance and hydrologic cycle. The timing of snow onset and melt and duration of 

the snow season affect both hydrological and ecological processes such as vegetation phenology 

and biogeochemical cycling. This research uses snow persistence, the fraction of time snow is 

present for a defined period, to explore how snow affects hydrologic response. These hydrologic 

responses include soil moisture dynamics, streamflow generation and groundwater recharge. 

Mountain areas generally produce a greater proportion of streamflow than low lying areas 

(Christensen et al., 2004; Viviroli et al., 2007; Hunsaker at al., 2012), so hydrologic changes in 

mountains have great implications for downstream areas. Snowpacks in mountain regions have 

been declining across the western U.S. over the past several decades (Clow, 2010; Fritze et al., 

2011; Harpold et al., 2012; Regonda et al., 2005; Stewart et al., 2005), with empirical and 

modeling studies indicating that snow loss may lead to lower streamflow generation (Regonda et 

al., 2005; Stewart et al. 2004, 2005; Clow, 2010; Jefferson, 2011; Furey et al., 2012; Berghuijs et 

al., 2014; Barnhart et al., 2016). Yet hydrologic responses to snow loss are heterogeneous; in 

some areas loss of snow causes declines in streamflow, but this does not occur everywhere 

(McCabe et al., 2018). The reasons for variability in hydrologic response to snow loss between 

regions are often unknown. Hydrologic responses to snow loss likely vary because they are 

affected by the interactions of climatic, vegetative, topographic and edaphic factors. The relative 

importance of each factor may change between climatic zones as well as along elevation 

gradients within a single climatic zone.  
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1.2. Snowmelt’s societal importance 

Several of humanity’s first civilizations, including those along the Nile, Indus, and 

Euphrates, thrived in semi-arid areas where the spring and summer snowmelt freshet from 

upstream mountain areas flooded river valleys with water and sediment, developing some of the 

most fertile farmland in the world. This reliable, annual melt pulse allowed for the development 

of complex societies in otherwise inhospitable surroundings. Reliance on the snowmelt freshet 

continues today, with the western U.S., among many other regions, dependent on spring 

streamflow that supplies agricultural water use. More than half of global mountainous areas play 

a substantial role in the hydrology of downstream regions, with heightened importance in arid 

and semiarid regions (Viviroli et al., 2007). Mountain areas serve as essential water towers, in 

the following regions: Ethiopian Highlands (Nile River), Taurus and Zagros Mountains 

(Euphrates and Tigris rivers), Pamir and Tien Shan (Amu-Darya and Syr- Darya rivers), 

southwest Himalayas (Indus River), High-lands of Lesotho (Orange River), and parts of the 

southern Rocky Mountains (Colorado River and Rio Grande) (Viviroli et al., 2007). In total, 

about 2 billion people face reduced water supply due to snow loss this century (Barnett et al., 

2005; Mankin et al., 2015). With changes to the duration of snow cover and timing and 

magnitude of snowmelt, livelihoods of those in Arctic (Callaghan et al., 2011), European 

(Dodgshon et al., 2007), Himalayan (Xu et al., 2009; Merry et al., 2018) and Andean 

communities (Valdivia et al., 2010) pertaining to agriculture, hunting, and raising livestock are at 

risk of being lost. 
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1.3. Global warming and the changing hydrologic cycle 

Under a business as usual scenario of climatic change with 3.7 °C warming by 2100 

(representative concentration pathway, RCP 8.5), ice and snow will melt more rapidly and 

occupy lesser extents. Global precipitation and evaporation are likely to increase overall, though 

potentially diverging regionally, and water yield at high latitudes is likely to increase whereas 

decreases are expected in some arid and semi-arid regions (Collins et al., 2013). In the future 

warmer climate, snow will likely begin accumulating later and melt earlier, with different 

magnitudes of change by elevation and geographic region (Fassnacht et al., 2018). Spring snow 

covered extent in the Northern Hemisphere is projected to decrease by 10 to 30% by 2100 

(Collins et al., 2013). Despite global losses, regional increases in snowfall and snow 

accumulation are predicted for high latitudes. Warmer temperatures can allow increased 

precipitation at high latitudes leading to increases in net snowfall and accumulation (Collins et 

al., 2013). The southwestern U.S., along with other subtropical and mid-latitude dry areas, is 

expected to have similar or slightly lower precipitation and higher potential evaporation, leading 

to a greater moisture deficit (precipitation – evaporation) than in the past (Chou and Neelin, 

2004; Held and Soden, 2006; Chou et al., 2009; Seager et al., 2010; Bony et al., 2013).  Lower 

precipitation and higher evaporation may translate into reduced water yield in these regions 

(Christensen and Lettenmaier, 2007; McCabe and Wolock, 2007;  Barnett and Pierce, 2008). 

 

1.4. Snow loss and water management systems 

Water management systems are comprised of many interacting components and 

institutions, fulfilling multiple objectives at hourly to seasonal scales including flood control, 

hydropower, irrigation, recreation, and water supply. Snow losses have coincided with trends in 
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the timing and magnitude of reservoir inflows over the past several decades (Stewart et al. 2004; 

Regonda et al., 2005; Lins and Slack, 2005; Clow, 2010; Hatcher and Jones, 2013), and this has 

consequences expected for water management systems designed under assumptions of 

stationarity.  

Climate change undermines the assumption of stationarity that has been used in the 

management of water resources (Milly et al., 2008). In addition to the existing interannual 

climatic variability, as well as human and natural disturbances, water management must also 

factor climatic trends into water supply forecasts and rule curves. Where reservoir capacity 

cannot accommodate winter increases in flow, streamflow may immediately be lost downstream, 

and in the absence of additional downstream reservoir storage, lost to the oceans (Barnett et al., 

2005). Anticipatory adaptive measures in response to these hydrologic changes will be needed to 

minimize impacts on water users and maximize system performance even when the system is 

degraded (Middelkoop et al., 2001). 

In the Colorado River Basin, a modeling comparison between historical and future 

climate effects on reservoir system management revealed degraded system performance with 

reduced total basin storage, reduced hydropower output, and releases from the upper basin to the 

lower basin mandated by the Colorado River Compact only met some years (Christensen et al., 

2004). Climate change in mountain areas generally may also increase flood risk during winter 

while reducing low flows during summer months, with consequences for irrigation, industrial, 

and domestic supplies. Tradeoffs between hydroelectric generation, biological flows, irrigation, 

and recreational releases may be required. Current water demands in certain areas will not be met 

under future climate conditions, with the demands of a larger future population far from 

guaranteed (Barnett et al., 2005).  
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1.5 Key knowledge gaps 

 While remotely sensed methods for snow research have been around for decades, most 

prior research has not focused on comparing snow patterns between different geographical areas. 

Station measurements have been used for this purpose (Serreze et al., 1999; Trujillo and 

Molotch, 2014), but the station network does not cover all snow-affected areas. Analyses of 

snow-covered extent have revealed areal losses in snow through time at the continental scale 

(Brown and Robinson, 2011; Rupp et al. 2013; Estilow et al. 2015; Kim et al. 2015; Kunkel at al. 

2016; Hori et al. 2017), whereas analyses of snow measurement stations have been conducted at 

finer scales (Mote et al. 2005; Regonda et al., 2005; Lopez-Moreno and Vicente-Serrano 2007; 

Stewart 2009; Jain et al. 2010; Masiokas et al. 2010; Valt and Cianfarra 2010; Harpold et al., 

2012; Ma and Qin, 2012; Marty and Meister 2012; Kunkel et al. 2016). We have lacked methods 

for examining snow changes at intermediate scales along climatic and elevation gradients within 

continents. 

Next, although snow loss is apparent at a variety of scales, the lack of understanding 

about variable hydrologic responses to snow loss makes it difficult to predict future hydrologic 

conditions. There are many studies that examine hydrologic responses to snow changes in large 

river basins or even globally (e.g. Vicuna et al., 2007; Adam et al. 2009; Painter et al., 2010; 

Anghileri et al., 2016). Others explore potential effects within small watersheds (Nayak et al., 

2010; Hunsaker et al., 2012; Godsey et al., 2014). We lack information at intermediate scales 

that could highlight which parts of large river basins are most sensitive to snow changes and help 

relate small watershed findings to a broader geographic area. In this dissertation I primarily focus  

on annual water yield, just one metric for assessing hydrologic response. Other metrics of 

hydrologic response in snowmelt-dominated areas include the onset of snowmelt and the timing 
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of peak flow (Clow, 2010) as well as the timing of the center of mass of the snowmelt 

hydrograph (Stewart et al., 2004).  

Another knowledge gap relates to the processes that would create differences in 

hydrologic response to snow loss. We know that precipitation in some areas is shifting from 

snow to rain (Huntington et al., 2004; Knowles et al., 2006; Klos et al., 2014), but how exactly 

this will impact surface runoff, soil storage, deep drainage, vegetation water use and groundwater 

recharge remains uncertain.  

 

1.6 Research goal and questions 

The goal of this research is to examine how and why changes in snow have variable 

effects on hydrologic response. I use snow persistence to examine snow patterns and trends 

globally in Chapter 2, which addresses the following questions: (1) where are snow zones 

located across the globe, and how does this distribution relate to latitude, elevation, temperature, 

precipitation, and climate indices? (2) how has snow persistence changed since the beginning of 

the MODIS record? 

Chapter 3 then focuses in on the western United States, which contains seasonally snow 

covered areas in both wet maritime and dry continental climates. This chapter examines how 

snow persistence relates to streamflow across these different climates and addresses the 

questions:  (1) how do globally available spatial snow cover variables compare with other snow 

variables more commonly used in streamflow prediction models?,(2) are snow variables useful 

for estimating streamflow in watersheds that span a wide range of snow persistence and climate 

conditions? and (3) can snow cover be used to reconstruct streamflow patterns in ungauged 

watersheds, both spatially and temporally? 
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Finally, Chapter 4 examines the mechanisms that determine how snow changes affect 

hydrologic response. This portion of the research uses a physically-based model to simulate 

hydrologic responses in soil columns under a wide range of climate conditions. The chapter 

addresses the questions: (1) are snowmelt and rain partitioned differently between surface runoff 

(Q), deep drainage (D, and evapotranspiration (ET)? and (2) how is this partitioning of rain and 

snowmelt affected by climate, soil type, and soil depth?  
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Chapter 2. Global Snow Zone Maps and Trends in Snow Persistence 2001–20161 

 

 

2.1 Introduction and background 

2.1.1 The importance of snow to the surface energy balance and hydrologic cycle 

Seasonal snow is a critical component of the surface energy balance and hydrologic 

cycle, particularly at high elevations and high latitudes. Seasonal inputs of snow support and 

maintain glaciers and ice sheets, insulate permafrost, and influence sea ice onset and breakup. 

The physical properties of snow, mainly high albedo and low thermal conductivity, exert strong 

controls on the surface energy balance, especially in the Northern Hemisphere where large areas 

are seasonally covered by snow (Barry and Gan 2011). Snow cover affects soil temperature, 

freeze and thaw, and permafrost stability, all of which moderate land-atmosphere carbon 

exchange (Zhang 2005, Edwards et al. 2007). Water stored in snow contributes to the timing and 

magnitude of streamflow, affecting water resource availability (Barnett et al. 2005, Beniston and 

Stoffel 2014). Climate model simulations indicate that the fraction of meltwater produced at high 

snowmelt rates is greatly reduced in a warmer climate due to shortening of the snowmelt season 

and melt occurring during periods of lower available energy (Musselman et al. 2017). This loss 

of high snowmelt rate may lead to corresponding losses in streamflow generation (Barnhart et al. 

2016). Anticipated warming will greatly impact the hydrology of alpine and high latitude areas, 

with repercussions for biogeochemical cycling, aquatic communities, and anthropogenic water 

use extending far downstream (Huss et al., 2017). 

 
 
                                                 
1 Hammond, J. C., Saavedra, F. A., & Kampf, S. K. (2018). Global snow zone maps and trends 
in snow persistence 2001–2016. International Journal of Climatology, 
https://doi.org/10.1002/joc.5674. 
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2.1.2 Temporal and spatial snow patterns 

Surface station measurements for the past several decades from around the world show 

varying rates and directions of temporal snow changes in recent decades (Stewart 2009, Kunkel 

et al. 2016). Snow occurrence has decreased in much of the Northern Hemisphere, especially 

during spring in locations where air temperature is near freezing (Brown and Mote 2009). Trend 

analyses in North America have documented declining April 1 snow water equivalent (SWE) 

(Mote et al. 2005), with the strongest declines in maritime mountain ranges (Regonda et al. 

2005) and fewer consistent trends in the continental interior (Harpold et al. 2012). South 

American studies have had few surface stations to analyze but have documented little significant 

change in snow water equivalent (SWE) (Masiokas et al. 2010), with snow patterns strongly 

linked to climatic oscillations (Masiokas et al. 2012). Studies in the European Alps (Valt and 

Cianfarra 2010, Marty and Meister 2012) and Pyrenees (Lopez-Moreno and Vicente-Serrano 

2007) display declines in spring snow depth and snow cover duration. In Asia, Himalayan 

surface stations demonstrate significant changes in the distribution of snowmelt timing with 

more snowmelt occurring earlier in the year (Jain et al. 2010). China as a whole has experienced 

negative trends in snow depth and SWE over the past several decades (Ma and Qin 2012).  

Spatial patterns of snow can be monitored with remote sensing, which has the advantage 

of large spatial extent, providing worldwide utility in data-dense and data-sparse areas. Satellite 

remote sensing of snow allows studying inter-annual variability in snow cover extent, snow 

cover duration, and snowline elevation across large areas where sensor networks may not be 

feasible (Kulkarni et al. 2010, Li et al. 2017). Remote sensing studies have shown declining 

snow cover extent, snow cover duration, and snow depth across the northern hemisphere over the 

past several decades (Estilow et al. 2015, Kim et al. 2015, Kunkel at al. 2016, Hori et al. 2017), 
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with spring snowmelt onset occurring earlier while the onset of snow cover has not significantly 

changed (Choi et al. 2010). Northern hemisphere spring snow cover extent over the period from 

1922–2010 showed accelerated reductions over the past four decades (Brown and Robinson 

2011, Rupp et al. 2013), with trends switching direction from positive to negative in some areas 

of Asia from the early to late 2000’s. Seasonal snow cover in South America shows strong inter-

annual variability linked to atmospheric circulation patterns and El Niño Southern Oscillation 

(ENSO) activity for both snow cover and snow mass over the period 1979-2006 (Foster et al. 

2009). In recent years (2000-2014), snow persistence in the Central Andes displayed statistically 

significant declines, with fewer trends in the tropical Andes (Saavedra et al. 2017).  

 

2.1.3 Climate connections to snow patterns 

Both surface station and remote sensing studies report widespread decreasing snow 

trends, with areas at lower elevation or with higher average temperatures displaying the greatest 

decreases (Vaughan et al. 2013). Multiple studies attribute these changes to increases in 

temperature (Brown and Mote 2009; Kunkel et al. 2016; Regonda et al. 2005; Harpold et al. 

2012), but temperature alone does not fully explain the snow patterns. Precipitation also affects 

snow, and globally, there has been an increase in the variance of annual precipitation, with 

increased precipitation at high latitudes in the Northern Hemisphere and decreased precipitation 

in China and Australia (Dore 2005). Concurrent increases in temperature and precipitation have 

led to increases in high latitude snow cover duration in North America and Eurasia (Cohen et al. 

2012) and decreases in SWE in the Pacific Northwest USA (Mote 2003).  

Snow patterns are also linked to climate teleconnections. For example, large snow-

covered areas in the Northern Hemisphere influence the onset and strength of climate 
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teleconnections (Ye and Bao 2001; Wu et al 2012), while teleconnections in turn influence snow 

accumulation and ablation through their effects on precipitation and temperature (Bednorz 2004; 

Shaman and Tziperman 2005; Ge and Gong 2009). Snow anomalies in North America and 

Northern Europe correlate with the North Atlantic Oscillation (NAO) and ENSO (Seager et al. 

2010). NAO is a dominant control on precipitation and temperature in the Mediterranean Region, 

strongest in the Western Mediterranean, with dry and warm periods leading to lower snow 

accumulation and snow-covered extent (López-Moreno et al. 2011). In South America, El Niño 

conditions relate to low precipitation and warm air temperatures at low latitudes and high 

precipitation and warmer temperatures at higher latitudes (Garreaud et al., 2009), and these 

ENSO cycles in turn affect snow persistence (Saavedra et al. 2018). The Southern Annular Mode 

(SAM) affects South American climate (Vera and Silvestri, 2009; Fogt et al., 2010), and it 

correlates with snow persistence south of 35 degrees South (Saavedra et al. 2018). Despite the 

great distance of separation, SAM exerts a strong influence on Eurasian temperature and 

precipitation (Wu et al. 2009), an area also showing a strong relationship between snow depth 

and the NAO (Ye 2001). 

 

2.1.4 Snow persistence 

Despite the widespread application of remotely sensed methods for snow research, 

comparing snow patterns between regions remains challenging because the timing of snow 

accumulation and melt varies substantially with latitude and elevation. Snow persistence (SP), 

defined as the fraction of time that snow is present on the ground, offers a path forward for 

regional comparisons. This metric has been used in both North and South America to define 

snow zones in a wide range of climates (Richer et al. 2013, Moore et al. 2015, Saavedra et al. 
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2017). Snow zones are areas that display similar snow patterns: permanent snow zones retain 

their snow year-round; seasonal snow zones have snow that persists through the winter, and 

intermittent snow zones do not consistently have snow that last through the winter. Snow 

persistence is also useful for identifying transitions between rainfall and snowmelt peak 

streamflow source regimes (Kampf and Lefsky 2016) and for predicting water yield (Saavedra et 

al. 2017, Hammond et al., 2018).  

In this study, snow persistence and snow zones are mapped globally and then used to 

address the following questions: 

1. Where are snow zones located across the globe, and how does this distribution relate to 

latitude, elevation, temperature, precipitation, and climate indices? 

2. How has snow persistence changed since the beginning of the MODIS record? 

 

2.2 Methods 

2.2.1 Global snow persistence (SP) 

To calculate snow persistence we used Moderate Resolution Imaging Spectroradiometer 

(MODIS) Terra Snow Cover 8-Day L3 Global 500m Grid (MOD10A2), Collection 6 obtained 

from the National Snow and Ice Data Center (NSIDC) (NSIDC, Hall and Riggs, 2016). 

MOD10A2 snow cover is derived from the Normalized Difference Snow Index (NDSI), which is 

based on the snow reflectance properties, where snow has high reflectance in visible bands and 

low reflectance in the shortwave infrared. We use MOD10A2 maximum snow cover extent, 

which is generated from 500 m resolution daily MOD10A1 tiles; maximum snow cover extent is 

reported for each cell during 8-day time periods. Cloud is only reported if the cell was obscured 

for all eight days in the period. 
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 We computed the 1 January – 31 December SP and no data index (NDI) for each year as 

the percent of 8-day MODIS images with snow present where: 

�� =
�

����
	100     eq 1.  

 

�
� =
��

�
	100     eq 2.  

 
Where S is the number of 8-day time intervals classified as snow; n is the total number of 

8-day time periods per year, and ND is the number of days classified as having no data (cloud, 

sensor saturation, missing data). Values for SP and NDI are computed for each MODIS 500 m 

cell for years 2001-2016. NDI was used to mask SP prior to any subsequent analyses; we 

excluded all pixels with NDI>30%. 

 For the resulting SP and NDI grids, we masked polar regions (above the Arctic circle and 

below the Antarctic Circle), areas classified as water by MODIS/Combined MCD12Q1, and 

areas with SP < 7%, a threshold that Saavedra et al. (2017) found would represent areas with 

little to no snow. Using this low SP threshold, we identified the average snowline elevation for 

latitudes less than 43.5 degrees; this latitude limit was selected because of cloud impairment in 

coastal areas at higher latitudes. Elevations were derived from ASTER GDEM v2 (NASA LP 

DAAC, 2015) aggregated to the 500m grid of MODIS SP. We found that coastal fog or 

persistent clouds in the tropics resulted in a few instances of snow classification errors (Saavedra 

et al. 2017), so we fit an equation to the snowline elevation vs latitude data to develop a mask for 

excluding areas where snowfall is unlikely:  

Elevation lower limit for mask = 8488 m - 0.001756097 x Abs(latitude in degrees)  eq 3.  

This mask reduced problems with false snow detections in warm regions.  

Using the annual SP grids masked to exclude areas with high cloud cover (NDI), high 

latitudes, and low elevations in warm regions, we then computed mean annual SP and the 
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coefficient of variation in annual SP for each grid cell. We used the mean annual SP to map 

snow zones following the SP thresholds identified by Saavedra et al. (2017): Little or no snow 

(0-7%), Intermittent snow (7-30%), Seasonal snow (30-90%), Permanent snow (90-100%). We 

then computed the percent of each continent’s surface area in each snow zone. To aid in data 

display, mean SP was also calculated for each 100-meter elevation bands separated by 0.5 degree 

latitude increments.  

Prior research illustrates that MODIS snow products may under-estimate snow cover in 

forested areas, with the greatest errors of omission in forest densities greater than 50% (Rittger et 

al., 2013). Therefore, to estimate where dense forest vegetation obscured snow observations, we 

mapped areas with dense forest (>50% tree cover) using 2010 MODIS Vegetation Continuous 

Fields (MOD44B) Collection 5 Percent Tree Cover. 2010 is the most recent year with global 

coverage. 
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Figure 2.1. Snow zones determined from snow persistence values displayed across the Hindu-
Kush Himalaya (A). Little or no snow (0-7%), Intermittent SP (7-30%), Seasonal (30-90%), 
Permanent (90-100%). Snow zones shown transparently on alpine imagery in Pakistan and China 
(B). Snow persistence trends (C). World Glacier Inventory (WGI) glacier termini displayed on 
snow zones exhibiting similar alignment between glacial extent and the boundary of mapped 
permanent snow (D). 
 

2.2.2 Climate connections to SP 

To evaluate how annual precipitation and temperature relate to annual SP, we calculated 

the relative importance using the Lindeman, Merenda and Gold (lmg) approach included in the 

relative importance for linear regression “relaimpo” R package (Grömping and Matthias, 2013). 

This method estimates the individual contribution of each regressor to the full r squared of the 

combined model (Grömping, 2006). For precipitation and temperature data we utilized 

TerraClimate 4 km monthly gridded precipitation and mean temperature (Abatzoglou et al., 
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2018). Precipitation was totaled and temperature was averaged on a pixel by pixel basis for each 

year of analysis. For the northern hemisphere, where the snow season straddles the change in 

calendar year, we used the water year (Oct-Sep), whereas we used the calendar year for southern 

hemisphere analyses. For the relative importance analysis we aggregated annual SP grids to the 4 

km resolution of the precipitation and temperature data.   

 Finally, we evaluated the linear correlation (r) between SP and four climatic 

teleconnection indices: North Atlantic Oscillation (NAO), Oceanic Niño Index (ONI), Pacific 

Decadal Oscillation (PDO), and Southern Annular Mode (SAM). Data for each teleconnection 

index was obtained from the National Weather Service Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/data/teledoc) and consisted of a rolling 3 month mean of the 

teleconnection index. For each index value, we computed the correlations with annual SP, then 

found the sum of the absolute values of r for all pixels with significant correlations (p≤0.05) in 

half degree latitude and longitude cells. A greater value of this sum indicates stronger 

correlations between the teleconnection index and SP. Using these sums, for each half degree 

cell we then identified the index and month of that index that best correlates with SP. 

