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ABSTRACT

DESIGN AND QUANTIFICATION OF A TISSUE TYPE SPECIFIC GENETIC CIRCUIT 

IN PLANTS

Synthetic biologists aim to rationally design genetic circuits and utilize 

plant platforms to photosynthetically drive, self-sustainable circuits. Although

plants are excellent platforms, issues and unpredictability arise from the 

innate complexity of multicellularity. 

The ability to quantitatively control gene expression within specific cell 

types can address some issues arising from multicellularity. In my research, I 

developed a genetic circuit with the ability to induce and quantitatively 

control output of a genetic circuit in Arabidopsis thaliana root epidermal 

cells. The circuit design uses an externally applied ligand that activates a 

computationally designed transcriptional response driven by a tissue specific

promoter to control output (GFP expression). In addition, I engineered a 

circuit that adds a positive feedback motif. To quantify the behaviors of these

circuits I developed a MATLAB program to remove background signals from 

confocal microscopy images and quantify GFP signal in a high-throughput 

manner.

The genetic circuit is highly specific for root epidermal cells, 

controllable with external ligand, and has increased sensitivity and memory 

with positive feedback.  The concepts and components of these circuits can 
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be implemented in future designs to engineer and produce plants with more 

predictable and diverse behaviors affording the operator greater control.
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Chapter 1: Introduction

1.1 Synthetic biology

Synthetic biology is an interdisciplinary field incorporating engineering 

and computational principles and approaches to rationally (re)design natural 

and de novo biological systems [1]. By invoking forward engineering, the 

design-test-build cycle, and in silico methods (mathematical modeling), 

synthetic biologists have rationally engineered biological systems. These 

systems perform desired behaviors (functions) laid out in designs in a highly 

predictable and robust manner [2] [3]. This contrasts with earlier 

bioengineering efforts that produced biological systems with unpredictable 

behaviors. A key to designing predictable and robust behavior is applying 

transfer functions. Transfer functions quantify how a control variable (input) 

within a biological system can produce a response (output) [4].  

Transfer functions, also known as input-output functions, are used to 

develop computational models to predict behaviors of biological systems in 

silico.  These models are informed by empirical data to adjust parameters 

within the model and/or system designs. This is an iterative process wherein 

feedback between models and experimental data is utilized to tune 

responses and outputs [5]. Recently, a library of tuned inducible synthetic 

bacterial promoters was generated using feedback between a 

thermodynamic model and data derived from cell-based assays [6]. The 

model described the affinity of transcriptional machinery to promoters. It
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 predicted that varying specific sequences within the promoter could adjust 

the affinity of transcriptional machinery to the promoter, and thereby change

transcription rates. By modifying the transcription rate, the dynamic range, 

i.e., the absolute difference between the “ON” and “OFF” states, could be 

tuned.  The result of several iterations of feedback between the 

thermodynamic model and experimental data was a library of inducible 

systems with predictable dynamic ranges. Furthermore, four varied 

regulatory sequences from the library were used to design multi-input 

Boolean logic gate circuits with highly predictable outputs. Synthetic 

biologists have invoked this iterative process to design many other synthetic 

systems which function as switches, oscillators, and Boolean logic gates [7]

[8] [9].   

It would be extremely advantageous to apply synthetic biology 

approaches to design and redesign biological systems that function within 

plants. First, plants are self-sustainable and can power synthetic circuity 

autonomously via photosynthesis. Second, there are many applications for 

rationally designed plants. As suggested, plants could be designed to grow 

as structures, have fruits with juice sacs containing medicines, or grow to a 

specific developmental stage and switch to biofuel production [4] [10] [11]. 

Additionally, agricultural crops can be engineered and optimized. Crops have 

been designed to be more resistant to abiotic and biotic challenges, be more 

nutritional, and utilize resources more efficiently [12] [13] [14] [15]. Applying

synthetic biology approaches could refine the process of engineering plants, 
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cutting down the time required to tune designs, and create plants with more 

robust behavior [9]. Furthermore, plants are a major source of food, fiber, 

and renewable materials around the world, and required for life on Earth, the

ability to engineer and design plants could change the world. 

1.2 A brief overview of synthetic biology

The first wave of synthetic biology began at the end of the last century, 

and focused on rational design of synthetic devices and modules 

implemented in prokaryotic platforms, namely Escherichia coli. During this 

period seminal works such as oscillators, toggle switches, and various types 

of Boolean logic gates were engineered using mathematical modeling. These

works functioned as proof-of-concept that rational design with mathematical 

modeling could result in genetic systems with more predictable outputs [7]

[8]. 

The second wave of synthetic biology aims to scale up smaller genetic 

devices and modules into fully programmable systems, and possibly 

engineer whole cells [5]. An important aspect of the second wave is 

compiling large libraries of specific genetic parts, e.g., BioBricks [16]. The 

large number of available and quantified parts which can perform redundant 

functions strives  to maintain gene parts or modules that act independently 

of endogenous systems and each other within higher order systems, i.e. 

orthogonality [17][18]. Orthogonality within a biological system permits more

predictable behavior by eliminating cross-talk. Furthermore, orthogonality 

permits interoperability between individual genetic circuits and modules to 
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form programmable systems. These systems are increasingly more complex 

as the number of quantitatively and functionally characterized modules and 

parts increases. Individual cells have been genetically programmed to 

perform coordinated tasks with other genetically modified cells within 

populations. A few examples of coordinated behavior include pattern 

formation, biofilm aggregation, and even self-organization of simple 

synthetic tissue [19] [20] [21] [22].  

The foundation of synthetic biology was built on applying engineering 

and mathematical modeling approaches to design synthetic biological 

systems which function within bacteria [23]. Fundamentals and principles 

applied during this earlier period are being invoked to engineer synthetic 

systems which function in eukaryotic platforms in a goal-oriented manner 

[11][24]. These applications are what make eukaryotes such an attractive 

host for synthetic systems. More specifically, engineered plants can be 

applied to human health, resource management, and energy and 

environmental issues in manners unicellular organisms simply cannot [25]. 

However, multicellularity presents many challenges when designing 

synthetic systems. 

1.3 Control of gene expression within multicellular organisms

Multicellularity is an attractive trait to exploit but challenging because 

gene expression is tightly controlled and regulated within multicellular 

organisms.  The layers of internal regulation coupled with external input 

underlying emergent behavior, such as cell differentiation, can modify 
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synthetic circuit behaviors [26] [27]. The architecture and dynamics of 

eukaryotic DNA are far more complex than bacterial DNA architecture and 

dynamics [28]. The chromatin state of DNA can silence or activate genes, 

and produce contextual effects on heterologous DNA, particularly if insertion 

events are random [25]. “Landing pads” have been developed to prevent 

confounding positional effects by controlling what loci heterologous DNA is 

inserted into [29]. However, these systems have yet to be developed for 

many eukaryotic hosts. Additionally, regulatory elements can be located 

hundreds to thousands of base pairs away from concomitant sequences 

under regulation. Interactions between transcriptional machinery and far 

away regulatory elements can alter DNA architecture, and modify gene 

expression further [28]. Moreover, the distance in itself can make identifying 

regulatory elements difficult. Although, bacterial chromosomes also have 

upstream and downstream regulatory elements affecting DNA architecture 

the distance between these elements and genes is smaller compared with 

eukaryotic chromosomes [28]. Additionally, eukaryotic cells perform post-

translational modifications, alternative-splicing, and polyadenylation [25]

[26]. All of this genetic regulation can affect dynamics, kinetics, and 

behaviors of synthetic genetic circuits and systems. 

Constitutive expression of heterologous circuitry may also present issues 

when utilizing multicellular platforms for synthetic systems. Constitutive 

expression is defined as gene expression regardless of tissue and cell type, 

or developmental and temporal regulation. It can disrupt critical 
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developmental trajectories, metabolic networks, and become toxic and/or 

fatal [30]. Spatially targeted and temporally controlled gene expression may 

be desirable depending on the designed response or downstream application

of the synthetic system. One way to address the challenges and issues 

arising from multicellularity and constitutive expression is to produce a tissue

specific genetic controller, which quantitatively controls gene expression by 

an external input.   

Temporal and quantitative control of gene expression can be genetically 

encoded by inducible genetic systems. Inducible systems can control when 

gene expression occurs. They function to turn a genetic circuit “ON” or “OFF”

at a given developmental stage, under specific contexts, or within certain 

time frames [5]. Moreover, gene expression can be quantitatively controlled 

with inducible systems by adjusting the concentration of the externally 

inputted molecule, e.g., ligands, eliciting the inducible response. [31]. 

Furthermore, proteins, e.g., transcription factors, can be computationally 

designed such that they interact with specific pertinent ligands and can 

activate transcription after exposure to the ligand [31,32,33]. This 

computational design approach could be leveraged to develop a variety of 

inducible systems acting as biosensors.  

Cell and tissue specific regulatory elements, e.g., promoters, can target 

expression of regulatory biomolecules, e.g., transcription factors, and RNA, 

i.e., to spatially control gene expression [34]. For example, an anther specific

promoter driving the expression of a cytotoxic gene ablated the anther cell 

6



line, producing a male sterility phenotype in Brassica napus plants [35]. 

Constitutive expression of the cytotoxic gene would have been fatal. 

However, targeted gene expression rendered the desired male-sterility 

phenotype. 

Inducible and tissue-specific systems are utilized in functional analysis of 

gene expression, particularly in developmental studies, and connecting 

genotype to phenotype. For example, trapper Arabidopsis thaliana lines with 

Gal-4 inducible systems and tissue specific promoters have been utilized to 

observe and characterize expression patterns [34]. This can be a valuable 

asset for designing synthetic genetic circuitry.  First, genetic circuits can be 

redesigned with targeted cell-line or tissue specific responses under 

quantitative control to leverage multicellularity. Second, synthetic 

components can be functionally and quantitatively characterized leading to 

development of higher order genetic systems implemented in plant hosts.

1.4 Regulatory motifs 

DNA regulatory motifs are utilized in synthetic circuits to genetically 

encode dynamic responses. Synthetic genetic circuitry imparts the ability to 

sense signals, compute, and actuate a desired response or behavior [18]. 

Some examples of dynamic responses include switches and cellular 

“memory,” amplification, and oscillation [7] [8] [36]. Various circuits with 

these dynamic responses are designed to exclusively utilize repression, or 

activation, or a combination of the two. Repression and activation occur as a 

result of interactions between DNA regulatory elements, e.g., promoters, and
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biomolecules, e.g., transcription factors. It is therefore critical that genetic 

circuits contain specific parts and modules to build regulatory motifs. 

To achieve a desired response the appropriate genetic parts and 

modules are required [17].  The specificity, affinity, and interactions between

biomolecules and DNA can determine the dynamic responses of a genetic 

circuit. Furthermore, qualitative functions of circuits also depend on how 

these parts and modules are wired together, i.e., the topology of circuits [18]

[23]. For instance, a toggle switch can be modified into a clock by changing 

the relative expression of the transcriptional repressors that act to repress 

each other within the circuit [38]. It is therefore critical that the parts and 

modules used, and how they are arranged is rationally designed to program 

cells with the desired behavior. 

1.4.2 Feedback and biological switches

Genetic circuits comprised of appropriate regulatory elements, and 

repressors or activators can be arranged into feedback systems. Feedback 

acts either to amplify the product of a reaction (positive feedback), or to 

diminish the product of a reaction (negative feedback). Feedback motifs are 

critical components of biological switches [38] [39]. 

Biological switches can be defined as regulatory systems comprised of 

genetic elements or proteins or a combination of these controlling the state 

of a cell. Biological switches are ubiquitous in nature and critical to many 

cellular processes including cell differentiation, cell-cycle progression, and 
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apoptosis [40] [41]. Simple synthetic genetic biological switches have been 

engineered to toggle between cellular states by modifying the level of a 

molecule within a cell between high and low concentrations [7]. 

Both natural and synthetic switches must have at least one 

“ultrasensitive” component [42][43]. Ultrasensitivity is a biological 

phenomenon wherein a small change of input stimulus is able to drive output

to a much greater percentage of the maximum output [42][43]. One possible

consequence of ultrasensitivity is a graded output, which produces an 

amplification response [44]. Alternatively, ultrasensitivity can produce an 

“ON”/”OFF” switch. This is visually represented as a sharp sigmoidal input-

output curve with low and high steady-states. This is known as bistability 

[23]. Bistable genetic circuits with switch-like behavior can impart cellular 

“memory,” or hysteresis through transcription [36]. This behavior rises from 

the unstable state that is in between the low and high steady-states acting 

as a switch.

    a          b

Figure 1.1. Input-output graphs of Michaelian and Ultrasensitive 
responses. Graph a depicts a Michaelian response which is the simplest 
mass action system. The output is graded as input increases until the system
is saturates and plateaus. Graph b depicts an ultrasensitive response 
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wherein two stable steady states exist. A low steady state, at low input, and 
a high steady state at high input. In-between these steady states, 
represented by the dot, is an unstable state acting as the switch. Notice the 
sharp nearly linear increase between low and high steady states.

Memory can be defined as a sustained response to a single transient 

stimulus. That is, the current state of a cell is dependent on its molecular 

history. Bistable synthetic circuits with memory have been implemented in 

bacterial and eukaryotic hosts [36][37]. For example, Ajo-Franklin et al., 

developed a genetic circuit with an autoregulatory positive feedback, and 

observed bistable and memory responses within yeast. In this study, 

activator-promoter pairs were quantitatively characterized to produce a 

model to inform memory system design.  While empirical data showed 

growth rate determined if the circuit was bistable with memory responses 

(high growth rate) or monostable without memory (low growth rate). By 

factoring the growth rate into the model, the behavior of the circuit could be 

tuned. 

