
DISSERTATION

A SIMPLE AND DYNAMIC DATA STRUCTURE FOR PATTERN MATCHING IN

TEXTS

Submitted by

Sung-Whan Woo

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2011

Doctoral Committee:

 Advisor: Ross M. McConnell

 A. P. Willem Bohm
 Tim Penttila
 Yashwant K. Malaiya

ABSTRACT

A SIMPLE AND DYNAMIC DATA STRUCTURE FOR PATTERN MATCHING IN

TEXTS

The demand for a pattern matching algorithm is currently on the rise from diverse areas

such as string search, image matching, voice recognition and bioinformatics. In particular,

string search or matching algorithms have been growing in popularity as they have been

applied to areas such as text editors, search engines and bioinformatics.

To satisfy these various demands, many string matching methods have been developed

to search for substrings (pattern strings) within a text, and several techniques employ the

use of tree data structures, deterministic finite automata, and other structures.

The problem of string matching is defined by finding all location of a pattern string

P within a text T , where preprocessing of T is allowed in order to facilitate the queries.

There has been significant success in finding a pattern string in O(m+ k) time, where m is

the length of the pattern string and k is the number of occurrences, using data structures

that can be constructed in O(n) time, where n is the length of T .

Suffix trees and directed acyclic word graphs are such data structures. All of these data

structures index the searched text in O(m+ k) time. However, the difficulty of understand-

ing and programming the construction algorithms is rarely mentioned. Also, they have

ii

significant space requirements and take Θ(n) time to update even if one character of T is

changed.

To solve these problems, we propose the augmented position heap. It can be built in

O(n) time, and can be used to search a pattern string in O(m+ k) time. Most importantly,

when a block of j characters are inserted or deleted, the asymptotic updating it when a text

is modified is O((h(T)+ j)h(T)), where h(T) is the length of the longest substring X of T

that occurs at least ||X || times in T , where ||X || is the length of X . For texts arising from

practical applications, h(T) is typically slowly growing function of ||T ||; for a random text

T , its expected value is O(logn).

Another issue in data structures that must be addressed is space requirement. The most

space efficient data structure for string search is the suffix array, which uses 2n words and

supports searches in O(n logn+m+ k). A compact representation of the position heap

proposed in this thesis also takes 2n words, but can be updated in O((h(T)+ j)h(T)) time,

but takes O(m2+k) time for a search. The best bound known bound for updating the suffix

array or the directed acyclic word graph is O(n), and they both take considerably more

space. A compact representation proposed in this thesis for the augmented position heap

takes 4n words, can be updated just as efficiently as the position heap, and takes O(m+ k)

time for a search.

iii

ACKNOWLEDGMENTS

Completing a Ph.D. degree is truly good experience, and I would not have been able to

complete this journey without the aid and support of countless people over the past years.

First of all, I would like to thank to my advisor, Dr. Ross M. McConnell and must first

express my deep and sincere gratitude towards him for his guidance, encouragement and

support during four years of my Ph. D. study. Without his encouragement and direction,

this work would not have been possible. I would like to thank my committee members Dr.

Willem Bohm, Dr. Yashwant K. Malaiya and Dr. Tim Penttila for taking their precious

time to review my dissertation and for giving insightful comments on my work.

I would like to thank to Dr. Sandra Schleiffers for her help and continuous encourage-

ment on my teaching assistance during two years, as well as the rest of the Colorado State

University Computer Science department for their continued dedication to my education.

I would like to thank my father and mother for all of the love, support, and encourage-

ment. I also would like to thank some of my fellow students Nissa Osheim, Nathan Lindzey

and Willam Springer.

Fianlly, many thanks to my patient and loving my wife Jina Lee, and my two children

Warren Woo and Elizabeth Woo, who have been a great source of strength all through this

work.

iv

DEDICATION

This disseration is dedicated

to my wife Jina,

to my son Warren,

to my daughter Elizabeth

and to my parents.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 Research Overview . 4

1.2 Structure Overview . 5

2 Related Work 7

2.1 The Suffix Trie . 7

2.1.1 Properties of the Suffix Trie . 7

2.1.2 Query Time with the Suffix Trie 9

2.2 The Suffix Tree . 10

2.2.1 Constructing The Suffix Tree in Linear Time 10

2.2.2 The Construction Algorithm of Weiner’s Suffix Tree 14

2.2.3 The Construction Algorithm of McCreight’s Suffix Tree 16

2.2.4 The Construction Algorithm of Ukkonen’s Suffix Tree 16

2.2.5 Query Time with the Suffix Tree 20

2.3 The Suffix Array . 20

2.3.1 Query Time with the Suffix Array 21

2.3.2 Constructing the Suffix Array . 23

2.4 The Directed Acyclic Word Graph . 25

2.4.1 The compact DAWG . 32

vi

3 The Position Heap 34

3.1 Sequence Hash Trees . 34

3.2 The Position Heap . 35

3.2.1 A Time Bound for Constructing the Position Heap 38

3.3 The Query Algorithm with the Position Heap 40

4 The Augmented Position Heap 44

4.1 An O(m+ k) Time Bound for a Search with the Augmented Position Heap 47

4.1.1 Returning Positions One-by-One in Left-to-Right Order 55

5 Linear Time Algorithm to Build the Position Heap and the Augmented Posi-

tion Heap 57

5.1 Building the Position Heap in O(n) Time 57

5.1.1 The Strategy . 57

5.1.2 Implementation . 59

5.2 Constructing the Augmented Position Heap in O(n) Time 66

6 Space-Efficient Representation for the Position Heap and the Augmented Po-

sition Heap 68

6.1 An Array Representation of the Position Heap 69

6.2 Construction of the Array Representation in O(nh(T)) 71

6.2.1 Searching with the Compact Representation in O(m2 + k) Time . . 72

6.3 Constructing the Compact Representation in O(n) Time 72

6.4 Constructing a Compact Representation of Augmented Position Heap . . . 75

6.4.1 An implementation that uses 5n integers 75

6.4.2 An implementation that uses 4n integers 77

vii

6.4.3 Searching with the Compact Representation in O(m+ k) Time . . . 80

7 Updating the Position Heap and the Augmented Position Heap when the Text

is Edited 82

7.1 Deleting or Inserting a Block of Text in T 84

7.2 Algorithms for Remove and Add . 88

7.3 Use of Splay Trees for Representing Dynamic Texts and Other Lists 92

7.4 A Time Bound for the Naive Query Algorithm on the Dynamic Position Heap 94

7.5 Time Bounds for Delete and Insert . 95

7.6 A Dynamic Implementation of the Augmented Position Heap 97

7.6.1 Discovery and Finishing Times 98

7.7 Remove and Add on the Augmented Dynamic Position Heap 99

7.8 Delete and Insert on the Augmented Position Heap 101

7.9 Time Bound for Queries on the Dynamic Augmented Position Heap 102

8 Conclusion 104

A Suffix Tree 107

REFERENCES 109

viii

LIST OF FIGURES

2.1 All suffixes for the text “aabcabcaac$” 8

2.2 The suffix trie . 9

2.3 The suffix tree . 11

2.4 The suffix tree with concatenated edge labels 13

2.5 The suffix tree with the suffix links . 14

2.6 Extending the suffix tree from string “aabcabcaa” to “aabcabcaac” 18

2.7 The suffix array: (a) shows the unsorted suffix array. (b) shows the sorted

suffix array and the numbered arrows show the order of the process to

search for “caa” . 22

2.8 The suffix tree and the suffix array . 24

2.9 Constructing suffix array in linear time 26

2.10 The naive method to create the DAWG 29

2.11 Suffix pointers for the DAWG . 30

2.12 Extending the DAWG from “aabcab” to “aabcabc” 31

2.13 The compact DAWG . 33

ix

3.1 The sequence hash tree of a sequence of strings. We refer to each node

by the string of letter labels on the path from the root to the node. For

example, the node labeled 6 can be thought of as synonymous with the

string ab. Each string in the sequence is installed at a new node that is the

shortest prefix of the string that isn’t already a node of the sequence hash

tree. These prefixes are underlined. For example, when string 9 is inserted,

its prefix abb is already a node of the tree, but its prefix abba is not, so a

pointer to string 9 is inserted at a new node, abba. 35

3.2 Incremental construction of the position heap. Suffixes t1, t2, . . . , tn are

inserted in ascending order of length. The figure depicts the insertion of ti

when i = 15. Indexing into the heap on ti identifies the longest prefix (aba)

of ti that is already a node Y of the heap. The shortest prefix of ti that is not

already a node of the heap (abaa) is inserted as a child of Y and labeled

with position i. 36

3.3 The longest path in the position heap is selected. A path from a root to a

leaf is a substring in a text and this path length is h. This substring occurs

at least one time in the text. The depth of the parent node of this leaf node

is h− 1. This substring with the length h− 1 appears at least two time in

the text. When choosing a node that is the middle node of this path, this

middle node’s depth is h/2 and the substring with length h/2 appears at

least h/2 times in the text. 39

3.4 The example of the naive query algorithm 41

4.1 Augmented position heap . 46

x

4.2 Depth-first discovery and finishing times with the augmented position heap.

Any descendant’s discovery and finishing time is bounded its ancestor’s

discovery and finishing time. 49

4.3 The linear query algorithm on strings ba and babbabbab on the augmented

position heap. Maximal-reach pointers that are loops are omitted from the

diagram. 53

5.1 The hereditary property doesn’t necessarily apply when the suffixes are not

inserted in order of ascending length. The figure depicts the Coffman and

Eve structure where the insertion order of the suffixes is (T1,T4,T2,T7,T5,T6,T3).

String abb is a node, but its substring bb is not a node of the tree. 60

5.2 Given the node Xi−1 added at step i−1, find the parent of the node Xi added

at step i. 61

5.3 The position heap and its dual for the text abbabbb. The labels of the path

leading to a node in the dual is the reverse of the labels of the path leading

to it in the position heap. 63

5.4 Implementing the algorithm of Figure 5.2 using the position heap and its

dual. Starting at the previously-added node Xi−1, we find the lowest ances-

tor Y such that aY is already a node. This is accomplished by traversing

ancestors in the position heap, and seeing if they have a child on edge la-

beled a in the dual. In this case Y is the node labeled 4. Its child on edge

labeled a in the dual is aY , the node labeled 5. It is the parent of the new

node Xi = aab in the position heap. The last prefix ab tried before Y was

found is the longest node of the dual heap that is a prefix of X and has no

child labeled a. It is the parent of Xi in the dual. 65

xi

6.1 The position heap and its compact representation 70

6.2 The compact representation for position and dual heap 76

6.3 Augmented position heap and its compact representation 78

6.4 Finishing times with the compact representation. A letter beside of each

node indicates a finishing time. The first subtree contains the lowest finish-

ing time among siblings. 80

7.1 Deletion of the b at position 10. First, position 10 is removed from the trie

with Remove (Figure B). Since position 11 resides at node abb, position

11 is supposed to be an occurrence of abb. This is no longer the case,

because the deletion of position 10 removes the first b from this occurrence.

Position 11 is no longer correctly placed, and this is fixed with a call to

Remove, followed by a call to Add that correctly places it using the new

string (Figure C). Similarly, position 12 is no longer correctly placed and

this must be repaired in the same way (Figure D). If no node is a string that

is longer than h, there can be no more than h−1 positions to the left of the

edited position that are affected in this way. 87

7.2 Using the Remove operation to remove the pointer to position 4 from a

position heap. Removing the pointer from its position-heap node leaves

the node with an empty position pointer. This is filled by promoting the

position pointer of the child whose position in T is smallest (rightmost), in

this case the pointer to position 5, to the empty parent. The child is now

empty, and it is filled recursively. As a base case, the empty node is a leaf,

and it is deleted. The only change to the shape of the tree is the deletion of

a leaf. 90

xii

7.3 The Add operation performs the inverse of Remove. To add the pointer

to position 4 back in, index into the tree on T4 = abba until a node X is

encountered that has a larger position label. In this case, X is the node

with a pointer to position 5 in it. This pointer is pushed down to the child

reachable on the letter ||X ||+1 of T5. Since ||X ||= 1, this is the letter a at

position 2 of T5 = aaba. This makes it necessary to push down the pointer

to position 8 recursively. As a base case, the pointer (to position 12) is

pushed down to a new leaf. The only change to the shape of the tree is the

addition of a new leaf. 91

xiii

Chapter 1

Introduction

As time goes by, computational devices are becoming more powerful and the amount of

information that is managed and stored by these devices is also rapidly increasing. To

filter out useful and valuable information from enormous text, proper algorithms and data

structures for pattern matching are demanded. That is, we need an efficient approach, given

a (long) text T of length n and a (shorter) pattern P of length m of finding all locations in T

where P or an approximation of P occurs as a substring of T .

The pattern matching algorithm provides the fundamental idea for wide areas of science

and information processing such as bioinformatics [50, 29, 1, 28], data scanning (e.g. virus

scanning [48]), web search engine [10], image searching [4, 5, 2, 32, 27], plagiarism de-

tection (parameterized matching [25]) and data (information) mining technology [51, 49].

Among these applicable areas, this dissertation deals with the string matching problem.

The string matching problems can be classified according to various criteria. The exact

matching problem is the which is the one have described, where a location in a text T is

reported if and only if a pattern P occurs as a substring at that location. This contrasts with

an approximate matching problem, where a location is in T reported if some approximation

to P occurs there. Searching without preprocessing of T is known as online string match-

1

ing; the user is not required to announce anything about the text in advance of a query. This

contrasts with the approach of preprocessing the text, which is only interesting if something

is known about the text in advance of series of queries. Finally, allowing small edits on T

between queries is known as searching on a dynamic text, as opposed to searching on a

static text. The distinction between searching a dynamic and a static text is only of interest

when the text is preprocessed.

A naive way to solve the exact online problem is to shift P to each position of T and

test whether it is a match. This takes O(nm) time where n denotes the length of T and m

denote the length of P, since at each position Ω(m) characters might need to be compared.

This has been improved to O(n), which is the best that can be hoped for when there is no

preprocessing of T .