 

2.2.3. Global SP trends 

We used the Mann-Kendall non-parametric trend test (Khaled and Ramachandra 1998) to 

evaluate trends in annual SP for each MODIS pixel using data for calendar years 2001 to 2016 

(Kendall R package, McLeod 2011). If a significant trend (p≤0.05) was identified, we then 

applied the Thiel-Sen regression (Thiel 1950; Sen 1968) to determine rate of trend (zyp R 

package, Bronaugh and Werner 2013). To explore the spatial pattern of trends further, we 

separated windward and leeward components of several mountain ranges using mountain crests 
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identified from the Waterbase global watersheds 

(http,//www.waterbase.org/download_data.html). For each continent and side of mountain range, 

we computed the area experiencing statistically significant positive and negative annual SP 

trends. Finally, for the Sierra Nevada mountains of North America, we calculated the mean trend 

rate in bands of 10% SP (eg. 0-10%, 10-20%, ...) across the mountain range. All statistical 

methods for these calculations are fully documented in an R package developed by the authors 

(MODISnow, Saavedra and Hammond, in review CRAN). The package utilizes parallel 

computing on multiple cores to process raster calculations efficiently given the large size of files 

involved in these analyses. 

 

2.3. Results 

2.3.1. Elevational and latitudinal patterns in snow persistence and snow zones 

Latitude, elevation, and climate interact to control snow persistence across the global land 

surface. Continental and global maps of snow zones and SP coefficient of variation are shown in 

the supplementary material figures 2.8 to 2.19. An example map of snow persistence for the 

Hindu-Kush Himalaya (Figure 2.1) illustrates how areas of low snow coincide with low 

elevations or areas with low precipitation such as the Gobi Desert (Figure 2.1a). Snow 

persistence increases with elevation, with intermittent and seasonal snow zones found at middle-

high elevations of the Himalaya. Areas with the highest snow persistence (permanent snow zone) 

correspond well with visual glacial features (Figure 2.1b) and with satellite-derived glacial 

boundaries (Figure 2.1d). 

Globally, most of the continental area in the northern hemisphere (63%) has intermittent, 

seasonal, or permanent snow zones, whereas only 1% of the continental area in the southern 
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hemisphere has these snow zones due to less land mass at high latitudes. In the northern 

hemisphere, North America and Asia’s snow-covered areas are dominated by the seasonal snow 

zone (48 and 39% of total land area), whereas Europe has nearly an even split between the 

intermittent and seasonal snow zones (43%, 42%). In the southern hemisphere (Africa, Oceania, 

and South America) most of the snow-covered areas are in the intermittent snow zone (0.04-2% 

of total land area) (Table 2.1). 

 

Table 2.1. Percent area of each continent / region between the Arctic and Antarctic circles in 
each snow zone based on mean annual SP. 

Continent Low Intermittent Seasonal Permanent 

Africa 99.95% 0.04% 0.01% 0.00% 

Asia 45.95% 14.39% 39.13% 0.53% 

Oceania 98.41% 1.17% 0.41% 0.02% 

Europe 15.21% 42.91% 41.63% 0.26% 

North America 28.94% 20.71% 48.07% 2.29% 
South America 96.32% 2.25% 1.20% 0.24% 

 

 

Average snow persistence generally increases with both elevation and latitude (Figure 

2.2), although some variability in snow persistence is masked by the latitude-elevation averaging 

in Figure 2.2. Seasonal snow is present near sea level at high latitudes (>60°), but it is only 

present above 5,000 m in the tropics. Only a few areas have elevations high enough for snow to 

occur within the tropics (ex. Africa: Mount Kilimanjaro, Ethiopian Highlands, Mount Kenya. 

North, Central and South America: volcanic peaks of Mexico and Ecuador including Pico De 

Orizaba, Chimborazo and Cotopaxi, the Cordillera Blanca, Colombian Andes. Asia: Puncak 

Jaya).  
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Figure 2.2. Average 2001-2016 snow persistence (%) by latitude and elevation for North 
America, South America, Africa, Asia, Europe and Oceania. 

 

The average elevation at which snow occurs regularly, hereafter referred to as the 

snowline, is consistent by latitude between continents for latitudes less than around 35-40° N or 
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S (Figure 2.3). The snow line elevations diverge for latitudes greater than 40 degrees, where 

average snow lines are less than 1,500 m elevation (Figure 2.3). The lowest elevation average 

snow lines are in Asia and North America, which have the largest high latitude land masses. The 

highest elevation average snow lines are in South America, which has a relatively narrow land 

mass at high latitude, and in Europe, where much of the land at high latitude is near the coast. 

The northern hemisphere generally displays higher SP at lower elevation than the southern 

hemisphere at the same latitude, and within the southern hemisphere Oceania has a lower snow 

line elevation than South America. 

 
Figure 2.3. Continental average snow line elevations, as defined by the elevation where mean 
annual snow persistence = 7% from 2001-2016. Latitudes on the y-axis are absolute values. 
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 Interannual variability in SP is greatest at the lower elevation ranges of snow covered 

area in each region studied (Figure 2.4), generally becoming less variable at higher elevations 

(Figures 2.9,2.11,2.13,2.15,2.19,2.21). Coefficients of variation (CV) in annual SP are also high 

in the tropical Andes (Figure 2.4), in much of Europe (Figure 2.19), and in the foothills and 

plains east of the Rocky Mountains in North America (Figure 2.11). The quality of snow cover 

data for computing SP is also regionally variable. Southern South America has the greatest 

overall data loss due to clouds (Figure 2.30), with 20.1% of the snow covered area in South 

America having missing data (Table 2.5). Oceania (New Zealand) has the largest fraction of area 

with dense forest (45.5%), which may lead to errors in snow cover and SP values (Figure 2.31). 

Portions of northern Asia (12.1%), Europe (25%), and North America (17.5%) also have 

potential errors in SP from dense forest (Table 2.5).   
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Figure 2.4. Coefficient of variation for annual 2001-2016 snow persistence (%) by latitude and 
elevation for North America, South America, Africa, Asia, Europe and Oceania. 
 

 



 23

2.3.2. Climate connections to SP 

We computed the relative importance of P and T (Figures 2.32,2.33) in explaining 

interannual SP variability in an effort to examine how climate influences on SP vary around the 

world. In general, for lower elevation areas temperature has greater relative importance, whereas 

high elevation areas are dominated by precipitation importance, with mid elevations displaying a 

mix of P and T importance (Figure 2.5). Temperature relative importance is greatest overall in 

low elevations in Europe (from 45-52ºN). In South America from 12-37 degrees south, 

precipitation dominates in relative importance for SP variability at all elevations (Figure 2.5).  
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Figure 2.5. Significant results of relative importance analysis of precipitation and temperature in 
explaining inter-annual snow persistence variability by latitude and elevation for North America, 
South America, Africa, Asia, Europe and Oceania. 
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Correlations between SP and climate indices are regionally variable. In South America, 

SAM is best correlated with SP (Table 2.2, Figure 2.36). In North America, PDO is best 

correlated with SP along most of the west coast and some parts of the continental interior, 

whereas ONI has stronger correlations throughout the northern Rockies in the continental 

interior. East of the Rocky Mountains, SAM is best correlated with SP (Figure 2.35). SAM is 

also correlated with SP in much of Europe, with NAO, PDO and ONI all having strong 

correlations in some areas (Figure 2.37). In Asia, climatic teleconnection correlations are quite 

variable irrespective of latitude and proximity to water, though NAO and SAM dominate 

correlations by area (Figure 2.38, Table 2.2). Northern Africa displays ONI correlation 

dominance, without significant  teleconnection correlations across the rest of the snow-covered 

areas of the continent (Figure 2.37). Finally, in Oceania NAO has the strongest correlation with 

SP, except in the south where ONI has a stronger correlation (Figure 2.39)
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Table 2.2. Percent of each continent / region between the Arctic and Antarctic circles within snow-covered areas (SCA, intermittent, 
seasonal, and permanent snow zones) experiencing significant correlations to climatic teleconnection indices (North Atlantic 
Oscillation, NAO, Oceanic Nino Index, ONI, Pacific Decadal Oscillation, PDO, Southern Annular Mode, SAM), and the percent of 
significant correlations where each index has the highest cumulative correlation. 

Continent 

% SCA with 

significant 

correlation to a 

teleconnection 

% correlations 

where NAO 

dominant 

% correlations 

where ONI 

dominant 

% correlations 

where PDO 

dominant 

% correlations 

where SAM 

dominant 

Africa 52 18 45 9 27 

Asia 79 44 13 12 31 

Oceania 66 60 24 5 11 

Europe 86 53 11 12 25 

North America 85 40 17 21 21 

South America 66 35 13 7 45 
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2.3.3. Trends in SP 

Trends in SP from 2001-2016 were dominated by declines at most elevations and 

latitudes (Figure 2.6). Only Africa and Oceania have greater areas with positive trends in SP than 

with negative trends, but the trend magnitudes are small in these regions (<0.1% yr-1). Overall, 

6% of land areas, corresponding to nearly 2.7 million km2, have exhibited declines in SP while 

1%, 0.5 million km2, have shown increases (Table 2.3). Of the area experiencing decreasing SP, 

about half is in Asia, followed by Europe and North America. Asia also contains most of the area 

experiencing increasing SP trends, followed by North America and Europe.  
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Figure 2.6. Average global trends in annual snow persistence from 2001-2016 by latitude and 
elevation. Inset displays the total area with a significant trend (orange=decreasing, 
blue=increasing) by continent. 
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Table 2.3. Total area (km2) and percent of each continent / region shown in parentheses, between the Arctic and Antarctic circles 
experiencing significant trends in SP excluding areas in the low snow zone. The total percent of each continental area experiencing 
trends and the total percent of each continent within snow-covered areas (SCA, intermittent, seasonal, and permanent snow zones) are 
displayed in the last two columns.  

Continent Trend Intermittent Seasonal Permanent Total area Total % Total % in SCA 

Africa + 
                          
63 (0) 

                     
2 (0) 0 (0)                     65 0.00 0.43 

- 
                          
22 (0) 

                   
16 (1) 

                            
0 (0) 38 0.00 0.25 

Asia 
+ 

                  
85,761 (1)  254,025 (2) 

                    
2,808 (1) 342,594 0.81 1.51 

- 
                
180,037 (3) 1,164,189 (7) 

                    
2,967 (1) 1,347,192 3.18 5.93 

Oceania 
+ 

                    
6,296 (7) 427 (1) 

                            
2 (0) 6,724 0.08 5.19 

- 
                        
479 (1) 815 (2) 

                          
57 (3) 1,350 0.02 1.04 

Europe 
+ 

                  
17,574 (0) 13,143 (0) 

                       
490 (2) 31,207 0.33 0.40 

- 
                
200,566 (5) 449,258 (12) 

                       
386 (2) 650,210 6.90 8.29 

North 
America 

+ 
                  
44,382 (1) 30,877 (0) 

                       
243 (0) 75,501 0.37 0.52 

- 
                  
69,937 (2) 544,212 (6) 

                    
2,344 (1) 616,493 3.04 4.26 

South 
America 

+ 
                  
10,013 (3)  4,441 (2) 

                       
265 (1) 14,719 0.08 2.25 

- 
                  
17,231 (4)  29,953 (14) 

                    
2,668 (6) 49,851 0.28 7.64 

Global 
+ 

                
164,089 (1) 302,913 (1) 

                    
3,807 (1) 470,809 0.37 1.03 

- 
                
468,272 (3) 2,188,442 (7) 

                    
8,421 (1) 2,665,135 2.08 5.82 
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In some cases, trends differed for windward and leeward sides of mountain ranges. For 

example, in the Himalaya (Figure 2.1c, 2.42), the windward side of the mountain range has less 

total snow-covered area. 3% of this area has significant declining SP, and 3% has significant 

increasing SP (Table 2.4). In contrast, on the leeward side of the mountains, more of the snow-

covered area has declining SP (5%) compared to increasing SP (1%). In the Cascades, increasing 

SP trends dominate on the windward side (7% of snow-covered area), whereas the leeward side 

has both increasing and decreasing trends for 2% of snow-covered area (Figure 2.41). In the Alps 

and the Sierra Nevada, decreasing SP trends dominate on both windward and leeward sides of 

the mountains, reaching up to 17% on the windward side of the Sierra (Figures 2.43 and 2.44).  

 

Table 2.4. Total snow-covered area (km2) and percent of the snow-covered area displaying 
positive or negative trends in SP on each side of the mountain crest divide. 
 

Range Position 
Area (km2) 

Total % in 

SCA 

Net % in 

SCA 

+ - + -  

Alps 
windward 329 2417 0.1 9.6 -9.5 
leeward 79 9250 0.2 1.5 -1.3 

Cascades 
windward 11255 640 7.2 0.4 +6.8 
leeward 3024 4129 1.7 2.4 -0.7 

Himalaya 
windward 6186 6238 3.1 3.1 0 
leeward 13462 54533 1.2 4.7 -3.5 

Sierra 
windward 2 4971 <0.01 16.9 -16.9 
leeward 101 6217 0.2 12.4 -12.2 

 
 

Trends in SP also vary by elevation. In mountain regions, snow persistence increases 

with elevation, and this pattern varies between years. For example, during the drought in the 

Sierra Nevada mountains, the lower boundary of seasonal snow (SP=30%) was 700 m higher in 

elevation than it was during a high snow year (Figure 2.7a). The greatest difference in snow 
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persistence between years was at mid elevations, near the seasonal-intermittent snow zone 

boundary (SP=30%, Figure 2.7a). Across the entire Sierra Nevada, low snow, intermittent, and 

seasonal snow zones below SP ~60% were dominated by negative trends from 2001-2016 

(Figure 2.7b). 

 
Figure 2.7. A, Annual snow persistence (SP) vs. elevation for the East Walker watershed in the 
Eastern Sierra Nevada Mountains showing the greatest difference in snow persistence at mid-
elevations between a high snow year (2010) and low snow year (2014). B, Mean annual SP vs. 
2001-2016 trend in annual SP for the East Walker watershed in 0.5% SP bands; secondary x-axis 
displays the total area with a significant trend in each SP band. Orange background indicates the 
seasonal snow zone. Vertical dashed line in B indicates SP trend = 0. SP categories with total 
area less than 10 km2 are omitted from this figure because of limited snow cover data; these are 
the highest elevation, highest SP bands. 
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2.4.  Discussion 

2.4.1. Global snow zones and snow persistence 

By percent of the global land surface, intermittent, seasonal, and permanent snow zones 

are located primarily in the northern hemisphere because of the large land mass at high latitude. 

For the few isolated areas in the tropics that are high enough in elevation to support snow 

occurrence and accumulation, the snow is in isolated alpine refugia. Although processes of snow 

accumulation and ablation are locally complex, our analysis highlights the key role of global 

temperature in snow climatology. Similar snow line elevations between continents in the 

northern and southern hemisphere demonstrate how latitude and elevation effects on temperature 

are strongly linked to snow presence. This relationship is not as consistent at high latitudes, 

where the large continents with inland mountain ranges (Asia, North America) have lower 

average snow elevations than those with mountain ranges closer to coasts (South America, 

Europe). This is likely because of cooler temperature for similar latitudes in large continental 

interiors, but it may be influenced by other processes such as snow redistribution from Siberian 

winds (Hirashima et al., 2004). 

 

2.4.2. Climate connections to SP 

Relative importance results are consistent with the inference that temperature controls 

snow line. Prior research has identified linear patterns in the correlations between snowpack and   

temperature/precipitation, with elevations below a threshold experiencing temperature control 

and elevations above the threshold controlled by variability in precipitation (Morán‐Tejeda et al. 

2013). Our relative importance results (Figure 2.5) similarly show elevational and regional 

dependence in precipitation vs temperature controls on SP. These results can be used to estimate 
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the elevation threshold at which precipitation becomes a more dominant influence on SP in each 

region. However, our findings also illustrate substantial regional variability in patterns of relative 

importance of temperature and precipitation. The shift from temperature to precipitation with 

elevation is strongest in Europe, followed by North America and Asia. In contrast South 

American and Oceania have a mix of temperature and precipitation relative importance, with 

precipitation dominating at mid-latitudes of South America (Figure 2.5).Generally the strength of 

the relative importance fits is not very strong, although it is significant in many locations (Figure 

2.34); locations with the strongest relative importance fit (r2>0.5) are also those with greater 

relative importance of precipitation. This may be because the precipitation total can better 

represent climate conditions throughout the snow season, whereas averaged temperature may 

smooth out important variability in temperature that affects snow accumulation and melt.   

 Correlation analyses with climate indices illustrate how teleconnection patterns can affect 

snow persistence globally. The findings are consistent with previous studies highlighting the 

importance of different teleconnection patterns in different regions (Ge and Gong 2009; Seager 

et al. 2010; Saavedra et al. 2018), but they also illustrate how interconnected and spatially 

variable these influences can be (Figures 2.35-2.39).  More of the snow covered areas in 

Northern Hemisphere significantly correlated with the teleconnections tested (Table 2.2).  

 

2.4.3. Trends 

Most land areas that receive snow (93%) did not experience significant trends in snow 

persistence from 2001-2016, partially because of the small time-frame analyzed (16 years), only 

half the span of a typical climatology study. However, the dominance of negative over positive 

trends globally is consistent with concomitant rising global air temperatures (Hansen et al. 2010), 
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and the short-term trends documented here can have severe consequences for the areas affected, 

including lower annual water yield (Hammond et al., 2018a) and changes in the timing of water 

supplied from snowy areas. For example, the drought and associated low snow in the Sierra 

Nevada of North America caused a $2.7 billion agricultural impact and over 10,000 direct job 

losses in 2015 alone (Howitt et al., 2015). Similarly in Europe, multi-billion dollar impacts are 

expected from snow losses in the ski industry (Elsasser and Messerli 2001, Moen and Fredman 

2007). The lack of significant trends detected in other areas relates to the time scales at which 

climatic processes and atmospheric-oceanic oscillations operate (Mote et al. 2005, Dyer and 

Mote 2006), with ENSO periodicity from 2-7 years and PDO from 8-12 years. When interpreting 

the global SP trends presented here, long term climate cycles, the start date and end date for the 

period of analysis, and land cover change all need to be examined to determine the causes of 

trends (Jones 2011). 

However, although the time period analyzed is relatively short for a trend analysis, it does 

provide insight into which areas may be most sensitive to changing climate. Previous research 

has indicated that mid-elevation snowpacks are likely to be the most sensitive to climate 

warming (Nolin and Daly 2006, Sproles et al. 2013), whereas high-elevation regions that remain 

well below freezing during winter months have not exhibited these changes (Stewart 2009). This 

implies a connection between snow trends and temperatures, where snowpack sensitivity to 

temperature is greatest in places that are already relatively warm, such as those in temperate 

climates and low elevations, with warm snowpacks in wet regions most likely to experience the 

greatest snow loss (Luce et al. 2014). Recent modeling suggests that snow at low and mid-

elevations may completely disappear by 2100 (Beniston 2012). Compared to these prior findings, 

our results suggest that the highest elevation snowpacks are not entirely stable; we found 
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declining trends over 1-6% of each continent’s permanent snow zone. Declining snow 

persistence affected 7% of the seasonal snow zone globally, which was the greatest total area 

(>2x106 km2) with declining trends in snow persistence. Declining trends in snow persistence 

affected less of the intermittent snow zone (3%), which is not fully consistent with predictions 

that the lowest elevations of snow are most sensitive to changes in climate conditions. This may 

be because of the combined effects of precipitation and temperature on snow persistence; short-

term trends can be particularly affected by precipitation patterns in areas where precipitation has 

high relative importance for SP (Figure 2.5). Even though temperature relative importance is 

typically greatest in the low elevation intermittent snow zone, the smaller area affected by trends 

in this zone may reflect the importance of weather patterns during each individual year in this 

zone. The intermittent snow zone is sensitive to whether time periods of precipitation coincide 

with low enough temperature for snow. Seasonal snow, in contrast, develops only if temperatures 

in the winter stay consistently cold enough for snow to remain on the ground all season.  

Differences in snow persistence trends across snow zones highlight the importance of 

using snow zones or some other snow climatology metric as a context for interpreting trends. 

Different regions will have varying susceptibility to “dry snow droughts”, which are low snow 

years when the low snowpack is caused by lack of precipitation, vs. “warm snow droughts,” 

which are low snow years when warm temperatures prevent precipitation from accumulating on 

the landscape as a snowpack (Harpold et al. 2017). Windward-leeward sides of mountain ranges 

also have hydroclimatic shifts that affect their snow persistence trends, and it is clear that snow 

changes are not consistent even within single mountain ranges. The windward-leeward patterns 

across mountain ranges (Table 2.4) could be examined in greater detail in future research. 
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2.4.4. Uncertainties 

MODIS snow products have been widely used in snow research and have compared 

favorably to field snow measurements in multiple studies (Krajci et al. 2014, Marchane et al. 

2015). The snow persistence grids generated in this study shows general agreement by visual 

comparison with other gridded snow and ice products (NH SCE Robinson et al. 2012, MODICE, 

Painter et al. 2012). Qualitative evaluations suggest that SP works well for identifying permanent 

snow and ice compared to glacial inventories (e.g. Figure 2.1) and to minimum annual exposed 

snow and ice from MODICE. The intermittent snow zone boundary from the present study 

displays a similar overall spatial distribution as maximum annual northern hemisphere snow 

cover extent (NH SCE).  

However, there are some identified shortcomings in the MODIS snow product related to 

vegetation, thin snow, and clouds (Hall and Riggs 2007). For finer spatial and temporal 

resolution analysis, a fractional snow product and/or a daily snow product may be more 

appropriate to use than the 8-day binary product (snow/no snow) we used here (Rittger et al. 

2013). Tests of these finer resolution products in the western U.S. and South America have 

shown that application of the daily fractional product is greatly limited because of gaps in data 

due to clouds (Hammond, Saavedra unpublished data). Using the 8-day product limits the 

temporal precision of snow persistence, which will have some unknown effect on the trend 

analyses. As highlighted in our masking methods, the MODIS snow cover product also has some 

errors such as mapping snow in very cloudy areas known to have no snow or over white salt flats 

(Saavedra et al. 2017). Cloud and other forms of missing data were most prevalent in South 

America (20%) (Tables 2.5). Errors in snow cover retrieval from vegetation are likely greatest in 

in Oceania (45%) and Europe (25%) (Table 2.5), as highlighted in the maps of forest cover 
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>50% (Figures 2.8-2.19). Simple vegetative thresholds for binary snow identification are 

included in current MODIS snow cover products (MOD10A1, MOD10A2), but more detailed 

adjustment methods may be needed for dense forested areas. Several studies have proposed 

vegetation adjustment methods for MODIS fractional snow products (Nolin 2010, Raleigh et al. 

2012), and further research could address how to adjust for vegetation in the binary snow 

products used in this study. Finally, we established the thresholds for separating snow zones 

based on the work of Saavedra et al. (2017) in the Andes, but further research in different regions 

should evaluate whether these boundaries are appropriate for other regions.  