1.5 Plant confocal microscopy and the autofluorescence issue

Quantification of genetic part and module behaviors is a major 

bottleneck when developing synthetic genetic circuits implemented in plant 

platforms [9][25]. A strategy to observe genetic circuit and biomolecule 

dynamics, and quantify behaviors is through fluorescent microscopy. 

Specifically, observation can be experimentally achieved by fusing 

fluorescent molecules to a biomolecule, or by driving expression of 
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fluorescent molecules with pertinent promoters. In this manner, fluorescent 

molecules act as reporters, and the intensity of the signal, or emitted light 

from the reporters can be quantified within images, and thereby the 

dynamics and behaviors of a genetic circuit and parts of those circuit can be 

quantified. However, an issue arises from exciting fluorescent reporters 

because living tissues, particularly plant tissues, also naturally produce 

biomolecules and biopolymers, such as NADH, chlorophyll, cell wall polymers

and components, and pyridine that emit fluorescence when excited by the 

same wavelengths of light used to excite fluorescent reporters [45]. 

Collectively, this is known as autofluorescence.  Autofluorescence can 

partially occlude and artificially inflate reporter fluorescence and signal. If a 

genetic module or circuit had a low level of output or expressed reporter at a

low level such that autofluorescence signal intensity was greater than the 

fluorescence signal, the reporter or output signal would not be discernible 

from autofluorescence [46]. Results could be interpenetrated incorrectly, 

specifically as the absence of reporter or output. Convexly, reporter or output

signal with a greater intensity than autofluorescence would be inflated by 

autofluorescence, consequently measurements of report or output signal 

would be inflated. Either influence of autofluorescence can lead to inaccurate

quantification and faulty interpretation of genetic circuit dynamics. To 

accurately quantify reporter or genetic circuit output by fluorescent intensity,

autofluorescence must be removed from fluorescent microscopic images. 
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1.6 Thesis statement and overview

1.6.1 Thesis statement

This thesis demonstrates approaches to design, and qualify and quantify

behavior of an inducible, root epidermal cell-specific genetic circuit. 

Additionally, I have detailed the changes in the dynamics and kinetics of this 

genetic circuit with the addition of a positive feedback motif.  

1.6.2 Thesis overview

Following the introductory chapter, chapter 2 details the design of and 

experimental approaches to build, qualify, and quantify an inducible, root 

epidermal cell specific expression genetic circuit. This chapter focuses on 

fluorescent confocal microscopy and computational approaches to remove 

autofluorescence and background to accurately quantify gene expression. 

Chapter 3 discusses the design of a positive feedback loop, and incorporation

of this loop into the root epidermal cell-specific genetic circuit. Additionally, 

qualification and quantification of gene expression after incorporation of a 

positive feedback loop. Furthermore, this chapter details comparisons 

between the inducible root epidermal cell-specific genetic circuit with and 

without the positive feedback regulatory motif. 
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Chapter 2: Root epidermal cell-specific and quantitative control of a
a genetic circuit output by means of a computationally designed,

ligand dependent transcription factor and tissue specific promoter

2.1 Introduction

Designing synthetic genetic circuits to function within plant platforms 

can be extremely challenging. Plants evolved many layers of interconnected 

regulation required to perform necessary biological emergent behaviors. 

These behaviors include cell cycle progression, developmental programs, 

e.g., progression through gametophyte or sporophyte generations, and cell 

differentiation to form various tissues and organs [1][2][3]. Underlying these 

emergent behaviors are molecular networks comprised of a plethora of 

biomolecules able to sense and adjust toward environmental change [4]. The

sessile nature of plants has been a significant evolutionary pressure toward 

shaping traits to quickly and effectively respond to environmental conditions 

through plasticity of regulatory networks [5]. Therefore, regulatory networks 

evolved to be highly interconnected and complex within plants. Additionally, 

eukaryotes evolved genetic regulatory mechanisms beyond bacterial chassis 

such as alternative splicing, post translation modifications, and 

polyadenylation [6][7][8]. These mechanisms are tightly controlled, dynamic,

and can change depending on the state of the cell at a given time. 

Ultimately, multicellularity  arises from a variety of genes, the products of 

genes, and the interactions between them. The layers of regulation required 

for multicellularity can introduce issues and unpredictability when designing 
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synthetic genetic circuits [9]. However, multicellularity permits division of 

labor between cells, tissues, and organs and specificity of function(s) within 

them. For this reason, multicellularity can be wielded as a powerful trait 

toward programming different cell lines within engineered plants for 

downstream application.  

The potential of engineered plants is vast despite the challenges. Plants 

could be engineered to produce biofuel, as biosensors integrated into 

agriculture crops, for commercial chemical and medicinal production, and as 

molecular tools to elucidate fundamental biological mechanisms and 

regulation [10][11][12]. Furthermore, human kind has relied on plant life for 

food, clothes, and shelter since the dawn of human civilization. Pertinent 

crops could be optimized to be more nutritive, to produce higher yields, to 

have greater photosynthetic efficiency, and to have reduced environmental 

impact [13][14][15][16]. 

A means to meet challenges associated with multicellularity is to impart 

specific and quantitative control of synthetic genetic circuity, i.e., permit 

tunable output with more predictable behavior. This can be encoded with 

inducible and cell specific genetic circuits. If modularity is considered in 

genetic circuit design components could be easily modified or swapped, and 

a variety of inputs could be used to control the desired output within a given 

cell type. Furthermore, genetic circuits could be designed in such a manner 

as to permit interoperability to create whole systems [17]. 
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Spatial control of gene expression can be genetically encoded into 

synthetic circuits with specific promoters (regulatory sequences of DNA 

upstream of coding regions). Tissue or cell specificity is dependent on the 

promoter driving expression of the desired gene. For example, Wolter et al., 

designed a heterologous Cas9 based genome editing tool targeting gene 

expression within egg-cells of Arabidopsis thaliana [18]. This system 

successfully increased the frequency of genomic edits by homologous 

recombination. This approach could be used to specifically express 

regulatory systems and genetic circuits in a desired cell type. 

Genetic circuits composed of specific promoters and encoding 

regulatory proteins can temporally and quantitatively control gene 

expression, i.e., output is dependent on external input. Specifically, some of 

these genetic systems have inducible promoters and cognate activators, 

e.g., transcription factors (Figure 2.1) [19][20]. In some cases, if a promoter 

is regulated by an activator, addition of the ligand and binding of the 

activator to it causes the activator to stabilize. Consequently, stabilization 

permits the activator to bind the promoter activating transcription [21][22]. 

The circuit is “ON” or “OFF” in the presence and absence of ligand, 

respectively. Temporal control is achieved through addition of ligand, i.e., 

transcription is activated or induced when the ligand is added. Furthermore, 

quantitative control is achieved by adjusting the ligand concentration which 

regulates the level of transcription.  
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Figure 2.1. Promoters regulated by stability of activators. 
Transcription is inactive without ligand present (OFF). In the absence of 
ligand, the transcription factor is unstable and unable to bind the promoter. 
Transcription occurs with addition of ligand (ON). Ligand presence of absence
regulates stabilization of transcription factor and in-turn regulates promoters.

An inducible system ought to be well designed to afford greater 

quantitative control of output. The activator should be specific for and highly 

sensitive to the inducer. Additionally, the system should be orthogonal to the 

host and have minimal or no basal output in the OFF state (termed leaky 

expression) [23][24].  Furthermore, it should have a large dynamic range, 

i.e., a large disparity in the level of output in the ON and OFF states over a 

range of  ligand concentrations. 

A novel transcription factor developed through computational design 

with a degradation tag, and activation, DNA binding, and ligand binding 

domains has these characteristics [21]. The ligand binding domain was 

designed around the ligand, digoxin (DIG), consequently the domain has high

specificity and sensitivity to DIG. High specificity results in orthogonality 

because the domain does not interact with other biomolecules in 
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heterologous hosts. High sensitivity affords quantitative control with DIG 

concentration [25]. Additionally, the ligand binding domain can be 

redesigned to bind other ligands, therefore this computational approach can 

be leveraged to create several biosensors [21][22][25].  Moreover, the 

transcription factor was computationally designed such that the ligand and 

DNA binding domains were conditionally stable [21]. In the absence of the 

ligand, the unstable transcription factor is degraded by the ubiquitin 

proteasome system, as a result the transcription factor is inducible and the 

system has minimal leaky expression. Furthermore, the transcription factor 

design was tuned to increase the dynamic range. Different activation 

domains were tested and compared to identify the domain creating the 

greatest dynamic range. To quantitatively control output within root 

epidermal cells, I developed a genetic circuit with the aforementioned 

genetic system (DIG transactivation system) and incorporated a root 

epidermal cell-specific promoter driving transcription of the activator to 

target output (Figure 2.2). 

Cell-specific gene expression of the DIG system was achieved by 

encoding a root epidermal specific promoter (ABCG37) into the  genetic 

circuit. In native context, the ABCG37 promoter drives transcription of an 

ATP-binding cassette transporter, PDR9, involved in auxin polar transport and

root development [26][27].  In the synthetic circuit, the ABCG37 promoter is 

driving transcription of the computationally designed, ligand dependent 

transcription factor. This means the DIG transcription factor is transcribed 
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and translated within root epidermal cells, therefore throughout the whole 

plant body only root epidermal cells should respond to ligand and have 

output. 

The DIG dependent transcription factor is composed of an N’-terminal  

Matα-degron tag fused a Gal-4 DNA binding domain (DBD), the DIG ligand 

binding domain (LBD), and a C’-terminal VP-16 activation domain [21]. As 

mentioned above, the DIG transcription factor is conditionally stable. 

Stability is achieved through binding DIG and subsequent dimerization of the 

DNA and ligand binding domains homodimers [21][25]. After becoming 

stable, the DBD can bind the inducible (UAS) promoter. The UAS promoter is 

composed of a Gal4 Upstream Activating Sequence (UAS) fused to a minimal 

(-46) Cauliflower mosaic virus 35S (CMV35S) promoter sequence. The UAS 

promoter is driving transcription of the output. In this study, the output is the

reporter green fluorescent protein (GFP). GFP was used to qualify and 

quantify gene expression and dynamics of the gene circuit within roots. 

Spinning disk confocal microscope images were analyzed with an in-house 

MATLAB program to quantify GFP signal by means of pixel intensity.
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Figure 2.2. Inducible, root epidermal specific genetic circuit 
topology. Transcription of the computationally designed transcription factor 
(DIG dependent TF) is driven by the root epidermal cell-specific promoter 
(ABCG37). After addition of DIG, the DIG dependent TF can bind the inducible
promoter (UAS). The UAS promoter drives transcription of output (GFP). 

2.2 Methods

2.2.1 Assembly of the inducible, cell-specific genetic circuit

 The UAS or inducible promoter (A.3) was amplified with Phusion high 

fidelity polymerase (NEB, Ipswitch, MA) using primers one and two (A.4) and 

pSEVA141-GFPmut 3.1 vector (Table 2.1) as template. EcoRI and AatII 

restriction enzyme sites were added to the 5’ and 3’ ends of the amplicon, 

respectively, using the aforementioned primers with the restriction enzyme 

sequences. PCR product was run on a 1% agarose electrophoresis gel to 

24



verify correct size. The correct sized fragments were isolated from the 

agarose using a Zymoclean Gel DNA recovery kit (Zymo Research, Irvine, 

CA). The promoter fragment was directionally cloned into EcoRI and AatII 

(NEB, Ipswitch, MA) digested KJM340 (Table 2.2) using T4 ligase (NEB, 

Ipswitch, MA). The UAS promoter was cloned upstream of the GFP gene and 

downstream of the left T-DNA boarder in KJM340. The resulting plasmid was 

defined as SEO2 (Table 2.1). The 5’ end of the ABCG37 promoter and 

upstream region just beyond a PmeI restriction site were amplified with 

Phusion high fidelity polymerase using primers three and four (A.4) and 

KJM325 vector as template. The PCR product was screened and isolated from

gel as above. By amplifying the 5’ end of the ABCG37 and upstream region, 

internal restriction sites, PmeI and XbaI (NEB, Ipswitch, MA), could be utilized

to directionally clone the UAS and GFP sequences from into KJM325 to create 

SEO1 (Table 2.2). This required sub-cloning the upstream and 5’ ABCG37 

promoter regions into SmaI and XbaI (NEB, Ipswitch, MA) digested SEO2, to 

generate SEO3 plasmid (Table 2.1). The DIG dependent TF was amplified with

Phusion high fidelity polymerase with primers five and six (A.4) and the 

pSEVA-141-Matalpha-AtGal4-DIG10.3-VP16 vector as template. Fast digest 

BcII and DraI restriction enzyme sites were added to the 5’ and 3’ ends of the

amplicon, respectively. The transcription factor fragment was directionally 

cloned into Eco53kI and BamHI (Thermo Scientific, Waltham, MA) digested 

KJM 325 vector, using T4 ligase, downstream of the ABCG37 promoter and 

upstream the NOS terminator to produce SEO4 plasmid. The UAS and GFP 
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sequences along with the 5’ end of the ABCG37 promoter were cut from the 

SEO3 vector using Eco53kI and XbaI (Thermo Scientific, Waltham, MA), and 

directionally cloned into PmeI and XbaI digested SEO4 using T4 ligase, 

downstream of the ABCG37 promoter and upstream of the NOS terminator to

produce SEO1 (Figure 2.3). The final construct consisted of the inducible 

promoter (UAS promoter), driving the expression of the reporter (GFP), and 

the tissue specific promoter (ABCG37 promoter) driving the expression of the

ligand dependent transcription factor (mat-alpha,Gal-4,Dig 10.3, VP16). The 

final construction was verified using NGS through Macrogen, USA (Rockville, 

MD). Samples with approximately 200 ng/μL of SEO1 plasmid and one of the 

primers from primers nine to 24 were sent in as reactions for sequencing.