A key insight in improving this O(nm) bound was the observation that m is usually

much smaller than n, so preprocessing of the pattern can pay even if it is only used once.

This is the approach of the Knuth-Morris-Pratt algorithm [40, 47], which was the first to

achieve an O(n) bound.

When the text can be preprocessed, a data structure can be produced to facilitate queries.

The suffix tree [18, 45, 59, 61] and the suffix array [43, 39, 38] are among the most popular.

Both of these data structures can be built in O(n). The advantage of the data structure of

a preprocessed text is that each query then takes O(m + k) time for the suffix tree and

O(m+ logn) time for the suffix array, where k is the number of locations of P in T that

must be reported. What is striking about this latter bound that the length n of the text is

irrelevant to the time for a query. The Directed Acyclic Word Graph (DAWG) [44, 8] also

can be used in the same time bound as the suffix tree.

The approximate matching problem also looks for a pattern P within T . However, it

2

allows a limited number of mismatches between a pattern string and a text under Hamming

distance. Usually, this problem is defined by string matching with k differences. Thus, we

need to find all substrings that have different distances, at most given k. The dynamic

programming is a classic solution for this problem since it asks to optimize a relation

between two inputs, a pattern string and a text. The longest common subsequence of two

strings [31, 42, 7] and a weighted string matching [46, 34] are the sub-categories of this

problem.

In many cases, approaches to the approximate string matching problem adopt the scheme

of the exact string matching algorithms. Jokenen and Ukkonen [37] propose the first al-

gorithm with a preprocessed data structure for the approximate string matching problem.

Their algorithm uses the DAWG and the dynamic programming. However, this algorithm’s

query time depends on a length of a text. Ukkonen improve their previous algorithm [37]

and suggests the first algorithm that depends on m and k [60]. This algorithm applies the

dynamic programming over the suffix tree. Trinh et al. [33] import the suffix array for this

problem and Russo et al. [53] introduce compressed suffix trees and array that are also

applicable for this problem.

There continue to be many issues that relate to string searching problems, such as pa-

rameterized string matching [52, 26], multiple pattern searching [3], multiple approxi-

mate string matching [14], compressed pattern matching problem [6, 19].

A big drawback of these data structures is that when the text is edited, we have to

rebuild them from scratch, even if the editing operation involves only a single character.

This means that we have to spend another O(n′) time to correct the data structures after

the modification of the text where n′ is the length of text after it is edited. The text must

therefore be considered to be static. One type of dynamic case where a set of texts must

3

be searched for P, and an entire text may be inserted to or deleted from the set; efficient

editing within a single text is not supported. More than 80 string matching algorithms have

been proposed since 1970 [20]. Most of these algorithms only participate in finding pattern

strings within a text. A few algorithms consider the modification of a text. The dynamic

suffix array [22], the string B-tree [23] and the generalized suffix tree [24, 21]. However,

these concepts are different than the concept that will be discussed in this dissertation since

these data structures are for word-based instead of character-based (inserting or deleting

one or more words does not affect other words that are stored in the data structure). The

border tree [30] also supports the arbitrary modification of sequential text. However, this

algorithm’s search time varies depending upon the number of modifications. The border

tree takes O(n) for preprocessing and each edit operation takes O(logni), where i is the

number of modifications. Finally, this algorithm’s search time depends upon the number of

modifications which result in O(m+ klogi+ ilogm) time.

Salson et al. [55, 56, 54] have proposed the dynamic algorithm that modifies the

Burrows-Wheeler transform [9] and the suffix array in O(n) worst-case time. This worst

time bound is the same time bound as reconstructing suffix array. However, they claim that

their algorithms provide the better time bound in practice.

1.1 Research Overview

Ehrenfeucht and McConnell have proposed the position heap [44] which takes O(n) time

to build, but requires O(m2 +k) time for a query. An advantage of the data structure is that

it can be updated after insertion or deletion of a block of characters in O(ch(T)+ h2(T))

time, where h(T) is the length l of the longest substring of T that occurs at least l times and

c is the number of blocks. This is the starting point of the new results in this work.

4

This dissertation deals with the exact string matching problem on static and dynamic

texts by improving on the position heap. We deal with several issues: our improved aug-

mented position heap, which allows queries to take O(m+ k) time instead of O(m2 + k)

time; linear-time (O(n)) construction of the augmented position heap; how to update the

augmented position heap when the text is edited.

Traditionally the data structures for pattern matching problems occupy a large block of

memory. If the size of the data structure exceeds the memory limitation, the data must be

swapped into the virtual memory [15]. This virtual memory technique delays the response

times. The suffix array theoretically requires n integers. Any offline data structure cannot

beat this space requirement. But it has a slow query time. we reduce the memory space for

the position heap and the augmented position heap with the same construction and query

time. We define this data structure as compact representation of the position heap using an

array, The compact representation of the position heap requires 2n integers to represent the

position heap and 4n integers to represent the augmented position heap.

1.2 Structure Overview

The next section introduces related data structures that are fundamental algorithms for

string searching problems. Following sections show the property of the position heap and

a query with the position heap Chapter 4 describe the augmented position and how query

algorithms works with this data structure. In Chapter 3 and 4, we show two query cases.

The first case shows a pattern string is shorter than the height of the position heap, and the

second case shows a pattern string is longer than the height of the position heap. with this

data structure. Chapter 5 show the linear time algorithms to construct the position heap

and the augmented position heap. The space efficient data structure for the position heap

5

and the augmented is illustrated in chapter 6. In Chapter 7, dynamic texts and maintaining

the position heap are illustrated. We also represent the space-efficient data structure for

position heap. Chapter 8 concludes the dissertation and offers the future work.

6

Chapter 2

Related Work

The classic data structures for this field are the suffix tree and the suffix array. DAWG

also has a competitive time complexity with these data structures. Linear time algorithms

to constructing the suffix tree and the DAWG are more complicated than the suffix array’s.

However, the suffix tree and DAWG provide a better time bound for a query. In this section,

classic and fundamental linear time data structures for string searching are illustrated.

2.1 The Suffix Trie

The suffix trie provides a basic idea of the suffix tree. It contains all possible suffixes of a

text T in a tree data structure. In the suffix trie, each edge is labeled with a character and

each path, from the root to a leaf or an internal node, represents a substring of the text.

2.1.1 Properties of the Suffix Trie

The suffix trie is a tree whose edges are labeled with edges. Each suffix of the text is the

sequence of labels on some path from the root to a leaf. For each node and each letter c of

the alphabet, there is at most one edge from the node to a child that is labeled c. When two

suffixes share a common prefix, the common prefix is the sequence of edge labels on the

7

Position Suffix
1 aabcabcaac$
2 abcabcaac$
3 bcabcaac$
4 cabcaac$
5 abcaac$
6 bcaac$
7 caaa$
8 aac$
9 ac$

10 c$

Figure 2.1: All suffixes for the text “aabcabcaac$”

shared part of the paths corresponding to both of the suffixes. Figure 2.1 shows all suffixes

for text “aabcabcaac$” where $ represents the terminator of the text and its corresponding

edges and nodes in the suffix trie. The $ symbol is a unique character that only appears

once at the end of a text and makes each substring unique. Figure2.2 shows the example of

suffix trie for Figure 2.1.

As we can see in Figure 2.2, the suffix trie can have more nodes than the length of a

text and contains all of its suffixes. It has exactly n leaves since each path from a root to

a leaf represents one of suffixes in a text . To construct the suffix trie, at most n2 nodes

are needed because n nodes are necessary for the first position and at most n− 1 nodes

for the second position and so on. If the text consists entirely of different characters (the

length of the text is the size of alphabet), they must be installed in such way that each

character of each suffix consumes one unit of time. Thus, the summation of installation

time is ∑
n
i=1 i = n(n+1)

2 = O(n2). We also consider the instance in which just one character

occurs n times in a text, such as T = an = “aaaa. . . aaa”. In this circumstance O(n2) is also

needed to build the suffix trie, since O(n2) comparisons are needed to install into different

8

Figure 2.2: The suffix trie

positions.

2.1.2 Query Time with the Suffix Trie

The search for a pattern string in the suffix trie takes O(m+ k(n−m)) when the alphabet

size is constant or O(m|∑ |+k(n−m)) when the alphabet size |∑ | is too large to be ignored.

(n−m) is the parameter for visiting each leaf node under a certain node. If a pattern string

exists in a text, the suffix trie can return position numbers in which the pattern string has

occurred. Otherwise, the suffix trie returns null value. For example, looking for the pattern-

string “bca” in Figure 2.2, start from the root and search the edge which is labeled ’b’ and

then transit to the corresponding node. Repeat searching the edges that correspond to a

character of the pattern string until there are no more transitions, or until the end of the

pattern has been reached string (the depth of the suffix trie matches the index of the pattern

string). At the end of the pattern string, simply return the leaves’ positions under a node

9

where stopped, since the prefix of these leaves contains the pattern string as the prefix.

For instance, the position numbers (3, 6) are leaves and both nodes’ prefixes are “bca” in

Figure 2.2.

If the alphabet size |∑ | is not constant, the search time takes O(m|∑ |+ k(n−m)),

since one transition decision must be made at each node (some nodes must have maximum

|∑ | number of transitions). However, we can ignore the |∑ |, since the alphabet size is the

constant in the real world. If |∑ | cannot be ignore, the hash table can be used to eliminate

|∑ | factor.

2.2 The Suffix Tree

A suffix trie is a tree data structure that stores all possible suffixes of a text. A suffix tree

is a well-known tree data structure that is a compacted suffix trie. It has a fast pattern-

string search algorithm O(m+ k) with a linear construction time. Weiner [61] proposed

the original algorithm for the suffix tree built in O(n). McCreight [45], Ukkonen [59] and

Farach [18]suggested the different ways to construct the suffix tree in O(n).

The next subsections demonstrate how to construct the suffix tree in linear time with

the suffix link and the suffix tree’s properties.

2.2.1 Constructing The Suffix Tree in Linear Time

The suffix tree represents a compacted suffix trie. The suffix tree’s edges concatenate the

edges’ labels so that a node has only one child in its suffix trie. This also means that every

internal node in the suffix tree has more than two children. Reducing redundant nodes in

this way saves construction time and space. Before illustrating the linear construction time,

the suffix tree that has exactly the same information as the suffix trie is shown. The suffix

10

Figure 2.3: The suffix tree

tree shown in Figure 2.3 is derived from Figure 2.2. As we can see in Figure 2.3, the suffix

tree has exactly n leaves that are the same as the suffix trie. However, it has at most 2n−1

total number of nodes. The number of suffix tree’s nodes is definitely less than the suffix

trie. Like the suffix trie, each leaf corresponds to one of the positions in the text. Each

node of the suffix tree has at least two children, except leaves. The concatenation of edges

reduces the number of edges and nodes to at most 2(n−1) edges and 2n−1 nodes. Thus,

the path from the root to a node is defined as the concatenated edge label. For example, the

path label “caac$” of the node v is from the root to the leaf node 7 in Figure 2.3. Also,

leaves under the node v contain the same prefix. For example, we can reach the node v with

the path labeled "aa" and leaves 1 and 8 under the node v contain the same prefix “aa”.

However, the number of characters on the edges are still at most n(n+1)
2 because characters

of each suffix in the text must be represented in an edge of the suffix tree.

The naive method mentioned in the previous section requires O(n2) time and space to

11

build the suffix trie since we must install O(n2) nodes. O(n2) nodes means that there are

O(n2) characters to be installed. When we reduce the characters (nodes) to be labeled in

the edges or to be substituted with other properties to archive O(n) space, the suffix tree

can be built in linear time since there are O(n) nodes, edges and labels. Instead of labeling

characters on each edge, the labels of each edge are replaced with the pair of positions (a, b)

where a is the beginning of the substring and b is the end of the substring. These beginning

and ending positions directly point to the location of the text. For example, in Figure 2.4,

the edge-label (1,1) represents the substring ‘a’ and the edge-label (6,11) represents the

substring “bcaac$”. Also we note that an edge from each leaf to its parent needs only a

start position because any path from a leaf to its parent is the suffix of the text (the end

position is always the end location of the text). When a leaf is created once, this leaf cannot

be turned to a internal node. Finally, the total number of edge-labels are shrunk from O(n2)

to O(n) (the total number of edge-labels are at most two times the number of edges that is

O(n)).

Now the build time can be speed up to O(n) time since there are O(n) nodes, edges

and edge-labels (installing one object per one iteration). Weiner [61], McCreight [45] and

Ukkonen [59] used the suffix tree’s properties mentioned above. Weiner’s algorithm starts

to build the suffix tree from the shortest suffix to the longest suffix. McCreight’s algorithm

builds the suffix tree from the longest suffix to the shortest suffix. And Ukkonen’s algorithm

incrementally builds the suffix tree. For example, with the text “aabcabcaac$”, Weiner’s

algorithm installs ’$’ first, “c$” second, and so on, through “aabcabcaac$”. McCreight’s

algorithm installs “aabcabcaac$” first, “abcabcaac$” second, and so on, through ‘$’.

Ukkonen’s algorithm installs ‘a’ in the first position and then ‘a’ in the second position

and so on. Even though these three algorithm use different approaches, the resulting suffix

12

Figure 2.4: The suffix tree with concatenated edge labels

trees are identical.

The suffix link is the critical component needed to build the suffix tree in linear time.

The three algorithms above use the suffix link (Weiner calls it “finding Head(i)”) and the

suffix tree’s properties to reduce the construction time bound. The suffix link is the longest

common prefix between a suffix to be installed and the current suffix tree, and provides the

installation shortcuts. Using the naive method, it is started from the root of the suffix tree.

Using the suffix links, however, we can start from a internal node. The suffix link connects

one internal node to another internal node such that an internal node v has the path-label χα

from the root to the node v and an internal node v′ has the path-label α that is the longest

common prefix of v′, thereby creating the suffix link from v to v′. Figure 2.5 shows the

suffix links, indicated by dotted lines, of each internal node in the suffix tree. Note that

13

Figure 2.5: The suffix tree with the suffix links
Note: In this figure, the actual characters of the string on the edges in this suffix tree are
shown. However, indexes are the same as in Figure 2.4 in its actual implementation.

each algorithm has its own way of creating and maintaining the suffix links: the direction

of the suffix links are not assigned in Figure 2.5 because Weiner and McCreight’s suffix

link directions are opposite of one another.