 

2.4.5. Implications and potential uses of the SP product 

Snow remote sensing techniques are advancing rapidly, allowing detailed snow mapping 

in areas with the resources for field and airborne monitoring (Painter et al. 2016). While these 

advances are taking place, there is still an important role for MODIS snow products because they 

allow comparison of snow zones across the globe and provide particularly valuable snow 

information in places that lack in situ or airborne measurements. The need for hydroclimatic 

trend detection and attribution studies is ongoing (Stewart 2009), as this information helps water 

and land managers plan for future conditions. At the global or regional scale we still lack 

detailed knowledge of the annual and mean annual first and last snow occurrence, snow season 

length, and snow intermittence (the number of times snow melts to expose bare ground during 

the snow season). Assessing how snow persistence and these other snow cover-based metrics 

change through time will highlight areas most sensitive to future snow loss and hydrologic 

change. Snow persistence shows promise for aiding streamflow forecasting (Saavedra 2017, 

Hammond et al. 2018a), and in the near future, global SP may be combined with global soil 
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moisture storage and response metrics (McColl et al. 2017) to aid in coarse scale flow 

estimation. At finer timesteps useful for prediction, NASA’s Land Data Assimilation Systems 

(LDAS), which is under continuous development, utilizes station, satellite, and radar 

precipitation measurements to forecast hydrological response, and shows increased accuracy 

when snow covered area is included to better constrain predictions (Liu et al., 2015). Snow 

persistence maps can also be useful in other applications such as identifying habitat ranges for 

snow-dependent species, planning grazing rotations, selecting crop type and timing, or planning 

closures for remote mountain roads. 

 

2.5. Conclusions 

Snow cover affects 36% of the global land surface area between the Arctic and Antarctic 

circles, with most (98%) of that area in the northern hemisphere. The accumulation of snow 

starts at similar elevations for the same latitude across the globe, but coastal proximity and 

windward-leeward effects can alter this relationship. Snow persistence is correlated with both 

temperature and precipitation, with greater relative importance of temperature at low elevations 

of the northern hemisphere and greater relative importance of precipitation at high elevations of 

the northern hemisphere and in South America. Annual patterns in snow persistence are most 

strongly correlated with the North Atlantic Oscillation, but multiple climate indices correlate 

with snow persistence throughout global snow covered areas. Of the areas with snow cover, 6% 

have had declining snow persistence since 2001, while 1% have had increasing snow persistence. 

The greatest areas with declining snow persistence were in Asia, North America, and Europe. 

Declining trends covered the greatest extent of areas with winter seasonal snow cover (7%), 

whereas only 1% of areas with permanent snow cover have experienced declining trends from 
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2001-2016. The global snow persistence datasets and associated trend analysis presented here 

can be used for land management decision making (e.g. transportation, wildlife habitat, 

horticulture and grazing) and to identify areas sensitive to future climatic change. Ongoing 

collection of MODIS data will allow continual updating of this analysis to track snow changes 

into the future.  
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Chapter 3. How Does Snow Persistence Relate to Annual Streamflow in Mountain 

Watersheds of the Western U.S. with Wet Maritime and Dry Continental Climates?2 

 
 

3.1. Introduction  

Spatiotemporal changes in the mountain snowpack of the western U.S. are well 

documented (Regonda et al., 2005; Stewart et al., 2005; Clow, 2010; Fritze et al., 2011; Harpold 

et al., 2012), with both data-based and modeling studies suggesting that streamflow generation is 

sensitive to loss of snow on multiple time scales (Regonda et al., 2005; Stewart et al. 2004, 2005; 

Clow, 2010; Jefferson, 2011; Furey et al., 2012; Berghuijs et al., 2014; Barnhart et al., 2016). 

Areas conducive to snowfall are forecast to shrink considerably (Klos et al., 2014, Luce et al., 

2014), and recent analyses across catchments in the U.S. suggest that a shift in precipitation (P) 

from snow to rain will lead to a decrease in annual streamflow across all climate types (Berghuijs 

et al., 2014). However, streamflow responses to changes in snow are regionally variable 

(Stewart, 2009), and the reasons for this variability are not clear. Berghuijs et al. (2014) found 

that watersheds differ in their streamflow sensitivity to snow fraction changes, but they did not 

examine which physical factors led to differences in these sensitivities. Additionally, Berghuijs 

et al. (2014) relied on the MOPEX network of watersheds, which are mainly located in the 

humid eastern U.S. Few of the MOPEX watersheds are in the western U.S., a region that 

includes areas with both greater snow accumulation and greater aridity than represented in the 

MOPEX dataset.  

                                                 
2 Hammond, J. C., Saavedra, F. A., & Kampf, S. K. (2018). How does snow persistence relate to 
annual streamflow in mountain watersheds of the Western U.S. with wet maritime and dry 
continental climates? Water Resources Research, 54, 2605–2623. https://doi.org/10.1002/ 
2017WR021899 
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 The western U.S. includes both wet coastal climates and dry continental interior climates 

with elevations ranging from sea level to over 4,000m. Recent simulation studies (e.g. Mankin 

and Diffenbaugh, 2015; Naz et al. 2016) have highlighted how decreased snowmelt contributions 

to streamflow across the region could create water supply problems. In wet basins, water demand 

can be met by rainfall runoff, whereas in dry basins snow loss poses a greater risk to water 

supply (Mankin and Diffenbaugh, 2015). These simulation studies were conducted for large river 

basins (>5,000 km2) that span a range of climates and elevations. The large basin scale of 

analysis has been widely applied in the region (Vicuna et al., 2007; Painter et al., 2010; Anghileri 

et al., 2016). Similarly, detailed studies of individual small watersheds (<500 km2) (Nayak et al., 

2010; Hunsaker et al., 2012; Godsey et al., 2014) have advanced process understanding at 

specific sites, but progress in scaling new process-based knowledge to the watershed scale and 

beyond has been limited (Sivapalan, 2005). Both large basin and small watershed scales of study 

provide important insights, but they do not capture all elements of streamflow sensitivity to 

snow. Large basin scale analysis can obscure information about which parts of the basin are most 

sensitive to snow loss, and individual watershed analyses lack a regional context to determine 

whether or not the sites are representative of trends elsewhere. The western U.S. lacks a 

systematic study comparing multiple small watershed streamflow responses to snow changes.  

This research fills a key knowledge gap by comparing small watershed responses to 

changes in snow across a large number of watersheds in the western U.S.  The motivations for 

the study are both the need to understand how loss of snow may affect streamflow in the study 

region and the need for simple methods to predict streamflow in other data-sparse regions with 

snowmelt-dominated streamflow. This paper examines (1) how globally available spatial snow 

cover variables compare with other snow variables more commonly used in streamflow 
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prediction models, (2) whether snow variables are useful for estimating streamflow in 

watersheds that span a wide range of snow persistence and climate conditions, and (3) whether 

snow cover could be useful for reconstructing streamflow patterns in ungauged watersheds, both 

spatially and temporally. 

 

3.2. Background 

Mechanisms of streamflow response to changes in snow are embedded in process 

hydrologic models (Huntington et al., 2012; Mahanama et al., 2012; Vano et al., 2012; Barnhart 

et al., 2016), so few studies examine these connections directly with empirical data. This may be 

because models enable researchers to experiment with how individual climate variables affect 

streamflow. While model-based research has merit, advances in understanding often require both 

models and empirical analysis (Sivapalan, 2003; Sivapalan et al., 2003; McDonnell et al., 2007). 

Empirical analyses have recently become more prominent in hydrology because of the need to 

predict streamflow in ungauged areas where input data to support complex hydrologic models 

are lacking. For example, several empirical snow studies demonstrate that the importance of 

temperature and precipitation for snowpack varies along elevational and regional gradients 

(Kapnick and Hall, 2012; Morán-Tejeda et al., 2013) and that precipitation may be more 

important for snow changes in dry areas relative to wet areas (Mankin and Diffenbaugh, 2015). 

Several recent hydrologic empirical studies have used the Budyko framework to relate 

streamflow to climate (Wang and Hejazi, 2011; Jones et al., 2012; Berghuijs et al., 2014; Liang 

et al., 2015), but this framework has limitations for studying snow-dominated areas because it 

does not account for the phase of precipitation (rain, snow) or the accumulation of snow on a 

watershed. Studies that do apply the Budyko framework to examine streamflow connections to 
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snow have used some form of hydrologic modeling to reconstruct portions of the water balance 

(Berghuijs et al. 2014; Barnhart et al. 2016). 

Empirically examining streamflow responses to snow requires information on spatial 

patterns of snow across watersheds. Researchers have characterized changes in snow using the 

fraction of precipitation falling as snow (Klos et al., 2014), the snow water equivalent (SWE) 

either at maximum accumulation, or at a fixed date each year (Mote, 2003; Barnett et al., 2008; 

Skaugen et al., 2012); the snow-covered area (Wang et al., 2005; Déry and Brown, 2007; Rupp 

et al., 2013; Marchane et al., 2015); and the snow cover duration (Hantel et al., 2000; Bulygina et 

al., 2009). Each of these variables has strengths and weaknesses in characterizing the snow 

across watersheds. Separating rain and snow components from daily precipitation records is 

difficult because of the dependence of snowfall on temperature and humidity during a short time 

period (Dai, 2008; Marks et al., 2013; Froidurot et al., 2014).  

Methods for mapping SWE spatially have improved, but these often rely on ground SWE 

measurements, which are typically not extensive enough to map SWE patterns over large areas 

(Dozier et al., 2008; Guan et al., 2013; Jörg-Hess et al., 2013). Areas near the transition between 

seasonal and intermittent winter snow may be particularly sensitive to snow loss (Regonda et al. 

2005; Christensen and Lettenmaier, 2007; Adam et al., 2009; Sproles et al. 2013), but there is 

limited in situ snow monitoring in these locations.  

Of the 790 SNOTEL stations in the conterminous western US, only 8% (63) fall within 

the intermittent or low snow zones, where snow is not consistently present throughout the winter, 

and the remaining 92% are within the winter seasonal snow zone, where snow persists 

throughout the winter (Moore et al., 2015). While this configuration of stations is useful for its 

intended purpose of monitoring locations that consistently have snow, the station network under-
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samples both areas of dynamic change within the intermittent-persistent snow transition and less 

accessible high alpine areas.  

Unlike SWE, snow cover can be more easily derived globally from remotely sensed snow 

covered area, particularly in regions with limited cloud cover (Hall and Riggs, 2007). While 

snow cover does not directly indicate the quantity of water contained in a snowpack, it is useful 

for studying snowmelt hydrology because it can be mapped continuously over space, thus 

reducing gaps in information between point monitoring locations. Prior studies have used snow 

cover extent or snow cover duration to map changes in snow patterns over time (Déry and 

Brown, 2007; Derksen and Brown, 2012). A related metric, snow persistence (SP), is the fraction 

of time that snow is present on the ground, and this metric has been useful for defining 

boundaries between intermittent and seasonal snow zones in a wide range of climates (Richer et 

al. 2013; Moore et al. 2015; Saavedra et al. 2017) and for identifying where peak streamflow 

source regimes shift from rainfall to snowmelt (Kampf and Lefsky, 2016). 

 Snow covered area products have been incorporated into streamflow forecasting models 

in Europe (Gomez-Landesa et al., 2001, Kolberg et al., 2006), Asia (Immerzeel et al., 2009; Jain 

et al., 2010; Duethmann et al., 2014; Uysal et al., 2016), and North America (Rodell  and 

Houser, 2004; Andreadis and Lettenmaier, 2006; Roy et al., 2010; Su et al., 2010; Tang and 

Lettenmaier, 2010; De Lannoy et al. 2012, Sproles et al., 2016). Currently, a major focus of the 

use of remotely sensed snow metrics for hydrologic forecasting is determining the most effective 

means of assimilating the remotely sensed observations into hydrologic models for operational 

use (Andreadis and Lettenmaier, 2006; Bender et al., 2014; Xu et al., 2014). Moving forward, 

methods integrating multiple snow data products (SWE and SCA estimates) will likely 

improve the accuracy of hydrologic forecasting in snow-dominated areas. 
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3.3 Study area 

Our study area is the mountainous regions of the western United States (Figure 3.1), 

which cover a wide variety of climate types including warm temperate fully humid (Cfb) in the 

Cascades of the northwest, warm temperate with dry summers climate (Csb) in the Sierras 

further south, and cold arid steppe (BSk) climate in the Basin and Range (Kottek et al., 2006). 

For the watersheds sampled, mean annual precipitation (P) is between 900 and 3,500 mm/y in 

the western Cascades, which exceeds the mean annual potential evapotranspiration (PET) by a 

factor of 1.5 or more (Figure 3.1a). P in the Basin and Range is only 300 to 1,000 mm/y, with 

P/PET closer to 0.5. In the Northern and Southern Rockies, P exceeds PET only at the higher 

elevations, whereas at lower elevations P≤PET.  

Figure 3.1. USGS reference watersheds (Falcone, 2011) displayed in black across the western 
U.S. plotted on top of (A) mean annual P/PET and (B) snow zones (Moore et al., 2015). Mean 
annual P/PET in A for water years 2001-2015 from PRISM (Daly, 2013) and gridMET 
(Abatzoglou, 2012) datasets. Intermittent snow zones have mean annual 1 Jan – 3 Jul 
25%<SP<50%, transitional snow zones have mean annual 1 Jan – 3 Jul 50%<SP<75%, and 
persistent snow zones have mean annual 1 Jan – 3 Jul SP>75%. The transitional and persistent 
zones combined represent the areas with seasonal snow that is present throughout the winter. 
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Small watersheds used in this study range in snow persistence from intermittent to 

persistent, with intermittent snow tending to occur at low elevations and persistent snow at high 

elevations. Moore et al. (2015) defined intermittent snow as areas with mean 1 January – 3 July 

SP between 25-50%, transitional snow with SP between 50-75%, and persistent snow where SP 

is greater than 75% of the 1 January – 3 July time period. All areas with SP>50% are considered 

the seasonal snow zone, which is a combination of the persistent and transitional snow zones. 

Moore et al. (2015) used these SP thresholds to map snow zones across the western US using 

MODIS snow cover data (Figure 3.1b). Elevation extents of the intermittent, transitional, and 

persistent snow zones defined in Figure 3.1b differ substantially across the region, with higher 

elevation snow zone boundaries at high latitudes and in the continental interior. The elevation 

extents of snow zones change from year to year, most notably with intermittent and transitional 

snow zone boundaries increasing in elevation during periods of extended or severe drought. 
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Table 3.1. Climate, snow, and streamflow variables examined, data sources, and spatial 
resolutions 

Type Variable Data source Resolution 

Climate    

 Precipitation (P) PRISM, Daly (2013) 4-km 

 Temperature (T) TOPOWX, Oyler et al. (2014) 800-m 

 Potential 
evapotranspiration (PET) 

gridMET, Abatzoglou (2013) 4-km 

Snow    

 Snow persistence (SP) Hammond et al. (2017a) 500-m 

 Snow season length (SS) Hammond et al. (2017b) 500-m 

 Fraction of precipitation 
falling as snow (SF) 

Klos et al. (2014) 4-km 

 Peak snow water 
equivalent (SWE) 

SNODAS, NOHRSC (2004) 1-km 

Streamflow Discharge (Q) USGS Daily  
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3.4 Methods 

We examined how snow and climate variables relate to annual and mean annual 

streamflow for small watersheds across the western U.S. from 2001-2015 (Table 3.1). This time 

period was selected to coincide with the availability of MODIS snow cover products for the 

analyses. For snow and climate variables, we used both point values from ground stations and 

gridded data products.  

 

3.4.1 Climate variables 

 The climate variables we analyzed were precipitation (P), temperature (T), potential 

evapotranspiration (PET), and aridity (P/PET). For P, we used AN81m monthly precipitation (P) 

data from the PRISM data archive (Daly, 2013) at 2.5 min resolution. For temperature, we used 

the monthly 800 meter resolution TopoWX gridded mean (T), minimum (Tmin) and maximum 

(Tmax) air temperatures from the Montana Climate Office (Oyler et al., 2015). For PET, we used 

reference evapotranspiration from the 4 kilometer resolution University of Idaho data product 

(Abatzoglou, 2013).  To rectify the difference in spatial resolution of the multiple gridded 

datasets used we used nearest neighbor interpolation to the 500 m resolution of MODIS data, 

with interpolated grids snapped to the MODIS layers for agreement between grid boundaries. 

Unless otherwise specified, climate variables were computed as water year total (P, PET) or 

average (T) values. We use water year precipitation in this analysis because of our goal to 

explain variability in water year flow. We used a mean annual P/PET threshold of 1 to separate 

watersheds into wet (precipitation surplus) and dry (precipitation deficit) climates.  
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3.4.2. Snow variables 

We analyzed four different snow variables: snow persistence (SP), snow season length 

(SS), fraction of precipitation falling as snow (SF), and peak snow water equivalent (SWE).  For 

SP and SS we used MODIS/Terra Snow Cover 8-Day L3 Global 500m Grid, Collection 5 

obtained from the National Snow and Ice Data Center (NSIDC) (NSIDC, Hall et al., 2006). We 

computed the 1 January – 3 July SP for each year as the fraction of 8-day MODIS images with 

snow present. The selected period brackets the temporal extent of peak snow accumulation to 

complete snow ablation in most parts of the western United States (Moore et al., 2015); we used 

this partial year SP rather than water year SP because initial tests revealed stronger relationships 

between partial year SP and streamflow. The 3 July date was used as the last MODIS image date 

each year because the 8-day MODIS image does not fall on the first of the month in this case. 

For comparison, we computed SP from ground-based SNOTEL station data for the same time 

period and compared these values to MODIS-derived SP, and we examined correlations between 

SNOTEL peak SWE and SP. SNOTEL SP was calculated as the percent of days with SWE > 0 

for 1 January to 3 July. To evaluate whether dense forest vegetation obscured snow cover in 

parts of the study area, we also calculated the fraction of each watershed with dense forest 

(>50% tree cover) using 2010 MODIS Vegetation Continuous Fields (MOD44B) Collection 5 

Percent Tree Cover. 2010 is the most recent year with full coverage for the study region. 

We computed snow season length (SS) for each water year as the length of time from the 

first occurrence of snow to the last occurrence of snow for each pixel. For each of the study 

watersheds, we calculated watershed average SP and SS by averaging all pixels in the watershed 

contributing area.  
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 The mean-annual monthly fraction of precipitation falling as snow (SF) was obtained for 

the 1979 – 2012 period (Klos et al, 2014) and then averaged for months January through June to 

match the SP calculation. Klos et al. (2014) combined observed temperature and precipitation 

data with an empirical probabilistic precipitation phase model (Dai, 2008) to estimate and map 

the fraction of precipitation falling as snow. We chose not to compute snow fractions for each 

year of the study and instead focused on readily available SWE and MODIS variables 

representing snow presence on the ground (SP, SS) for comparison with streamflow. 

For peak SWE, we used both point and gridded data. For point data, we compiled peak 

SWE for each water year at 790 SNOTEL stations within our study area boundary for water 

years 2001 to 2015 from the National Water and Climate Center (NWCC) Report Generator 2.0 

(NWCC, 2016). For gridded data, we compiled daily SNODAS SWE from NSIDC (National 

Operational Hydrologic Remote Sensing Center, 2004). The Snow Data Assimilation 

(SNODAS) program provides spatial SWE estimates daily at 1 km2 resolution across the entire 

contiguous USA. This product incorporates remotely-sensed and ground-based snow 

observations to run the National Operational Hydrologic Remote Sensing Center (NOHRSC) 

Snow Model (NSM) with the objective of producing the closest approximation of daily snow 

conditions. SNODAS values are available from 1 October, 2003 to present. For each study 

watershed, we calculated a daily average SWE value by averaging all SNODAS grid cells within 

the watershed boundary and computed SNODAS peak SWE as the maximum watershed average 

SWE value for each water year.  
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3.4.3. Streamflow variables 

For annual streamflow volume (Q), we identified USGS reference watersheds in the 

western U.S. using the GAGES II dataset (Falcone, 2011), with records of discharge from 2001 

to 2015. Since the purpose of our study was to examine how snow relates to streamflow in 

watersheds with different climate characteristics, we needed relatively small watersheds without 

large ranges of variability in snow. Therefore, we selected only watersheds with drainage areas 

<500 km2, which restricts the study primarily to smaller watersheds while allowing a large 

enough sample size to address the study objectives. To the extent possible, we chose watersheds 

that drain only one snow zone, have minimal flow alteration, and have experienced limited land 

use change over the study time period. We excluded watersheds with limited snow (mean annual 

SP<30%) because of our study emphasis on snow-streamflow relationships. Substantially 

glaciated watersheds were excluded in all regions except for the North Cascades, where all small 

watersheds in the persistent snow zone contain glaciers. The final sample set included 119 

watersheds spread throughout the mountain ranges of the study area on either side of the regional 

mountain crests and capturing the full range of snow zones in each region (Figure 3.1b). We 

compiled daily discharge records for the full study period at each gauge and calculated annual 

and mean annual unit area Q values. Water year total precipitation was used to compute the 

annual and mean annual runoff ratio (Q/P) for each watershed. Ten watersheds with mean annual 

Q/P>1.1 were removed from the sample, assuming that these high runoff ratios reflected either 

errors associated with precipitation estimation, impoundments within the watershed, glacial and 

multiyear snow storage and melt, and/or groundwater discharge.  
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3.4.4. Analysis 

Our study objectives were to compare snow variables, address the utility of using 

remotely sensed snow covered area data as a predictive measure of streamflow, and to examine 

how snow relates to streamflow response in different climates. To evaluate how the snow 

variables relate to one another at watershed scale, we computed cross-correlations between 

watershed average values of SP, SS, SF, and peak SWE from SNODAS. We also examined how 

climate variables (P, T, P/PET) relate to two of the snow variables (SP, peak SWE) at watershed 

scale. For these analyses, we computed total P and average T for months October to June to 

overlap with the period used for SP calculation and capture patterns in P and T active during 

much of the period of snow accumulation and ablation. 

To examine how snow and climate variables relate to annual streamflow volumes, we 

computed univariate watershed-scale correlations between watershed average snow variables 

(SP, peak SWE) and streamflow variables (Q, Q/P). For these analyses, we used water year total 

P and PET and water year average T. We also determined the relationship between Q/P and SP 

and Q/P and SWE for each watershed independently using linear regressions on annual data, and 

we calculated the slope and significance of these relationships at each watershed. 

Finally, to illustrate how SP can be used to examine spatial patterns of streamflow 

generation, we applied the relationship between SP and Q to map mean annual streamflow 

patterns in the Upper Colorado River Basin. We fit a second order polynomial to the Q vs. SP 

relationship (R2 = 0.81). We then applied this equation to the mean annual SP grid to obtain 

modeled Q at the 500 m scale across the basin, with areas below SP 30% masked because our 

initial sample of reference watersheds excluded watersheds with SP<30%. We also tested this 

relationship using streamflow data from watersheds of Canada and Argentina obtained from the 
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Global Runoff Data Centre (GRDC, German Federal Institute of Hydrology, Koblenz, 

Germany). 

 

3.5. Results 

3.5.1. Climate 

 The study watersheds were classified as wet or dry based on a P/PET threshold of 1 to 

separate areas of precipitation surplus and deficit. 48 watersheds were classified as wet, with 31 

in the Cascades, 12 in the Northern Rockies, two in the Southern Rockies, and three in the Sierra 

Nevada. 71 watersheds fit the dry classification, with 20 located in the Basin and Range, 20 in 

the Northern Rockies, 21 in the Southern Rockies, and 10 in the Sierra Nevada. Wet and dry 

watershed groups have similar ranges of Tmax, but differ significantly in Tmean and Tmin, with 

dry watersheds overall colder than wet (Figure 3.2; dry Tmean median 4.8 ⁰C, wet Tmean 

median 6.1 ⁰C; dry Tmin median -0.7 ⁰C, wet Tmin median 1.6 ⁰C). Thus, throughout the rest of 

the paper we refer to wet watersheds as wet/warm, and dry watersheds as dry/cold. The range of 

peak SWE was similar in both dry/cold and wet/warm watersheds, but the median is lower in the 

dry/cold group (dry/cold peak SWE median 331 mm, wet/warm peak SWE median 600 mm). 