Table 2.1: Templates for cloning
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Table 2.2: Vectors used and created to generate SEO1 plasmid
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Figure 2.3. Vector map and T-DNA of inducible, root epidermal 
specific genetic circuit. A: Vector map, B: Linearized T-DNA The circuit
is composed of two genes. From the left T-DNA boarder, or 5’ end, is a UAS 
promoter driving transcription of enhanced GFP (eGFP), terminating in an 
alcohol hydrogenase terminator (T-ADH). In between this unit and the next is 
a transcription block to prevent read through and ensuring eGFP is 
transcribed and translated correctly. The root epidermal specific (ABCG37) 
promoter drives transcription of the digoxin (DIG) dependent transcription 
factor. This DNA unit terminates in a nopaline synthase (NOS) terminator. A 
transcription block is subsequent to the NOS terminator. Kanamycin markers 
were used for selection. Transcription of the kanamycin marker is driven by a
35S CaMV promoter and terminated by in an 35S terminator. Vector map 
figure was generated using SnapGene software. 
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2.2.2 Identifying stably transformed SEO1 Arabidopsis thaliana 

After performing restriction cloning, competent Endura E. coli (NEB, 

Ipswitch, MA) strains were transformed using electroporation. Approximately 

100 μL of E.coli was defrosted and 2 μL of SEO1 plasmid was added to the 

E.coli. The E. coli and plasmid mixture were placed in a cold cuvette (VWR, 

Radnor, PA). An ECM630-BTX (1250 v, 200 Ω,)was used to electroporate 

SEO1 plasmid into E. coli. The E.coli were suspended in 1 mL of fresh Luria-

Bertani broth (LB) liquid media and recovered in a floor shaker set at 37ºC 

and 200 rpm for approximately one hour. Approximately 200 μL of the 

recovered E.coli  were grown overnight on LB media bacterial plates 

containing kanamycin (100 μL/mL). After growth, individual, isolated colonies

resistant to kanamycin were further analyzed using GoTaq Green Master Mix 

(Promega, Madison, WI) with colony PCR. Colonies were screened for the UAS

promoter using primers one and two, and pSEVA141-GFPmut 3.1 plasmid 

(Table 2.1) as a positive control. PCR product was run on a 1% 

electrophoresis gel.     

Six E. coli colonies positive for the UAS promoter were grown overnight 

at 37ºC and 200 rpm in approximately 2 mL of LB media containing 

kanamycin (100 mg/L). After growth, automated isolation of plasmid DNA 

was performed using a Qiaprep Spin Miniprep kit and Qiacube machine 

(Qiagen, Hilden, DE). Of the six plasmid samples two samples were utilized 

to transform competent GV3101 Agrobacterium tumefaciens via 

electroporation. Electroporation was performed as above. Agrobacteria were 
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grown for two days at 28ºC on bacterial plates containing LB media with 

kanamycin (100 mg/L), gentamycin (20 mg/L), and rifampicin (34 mg/L) 

selection. Two colonies were separately grown overnight in LB liquid media 

containing kanamycin (100 mg/L), gentamycin (20 mg/L), and rifampicin (34 

mg/L). The cultures were placed in a floor shaker set at 28ºC and 200 rpm. 

One colony was selected to perform Agrobacterium-mediated transformation 

of Arabidopsis thaliana ecotype Columbia (wild-type plants) (A.2).  

Selection of dipped plants, T0, was done by germinating seeds on  

Murashige and Skoog (MS) medium (A.1.2) with selection. Approximately 0.5 

mL of seed from T0 plants was sterilized, and germinated on kanamycin (100

mg/mL) and cefotaxime (50 mg/mL) containing MS media plant plates. Seeds

were vernalized for two days at 4 ˚C on plates. After which, plates were 

transferred to growth chambers. The growth chamber conditions were as 

follows: a photoperiod of 16 hours of light and 8 hours of darkness, at 22 ˚C, 

in 15% relative humidity. Plants were grown under these conditions for a 

minimum of 14 days. After 14 days of growth, kanamycin resistant plants 

were transferred to vertical plates, for root growth, containing MS media with

kanamycin (100 mg/mL) and cefotaxime (50 mg/mL). Plants positive for 

antibiotic resistance and GFP signal were transferred to soil after screening 

and grown until seeds developed and matured. The seeds were harvested 

from positive T0 plants and were defined as the T1 generation. 

T1 plants were initially screened for one T-DNA insertion event by 

kanamycin antibiotic resistance. Approximately 25 to 50 seeds of each T1 

30



line were sterilized and germinated on kanamycin (100 mg/mL) containing 

MS media plant plates. After two days of vernalization at 4 ˚C, plates were 

transferred to growth chambers under the following conditions: a 

photoperiod of 16 hours of light and 8 hours of darkness, at 22 ˚C, in 15% 

relative humidity for a minimum of 10 days. Lines segregating a single locus 

according to Mendelian genetics, or 3:1 (resistant to sensitive), were 

screened for GFP signal. To screen for GFP signal, T1 plants were continually 

induced for 16 hours. Plants from lines positive for antibiotic resistance, 

segregating 3:1 (resistant to sensitive), and positive for GFP signal and 

inducible were transferred to soil and grown until seeds developed and 

matured. The seeds were harvested from the positive T1 plants and were 

defined as the T2 generation. 

Table 2.3: Segregation and Chi-square data of SEO1 T1 lines

T2 plants were initially screened for kanamycin antibiotic resistance. 

Approximately 50 seeds of each T2 line were sterilized and germinated on 

kanamycin (100 mg/mL) containing MS media plant plates. After two days of 
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vernalization at 4 ˚C, plates were transferred to growth chambers under the 

following conditions: a photoperiod of 16 hours of light and 8 hours of 

darkness, at 22 ˚C, in 15% relative humidity for a minimum of 10 days. Lines 

that did not segregate resistance to kanamycin selection were further 

analyzed. 

2.2.3 Identifying inducible, root epidermal cell-specific GFP signal

 T0, T1, and T2 populations were screened for GFP signal in root 

epidermal cells on a Lecia DM500 epifluorescence microscope with a 488 nm 

excitation and 525/30 nm emission filter set. To induce the genetic circuit, 

transgenic and wild-type plants were submerged in individual wells 

containing approximately 1 mL of liquid MS medium in the absence or 

presence of 100 μM DIG (Sigma Aldrich, St. Louis, MO) of a 24 well plate. The

carrier for all DIG used was Dimethyl sulfide (DMSO) to ensure sufficient 

diffusion of DIG into cell  (Thermofisher, Waltham, MA). After 16 (T1 and T2 

plants) or 24 hours (T0 plants) of continuous induction, plants were washed 

in MS liquid media, roots were harvested, and subsequently mounted on 

microscope slides in 50% glycerol for observation under a microscope. 

Controls included wild-type plants grown in the same conditions 

simultaneously with other samples, and treated in the same manner as 

transgenic samples for each treatment. These controls are defined as wild-

type controls. Transgenic plants treated with MS liquid media containing 

DMSO carrier at a final concentration of 1% were defined as transgenic 

controls. All mounted root samples were placed under excitation light for 
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200, 500, or 750 ms before imaging. Root samples from T0 and T1 lines with 

apparent, and robust GFP signal, and with a much greater GFP signal than 

controls were identified as positive. Plants with positively screened roots 

were transferred to soil, and grown until seeds developed and matured. The 

seeds were harvested from these transgenic lines and were defined as the 

T2 generation. A total of three T2 lines stably transformed with the inducible,

root epidermal cell specific genetic circuit were analyzed for the first circuit. 

A Keyence BZ-X700 epifluorescence microscope was used to observe 

GFP signal along the entirety of the root. T2 transgenic and wild-type plants 

seed were sterilized and germinated on vertical MS plates. Plants were grown

for a total of 7 days. Upon the seventh day, plants were transferred from 

vertical plates to 24 well plates containing approximately 1 mL of liquid MS 

media, in the absence (DMSO) or presence of 100 μM DIG. After 16 hours of 

continuous treatment, roots were harvested and mounted on a microscope 

slide in 50% glycerol. BZ Analyzer software (Keyence, Itasca, IL) was used to 

produce composite images of the entire root. Additionally, this software was 

utilized to overlay composite fluorescent and bright-field images. 

Furthermore, measurements of images were taken with this software.

2.2.4 Confocal microscopy approaches to quantify GFP signal

To remove autofluorescence and background from confocal images, two 

spectrally separate emission filters and one excitation laser were used. Roots

were exposed to 500 ms of 488 nm  laser light to excite GFP. Emission filters 

with a  525 nm emission and 30 nm bandpass, and a 617 nm emission and 
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73 nm bandpass were employed to capture GFP signal and background, 

respectively (Figure 2.4). 

Figure 2.4. Excitation and emission spectra used in dual-wavelength
confocal microscopy approach. a. 488 nm excitation laser is depicted 
with solid vertical blue line. GFP excitation and emission spectra are 
represented by the dashed and light blue shaded curves, respectively. b. 
Solid red line represents plant autofluorescence [26]. 525/30 and 617/73 
emission spectra are represented by green and orange shaded blocks, 
respectively. The 525/30 emission filter spectrum represents capture of GFP 
signal and autofluorescence signal, i.e., total signal. The 617/73 emission 
filter spectrum represents capture of autofluorescence. Figure was generated
using Spectra-Viewer software (ThermoFisher, Waltham, MA). 

A minimum of three points along each primary root within the 

maturation zone were taken with the confocal microscope for all quantitative 

experimentation, excluding images taken for development regulation 

experiments (Figure 2.3). Specifically, the zone of division and elongation are

present once within the Arabidopsis primary root, i.e., lateral roots were 

treated as a separate developmental class or zone. At each of the three 
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points,  the root was optically sectioned over 80 microns, i.e., a z-stack was 

generated for each point interrogated along the root (Figure 2.4).    

Figure 2.5. Developmental zones of the Arabidopsis root. The distal 
portion of the root begins with the root cap. Moving toward the proximal 
portion of the root, the zones are as follows: the zone of division, also known 
as the meristematic zone, the zone of elongation, and the zone of 
maturation, also known as the zone of differentiation. The proximal zone of 
maturation can develop lateral roots.

Figure 2.6. Optical sectioning of roots. The green cylinder represents a 
root. Each black rectangle represents an optical plane of the root within the 
zone of maturation. Two images were taken at each plane including one 
image using the 525 nm emission filter with a 30 nm bandpass (525/30) and 
the other using the 617 nm emission filter with 73 nm bandpass (6178/73). 
Each point of the root imaged was optically sectioned over 80 microns with 
five micron increments. All z-stacks were composed of 17 images, therefore 
a set was composed of 34 images.
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2.2.5 MATLAB program to quantify level of GFP signal

Confocal images of wild-type roots were read into the program as a set 

of matrices, wherein each element represents a pixel at a given position. 

These matrices are run through a Pearson correlation, and linear regression, 

wherein the 617/73 (autofluorescence) emission filter images were the x 

variable and the 525/30 (GFP) emission filter images were the y variable. The

Pearson correlation was run to ensure the autofluorescence within each 

channel was highly similar. Since the emission spectra of the filters are not 

identical, it is impossible to have identical autofluorescence signal captured 

in the images using these filters. However, if the images are highly 

correlated, above an (r) of 0.80, the similarity in autofluorescence is 

sufficient to predict autofluorescence in an image from a different image 

[28]. 

Assumptions must be met for linear regression including that the 

distribution of residuals must be normal. The assumption of residual 

normality is not required if the sample size is sufficiently large. This is 

because as sample size increases the distribution of residuals approximates 

a normal distribution [29]. The linear regression utilizes each pixel between 

the images at the same position therefore each pixel within the image 

represents a sample. Within one image there are approximately 1.56x105 

pixels or samples, i.e., the product of the dimensions (336 by 464 pixels ) of 

each image. Furthermore, the sample size was expanded beyond the number

of pixels within each image because multiple wild-type controls and technical
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replicates of these controls were used for each linear regression. Moreover, 

each area imaged along the root was optically sectioned therefore a series of

images was generated for each technical replicate (Figure 2.4). All of these 

approaches increased the sample size to create a sufficiently large sample 

size, well over the standard 30 samples to apply the Central Limit Theorem 

for linear regression [29].

The output equation from the linear regression was used to transform 

autofluorescence images. That is, the linear equation was applied to each 

pixel within the autofluorescence image. The linear coefficient physically 

represents the ratio of autofluorescence in each of the images. That is, the 

relationship defined through the linear coefficient is the amount of 

autofluorescence in each channel, wherein the dominator of the ratio is the 

autofluorescence within the autofluorescence 617 nm emission filter image 

and the numerator the autofluorescence of the 525 nm emission filter.  The 

intercept represents the internal background arising from the confocal 

microscope, separate from the signal arising from autofluorescence of the 

root sample. The linearly transformed, autofluorescence images, represented

by matrices, were directly subtracted from the corresponding total signal 

image pixel by pixel for each point interrogated on the root and for each 

optical section, i.e., a pixel at a given position (x,y) within the 

autofluorescence image was subtracted from the pixel at that same position 

(x,y) within the total signal image. The MATLAB program subtracts pixel by 

pixel, by subtracting the matrices of the linearly transformed and total signal 
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images. This is performed, for each image set, over the entirety of the z-

stack, therefore positional information within the image in the x, y, and z 

dimensions is maintained. The resulting image from subtracting these 

images contained GFP signal and excluded background signal. 

Once background was removed, images were normalized from a scale of

zero to one, for analysis in MATLAB, and logarithmically transformed. Images 

were transformed to increase contrast for more effective segmentation. 