There are all of the tools needed to create the suffix tree in linear time. The subsections

below illustrate how to construct the Weiner, McCreight and Ukkonen’s suffix trees.

2.2.2 The Construction Algorithm of Weiner’s Suffix Tree

Weiner’s algorithm builds the suffix tree from the shortest suffix to the longest suffix. The

suffix tree Ti contain‘s suffixes, aiai+1 . . . an, ai+1ai+2. . . an, . . . , an. Weiner’s suffix tree Ti

is built from the previous iteration suffix tree Ti+1. First we find the head using the suffix

link and then add the tail ai+|head|−1 . . . an for the suffix tree Ti. By finding the suffix link,

it can be started from the node corresponding to this head, instead of beginning from the

14

root. To implement the suffix link, each node (except the leaf nodes) contains additional

information about the indicator vector and the link vector. Each vectors’ size is equal to the

size of alphabet (also each edge has the indicator vector because the new node inherits the

indicator vector from an edge when an edge is split). The indicator vector shows whether

a node has a possible suffix link or not for a character ai. The link vector is the same

as the suffix link. These vectors enable Weiner’s algorithm to find the suffix link (head)

efficiently. Also, the indicator and link vectors in each iteration must be maintained as the

suffix tree changes.

In each iteration of Weiner’s algorithm searching starts from the leaf that was added in

the previous iteration Ti+1 to extend to Ti and traverse the path from the bottom up until the

suffix link (link vector) with ai is found. For example, in the Appendix, there is an attempt

create the suffix tree T2 for the substring “abcabcac$” from T3. First, traversing toward the

root to search the node that has Ix(a) (the indicator vector for a character “a” at a node x).

However, Lx(a) (the link vector for the character “a” at the node x) is null. So, we traverse

to the root. Iroot(a) is true and Lroot(a) points to the node u. The number of characters

between the node x and the root is three “bca”. Creating the new node y from exactly three

characters below the node u. Finally, the tail “bcaac$” is added to the suffix tree since the

head “abca” exists on the current suffix tree. If all of the nodes’ indicator vectors on the

path from the leaf to the root for the character ai are false, the leaf node i is created, since

ai is the new character. So, the indicator and the link vectors are null at the leaf node i.

The last step to complete each iteration of Weiner’s algorithm is to update the vectors.

There are two cases for updating the vectors. The first trivial case is when the head is

empty. The nodes’ indicator vector between the root and the leaf node i is updated with

the character ai and it is not necessary to update any link vector since ai is a new character.

15

In the second case, the head is not empty. The nodes’ indicator vector is between the leaf

node i and the node v which contains a link for the character ai and so is updated. The link

vector must be properly updated in this case. The link vector at the node v points to the

head which is aiα, where α is the path labeled from the root to the node v.

Finally, in reviewing the time complexity of Weiner’s algorithm, as we have demon-

strated above, adding one node and one edge takes constant time after finding the head.

Finding the head requires traversing up from the last added leaf node. However, in the next

iteration, this distance, which climbs upward to find the proper node, will be much shorter

than the previous distance since the depth of aiα is equal to or shorter than the depth of

α . At every iteration the suffix tree depth is increased by at most 1 (splitting an edge in-

creases the depth by at most one). It is possible to go many nodes up the tree. However,

we go down at most two nodes from the last suffix node. The last leaf node is closer to the

root when traversed as many nodes as would be traversed up to find suffix link. Thus, the

amortized complexity becomes linear time.

2.2.3 The Construction Algorithm of McCreight’s Suffix Tree

McCreight’s suffix tree requires less memory than Weiner’s suffix tree because it does not

use a vector. McCreight’s suffix tree is built from the longest suffix (the whole text) to

the shortest suffix. The naive way to construct the McCreight’s suffix tree takes O(n2).

However, McCreight’s algorithm also uses the suffix link to reduce the running time to

O(n). The difference is that the direction of the suffix link is the reverse of Weiner’s.

2.2.4 The Construction Algorithm of Ukkonen’s Suffix Tree

Ukkonen’s algorithm builds the suffix tree by adding each character ai (i = 1. . . n+ 1) at

each iteration. Ukkonen’s linear time algorithm uses less space than Weiner’s algorithm to

16

construct the suffix tree. Ukkonen’s algorithm has the advantage of being online. Unlike

Weiner’s and McCreight’s suffix tree, Ukkonen’s suffix tree can be extended with a new

appended character at the end of the text, by contrast, Weiner’s and McCreight’s suffix tree

must be reconstructed.

Ukkonen’s algorithms uses the following three rules to extend the suffix tree with a new

character. Thus the suffix extension should obey these three rules.

• Rule 1: Once a leaf, always a leaf. If at some point Ukkonen’s algorithm creates a

leaf node with some position number i, then this leaf node remains the leaf node in

all phases. However, the edge label between leaf node and parent must be extended

with a new character.

• Rule 2: Splitting edge. If no path end of a j. . . ai−1 starts with character ai, then we

create a leaf with position number i and the edge label is ai between this leaf node

and its parent.

• Rule 3: Ignoring the existing suffix. If the path end of a j. . . ai−1 starts with the

character ai, doing anything, since a j. . . ai is already in the suffix tree.

Figure 2.6 shows an example of extending the suffix tree by applying Rule 1 ~ 3. The

upper depiction of Figure 2.6 shows seven leaves with nine characters since a single char-

acter “a” is in position 9 and the substring “aa” for position 8 already exists in the suffix

tree. When we append the tenth character ’c’, the edges between the seven leaves and their

parents are extended with “c” by Rule 1, node 8 and 9 are created by Rule 2, and the tenth

character “c” is ignored by Rule 3. The resulting suffix tree for ’aabcabcaac’ shown in the

lower depict of Figure 2.6.

17

Figure 2.6: Extending the suffix tree from string “aabcabcaa” to “aabcabcaac”

18

The naive way to extend a single character needs O(i2) time in phase i, since there

are at most O(i2) characters and O(i) leaves. To add a new character, O(i) leaves through

O(i2) characters must be visited. However, Rule 1 allows us to skip visiting all of the

leaves. Marking only the start position between the leaf node and its parent and putting

the end location between the leaf node and its parent when the algorithm is terminated.

For example, in Figure 2.6, (2, end) is the edge label between leaf 1 and its parent and (6,

end) is the edge label between leaf 4 and it’s parent. When the algorithm is terminated, the

parameter end is 10. The resulting edge label is (2, 10) and (6, 10). The extension can be

done in constant time.

Time bound must be reduced to perform Rule 2 and 3. In each phase, performing Rule

2 and 3 still consumes time since the whole suffix tree is traversed to find a split point or to

check existing strings. To efficiently perform Rule 2 and 3, the suffix link is used as stated

in the above algorithm states. In phase i, Ukkonen’s algorithm locates the suffix [j. . . i] (in

Figure 2.6 the algorithm located at the end of suffix 9) and applies Rule 2 (create the leaf

node 8 (i− deptho f end o f (i− 1))). After creating leaf node 8, the algorithm goes up to

the node v to which the suffix link points. (This node v has the suffix link that links to the

root.) The algorithm then goes down from this node the number of characters it went up

to the node v. (In Figure 2.6 only “a” is seen when going up to the node v and to the root

using the suffix link then going down one character “a”. The resulting node is the node v

again). If Rule 2 needs to be applied, the above steps are processed again (in Figure 2.6

Rule 2 was applied and created node 9). Otherwise, Rule 3 is applied (in Figure 2.6 it is

stoped at the end of suffix 10), stop and then go to the next phase.

The construction time of Ukkones’s algorithm is O(n) since at most 2n nodes are cre-

ated (n leaves and at most n internal nodes). If a node is not created, then O(1) time is

19

needed. Splitting an edge also takes O(1). At some point, many nodes may be created in

one phase. However, the number of nodes that are created in phase i is not to exceed 2i

nodes when assumed that is not created any node before phase i. Thus, the construction

time of Ukkonen’s algorithm is O(n).

2.2.5 Query Time with the Suffix Tree

The three algorithms for building the suffix tree in the previous sections have their own

unique way to reduce the construction time. In spite of the three different methods to build

a suffix tree, a result of these is the same single suffix tree. All three algorithms produce

the same suffix tree like Figure for text “aabcabcaa$”. The same query algorithm as suffix

trie is also applied to suffix tree. With the suffix tree we can eliminate the (n−m) factor

since each leaf node can be reported in O(1).

2.3 The Suffix Array

Another competitive data structure for string searching is a suffix array which was intro-

duced by Manber et al. [43]. The suffix array stores each suffix of the text in lexicographic

order. Manber’s suffix array can be built in O(nlogn) for a constant alphabet size. Kärkkäi-

nen et al. [39] also proposed a suffix array that works in linear time: its time bound is

independent from the alphabet size. The algorithm searches for the substring just like we

search a word in the dictionary. The searching time is proportional to the length of text and

the length of the pattern string. It is O(m+ logn) time. This search time is longer than the

suffix tree’s search time O(m+ k). A detailed explanation of the searching substring and

the construction of suffix array is in next subsections.

20

2.3.1 Query Time with the Suffix Array

First, searching pattern strings from the text will be shown instead of explaining how to

build the suffix array since this search method is used by both Manber’s and Kärkkäinen.

Let T = a1a2 . . . an be a text of length n. The suffix array stores the index of each

suffix from the whole text a1a2 . . . an to a single character an lexicographically. All of the

suffixes are written, using pos(i) , 1 ≤ i ≤ n, that represents a suffix starting from position

i and ending at position n. Also used is “=” and “<” to denote the lexicographic order. For

example, pos(i) = ai . . . an−1 < pos(j) = a j . . . an−1 representing the suffix ai . . .

an−1 appears previous to the suffix a j . . . an−1 in lexicographic order. This means that the

pos(i) has a lower number than pos(j) lexicographically. And “=” denotes that both of the

substrings are the same; “=” is used only when searching a pattern string in the suffix array

(each suffix is unique even though the text is an; each suffix length is different). Sort these

pos(1), pos(2), . . . , pos(n-1) by lexicographic order to provide O(logn) time in searching

for a substring. The search for pattern strings uses the binary search over the sorted suffix

array. Each time the search range can be reduced by one half of the previous range. Starting

at the middle of the suffix array the pattern string is matched with the suffix of the middle

of the suffix array. If they match, then stop and return the pos(i). Otherwise, compare pos(i)

and the pattern-string. If the pattern-string < pos(i), then the upper half of the suffix array

is considered. Otherwise, the candidate suffixes are in the lower half of the suffix array.

Figure 2.7 shows the unsorted and the sorted suffix array for the text ”aabcabcaac”.

Figure 2.7 (b) shows the suffix array sorted lexicographically. A search of the pattern-

string can be performed via a binary search within the sorted suffix array. Figure 2.7 (b)

also shows the process of searching the pattern-string for “caa. Numbered arrows show the

order of the process. The numbered arrow 1 is the start index and compares pos(9) = ”ac”

21

Suffix Position
aabcabcaac 1
abcabcaac 2
bcabcaac 3
cabcaac 4
abcaac 5
bcaac 6
caac 7
aac 8
ac 9
c 10

SA
SA(0)
SA(1)
SA(2)
SA(3)
SA(4)
SA(5)
SA(6)
SA(7)
SA(8)
SA(9)

Suffix Position
aabcabcaac 1
aac 8
abcaac 5
abcabcaac 2
ac 9
bcaac 6
bcabcaac 3
c 10
caac 7
cabcaac 4

← 1

← 2
← 3

(a) (b)

Figure 2.7: The suffix array: (a) shows the unsorted suffix array. (b) shows the sorted suffix
array and the numbered arrows show the order of the process to search for “caa”

and ”caa”. This results in pos(9) < “caa”. The next occurrence range is below pos(9) in

the sorted suffix array. Recursively, it is started at the middle of the next occurrence range.

This recursive process will be stopped when the pattern-string matches the substring of the

text or the occurrence range is 0. As seen in Figure 2.7, the number of comparisons is

reduced by half with each iteration. At most m character comparisons are needed to match

the pattern-string and pos(i) per each iteration. Thus, the running time is O(mlogn).

However, such running times can be reduced to O(m+ logn). To search a pattern-string

efficiently in a suffix array, LCP (longest common prefix) information is used to reduce

the search time to O(m+ logn). To reduce the search time bound to O(m+ logn), there

must be an update to u = lcp(P,U) and l = lcp(P,L) where P is a pattern string, U is the

upper bound of the range and L is the lower bound of the range. The function lcp(a,b) also

returns the length of the LCP of the two strings a and b. In each iteration two cases are

evaluated; first we evaluate which one is greater than, equal to, or less than the difference

between u and l and lcp(l or u,M) where M is the middle point of the range. From this,

22

it can be decided whether the pattern-string is in the upper half or lower half. When u and

p or lcp(l or u,M) are equal, compare M to the pattern-string at lcp+ 1. If more than a

single character in an iteration is compared, a maximum of u and/or l may grow by 1 for

each comparison. Thus, the search time can be reduced by O(m+ logn).

2.3.2 Constructing the Suffix Array

The suffix array stores pointers for sorted positions of suffixes in a given text, as seen in

Figure 2.7 (b). The real suffix array has SA(i) and the position column (pointer to a position

of text) instead of each suffix of the text since O(n2) (the length of text is n) spaces are

needed to store all of suffixes of a text. Also, this causes the construction time to increase.

Before talking about the construction of a suffix array, similarities between the suffix

tree and the suffix array must be examined. This also provides evidence to build the suffix

array in O(n). For the most part, the suffix tree and the suffix array contain the same

information in lexicographic order. A suffix tree to a suffix array can be induced. The

lexicographic order of the suffix array and the suffix tree are as shown in Figure 2.8. When

traversing leaves of the suffix tree by in-order traversal, the same lexicographic order as

the suffix array is obtained. The suffix tree can be converted in O(n) time with traversing a

suffix tree with in-order traversal in O(n).