The SP ranges and median values are similar for both wet/warm and dry/cold groups, and Q is 

substantially higher in wet/warm watersheds than in dry/cold (dry/cold Q median 270 mm/y, 

wet/warm Q median 1,110 mm/y; Table 3.2, Figure 3.2).  
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Table 3.2. Mean annual hydroclimatic properties of watersheds used in this study, mean (range). Dry/cold (P/PET <1), Wet/warm 
(P/PET ≥1). 

 Tmean (C) P (mm/y) Q (mm/y) Q/P SWE (mm) SP (%) 

Wet/warm 5.8 (-0.2 – 10.0) 1825 (1027-3425) 1395 (298-3102) 0.71 (0.26-1.1) 541 (43-1012) 60 (22-83) 
Dry/cold 4.4 (-0.2- 11.2) 723 (300-1300) 303 (6-730) 0.37 (0.01-0.88) 330 (39-785) 61 (31-86) 
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Figure 3.2. Boxplots displaying annual mean (Tmean), maximum (Tmax), and minimum 
temperature (Tmin), peak snow water equivalent (SWE), snow persistence (SP), and streamflow 
(Q) ranges for wet/warm (blue) and dry/cold (red) watersheds. Asterisks denote significant 
differences between wet/warm and dry/cold watershed groups: *p<0.05; **p<0.01; ***p<0.001, 
no asterisk = not significant at p<0.05. 

 

3.5.2. Snow variables 

To evaluate whether snow cover could be useful for reconstructing streamflow patterns in 

ungauged watersheds, both spatially and temporally, we first compared snow cover variables (SP 

and SS) to snow fall fraction (SF) and peak snow water equivalent (SWE). This helps identify 

what snow cover information may indicate hydrologically compared to these other variables. At 

the mean annual time scale, all snow variables (SP, SS, SF, peak SWE) display strong positive 

relationships with each other, with the strongest relationships between SP and SF (r ≥ 0.76), and 

SP and SS season (r ≥ 0.77) (Figure 3.3, Table 3.3). The snow cover variables, SP and SS, have 

steeper slopes for the dry/cold watersheds than for the wet/warm when plotted against 
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precipitation. For low SP (<50%), dry/cold watersheds have shorter snow season lengths than 

warm and wet watersheds. The correlations between SP, SS and SF are also different for 

wet/warm and dry/cold watersheds. At low snow persistence (<50%) and low snow season 

duration (<225 days), wet/warm watersheds have lower SF than dry/cold watersheds. The 

relationships between SP and peak SWE have considerable scatter and also differ for the 

wet/warm and dry/cold watershed subsets. These differences are largest for high SP (>50%), 

where wet/warm watersheds have higher peak SWE for the same SP than do dry/cold 

watersheds.  

 

Table 3.3. Correlation coefficients for mean annual snow and climate variables. Dry/cold 
(P/PET <1), Wet/warm (P/PET ≥1). *p<0.05; **p<0.01; ***p<0.001, no asterisk = not 
significant at p<0.05 

Variables All Wet/warm Dry/cold 

SP vs T -0.75*** -0.85*** -0.77*** 
SS vs T -0.62*** -0.64*** -0.78*** 
SF vs T -0.91*** -0.94*** -0.89*** 
SWE vs T -0.21** -0.60*** -0.40*** 
SP vs P -0.09 -0.38* 0.42*** 
SS vs P 0.15 0.01 0.27*** 
SF vs P -0.59*** -0.58*** 0.05 
SWE vs P 0.42*** -0.15 0.72*** 
SP vs SS 0.85*** 0.77*** 0.93*** 
SP vs SF 0.76*** 0.90*** 0.80*** 
SP vs SWE 0.63*** 0.77*** 0.72*** 
SWE vs SF 0.26** 0.75*** 0.41*** 
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Figure 3.3. Mean annual snow variable (snow persistence SP, snow season SS, snow fraction 
SF, peak snow water equivalent SWE) and climate variable (mean air temperature T, water year 
precipitation P) cross correlation chart at the watershed scale. Correlation coefficient values for 
each tile are in Table 3.3. Red triangles dry/cold (P/PET <1), blue circles wet/warm (P/PET ≥1).  

  

To assess how satellite snow cover data (SP and SS) compare to ground-based values we 

examined how MODIS SP compares to SNOTEL station values of SP. This analysis showed that 

MODIS-derived SP is lower than at SNOTEL sites (Figure 3.4). On average, mean annual values 
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of SP from SNOTEL are 9.5% higher than SP from MODIS at SNOTEL sites. This difference 

between MODIS and SNOTEL SP is greater for wet/warm sites (mean = 11.2%, coefficient of 

variation = 0.70) than for dry/cold sites (mean = 7.8%, coefficient of variation = 0.85). Though 

watershed scale SP is low relative to site scale SP, SP and peak SWE are strongly correlated at 

both SNOTEL site and watershed scales (Table 3.4).  

 

Figure 3.4. Histograms of annual MODIS snow persistence minus SNOTEL site snow 
persistence derived from daily SWE data at the point scale. Pearson correlation coefficients and 
mean difference for each group of SNOTEL sites are displayed in the top right corner of each 
sub-plot. Dry/cold (P/PET <1), Wet/warm (P/PET ≥1). 

 
Table 3.4. Annual correlation coefficients between SP and peak SWE at point scale (SNOTEL 
sites) and at watershed scale (SNODAS average over watershed). All correlations significant 
with p<0.001. Dry/cold (P/PET <1), Wet/warm (P/PET ≥1). 

Variable All  Wet/warm Dry/cold 

Point (SNOTEL) SWE and SP 0.57 0.58 0.60 
Watershed (SNODAS) SWE and SP 0.62 0.69 0.67 
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3.5.3. Streamflow relationships to snow and climate 

Analyses of how snow variables relate to streamflow use only SP and SWE. We chose to 

use SP rather than SS because these two variables are similar, and SP has stronger relationships 

to streamflow (Table 3.6). At both mean annual (Figure 3.5, Table 3.5) and annual (Figures 3.6, 

3.7, Table 3.5) time scales, both Q and Q/P tend to increase with SP and peak SWE in dry/cold 

watersheds, but the relationships between snow and streamflow variables are much weaker in 

wet/warm watersheds.  Individual watersheds also display inter-annual patterns reflecting the 

overall Q/P SP relationship (Figure 3.7a,3.b). Figure 3.7c displays the slope of the relationship 

between annual Q/P and SP by watershed. The relationship between Q/P and SP is positive in 

nearly all (68/71) dry/cold watersheds, indicating more streamflow export with higher snow 

persistence, and significant in most of them (43/71). In contrast, few of the relationships between 

Q/P and SP were significant in wet/warm watersheds (11/48).  
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Figure 3.5. Mean annual water year streamflow (Q) and runoff ratio (Q/P) vs. precipitation (P; 
A,E), mean temperature (T; B,F), peak snow water equivalent (SWE; C,G) and snow persistence 
(SP; D,H) for 2001 to 2015 (P,T, SP) and for 2004-2015 (SWE) at USGS reference watersheds. 
Dry/cold (P/PET <1), Wet/warm (P/PET ≥1).  Vertical lines in (D,H) mark the transition 
between intermittent and seasonal snow zones (SP=50%). 
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Figure 3.6. Water year streamflow (Q) and runoff ratio (Q/P) vs. precipitation (P; A,E), mean 
temperature (T; B,F), peak snow water equivalent (SWE; C,G) and snow persistence (SP; D,H) 
for 2001 to 2015 (P,T, SP) and for 2004-2015 (SWE) at USGS reference watersheds. Dry/cold 
(P/PET <1), Wet/warm (P/PET ≥1).  Vertical lines in (D,H) mark the transition between 
intermittent and seasonal snow zones.
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Table 3.5. Watershed-scale correlation coefficients between independent variables (P, SP, peak SWE) and response variables (Q, Q/P) 
for dry/cold (P/PET <1) and wet/warm (P/PET ≥1) watersheds at annual time steps and as mean annual values (2001-2015). *p<0.05; 
**p<0.01; ***p<0.001, no asterisk = not significant at p<0.05. Values in parentheses are for the truncated period of record for water 
years (2004-2015) that matches the SNODAS period of record for peak SWE. 

Variables Time Scale All watersheds Wet/warm Dry/cold 

P and Q 
annual 0.96*** 0.95*** 0.80*** 

mean annual 0.97*** 0.96*** 0.78*** 

SP and Q  
annual (0.06*) 0.08** (-0.16***) -0.16*** (0.68***) 0.67*** 

mean annual (0.002) 0.02  (-0.35*)     -0.32*   (0.73***) 0.73*** 

SWE and Q  
annual 0.38*** 0.06 0.76*** 

mean annual 0.39*** -0.14 0.75*** 

P and Q/P  
annual 0.69*** 0.52*** 0.54*** 

mean annual 0.71*** 0.58*** 0.57*** 

SP and Q/P  
annual (0.37***) 0.38***  (0.02)   0.04 (0.74***) 0.74*** 

mean annual (0.38***) 0.39***   (-0.13)  -0.08 (0.79***) 0.79*** 

SWE and Q/P  
annual 0.48*** 0.08 0.63*** 

mean annual 0.55*** -0.07 0.68*** 
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3.6. Discussion 

3.6.1. Snow variables 

Many conventions have been applied to characterize snow patterns across watersheds, 

including changes in the fraction of precipitation falling as snow, snow water equivalent, snow-

covered area, and snow cover duration. Our results demonstrate that these types of metrics are 

highly correlated with one another, but they each convey different information about the 

snowpack. The fraction of precipitation falling as snow must usually be reconstructed 

retrospectively and will include uncertainties depending on the accuracy and time scale of 

available source data (Nolin and Daly, 2006; Dai, 2008). We chose not to focus on this variable, 

although future research could expand into analyses of the likelihood that snow fall will persist 

on the ground. 

SWE has been the standard variable used for hydrologic prediction through statistical 

forecast models and process models (Christensen and Lettenmaier, 2007; Franz et al., 2008; 

Koster et al., 2010; Restrepo et al., 2012), and extensive research has been and continues to be 

dedicated to obtaining spatial patterns of SWE to improve streamflow prediction (Fassnacht et 

al., 2003; Bavera et al., 2014; Kahl et al., 2014; Painter et al., 2016). Even though the SNODAS 

SWE product is sometimes not as accurate as desirable for areas without ground SWE 

measurements (Clow, 2012; Hedrick et al., 2015), our results show that it is highly correlated 

with Q in dry/cold watersheds (Figures 3.5,3.6). This indicates that it does have utility for 

hydrologic prediction in dry/cold climates.  

Snow cover products also have utility for understanding hydrologic response, although 

they too have uncertainties. We found that MODIS SP derived from the 8-day binary snow cover 

product tends to be lower than SP measured at SNOTEL sites. MODIS-derived SP likely differs 
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from station SP due to the difference in measurement scale and mix of land covers sampled. 

SNOTEL sites are typically located in relatively flat forest clearings, which may not be 

representative of the areas surrounding the stations (Dressler et al, 2006; Meromy et al., 2013), 

and a single MODIS pixel with 500 meter sides may contain snow in both forested and clearing 

areas. Additionally, SNOTEL sites become less reflective of their surrounding areas as the melt 

season progresses (Meromy et al., 2013). Comparing the 8-day remotely sensed MODIS SP to 

SNOTEL SP calculated from daily SWE measurements also introduces temporal discrepancies 

because the MODIS product is the maximum snow presence condition of the 8-day period, 

whereas SNOTEL SP contains 8 values for the same period. In an intermittent to transitional 

snowpack, this effect could lower SNOTEL SP because of the potential for SNOTEL SWE to 

melt fully and accumulate within an 8 day period. Additionally, prior research has shown 

through comparison with higher resolution Landsat imagery that MODIS snow products may 

under-estimate snow cover in forested areas (Rittger et al., 2013). Daily and 8-day products may 

identify snow cover one day when snow is present on the canopy in snow covered areas and 

report no snow the next time period when snow is on the ground beneath the trees, but the 

canopy is snow free. I conducted additional analyses to investigate the utility of MOD10A1 

(daily binary snow cover product), MOD10A1F (daily fractional snow covered area), 

MODSCAG (daily fractional snow covered area) for calculating snow persistence in the western 

U.S. This revealed that daily binary and fractional products had greater areas of restricted data 

due to senor saturation and cloud cover issues, and in areas without problematic cloud cover, 

produced similar correlations to annual water yield to those from the 8-day maximum product. 

Even with the discrepancies in spatial scale between SNOTEL sites and MODIS pixels, 

however, the MODIS SP values are highly correlated with SNOTEL SP and peak SWE, and SP 
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is almost as well correlated with Q as is peak SWE. Therefore, an important finding of our 

research here is that a remotely sensed snow metric derived solely from snow cover data (SP) 

correlates both Q and Q/P nearly as well as SNODAS peak SWE in dry/cold watersheds (Table 

3.5).  Snow persistence is not widely used in hydrologic analyses, but it has the advantage of 

spatial continuity and global availability. It is a useful alternative to spatial SWE in areas where 

SWE measurements are sparse, and creating a gridded SWE product like SNODAS is not 

feasible (Saavedra et al., 2017). In the western U.S., SP can also be mapped at finer resolution 

(500 m) than the SNODAS product (1 km2). Finer resolution snow information is often 

beneficial for estimating water yield in small watersheds with spatially variable snow conditions 

(Molotch and Bales, 2005; DeBeer and Pomeroy, 2010; Rice and Bales, 2010) because 

mountainous watersheds have high topographic variability, with a large fraction of streamflow 

coming from small areas.  

 

3.6.2. Climatic differences in the hydrologic role of snow 

Climatic differences in how streamflow relates to snow variables stem from the relative 

importance of precipitation and temperature in snow accumulation (Figure 3.3, Table 3.3). 

Precipitation is the dominant control on streamflow volume across the region as a whole (Figures 

3.5,3.6, Table 3.5), which is consistent with previous research (Kim et al., 2000; Fu et al., 2007). 

Consequently, snow variable correlations with Q are strongest where P most influences snow 

accumulation. Precipitation totaled over periods shorter than the water year displays a weaker 

relationship with annual flow (Figure 3.11,3.12). However, when comparing correlations 

between water year flow and mean temperature averaged for different time periods, correlations 

improve when using Dec-Feb mean temperature period for wet/warm watersheds, but decline for 
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dry/cold watersheds when any period less than the water year is used (Figures 3.13,3.14). Peak 

SWE in the wet/warm watersheds is more strongly linked to temperature than to precipitation, 

whereas peak SWE in the dry/cold watersheds has a stronger connection to precipitation (Figure 

3.3) because winter precipitation in these areas is more likely to fall as snow. As a result, snow 

variables (peak SWE, SP) are better correlated with streamflow in dry/cold regions, where snow 

variables are good proxies for precipitation, than in wet/warm regions, where temperature is a 

key control on whether precipitation falls as rain or snow. These relationships in dry/cold 

watersheds are present both spatially, comparing multiple watersheds (Figure 3.5,3.6), and 

temporally, comparing different years in individual watersheds (Figure 3.7).  

 

Figure 3.7. Annual water year runoff ratio (Q/P) vs SP for 2001 to 2015 at ten individual 
wet/warm (A) and dry/cold (B) watersheds shown by different symbols. C, Slope of the 
relationship between annual Q/P and SP by watershed. Dry (P/PET <1), Wet (P/PET ≥1). 
Significant results in C are shown by filled symbols; x’s indicate regressions that are not 
significant (p>0.05). 43/71 regressions were significant for dry/cold watersheds. 11/48 
regressions were significant for wet watersheds. Red (blue) symbols denote dry/cold (wet/warm) 
watersheds. Dry/cold (P/PET <1), Wet/warm (P/PET ≥1). 

 

Relationships between P, T and SWE may be obscured when analyzing data at the water 

year or Oct-June time scale because this time range would include warm periods with rain 

instead of snow. To assess the effects of the time period chosen for correlation analysis of 

climate and snow variables we compared the relationships between SP and SWE with P total and 
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T average for four different periods: the water year, October to June, January to June, and 

December to February. For both SWE and SP, T averaged for the January – June period shows 

the strongest correlations amongst the temporal periods we tested, with limited differences in 

correlation strength between time periods (Figures 3.15,3.16). The correlations between P and 

both SP and SWE generally decline when using P from truncated periods as compared to the 

water year for dry/cold watersheds, and for wet/warm watersheds, the relationship remains weak 

for all periods of analysis. Therefore, we conclude that the poor relationship between P and snow 

variables in wet/warm watersheds is not an artifact of the time scale of analysis. 

 

3.6.3. Applications using SP to predict streamflow 

 Relationships between snow persistence and streamflow generation in dry/cold 

watersheds highlight the key role of high elevation mountains in producing streamflow for 

lowlands of the interior west. As an example application of this finding, we used an equation fit 

to the mean annual Q vs. SP relationship for dry/cold watersheds to map mean annual Q across 

the Upper Colorado River Basin (UCRB). Here we directly use remotely sensed snow 

information to estimate streamflow, which differs from previous studies in which remotely 

sensed data was used as input to hydrologic models to forecast streamflow (Andreadis and 

Lettenmaier, 2006; Jain et al., 2010; Roy et al., 2010). This map clearly illustrates how most of 

the streamflow generated in the basin is from high elevation areas (Figure 3.8), with 50% of the 

UCRB flow predicted by this method coming from above 3,000 masl. The map shows finer 

resolution patterns and even higher Q in the headwaters of the UCRB than currently available 

from the latest Colorado River Basin Technical Report (U.S. Bureau of Reclamation, 2012). The 

streamflow pattern is consistent with prior analysis of contributions to streamflow by elevation 
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(Fassnacht, 2006) and with results of recent hydrological model simulations that show that over 

half of the total water yield in the western U.S. originates as snowmelt even though only 37% 

percent of precipitation falls as snow (Li et al., 2017). Similar disproportionate streamflow 

contributions from snow-dominated regions have been observed worldwide (Viviroli et al., 

2003). While prior studies have focused on the importance of the high elevation snowpack for 

streamflow, an important contribution here is that lower elevations with more intermittent snow 

are still important for streamflow generation, contributing the remaining 50% of flow to the 

Colorado River Basin, or possibly more since we excluded areas with SP<30%. Snow 

measurements are sparse in areas with intermittent snow, and we recommend that future snow 

monitoring expand into these areas that also contribute substantial streamflow to the river.  
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Figure 3.8. Mean annual streamflow (Q) for the Upper Colorado River Basin modeled from the 
relationship between mean annual SP and mean annual Q (Figure 3.5d), with an inset graph 
displaying the curve of cumulative Q with elevation. SP 50 is the boundary between intermittent 
and seasonal snow cover. 
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If the relationships identified between SP and Q in the western U.S. are similar in other 

dry/cold parts of the world, SP could be useful for first order estimates of annual streamflow 

volume. Preliminary analysis of the relationship between annual Q and SP in dry/cold 

watersheds of Canada and Argentina using data from the Global Runoff Data Centre (GRDC, 

German Federal Institute of Hydrology, Koblenz, Germany) shows a similar relationship as 

observed in dry/cold watersheds of the western U.S. (Figure 3.9). In the future, we hope to test 

this relationship in dry/cold watersheds of South America and Asia in places without significant 

glacial influence. This would be most useful in locations that have sparse or inaccurate 

precipitation data. Water year P is still the strongest predictor of water year Q in the western 

U.S., where relatively high quality and high resolution gridded P data are available. Global 

gridded P products are typically much coarser than those available in North America and Europe 

and coarser than the MODIS-derived SP. These products are modeled and interpolated from 

station, radar and satellite data and can have considerable uncertainties (Fekete et al., 2004; 

Bosilovich et al., 2008; Kidd et al., 2012; Schamm et al., 2014; Levy et al., 2017) with 

heightened uncertainty of over 100% in high latitude and topographically complex areas 

including the Rocky Mountains, Tibetan Plateau, and Andes (Tian and Peters-Lidard, 2010; 

Saavedra et al., 2018). 
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Figure 3.9. Annual streamflow (Q) vs Oct 1 - Sept 30 snow persistence (SP) for semi-arid and 
arid (P/PET < 1) watersheds from USGS watersheds in the western U.S. and GRDC watersheds 
in Canada and Argentina. The Global Runoff Data Centre, 56068 Koblenz, Germany. Red line 
shows best fit with USGS watersheds used in the present study in the western U.S. Fit properties: 
R2 = 0.45, equation = Q = 6.7091e0.0498*SP . 
 

 

 

Figure 3.10. Water year streamflow vs snow persistence colored by aridity (P/PET, A) and the 
percent of watershed area affected by dense forest cover (B). 
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3.6.4. Uncertainties 

The processes linking snow to streamflow are complex, and a wide range of factors 

besides climate and snow persistence could affect the trajectory of hydrologic responses to 

changes in snow. When more of the P is rain instead of the snow, more exposure of the ground 

surface to the atmosphere can lead to greater ET if soil moisture is not limiting. However, both 

soil moisture limitations and winter dormancy of vegetation can vary the response of ET to snow 

loss (Goulden et al., 2012). Wildfires and insect infestations across the western U.S. lead to 

complex snow accumulation and melt responses that vary over time as forest stands progress 

from their disturbed state (Burles and Boon, 2011; Winkler, 2011; Pugh and Small, 2012; 

Gleason et al., 2013; Harpold et al., 2014). Wildfire events are expected to burn more total area 

in coming years (Westerling et al., 2011; Moritz et al. 2012), and forest recovery from wildfire 

and insect infestations can last decades (Vanderhoof and Williams, 2015). Where large areas of 

forested land are affected by these disturbances, snow accumulation and melt could experience 

significant alterations in addition to those directly from climate. These kinds of effects would 

contribute variability in the streamflow response to snow (Figures 3.5,3.6), although we expect 

that they would not alter the dominant tendencies identified here unless they are particularly 

severe.  An example of such a severe change is high severity wildfire, which may shift 

streamflow generation to surface overland flow during summer, enhancing the importance of 

rainfall for streamflow generation. Research comparing watersheds with a wide range of snow, 

climate, and vegetation conditions (e.g. Maurer and Bowling, 2014; Harpold and Molotch, 2015; 

Biederman et al., 2015) is needed to help understand these mechanisms and the combined 

influences of climate and land changes on streamflow generation in dynamic landscapes.  

All of the data sources we used for this analysis also have uncertainties. We addressed 

uncertainties in snow products by using multiple data sources (SNOTEL, SNODAS, MODIS). 
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To ensure that our findings about climate differences in streamflow response to snow are not 

artifacts of data product selection, we also conducted the same analyses using alternate climate 

data products. We found that the differences in streamflow sensitivity to snow by climate were 

similar using different precipitation products (Table 3.7a,b) (Daly, 2013; Livneh et al., 2013) and 

different reference potential evapotranspiration (Abatzoglou, 2013; Cristea et al., 2013; Table 

3.7b,c). This increases confidence that the findings are not an artifact of the data uncertainties or 

processing approach. Additionally, the gridded data sources utilized in this study had different 

spatial resolutions, introducing error into correlation tests between gridded variables. Resampling 

to the resolution of MODIS data without interpolation minimizes the introduced error, but spatial 

patterns captured by SP are not as well captured in the coarser gridded products (gridMET PET, 

PRISM P, SNODAS SWE).  