Segmentation was performed by minimizing the weighted within-class 

variance to reduce a gray image to a binary image [30]. A bimodal histogram

of the GFP image is produced (Figure 2.5). The valley between the two peaks 

is the threshold. Pixels under the threshold are zero and pixels above the 

threshold are one. Those pixels defined as zero are background. Pixels 

defined as one are the region of interest. The binary image overlays the 

original image as a mask. Pixels defined as zero in the binary image are also 

defined as zero in the original and are excluded from quantification. Pixels 

defined as one in the binary image are quantified, i.e., the root sample with 

GFP signal within the original image is not occluded by overlaying the binary 

image. Subsequent to segmentation, the mean is calculated by taking the 

total sum of pixel intensities within the region of interest and dividing the 

sum by the number of pixels within the region for each mean. All images 

over all three z-stacks of a sample are taken to calculate the mean of the 

sample. These means are then used to calculate the grand mean of the 

treatment group. The pipeline is in Figure 2.6. 
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Figure 2.7. Histogram used to produce binary and masked images. a
A histogram is generated for segmentation. The left peak represents the 
background and the right areas in the image with GFP signal within the root. 
The valley between the peaks represents the threshold. b. A binary image of 
a root. Pixels numbered zero, or those below the threshold, are black. Pixels 
numbered one, or those above the threshold, are white. c. The resulting 
masked image is the image without autofluorescence and background with 
the binary image acting as the mask.  
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Figure 2.8. Pipeline of MATLAB program used to remove 
autofluorescence and background, and quantify GFP signal within 
an image. The program runs a linear regression between 617/73 confocal 
images (autofluorescence) and 525/30 (GFP signal) wild-type images. The 
linear equation from the regression is applied to the 617/73. The linearly 
transformed image is directly subtracted from the 525/30 image pixel by 
pixel to remove autofluorescence from the image. A region of interest is 
defined using Otsu’s method. The mean pixel intensity is calculated 
throughout the region of interest.  
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2.2.6 Confocal microscopy and experimental methodology 

Seed of T2 homozygous lines and Arabidopsis thaliana Columbia 

ecotype plants were sterilized and plated on vertical MS media plates 

containing  kanamycin (50 μl/ml) antibiotic. After 10 to 14 days of growth 

under a light cycle of 16 hours of light and 8 hours of darkness, T2 and wild-

type plants were transferred to 24 well plates containing liquid MS media and

DMSO in the absence or presence of various DIG concentrations including 

0.01, 0.1, 1, 10, 100, 200, and 500 μM. After 16 hours of continuous 

induction, plants were washed in liquid MS media, and roots were harvested. 

Harvested roots were mounted on glass slides in 50% glycerol and imaged 

using a Olympus IX83 Inverted Spinning Disk Confocal Microscope.

To identify if and when the genetic circuit was activated and in the “ON” 

state, and the point of maximal signal, T2 homozygous and wild-type control 

seeds were sterilized, plated, and grown as above. T2 plants and Arabidopsis

controls were  transferred to 24 well plates containing liquid MS media and 

DMSO in the absence or presence of 100μM DIG. Plants were removed from 

induction media after four and six hours, and 16, 24, and 40 hours of 

continuous induction, and quickly washed twice in fresh liquid MS media in 

the absence of induction media or DMSO carrier. These time points were 

interrogated to observe time of activation and maximal response, 

respectively. Preliminary screening was performed using a  Lecia DM500 

epifluorescence microscope with a 488 nm excitation and 525/30 nm 

emission filter set. From preliminary results, it was likely GFP signal was up 
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and beyond autofluorescence after six hours, and maximal after 16 hours of 

continuous induction. To quantify GFP signal, the experiment above was 

repeated with images of roots taken with an Olympus IX83 Inverted Spinning 

Disk Confocal Microscope with a 488 nm excitation laser using 525/30 nm 

and 617/73 nm emission filters. All samples were exposed to the 488 nm 

laser for 500 ms. Z stacks were taken at each interrogated point over 80 

microns.   

To determine the duration of the signal after removing induction media, 

T2 homozygous and wild-type seeds were sterilized, plated, and grown as 

above. T2 plants were  transferred to 24 well plates containing liquid MS 

media in the absence or presence of 100 μM DIG. After 16 hours of 

continuous induction, all samples were washed by moving each plant to a 

clean well filled with fresh liquid MS media. The well-plates containing the 

plants were placed on a shaker for approximately one hour, after which 

plants were blotted dry. A total of two washes were performed. Subsequent 

to the two washes, plants were moved to vertical MS media plates. For 

preliminary work, plants were screened five, 18, 24, 72, 96, and 120 hours 

after being removed from induction media. Roots were harvested, mounted 

on glass slides in 50% glycerol. Images of the mounted roots were taken on a

Lecia DM500 epifluorescence microscope with a 488 nm excitation and 

525/30 nm emission filter set. From preliminary results, it was likely 

expression levels of controls and treatment groups were equivalent after 4 to

5 days post removal from induction media. To quantify GFP signal, the 
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experiment above was repeated. However, images of roots were taken on an 

Olympus IX83 Inverted Spinning Disk Confocal Microscope with a 488nm 

excitation laser using 525/30 nm and 617/73 nm emission filters. All samples

were exposed to the 488 nm laser for 500 ms. Z stacks were taken at each 

interrogated point over 80 microns.   

Preliminary analysis of epifluorescence images suggested GFP signal 

varied by developmental zone of the root. To identify if this was occurring, T2

homozygous and wild-type seeds were sterilized, plated, and grown as 

above. T2 plants were  transferred to 24 well plates containing liquid MS 

media and DMSO in the absence or presence of 100 μM DIG. After 16 hours 

of continuous induction, all samples were washed with fresh MS media 

without inducer or DMSO present. Roots were harvested, mounted in 50% 

glycerol, and imaged with an Olympus IX83 Inverted Spinning Disk Confocal 

Microscope using 525/30 nm and 617/73 nm emission filters. All samples 

were exposed to a 488 nm laser for 500 ms to excite GFP. Z stacks were 

taken at each interrogated point over 80 microns. Interrogated areas of the 

root included distal and proximal portions within the zone of maturation, the 

zone of elongation, the zone of division, and lateral roots. Within each 

developmental zone, only one z-stack was taken for each root sample, unlike

other experiments which interrogated three points within the zone of 

maturation along the length of the root. A total of six samples of each 

treatment were utilized for each independent transgenic line. 
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2.3 Results

2.3.1 Correlation and linear regression of wild-type root Images

For each experiment performed on the spinning disk confocal microscope 

wild-type roots were read into a custom MATLAB program. The program begins 

by running a Pearson correlation and linear regression wherein the 

autofluorescence (488/617) images are the x variable and the GFP (488/525) 

images are the y variable. The correlation between autofluorescence and total 

signal images was high, consistently near or above 0.86 (Figure 2.7). 

Figure 2.9. Representative Pearson correlation and linear regression
of wild-type root autofluorescence and total signal images. x-axis: 
autofluorescence image pixel intensities; y-axis: Total signal image pixel 
intensities. The exact Pearson correlation r value for this model is 0.868. The 
linear equation is represented by the yellow line. The linear equation (y= 
0.69x+0.0014) for the linear regression run on pixel intensities of the image 
is displayed in the upper left corner of the graph. 
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2.3.2 Root epidermal tissue-specific GFP signal 

GFP signal was evident within root epidermal cells. Specifically, the 

outermost layer of the root was extremely robust in GFP signal (Figure 2.8). 

Furthermore, GFP expression was exclusively observed within the root 

epidermis layer, and extensions of the epidermis (root hairs) (Figure 2.8). 

Moreover, GFP signal was evident throughout the entirety of root within the 

root epidermal tissue layer (Figure 2.9). However, variation in GFP signal 

intensity was conspicuous. Specific developmental areas of the root 

epidermis exhibited strong GFP signal. These areas included the zone of 

division, the zone of maturation, and lateral roots (Figure 2.9, 2.10). Whereas

other areas of the root epidermis exhibited weaker GFP signal, such as the 

zone of elongation  (Figure 2.9, 2.10). The patterns of GFP signal within and 

between developmental zones observed in quantitative microscopy images 

follow those observed in epifluorescence images (Figure 2.11). The lateral 

roots of each independent transgenic line had an approximately two fold 

increase in GFP signal over the second most GFP signal intense 

developmental zone. These zones were the distal zone of maturation in 

the03 SEO1-45 line, and the zone of division in SEO1-50 and 21. 

Furthermore, GFP signal within the zone of maturation, either distal (SEO1-50

and 21) or proximal (SEO1-45), had a two and four fold increase, 

respectively, in GFP signal over the zone elongation.    
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Figure 2.10. Confocal images of root epidermal specific expression. 
Representative transgenic roots treated with 1, 10, and 100 μM digoxin (left 
to right) for 16 hours. GFP signal can be seen in the outermost tissue layer 
(epidermal), and within the epidermal extensions (root hairs). All images 
where taken in the zone of maturation.

Figure 2.11. Whole-root composite images of entire roots. All images 
are representative. (a) Overlay of bright field and epifluorescence images of 
transgenic root sample after continuous induction for 16 hours with 100μM 
DIG medium. (b) Overlay of bright field and fluorescent images of transgenic
control root. (c) Overlay of bright field and fluorescent images of wild-type 
control sample. (d) Fluorescence image of transgenic root under continuous 
induction for 16 hours 100μM DIG medium. Bars represent 5 mm. ZM: zone 
of maturation, LR: Lateral root, ZE: zone of elongation, ZD: zone of division.
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Figure 2.12. Close-up images of developmental . Close-up images 
taken from Figure 2.9. Upper left corner panel, lateral root (LR). Upper right 
panel, zone of maturation (ZM). Lower left panel, zone of elongation (ZE). 
Lower right panel, zone of division (ZD). The lateral root is extremely robust 
in GFP signal followed by the zones of division, maturation, and elongation. 
For zones of development refer to figure 2.5 and 2.11. Bars represent 1 mm.
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Figure 2.13. Quantified gene expression within each developmental 
zone of the root. Transgenic plants and wild-type controls were treated 
with 100μM DIG and continuously induced for 16 hours. Interrogated zones of
the root included the zones of division, elongation, and maturation, and 
lateral roots. All images of treated transgenic samples have been normalized 
to transgenic controls to account for basal expression. Error bars represent 
+/- 2 SE. n=6 per treatment.

2.3.3 Induciblity: Activation and duration characterization 

Transgenic controls, those not exposed to ligand and otherwise treated 

identically to treated transgenic samples, had no discernible GFP signal 

above autofluorescence. Transgenic controls appeared to have fluorescence 

signal consist with wild-type controls (Figure 2.9).Transgenic roots exposed to

DIG had extremely evident fluorescence signal within root epidermal cells 

and extensions of the root epidermis (root hairs) in epifluorescence images. 

Furthermore, the basal expression of the lines was extremely low. SEO1-45 

had the greatest level of basal expression, nearly 3% of that observed in the 
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induced sample (Figure 2.12). The other two lines did not have as high of 

basal expression. Nearly 2.5% for SEO1-21, and 1% for SEO1-21 of the 

induced sample. 

Figure 2.14. GFP signal under no and digoxin media. Transgenic 
controls are represented by the zero concentration. Samples were treated 
with treatment media continually for 16 hours. Error bars represent +/- 2 SE. 
n=6 per treatment, three technical replicates per sample.   

After six hours of continuous induction fluorescence above transgenic 

controls was observed in treated samples (Figure 2.13). Furthermore, roots 

continuously induced for 16 hours had the greatest observed signal intensity 

in all independent transgenic lines over all observed time points. GFP signal 

was less at 24 hours than at the peak observed at 16 hours. Both SEO1-21 

and 45 transgenic lines had just over a four fold increase in signal, and SEO1-

50 had just under a seven fold increase. However, GFP signal was greater 

after 24 hours of continual induction than at six hours of continual induction 
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by nearly three fold in SEO1-50, four fold in SEO1-21, and 4.6 fold in SEO1-

45. By 40 hours, GFP signal increased from the decline observed after 24 

hours of continual induction. SEO1-21 GFP signal was nearly the same at 24 

and 40 hours, whereas GFP signal was greater in SEO1-50 and lesser in 

SEO1-45 by 15.5% and 33%, respectively. 

Figure 2.15. GFP signal over time of continually induced transgenic 
samples. Control and transgenic samples were continually induced for four, 
six, 16, 24, and 40 hours. At each time point, transgenic and wild-type 
controls were also sampled. Error bars represent +/- 2 SE n= 6 per line, three
technical replicates per sample.

After removal of induction media GFP expression decreased overtime 

until no discernible GFP signal was observed. 24 hours after being removed 

from induction media GFP signal intensity decreased by nearly 56% in SEO1-

21 samples, and nearly 59% in SEO1-45 and SEO1-50 samples compared to 

samples continually induced for 16 hours (Figure 2.14). Five days following 

removal from induction media, GFP signal did not significantly differ within 

50



root epidermal cells between transgenic controls and treated transgenic 

samples in all lines (Figure 2.15). Interestingly, the decline of SEO1-21 GFP 

signal was slower than SEO1-45 and SEO1-50. In particular, the decrease 

between 24 and 72 hours, wherein the slope of the line of SEO1-21 samples 

is far less steep.  

Figure 2.16. GFP signal in independent transgenic lines 24 hours 
post removal from induction media. Continually induced transgenic 
samples (16 hours) represent time zero, i.e., these samples were removed 
from induction media and immediately screened. Samples were continually 
induced for 16 hours, washed, and screened 24 hours after removal from 
induction media are represented by the 24 hour time point. n= 5 per line, 
three technical replicates per sample. Error bars represent +/- 2 SE. 
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Figure 2.17. Duration of GFP signal after removal from induction 
media. GFP signal 24, 72, and 120 hours after removal from induction 
media. The GFP signal intensity of all transgenic lines 24 and 72 hours after 
removal from induction media significantly differed from transgenic controls. 
All treated samples did not significantly differ from transgenic controls after 
120 hours post removal from induction media. n= 5 per line, three technical 
replicates per sample. Error bars represent +/- 2 SE.