The algorithm of Manber et al. [43] uses the radix sort. The naive way to build the

suffix array needs buckets as large as the alphabet size (each character is assigned to a

corresponding bucket). Each suffix is classified by the first character of each suffix in its

corresponding bucket. Each iteration in this algorithm increases the prefix of each suffix

by 2i where i is the number of the iteration (ex, 20,21. . .), that is, a bucket’s label size is

2i for the radix sort. Thus, the iteration is done in O(logn) iterations since the length of the

23

Figure 2.8: The suffix tree and the suffix array

longest suffix is n. There are n number of suffixes in a text size n. Thus, sorting the suffixes

needs O(nlogn) time since the radix sort takes O(n) for a constant alphabet size.

Kärkkäinen et al. proposed a truly linear time algorithm for the suffix array that does

not depend on the alphabet size. This algorithm uses 2/3-recursion referred to as DC3

(difference cover module 3). This drives the recurrence T (n) = T (2n/3) +O(n) where

T (2n/3) stand for the recursion and O(n) stand for merging and the radix sort. Thus,

the time bound is O(n) to construct the suffix array. In the paragraph below, the 4 steps

to construct the suffix array are illustrated: construct a sample, sort sample suffixes, sort

non-sample suffixes and merge.

To execute the first (construct a sample) step we divide the text in 3 parts by using

module 3 such that Bk = {i = position | i mod 3 = k}. There are three sets B0, B1 and B2.

Among these three sets we concatenate B1 and B2 (=⇒ B1⊕B2). This set is called Sc that

consists of sample positions like {1, 4, 7, . . . , n mod 3 = 1, 2, 5, 8,. . . , n mod 3 = 2 }.

Constructed in the second (sort sample suffix) step is the set R of strings with Sc such as

R = { [a1a2a3], [a4a5a6],. . . , [an−2an−1an], [a2a3a4], [a5a6a7],. . . , [an−1anan+1]} where

24

ai is a character at position i. Then the radix sort is used that allows O(n) time to sort R.

After executing the radix sort, the ranks are assigned to each triple by lexicographic order

(if the same triple exists, then the same rank is assigned). If all ranks are different, the

order of character is done for this step. Otherwise, the first and second step is recursively

performed with R’ which is it’s rank. After the second step, the base case is reached or

all ranks are different. Then the third (sort non-sample suffixes) step is performed. In this

step B1 is used that has already been sorted in the previous steps. B0 stores {3, 6, . . . , n

mode 3 = 0}. Let ja, jb ∈ B0. Then compare ja and jb with rank (ja + 1) and rank (jb +

1). For convenience, Sa is defined that is pair (ja, rank (ja + 1)). Now Sa and Sb can be

easily sorted with radix sort since rank(ji + 1) is unique even though ja and jb are of the

same character. When the above steps are finished, two parts, R= B1⊕B2 and B0 must be

merged to obtain completed the suffix array. The fourth (merge) step is same as merging

part of the merge sort. The merge operation takes O(n) to arrange two sorted parts R and

B0. Figure 2.9 shows an example of construction of the suffix array in linear time.

2.4 The Directed Acyclic Word Graph

The suffix tree is the DFA (deterministic finite automaton) that represents all possible suf-

fixes of a text and DAWG (directed acyclic word graph) [44] also is the DFA that minimizes

the suffix tree. The DAWG provides the same time bound as the suffix array for creating

and searching. We create the DAWG runs in O(n2) because O(n2) possible substrings in a

text size n must be represented in the DAWG. (This is the same as the number of possible

ways to choose two, the beginning and ending index, plus each single character from n,(
n
2

)
+ n = n(n−1)

2 + n = n(n+1)
2) . Because the DAWG has O(n) edges and nodes, it

performs in linear time.

25

Figure 2.9: Constructing suffix array in linear time

26

First illustrated are the properties of the DAWG. As mentioned above, the number of

nodes and edges of the DAWG of the text size n is O(n). To understand O(n) nodes and

edges in the DAWG, all possible substrings are shown that can be set into equivalence

classes. This means that two or more strings are in the same set if they have the same set

of ending positions. For example,

1 2 3 4 5 6 7 8 9 10 11 12
a a b c a a b c a a b c

when looking for the end positions of “aabc”, “abc” and “bc”,

End-Positions (aabc) = {4, 8, 12}

End-Positions (abc) = {4, 8, 12}

End-Positions (bc) = {4, 8, 12}

The three strings fall into the same set and these strings have an equivalence relation

(reflexive; End-Positions (abc) = End-Positions (abc), symmetric; End-Positions (abc) =

End-Positions (bc) ⇐⇒ End-Positions (bc) = End-Positions (abc), and transitive; End-

Positions (aabc) = End-Positions (abc) and End-Positions (abc) = End-Positions (bc) then

End-Positions (aabc) = End-Positions (bc)). These strings are right-equivalence class by

definition {y|End-Position (y) = End-Position (x)}. Also, note that the number of elements

in a set (cardinality) is the number of occurrences. The substrings: “aabc”, “abc” and “bc”

are occur three times in the text. Thus, each substring in a text ends in one and only one

right-equivalence class. This right-equivalence class is a node in the DAWG.

The size of the DAWG has O(n) nodes and edges and this can be created in O(n) time.

At most 2n right-equivalence classes (nodes) are in the DAWG and the maximum number

27

of edges is 3n−4. First, it is proven that the DAWG has at most 2n−1 nodes. One property

of the right-equivalence class is the transitive reduction in the Hash diagram. Therefore,

sets of ending position of two right-equivalence classes relation is one of these; X ⊆ Y ,

Y ⊆ X or X ∩Y = /0. This also shows that the cardinality of a set containing any i is unique.

Now, the tree rooted with a degenerate class is created. Nodes are sorted containing {i}

for any i by cardinality and each sorted node is attached to the lowest cardinality set. The

leaves are now at most n leaves and each internal node has at least 2 children. So, there are

at most 2n− 1 nodes. To show that 3n− 3 edges are in the DAWG, it is assumed that the

DAWG has 2n−2 nodes plus one sink node and makes a directed spanning tree rooted at

the degenerate class. This spanning tree has 2n− 2 edges. Think about every edge that is

in the DAWG and not in the spanning tree. Theses edges are denoted by e. These edges

connect two paths, one path from the root to e and another path from e to the sink (note that

we must select an e closer to the sink). This connected path yield a suffix of a text. The

number of edges e is at most the number of suffixes in a text. There are n−1 e’s (when we

make a spanning tree, one of the suffixes is in the tree). Thus, the total number of edges is

3n−3.

The easy way to create the DAWG is from the degenerate node {1, 2, . . . , n} then

partition the members of this node into the same character and attach this set to the root

recursively running this process on every node. The running time for this process is O(n2)

since there are O(n2) substrings. Figure 2.10 illustrates the naive method for creating the

DAWG.

There is no advantage in using the quadratic time algorithms for string search. The

DAWG can be incrementally built to reduce the time bound. Similar to the algorithms

discussed above, the DAWG also uses a shortcut to finish one phase in the constant time.

28

Figure 2.10: The naive method to create the DAWG

29

Figure 2.11: Suffix pointers for the DAWG

This shortcut is called the suffix point. The suffix point connects right-equivalence classes

that were created in a previous phase. These right-equivalence class are called the suffix

nodes. The longest path from the root (the degenerate class) to a suffix node is the primal

path. Figure 2.11 shows an example of the suffix node, the suffix pointer and the primal

path.

Each phase starts from the DAWG of ti to obtain the DAWG of ti+1. A new sink node

must be created and this new sink has an incoming edge form the previous sink node with

label ti+1. In Figure 2.11, the node 6 is a newly created sink node with edge ’b’ and node

5 is the previous sink node. Then we follow the suffix pointer to call other suffix nodes. If

this suffix node does not have an edge with label ti+1, an edge between this suffix node and

the sink node is created with the label ti+1. Otherwise, it must be checked whether a node

reached from the suffix node with edge label ti+1 must be split. If this node is not split, stop

and then add the next character. Let node Z be the neighbor of this suffix node on ti+1 and

compare the length of primal path to the suffix node + 1 and the length of primal path to the

node Z. If the primal path to the node Z is longer, the node Z must be split. Otherwise, just

30

Figure 2.12: Extending the DAWG from “aabcab” to “aabcabc”

add the position ti+1 to the node Z. When splitting the node Z, the new node Y is created,

which inherits the outgoing edge and members from Z (we also include the position of

ti+1) and installed incoming edge from remained suffix nodes with label ti+1. This step

is repeated until the last suffix node is reached (the degenerate node). Figures 2.11 and

2.12 shows examples of incremental processing from DAWG of “aabcab” to the DAWG

of “aabcabc”. The suffix node {3, 6} already has the edge labeled ’c’ and the length of the

primal path to the node {4} is longer. This node is split and incoming edges are installed

from remaining suffix nodes {0, 1, 2 . . ., 6} and {3, 6}.

Installing a new node and edge and splitting can be done in constant time. Each phase

creates at most two nodes and each newly created node has one suffix pointer. In some

phases, many suffix nodes are traversed, but a much smaller number of suffix nodes are

traversed in the next phase. Thus the DAWG is created in linear time.

31

2.4.1 The compact DAWG

Now consider a more memory efficient DAWG called the compact DAWG. Redundant

information (substrings) in a text requires more spaces. For example, if a text consists of

an, there are n+1 right-equivalence classes and n edges in the DAWG. The single character

“a” falls into the set {1, 2, . . ., n} and “aa” falls into the set {2, 3, . . ., n} . . . , an falls into

the set {n}. So, n+1 nodes and n edges are needed to represent an in the DAWG (this is a

linked list and the initial node is the root). In another extreme condition, when the length

of a text is same as the alphabet size, n+1 nodes and 2n−1 edges are also created. If an

additional O(n) time is spent, a compact DAWG can be obtained that occupies much less

space than the DAWG.

To create the compact DAWG, first the non-primal node is defined that has exactly one

outgoing edge in the DAWG. Only two nodes can be represented and one edge for the text

an since all nodes are non-primal nodes except the root and sink. In a second extreme case,

two nodes and n edges can be created. As in Figure 2.13, the compact DAWG consists

only of primal nodes except the sink node. Each edge is represented by the length of

the substring and the smallest member represents each node. Consider the text anb, this

case forces us to create the same number of nodes and edges as the DAWG since every

node has two outgoing edges. The DAWG in this case cannot be compressed. Converting

the DAWG to the compact DAWG is performed in depth-first traversals. Each class can be

labeled with a single position from its set of ending positions. When retreating from a node,

the primal node and the distance are calculated. Finally, The DAWG edges are removed.

Also, Crochemore et al. [35, 36, 13]suggest the compact DAWG is directly constructed

from a text. Their approach modified the linear time DAWG algorithm.

Finally, the search pattern string runs in O(p+ k) time. This is the same as finding a

32

Figure 2.13: The compact DAWG

pattern string in the suffix tree. However, a search of a pattern string in the compact DAWG

is different than in the DAWG. Looking at an example with the string “abc”, starting from

the root, node 1 is selected in which the number of elements can be calculated. First, there

are five paths to the sink meaning that node 1 has five elements. Second, the edge label for

each path is summed up and subtracted from the sink position to obtain positions (1 = 10-9,

2 = 10-8, 5 = 10-5, 8 = 10-2, 9 = 10-1). In node 1, it is possible to transition to node 5 with

the character “b”. On this node, positions {5, 8} can be calculated as above. However, one

character is exceeded since the edge consists of three characters, therefore, one is subtract

from {5, 8}. The resulting position is then {4, 8}.

33

Chapter 3

The Position Heap

The sequence hash trees of Coffman and Eve [11] and the data compression algorithm

of Lempel-Ziv [41] provide the basic idea for the position heap. The sequence hash tree

cannot be used directly for string searching problems. Ehrenfeucht and McConnell [44].

tailored the algorithm of Lempel-Ziv to string searching and proposed the position heap.

First, we explain the sequence hash tree before demonstrating the position heap.

3.1 Sequence Hash Trees

A data structure of Coffman and Eve [11], called a sequence hash tree, was designed for

the problem of implementing hash tables (dictionaries) whose keys are strings. It consists

of a trie for indexing into the table. The structure of the tree depends on the order in which

the strings are inserted. We describe a minor variant that is easier to adapt to the substring

matching problem, below.

Let S = (S1,S2, . . .Sn) be a given ordering of the strings. Without loss of generality for

our purposes, we may assume that no string is S is a prefix of any other. The trie that they

construct is defined by induction, as follows. If i = 1, the trie H1 is just a root node with a

pointer to S1. If i > 1, then Hi is obtained from Hi−1 by finding the shortest prefix Xb of

34

Figure 3.1: The sequence hash tree of a sequence of strings. We refer to each node by
the string of letter labels on the path from the root to the node. For example, the node
labeled 6 can be thought of as synonymous with the string ab. Each string in the sequence
is installed at a new node that is the shortest prefix of the string that isn’t already a node
of the sequence hash tree. These prefixes are underlined. For example, when string 9 is
inserted, its prefix abb is already a node of the tree, but its prefix abba is not, so a pointer
to string 9 is inserted at a new node, abba.

Si that is not already a node of the trie. A new node Xb is added as the child of node X on

edge labeled b, and a pointer is installed from it to Si.

Figure 3.1 gives an example. Coffman and Eve’s paper has received little attention

since it was published in 1970, due, in no doubt, to the existence of superior ways of

implementing a hash table. In the present paper, we show that this data structure is much

richer when considered in the context of the new problem. The structure of the set of

suffixes of a text T allows us to derive interesting and algorithmically useful properties that

do not apply in the general case addressed by Coffman and Eve.

3.2 The Position Heap

The position heap can be best defined through a simple constructive algorithm.

35

Figure 3.2: Incremental construction of the position heap. Suffixes t1, t2, . . . , tn are inserted
in ascending order of length. The figure depicts the insertion of ti when i = 15. Indexing
into the heap on ti identifies the longest prefix (aba) of ti that is already a node Y of the
heap. The shortest prefix of ti that is not already a node of the heap (abaa) is inserted as a
child of Y and labeled with position i.