 Previous research has identified shortcomings in MODIS snow products related to 

vegetation (Hall and Riggs 2007). Methods have been developed for adjusting MODIS fractional 

snow products in areas with dense vegetation (Nolin 2010, Raleigh et al. 2012, Rittger et al., 

2013), and simple vegetative thresholds for binary snow identification are included in current 

MODIS snow cover products. Rittger et al. (2013) demonstrated that most errors occur in areas 

where tree cover fraction is >50%. To evaluate the potential scope of vegetation errors in our 

study, we computed the percent area of each watershed with tree cover fraction > 50 %, plotting 

water year flow vs snow persistence (Figure 3.10). Many of the watersheds with dense forest, 

and thus expected errors in remotely sensed snow cover, coincide with areas with high P/PET. 

These watersheds also tend to fall outside the range of observed Q vs SP relationship in dry/cold 

watersheds. If the SP for these watersheds is biased low, then correction of SP would shift the 

densely forested points in Figure 3.9b further to the right. Such a correction would likely not 
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affect the dry/cold Q vs. SP relationship much, but it would alter the wet/warm relationship. 

Further study of the relationship between snow accumulation and streamflow generation using 

refined vegetation corrections could address these uncertainties in greater detail. 

Finally, our study faced some sampling challenges, which may have contributed 

uncertainties. With the climatic range across the western U.S., it is challenging to separate out 

the effects of P and T on snow and streamflow through empirical analysis alone because dry 

watersheds are in the continental interior and tend to have colder ranges of temperatures than the 

wet maritime watersheds. Future studies could use proxy variables that capture P and T effects 

(e.g. Kormos et al., 2016) to examine the relative importance of P and T from a different 

perspective. While we were able to obtain a reasonable sample size of unmodified watersheds 

across the western U.S. as a whole, individual sub-regions do not all have discharge 

measurements in all snow zones. For example, in the high relief terrain of the Cascade and Sierra 

mountain ranges, current gauge locations tend to integrate multiple snow zones, rather than 

exclusively sampling a single snow zone. Current stream gauge networks were primarily 

designed for water supply and flood forecasting, meaning they tend to be at lower elevations in 

larger rivers. Few of the existing gauges in these mountain areas sample watersheds that cover 

only the lower elevation intermittent snow zone. Increased monitoring of discharge in 

watersheds near the transition between intermittent and seasonal snow would help improve 

understanding of how streamflow changes is affected by snow changes (Figure 3.8). 

 

3.7. Conclusions 

Both snow persistence derived from remotely sensed snow cover data and modeled peak 

snow water equivalent are strongly correlated with annual and mean annual streamflow in 
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dry/cold (precipitation deficit) but not in wet/warm (precipitation surplus) watersheds of the 

western U.S. Climate type affects correlations between snow and streamflow because of the 

relative importance of precipitation for total snow accumulation. In dry/cold watersheds, snow 

variables predict streamflow almost as well as precipitation alone because peak snow 

accumulation is strongly correlated with precipitation. For these areas, the snow variable derived 

from snow cover data, snow persistence, has nearly as strong a correlation with annual 

streamflow as a spatial snow water equivalent product. SNODAS SWE, despite having been 

shown to be inaccurate at the pixel scale in mountainous terrain nevertheless demonstrates utility 

in predicting Q in dry/cold watersheds. Because snow cover data are available globally at 500 m 

resolution, these findings about how snow persistence relates to annual streamflow allow 

detailed spatial mapping of streamflow across snowmelt-dominated dry regions. For example, 

we used the Q vs. SP relationship to map mean annual streamflow across the Upper Colorado 

River Basin and estimated that 50% of the basin streamflow comes from >3000 m elevation. 

Similar approaches could be used to map streamflow patterns and potentially forecast streamflow 

for dry/cold watersheds in parts of the world with limited streamflow monitoring. The ability to 

estimate streamflow using snow persistence expands our ability to track hydrologic change in 

snow-dominated regions across the globe. 
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Chapter 4. Snowmelt and Rainfall Partitioning Through the Critical Zone Varies by 

Climate Type and Soil Properties in Snowmelt Dominated Locations 

 
 
 
4.1 Introduction 

Snowmelt is the dominant source of streamflow generation and groundwater recharge in 

many high elevation and high latitude locations (Regonda et al. 2005; Stewart et al. 2005; 

Earman et al., 2006; Clow, 2010; Jefferson, 2011; Furey et al., 2012). Soils modulate the 

partitioning of rainfall and snowmelt input into subsurface storage, deep drainage, evaporative 

losses and surface runoff. Partitioning of snowmelt into these different outputs is likely to change 

as global temperatures continue to rise (Harpold et al., 2015; Harpold et al., 2017). Snow 

persistence shows declines around the globe, and these snow losses may lead to changes in input 

magnitude and timing (Chapter 2). As areas of “at risk snow” become more apparent (Nolin and 

Daly, 2006), there is an urgent need for mechanistic studies that quantify the partitioning of 

snowmelt through the critical zone (Brooks et al., 2015; Meixner et al., 2016), and this has 

become an active field of research in mountain regions (Harpold and Molotch, 2015; Kampf et 

al., 2015; Tetzlaff et al., 2015; Webb et al., 2015). 

Snowmelt has been shown to yield both more streamflow and more groundwater recharge 

per unit of precipitation than rain (Earman et al., 2006; Berghuijs et al., 2014; Li et al., 2017). 

However, soil properties will also affect how changes in inputs affect partitioning. Both 

streamflow and deep drainage are affected by soil texture, soil depth, and rooting depth (Cho and 

Olivera, 2009; Seyfried et al., 2005). Given the considerable heterogeneity in climate, soils, 

topography, and vegetation, different locations may not all respond in the same way to loss of 

snow.  Despite the fact that snowmelt is highly important to hydrologic responses in high 
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elevation and high latitude areas, much remains unknown regarding how these factors interact to 

determine partitioning into components of the soil water balance.   

The goal of this study is to improve our understanding of how changes in precipitation 

phase from snow to rain affect input partitioning in a changing climate. Hydrologic partitioning 

of input, P, in the critical zone can be tracked using the water balance (equation 1), where 

partitioning components include fluxes for surface runoff, Q; evaporation, E; transpiration, T; 

deep drainage below the root zone, D; and storage within the soil root zone, Δ�. 

� = � + � + � + 
 +  Δ�   eq. 1 

A modeling approach is used to examine partitioning across a wide range of climate and soil 

conditions. Specific questions guiding the research are: (1) Are snowmelt and rain partitioned 

differently between Q, ET, and D? and (2) How is this partitioning of rain and snowmelt affected 

by climate, soil type, and soil depth? I hypothesize that reducing the fraction of precipitation 

falling as snow leads to lower surface runoff and deep drainage because it reduces the 

concentration of input during snowmelt (Figure 4.1). I define input concentration as the mean 

length of input events for a given period (i.e. water year) divided by the total number of input 

events during that period. This metric is thus used to evaluate whether input is more continuous 

or discrete in nature. Concentrated input from snowmelt leads to greater soil saturation, which 

causes saturation excess runoff and deep drainage below the root zone. I also hypothesize that 

the elevated runoff and deep drainage caused by snowmelt will be greatest in dry climates, where 

soil saturation is less frequent, compared to wet climates 

and shallow soils, which can saturate with lower water input. Figure 4.1 shows the conceptual 

understanding of climatic effects on critical zone partitioning where input concentration and 

climate type interact to control hydrologic response. 
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Figure 4.1. Conceptual illustration of the hypothesis about importance of concentrated snowmelt 
input to generating streamflow in dry climates. The wet climate generates more surface runoff 
(Q) and deep drainage (D) and less evapotranspiration (ET) compared to the dry climate. In both 
climates, input that is concentrated in time can increase both Q and D because it is more likely to 
allow soil saturation than intermittent input, which allows ET during periods of drying.  
 

4.2 Background 

Climate-dependent factors, including snow persistence, precipitation timing, and seasonal 

patterns in evaporative demand, affect soil moisture response to rainfall and snowmelt inputs. 

Prior research has demonstrated strong links between snowmelt and soil moisture dynamics at 

multiple scales (Loik et al. 2004; Williams et al. 2009; Blankinship et al. 2014; Kormos et al., 

2014; Harpold and Molotch, 2015; Webb et al. 2015; Kampf et al. 2015). Concentrated melt 

from a winter snowpack can enhance downslope connectivity through the soil in valley bottoms, 

near streams, or in concave hollows, providing a mechanism for streamflow generation and deep 
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drainage that is not active in the same areas during drier seasons (McNamara et al. 2005; 

Hinckley at al., 2014). Consequently streamflow can be insensitive to inputs when soil moisture 

storage is below a certain value, yet streamflow is generated rapidly once a threshold storage 

value is exceeded (McNamara et al., 2005; Liu et al., 2008; Seyfried et al., 2009). McNamara et 

al. (2005) hypothesized that when dry-soil barriers are breached, there is sudden connection to 

upslope soils, leading to delivery of water to areas that were previously disconnected. Such 

breaching of dry-soil barriers was only observed for periods of concentrated and sustained input. 

Near-surface soil moisture response is closely related to snow disappearance (Harpold 

and Molotch, 2014; Webb et al., 2015; Harpold et al., 2015). Kampf et al. (2015) observed that 

earlier snowmelt timing led to lower average soil moisture conditions not as conducive to 

streamflow generation as later snowmelt, suggesting a relationship between the persistence of a 

snowpack, soil moisture state, and streamflow generation. The effects of earlier snowmelt on soil 

moisture dynamics may also vary with precipitation conditions after snowmelt. Late-spring 

precipitation can overwrite the signal of earlier snowmelt timing on spring and summer soil 

moisture (Liator et al., 2008, Conner et al., 2016), whereas if this late spring precipitation does 

not fall, the effects of earlier snowmelt on soil moisture can persist longer (Blankenship et al, 

2014). If input comes during wetter winter periods with low evaporative demand, it may be more 

likely to saturate soil and create streamflow or deep drainage than fall, spring and summer inputs 

that are more likely to be at least partially partitioned to ET because … (Molotch et al., 2009). 

Earlier snow disappearance can lead to diverging patterns in growing season length, where 

earlier snowmelt can lead to a longer growing season, if energy hinders vegetation growth, or a 

shorter growing season where soil water stress limits plant activity (Harpold et al., 2015; 

Harpold, 2016).  
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Soil moisture patterns are also affected by soil and topographic properties, which 

generally remain stable through timespans of hydrologic analysis. These more static properties 

can produce temporally stable spatial patterns of soil moisture (Williams et al., 2009).  Soils with 

greater storage capacity may show less moisture limitation on ET during the late spring and 

summer (Jepsen et al., 2016). With similar magnitude of input on north- and south-facing slopes, 

north facing slopes have higher sustained moisture content, and especially when combined with 

deeper profiles and more deeply weathered rock, north‐facing slopes can be more conducive to 

deep drainage (Langston et al., 2015). Where soils are shallow, winter precipitation may be in 

excess compared to the soil storage capacity, with input contributing to surface runoff and deep 

drainage (Smith et al., 2011). While deeper soil profiles can buffer changes in volume and timing 

of runoff, the preservation of surface runoff with snow loss can be at the expense of subsurface 

storage and groundwater recharge (Markovich et al., 2016). 

This chapter presents a combined analysis of climatic and edaphic effects on how water 

input is partitioned between soil storage, streamflow, ET, and deep drainage. This combined 

analysis can help improve understanding of critical zone partitioning in mountain areas and 

highlight areas most sensitive to snow loss. 

 

4.3 Methods 

To evaluate soil moisture response to rainfall and snowmelt over a wide range of climate 

and soil conditions I use HYDRUS-1D (Šimůnek et al. 1998), a physically-based finite element 

model for simulating one-dimensional water movement in variably saturated, multi-layer, porous 

media. 
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4.3.1 Study design, site selection, and data sources 

I utilize daily input data from five SNOTEL sites in each of three regions: the Cascades, 

Sierra, and Uinta for a total of 15 sites. Daily rather than hourly data was chosen to limit the 

effects of missing and incorrect values on the analyses. The three regions chosen represent 

dominant climate types in the western U.S., and within each region, sites were selected to span 

an intermittent to persistent snow gradient and represent snow input variability. Snow persistence 

is defined as the fraction of time that an area is snow covered, where areas with intermittent 

snow are characterized by shallow snowpacks with multiple mid-winter melt events and those 

with persistent snow accumulate deeper snowpacks throughout the fall, winter and spring with a 

concentrated melt pulse during spring and early summer months (Moore et al. 2015). With these 

climate scenarios I simulated soil moisture response to variable climatic conditions for ~35 years 

at each site (Figure 4.2, Table 4.1).  
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Figure 4.2. SNOTEL sites utilized in this study with insets displaying snow zones classified by 
mean annual snow persistence (Moore et al., 2015). 
 

Daily precipitation (P), snow water equivalent (SWE), and volumetric water content 

(VWC) at 5, 20, and 50 cm were obtained for each SNOTEL site using the Natural Resource 

Conservation Service (NRCS) National Weather and Climate Center (NWCC, 2016) Report 

Generator (Table 4.1). The records were quality controlled to ensure reasonable precipitation, 

SWE and VWC values as in Harpold and Molotch (2015). Unrealistic values were removed (i.e. 

negative SWE, VWC below zero or above unity); all daily VWC outside of three standard 

deviations from the mean were removed, and a manual screening was performed on VWC data 
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to identify shifts and other artifacts not captured by the first two automated procedures.  Daily 

potential evapotranspiration (PET) was extracted from daily gridMET (Abatzoglou, 2013) rasters 

for the 4 km pixel containing each SNOTEL site over the time period matching the available 

SNOTEL record. This product uses the ASCE Penman-Monteith method to compute PET.  

While 365 of the 747 SNOTEL sites in the western U.S. have soil moisture sensors, only 

a fraction of these sites have detailed soil profile data. The sites with soil profile data have 

information obtained from soil samples taken at moisture probe installations and processed in the 

lab for texture, water retention properties, and hydraulic conductivity. Dr. Harpold obtained 

detailed soil profile data, in the form of pedon primary characterization files from the NRCS, and 

I selected three profiles greater than 100 cm in depth (Figure 4.3, Table 4.2) to represent the 

ranges of available soil textures and hydraulic conductivity.  

 

4.3.2 Model setup and simulations 

In HYDRUS-1D, I simulated water flow and root water uptake for a vertical domain 10 

m deep. The domain was discretized into 500 nodes with higher node density near the surface 

(~0.15 cm for top 5 cm vs ~5 cm for the bottom of the profile). For the surface boundary, I used 

time variable atmospheric boundary conditions with daily input from snowmelt and rain, PET 

and surface runoff generation allowed. For the lower boundary, I allowed free drainage from the 

bottom of the soil profile. Soil water input was calculated by totaling snowmelt and rainfall input 

at the daily time step from SNOTEL precipitation and SWE values. Melt was computed for any 

day when SWE decreased; if SWE decreased, and the precipitation was greater than 0, total soil 

water input was assumed to be melt plus precipitation. Within HYDRUS, I assigned a constant 

leaf area index (LAI) of three, as this value generally fits mixed conifer forests (Jensen et al., 
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2011) where SNOTEL sites are installed.  I assumed a radiative extinction coefficient of 0.39, 

which is the default assigned. LAI and the radiation extinction coefficient are used in the 

estimation and separation of potential evaporation and transpiration as part of the root water 

uptake sub-routine. Through calibration these models were not sensitive to changes in the 

extinction coefficient, and it was left as the default. Root water uptake in the model was 

estimated using Feddes parameters for a conifer forest (Lv, 2014), with roots uniformly 

distributed from the soil surface to the interface with a lower hydraulic conductivity layer 

representing regolith or bedrock. 

I created soil layers with depths and textures taken from the NRCS soil pedon 

measurements. From this information I applied the neural network capability of HYDRUS-1D, 

which draws from the USDA ROSETTA pedotransfer function model (Schaap et al., 2001), to 

determine soil hydraulic parameters from the NRCS pedon primary characterizations. I used 

percent sand, silt and clay, bulk density, wilting point, and field capacity in the neural network 

function. Below the depth of the soil pedon measurements, I configured the simulations to have a 

deep layer with lower hydraulic conductivity but the same water retention parameters as the layer 

above. The initial hydraulic conductivity of this lower layer was set at one half that of the layer 

above; values were modified during calibration. A low conductivity “bedrock” layer was added 

to the profile setup to allow simulation of deep drainage from the root zone to lower layers while 

aiding in calibration so that lower root zone layers retained water similar to their behavior in situ 

as compared to a freely draining soil profile with an atmospheric boundary condition below. The 

initial water content for all layers in each simulation was 0.2 VWC. 
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4.3.3 Calibration 

For model calibration, I used three SNOTEL sites (432 Currant Creek, 698 Pole Creek 

R.S., 979 Van Wyck) that had detailed NRCS pedon primary characterizations to depths greater 

than 100 cm and >15 years of daily soil moisture records at 5, 20 and 50 cm. I used the daily 

records of precipitation, SWE, and PET from these sites to simulate soil water movement for the 

period of record at each site. I calibrated to observed VWC at 5, 20 and 50 cm depths (ex. Figure 

4.13, Table 4.4). Simulations used two sequences of historical climate inputs, the first as a spin 

up period, and the second for calibration. Calibration was conducted by adjusting the hydraulic 

conductivity of the bottom layer to match observed VWC. Rather than force-fitting the models, 

my goal was to get simulations that behaved similarly to the observed soil moisture, so I could 

use a reasonable parameterization for model experiments. I also aimed to use similar parameters 

for all sites (i.e. identical root uptake parameters, 1/10 Ks of bottom root zone layer for low K 

layer). This calibration approach is consistent with other studies using HYDRUS – 1D, which 

also applied similar manual calibration starting with basic soils data and application of the 

ROSETTA pedotransfer function (Scott et al., 2000). Previous research that has applied a similar 

type of model to simulate soil moisture responses to snowmelt also calibrated to observed water 

content measurements by adjusting permeability of the “bedrock” layer (Flint et al., 2008).  

I evaluated performance using mean bias and the Nash Sutcliffe model coefficient of 

efficiency (NSCE). Calibrations of VWC generally improved with depth, with poor NSCE (-0.82 

to 0.15, Table 4.4) between observed and modeled 5 cm VWC where moisture is highly variable 

in time, and improved values at 20 cm (0.17 to 0.45) and 50 cm (0.14 to 0.58). I faced difficulty 

in obtaining close fits between modeled soil moisture and reported values from SNOTEL 

sensors. The chosen root uptake parameters for conifer forest (h1 0 cm, h2 0 cm, h3h -5,100 cm, 
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h3l -12,800 cm, h4 -21,500 cm, TPlow 0.5 cm/d, TPhigh 0.1 cm/d) more effectively lowered root 

zone water contents during dry periods as compared to deciduous values included in the 

HYDRUS-1D library, but still did not produce water contents resembling the low observed 

values. Soil moisture sensors can be affected by unexplained drifts and shifts in magnitude of 

reported values through time, which may have also affected calibrations. While I could have 

applied inverse modeling to calibrate more parameters and achieve a better fit (Sutanto et al., 

2012), I elected to preserve the soil profile parameters determined from soil texture and only 

modify the lower layer hydraulic conductivity, for which there were no prior measurements. 

During calibration I tried to match the timing of response first, followed by magnitude, 

consistent with the approaches applied in other HYDRUS applications (Sutanto et al., 2012). 

Further details on model calibration can be found in the supplementary materials (Figure 4.13 

and Table 4.4). 

 

4.3.4 Simulation scenarios 

I applied each of the 15 climate scenarios (Table 4.1) to each of the soil profiles 

developed during calibration. To address the question of whether snowmelt and rainfall are 

partitioned differently, I conducted additional simulations that treated all precipitation as rain and 

compared those to the simulations with the original climate data. To examine how soil depth 

affects partitioning I altered the depth of rooting zones to 1.5x and 2x their original depth. The 

layer above bedrock was extended to match this new rooting zone depth. I altered the depth of 

one soil profile (1056, loam, historical inputs) by fine scale 20 cm increments to study the effect 

of profile depth in more detail. Finally, to examine how input timing affects partitioning, I 

artificially produced intermittent (four five-day periods of low magnitude) and concentrated 
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input (one twenty-day period of high magnitude) of the same annual total to study the effects of 

input concentration for one wet (559) and one dry (375) site using the loam profile (1056) for all 

years of data. 

 

4.3.5 Analysis 

Using the simulation results, I examined how rain and snowmelt were partitioned into 

surface runoff (Q), evapotranspiration (ET), soil storage (S), and deep drainage (D). Daily soil 

storage is reported as the total soil water within the rooting zone only, and D is any water passing 

below the rooting zone (106-127 cm depending on the soil profile). In this study I assess 

partition components in units of length (cm) as well as their ratio to total input (unitless, e.g. 

Q/P). Analysis of model outputs is performed at both event and annual time scales.  

To separate out the responses to rain and snowmelt, I defined rainfall events as days with 

precipitation while SWE equaled zero and snowmelt events for days with declining SWE and no 

simultaneous precipitation. Multi-day events occurred as long as the conditions were 

continuously satisfied; total rain and snowmelt were computed for each defined event. For 

response variables (Q, ET, S, D) a one-day lag after the last day of input was also included for 

computing event totals. Only events with a day of zero input following the classification of 

snowmelt or rain input were used in the reported results. Other events represented a mix of both 

rain and snow inputs and were not used in the event analysis. Antecedent S for each event was 

determined by taking the root zone storage from the day prior to the first event input. 

At the annual scale, mean saturation (Sat) at each observed depth was calculated as the 

average annual VWC divided by soil porosity. Soil water input and partitioning components 

(rain, snowmelt, Q, ET, D) were totaled for each year, and the change in water year storage 
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determined by subtracting the values of S at the end of the year from the value at the beginning 

of the year. At the annual scale I also report the maximum SWE for the water year and computed 

input concentration as the mean length of all soil water input events divided by the total number 

of events per year. The average rate of snowmelt was calculated as the mean rate of SWE decline 

throughout the entire year.  

Using both the event and annual results, I examined (1) whether partitioning of rainfall 

input differed from that of snowmelt input, and (2) how partitioning was affected by climate, soil 

texture, and soil depth. I identified quasi-discrete rainfall and snowmelt events by selecting 

continuous periods of input followed by at least five days of no input. I totaled input for all days 

of the event and totaled response variables for these days as well as one day following the end of 

input. Only events with entirely rainfall or entirely snowmelt input were considered, with events 

consisting of rainfall and snowmelt as well as rain on snow excluded.  

To determine how climate and soil properties affected partitioning, Pearson correlation 

tests were conducted between explanatory variables (P, PET, P/PET, peak SWE, SP, average 

melt rate) and dependent variables (Q,D,E,T, mean saturation at 100 cm). To evaluate whether 

there were differences in partitioning by climate, watersheds were classified as dry (precipitation 

deficit, PET>P) and wet (precipitation surplus, PET<P). I performed ANOVA tests on event and 

annual analysis groupings to determine whether there were significant differences in hydrologic 

response between groups. For question 1, I tested for differences in event partitioning between 

input type (rain or snowmelt) and differences in annual partitioning between historical and all 

rain scenarios. For question 2, I tested for differences in annual partitioning between climate 

(wet, dry) and soil depth groupings. Additionally for question 2, I tested the pairwise difference 

in linear regression slopes using indicator-variable regression with interaction in JMP (SAS-
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based statistical software) to determine whether the rate of change between explanatory and 

response variable differed by climate or soil depth grouping.  