2.3.4 Dose-curves and quantitative control

As the concentration of ligand increases, the level of GFP signal 

increased. A minimum ligand concentration of 100nM was required to 

observe significantly different GFP signal from transgenic controls (Figure 

2.16). Additionally, ligand concentrations above 100μM produced nearly 

equivalent or less GFP signal (Figure 2.16). 

Transgenic root samples under continuous induction at a 100μM  

digoxin concentration had a 34 to a 150 fold increase in GFP signal relative to

52



transgenic controls (Figure 2.17). Of the three lines tested, two had fold-

changes of approximately 34 and 43. The lines with lowest and highest 

absolute GFP signal, SEO1-45 and SEO1-21, respectively, had smaller fold 

inductions relative to line with an intermediate GFP signal, SEO1-50. This line

had an observed fold induction in signal intensity nearly 3.5 to 4.5 times over

the other lines. The dynamic range of these lines mirrored the fold induction. 

For example, SEO1-50 samples had the greatest fold induction and the 

greatest dynamic range. 

Figure 2.18. Dose-dependent response of independent transgenic 
lines. Three independent lines (SEO1-21, SEO1-45, SEO1-50).Treated 
samples were continuously induced for 16 hours over eight concentrations of
digoxin including 0, 0.01, 0.1, 1, 10, 100, 200, and 500 μM.  All samples have
been normalized to wild-type control. Error bars represent +/- 2 SE. n=6 per 
treatment, three technical replicates per sample. 
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Figure 2.19. Fold-induction of individual transgenic lines over 
several ligand concentrations. Fold induction was calculated by 
normalizing to wild-type sample and calculating the ratio of GFP signal 
between induced transgenic samples and transgenic controls. Error bars 
represent 95% confidence interval. n=6 per treatment. 

2.4 Discussion 

An inducible, tissue-specific genetic circuit permits spatiotemporal and 

quantitative control of a desired output. Here, I have demonstrated an 

inducible, root-epidermal specific genetic circuit stably integrated in plantae. 

To quantify GFP signal, an experimental approach using one excitation laser 

with two emission filters was developed. Images output from the 

experimental approach were subsequently fed into a computational pipeline 

for high-throughput analysis (Figure 2.8). 

A challenge in characterizing genetic parts and circuits by means of 

fluorescent reporters and microscopy is quantifying reporter signal in a high-

throughput manner. This is particularly true when imaging living tissues 
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which emit autofluorescence that can partially occlude “true” fluorescence 

reporter signal. To meet this challenge, I developed an experimental 

approach with dual-wave length emission filters and incorporated a custom 

MATLAB program into the pipeline. The computational approach relied on 

linear regression between autofluorescence and GFP images necessitating 

high correlation between images of a set, which was observed across 

experiments. The minimum Pearson correlation (r) between sets of images 

was just above 0.86 ranging to nearly 0.94. This is well above the minimum 

correlation required to accurately model image sets [26][27]. In addition to 

being highly correlated linear equations varied little across experiments. The 

range of the slope was between 0.41 and just over 0.65, with a minimum 

intercept of 0.0016 and maximum of 0.0078. Having observed consistently 

high correlation between images and minimal variation between equations 

across experiments suggests linear regression accurately captures the 

autofluorescence and background signal relationship between the emission 

filters as to accurately remove these signals. 

Relying on linear regression to quantify fluorescence reporter signal 

does introduce a limitation being the availability of spectrally separated 

emission filters able to capture both autofluorescence and reporter signal 

simultaneously. However, confocal microscopes are designed in such a 

manner to have a variety of excitation lasers and emission filters. Moreover, 

a variety of fluorescence reporters are available to chose from. This widens 

the field of possible and compatible excitation wavelengths and emission 
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filters to the reporter. Furthermore, autofluorescence excitation and emission

spectra are extremely broad, therefore autofluorescence can be excited and 

emission signal captured utilizing most lasers and filters. With a wide range 

of available excitation lasers and emission filters that can fit desired 

experimental and computational approaches this limitation is readily 

overcome.  

Transcription of the digoxin dependent transcription factor driven by a 

tissue-specific promoter imparted spatial control over output of the DIG 

system. The spatial patterns of GFP signal did align with characterization 

studies of the ABCG37 promoter [32]. Moreover, spatial patterns of GFP 

signal aligns with expression patterns of the native ABC transporter 

(ABCG37/PDR9) [33][34]. GFP signal occurred exclusively within root 

epidermal cells throughout the entirety of the root, and intensity of GFP 

signal had a pattern dependent on the developmental zones of the root. For 

instance, lateral roots had greater overall signal, whereas the elongation 

zone consistently had the lowest overall signal. within the epidermal tissue 

layer compared to other developmental zones of the root. In general, 

regulation and spatial expression patterns of a promoter driving transcription

of the DIG dependent transcription factor extends to the output of the DIG 

system. While the promoter driving transcription of the DIG dependent 

transcription factor spatially regulates output, temporal regulation of it is 

controlled by the ligand dependent transcription factor.   
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The DIG dependent transcription factor behaves in an inducible manner 

with an “ON” state and “OFF” state in the presence and absence of ligand, 

respectively. Leaky expression in the OFF state is minimal. The output of the 

leakiest line approximated 3% of the maximal output. The other analyzed 

transgenic lines, with less leaky expression, had outputs approximating 1% 

and 2% of the maximal response. This indicates the DIG system is tight, with 

a low level of basal expression. Additionally, the sensitivity, or ligand 

concentration required to induce the DIG system and enter it into an ON 

state, is equal to the dexamethasone, a synthetic glucocorticoid, inducible 

system (pOp/LhGR) [35]. Both required a ligand concentration of 0.1μM to 

activate. However, the sensitivity of the widely studied β-estradiol inducible 

system (XVE/OlexA), 0.008μM, is far less than these systems [36]. Although, 

the fold-induction of the XVE/OlexA system is nearly 18 times less than the 

DIG system. 

The difference between leaky expression and maximal output of DIG 

transgenic lines represents a reasonable dynamic range. A 150 fold-induction

was observed in the transgenic line with the largest dynamic range. In 

comparison, the XVE/OlexA with a fold-induction of eight represents a far 

smaller dynamic range [36]. The pOp/LhGR and alcohol inducible (AlcR/AlcA) 

systems have far greater fold inductions relative to the DIG system, of 1000 

and 2000, respectively [35][37]. The dynamic range of the DIG system is 

neither extremely low nor high compared to other systems, but the ligand 

concentration required for maximal response is greater. For example, ligand 
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concentrations of 10 and 0.08uM elicited maximal responses from the 

pOp/LhGR and XVE/OlexA systems, respectively. Although, these systems 

require a lower ligand concentration to reach maximum output, this lends to 

a smaller range of ligand concentrations eliciting response. The smaller 

range could limit output tunability. The fold-induction is extremely high and 

the range of responsive ligand concentrations small, therefore small 

adjustment to ligand concentration would produce a larger change in output 

from these systems relative to the DIG system. This should be taken into 

consideration if output needs to shift on a finer-scale. For instance, output 

from the genetic circuit may feed into another transcriptional pathway 

wherein the outcome of the downstream pathway is dependent on a 

gradient. In Arabidopsis cell fate and differentiation, developmental 

trajectories of tissues and organs, and defense mechanisms are often 

determined by gradients of phytohoromones and reactive oxygen species 

[38][39][40]. In-turn, gradients are regulated and established by regulatory 

networks and transcription factors composing those networks. To establish 

and regulate a gradient to ensure a desired outcome regulatory network 

outputs need to be adjusted accordingly. 

Toxicity issues have been observed with the glucocorticoid and ethanol 

inducible systems. The rat receptors incorporated into glucocorticoid 

inducible systems as GR domains can negatively effect development [33]. 

Furthermore, exposing plants to ethanol, particularly in the context of the 

AlcR/AlcA system, has been shown to reduce viability [41]. These issues were
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not observed within plants transformed with the DIG system. Toxicity may 

occur with high exogenous DIG concentrations. However, toxic effects were 

observed as reduced output, and no development nor viability consequences

were observed. Additionally, more concentrated ligand can be avoided as the

maximum output occurs below possible toxic ligand concentrations. 

The time to required to activate the DIG system, for output to reach a 

maximal response, and the duration of signal after removal from induction 

media align with other inducible systems. Both the  pOp/LhGR and DIG 

systems had observable output after six hours of continuous induction [6]. It 

should be noted, the pOp/LhGR system was within a tissue-specific context, 

specifically the quiescence center of the root meristem. However, a one hour

activation time has been reported for the dexamethsone system not within a 

tissue-specific context [38]. Additionally, XVE/OlexA and  AlcR/AlcA systems 

had observable output after one half and four hours, respectively [36][37]. 

Although these systems turn ON earlier, the DIG system reaches maximal 

response faster. The XVE/OlexA and pOp/LhGR reach maximal response after 

24 hours of continuous induction, whereas the AlcR/AlcA system requires five

days of continuous induction. Temporal differences between these systems 

may relate to molecular mechanisms underlying them. Among many 

possibilities are binding affinity of transcription factors to DNA regulatory 

sequences and ligands, interactions with transcriptional machinery, and 

degradation rates of system mRNA and ligand [39][40][41]. Additionally, the 

pOp/LhGR relies on spatial separation of the LhGR transcription factor from 
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the cognate DNA, therefore nuclear import may retard progression toward 

maxima. Whatever the case, the DIG system reaches the maxima faster. 

The DIG output increases and decreases in what appears to be a 

circadian rhythm. This could relate to the ABCG37 promoter and its 

association with auxin transport. Regulation of auxin signaling and responses

by the circadian clock, and other circadian behaviors regulated by auxin 

have been shown [46][47]. Temporal studies analyzing the DIG system with 

quantitatively and well-characterized promoters may elucidate if a circadian 

rhythm arises from innate characteristics of the system or parts of the 

system, or as a result of the promoter driving transcription of the DIG 

dependent transcription factor.  

The genetic circuit I designed is modular, therefore can be easily 

manipulated in variety of ways in future studies as a molecular tool. For 

instance, as a molecular tool to functionally and quantitatively characterize 

promoters. Moreover, the correct topology and design of the genetic circuit 

with CRISPR/Cas9 gene editing tools can spatially and temporally control 

editing events. For instance, if the UAS promoter drives transcription of the 

Cas9 protein the editing tool would be inducible, temporal control, and 

possibly quantitatively controlled by the ligand concentration. Furthermore, 

CRISPR/Cas9 off-target editing events could be limited to a subset of cells or 

developmental stage by driving transcription of the DIG transcription factor 

by a tissue or cell specific promoter. This could limit negative effects caused 

by off-target effects throughout the whole plant body. 
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The DIG system could also be incorporated into metabolic engineering 

designs. Particularly if a biopolymer or metabolic pathway was required in a 

specific cell-type or tissue and needed to be temporally controlled. 

Economically important tomato crops, specifically the fruit, could be 

engineered and used as a biotechnological resource for medicinal  bioactive 

products [19]. The DIG system could be used to activate metabolic pathways

in the fruit to produce these medicinal and bioactive products at the desired 

time, particularly before ripening occurs and the metabolic demand is low.

The inducible, tissue-specific circuit is an additional genetic system of 

the Arabidopsis molecular toolkit. The system can provide an approach to 

expand the library of characterized genetic parts, be utilized in metabolic 

engineering, and impart spatiotemporal tunability of genetic expression. 
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Chapter 3: Incorporation of a positive feedback motif into an
inducible, root epidermal cell-specific genetic circuit

3.1 Introduction

Multicellular organisms evolved regulatory mechanisms and networks to

divide labor across cells and tissues composing whole organisms. Part of 

these mechanisms are regulatory genetic motifs. For instance, transcriptional

repressors and activators with feedback between each other have been 

implicated in pattern-triggered immunity in plants, floral organ abscission, 

and circadian clocks [1,2,3]. Additionally, regulatory motifs have been 

encoded into synthetic genetic circuits to achieve desired behaviors and 

outputs as a proof-of-concept [4,5,6]. Specifically, autoregulatory positive 

feedback loops have been successfully implemented in bacterial, yeast, and 

mammalian cells to amplify output, modify circuit kinetics, be more sensitive 

to input, and impart cellular memory or hysteresis. A commonality between 

these systems is an ultrasensitive response, wherein a small increase of 

input results in a drastic increase of the total output [7,8]. This drastic 

increase in output can approximate a digital or switch-like response. 

The ability to design and incorporate positive feedback into synthetic 

circuits functioning within plant platforms could be extremely valuable. For 

instance, plants could be engineered to sense the level and persistence of 

various environmental toxins and respond by initiating a transcription 

regulatory network, after a certain threshold  of the toxin is met, to 

remediate the soil [9]. Even with a reduction of the toxin, the plant should 
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have memory of the toxin and continue to initiate the phytoremediation 

pathway. Additionally, plants could be designed such that biofuel production 

is switched-on after a specific developmental stage is reached [10]. To this 

end, we developed a positive feedback genetic system functioning within 

Arabidopsis thaliana. 

The inducible, root epidermal cell-specific genetic circuit detailed in the 

previous chapter was expanded upon with a simple positive feedback motif. 

In this design, the positive feedback is dependent on a transcription factor 

(Gal4-VP64/PF) driving transcription of itself (Figure 3.1). Transcription of the 

PF transcription factor was driven by the inducible (UAS) promoter. Driving 

transcription of the PF transcription factor with the UAS promoter maintained

response to digoxin, therefore the genetic circuit would still be inducible and 

quantitatively controlled with input. Encoding the inducible promoter 

required that the PF transcription factor be able to bind the UAS promoter, 

therefore it has a Gal-4 DNA-binding domain (DBD). Preliminary results 

showed the VP64 activation domain resulted in the best activation and was 

used to partially compose the PF transcription factor.