36

To construct the position heap, we processes a text from right to left. We therefore adopt

the convention of indexing the positions of T in descending order, that is, T = tntn−1...t1

(See Figure 3.2). To build the position heap, starting from the right most character t1,

position 1 is the root of the position heap.

Following the example of Figure 3.2, after the root is situated, the next position, posi-

tion 2, is processed. Since the root is occupied, we look at the character, b, that occurs at

position 2. We make a node labeled 2 as a child of the root on edge labeled b.

We then process position 3. Since the root is occupied, we look at the character, a, that

occurs at position 3, and make a new node labeled 3 as a child of the root on edge labeled

a.

A key issue first arises in processing the next position, position 4. The root is occupied

by 1. We look at the character, a, at position 4, but we cannot place the 4 in a child of the

root labeled a, since that node is already occupied by position 3. Therefore, we must look

at the next longer prefix, aa, of the suffix that begins at position 4. We place a new node

labeled 4 at the end of a path whose edge labels are aa.

Similarly, ba is the shortest prefix of the suffix beginning at position 5 that does not

already occur as the sequence of edge labels on a path from the root, so we place a new

node labeled 5 at the end of a path whose edge labels are ba.

Definition 3.2.1 The position heap H(T) of a text T is obtained by iteratively inserting

the suffixes (t1, t2, . . . , tn) of T , in ascending order of length, into Coffman and Eve’s data

structure using their insertion operation. That is, ti is inserted by creating a new node that

is the shortest prefix of ti that is not already a node of the tree, and labeling it with position

i.

Let us call the algorithm implied by this constructive definition the naive construction

37

algorithm. Figure 3.2 gives an illustration. Coffman and Eve assume that each inserted

string ends with a special character $ to ensure that if all inserted strings are distinct, no

inserted string is already a node of the tree when it is inserted. This is unnecessary here,

since each string ti is longer than any string inserted before it, and each node previously

inserted is a prefix of some t j for j < i.

The construction can be executed for any text T , and, since it is deterministic, the

position heap H(T) for a text is unique.

3.2.1 A Time Bound for Constructing the Position Heap

We can obtain a time bound for constructing the position heap by analyzing the running

time of the naive algorithm.

Let h(T) denote the length ||X || of the longest substring X of T that occurs at least ||X ||

times in T .

Lemma 3.2.2 The height of the position heap of a text T is at most 2h(T).

Proof: Let X = xkxk−1 . . .x1 be a deepest leaf of the tree. Let Xi denote the prefix

xkxi−1 . . .xi of X . For each i from 1 through k, Xi occurs at least i times in T because it

has at least i descendants, {Xi,Xi−1, . . .X1}, and each of these contains an occurrence of

a substring of which Xi is a prefix. Therefore, Xdk/2e has length bk/2c and occurs at least

dk/2e times in T . It must be that bk/2c is a lower bound on h(T), so the height k is bounded

by 2h(T). Figure 3.3 depicts that the height of the position heap is O(h(T)).

Lemma 3.2.3 The naive algorithm takes O(nh(T)) time to build a position heap for a text

T .

38

Figure 3.3: The longest path in the position heap is selected. A path from a root to a leaf is
a substring in a text and this path length is h. This substring occurs at least one time in the
text. The depth of the parent node of this leaf node is h−1. This substring with the length
h− 1 appears at least two time in the text. When choosing a node that is the middle node
of this path, this middle node’s depth is h/2 and the substring with length h/2 appears at
least h/2 times in the text.

39

Proof: Indexing into the heap to find the parent of the new node to be inserted for position

i takes time that is bounded by the height of the heap, hence O(h(T)) time. Adding the new

child takes O(1) time. Summing this over all positions i gives an O(nh(T)) bound.

3.3 The Query Algorithm with the Position Heap

We now give a time bound for querying the position heap. We improve the time bound in

the next chapter, at the expense of adding elements to the data structure.

Definition 3.3.1 The naive query algorithm for finding all occurrences of a pattern string

P in T consists of the following steps.

• Index into the position heap to find the longest prefix X of P that is a node of H(T).

For each ancestor X ′ of X (including X), look up the position i stored in X ′. Position

i is an occurrence of X ′. Determine whether this occurrence is followed by P−X ′. If

it is, report i as an occurrence of P.

• If X = P, also report all positions stored at descendants of X.

For example, when looking for the pattern string “aba” in Figure 3.4, start from the

root and search the edge which is labeled ‘a’ and then transition to the corresponding node

3. Repeat searching for the edges that correspond to characters of the pattern string until

there are no more transitions, . After reaching the end of the pattern string that is node 11,

simply return the position numbers of the subtree rooted at the last node 11 that is {11, 15},

because the descendant nodes under the subtree have a prefix that is the same as the pattern

string. Then check all nodes on the path. After finding the path for the pattern string in the

position heap, verify all nodes on the path that are {1, 3, 6}, since these nodes’ path label is

40

Figure 3.4: The example of the naive query algorithm

a prefix of the pattern string. The verification of these nodes on the path delays the position

heap’s search time. With this example, position 6 has the same prefix as the pattern string.

Lemma 3.3.2 The naive query algorithm is correct.

Proof: A node X ′ contains a position i where X ′ occurs in T .

If X ′ is a prefix of P, then it is an ancestor of X , and i may or may not be an occurrence

of P in T , depending on whether the occurrence of X ′ at i is followed by P−X ′. The test

for this condition returns i if and only if it is an occurrence of P.

41

If P is a prefix of X ′, X = P, and since all prefixes of X ′ occur at position i, so does P.

This is reported during the traversal of the subtree rooted at P.

If the longest common prefix Y of P and X ′ is neither P nor X ′, then the occurrence of Y

at i is followed by the first letter of X ′−Y , which is not the first letter of P−Y . Therefore,

i is not an occurrence of P. The query does not report i in this case.

Lemma 3.3.3 The naive query algorithm runs in O(min(m2,mh(T))+k) time, where m is

the length of the query string, and k is the number of occurrences of it in T .

Proof: If X is the longest prefix of P that is a node of the heap, it takes O(||X ||) time

to find X by indexing into the heap on P. For each of the ||X ||+ 1 ancestors of X , we

must look up the position i stored in the ancestor, and determine, in O(m) time whether P

occurs at position i. Since ||X || ≤ m, this gives an O(m2) bound for this step. Since ||X || is

O(h(T)), this also gives an O(mh(T)) bound for this part.

If X =P, that is, if P is a node of the position heap, it also takes O(1) time to return each

of the positions in the subtree rooted in its subtree for a total of O(m2 +k) and O(mh(T)+

k).

Lemma 3.3.4 If T is a randomly constructed string and the construction of P does not

depend on T , or if P is a randomly constructed string and construction of T does not

depend on P, then the naive query algorithm takes O(m+ k) expected time, where m and k

are as in Lemma 3.3.3.

Proof: The mh(T) term comes from the fact that at each of O(h(T)) nodes X ′, we must

check whether the occurrence of X ′ at the position i that it stores is followed by P−X .

This requires checking whether ||P−X || letters of P match at ||P−X || positions of T . The

42

check halts when a mismatch is detected. The probability of any of positions matching is

1/|Σ|, so the expected number of checks before halting is (Σ−1)/Σ∑
||P−X ||
i=1 1/|Σ|i = O(1).

43

Chapter 4

The Augmented Position Heap

The position heap provides the better space requirement and the equal time bound for con-

struction time with the suffix tree, suffix array and DAWG except searching time; we will

show the linear time algorithm to construct the position heap and the augmented position

heap in the next chapter. As shown in Table 4.1, the position heap’s and suffix array’s

searching time is slower than other competitive data structure. This is a disadvantage in

practical interest.

To overcome this obstacle, additional pointers are installed into the position heap. This

heap is called the augmented position heap. This work is appeared in [17, 16]. The con-

struction time bound is the same as the position heap. It can be built in O(n) amortized

time, and spend O(m+ k) time to find the k occurrences of the pattern string P. However,

it need additional space than the position heap because of extra pointers.

Preprocessing Time Searching Time
Augmented Position Heap O(n) O(m+ k)

Position Heap O(n) O(m2 + k)
DAWG O(n) O(m+ k)

Suffix Array O(n) O(m+ logn+ k)
Suffix Tree O(n) O(m+ k)

Table 4.1: Construction and Searching time comparison

44

These extra pointers are defined as maximal reach pointers. A maximal-reach pointer

is the longest prefix of starting position at ti that is a node in the position heap. A node

has a maximal-reach pointer that points to a descendant or does not have a maximal-reach

pointer because a longest existing prefix is itself in the position heap. In Figure 4.1, node

1, 2, 3, 4, 5 and 6 have a maximal-reach pointer. However, node 7, 8, 9, 10, 11, 12, 13, 14

and 15 do not have a maximal-reach pointer (a maximal reach pointer points itself). Also,

dot lines can be compared under the text and bold lines above the text in Figure 4.1. Dot

lines indicates paths for the maximal-reach pointers and bold lines represent paths from the

root to each node. A length of dot and bold line is identical when a node does not have a

maximal-reach pointer. If a node has a maximal-reach pointer, a dot line is longer than a

bold line. Since the maximal-reach pointer must reach deeper than its path.

For example, with Figure 4.1, node 3 can reach node 11 with substring “aba”. Sub-

string “aba”, t[3 : 1] is the longest prefix that can be represented in the augmented position

heap. So, the augmented position heap contains information that the longest prefix for

starting at each position.

Definition 4.0.5 Let i be the position stored at node X in H(T), and let Y be the largest

prefix of Ti that is a node of H(T). The maximal reach pointer for X is a pointer from

node X to node Y . The augmented position heap for T is obtained by labeling each node

X of H(T) with its maximal-reach pointer and X’s preorder and postorder number in a

traversal of H(T). We also associate with the heap an array Nodes[] such that Nodes[i]

contains a pointer to the node of the heap that contains position i. Let H ′(T) denote the

augmented position heap.

Create the position heap for T . The pointers can be installed in Nodes[] and the pre-

order and postorder numbers can be assigned to nodes of the heap during a depth-first

45

Figure 4.1: Augmented position heap

46

traversal of T . Then, the naive method to point the longest existing path for each each

suffix Ti of T intuitively visits down though a path until a substring is matched with a path

or the end of path. To point each node’s existing longest path, start from each node and

look for an edge’s label that is a character of node′s poistion− node′sdepth. These steps

are processed until a leaf is reached or a edge does not exist. In the worst case, every node’s

existing longest path can reach leaves. The time bound relates with O(h(T)) of the position

heap. Thus, the running time for installing maximal-reach pointers is O(nh(T)).

4.1 An O(m+ k) Time Bound for a Search with the Aug-
mented Position Heap

A pattern string can be found in O(m2 + k) within the traditional position heap. This is the

critical disadvantage when comparing with other data structures for the string searching.

The fastest algorithms for string searching are the suffix tree and DAWG. These data struc-

tures allow us to find a pattern string in O(m+k). This is the best search time bound so far.

Most of the query algorithms in this section are similar with the naive query algorithms. It

recommends that the readers focus more on how to utilize the maximal-reach pointers to

acquire the improved query time bound.

As shown in the previous chapter, what consumes time is the intermediate nodes that are

path nodes between the root and the end of the pattern string since a pattern string must be

compared with each substring that starts from the intermediate node’s position. The worst

case for this comparing process is O(m2). If we improve this comparing process from

O(m) to O(1) for each intermediate node, this time bound for the search can be reduced to

O(m+ k).

The linear query algorithm with the augmented position heap is similar with the naive

47

query algorithm except when comparing a substring with a pattern string. Starting from the

root and the first character p1 of the pattern string, follow the path with the pattern string.

After stoping at node v, which is the end of the path, report all nodes of the subtree rooted

this node v. So far, this scheme is the same as the naive query algorithm. All nodes on

the path must be checked with the naive query algorithm to obtain all occurrences, since

there is limited information of the ancestors of node v within the position heap. To obtain

complete information for each ancestors’ prefix, O(m2) time must be spent. Instead of

this slow process, nodes are reported that are linked with this subtree by a maximal-reach

pointer. The maximal-reach pointer verifies that these nodes start with the same prefix as

the pattern string. If node i’s maximal-reach pointer points to a subtree that roots node v of

the end of the path, position i begins with the prefix that is the same as the pattern string. It

takes O(1) whether it points to the proper subtree.

To verify the descents, perorder and postorder numbers are utilized. It is well-known

that node x of a rooted tree is an ancestor of node y if and only if the preorder number of

x is less than the preorder number of y and the postorder number of x is larger than the

postorder number of y. This gives the following:

Lemma 4.1.1 Given pointers to two nodes X and Y of H ′(T), it takes O(1) time to deter-

mine whether X is an ancestor of Y .

Lemma 4.1.2 Given a pointer to a node X of H ′(T) and a position i, it takes O(1) time to

determine whether i is an occurrence of string X in T .

Proof: It takes O(1) time to find the node Y that contains i. By Lemma 4.1.1, it takes

O(1) time to determine whether Y is a descendant of X . If so, then since i is an occurrence

of Y and X is a prefix of Y , i is an occurrence of X .

48

Figure 4.2: Depth-first discovery and finishing times with the augmented position heap.
Any descendant’s discovery and finishing time is bounded its ancestor’s discovery and
finishing time.

If not, it takes O(1) time to determine whether Y is an ancestor of X , by Lemma 4.1.1.

If it is, then let Z be the node pointed to by the maximal reach pointer of Y . Position i is an

occurrence of X if and only if X is a prefix of Ti. Z is the maximal prefix of Ti that is a node

of the heap. Therefore, X occurs at position i if and only if it is a (not-necessarily proper)

prefix of Z, that is, if and only if Z is a descendant of X . This takes O(1) time to determine,

by Lemma 4.1.1.