 

 
Figure 4.3. Modeling domain layout. Symbols in the graph above represent the range of climate 
scenarios used plotted by mean annual precipitation (P) and mean annual temperature (T), and 
the three soil profiles below represent the soil parameter sets labeled with italicized capital letters 
(A) loam (B) sandy clay loam (C) sandy loam. Different layers in each soil profile are 
represented as shades of gray.  
 
 



 90

Table 4.1. SNOTEL station properties including the start and end of data records and the elevation of the site and mean annual 
climatic characteristics: mean annual precipitation (MAP), mean annual temperature (MAT), mean annual snow persistence (MASP, 
%), snow zone, and mean annual aridity index (P/PET).  

SNOTEL ID Region State Start End 
Elevation 

(m) 
MAP 
(cm) 

MAT 
(C) 

MASP Snow zone Aridity 

352 Cascades WA 1981 2015 1292 90 6.3 54 transitional 0.8 
553 Cascades WA 1982 2015 1049 433 6.9 65 transitional 4.4 
375 Cascades WA 1978 2015 1405 146 4.9 69 transitional 1.8 
679 Cascades WA 1980 2015 1564 263 4.8 77 persistent 4.9 
418 Cascades WA 1981 2015 1768 158 3.6 83 persistent 1.9 
778 Sierra CA 1980 2015 1864 69 8.0 53 transitional 0.7 
697 Sierra CA 1980 2015 2358 98 3.8 63 transitional 0.6 
428 Sierra CA 1981 2015 2089 180 6.0 72 transitional 1.3 
848 Sierra CA 1978 2015 2028 197 5.9 74 transitional 1.3 
462 Sierra CA 1978 2015 2672 142 4.0 78 persistent 1 
559 Uinta UT 1979 2015 2659 74 1.4 60 transitional 0.6 
833 Uinta UT 1979 2015 2901 70 1.5 69 transitional 0.7 
396 Uinta UT 1981 2015 3228 81 -0.1 76 persistent 0.9 
567 Uinta UT 1980 2015 3342 98 0.0 86 persistent 0.9 
766 Uinta UT 1989 2015 2938 157 3.2 87 persistent 1.3 
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Table 4.2. Soil profile properties derived from NRCS pedon reports, ROSETTA (Ros.) neural network. Columns are SNOTEL site, 
soil profile horizon, depth range of horizon, rock percent of sample volume, organic carbon percent of sample volume, sand percent of 
sample weight, silt percent of sample weight, clay percent of sample weight, Db33 bulk density of soil sample desorbed to 33kPa, ϴ33 
water content at field capacity, ϴ1500 water content at wilting point, soil texture, residual water content ϴr, saturated water content ϴs, 
pore size distribution parameter α, and Ks saturated hydraulic conductivity. The lowest horizon Ks value is the result of calibration. 
Soil textures abbreviated as follows: sandy loam (SL), sand (S), loamy sand (LS), sandy clay loam (SCL), loam (L). SNOTEL 515, 
Harts Pass, WA, SNOTEL 1049, Forestdale Creek, CA, SNOTEL 1056, Lightning Ridge, UT. 

Site Hor. 
Depth 
(cm) 

rock  
% vol  

organic 
C % 
vol 

sand 
% 
wt 

silt   
% 
wt 

clay 
% 
wt 

Db33 

g 
cm-3 

ϴ33  ϴ1500  Text. 
Ros. 
ϴr 

Ros. 
ϴs 

Ros. α 
(1/cm) 

Ros. 
Ks 

(cm/d) 
515 A1 0-15 9 9 53.5 35.6 10.9 0.63 0.41 0.14 SL 0.06 0.62 0.009 17.4 
515 A2  13-38 8 8 57.6 35.3 7.1 0.64 0.47 0.14 SL 0.05 0.60 0.011 20.5 
515 2Bw1 38-61 27 3 73.1 22.1 4.8 0.86 0.3 0.08 SL 0.04 0.55 0.032 15.1 
515 2Bw2 61-81 55 1 81 11 8 1.46 0.16 0.09 LS 0.05 0.40 0.036 5.49 
515 Cd 81-106 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 17.4 
515 Cd 106-1000 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 1.74 
1049 A 0-9 10 7 52.6 25.2 22.2 0.94 0.40 0.14 SCL 0.08 0.55 0.014 5.17 
1049 Bt1 9-20 14 2 48.6 25.4 26 1.13 0.30 0.14 SCL 0.08 0.50 0.014 2.13 
1049 Bt2 20-43 14 1 52.9 23.8 23.3 1.24 0.32 0.12 SCL 0.07 0.47 0.016 1.74 
1049 Bt3 43-63 21 1 53.4 24 22.6 1.19 0.33 0.13 SCL 0.07 0.48 0.015 2.18 
1049 Bt4 63-77 19 1 55.5 25.9 18.6 1.39 0.32 0.12 SL 0.06 0.42 0.017 1.22 
1049 Bt5  77-110 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 2.22 
1049 Bt5  110-1000 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 0.22 
1056 A 0-10 11 3 36.1 48.8 15.1 1.17 0.30 0.12 L 0.06 0.44 0.010 2.41 
1056 A 10-38 7 2 35.3 49.5 15.2 1.27 0.28 0.11 L 0.06 0.41 0.006 1.47 
1056 Bt1 38-76 6 2 36 48.6 15.4 1.25 0.30 0.10 L 0.06 0.42 0.006 1.59 
1056 Bt2 76-89 16 1 39.3 46 14.7 1.26 0.34 0.09 L 0.06 0.41 0.007 1.54 
1056 2B 89-127 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 2.23 
1056 2B 127-1000 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 0.22 
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4.4. Results 

Study sites exhibited substantial variability at the annual scale in both precipitation input 

as well as surface runoff and deep drainage output (Figure 4.4). Patterns in Q and D follow 

patterns in P at most sites, with the greatest P for sites in the Cascades region and the lowest P in 

the Uinta. The wide range of climate conditions simulated provide a good opportunity for testing 

how climate, soil type, and soil depth affect input partitioning into Q, ET, D, and storage (S). 

The first section of the results focuses on comparing snowmelt and rainfall partitioning, as well 

as climatic influences, using only the loam profile to keep soil properties constant while varying 

input. The following section then assesses edaphic influences on partitioning with soil texture 

and soil profile depth chosen as explanatory variables. 
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Figure 4.4. Ranges of annual precipitation (P), surface runoff (Q), and deep drainage (D) for 
each SNOTEL site climate scenario used in this analysis for soil profile 1056, loam. 
 
 

4.4.1 Snowmelt vs rainfall and climatic influences on partitioning 

At the event scale input rates were significantly greater on average for snowmelt as 

compared to rainfall in each of the three regions and on the whole (ANOVA p<0.0001, mean 

snowmelt for all regions = 1.14 cm/d, mean rainfall for all regions = 0.87 cm/d, Figure 4.5), 

though rainfall events had a higher maximum input rate (maximum snowmelt for all regions = 

8.04 cm/d, maximum rainfall for all regions = 14.73 cm/d). Snowmelt events tended to occur on 

wetter soils, as estimated by antecedent soil moisture storage for the rooting zone (ANOVA 
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p<0.0001, mean S for snowmelt for all regions = 56.6 cm, mean S for rainfall for all regions = 

48.2 cm). Average runoff ratios (Q/P) were higher for snowmelt as compared to rainfall 

(ANOVA p<0.0001, mean Q/P snowmelt for all regions = 0.20, mean Q/P rainfall for all regions 

= 0.03), with lower ET/P for snowmelt as compared to rainfall (mean snowmelt for all regions = 

0.24, mean rainfall for all regions = 0.40). 

 

 
Figure 4.5. Boxplots of event input rate (cm/d) (top), antecedent soil moisture storage (S, cm) 
(middle) and event runoff ratio (Q/P, bottom) by region and event type (rain black, snowmelt 
red). Text in each subplot gives mean values. Table below displays ANOVA p-values for rain vs 
snow overall, as well as for specific regions. Results from the simulations with climate types in 
Figure 4.6, loam soil type.  
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At the annual scale, I investigated the relationships between water balance components 

by first computing correlations (Table 4.3). Annual precipitation (P) is positively correlated with 

surface runoff (Q, r=0.97), deep drainage (D, r=0.92), and mean saturation (Sat, r=0.73) at 100 

cm depth (Figure 4.6). The relationship is linear for Q but nonlinear for D and Sat. Peak SWE is 

also highly correlated with Q, D, and Sat (r=0.70-0.83) because it is highly correlated with P 

(r=0.74). The other snow variables, SP and melt rate, do have significant correlations with Q, D, 

and Sat, but their correlation coefficients are substantially lower (r=0.44-0.63). Evaporation (E) 

and transpiration (T) have the weakest correlations with P (r=-0.07-0.13) of all partitioned 

components, but they are significantly correlated with SP (r=0.15-0.23). 
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Table 4.3. Correlations between annual values of climatic and water balance terms for historical input scenarios. Variables included 
are precipitation (P), potential evapotranspiration (PET), peak snow water equivalent (peak SWE), snow persistence (SP), average 
melt rate over the year (melt rate), mean saturation at 100 cm depth (Sat 100cm), surface runoff (Q), deep drainage (D), transpiration 
(T), evaporation (E), and aridity index (P/PET). P-value of correlation, *<0.5, **<0.01, ***<0.001. 

 P PET peakSWE SP Melt rate Sat 100 Q D T E 
PET -0.43***          
peakSWE 0.74*** -0.46***         
SP 0.35*** -0.74*** 0.65***        
Melt rate 0.54*** -0.36*** 0.80*** 0.62***       
Sat 100 0.73*** -0.55*** 0.70*** 0.49*** 0.50***      
Q 0.97*** -0.42*** 0.83*** 0.39*** 0.63*** 0.73***     
D 0.92*** -0.55*** 0.78*** 0.44*** 0.53*** 0.86*** 0.91***    
T 0.13** 0.09* 0.08  0.15*** 0.20*** 0.30*** 0.09* 0.06    
E -0.07  -0.07  -0.10* 0.23*** 0.11* -0.22*** -0.08  -0.18*** 0.41***  
P/PET 0.98*** -0.55*** 0.76*** 0.43*** 0.54*** 0.74*** 0.96*** 0.93*** 0.03  -0.07  
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Figure 4.6.  Annual surface runoff (Q), mean saturation at 100 cm depth, deep drainage (D) and 
evapotranspiration (ET) vs annual precipitation and classified by climate type. Dry P/PET <1=, 
Wet P/PET >1. 
 

Precipitation is the primary driver of differences in partitioning (Figure 4.6), so 

normalizing Q, D, and ET by P can help in examining partitioning patterns. Comparing the 

hypothetical scenarios where I treated all precipitation as rain to historical scenarios at the annual 

scale indicated that all rain led to significantly lower Q/P (p<0.0001, mean 0.17 vs 0.31) and 

ET/P (only for dry catchments, p<0.0001, mean 0.72 vs 0.78) but slightly higher D/P (p<0.0001, 

mean 0.10 vs 0.09) (Figure 4.7). Ranges of S/P were weakly different (p = 0.04) between all rain 

and historical scenarios for dry site years but not for wet site years.  

Another effect of loss of snow can be a decrease in input rate, as melt of a seasonal 

snowpack concentrates input in a short period of time. To examine the effect of input 
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concentration I also generated my own experimental intermittent and concentrated inputs for a 

wet site (375) and a dry site (559) while keeping P constant. Increasing input concentration led to 

significantly greater Q/P in the dry site (p<0.05, Figure 4.8) but no significant difference in the 

wet site. In contrast, D/P was significantly greater (p<0.0001) for the concentrated input 

scenarios for both dry and wet sites, as no deep drainage was produced with intermittent input. 

ET/P was significantly lower in concentrated scenarios, with a greater difference in dry climates 

(p=0.004, mean 0.80 vs. 0.66) than in wet climates (p=0.013, mean 0.34 vs. 0.28). 

 
Figure 4.7. Boxplots of annual Q/P, D/P, ET/P and change in S/P by input scenario; historical or 
all rain using all sites and years. Table below displays ANOVA p-values for historical vs all rain 
scenarios overall, as well as for different climates. Text in boxes indicates mean values. Dry 
P/PET <1=, Wet P/PET >1. 
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Figure 4.8. Boxplots of annual Q/P, D/P, and ET/P for experimental scenarios for a dry site 
(375) and a wet site (559) altering input to be concentrated or intermittent. I artificially produced 
intermittent (four five-day periods of low magnitude) and concentrated input (one twenty-day 
period of high magnitude) of the same annual total and simulated these inputs on the loam profile 
(1056). Table below displays ANOVA p-values for intermittent vs concentrated scenarios 
overall, as well as for different climates. Dry P/PET <1=, Wet P/PET >1. 
 

I also examined the effect of snow and input concentration at the annual time scale by 

evaluating how the snowmelt as a fraction of total input and the input concentration (mean length 

of events divided by number of events) related to unitless response variables Q/P, D/P, ET/P 

(Figure 4.9, Table 4.5). Q/P increases with snowmelt fraction where snowmelt fraction is >0.5 

and increases with input concentration where input concentration <0.07 (Figure 4.9). The ranges 
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of Q/P are higher in wet than in dry climates, with wet climates showing greater sensitivity to 

increasing snowmelt fraction and input concentration. D/P and ET/P are not clearly related to 

snowmelt fraction, but they do have some correlation with input concentration. D/P shows slight 

increases with input concentration <0.07, and ET/P decreases with input concentration <0.07. 

D/P ranges are higher in wet than in dry climates, with many dry years not generating D. ET/P 

ranges are lower for wet climates, where greater input is portioned to Q and D. 

In summary, at the annual scale Q/P and D/P generally increase with increases in 

snowmelt fraction (Table 4.5, Q/P r = 0.41, D/P r = 0.20) and input concentration (Q/P r = 0.57, 

D/P r = 0.37), whereas ET/P is not related to snowmelt fraction and generally declines with input 

concentration (r = -0.60).  

 
Figure 4.9. Ratio of runoff (Q), deep drainage (D) and evapotranspiration (ET) to input (P) 
snowmelt fraction of input and input concentration. Dry P/PET <1=, Wet P/PET >1.  
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4.4.2 Soil controls on partitioning 

To compare the effects of climate to those of soil type on partitioning, I first examine 

how partitioned components relate to soil saturation. P is strongly correlated with mean 

saturation at 100 cm depth (r = 0.73, Table 4.3, Figure 4.6), which is a necessary precursor to 

deep drainage (Figure 4.14). Figure 4.10 displays the relationships between Q, D and ET vs 

mean saturation at 100 cm depth as separated by climate type and soil texture. Soil storage, 

which correlates with mean saturation at depth, mediates the conversion of input to output; mean 

saturation at 100 cm illustrates how storage is highly correlated with all three outputs. Mean 

saturation at 100 cm depth displayed strong relationships with Q, D, and ET for all, wet, and dry 

site years (Figure 4.10, Table 4.7). Q is generally low (<50 mm) until saturation is greater than 

>0.5, and it has a nonlinear increase at higher saturations. D in the simulations also has a 

nonlinear increase with mean annual saturation, but its magnitudes are substantially lower than 

when saturation goes above 0.6, with most values <50 mm. ET increases with saturation for 

saturation values <0.5, indicating that greater water availability in the soil zone increases ET. 

Above saturations of around 0.75, ET decreases, which may be because of less evaporative 

demand in the wet climates that produce the highest levels of soil saturation (also see Figure 

4.15).  
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Figure 4.10.  Annual surface runoff (Q), deep drainage (D) and evapotranspiration (ET) vs 
annual mean saturation at 100 cm depth (Sat. 100 cm) and classified by climate type (left) and 
soil texture (right). Dry P/PET <1=, Wet P/PET >1. 

 

To evaluate the influence of soil type on partitioning, I plotted the same relationships 

shown in Figure 4.9 with soil texture separations rather than wet/dry climate separations (Figure 

4.16). The response patterns are similar between soil types except for the sandy loam profile, 

which displays higher Q and D per unit saturation as compared to the loam and sandy clay loam 

profiles. The sandy clay loam also has slightly higher Q and D for the same levels of saturation 

as the loam profile. Example time series of daily 50 and 100 cm VWC, Q, D, E and T are shown 

in Figure 4.11. Here, with non-normalized values, small differences in Q,D,E and T are apparent 

between the different soil types, but these differences in response are muted at the annual scale. 
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Figure 4.11. Time series of 50 cm VWC, 100 cm VWC, surface runoff (Q), deep drainage (D), 
evaporation (E) and transpiration (T) for SNOTEL site 698 input on SNOTEL site 515 (blue), 
1049 (red) and 1056 (green) profile. 

 

To assess the influence of our poorly constrained soil profile depths on partitioning, I 

altered the soil profile to be 1.5x and 2x its original depth (Figure 4.12). For the historical input 

scenarios Q/P declines significantly with deeper soils for wet sites (p=0.005) but not for dry 

sites. D/P increases (p<0.01) with deeper soils for wet sites (p=0.0001) but not for dry sites. 

Changes in ET/P and S/P with soil depth are not significant via ANOVA tests. To investigate 

changes in partitioning with depth further, I chose one site (396) and altered the soil profile depth 

by 20 cm increments. Changes in mean Q/P, and D/P were most pronounced within the first 1.5x 

of profile depth, while ET/P changes were of lower magnitude throughout the depths studied 

(Figure 4.17). Q/P median values are similar between soil depths; values initially decline from 
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the shallowest profile (0.13 at 100 cm depth to 0.11 at 300 cm), then generally increases with 

profile depth (0.14 at 280 cm depth). Median D/P decreases with profile depth for a greater 

extent of the depths studied (0.06 at 100 cm depth to 0.00 220 cm depth), then increases slightly 

for the deepest profiles (0.01 at 300 cm depth). D/P is negative at times reflecting movement of 

water upward across the root zone boundary rather than downward. Median ET/P increases with 

profile depth due to the downward extension of the root zone with increasing profile depth (1.2 

at 100 cm depth to 1.3 at 300 cm depth). Overall, I observe mixed patterns in Q, D, and ET with 

profile depth. 
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Figure 4.12. Boxplots of annual Q/P, D/P, ET/P and change in S/P by profile depth at 1x, 1.5x 
and 2x the original depth. Table below displays ANOVA p-values for comparisons of each 
component between the three depths. Text in each subplot gives mean values. Dry P/PET <1=, 
Wet P/PET >1. 
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4.5 Discussion 

4.5.1 Snowmelt vs rainfall and climatic controls on partitioning 

Event analysis demonstrate significant differences in input partitioning for snowmelt and 

rainfall at event scales. The combination of greater average input rate and wetter antecedent 

conditions for snowmelt leads to a greater fraction of input being exported as surface runoff (Q) 

(Figure 4.5). This stands in agreement with previous studies showing that snowfall and 

subsequent melt tend to occur when soils are at elevated moisture contents due to lower ET (Liu 

et al., 2008; Williams et al., 2009; Bales, 2011).   

At the annual time scale the correlation between snowmelt fraction and response 

variables was weak-moderate (Figure 4.9). This indicates that over longer periods of time, the 

type of input (snowmelt or rainfall) is not as strong of an influence on hydrologic response. The 

differences apparent at the event time scale had to do with seasonality of input, where input 

during the winter or spring on wetter soils would be more likely to produce soil saturation and 

runoff. These seasonal effects become more muted at the annual time scale. However, when 

input scenarios were forced into the extreme case of all rain, they showed a lower Q/P (Dry: 0.13 

vs. 0.04; Wet: 0.46 vs. 0.29), corroborating the event results that indicated snowmelt elevates 

runoff (Figure 4.7).  

Multiple hydrologic processes change when precipitation shifts from snow to rain: (1) 

input concentration changes; (2) timing of input changes, and (3) ET responses change. 

Experiments with changing input concentration (Figure 4.8) illustrated how D/P increased 

significantly with more concentrated input in all climates, whereas the change in Q/P with input 

concentration was only significant in dry climates. In this study, concentrated input leads to both 

saturation excess runoff (similar to Hunsaker et al., 2012; Barnhart et al., 2016; Li et al., 2017; 
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Hammond et al., 2018), and deep drainage (similar to Langston et al., 2015). Wet climates can 

have sufficient near-surface saturation to generate runoff without concentrated input (Figures 

4.7,4.9), whereas the concentrated input can be more important for producing the conditions that 

generate runoff in dry climates. Concentrated input from melt of a deep snowpack can also help 

create the conditions that saturate the soil at depth, allowing groundwater recharge. The same 

input spread out over time, depending on storage conditions, will allow more opportunity for 

water loss through ET and therefore lower likelihood of deep drainage and groundwater 

recharge. Input during the wet winter period, whether rainfall or snowmelt, likely leads to deep 

drainage or surface runoff, whereas fall, spring or summer input is more likely to contribute to 

soil storage and be at least partially partitioned to ET.  

The effects of snow loss on D were not as consistent across our simulations as the effects 

on Q. In general, far greater Q/P was generated than D/P, so Q was more sensitive to changes in 

input: Q was higher for snowmelt than rainfall events; Q/P decreased in all rain simulations, 

increased in concentrated input simulations, and increased with both snowmelt fraction and input 

concentration at the annual time scale. In contrast D/P increased for all rain simulations in wet 

climates but decreased in dry, increased in concentrated input simulations, and was not affected 

by snowmelt fraction, differing from the hypothesis that concentrated input would increase D in 

all climates (Figure 4.1). This variability in D/P across the simulation experiments is likely 

because S mediates the connection between input and D. Q is affected only by near-surface 

storage and can therefore more rapidly respond to input rate and concentration, partially 

explaining why there is an effect of snowmelt fraction on Q but not D. Input concentration was 

an important driver of D in hypothetical scenarios (Figure 4.8) but not a strong control in 
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historical climate where concentrations in time were more similar than the experimental 

separations (Figure 4.9).  

With continued warming and a greater fraction of precipitation falling as rain than snow 

in some areas, earlier and slower snowmelt is expected (Trujillo and Molotch, 2014; Musselman 

et al., 2017), especially in more arid areas where sublimation and longwave radiation cool the 

snowpack (Harpold and Brooks, 2018). Earlier snowmelt during periods of lower ET may 

generate higher flow, but if this melt occurs at an overall slower input rate, more of it could 

contribute to soil storage in the root zone and be subsequently used by vegetation. Previous 

research showed that loss of snow can lead to higher ET until soil moisture becomes limiting 

(Tague and Peng, 2013), and our simulations show some evidence for this. T is lower for low 

values of saturation in dry climates, and the lowest T occurs for the lowest snowmelt fractions 

(Figure 4.15). This moisture limitation has some support when looking at T alone, but not when 

ET are combined as a fraction of input. Overall, lower magnitude and intermittent input from 

rain leads to less drainage to the lower root zone (Figures 4.7,4.9), with E and T losses higher 

near the surface. The timing of soil water input events relative to vegetation phenology may limit 

the effect of precipitation phase, and in the case of snow, storage. Mid-winter rain and melt 

events may still be conducive to generating surface runoff and deep drainage if antecedent 

moisture conditions are high, though not able to produce output at the same efficiency as 

concentrated input from a deep snowpack. The countervailing effects of (1) earlier snowmelt 

during periods of lower ET, and (2) slower melting leading to less concentrated input, are likely 

dependent on the relative magnitudes of input and other site dependent factors and should be 

considered for further research. 
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4.5.2 Soil controls on partitioning 

Soil texture and depth generally did not change partitioning at the annual time scale as 

much as the varying climate scenarios. Precipitation is a strong driver of partitioning in our 

scenarios, with precipitation highly correlated with annual mean saturation and mean saturation 

strongly correlated with partitioned components. We evaluated soil profiles deeper than the 

originals , but may have seen enhanced deep drainage if we also evaluated shallower profiles. 