Demonstrated in this chapter is a simple positive feedback genetic 

circuit that has targeted output to root-epidermal cells. Additionally the 

circuit is inducible and more sensitive to input than the comparable genetic 

circuit detailed in chapter two. Furthermore, the positive feedback genetic 

circuit responses faster to ligand than the circuit and has what appears to be 

memory when transiently exposed to ligand.   
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Figure 3.1. Topology of the positive feedback genetic circuit. The 
ABCG37 promoter drives transcription of a computationally designed, DIG 
dependent TF. The DIG dependent TF can bind the inducible promoter (UAS). 
The UAS promoter drives the expression of the reporter molecule, enhanced 
green fluorescent protein (GFP). The DIG dependent TF “jump starts” the 
positive feedback by binding the UAS promoter driving expression of the 
GAL4-VP64 (positive feedback/PF) TF. The transcription factor is 
autoregulatory, i.e., can drive transcription of itself after translation and 
expression of the GAL4-VP64 transcription factor. Moreover the PF 
transcription factor can drive transcription of GFP.  

70



3.2 Methods

3.2.1 Assembly of positive feedback genetic circuit 

The ABCG37 promoter was amplified using KJM325 vector (Table 3.1) as 

template with Phusion high fidelity polymerase (NEB, Ipswitch, MA) and 

primers 7 and 8 (Table A.4) to add KpnI and PacI restriction sites to the 5’ and

3’ ends of the amplicon, respectively. The PCR product was screened as in 

chapter two. The ABCG37 promoter was directionally cloned into KpnI and 

PacI digested KJM412-pCambia 2300 binary vector (Table 3.2) using T4 ligase

(NEB, Ipswitch, MA) upstream of the ligand dependent transcription factor to 

drive expression of it and impart tissue specificity to the circuit. The resulting

plasmid is KJM414 (Table 3.2). The inducible promoter (UAS promoter) and 

reporter (GFP)  with the terminator and transcription block, in addition to the 

5’ end of the ABC were removed from SEO4 plasmid using KpnI and PacI 

restriction enzymes (NEB, Ipswitch, MA). This DNA fragment was directionally

cloned into KpnI and PacI digested KJM414 using T4 ligase downstream of the

left T-DNA boarder and upstream of the ABCG37 promoter to produce SEO10 

(Figure 3.2).  

Table 3.1: Template for PCR
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Table 3.2: Constructs for cloning SEO10 plasmid
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Figure 3.2. Construct (SEO10) and linearized T-DNA of positive 
feedback circuit. The circuit is composed of three genes. From the left t-
DNA boarder, is a UAS promoter driving the transcription of eGFP, followed 
by an TADH. To ensure read through does not occur a transcription block 
proceeds the TADH sequence. The subsequent DNA unit is composed the 
ABCG37 promoter driving the transcription of the DIG dependent TF and 
terminated with a OCS terminator. The next DNA unit is a UAS promoter 
driving transcription of Gal4-VP64 transcription factor and terminated with a 
NOS terminator. Kanamycin markers were used for selection. Transcription of 
the kanamycin marker is constitutive and driven by a 35S CaMV promoter 
and terminated by 35S terminator. Figure generated using SnapGene 
software. 

3.2.3 Screening bacterial, and T0 and T1 transformants

For general methods performed to identify stably transformed 

Arabidopsis plants with the positive feedback genetic circuit reference 

chapter 2, section 2.2.2. SEO10 E.coli transformants were screened using 

colony PCR with primers 34 and 35 and SEO1 plasmid as a positive control. 
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Three positive  E.coli colonies were identified. Plasmids were isolated as in 

chapter two and sent to Macrogen (Rockville, MD).Samples with 

approximately 200 ng/μL of SEO10 plasmid and one of the primers from 

primers nine to 34 were sent in as reactions for sequencing (A.4).

Chapter two also details ,in section 2.2.3, methods to screen T0 and

T1 plants for inducible and root epidermal specific GFP signal. Only two 

transformants of the total eleven screened in the T1 generation were positive

for GFP. This is unlike chapter two, wherein all T1 transfomants segregating 

three to one for kanamycin resistance were positive for GFP signal after 

induction. Additionally, RNA for GFP was isolated using a easy-spin IIp Plant 

RNA Extraction Kit (Qiagen, Hilden, DE). The extracted RNA was used as 

template for RT-PCR with primers one and two and Phusion DNAP. The cDNA 

was run on a 1% agarose electrophoresis gel to screen for presence of bands 

the size of the GFP sequence within the positive feedback transformants.

3.2.4 Confocal microscopy to quantify GFP signal

Confocal microscopy approaches for positive feedback roots were 

performed in the same manner as in chapter two. However, only plants from 

the T1 generation were used for confocal microscopy. Moreover, only one 

transgenic line was responsive to positive for GFP and inducible, therefore 

only this line was analyzed. Additionally, preliminary results suggested the 

two transgenic lines had observable GFP signal after four hours of continuous

induction, therefore temporal characterization experiments were shifted to 

begin screening after four hours and did not include a six hour time point. 
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3.2.5 Comparing roots with and without positive feedback 

SEO1-50 and SEO10-225 were used for comparison between genetic 

circuits with and without positive feedback, respectively. These lines were 

chosen because each had the largest dynamic range of the lines analyzed 

with and without positive feedback. Seed of T2 (SEO1-50) and T1 (SEO10-

225) lines, and wild-type plants were sterilized and plated on vertical MS 

media plates containing  kanamycin (50μl/ml) antibiotic. After 10 to 12 days 

of growth under a light cycle of 16 hours of light and 8 hours of darkness, 

SEO1-50, SEO10-225, and wild-type plants were transferred to 24 well plates 

containing liquid MS media in the absence or presence of various digoxin 

concentrations including 10nM, 100nM, 1μM , 10μM, 100μM. After 16 hours 

of continuous induction, plants were washed in fresh liquid MS media in a 

clean 24-well plate. Plates were placed on a shaker set at 50 rpm for an hour.

Two washes were performed. After washing, the roots were harvested. 

Harvested roots were mounted on glass slides in 50% glycerol and imaged 

using a Olympus IX83 Inverted Spinning Disk Confocal Microscope with a 

488nm excitation laser, and 525/30nm and 617/73nm emission filters. All 

samples were exposed to the 488nm laser for 500ms. Z stacks were taken at

each interrogated point over 80 microns. The resulting images were run 

through the MATLAB program detailed in chapter two section 2.2.5.   
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3.3 Results

3.3.1 Root epidermal specificity and positive feedback

GFP signal was extremely evident in the root epidermis (Figure 3.3).  

This included extensions of the epidermis (root hairs). Furthermore, the same

spatial pattern dependent observed without positive feedback is observed in 

transgenic epidermal cells containing the positive feedback genetic circuit. 

Lateral roots and the zone of elongation GFP signal were greater and lesser 

than all other zones, respectively (Figure 3.4). Specifically,  the lateral 

samples had a GFP signal intensity three fold greater than the zone of 

elongation samples. Moreover, the zones of maturation and division had GFP 

signal greater than the zone of elongation, but less than the lateral roots. 

The lateral root GFP signal was 37%, 32%, and 51% greater than the zones 

of division, proximal and distal zone of maturation, respectively. The zone of 

elongation had a two fold decrease in GFP signal to the distal maturation and

division zones. The GFP signal of the proximal zone of maturation was nearly 

30% greater than that of the zone of elongation. Additionally, the zone of 

division had a greater GFP signal than the proximal portion of the zone of 

maturation by 30%, but was nearly the same as the distal portion.  The 

spatial pattern of GFP signal was highly similar to those observed without 

positive feedback (Figure 2.9, 2.10, 2.11). For both genetic circuits the most 

intense and least intense signals were observed in the lateral roots and zone 

of elongation, respectively.  

76



Figure 3.3. Confocal image of root harvested from positive feedback
T1 transfomant SEO10-225. Representative transgenic root continually 
induced with 1 μM DIG liquid media for 16 hours. 

Figure 3.4. Expression of GFP is under developmental regulation 
due to root-epidermal specific (ABCG37) promoter. Root samples were 
treated for 16 hours. From left to right: ZD: zone of division, ZE: zone of 
elongation, PZM: proximal zone of maturation, DZM: distal zone of 
maturation. LR: lateral roots. Confocal images were normalized to transgenic 
controls to account for basal level of expression .n=6 per treatment. Error 
bars represent +/- 2 SE.  

3.3.2: Positive feedback genetic circuit over digoxin concentrations

The GFP signal of the transgenic lines differed. SEO10-225 at 1, 10, and 

100 μM ligand concentrations was significantly greater than transgenic 

controls (Figure 3.5). However, the only significantly different GFP signal in 
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SEO10-240 was observed at a ligand concentration 1 μM. Moreover, the fold 

induction  of this line over transgenic controls was under two fold for all 

concentrations (Figure 3.6). Furthermore, when the standard deviation error 

term was applied to the output a significant difference did not exist between 

transgenic controls and those treated with 1 μM ligand. The other transgenic 

line had a nearly 30, 19, and 14 at ligand concentrations of 1, 10, and 

100μM, respectively.  Furthermore, the response curve of this line appears to 

be sigmoidal in shape (Figure 3.5). Concentrations below 1 μM did not 

produce GFP signal significantly different than the transgenic control, a sharp

increase occurs at a 1 μM ligand concentration, and samples under ligand 

concentrations above 1 μM have a GFP signal. 

Figure 3.5. Positive feedback genetic circuit over digoxin 
concentrations. Zero concentration represents the transgenic control. Both 
transgenic lines were continually induced for 16 hours at each treatment 
concentration. Samples have been normalized to wild-type samples. n=4 per
treatment, three technical replicates per sample. Error bars represent +/- 2 
SE. 
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Figure 3.6. Fold-induction with incorporated positive-feedback loop. 
Fold induction of each SEO10 independent transgenic lines. Fold induction 
was calculated by normalizing to wild-type sample and calculating the ratio 
of GFP signal between induced transgenic samples and transgenic controls. 
n=4 per treatment, three technical replicates per sample. Error bars 
represent the 95% confidence interval.    

3.3.3:  Activation characterization of positive feedback circuit

The positive feedback genetic circuit had significantly different GFP 

signal above transgenic controls after four hours of continuous induction 

(Figure 3.7). The positive feedback exhibited a faster activation response 

relative to the inducible tissue specific genetic circuit lacking the positive 

feedback by two hours (Figure 2.13). However, both genetic circuits exhibited

maximal GFP signal after 16 hours of continuous induction and a dramatic 

decrease in expression after 24 hours of continuous induction. The GFP 

signal in treated samples after 16 hours of continual induction was over 15 

fold greater than transgenic samples continually induced for 24 hours.  

Furthermore, the GFP signal after four hours of continuous induction was also

greater than the GFP signal after 24 hours of continuous induction. 
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Figure 3.7. Positive feedback time course. Treated samples were 
continually induced for 16 hours. Treatment group samples were subjected to
liquid MS media containing 1μM ligand. Images of treatment group outputs 
have been normalized to transgenic controls at each time point to account 
for basal expression. n=4 per treatment, three technical replicates per 
sample. Error bars represent +/- 2 SE. 

3.3.4: Positive feedback: Sensitivity and amplification

The transgenic line with the genetic circuit containing the positive 

feedback and responsive to ligand, exhibited maximal GFP signal after being 

elicited with 1 μM ligand (Figure 3.5, 3.8). Transgenic lines with the genetic 

circuit without positive feedback exhibited maximal output with ligand 

treatment of 100 μM (Figure 2.16, 3.8). In other words, the sensitivity of the 

genetic circuit with the positive feedback loop motif was 100 fold more than 

that of the genetic circuit without this motif. However, the maximal output of 

the genetic circuit without positive feedback was greater than that of the 

genetic circuit with positive feedback by four fold (Figure 3.8). 
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Figure 3.8. Amplification and sensitivity: Comparison between 
positive feedback and non-positive feedback genetic circuits. All 
samples were treated for 16 hours. Induced transgenic samples and 
transgenic controls have been normalized to wild-type samples. n= 4 per 
line, three technical replicates per sample. Error bars represent +/- 2 SE. 
Transgenic controls were subjected to media containing carrier (DMSO) for 
DIG.

3.3.5  Memory and positive feedback

After one day from the removal of transgenic samples from induction 

media output decreased to nearly 50% of that observed in continually 

induced samples (Figure 3.9). However, output reached what appeared to be 

a steady level and remained at this level for a period of at least three days 

up to five days. Transgenic controls had GFP signal greater than those 

screened one and three days after removal from induction media. Moreover, 

outputs of transgenic control samples were greater than those samples 

induced five days prior. Due to this response, it is difficult to identify if GFP 

signal is retained up to five days after removal from induction or the source 

of increased GFP signal. 
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Figure 3.9. Positive feedback motif may impart limited memory  
All samples were treated (absence of presence of ligand) continually for 16 
hours. Zero time point represents those samples remove from treatment 
screened immediately after removal from induction media. n= 4 per line,  
three technical replicates per sample for each time point. Error bars 
represent +/- 2 SE. Transgenic controls were subjected to medium containing
carrier (DMSO) for DIG.

3.4 Discussion

Incorporation of a simple positive feedback motif into the root epidermal

cell-specific DIG transactivation system modifies the dynamics and 

sensitivity of the genetic system. However, incorporating positive feedback 

did not disrupt inducible and spatial expression patterns observed without 

positive feedback. Moreover, the spatial GFP signal patterns of the root 

epidermal specific DIG transactivation system with and without positive 

feedback appear to be the same (Figure 2.11, 3.4). That is, GFP signal 

occurred solely within the root epidermal tissue and along the entirety of 

roots. Moreover, GFP signal followed the developmental zones of the root.  
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Specifically, the overall GFP signal of lateral roots and the zone of elongation 

were greater and lesser than all other developmental zones, respectively 

(Figure 3.4). For instance, the lateral roots had 30 to 50% greater GFP signal 

than the zones of division and maturation, respectively, and two fold greater 

signal than the zone of elongation. GFP signal within the zones of maturation 

and division were two fold greater than the GFP signal within the zone of 

elongation. These results, as was the case with the genetic circuit without 

positive feedback, align with studies characterizing the ABCG37 promoter 

and PDR9 transporter localization [11][12][13]. Hence, I conclude the 

regulation and characteristics of a promoter driving transcription of the DIG 

dependent TF will extend to the output of the DIG transactivation system.   