For example with Figure 4.2, given a pointer to the node ab (the one labeled 6), we

can tell that 11 is a descendant by looking in Nodes[11] to find a pointer to its node aba,

and using the preorder and postorder numbers of ab and aba to determine that aba is a

descendant. Therefore, it is an occurrence. We can tell that 3 is an occurrence by looking

in Nodes[3] to find its node a, using the preorder/postorder numbers to find that it is an

49

ancestor of node ba, using its maximal reach pointer to find the node aba, and using the

preorder/postorder numbers of ba and bab to determine that aba is a descendant of ab. We

can tell that 1 is not an occurrence, because its maximal-reach pointer doesn’t point to a

descendant of ab.

Corollary 4.1.3 Let Xc be a string such that X is a node of the tree and Xc is not. Given

a pointer to X and a position j, it takes O(1) time to determine whether j is an occurrence

of Xc.

Proof: By Lemma 4.1.2, it takes O(1) time to determine whether j is an occurrence of

X . If it is, then it is an occurrence of Xc if c occurs at position j−||X ||, which takes O(1)

time to check when T is stored in an array.

Before giving pseudocode for the linear-time query algorithm, we illustrate the main

ideas in Figure 4.3. There are two cases: Case 1, where the search string is a node of the

position heap, and Case 2, where it is not.

Case 1 is illustrated by ba, which is the node labeled 6. By Lemma 4.1.2, we can now

check in O(1) time apiece which of the positions {1,3} at proper ancestors are occurrences

of ba. Only 3 is; its node is the only proper ancestor with a maximal-reach pointer into ba’s

subtree. That is O(m) time so far. In addition, we report the labels of descendants {6,12,9}

in O(1) time apiece, as before, in O(k) time, for a total of O(m+ k) time.

Case 2 is illustrated by babbabbab, which is not a node of the heap. Our strategy is to

partition the string into segments babb, abba, and b, which can be handled efficiently by

Corollary 4.1.3 and Lemma 4.1.2. We use the corollary to find the occurrences of babb,

discard those that are not followed by abba. This gives the occurrences of babbabba. We

then use the lemma to discard from these the occurrences those that are not followed by b.

50

To apply the corollary, we want all the segments except the last to be of the form Xc,

where X is a node of the tree and Xc is not. The first such segment is babb. This is

our current substring. As in the naive query algorithm, only ancestors of X = bab can be

positions of babb. These are labeled {1,3,6,9}. By Corollary 4.1.3, we can determine

which are occurrences of the current substring babb in O(1) time apiece, for a total of

O(||Xc||) time. This leaves positions {6,9}. The string babb becomes the finished prefix,

its positions {6,9} are known, and the rest of the query string, abbab is the remaining

suffix.

We now look for the prefix of the remaining suffix abbab of the form Xc, where X is

a node of the heap and Xc is not. This is abba. We want to find which occurrences of

Xc follow occurrences of the finished prefix babb. To do this, we subtract the length of

the finished prefix from each of the positions of the finished prefix and determine in O(1)

time whether it is an occurrence of Xc, by Corollary 4.1.3. In the example, subtracting

||babb||= 4 from 9 gives 5, and we determine that 5 is an occurrence of abba. Therefore, 9

is an occurrence of babbabba. Subtracting 4 from 6 gives 2, and we determine that 2 is not

an occurrence of abba. The finished prefix is now babbabba, the positions where it occurs

are known to be {9}, and the remaining suffix is b.

When the remaining suffix is short enough to be a node of the tree, let us denote it

Y . (In the example, Y = b.) We subtract the length of the finished prefix from each of its

occurrences ({9} for this example), and check whether each of these positions ({1} in this

example) is an occurrence of Y , using Lemma 4.1.2.

Generalizing from these examples, we get the algorithm of Table 4.2.

Lemma 4.1.4 The linear query algorithm is correct.

Proof: For Case 1, the procedure is the same as the naive algorithm, except that at each

51

Table 4.2: The linear query algorithm for use with the augmented position heap

• Case 1: P is a node of H ′(T). This is detected by indexing into H ′(T) on P, and gives
node P. For each proper ancestor X ′ of P, look up the position i stored at X ′, and
determine whether it is an occurrence of P. In addition, report all positions recorded
in the subtree rooted at P.

• Case 2: P is not a node of H ′(T).

// Find an initial set of candidate positions
Let CurrentSubstring be the shortest prefix of P that is not a node of H’(T)
Let I be the set of positions where CurrentSubstring occurs

// Invariants: FinishedPrefix + RemainingSuffix = P;
// I is the set of positions where FinishedPrefix occurs in T

FinishedPrefix = CurrentSubstring
RemainingSuffix = P - CurrentSubstring
while RemainingSuffix is not a node of H’(T)

Let CurrentSubstring be the shortest prefix of RemainingSuffix
that is not a node of H’(T)

I := { j| j ∈ I and the occurrence of FinishedPrefix at j in T
is followed by an occurrence of CurrentSubstring}

RemainingSuffix = RemainingSuffix - CurrentSubstring
FinishedPrefix = FinishedPrefix + CurrentSubstring

CurrentSubstring = RemainingSuffix
Let I := { j| j ∈ I and the occurrence of CurrentPrefix at i

is followed by CurrentSubstring}

52

a b a a b a b b a b b a b
13 12 11 10 9 8 7 6 5 4 3 2 1

1

2 3

45 6

78 910

11

12

13

9
6

5 1
2

ba
1 , 3 6, 12, 9

ancestors descendants

babb | abba | b

a

a

a

a

a

a a

b

b

b

bb

Figure 4.3: The linear query algorithm on strings ba and babbabbab on the augmented
position heap. Maximal-reach pointers that are loops are omitted from the diagram.

53

ancestor X ′ of P, we determine whether i is an occurrence of P in O(1) time, instead of

O(||P||) time, using Lemma 4.1.2.

For Case 2, by induction on the number of times FinishedPrefix is assigned, I is the

set of positions where FinishedPrefix occurs in T . In the final line, P=FinishedPre f ix+

RemainingSu f f ix, and I is assigned to be those positions of FinishedPre f ix. After the final

step, FinishedPre f ix = P, hence I is the set of positions in T where P occurs.

Lemma 4.1.5 The linear query algorithm can be implemented in O(m+ k) time using the

augmented position heap.

Proof: Case 1 differs from the naive approach only in that it uses Lemma 4.1.2 to de-

termine which ancestors of P contain the position of an occurrence of P, reducing each of

these tests from O(m) to O(1). Since there are m+1 ancestors of P, this takes O(m) time.

As in the naive query algorithm, all other occurrences of P are found in O(1) time apiece

during a traversal of the subtree rooted at P, for a total of O(m+ k) time.

For Case 2, let (P1 P2, . . . ,Pl) be the values taken on by CurrentSubstring, and let

(I1, I2, . . . , Il) be the values taken on by I.

To find the ith value Pi of CurrentSubstring, index as far as possible on RemainingSu f f ix

into H ′(T), yielding node Xi, and let b be the next character of RemainingSu f f ix following

prefix X . Pi = Xib. Over all iterations, this takes time proportional to ∑
l
i=1 ||Pi||= O(||P||).

For 2 ≤ i ≤ l, and each j ∈ Ii−1, it takes O(1) time to determine whether the instance

of FinishedPre f ix at position j is followed by Xi; this is determined by finding whether

j−||FinishedPre f ix|| is an occurrence of Xi, using Lemma 4.1.2. It then takes O(1) time

to determine whether this occurrence of Xi is followed by an occurrence of b at position

j−||FinishedPre f ix||− ||Xi||. This determines whether the occurrence of FinishedPre f ix

54

at position j is followed by Xib = Pi. Therefore, it takes O(1) time to determine, for each

element of Ii−1, whether it remains in i.

By the naive algorithm, each Pi has O(||Pi||) occurrences, because Pi is not a node of

the tree, hence its occurrences can only be recorded in ancestors (prefixes) of Xi. Therefore,

||Ii|| = O(||Pi||). Determining Il therefore takes O(∑l−1
i=1 ||Ii||) = O(∑l−1

i=1 ||Pi||) = O(||P||)

time.

4.1.1 Returning Positions One-by-One in Left-to-Right Order

It is sometimes claimed that the suffix array returns all k occurrences of P in O(m+ logn)

time, even though k can be superlinear in this bound. The reason is that it gives a pointer to

a list of the positions. This time bound captures the fact that if the user wants to examine

the first k′ positions, this takes O(k′) rather than Θ(k) time. One way to view this is that it

returns an iterator in O(m+ logn) time that then takes O(1) time per position to return the

positions.

The position heap can be implemented to have this property also, using a depth-first

search that maintains a stack of active calls that have not yet made a recursive call on their

last child. One use of such an iterator, however, is to examine the first k′ positions in

left-to-right order. This is a common operation in text editors, for example. This can be

implemented in O(logk) worst-case time per element, due to the fact that the node labels

have the heap property.

We illustrate how to produce an iterator that returns them in right-to-left order; left-to-

right order can be obtained by building the augmented position heap for the reverse of the

text. The positions of nodes on the indexing path X take O(1) time to check. If P = X ,

then the descendants of X might also have to be returned in left-to-right order. Keep a

55

priority queue on the topmost nodes of the subtree of X whose positions have not yet been

returned. Because the positions have the heap property, the minimum position is among

these nodes. Initially the priority queue has X in it. Each time a new position is asked for,

the minimum index i in the priority queue is returned, and the positions in the children of

the node containing i are inserted to the priority queue. Since Σ = O(1) and the size of

the subtree is O(k), the size of the priority queue is O(k), and extracting i and inserting its

children takes O(logk) time.

56

Chapter 5

Linear Time Algorithm to Build the
Position Heap and the Augmented
Position Heap

The above naive algorithms’ preprocessing time cannot compete with other construction

time. However, the time bound can be improved with the position heap, the dual heap and

the depth of each node. In this chapter, we show how to build the position heap and the

augmented position heap in O(n) time.

5.1 Building the Position Heap in O(n) Time

Each time a node is added to the position heap, its parent must be located so that it can be

added as a child. The reason the above algorithm for constructing the position heap from

the root does not take O(n) time is that indexing from the root to find this parent at each

iteration is not an O(1) operation.

5.1.1 The Strategy

Indexing into the heap from the root is not the only way to find the parent of the new

node at step i. Let Xi−1 be the node added at step i− 1, let the first letter of Ti be b, that

57

is, let Ti = bTi−1, and let Xi be the node added at step i. Since Xi−1 is a prefix of Ti−1,

Xi = bY , where Y is a prefix of Ti−1, hence a (not necessarily proper) ancestor of Xi−1.

By Lemma 5.1.3, below, ||Xi|| = ||bY || ≤ ||Xi−1||+ 1. In other words, the depth of the

added node can increase by at most one at each iteration. This suggests the idea building a

separate structure, which we will call the dual heap, for finding the parent of Xi = bY , given

Y . We may then search upward from Xi−1 in the position heap, instead of downward from

the root, in order to find Y . This is not an O(1) operation, because we may have to search

upward through a lot of ancestors of Xi−1 to find Y , but each ancestor that we traverse

decreases the depth of the next node, Xi = bY by 1. Since the depth can build back up at

the rate of at most one per iteration, this will give an O(1) amortized bound per iteration.

Since Y can be much shorter than Xi−1, the upward search might have to proceed

through a large number of nodes on the path from Xi−1 toward the root before Y is reached.

However, the new node at step i, bY is then much shorter than the node, Xi−1, inserted at

the previous iteration. The cost of the operation is proportional to the decrease in depth

from one iteration to the next. What makes the approach more efficient than the above

approach is that depth of the new node inserted at successive iterations can grow by at most

1 from one iteration to the next, by Lemma 5.1.3. This allows us to amortize occasional

large costs incurred in iterations where the depth decreases by a large amount over many

iterations where the depth slowly builds up again at the rate of one per iteration.

The argument is the same as that for a stack with a multipop operation described in the

chapter Amortized Analysis in the textbook [12].

58

5.1.2 Implementation

The following lemma is the basis of the claim that the depth in the tree at which the algo-

rithm works must build up again slowly if there is a sudden large and costly decrease in the

depth.

Lemma 5.1.1 If P is not a node of H(T), it has fewer than ||P|| occurrences in T .

Proof: Every suffix of T that has P as a prefix results in a new node of the tree that is

either a proper prefix of P or that has P as a prefix. Since P does not occur in the tree, it is

not a prefix of any node in the tree. Therefore, the number of suffixes of T that have P as a

prefix, hence the number of occurrences of P, is bounded by the number of proper prefixes

of P.

Let us say that a set of S of strings is hereditary if, whenever X ∈ S , every substring

of X is also in S .

Lemma 5.1.2 The nodes of the position heap are a hereditary set of strings.

For example, in the final tree, node abaa is labeled with position 13 of Figure 4.3. Its

substrings aba, baa, ab, ba, aa, a, b, and the empty string are all nodes of the position heap;

they are labeled with positions 10,12,5,6,11,2,3,1, respectively.

Proof: Let us show this by induction on the length of Ti = titi−1...t1. The lemma is

trivially true for H(T1), which has only one node, the empty string. Otherwise, we adopt

as the induction hypothesis that the nodes of H(Ti−1) have the hereditary property. Since

H(Ti) differs from H(Ti−1) only by the addition of a node X , H(Ti) can only fail to have

the hereditary property if some proper substring of X fails to be a node of Ti.

This can’t be the case if ||X || < 2, since λ is a node of H(Ti). Suppose ||X || ≥ 2. We

can then write X as aX ′b. The parent of aX ′b is aX ′, hence it is a node of H(Ti−1). Since

59

Figure 5.1: The hereditary property doesn’t necessarily apply when the suffixes are not
inserted in order of ascending length. The figure depicts the Coffman and Eve structure
where the insertion order of the suffixes is (T1,T4,T2,T7,T5,T6,T3). String abb is a node,
but its substring bb is not a node of the tree.

aX ′ is longer than X ′, X ′ is a node in H(Ti−2) by the induction hypothesis. Also, X ′b is a

prefix of Ti−1, and since X ′ is a node of Ti−2, X ′b is either added at step i−1 or is already

a node of Ti−2. In either case, it is a node of H(Ti−1). We conclude that aX ′ and X ′b are

nodes of Ti−1. By the induction hypothesis, every substring of aX ′ and X ′b is a node of

Ti−1, hence of Ti, and these are every proper substring of the new node X = aX ′b.