The three soil textures evaluated did not differ in their responses to annual snowmelt fraction and 

input concentration (Figure 4.16), but did show differences at the daily scale (Figure 4.10). 

Altering soil profile depth and the associated root zone to 1.5x and 2x the original depth led to 

decreases in Q/P and increases in D/P at wet but not dry sites, where differences were 

insignificant (Figure 4.12). Overall, the nature of the soil profile might be expected to affect the 

sensitivity of the hydrologic response to climate, but my results do not reflect this at the annual 

scale.  

The concentrated input effect of snowmelt has been shown to be more prominent in 

shallow soils (<0.5 m); for example, Williams et al. (2009) showed that soil water input from 

snowmelt events more often exceeded field capacity than summer rains in shallow soils. Where 

soils are shallow, winter precipitation may be in excess compared to the soil storage capacity, 

with rain or snowmelt additions contributing to surface runoff and deep drainage (Smith et al., 

2011). Deeper rooting depths can allow more water to remain in storage and be lost to ET before 

contributing to surface runoff and deep drainage (Smith et al., 2011), but our simulations do not 

reflect this phenomena. Soil and vegetation properties, as well as regional weather patterns, 

could conceivably override the effects of earlier snowmelt on critical zone partitioning. For 
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example, input from only rain increased deep drainage from historical conditions at wet sites 

(Figure 4.7). 

 

4.5.3 Uncertainties of this study 

Given the complex nature of soil water movement in heterogeneous mountain 

topography, this study makes several assumptions and simplifications in order to test the 

hypotheses. The simulations do not include the intricacies of vegetation water use, and the 

routine chosen assumes a static leaf area index (LAI) with root uptake controlled only by PET 

and soil moisture conditions. Additionally, I faced difficulties during calibration that rendered 

simulations wetter than measured water contents; therefore, the representation of partitioning 

shown here displays relative response between climates and soil profiles rather than absolute 

quantification of these partitioned components. The water balance in hydrologic models can be 

highly sensitive to the method chosen to represent root uptake and plant water use (Gerten et al., 

2004), and hydrologic models generally poorly capture or replicate the interactions between soil, 

vegetation and atmospheric properties that combine to control plant water use (Gómez-Plaza et 

al., 2001; Gerten et al., 2004; Zeng et al., 2005). Further, forest canopy can have a greater impact 

on soil moisture than snowmelt timing (Maurer and Bowling, 2014; Webb et al., 2015). Dense 

forests can prolong the length of the snowmelt season, resulting in snow that lingers longer and 

melts slower due to shading, ultimately leading to higher forest water uptake than under a sparse 

canopy (Molotch et al., 2009). With these points as cautions, coupled models of plant 

physiology, soil physics and hydrology could assess deep drainage dynamics at greater spatial 

scales following the results of this study.  



 111

The simulations used here only allow for matrix flow, excluding macropore flow, for a 

simplified representation of soil water movement. Preferential flow though the profile could have 

enhanced deep drainage relative to surface runoff, which may explain why rates of deep drainage 

were so low in the simulations as compared to studies where preferential flow is included in 

modeling deep drainage and aquifer recharge and constitutes 60-80% volumetric contribution to 

aquifer recharge (Wood et al., 1997; Jaynes et al., 2001; Sukhija et al., 2003). However, the 

simulated Q/P vs snowmelt fraction plots from HYDRUS simulations follow the same general 

pattern as Q/P vs SP in Chapter 3. This lends confidence to the HYDRUS simulations, as their 

simulated values are in the same range as observed streamflow. The physically-based modeling 

approach has proven well-suited to represent soil water flow in a wide variety of natural soils 

(Scott et al., 2000; Chen et al., 2014; Hicnkley et al., 2014, Wyatt et al., 2017). The use of this 1-

d model ignores lateral subsurface flow; while simulating only vertical flow is reasonable for 

SNOTEL sites located in relatively flat forest openings, some lateral surface and subsurface flow 

likely affected the measurements used to calibrate the models. Partitioning of the water balance 

components reported here would be greatly altered in sloping terrain. In addition, I did not allow 

for frozen soils in my simulations, but this can be a strong influence on soil input partitioning in 

high elevation or high latitude areas (Bayard et al., 2005; Niu and Yang, 2006) 

 

4.5.4 Implications and opportunities for further research 

The results from this one dimensional modeling study have direct implications relating to 

the reductions in snow persistence shown in Chapter 2, and the relationship between snow 

persistence and peak snow water equivalent with annual water yield and runoff efficiency in 

Chapter 3. In the context of streamflow, results from this chapter show that concentrated input 
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regardless of type (rain or snowmelt) leads to greater surface runoff, partially analogous to 

quickflow at the watershed scale, though the 1D model does not allow for subsurface lateral 

stormflow that also contributes to event response in multidimensional space. The fact that 

concentrated snowmelt input at dry sites in this study leads to greater surface runoff supports the 

hypothesized mechanism of greater streamflow generation with higher snow persistence 

presented in Chapter 3. With further declines in seasonal snow and the loss of persistent snow 

cover in Chapter 2, large areas of cold, semi-arid regions could experience substantial reductions 

to annual water yield and runoff efficiency. 

Concentrated input also leads to greater deep drainage than that from intermittent input, 

with deep drainage not activated in dry climates with intermittent inputs. Aquifer recharge 

requires deep drainage, though deep drainage is not itself aquifer recharge in all situations. With 

reductions or absence of deep drainage in dry climates, groundwater levels likely lower and 

groundwater storage may remain constant or decline depending on the groundwater flow rate, 

and rate of withdrawals. An analysis of the effects of climate change on groundwater recharge 

across the western United States revealed that mountain aquifer recharge is expected to decline 

due to decreased snowpack (Meixner et al., 2016), due to snowmelt more efficiently infiltrating 

to the root zone (Earman et al., 2006), and because a high magnitude of water is released from 

snowpack when ET is low. These results support those reported in this study indicating likely 

declines in aquifer recharge and groundwater storage in semi-arid cold regions where snowpacks 

are declining. 

Strong correlations between mean saturation at depth and deep drainage suggest that soil 

moisture measurements as shallow as 50 cm could provide estimates of deep drainage (Table 

4.7), and inform annual estimates of aquifer recharge in mountain areas. This use of deep 
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saturation for deep drainage estimation is supported by other recent research (Xie et al., 2018), 

which used soil moisture data along with actual evapotranspiration estimates to approximate 

deep drainage spatially. In addition, the date of saturation onset at 100 cm strongly correlates 

with the date of drainage onset (r=0.82, Figure 4.14), so estimating the timing and duration of 

deep drainage at sites across the mountainous U.S. using this method could be feasible. I was 

unable to look at deep drainage at the event scale because of its lagged response that leads to an 

inability to separate event response from one period of input from another.  

While physically based hydrologic models are useful for analyzing hydrologic 

partitioning within the critical zone, empirical hydrometric and experimental tracer studies are 

needed to constrain the outputs of these models due to the complexity of soil moisture dynamics. 

Few studies combine hydrometric data, geochemical tracers, and isotopic tracers to analyze 

hydrologic response to snowmelt (Cowie et al., 2017), but this combination of information 

provides multiple lines of evidence for examining hydrologic partitioning through the critical 

zone. Further advances in hydrologic partitioning at larger scales could also utilize remotely 

observable processes including vegetation response (Hwang et al., 2012), and intermittent stream 

response (Spence and Mengistu, 2016).  

 
 
4.6 Conclusions 

 

The initial hypotheses for this study were that runoff and deep drainage would be greater 

from snowmelt than rainfall and that this effect would be greatest in dry climates, where soil 

saturation is less frequent, compared to wet climates and shallow soils, which can saturate with 

lower water input. Results confirmed the greater runoff generation from snowmelt, which tends 

to be greater in input concentration, and occurs on wetter soils than rainfall, resulting in higher 



 114

runoff response at the event time scale. Whether input is snowmelt or rainfall becomes less 

important at longer time scales where seasonality is muted. The effects of snowmelt vs. rainfall 

on deep drainage are not as clear. Hypothetical scenarios with concentrated input, analogous to 

melt of a deep snowpack, do enhance deep drainage over intermittent input. However, in wet 

climates, input that is exclusively rain may lead to higher deep drainage than mixed rain and 

snowmelt input. Deep drainage does increase with input concentration in dry climates, consistent 

with the initial hypothesis; snowmelt in these areas is most likely to provide the concentrated 

input needed to activate deep drainage. The three soil textures included here show similar 

partitioning between Q, ET, and D when compared between climate scenarios; while the textures 

produce differences at short timescales, these aggregate to small effects at the annual scale. With 

deeper profiles, I observed weak patterns in partitioning opposing our hypothesis that the 

shallowest soils would generate the greatest deep drainage, but I also did not simulate the depths 

of profiles where this effect has been shown to occur prior.  Deep drainage requires saturation 

low in the root zone, so soil moisture measurements here may be useful in estimation of deep 

drainage and aquifer recharge. Processes affecting the duration of saturation below the root zone 

could compromise deep drainage especially in dry climates, including changes in snowmelt rate 

and duration. With continued snow loss in mountain and high latitude areas, surface runoff and 

deep drainage could face substantial reductions due to the loss of concentrated snowmelt input. 
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Chapter 5. Conclusions 

This dissertation presented a global snow persistence classification and trend analysis, 

investigated the effects of snow persistence on annual water yield at the watershed scale in 

different climate types, and analyzed the mechanisms driving snowmelt and rainfall partitioning 

in mountain soil profiles at event and annual time scales.  

 

5.1 Key findings and implications 

In Chapter 2, findings can be organized around three main points: a global snow 

climatology, snow persistence in relation to climatic variables, and global trends in snow 

persistence. The snow climatology reveals similar snowline elevations by latitude and elevation 

around the globe that are regionally modified by coastal proximity and windward-leeward 

location. In relation to climate variables, snow persistence is influenced more by temperature at 

low elevations and precipitation at high elevations, with climatic indices changing dominance by 

region. Trends in snow persistence are predominantly negative, occurring mostly in seasonal 

snow areas at high latitude. The methods and products generated in this chapter provide one way 

to compare snow characteristics and snow loss between different regions globally via remote 

sensing, addressing a key gap in the understanding of regional snow loss. These products can 

also be used for further climatological analysis of how snow persistence changes along climatic 

and vegetative gradients. The relative importance of precipitation and temperature in controlling 

snow persistence by elevation and latitude may help to identify areas most sensitive to future 

snow loss, with areas in dry climates and at elevations where temperature is the dominant control 

on snow persistence likely being more vulnerable. 
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In Chapter 3, I demonstrated that snow persistence is a useful metric for annual water 

yield estimation, both spatially and temporally. Snow persistence and modeled peak SWE are 

strongly correlated with annual and mean annual streamflow in dry/cold (precipitation deficit) 

but not in wet/warm (precipitation surplus) watersheds of the western U.S. Climate type affects 

correlations between snow and streamflow because of the relative importance of precipitation for 

total snow accumulation. In dry/cold watersheds, snow variables predict streamflow almost as 

well as precipitation alone because peak snow accumulation is strongly correlated with 

precipitation. The result that hydrologic response of dry/cold watersheds is more sensitive to 

snow loss than wet/warm watersheds contributes to understanding of how snow loss will impact 

water resources in different climate types. However, research at sub-annual time scales is needed 

to determine the importance of precipitation phase and timing on response. This chapter also fills 

a gap in the understanding of snow’s influence on hydrologic response at different scales by 

focusing on watersheds rather than the more commonly studied basin scale or plot scales. A 

method is also presented for mapping streamflow generation though space and estimate annual 

water yield in other snow-dominated cold and dry watersheds across the globe without 

significant glacial influence. The ability to estimate streamflow using snow persistence expands 

the ability to track hydrologic change in semi-arid, snow-dominated regions across the globe. 

In Chapter 4, I evaluate the influence of input type, climate, soil texture and depth on the 

partitioning of inputs into surface runoff, deep drainage and evapotranspiration at sites across the 

western U.S. Snowmelt exerts strong controls on partitioning at the event scale with greater 

runoff generated due to higher input rate and wetter antecedent conditions, but it is of lesser 

influence on runoff generation and deep drainage at the annual scale where average soil wetness 

dominates. Simulations illustrate that the connection between input type and deep drainage is 
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inconsistent, and this is probably because the two are separated by the full soil zone. Storage 

dynamics at depth as well as ET throughout the profile interact with input to affect D. While soil 

texture impacts the partitioning of input at sub-annual scales, the profiles used in this study show 

similar response at the annual scale. This implies that study of the broad effects of input change 

may be possible without needing to consider soil type heterogeneity as a primary controlling 

factor. Lower surface runoff is evident with deeper soil profiles, yet deep drainage is relatively 

constant due to simultaneous decreases in surface runoff and increases in evapotranspiration that 

reduce storage. The simulation results indicate that the occurrence of deep drainage may be 

estimated using soil moisture sensors at sufficient depth. This provides one way forward in 

estimating deep drainage and groundwater recharge at many locations using established sensor 

networks. Taken together, the combined results and broader implications from each chapter of 

this dissertation are presented in Figure 5.1 below. 
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Figure 5.1. Combined results and broader hydrologic implications from this dissertation. 

 

5.2  Global warming and the changing hydrologic cycle 

Findings in this study have direct implications for climate change impacts in cold dry 

areas globally. If empirical results are indicators of future snow-streamflow relationships, snow 

persistence exponentially increases water yield, so its loss could lead to large streamflow 

declines, particularly where snow persistence is currently high. The consequences could also be 

severe in dry regions if the phrase “wet wetter, dry drier” applies to future climate, as commonly 
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described in simplified climate predictions. Recent research suggests this adage is not as simple 

as once thought, as aridity changes over land have not followed a simple intensification of 

existing patterns (Greve et al., 2014). Whether these patterns will emerge in subsequent decades 

is uncertain and further complicated by higher intensity precipitation events expected in many 

areas, with longer periods between events (Collins et al., 2013). 

Snow persistence in dry/cold regions at mid-latitudes, (i.e. the western U.S.) is closely 

related to winter and annual precipitation, but with continued warming, this may shift to more 

temperature dependence. This may reduce the utility of snow persistence for annual water yield 

prediction in these areas. The relationship between Q and Q/P with SP may also change in the 

future, given an increase in vapor pressure deficit (VPD) (Abatzoglou and Williams, 2016), in 

cold dry areas. Increased VPD could drive increased sublimation from the snowpack (Hood et 

al., 1999; Jackson and Prowse, 2009; Zhou et al., 2012) simultaneously increasing cold content, 

and lessening snow water equivalent. This combination could lead to snow that persists the same 

amount of time or longer under warming scenarios, yet contains less input resulting in lower 

Q/P. In contrast, at high latitudes where increased precipitation is expected (Emori and Brown, 

2005; Seager et al., 2010), and snow accumulation may increase (Collins et al., 2013), the 

relationship between SP with Q and Q/P may change so that snow persists for a similar amount 

of time given a reduction in snow during the shoulder seasons, but produces greater flow due to 

greater melt resulting from increased peak accumulation. 

 With model simulations predicting higher potential evapotranspiration but both mixed 

increases and decreases in precipitation in the western U.S. (Collins et al., 2013), predictions of 

water yield are uncertain. While potential evapotranspiration will increase, increased carbon 

dioxide in the atmosphere reduces a plant’s physiological tendency to transpire partly 
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counteracting the effect of warming (Swann et al., 2016). Combined with truncated snow 

accumulation and melt seasons in mid-latitude dry/cold areas, predictions of water yield may 

become more difficult.  

Low flow temperature sensitivity can be double that of annual water yield, with warm 

winters corresponding to slightly lower water yield and longer, more severe summer low flows. 

(Dierauer et al., 2018). Further research is needed on the combined effects of greater winter 

rainfall and streamflow, decreasing summer streamflow, and possibly higher transpiration in the 

western U.S., especially since current model simulations produce scenarios in which increases in 

water demand outstrip increases in water supply. Global model simulations in the IPCC AR5 

have greater disagreement between individual models in the magnitude and direction of water 

yield response in the southwestern U.S. than in AR4 (Collins et al., 2013), though multiple 

regional studies focusing on the Colorado River basin show streamflow declines through a 

combination of evapotranspiration increases and precipitation decreases (Christensen and 

Lettenmaier, 2007; McCabe and Wolock, 2007; Barnett and Pierce, 2008). 

 

5.3. Snow loss and water management 

In forecasting reservoir inflows and optimizing reservoir storage, managers need to pay 

attention to water yield at middle elevations with intermittent snow cover, not just high 

elevations with persistent snow cover and greater station coverage. There is the possibility for 

dramatic losses in water yield at the intermittent-persistent snow transition, where the Q-SP 

curve slope is steepest. It remains unclear whether existing water management plans are prepared 

for this loss. The loss of groundwater is also an important consideration for future water 

management in the western U.S.. Lag times between mountain groundwater recharge and 
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emergence of that groundwater as baseflow downstream or as water available in aquifers in 

lowlands mean that impacts of recharge reductions may not be immediately evident. 

For the past several decades, reservoirs have been managed during the conditions of 

inter-annual climatic variability and climatic trends. Future management faces the challenge and 

uncertainties of magnified trends, altered climatic variability, and increased demand (Kiparsky et 

al., 2014). Climate change adds to historical challenges for reservoir management, but in most 

cases does not introduce entirely new challenges. Instead, climate change is likely to stress water 

resources that are already at or beyond natural limits (Dettinger et al., 2015). Water managers 

and society as a whole currently face challenging tasks of repairing decayed water infrastructure 

and building new water infrastructure (Milly et al., 2008). In the Colorado River Basin, high 

sensitivity of reservoir system performance to future climate simulations reflects a fragile 

equilibrium with current system demands slightly less than long-term mean annual inflow. 

Simulations incorporating future climatic and demographic change produce situations in which 

reservoir inflows are exceeded by demands year after year (Christensen et al., 2004).  

For the operation of existing and potential future infrastructure, statistical models of 

reservoir inflow and storage based on historical relationships between snow courses and 

meteorological sites will not be sufficient. Nonstationary probabilistic models of relevant 

environmental variables (e.g. Soundharajanet al., 2016) could be used to model the optimization 

of water systems (Milly et al., 2008). Nonstationary hydrologic variables can be forecast 

stochastically, with evolving probability density functions and accompanying estimates of 

uncertainty (Milly et al., 2008). Adaptation procedures need to be developed to encompass 

envelopes of potential inputs and demands with acceptable uncertainty bounds rather than fixed 

projections of changes in discharge (Kundzewicz et al., 2008). 
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But do we need to build more dams to increase storage capacity to buffer seasonal 

changes in hydroclimatology and adapt to nonstationary inputs and demand? Some suggest that 

the importance of dams in providing water security will increase, as storage can offset the 

vulnerabilities of water resources systems to future climate scenarios (Ehsani et al., 2017). The 

trajectory of global planned water infrastructure in headed in this direction, with global dam 

construction continuing to increase dramatically. 3,700 major hydroelectric dams  (>1 MW) are 

planned or under construction, primarily in countries with emerging economies, totaling to a 

small fraction of expected future electric demand and reducing the number of remaining free-

flowing large rivers by nearly a quarter (Zarfl et al., 2015). Globally, 48% of river volume is 

already moderately to severely impacted by flow regulation or fragmentation, and assuming 

completion of all dams planned and under construction, this number would nearly double to 93% 

(Grill et al., 2015). 

Multiple strategies for adaptation to climatic change and increased demand have emerged 

in the western U.S. These include new dams, desalination, basin imports via pipeline, municipal 

conservation, permanent transfers from agriculture, water markets, land fallowing, canal lining, 

retirement of grass lawns by purchase, groundwater banking, reuse, new rate structures, 

consumer education, municipal conservation, indoor fixture rebates, new landscape design, water 

loss management from leaky mains, and aquifer storage and recovery (Dettinger et al., 2015). 

Integrating the above techniques in different combinations depending on existing infrastructure, 

expected changes to demand, and logistical challenges will likely be required to prepare for 

uncertain future hydroclimatic changes, Additionally, renegotiation of river compacts and 

treaties (e.g. Colorado River Compact and Columbia River Treaty) is necessary given that they 

were first setup and agreed to during the anomalously wet 20th century, with incomplete 
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information on the quantity and spatial distribution of water yield, and during periods of far 

lesser demand. 

 

5.4 Opportunities for further research 

Snow persistence demonstrates utility in spatial and temporal water yield estimation in 

the western U.S. If the relationships identified between snow persistence and streamflow in the 

western U.S. are similar in other dry/cold parts of the world, snow persistence could be useful for 

first order estimates of annual streamflow volume, especially in places with sparse or inaccurate 

precipitation data. With increasing record length, snow persistence derived from MODIS snow 

covered area products will provide greater certainty in climatological trend analyses by filtering 

out interannual meteorological variability, and allow for further trend mapping at the 500 meter 

resolution globally. Further, vegetation adjustments and updated cloud removal algorithms could 

improve SP estimate uncertainty in areas with high density forests and persistent clouds. 

Multiple techniques for reducing uncertainty due to cloud cover have been employed utilizing 

spatial and temporal interpolation during periods of cloud cover (Gao et al., 2010; Hall et al., 

2010), whereas remote sensing of snow cover in areas with dense forest cover is lacking despite 

the combination of multiple remotely sensed and modeled products (land skin temperature and 

others in the MODIS snow detection algorithm). In areas with dense surface stations, 

interpolating snow depth and SWE may be one way to reduce this uncertainty. Though much of 

the research presented here focused on the utility of the snow persistence metric, additional 

insight may be gained by looking at how intermittent snow is throughout the winter season, that 

is, how many times a snowpack melts entirely before accumulating again. Information on snow 
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intermittence would provide insight into the spatial distribution and frequency of mid-winter soil 

moisture inputs. 

To bridge the apparent disparity between the annual watershed scale importance of snow 

persistence for streamflow (Chapter 3) and the more muted correlation between snowmelt 

fraction and runoff generation (Chapter 4), sub-annual empirical analyses of hydrologic response 

to snowmelt and rainfall input at the catchment scale are needed. Assessing hydrologic response 

to snowmelt and rainfall input at the event time scale would help clarify how input type and 

input timing affect streamflow generation. Combined hydrometric and tracer studies assessing 

partitioning at plot and catchment scale as well as a synthesis of previous tracer and hydrometric 

work in various mountain study sites could also narrow this knowledge gap. Additionally,  

increased monitoring of streamflow and snow in watersheds near the transition between 

intermittent and seasonal snow would help improve our understanding of how snow loss may 

affect streamflow at multiple time scales. Finally, additional annual watershed scale analyses 

could analyze whether other variables of hydrologic response including peak flow timing, 

centroid timing etc. follow clear patterns with decreases in snow persistence in different climate 

types. 

 A major unknown in hydrologic response to snow loss is the impact that past and future 

changes to reservoir inflows yields on systems of water infrastructure. One of the next steps to 

connect and extend the research from this dissertation to meaningful information for water 

supply management is to analyze the empirical response of reservoir storage to the climatic 

change that has already occurred over the past several decades. Despite numerous studies 

documenting trends in reservoir inflows, there is a surprising lack of studies using empirical 

reservoir storage data to quantify the impacts on storage in response to changes in inflow timing 
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and magnitude. Are climatic signals from headwaters being overwritten by current dam 

management, or propagated downstream? How does the transmission of climatic signals from 

headwaters downstream manifest in systems with different storage capacities relative to annual 

flow and snowpack storage? How do these signals change when moving from headwater 

reservoirs down network to the mouth of major drainage basins? Connecting trends in snowpack 

storage to observed streamflow, reservoir inflows and reservoir storage is crucial to adapting 

water management systems to future non-stationary climatic variability.  