The positive feedback incorporated into the inducible, tissue-specific 

genetic circuit increased sensitivity 100 fold over the genetic circuit without 

the motif. However, of the two lines analyzed, one (SEO10-240) was not as 

responsive to ligand and appeared to be in an ON state, i.e., a monostable 

not bistable response. Other positive feedback systems have had multiple 

steady states with only one stable steady state [14]. This could be the case 

for this transgenic line.

The overall output, dynamic range and fold induction of the positive 

feedback genetic circuit was reduced relative to the genetic circuit with no 

positive feedback. A possible reason for the lack in amplification could be 

duplicate UAS promoters and homology between the positive feedback and 

DIG dependent transcription factor nucleotide sequences. The homology 
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could have initiated silencing mechanisms at the transcription or post-

transcription levels [15][16][17]. However, the homology was not to such a 

degree for this to be likely. The responsive transgenic line should be further 

analyzed using RT-qPCR and pull-down assays to test if silencing is occurring 

at the transcriptional and post-transcriptional level, respectively. Additionally,

identical and duplicate promoters utilize the same TF pool possibly imposing 

competition between UAS promoters driving transcription of GFP and positive

feedback. In other systems, mathematical modeling and empirical data have 

shown duplicate identical promoters within a genetic system impose 

competition for the same TF pool between promoters, and as a result output 

decreases [18][19]. Furthermore, positional effects could have influenced a 

relative decrease in output between the positive and non-positive feedback 

genetic circuits [17]. Generating more transgenic lines could reveal if 

positional effects are driving the difference in level of output, particularly if 

output varies significantly between transgenic lines, and if some lines do 

have an amplified output relative to non-positive feedback lines.

Although amplification did not occur with the positive feedback genetic 

circuit it does appear to have an ultrasensitive response. The percent in total

GFP signal reached at the next lowest ligand concentrations from the ligand 

concentrations eliciting the maximum output, in each respective line, was 

lower in the responsive transgenic line containing positive feedback 

compared to the transgenic line without positive feedback. Approximately 5 

and 91% of the total output was reached at ligand concentrations of 0.1 μM 
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(positive feedback line) and 10 μM (non-positive feedback lines), respectively.

This means 95 and 9% of the response in the positive feedback and non-

positive feedback lines, respectively, were achieved over the same 10 fold 

change in ligand concentration. This represents an ultrasensitive response 

because a greater percent of the overall output was reached over the same 

change in input [7][8][14]. An ultrasensitive response can consequently 

result in bistability and hysteresis. 

The positive feedback genetic circuit appears to have memory. An 

ultrasensitive response paired with low and high states are characteristics of 

bistable circuits [14]. Furthermore, input and output dose-response curves of 

the responsive transgenic line were sigmodial in nature and “switch-like,” 

which is a graphical characteristic of bistable circuits. One of the 

characteristics of ultrasensitive and bistable responses is memory [4][14]. 

The positive feedback line output decreases 24 hours after removal from 

induction media, but after this initial decline, GFP signal is maintained up to 

five days from removal. However, transgenic control samples had GFP signal 

increases to a greater level on the fifth day than previous days. A source of 

this increase is most likely due to experimental artifact. Dimethyl sulfoxide 

(DMSO) has been shown to cause stress responses and cytotoxicity in 

Arabidopsis [20]. Residual DMSO may have caused an increase in GFP signal.

It is more likely to be experimental artifact, given an increase in GFP signal 

was also observed on the fifth day in transgenic lines without positive 

feedback (Figure 2.15). Although memory is not clearly defined on the fifth 
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day, memory can be observed up to and including three days after removal 

from induction media. However, an initial decline does occur 24 hours from 

removal. The initial decrease could arise from a circadian rhythm. That is, 

GFP signal decreased after 24 hours of continual induction in both transgenic

roots with and without positive feedback. Roots were observed at 24 hour 

time points, therefore GFP signal may have declined and increased again 

after observation. Moreover, Medford lab members  have also observed what

appeared to be a circadian rhythm with a similar positive feedback design. 

Nonetheless, transgenic lines without positive feedback did not maintain the 

output at the same level after the initial decrease over the same time, but 

continually decreased until GFP signal did not significantly differ between 

induced samples and transgenic controls on the fifth day. In these transgenic 

lines, the output decreased by approximately 50% to 70% from the first to 

the third days after removal from induction media. The positive feedback 

system can sustain the response after the initial decrease in output, 

therefore this could be a form of memory.  

Interestingly, positive feedback decreased the activation time. Many 

positive feedback genetic circuits are characterized by a delay in activation 

relative to comparable circuits without positive feedback [21][22]. However, 

differences in kinetics between systems and constituent components of 

those systems consequently create characteristically and dynamically 

distinct positive feedback systems [22]. Positive feedback systems 

considered to be weak have had accelerated response times and reduced 
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amplification. Although the activation time is decreased with positive 

feedback, the time required to reach the maximal response is equivalent 

between the positive and non-positive feedback genetic circuits. In this 

respect, the positive feedback system is delayed. The time required to 

activate the system and maximal response is two hours longer than the non-

positive feedback circuit. This may be the characteristic delay observed in 

other positive feedback systems.   

 The genetic circuit may require redesign to achieve the desired 

properties including amplification and robust memory. A means to create 

such a design could include in silico approaches, namely mathematical 

modeling, with empirical data concerning each component of the circuit to 

inform the mathematical model. Specifically, quantitatively defining the input

and output of the ABCG37, i.e., defining the transfer function. Mathematical 

modeling performed by members of the Medford and Prasad labs have 

shown balancing the three promoter strengths within the positive feedback 

genetic circuit is crucial to achieve the desire responses. More than likely, the

ABCG37 promoter was not balanced within the positive feedback system. 

The design, particularly the promoter driving transcription of the DIG 

dependent transcription factor, may need to be revised. Specifically, 

promoters that have been well characterized should be incorporated into the 

design. Moreover, promoters that are mathematically balanced. That is a 

promoter that is stronger than the UAS promoter, and the strongest within 

the genetic circuit. Several systems have been built with either positive or 
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negative feedback, or both motifs to decrease activation time, resist and 

buffer against noise, and create robust switches with memory [22][23][24]

[25]. The positive feedback system detailed here could possibly achieve 

these behaviors, or possibly be a simple component of a redesigned higher-

order genetic system.     
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Chapter 4: Conclusions and Future works

4.1 Dual-wavelength emission and high-throughput analysis 

Analyzing confocal images in a high-throughput manner can be 

accomplished by processing dual-wavelength emission images through the 

MATLAB program described in chapter two. This approach could be further 

tested with a range of fluorescence reporters and emission filters to identify 

what experimental designs the approach could be applied to. The genetic 

circuits detailed here are modular, for this reason, GFP could readily be 

swapped with other types of fluorescence reporters. Furthermore, multiple 

fluorescence reporters could be quantified simultaneously in one image. 

Consequently, parts and outputs could be compared without introducing 

confounding variables arising from experimental variability. Moreover, 

complex higher-order systems dynamics and kinetics could be characterized 

in this manner by essentially applying this approach at a higher scale. 

Individual components of the system and outputs from these components 

could be fluorescently labeled and simultaneously observed as with 

individual parts.  

4.2 The digoxin system  

The DIG transactivation system is a powerful molecular tool to activate 

transcription of and quantitatively control a desired output. Furthermore, this

system can be designed, as demonstrated in chapter two and three, to 

target output in a specific cell type. The genetic circuits designs described in 
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this thesis are proof-of-concept, i.e., the DIG system could be in conjunction 

with other cell and tissue-specific promoters. Transgenic lines with other cell 

or tissue specific promoters driving transcription of the DIG dependent 

transcription factor could be generated to characterization promoters or 

target output. Moreover, the biomolecule outputted from the DIG system 

could be changed to explore components of other biological regulatory 

systems. Other inducible, cell or tissue-specific systems have been utilized to

study promoter characteristics, metabolic pathways, or temporal regulation 

such as circadian rhythms [1][2][3][4]. The DIG transactivation system could 

feasibly be utilized similarly. However, the circadian rhythm of output needs 

to be elucidated or addressed before the DIG transactivation system is used 

in temporal studies.

The separate components and individual parts of the DIG transactivation

system should be observed over time to identify what part of the system is 

temporally regulated. Moreover, through temporal studies of the system  

possible sources causing oscillatory output over time should be identified. 

For example, the DIG dependent transcription factor could be tagged with a 

fluorescence molecule or epitope and the transcription factor level quantified

over time. If the DIG dependent transcription factor is temporally regulated, 

this could extend to the output. In other words, activator regulation is 

extended to transcriptional regulation of output by means of the promoter 

the activator binds. Moreover, transgenic lines should be generated with a 

tagged Gal4-VP16 activator and UAS promoter driving transcription of a 
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quantifiable output. Observing the UAS/Gal4 system independently could 

elucidate if temporal regulation is occurring with these components 

independently and aside from possible temporal regulation of the DIG 

dependent transcription factor.  In the context of the positive feedback 

system, both transcription factors should be labeled, either with fluorescence

or epitope tags, to observe if either transcription factor is temporal regulated

or both are. Exploring temporal regulation could go toward inform future 

approaches. One, the regulation could be accounted for in future designs 

that incorporate the DIG system. Two, the DIG transactivation system could 

possibly further tuned or redesigned. If temporal regulation arises from the 

UAS/Gal-4 components, a possible solution to exclude temporal regulation 

would be to use a different activator and inducible promoter pair.   

4.3 Positive feedback and the digoxin system

The positive feedback genetic circuit was responsive to ligand, had 

increased sensitivity to input, but lacked amplification of output. Previous 

mathematically modeling performed by members of the Medford and Prasad 

labs have shown balancing the promoter strengths of the three promoters 

within the system is crucial to achieve desired responses of the positive 

feedback genetic circuit, such as amplification. The ABCG37 promoter was 

not mathematically characterized, therefore neither was a transfer function 

for the promoter. However, it is likely this promoter was not balanced within 

the system given the lack of amplification. The circuit requires a redesign 

with a different promoter that has been quantified, to achieve a amplified 
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output. Furthermore, only one of two analyzed transgenic line was 

responsive. Additional transgenic lines need to be generated and analyzed to

explore if the lack of response to ligand and monostablity is a common or 

rare response of the positive feedback genetic circuit. Furthermore, T2 plants

should be generated to observe how amplification, sensitivity, and 

responsiveness change, if at all, with homozygosity. The availability of 

several homozygous transgenic lines could be a means to analyze responses 

of the positive feedback genetic circuit more thoroughly.

The positive feedback genetic circuit output after three days post 

removal from induction medium is consistent with memory of a transient 

stimulus. However, decoupling experimental artifact and output is required 

to elucidate if an overall reduction in output occurs in the memory response, 

and if the memory persists up to five days. Two approaches could be used to 

separate signal arising from the memory response and experimental artifact.

First, the output of the genetic circuit should be observed at 16 hour 

intervals. Observing when output peaks could separate the decline in output 

in the initial 24 hours after removal from induction medium from the 

oscillations in output observed over time. Second, increasing the number of 

washes of each sample could remove more residual DMSO from the roots, 

and thereby minimize or eliminate the increase in GFP signal due to DMSO. 

Furthermore, different carriers may be tested to see if they could be used 

instead of DMSO. As a consequence of using these approaches, the output 
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should principally or solely arise from memory and not as an experimental 

artifact. 

4.4 Modularity and expansion of the digoxin system

The inducible, root-epidermal specific genetic circuit is another tool in 

the Arabidopsis molecular tool kit. The modular nature of the circuit can be 

leveraged to target output to many tissues and cell-types. Furthermore, the 

genetic circuit could be expanded upon with regulatory motifs, as 

demonstrated in chapter three, specifically with the addition of the positive 

feedback motif to the inducible, root epidermal cell-specific genetic circuit. 

Other regulatory motifs could be incorporated with the DIG transactivation 

system to increase the range of possible responses. The DIG transactivation 

system is a highly valuable resource both in the context of fundamental 

scientific exploration and designing biosensors with downstream 

transcriptional regulation with a broad range of responses. 
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A.1 Media protocols

A.1.1 Luria-Bertani (LB) Media: Laurel broth for E. coli and A. tumeficians 

was prepared as follows: To 3800mL of diH20 add 40g Tryptone (Sigma 

Aldrich, St. Louis, MO), 20g yeast extract (TEKnova, Hollister, CA), and 40g 

NaCl. pH balance solution to 7 with 3M NaOH. Bring solution up to 4L total, 

and reverify pH. If solid media is required, add 7.5g of Agar II to 500mL of 

aliguoted LB media. Autoclave solution.

A.1.2 Murashige and Skoog Basal (MS) Media, solid and liquid: 

Murashige and Skoog basal media for plants was prepared as follows: To 

3200mL of diH20 add 40g sucrose, 17.6g MS basal medium (Sigma Aldrich, 

St. Louis, MO), and 2g MES (Sigma Aldrich, St. Louis, MO). pH balance media 

solution to 5.7 with 1M KOH. Bring media solution up to 4L and reverify pH. If 

solid media is required, aliquot 500mL to bottles and add 3g Plant media 

Phyto Agar (Plant media a division of bioworld, Dublin, OH) to each aliquot. 

Autoclave solution.