This hereditary property is not shared by arbitrary instances of Coffman and Eve’s data

structure, as the node labeled 9 in Figure 3.1 is the string abba, but its substring bba is not

a node of the tree. It is not even true when the keys are the suffixes of a text T when they

are not inserted in ascending order of length. Figure 5.1 gives an example.

Lemma 5.1.3 For 1 < i≤ ||T ||, if Xi−1 is the node inserted at step i−1 and Xi is the node

inserted at step i, then ||Xi|| ≤ ||Xi−1||+1.

60

X i 1

iX X i 1

iX

ab

a

1

4 2

8 6 3

10 9 7

12 11

14 13

aba

abab

5 aa

aab

ababa

a a b a b a b a b b a a b b a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

= ababa is previously added node

aab: the new node

a+ aba is not a node

a + abab is not a node

aa = aY

a + ab is not a node

a + a = aa is a node

a

a

a

a

a

a

ab

b

b

b

b

b

b

b

bb

bba

ba

bab

baba

babab

Figure 5.2: Given the node Xi−1 added at step i−1, find the parent of the node Xi added at
step i.

Proof: Let a denote the first letter of Ti. Xi−1 is the shortest prefix of Ti−1 that is not

already a node of H(Ti−2) and Xi is the shortest such prefix of aTi−1 = Ti. Let b denote the

last letter of Xi. Then Xi can be written as aY b for some string Y .

Suppose ||Xi|| ≥ ||Xi−1||+ 2. Then Xi−1 is a proper prefix of Y b. Since Xi−1 is the

longest prefix of Ti−1 that is not a node of H(Ti−2), Y b is not a node of H(Ti). By the

hereditary property, Y b is a node of H(Ti), since it is a substring of Xi, which is a node of

H(Ti). The only new node added to H(Ti−1) to get H(Ti) is aY b, so Y b was already a node

of H(Ti−1), a contradiction.

To insert a node to the position heap, we must find the parent. Since inserting the node

after the parent is found takes O(1) time, the only obstacle to getting a linear time bound

is repeated indexing into the position heap to find the parent of each node to be added. We

must use an alternative method to find this parent.

The idea of our O(n) alternative method is given in Figure 5.2. At step i−1 = 14, we

add Xi−1 = ababa as a new node. At step i = 15, we must add the shortest prefix of H(Ti)

that is not already a node of the position heap. Let a denote the first letter of Ti.

61

If the string a does not already occur as a node of the position heap, then it can be added

as a child of the root in O(1) time.

Otherwise, as in the proof of Lemma 5.1.3, the new node must be aY b for some prefix

Y b of the node Xi−1 added in step i− 1, where b is the character occurring ||aY ||+ 1

positions into Ti.

Below, we show how to find, for each such prefix Y of Xi−1, whether aY is already

a node of the position heap, and if so, to return a pointer to it, in O(1) time apiece. We

try this on all proper prefixes of Xi−1 in descending order of length until we find the first.

In the figure, we let Y take on the sequence of values (abab,aba,ab,a), whereupon it is

discovered that aY = aa is already a node of the position heap, and since the concatenation

of a and ab is not, aa is the longest prefix of Ti that is already a node of the position heap.

We have found the desired parent of the new node. The new node, Xi = aY b, is added as its

child of aY on an edge labeled with letter b.

This does not give an O(1) bound to add each node of the tree. However, we can

amortize the variable costs, showing that they sum to O(n) over all iterations.

The reason the cost of step i is not O(1) is that we might have to try many prefixes Y

of Ti−1 before we find the one such that aY is already a node of the heap. Let the decrease

in depth denote the difference ||Xi|| − ||Xi−1|| of the depth of the node added at position

i− 1 and the depth of the node added at position i. If this is negative, call it an increase

in depth. If at step i, we try ki prefixes before finding Y such that aY is already a node

of the tree, then we spent O(ki) time on the step, and ||Xi|| = ||aY b|| = ||Xi−1||− (ki−2).

The decrease in depth is ki− 2. The first two prefixes take O(1) time, so the time spent

at step i is O(1) plus the decrease in depth. By Lemma 5.1.3, the depth can increase by

at most 1 at each iteration, so the total increase in depth is O(n) over all iterations. The

62

Figure 5.3: The position heap and its dual for the text abbabbb. The labels of the path
leading to a node in the dual is the reverse of the labels of the path leading to it in the
position heap.

total decrease in depth can’t exceed the total increase in depth, which means that over

all iterations, the total decrease in depth is O(n). Therefore, the total time spent by the

algorithm is nO(1)+O(n) = O(n).

It remains to describe how to get an O(1) bound for finding, for each prefix Y of Xi−1,

whether aY is already a node of the heap.

Definition 5.1.4 Let the dual D(T) of the position heap H(T) be the trie where for each

node X of H(T), the reverse XR of X is a node of D(T). (see Figure 5.3).

We continue to refer to each node by its path label X in the position heap, even when

considering it as a node of the dual. Equivalently, each node of D(T) is denoted by the

sequence X of labels on edges from the node to the root of D(T).

It is tempting to think that the dual is just the position heap of the reverse of the text,

but it is easily verified that this is not the case.

63

Lemma 5.1.5 The set of nodes of D(T) is the same as the set of nodes of H(T).

Proof: Because for every node X of H(T), there is a node X in D(T), where X is the

string of labels from the node to the root in D(T), every node of H(T) is a node of D(T). It

remains to show that every node of D(T) is a node of H(T). Let X be an arbitrary node of

H(T). By Lemma 5.1.2, not only is every prefix of a node X of H(T) a node of H(T), but

so is every suffix. This implies that every ancestor of X in D(T) is a node of H(T). There

are no nodes on any path of D(T) that fail to be a node of H(T).

We implement the position heap and its dual on the same set of nodes, so that each node

has both a parent in the position heap and a parent in the dual.

We concurrently construct the position heap and its dual. Suppose that at step i we

already have H(Ti−1) and D(Ti−1). We show how to update both to get H(Ti) and D(Ti) in

O(ki) time.

When going from H(Ti−1) to H(Ti), let a be the first letter of Ti and Xi−1 the node added

at step i−1. (Refer to Figure 5.4.) The prefixes of Y in descending order of length are the

ancestors encountered on the path from Xi−1 to the root of the position heap. For each such

ancestor Y , we can find whether aY is already a node of the heap by determining whether Y

has a child on an edge labeled a in the dual. This takes O(1) time, since Y is both a node of

the heap and of the dual. We stop when we encounter the first one. By the above algorithm,

this takes care of adding node aXb to H(Ti−1), yielding H(Ti) in O(ki) time.

However, we must also add this node to the dual, which requires locating its parent,

Xb, and adding it as a child on edge labeled a. Fortunately, Xb was just the last prefix of Y

considered before X was discovered. We already found Xb in the position heap, and since

it is also a node of the dual, we have it in the dual. aXb can be added as a child of Xb on

edge labeled a in O(1) additional time over what we have accounted for in adding it in the

64

X i 1

iX

X i 1

iXiX

X i 1

iX

a a b a b a b a b b a a b b a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

= ababa is previously added node

aab: the new node

a+ aba is not a node

a + abab is not a node

a + a is a node

1

4

10

2

35 6 8

7

1211

1413

9

ab

a

1

4 2

8 6 3

10 9 7

12 11

14 13

aba

abab

5

. Y = "a"

abab

aba

ab

a

aa = aY

ab = Yb

= aYb

aYb in position
heap and its dual

Parents of =

aa

aab

aa
aba

Figure 5.4: Implementing the algorithm of Figure 5.2 using the position heap and its dual.
Starting at the previously-added node Xi−1, we find the lowest ancestor Y such that aY
is already a node. This is accomplished by traversing ancestors in the position heap, and
seeing if they have a child on edge labeled a in the dual. In this case Y is the node labeled
4. Its child on edge labeled a in the dual is aY , the node labeled 5. It is the parent of the
new node Xi = aab in the position heap. The last prefix ab tried before Y was found is the
longest node of the dual heap that is a prefix of X and has no child labeled a. It is the parent
of Xi in the dual.

65

position heap. This gives the following:

Lemma 5.1.6 It takes linear time to construct the position heap of a text T .

5.2 Constructing the Augmented Position Heap in O(n)
Time

The augmented position heap differs from the position heap in that the nodes are labeled

with depth-first discovery and finishing times and with maximal-reach pointers. Depth-

first search on a tree with n nodes takes O(n) time, so it only remains to describe how to

compute the maximal-reach pointers in O(n) time.

Once again, the strategy is to amortize the cost. The approach is virtually the same as

it is for adding new nodes: instead of searching downward from the root at each iteration,

we search upward in the tree, starting at the node pointed to by a maximal-reach pointer at

the previous iteration. Even though this is not an O(1) operation, the cost is proportional to

the decrease in depth of the node pointed to by the maximal-reach pointer. This depth can

increase by at most 1 from one iteration to the next, allowing to amortize large decreases

in depth over many small increases in depth.

Lemma 5.2.1 For 1 < i≤ ||T ||, if Xi−1 is the node pointed to by the maximal-reach pointer

of node i−1 and Xi by the maximal-reach pointer of node i, then ||Xi|| ≤ ||Xi−1||+1.

Proof: Let a denote the first letter of Ti. Xi−1 is the longest prefix of Ti−1 that is a node

of H(T), and Xi is the longest prefix of aTi−1 = Ti that is a node of H(T). Let b denote the

last letter of Xi. Then Xi can be written as aY b for some string Y .

Suppose ||Xi|| ≥ ||Xi−1||+ 2. Then Xi−1 is a proper prefix of Y b and Y b is not a node

of H(Ti−1). By the hereditary property, Y b is a node of H(Ti), since it is a substring of Xi,

66

which is a node of H(Ti). The only new node added to H(Ti−1) to get H(Ti) is aY b, so Y b

was already a node of H(Ti−1), a contradiction.

To construct the augmented position heap in O(n) time, our strategy is first to construct

the position heap in O(n) time using the algorithm from the previous section. As before,

we create the array N[], where N[i] points to the node that contains position i, and this

takes O(n) time by trivial methods. We then add the discovery and finishing times and the

maximal-reach pointers on a second pass, in O(n) time.

We find and test each prefix by starting at Xi−1 in the position heap and ascending

through ancestors until we find the first one, Y , that has a child on edge labeled a in the

dual heap. This child, aY , in the dual is the node to which node i must point.

The analysis of the linear running time is the same as it is for linear-time construction of

the position heap. The current depth is the depth of node Xi in the position heap. The first

two prefixes of Xi−1 take O(1) time to check for a child on edge labeled a in the dual heap.

Each additional prefix takes O(1) time to check, and decreases the current depth in the

position heap. Call this the variable part of the time spent at position i. By Lemma 5.2.1,

the current depth can increase by at most one per iteration. The initial depth is at most 1,

since T1 has length 1. The total decrease in depth can therefore be at most one greater than

the total increase in depth, which is O(1) per iteration, hence O(n) overall. The sum of the

variable parts of the times spent at the different iterations is therefore O(n). We therefore

get the following:

Lemma 5.2.2 It takes O(n) time to construct the augmented position heap for a text T of

length n.

67

Chapter 6

Space-Efficient Representation for the
Position Heap and the Augmented
Position Heap

The position heap needs a less space than the suffix tree and the DAWG. However, it still

requires more space than suffix array since the suffix array satisfies with one array. Like a

deterministic automaton data structure, each node of the position heap contains its position

number and a hash table that is a useful for reducing the time to find a successor or child on

a given letter to O(1) expected time. A hash table carries a significant overhead of unused

space.

There is a way to eliminate a position number and a hash table from each node, so that

only 2n integers are required to represent it, and so that only 4n integers are required to

represent the augmented position heap. The trick is to represent the set of nodes with an

array of nodes, and to use array indices in place of pointers to nodes. Our analysis of the

time bounds will assume that the alphabet size does not grow as the size of the text grows.

68

6.1 An Array Representation of the Position Heap

An array can represent compact information for the position heap. Each node has at most

two integers. The first integer is the index of the first child in a list of children of the node.

The second integer is the index of the next sibling in a list of siblings of the node; this list

is the list of children of the parent of the node. This data structure supports the operation

of finding all of the children of a node; go to the first child using the first-child index, and

then follow next sibling pointers (indices) until a null index is encountered. The null index

can be represented with an integer that cannot be an array index, such as -1.

The array in Figure 6.1 illustrates this for text “abaaababbabaaba”. The size of the

array is the same as the size of the text and one index in the array stores two integers; the

first integer indicates one of its children’s index and the second number denotes one of its

sibling’s index.

This data structure is a well-known one for representing trees. However, a significant

advantage of it is that it eliminates the need to label a node with a position in the text T ;

this is represented implicitly with the node’s index in the array. The node corresponding

to position i of the text is the one sitting at position i of the array. Whenever a node is

accessed, its index is known, so there is no need to label the node explicitly with a position

number. A second advantage is that it eliminates the need to explicitly label edges of the

tree with letters. As before, if the node with index i has depth d, then the letter implicitly

labeling its parent edge is the one sitting at position i− d + 1 of T . We implement the

algorithms so that d is known whenever we access a node, so the label of the edge can be

found via a lookup in T , rather than looking for an edge label.

69

Figure 6.1: The position heap and its compact representation

70

6.2 Construction of the Array Representation in O(nh(T))

In order to achieve this time bound for constructing the array representation, it suffices to

show that we can run the naive construction algorithm, and that whenever we are at a node,

we know its index and depth.

To index into the heap, we start at the root, as before. The root is the node sitting at

position 0 of the array. Each time we pass from parent to child, we increment a variable d

that keeps track of the current depth. The parent gives the index of the child, not just its

address, so we have both the depth and the index of each node we pass through, as required.