 Though the research presented here makes advances in understanding of the hydrologic 

response of snow loss along climatic gradients and at different measurement scales, a great deal 

remains uncertain regarding the present and future hydrology of mountain areas. With increased 

demand on water resources due to population growth, the factors controlling streamflow 

generation and their connection to climatic and land cover change warrant further study. 
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Figure 2.8. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
the globe. NDI is the fraction of time that cloud, sensor saturation, or other errors lead to missing 
data at each location. Forest cover threshold of 50 %, is a threshold above which most errors in 
snow presence/absence identification occur. 
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Figure 2.9. Coefficient of variation for annual 2001-2016 snow persistence mapped with no data 
index (NDI) > 30% and forest cover > 50 % for the globe. NDI is the fraction of time that cloud, 
sensor saturation, or other errors lead to missing data at each location. Forest cover threshold of 
50 %, is a threshold above which most errors in snow presence/absence identification occur. 
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Figure 2.10. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
North America. NDI is the fraction of time that cloud, sensor saturation, or other errors lead to 
missing data at each location. Forest cover threshold of 50 %, is a threshold above which most 
errors in snow presence/absence identification occur. 
 



 153

 
Figure 2.11. Coefficient of variation for annual 2001-2016 snow persistence mapped with no 
data index (NDI) > 30% and forest cover > 50 % for North America. NDI is the fraction of time 
that cloud, sensor saturation, or other errors lead to missing data at each location. Forest cover 
threshold of 50 %, is a threshold above which most errors in snow presence/absence 
identification occur. 
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Figure 2.12. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
South America. NDI is the fraction of time that cloud, sensor saturation, or other errors lead to 
missing data at each location. Forest cover threshold of 50 %, is a threshold above which most 
errors in snow presence/absence identification occur. 
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Figure 2.13. Coefficient of variation for annual 2001-2016 snow persistence mapped with no 
data index (NDI) > 30% and forest cover > 50 % for South America. NDI is the fraction of time 
that cloud, sensor saturation, or other errors lead to missing data at each location. Forest cover 
threshold of 50 %, is a threshold above which most errors in snow presence/absence 
identification occur. 
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Figure 2.14. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
Asia. NDI is the fraction of time that cloud, sensor saturation, or other errors lead to missing data 
at each location. Forest cover threshold of 50 %, is a threshold above which most errors in snow 
presence/absence identification occur. 
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Figure 2.15. Coefficient of variation for annual 2001-2016 snow persistence mapped with no 
data index (NDI) > 30% and forest cover > 50 % for Asia. NDI is the fraction of time that cloud, 
sensor saturation, or other errors lead to missing data at each location. Forest cover threshold of 
50 %, is a threshold above which most errors in snow presence/absence identification occur. 
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Figure 2.16. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
New Zealand (Oceania). NDI is the fraction of time that cloud, sensor saturation, or other errors 
lead to missing data at each location. Forest cover threshold of 50 %, is a threshold above which 
most errors in snow presence/absence identification occur. 
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Figure 2.17. Coefficient of variation for annual 2001-2016 snow persistence mapped with no 
data index (NDI) > 30% and forest cover > 50 % for New Zealand (Oceania). NDI is the fraction 
of time that cloud, sensor saturation, or other errors lead to missing data at each location. Forest 
cover threshold of 50 %, is a threshold above which most errors in snow presence/absence 
identification occur. 
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Figure 2.18. Snow zones mapped with no data index (NDI) > 30% and forest cover > 50 % for 
Europe and Northern Africa. NDI is the fraction of time that cloud, sensor saturation, or other 
errors lead to missing data at each location. Forest cover threshold of 50 %, is a threshold above 
which most errors in snow presence/absence identification occur. 
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Figure 2.19. Coefficient of variation for annual 2001-2016 snow persistence mapped with no 
data index (NDI) > 30% and forest cover > 50 % for Europe and Northern Africa. NDI is the 
fraction of time that cloud, sensor saturation, or other errors lead to missing data at each location. 
Forest cover threshold of 50 %, is a threshold above which most errors in snow presence/absence 
identification occur. 
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Figure 2.20. Boxplots of pixel values of mean annual snow persistence by latitude and snow 
zone in Asia.  
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Figure 2.21. Boxplots of pixel values of mean annual snow persistence by latitude and snow 
zone in Oceania.  
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Figure 2.22. Boxplots of pixel values of mean annual snow persistence by latitude and snow 
zone in Europe.  
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Figure 2.23. Boxplots of pixel values of mean annual snow persistence by latitude and snow 
zone in North America.  
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Figure 2.24. Boxplots of pixel values of mean annual snow persistence by latitude and snow 
zone in South America.  
 
 



 167

 
Figure 2.25. Boxplots of pixel values of mean annual mean temperature by latitude and snow 
zone in Asia.  
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Figure 2.26. Boxplots of pixel values of mean annual mean temperature by latitude and snow 
zone in Oceania.  
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Figure 2.27. Boxplots of pixel values of mean annual mean temperature by latitude and snow 
zone in Europe.  



 170

 
Figure 2.28. Boxplots of pixel values of mean annual mean temperature by latitude and snow 
zone in North America.  
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Figure 2.29. Boxplots of pixel values of mean annual mean temperature by latitude and snow 
zone in South America.  
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Table 2.5. Percent of snow covered area (SCA) in square kilometers of each continent/region 
with missing data (No Data Index NDI > 30%) and with potential errors from dense forest 
(>50% cover). Percent of SCA in each continent/region with forest cover >50% also reported. 
 

Continent 

a. NDI 

> 30 % 

b. forest 

cover > 

50 % a+b 

Percent SCA with 

forest cover >50 % 

and reporting 

positive trend 

Percent SCA with 

forest cover >50 % and 

reporting negative 

trend 

Africa 0.1 0.1 0.2 0.0 0.0 
Asia 1.5 12.1 13.6 3.8 11.2 
Europe 7.2 25.0 32.2 6.5 33.0 
North 
America 3.8 17.5 21.3 14.4 12.1 
Oceania 8.2 45.5 53.7 42.7 15.8 
South 
America 20.1 16.3 36.5 16.8 7.1 
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Figure 2.30. Mean annual no data index (NDI) by latitude and elevation for North America, 
South America, Africa, Asia, Europe and Oceania. NDI is the fraction of time that cloud, sensor 
saturation, or other errors lead to missing data at each location. 
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Figure 2.31. Fraction of area with forest cover > 50 % by latitude and elevation for North 
America, South America, Africa, Asia, Europe and Oceania. Forest cover threshold of 50 %, is a 
threshold above which most errors in snow presence/absence identification occur. 
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Figure 2.32. Mean annual precipitation by latitude and elevation for North America, South 
America, Africa, Asia, Europe and Oceania. 
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Figure 2.33. Mean annual mean temperature by latitude and elevation for North America, South 
America, Africa, Asia, Europe and Oceania. 
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Figure 2.34. R sq. of significant relative importance fit by latitude and elevation for North 
America, South America, Africa, Asia, Europe and Oceania. 
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Figure 2.35. Dominant teleconnection index as determined by monthly index correlation with 
annual SP for half degree latitude and longitude grid cells in North America (A) and month with 
the strongest correlation between the dominant teleconnection index and annual snow persistence 
(B).Relative strength of correlation shown with transparency where weaker correlations are 
shown by transparent colors and stronger correlations are shown by opaque colors. 
 
 
 
 
 
 



 179

 
Figure 2.36. Dominant teleconnection index as determined by monthly index correlation with 
annual SP for half degree latitude and longitude grid cells in South America (A) and month with 
the strongest correlation between the dominant teleconnection index and annual snow persistence 
(B).Relative strength of correlation shown with transparency where weaker correlations are 
shown by transparent colors and stronger correlations are shown by opaque colors. 
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Figure 2.37. Dominant teleconnection index as determined by monthly index correlation with 
annual SP for half degree latitude and longitude grid cells in Europe and Northern Africa (A) and 
month with the strongest correlation between the dominant teleconnection index and annual 
snow persistence (B).Relative strength of correlation shown with transparency where weaker 
correlations are shown by transparent colors and stronger correlations are shown by opaque 
colors. 
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Figure 2.38. Dominant teleconnection index as determined by monthly index correlation with 
annual SP for half degree latitude and longitude grid cells in Asia (A) and month with the 
strongest correlation between the dominant teleconnection index and annual snow persistence 
(B).Relative strength of correlation shown with transparency where weaker correlations are 
shown by transparent colors and stronger correlations are shown by opaque colors. 
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Figure 2.39. Dominant teleconnection index as determined by monthly index correlation with 
annual SP for half degree latitude and longitude grid cells in Oceania (A) and month with the 
strongest correlation between the dominant teleconnection index and annual snow persistence 
(B).Relative strength of correlation shown with transparency where weaker correlations are 
shown by transparent colors and stronger correlations are shown by opaque colors. 
 



 183

 
Figure 2.40. Area affected by positive and negative trends in snow persistence for each continent 
/ region by 0.5 degree latitude band. 
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Figure 2.41. Trends in SP by 0.5 degree latitude band and 500 meter elevation band for the West 
and East Cascades separated by the Cascade Crest. 
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Figure 2.42. Trends in SP by 0.5 degree latitude band and 500 meter elevation band for the 
North and South Himalaya separated by the mountain crest. 
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Figure 2.43. Trends in SP by 0.5 degree latitude band and 500 meter elevation band for the West 
and East Sierra Nevada separated by the Sierra Crest. 
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Figure 2.44. Trends in SP by 0.5 degree latitude band and 500 meter elevation band for the 
North and South Alps separated by the mountain crest. 
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Here we provide supplementary tables that display correlation coefficients between snow season 
length and streamflow variables (Table 3.6), and correlation results using alternate gridded 
climate data sets (Tables 3.7a,b,c). Tables 3.7a,b,c show similar relationships between 
streamflow variables and snow variables to the results presented in the main manuscript. We 
computed watershed-scale correlations between watershed average snow variables (SP, 
SNODAS peak SWE, and snow season length) and streamflow variables (Q, Q/P). 

We also provide supplementary figures showing correlations between annual streamflow (Q) and 
precipitation (P) totaled for four different time periods (Figures 3.11, 3.12), as well as 
streamflow and mean temperature (T) averaged for four different time periods (Figures 
3.13,3.14). Figures 3.15 and 3.16 show correlations between peak snow water equivalent (SWE) 
and snow persistence (SP) with climate variables P and T for the same four different time periods 
as shown in figures 3.11-3.14.  

Table 3.6. Snow season and streamflow response correlation table. Dry (P/PET <1), Wet (P/PET 
≥1). *p<0.05; **p<0.01; ***p<0.001, no asterisk = not significant at p<0.05. 

 

Variables All Wet/warm Dry/cold 

SS and Q  0.22*** 0.10* 0.45*** 
SS and Q/P  0.42*** 0.19*** 0.55*** 

 

Table 3.7a. Correlation coefficients for mean annual input and output variables using Livneh 
Hydromet data (Livneh et al., 2013) for P instead of PRISM. Dry (P/PET <1), Wet (P/PET ≥1). 
*p<0.05; **p<0.01; ***p<0.001, no asterisk = not significant at p<0.05. 

 

Variables All watersheds Wet/warm Dry/cold 

P and Q 0.90*** 0.84*** 0.71*** 

SP and Q  0.075*  -0.13* 0.67*** 

SWE and Q  0.42*** 0.10* 0.76*** 

P and Q/P  0.52*** 0.21*** 0.35*** 

SP and Q/P  0.37*** 0.046 0.71*** 

SWE and Q/P  0.47*** 0.061 0.64*** 
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Table 3.7b. Correlation coefficients for mean annual input and output variables using Livneh 
Hydromet data (Livneh et al., 2013) for P instead of PRISM and Cristea PET (Cristea et al., 
2013) data instead of gridMET (Abatzoglou, 2013). Dry (P/PET <1), Wet (P/PET ≥1). *p<0.05; 
**p<0.01; ***p<0.001, no asterisk = not significant at p<0.05. 

 
Variables All watersheds Wet/warm Dry/cold 

P and Q 0.90*** 0.90*** 0.89*** 
SP and Q  0.075* -0.082 0.27*** 
SWE and Q  0.42*** 0.065 0.76*** 
P and Q/P  0.52*** 0.52*** 0.48*** 
SP and Q/P  0.37*** 0.14** 0.56*** 
SWE and Q/P  0.47*** 0.059 0.61*** 

 

 
Table 3.7c. Correlation coefficients for mean annual input and output variables using Cristea 
PET data (Cristea et al., 2013) instead of gridMET (Abatzoglou, 2013). Dry (P/PET <1), Wet 
(P/PET ≥1). *p<0.05; **p<0.01; ***p<0.001, no asterisk = not significant at p<0.05. 

 
Variables All watersheds Wet/warm Dry/cold 

P and Q 0.96*** 0.95*** 0.83*** 
SP and Q  0.075**  - 0.12** 0.66*** 
SWE and Q  0.38*** 0.012 0.75*** 
P and Q/P  0.69*** 0.57*** 0.58*** 
SP and Q/P  0.38*** -0.0074 0.73*** 
SWE and Q/P  0.48*** 0.029 0.63*** 
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Figure 3.11. Annual streamflow (Q) vs precipitation (P) totals for the water year, October to 
June, January to June, and December to February. 
 
 
 

 
Figure 3.12. Annual streamflow (Q) vs precipitation (P) total for the water year, October to 
June, January to June, and December to February, with climatic separation into dry/cold and 
wet/warm watershed groupings. 
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Figure 3.13. Annual streamflow (Q) vs mean temperature (T) averaged for the water year, 
October to June, January to June, and December to February. 
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Figure 3.14. Annual streamflow (Q) vs mean temperature (T) averaged for the water year, 
October to June, January to June, and December to February, with climatic separation into 
dry/cold and wet/warm watershed groupings. 
 

 
Figure 3.15. SP and peak SWE vs P total for three periods, water year, October 1 to June 30, and 
January 1 to June 30, with climatic separation into dry/cold and wet/warm watershed groupings. 
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Figure 3.16. SP and peak SWE vs T averaged for three periods, water year, October 1 to June 
30, and January 1 to June 30, with climatic separation into dry/cold and wet/warm watershed 
groupings. 
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Figure 4.13. Observed (black) and simulated (red) time series of volumetric water content at 5, 20 and 50 cm for SNOTEL sites and 
profiles 432 Currant Creek, 698 Pole Creek R.S., and 979 Van Wyck. 
 
Table 4.4. Table of calibration metrics NSCE, mean bias for calibration scenarios. 75 percentile VWC at 5, 20 and 50 cm depth. 

 432 698 979 
NSCE 5 cm -0.33 0.15 -0.82 
NSCE 20 cm 0.45 0.17 0.22 
NSCE 50 cm 0.58 0.14 0.48 
Mean bias 5 cm -6.7 9.4 46.9 
Mean bias 20 cm 8.5 10.4 22.4 
Mean bias 50 cm -7.4 10 19.7 
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Figure 4.14. First day of measurable deep drainage vs first day of 100 cm depth saturation for all climates, historical scenarios, and 
loam profile. 
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Figure 4.15. Annual evaporation (E), transpiration (T), and ET to precipitation (P) vs mean saturation at 100 cm depth for the 
historical scenario and loam profile. Dry P/PET <1=, Wet P/PET >1. 
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Figure 4.16. Annual ratio of runoff (Q), deep drainage (D) and evapotranspiration (ET) to input (P) vs snowmelt fraction of input by 
soil texture for the historical scenario and three soil profiles (515- Sandy loam, 1049- Sandy clay loam, 1056- Loam).  
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Table 4.5. Tabular values below plots display correlation coefficients, slopes of linear fit between explanatory and response variable, 
and whether slopes for different climate types are significantly different for the ratio of Q, D and ET to P vs snowmelt fraction of 
input and input concentration. Whether slopes were significantly different was estimated by the p-value of a pairwise difference in 
linear regression slope test where *<0.5, **<0.01, ***<0.001. Results from the climate scenarios in Figure 3, loam soil type.  Dry 
P/PET <1=, Wet P/PET >1. 

  All Dry Wet   

Variables r Slope r Slope r Slope Slopes different? 

Q/P vs snowmelt fraction 0.41 *** 0.53 0.44 *** 0.41 0.41 *** 0.38 *** 

D/P vs snowmelt fraction 0.20 *** 0.07 0.32 *** 0.10 -0.02   0.00 no 

ET/P vs snowmelt fraction -0.02   0.05 0.05   0.07 0.30 *** 0.33 * 

Q/P vs mean saturation 0.77 *** 0.87 0.60 *** 0.59 0.52 *** 0.65 * 

D/P vs mean saturation 0.85 *** 0.27 0.78 *** 0.27 0.65 *** 0.22 no 

ET/P vs mean saturation -0.79 *** 1.41 -0.41 *** 0.62 -0.62 *** 0.92 ** 

Q/P vs input concentration 0.57 *** 7.02 0.47 *** 5.01 0.39 *** 3.66 * 

D/P vs input concentration 0.37 *** 1.30 0.40 *** 1.48 -0.04   0.06 no 

ET/P vs input concentration -0.60 *** 11.74 -0.40 *** 6.66 -0.56 *** 5.93 no 
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Table 4.6. Tabular values below plots display correlation coefficients, slopes of linear fit between explanatory and response variable, 
and whether slopes for different soil textures are significantly different for the ratio of Q, D and ET to P vs snowmelt fraction of input 
and input concentration. Whether slopes were significantly different was estimated by the p-value of a pairwise difference in linear 
regression slope test where *<0.5, **<0.01, ***<0.001.  

  Sandy loam Sandy clay loam Loam   

Variables r Slope r Slope r Slope 
Slopes 
different? 

Q/P vs snowmelt fraction 0.42 *** 0.53 0.39 *** 0.52 0.38 *** 0.50 no 

D/P vs snowmelt fraction 0.28 *** 0.10 0.24 *** 0.09 0.21 *** 0.08 no 

ET/P vs snowmelt fraction 0.01   0.01 0.00   0.01 0.01   0.01 no 

Q/P vs mean saturation 0.75 *** 0.78 0.77 *** 0.93 0.80 *** 0.86 *** 

D/P vs mean saturation 0.76 *** 0.22 0.81 *** 0.27 0.85 *** 0.27 * 

ET/P vs mean saturation -0.81 *** 1.34 -0.79 *** 1.54 -0.80 *** 1.43 ** 

Q/P vs input concentration 0.56 *** 6.39 0.58 *** 6.99 0.58 *** 7.01 no 

D/P vs input concentration 0.33 *** 1.08 0.34 *** 1.19 0.36 *** 1.29 no 

ET/P vs input concentration -0.60 *** 10.69 -0.60 *** 11.54 -0.60 *** 11.83 no 
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Figure 4.17. Boxplots of the annual range in historical input partitioning resulting from fine scale changes in depth for SNOTEL 396 
loam profile. 
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Table 4.7. Correlations between annual values of climatic and water balance terms for historical input scenarios. Variables included 
are precipitation (P), potential evapotranspiration (PET), peak snow water equivalent (peak SWE), snow persistence (SP), average 
melt rate over the year (melt rate), mean saturation at 100 cm depth (Sat 100), surface runoff (Q), deep drainage (D), transpiration (T), 
evaporation (E), and aridity index (P/PET). P-value of correlation, *<0.5, **<0.01, ***<0.001. 
 

 D SP P PET SWE melt rate Sat5 Sat20 Sat50 Sat100 
SP 0.44***          
P 0.92*** 0.35***         
PET -0.55*** -0.74*** -0.43***        
SWE 0.78*** 0.65*** 0.74*** -0.46***       
meltrate 0.53*** 0.62*** 0.54*** -0.36*** 0.80***      
Sat5 0.84*** 0.68*** 0.74*** -0.77*** 0.70*** 0.55***     
Sat20 0.86*** 0.67*** 0.75*** -0.73*** 0.72*** 0.56*** 0.99***    
Sat50 0.88*** 0.60*** 0.76*** -0.65*** 0.73*** 0.56*** 0.95*** 0.97    
Sat100 0.86*** 0.49*** 0.73*** -0.55*** 0.70*** 0.50*** 0.84*** 0.88*** 0.93***  
Q 0.91*** 0.39*** 0.97*** -0.42*** 0.83*** 0.63*** 0.73*** 0.75*** 0.76*** 0.73*** 
T 0.06  0.15*** 0.13** 0.09* 0.08  0.20*** 0.23*** 0.26*** 0.26*** 0.30*** 
E -0.18*** 0.23*** -0.07  -0.07  -0.10* 0.11* 0.12** 0.06  -0.10* -0.22*** 
D/P 0.77*** 0.43*** 0.51*** -0.52*** 0.56*** 0.39*** 0.73*** 0.77*** 0.83*** 0.86*** 
P/PET 0.93*** 0.43*** 0.98*** -0.55*** 0.76*** 0.54*** 0.79*** 0.79*** 0.79*** 0.74*** 
Q/P 0.81*** 0.51*** 0.76*** -0.38*** 0.86*** 0.75*** 0.72*** 0.76*** 0.80*** 0.80*** 
E/P -0.82*** -0.35*** -0.77*** 0.38*** -0.71*** -0.51*** -0.67*** -0.73*** -0.81*** -0.85*** 
T/P -0.88*** -0.39*** -0.84*** 0.46*** -0.76*** -0.55*** -0.72*** -0.75*** -0.79*** -0.78*** 
ET/P -0.87*** -0.39*** -0.83*** 0.44*** -0.76*** -0.54*** -0.71*** -0.75*** -0.81*** -0.82*** 
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Table 4.7 continued. Correlations between annual values of climatic and water balance terms for historical input scenarios. Variables 
included are precipitation (P), potential evapotranspiration (PET), peak snow water equivalent (peak SWE), snow persistence (SP), 
average melt rate over the year (melt rate), mean saturation at 100 cm depth (Sat 100), surface runoff (Q), deep drainage (D), 
transpiration (T), evaporation (E), and aridity index (P/PET). P-value of correlation, *<0.5, **<0.01, ***<0.001. 
 

 Q T E D/P P/PET Q/P E/P T/P 
SP         
P         
PET         
SWE         
meltrate         
Sat5         
Sat20         
Sat50         
Sat100         
Q         
T 0.09*        
E -0.08  0.41***       
D/P 0.52*** 0.14** -0.32***      
P/PET 0.96*** 0.03  -0.07  0.54***     
Q/P 0.84*** 0.25*** -0.15** 0.70*** 0.73***    
E/P -0.74*** -0.23*** 0.41*** -0.77*** -0.74*** -0.82***   
T/P -0.81*** -0.01  0.27*** -0.71*** -0.83*** -0.82*** 0.92***  
ET/P -0.80*** -0.08  0.32*** -0.75*** -0.81*** -0.84*** 0.96*** 0.99*** 
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Figure 4.18. ET/P vs Q/P by climate type for historical scenarios with loam soil texture and 1x depth (A), all rain scenarios with loam 
soil texture and 1x depth (B), historical scenarios with loam soil texture and 2x depth (C) and D/P vs Q/P by climate type for historical 
scenarios with loam soil texture and 1x depth (D), all rain scenarios with loam soil texture and 1x depth (E), historical scenarios with 
loam soil texture and 2x depth (F). Dry P/PET <1=, Wet P/PET >1. 
 