A.1.3 New Infiltration Media (NIM): New infiltration media for 

Agrobacterium-mediated transformation of Arabidopsis thaliana was 

prepared as follows: To 3600mL of diH20 add 0.812g of MgCl2, and 200g 

sucrose. Bring up media solution to 4L. Aliquot solution to 8 bottles each with

500mL of media. Autoclave solution. 
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A.2 Agrobacterium-Mediated Plant Transformation Protocol

1.) Begin starter culture of GV3101 Agrobacterium tumefaciens (NEB, 

Ipswitch, MA) with desired binary plasmid in LB media (2mL) supplemented 

with appropriate antibiotic(s) (100mg/ml kanamycin, rif). Allow culture to 

grow for 2days at 28 ˚C in floor shaker at 220rpm. 

2.) Inoculate starter culture in 250mL of LB media supplemented with 

appropriate antibiotics in 1L flasks. Allow culture to grow overnight at 28˚C in

floor shaker at 220 rpm. 

3.) Transfer culture to centrifuge bottles, and spin cells at 6000 rpm for 12 

minutes at 4oC.

4.) Discard supernatant and resuspend bacterial cells in 500 mL of ‘New’ 

infiltration Media containing 25 L 0.005% Silwet L-77 (Lehle Seeds, Round 

Rock, TX). 

5.) Transfer bacteria-containing infiltration media to 5 L plastic tub. 

6.) Inverts pots containing Arabidopsis thaliana Columbia ecotype, and dip 

floral buds into solution for approximately 1 minute. Ensure floral buds are 

immersed in solution.

7.) After dipping, transfer plants to a flat, with pots laying horizontally.

8.) Cover flat with plastic wrap and move to growth chamber.

9.) After overnight incubation, remove plastic wrap and place plants upright.
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A.3 Nucleotide Sequences
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A.4 Primer Sequences
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A.5 MATLAB Code

Copyright Sara Oehmke 2020
FolderTS = '';
if ~isdir(FolderTS)
  errorMessage = sprintf('Error: The following folder does not exist:\n%s', FolderTS);
  uiwait(warndlg(errorMessage));
  return;
end
filePatternTS = fullfile(FolderTS, '*.tiff'); 
theFilesTS = dir(filePatternTS);
for h = 1 : length(theFilesTS)
   NamesTS = {theFilesTS.name};
end
  TotalFileNamesTS= strcat(FolderTS,NamesTS);
for g = 1:length(TotalFileNamesTS)
  AllimagesTS{g} = imread(TotalFileNamesTS{g});
end
AllimagesTS2 = cellfun(@im2double,AllimagesTS, 'uniform', 0);
AllimagesTS3 = cell2mat(AllimagesTS2);
FolderBGS= '';
if ~isdir(FolderBGS)
  errorMessage = sprintf('Error: The following folder does not exist:\n%s', FolderBGS);
  uiwait(warndlg(errorMessage));
  return;
end
filePatternBGS = fullfile(FolderBGS,'*.tiff'); 
theFilesBGS = dir(filePatternBGS);
for k = 1 : length(theFilesBGS)
   NamesBGS = {theFilesBGS.name};
end
  TotalFileNamesBGS= strcat(FolderBGS,NamesBGS);
for n = 1:length(TotalFileNamesBGS)
  AllimagesBGS{n} = imread(TotalFileNamesBGS{n});
end
AllimagesBGS1 = cellfun(@im2double,AllimagesBGS, 'uniform', 0);
AllimagesBGS2 = cell2mat(AllimagesBGS1);
for m = 1 : length(AllimagesYFP5)
  T2{m} = corrcoef(AllimagesYFP5{m},AllimagesGFP5{m});
end
R = corr2(AllimagesBGS2, AllimagesTS3)
equation= generatinggraph(AllimagesBGS2,AllimagesTS3)
Linearcoeff=equation(1,1)
Intercept=equation(1,2)
FolderTST = '';
if ~isdir(FolderTST)
  errorMessage = sprintf('Error: The following folder does not exist:\n%s', FolderTST);
  uiwait(warndlg(errorMessage));
  return;
end
filePatternTST = fullfile(FolderTST, '*.tif'); % Change to whatever pattern you need.
theFilesTST = dir(filePatternTST);
for k = 1 : length(theFilesTST)
  baseFileNameTST = theFilesTST(k).name;
  fullFileNameTST= fullfile(FolderTST, baseFileNameTST);
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  fprintf(1, 'Now reading %s\n', fullFileNameTST);
end
for k = 1 : length(theFilesTST)
   NamesTST = {theFilesTST.name};
   FolderTST = {theFilesTST.folder};
end
  TotalFileNamesTST= strcat(FolderTST,NamesTST)
for b = 1:length(TotalFileNamesTST)
  AllimagesTST{b} = imread(TotalFileNamesTST{b});
end
AllimagesTST = cellfun(@im2double,AllimagesTST, 'uniform', 0)
FolderBGST = '';
if ~isdir(FolderBGST)
  errorMessage = sprintf('Error: The following folder does not exist:\n%s', FolderBGST);
  uiwait(warndlg(errorMessage));
  return;
end
filePatternBGST = fullfile(FolderBGST, '*.tif'); % Change to whatever pattern you need.
theFilesBGST = dir(filePatternBGST);
for k = 1 : length(theFilesBGST)
  baseFileNameBGST = theFilesBGST(k).name;
  fullFileNameBGST = fullfile(FolderBGST, baseFileNameBGST);
  fprintf(1, 'Now reading %s\n', fullFileNameBGST);
end
for k = 1 : length(theFilesBGST)
   NamesBGST = {theFilesBGST.name};
   FolderBGST = {theFilesBGST.folder};
end
  TotalFileNamesBGST= strcat(FolderBGST, NamesBGST)
for b = 1:length(TotalFileNamesBGST)
  AllimagesBGST{b} = imread(TotalFileNamesBGST{b});
end
AllimagesBGST = cellfun(@im2double,AllimagesBGST, 'uniform', 0)
for i = 1:length(AllimagesBGST)
  AllimagesBGST{1, i} =  AllimagesBGST{1,i}-Intercept;
  AllimagesBGST{1, i} =  AllimagesBGST{1,i}*Linearcoeff;
end
FluorescenceImage = cellfun(@minus,AllimagesTST,AllimagesBGST,'Un',0)
Meannomask = AFremoval2(FluorescenceImage);
MeanNOLOG = AFremoval3(FluorescenceImage);
MeanLOG = AFremoval4(FluorescenceImage);
TotalMean2 = struct('mean',[Meannomask], 'meanMask', [MeanNOLOG], 'meanLog', 
[MeanLOG]);
TotalMean = structfun(@(fld) fld(:), TotalMean2,'UniformOutput', false);
TotalMean3 = struct2table(TotalMean);
filename = '.xlsx';
writetable(TotalMean3,filename,'Sheet',1)

%Functions
function equation =createfigure(AllimagesBGS1, AllimagesTS3)
 figure1 = figure;
 axes1 = axes('Parent',figure1,'Position',[0.13 0.5675 0.775 0.3575]);
hold(axes1,'on');
 scatter1 = scatter(AllimagesBGS1(:), AllimagesTS3(:),'DisplayName','data1','Parent',axes1);
 xdata1 = get(scatter1, 'xdata');
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ydata1 = get(scatter1, 'ydata');
xdata1 = xdata1(:);
ydata1 = ydata1(:);
 nanMask1 = isnan(xdata1(:)) | isnan(ydata1(:));
if any(nanMask1)
    warning('IgnoringNaNs', ...
        'Data points with NaN coordinates will be ignored.');
    xdata1(nanMask1) = [];
    ydata1(nanMask1) = [];
end
 
axesLimits1 = xlim(axes1);
xplot1 = linspace(axesLimits1(1), axesLimits1(2));
 set(axes1,'position',[0.1300    0.5811    0.7750    0.3439]);
residAxes1 = axes('position', [0.1300    0.1100    0.7750    0.3439], ...
    'parent', gcf);
savedResids1 = zeros(length(xdata1), 1);
[sortedXdata1, xInd1] = sort(xdata1);
 coeffs1 = cell(1,1);
 fitResults1 = polyfit(xdata1,ydata1,1);
equation=fitResults1;
yplot1 = polyval(fitResults1,xplot1);
 fittypesArray1(1) = 2;
 Yfit1 = polyval(fitResults1,xdata1);
resid1 = ydata1 - Yfit1(:);
savedResids1(:,1) = resid1(xInd1);
savedNormResids1(1) = norm(resid1);
 coeffs1{1} = fitResults1;
 fitLine1 = plot(xplot1,yplot1,'DisplayName','   linear','Tag','linear',...
    'Parent',axes1,...
    'Color',[0.929 0.694 0.125]);
 setLineOrder(axes1,fitLine1,scatter1);
 residPlot1 = plot(sortedXdata1,savedResids1,'.','parent', residAxes1);
set(residPlot1(1), 'color', [0.929 0.694 0.125]);
title(residAxes1, 'residuals');
 showNormOfResiduals(residAxes1,fittypesArray1,savedNormResids1);
 showEquations(fittypesArray1,coeffs1,2,axes1);
 legend(axes1,'show');
 function setLineOrder(axesh1, newLine1, associatedLine1)
hChildren = get(axesh1,'Children');
hChildren(hChildren==newLine1) = [];
lineIndex = find(hChildren==associatedLine1);
hNewChildren = [hChildren(1:lineIndex-1);newLine1;hChildren(lineIndex:end)];
set(axesh1,'Children',hNewChildren);
function showNormOfResiduals(residaxes1, fittypes1, normResids1)
txt = cell(length(fittypes1) ,1);
for i = 1:length(fittypes1)
    txt{i,:} = getResidString(fittypes1(i),normResids1(i));
end
axesunits = get(residaxes1,'units');
set(residaxes1,'units','normalized');
text(.05,.95,txt,'parent',residaxes1, ...
    'verticalalignment','top','units','normalized');
set(residaxes1,'units',axesunits);
 function [s1] = getResidString(fittype1, normResid1)
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switch fittype1
    case 0
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplaySplineNorm'));
    case 1
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplayShapepreservingNorm'));
    case 2
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplayLinearNorm', 
num2str(normResid1)));
    case 3
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplayQuadraticNorm', 
num2str(normResid1)));
    case 4
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplayCubicNorm', 
num2str(normResid1)));
    otherwise
        s1 = getString(message('MATLAB:graph2d:bfit:ResidualDisplayNthDegreeNorm', 
fittype1-1, num2str(normResid1)));
end
 n = length(fittypes1);
txt = cell(length(n + 1) ,1);
txt{1,:} = ' ';
for i = 1:n
    txt{i + 1,:} = getEquationString(fittypes1(i),coeffs1{i},digits1,axesh1);
end
text(.05,.95,txt,'parent',axesh1, ...
    'verticalalignment','top','units','normalized');
 if isequal(fittype1, 0)
    s1 = 'Cubic spline interpolant';
elseif isequal(fittype1, 1)
    s1 = 'Shape-preserving interpolant';
else
    op = '+-';
    format1 = ['%s %0.',num2str(digits1),'g*x^{%s} %s'];
    format2 = ['%s %0.',num2str(digits1),'g'];
    xl = get(axesh1, 'xlim');
    fit =  fittype1 - 1;
    s1 = sprintf('y =');
    th = text(xl*[.95;.05],1,s1,'parent',axesh1, 'vis','off');
    if abs(coeffs1(1) < 0)
        s1 = [s1 ' -'];
    end
    for i = 1:fit
        sl = length(s1);
        if ~isequal(coeffs1(i),0) % if exactly zero, skip it
            s1 = sprintf(format1,s1,abs(coeffs1(i)),num2str(fit+1-i), op((coeffs1(i+1)<0)+1));
        end
        if (i==fit) && ~isequal(coeffs1(i),0)
            s1(end-5:end-2) = []; % change x^1 to x.
        end
        set(th,'string',s1);
        et = get(th,'extent');
        if et(1)+et(3) > xl(2)
            s1 = [s1(1:sl) sprintf('\n     ') s1(sl+1:end)];
        end
    end
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    if ~isequal(coeffs1(fit+1),0)
        sl = length(s1);
        s1 = sprintf(format2,s1,abs(coeffs1(fit+1)));
        set(th,'string',s1);
        et = get(th,'extent');
        if et(1)+et(3) > xl(2)
            s1 = [s1(1:sl) sprintf('\n     ') s1(sl+1:end)];
        end
    end
    delete(th);
    % Delete last "+"
    if isequal(s1(end),'+')
        s1(end-1:end) = []; % There is always a space before the +.
    end
    if length(s1) == 3
        s1 = sprintf(format2,s1,0);
    end
   
end
 
function [meanIntSampleNOLOG] = AFremoval3(GFPunstructured)
 for l = 1 : length(GFPunstructured)
[binarylevelGFPNOLOG, EM] = graythresh(GFPunstructured{l});
BW = imbinarize(GFPunstructured{l});
BW2 = imfill(BW,'holes');
maskedImageGFP2 = (GFPunstructured{l}); % Initialize
maskedImageGFP2(~BW) = 0; % Erase everything outside the mask.
meanIntSampleNOLOG(l)= mean2(maskedImageGFP2);
end

function [meanIntSampleNomask, meanIntSampleNOLOG, meanIntSampleLOG] = 
AFremoval(GFPunstructured)
 for k = 1 : length(GFPunstructured)
meanIntSampleNomask(k) = mean2(GFPunstructured{k});
end

function [meanIntSampleLOG] = AFremoval4(FluorescenceImage)
 for M = 1 : length(FluorescenceImage)
GFPlog= 10*log(1+ FluorescenceImage{M});
[binarylevelGFP, EM] = graythresh(GFPlog)
BW3 = imbinarize(GFPlog);
BW4 = imfill(BW3,'holes');
maskedImage = GFPlog; % Initialize
maskedImage(~BW3) = 0; % Erase everything outside the mask.
meanIntSampleLOG(M) = mean2(maskedImage);
end
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