Each time we pass from a parent to a child, we seek the child whose parent edge is labeled

with a letter c of a suffix of T . We have given a mechanism for finding the implicit label

of each edge in O(1) time, given the depth of its child and the child’s index. This child

can be therefore found by traversing the list of children until the one is found whose parent

edge is implicitly labeled c, in time proportional to the number of children. Since there is at

most one child for each letter of the alphabet and the alphabet has size O(1), it takes O(1)

time to go from parent to child during indexing. This is the same as the time bound for this

operation given earlier, so it has no effect on the running time of the naive algorithm.

Note that the naive algorithm creates the nodes in ascending order of position number.

In the array representation, this corresponds to creating the nodes in ascending order of

index in the array. Since the size n of the text is known in advance, we allocate an array of

n nodes before we begin. On the ith iteration, we must link the ith element of the array into

the tree structure. This is accomplished by making the first child of the parent be the ith

node’s next sibling, and then making the ith node be the new first child of the parent. Since

the naive algorithm finds the parent of node i, the operation of linking the node in takes

O(1) time, and does not affect the asymptotic bound of the naive algorithm. Let is call this

71

the child-linking operation.

Since none of the asymptotic time bounds of any of the operations of the naive con-

struction algorithm are affected, the running time is again O(nh(T))

6.2.1 Searching with the Compact Representation in O(m2 + k) Time

In the description of the naive construction algorithm, we have shown how to index into

the tree on a given string while spending O(1) time on each node of the indexing path. The

O(m2 + k) algorithm requires indexing into the tree on the pattern string, and the time for

this operation is unaffected.

Using a depth-first search to visit the subtree of the last node reached takes time pro-

portional to the size of this subtree. We access each node by index number, rather than by

address, and this index number is one of the positions of the pattern string. All positions

corresponding to descendants of the last node reached on the indexing path takes O(1) time

per node, and since they are all reported as occurrences of the pattern string, this takes O(k)

time.

In addition, we access all nodes on the indexing path by array index. These indices are

the text positions corresponding to, hence the remaining candidates to be occurrences of

the pattern. We check each of them to see if it is a true occurrence of the pattern string in

O(m) time as before. Since there are O(m) of them, these checks take O(m2) time.

6.3 Constructing the Compact Representation in O(n) Time

To construct the compact representation of the position heap in O(n) time, rather than in

O(nh(T)) time, we will require 3n, rather than 2n integers.

During the O(n) construction algorithm, we need the following two operations:

72

1. Given a node and a letter c, find the child of the node on the edge labeled c in the

dual heap.

2. Given a node, find its parent in the position heap.

We therefore implement the dual heap using the data structure given above for the

position heap, using two integers per node. During construction of the position heap, since

we only need to support the operation of finding the parent, we use a simple array of n

integers for the position heap, where n is the length of T . The integer at index i is the index

of the parent of the node corresponding to position i. This requires a total of two integers

per position of T for the dual heap and one integer per position of T for the position heap,

for a total of 3n integers. Figure 6.2 demonstrates the array representation of the position

and dual heap.

We must also justify that we can know the depth of each node we visit during the

construction algorithm. This is a little bit trickier than it was in the naive construction

algorithm, since indexing does not start at the root, but rather at the previous node linked

into the tree. However, if we know the depth of a node of the dual, we increment this depth

by 1 to get the depth of the child given by Operation 1 above. If we know the depth of a

node in the position heap, we decrement this depth by 1 to get the depth of the parent given

by operation 2, above.

All traversal of the tree is accomplished by Operations 1 and 2 during the O(n) con-

struction algorithm. By incrementing and decrementing the depth, depending on whether

we are performing operation 1 or 2, we know the current depth at all times.

When a new node is linked in, it must be linked into both the position heap and its

dual. The O(n) algorithm links them in in ascending order of position number, which

corresponds to ascending order of index in the arrays. For the position heap array, when we

73

add node i, we let the ith element store the index of the parent in the position heap. In the

dual heap, we link it in as a child of its parent in the dual, using the child-linking operation

described above.

A final issue is changing the representation of the position heap where each node has a

pointer to its parent into one where each node has a pointer to its list of children. Let us call

the first representation and upward-pointing representation and the second a downward-

pointing representation. This will require changing its representation from an array with

one integer per element (the parent) to a representation with an array with two integers per

element (the first child and the next sibling).

By the time we need to perform this conversion, the dual heap is no longer needed.

Therefore, we can reinitialize the array for holding the downward-pointing representation

of the dual heap, and reuse it for storing the downward-pointing representation of the po-

sition heap. For each node i in ascending order of index number, we find the parent j of

i using the upward-pointing representation. In the downward-pointing representation, we

link i in as a child of j, using the child-link operation. Note that we do not know the depth

of j, so we do not know the character labeling the new downward-directed tree edge from

j to i. However, this is not required to link it in; the label of the edge is an implicit letter

that we do not know at this point. That will be known whenever we use the edge during the

searching operation, as described above, since the depth of the edge will be known at that

time.

When we are done, we have both an upward-pointing and a downward-pointing repre-

sentation of the position heap, and at no point have we used more than 3n integers. The

upward-pointing one is not needed for searching, so it may be discarded, leaving a space

requirement of 2n integers thereafter. The key bottleneck for the space requirement is the

74

3n integers required for the construction.

6.4 Constructing a Compact Representation of Augmented
Position Heap

To construct a compact representation of the augmented position in O(n) time, we will

need 4n integers, rather than 3n for constructing the simple position heap in O(n) time, or

2n for constructing the simple position heap in O(nh(T)) time.

Since pointers are replaced with array indices, the maximal-reach pointers are turned

into integers, giving array indices of the nodes they point to, rather than their addresses

in memory. Rather than directly labeling nodes of the position heap with these maximal-

reach pointers, we use a separate array M[], where M[i] stores the index of the node pointed

to by the maximal-reach pointer of node i. This will be convenient for keeping the space

requirement down during the construction phase.

Similarly, we keep the discovery and finishing times in two arrays, D[] and F [], where

D[i] and F [i] give the discovery and finishing times of node i. To keep the bottleneck of

the space requirement down, we don’t allocate space for these arrays until other elements

required for construction of the position heap and installation of the maximal-reach pointers

can be deallocated.

6.4.1 An implementation that uses 5n integers

First, we describe how to construct it using 5n integers. The trick is to use the dual heap

during construction of the upward-pointing position heap, as described in the O(n) algo-

rithm above. This takes n integers for the position heap and 2n for the dual. We then use

the dual to install the maximal-reach pointers on the nodes of the upward-pointing position

75

Figure 6.2: The compact representation for position and dual heap

76

heap. Since each node of the position heap is now labeled with a parent and a maximal-

reach pointer (index), the position heap also takes 2n integers, for a total of 4n for the two

heaps.

At this point, the dual heap is no longer needed. We reuse its space to create a downward-

pointed representation of the position heap, as described above. The array M[] of maximal-

reach pointers does not need to be touched during this conversion. The total space require-

ment so far is still 4n integers. We can now deallocate the upward-pointed representation

of the position heap, since it is no longer needed. At this point, space for 3n integers is

allocated. At this point, we can allocate space for the discovery and finishing time arrays,

D[] and F [], and fill them in with a depth-first search on the downward-pointed represen-

tation of the position heap. At this point, space for 5n integers is allocated, which is the

bottleneck.

6.4.2 An implementation that uses 4n integers

Getting the space requirement down to four integers depends on a result I have recently

obtained and that have not yet been published: it suffices to label all nodes only with

finishing times, omitting the discovery times, and still get the O(m+ k) bound for queries.

Figure 6.3 shows the array representation with 4n integers.

The reason for labeling nodes both with discovery and finishing times is to accomplish

the following:

• Result (*): Given pointers to two nodes v1 and v2, determine whether v2 is a descen-

dant of v1 in O(1) time.

Together with the maximal-reach pointers, this allowed us to reduce the time to check,

for each candidate position on the indexing path, whether it is an occurrence of the whole

77

Figure 6.3: Augmented position heap and its compact representation

78

string of edge labels on the indexing path. This was the case if and only if the maximal-

reach pointer pointed to a descendant of the last node on the indexing path, but the above

result was needed to determine this in O(1) time for each of the O(m) nodes on the indexing

path.

Let us now observe that we can accomplish Result (*) in O(1) time if we know the

earliest finishing time i of any node in the subtree rooted at v1. Then v2 is a descendant of

v1 if and only if the finishing time of v2 lies between i and the finishing time j of v1. Figure

6.4 shows the example.

The possibility of using this was ignored in our earlier work because it seemed impossi-

ble to find i in O(1) time. The obvious way would be to start a depth-first search at v1 until

the first node is marked with a finishing time, but this might require traversing Θ(h(T))

nodes to find this node.

Instead, let v3 be the the last node that finished before the depth-first search discovered

v1. The first key observation is that i is one greater than the finishing time of v3 if v3 exists,

and i = 1 otherwise. Therefore, if we apply only finishing times and we know v3, we can

achieve Result (*). However, this then reduces the problem to finding v3, which is not an

O(1) operation. The second key observation is that v3 is a child of a node on the path

from the root to v1. The only place where we apply Result(*) is when v1 is the end of the

indexing path, which we must traverse in order to find v1. Therefore, even though finding

v3 is not an O(1) operation, its cost is subsumed by the cost of finding v3; once we know

the finishing time of v3, we can traverse the path again, finding the latest finishing time of

any child of a node on the path that has an earlier finishing time than v1’s finishing time.

To prove the correctness, it suffices to prove the following:

Lemma 6.4.1 Let v1 be a node of a rooted tree, and let v3 be the last node that finishes

79

Figure 6.4: Finishing times with the compact representation. A letter beside of each node
indicates a finishing time. The first subtree contains the lowest finishing time among sib-
lings.

before v1 is discovered during a depth-first search. The location of v3 is at child of a proper

ancestor of v1.

Proof: Let us say that a node is white if it has not been discovered yet, gray if it has been

labeled with a discovery time but not with a finishing time, and black if it has been labeled

with a finishing time. When a node v is discovered, its entire subtree is blackened before

any node outside of its tree is labeled, and v gets the latest finishing time of any node in

the tree. When v3 is discovered, its ancestors are the set of gray nodes, so the maximal

blackened nodes are children of these ancestors, each of them has the latest finishing time

of the subtree rooted at it, and one of them must have the latest discovery time of all black

nodes.

6.4.3 Searching with the Compact Representation in O(m+ k) Time

The m2 factor can be removed from the naive query time bound. As seen in Chapter 4.1, the

time bound of testing each node on the path is reduced O(1) with the augmented position

80

heap from O(m) with the position heap.

We check all nodes on the indexing path by array index. We check each of them in

O(1) time with maximal-reach pointers and finishing times. Since there are O(m) of them,

these checks take O(m) time.

81

Chapter 7

Updating the Position Heap and the
Augmented Position Heap when the Text
is Edited

When a block of characters is inserted to or deleted from a text T , the position heap must

pass through a series of steps in which it is a trie, but has some things wrong with it that

must be repaired in order for it to be the position heap of the new text. The goal of this

section is to give algorithms for Delete and Insert, which update the position heap when

a block of text is deleted from or inserted to the text T .

Since the text is no longer static, it is no longer convenient to label a node of the position

heap with its position number in the text; when a position is deleted, the position numbers

of all letters to its left decrease by one. To avoid having to update the position-number

labels of all those nodes, we instead label the nodes with position pointers to the positions

of the text. This requires us to define the analog of the heap property when pointers, rather

than integers, are used.

Definition 7.0.2 If p is a pointer to a position in T , let Tp denote the suffix of T that begins

at p. If X is a node in the trie with a pointer to a position of T , let p(X) denote this pointer.

82

The trie has the heap property if whenever Y is a child of X, p(Y) is to the left of p(X) in

T . The pointer p(X) is correctly placed if X has an occurrence at position p(X), that is,

if X is a prefix of Tp(X).

The constructive definition of the position heap (3.2.1) remains unchanged, except that

each time a position is inserted, the new node is labeled with a pointer to the position, rather

than its position number.

It will be convenient to look up the corresponding position-heap node given a pointer to

a position in the text T . This is accomplished by labeling each position p of the text with a

pointer N(p) to the node of the position heap that points to it. This serves the same function

as the array N[] in the static case. To avoid the need to mention this pointer each time we

move a pointer in the position heap, we will define the operation of moving a position p

from one node to another in the position heap as including the operation of making the

pointer N(p) point to the new node.

The following lemma is useful for establishing that a procedure for updating the po-

sition heap after an edit operation on T has correctly produced the position heap for the

modified text.

Lemma 7.0.3 A trie H where each node is labeled with a pointer to a letter of a text T is

the position heap for T if and only if it satisfies the following properties:

1. H has the heap property;

2. Every position of T is pointed to by at most one pointer p(X) for some node X in the

trie;

3. Every position of T is pointed to by at least one pointer p(X) for some node X of the

trie;

83

4. For every node X, p(X) is correctly placed.

Proof: By induction on the number of positions inserted by the naive construction algo-

rithm.

7.1 Deleting or Inserting a Block of Text in T

The workhorses of the algorithm for updating the position heap after insertion or removal

of a block of text are Remove and Add. Below, we explain how they work, but for now, we

define the problems in terms of their preconditions and postconditions so that, for the time

being, we can make calls to them in our implementation of Delete and Insert.

Definition 7.1.1 The problems solved by Remove and Add

An input to Remove or Add is a trie that satisfies properties properties 1 and 2 of

Lemma 7.0.3, but might not satisfy properties 3 and 4.

• An additional input to Remove is a node X that contains a position pointer to be

removed from the set of position pointers in the trie. It removes the pointer without

disrupting the heap property, without otherwise changing the set of position pointers

in the tree, and without creating any new violations of property 4 at any position

pointers.

• An additional input to Add is a position pointer to be inserted to the trie. The position

pointer must not already occur in the trie. It correctly places the pointer to without

disrupting the heap property, without otherwise changing the set of position pointers

in the tree, and without creating any new violations of property 4 at any position

pointers.

84

A call to Remove or Add must update a variable h that gives the current height of the

trie.

Implementation requires shuffling position pointers in the tree in a way that is familiar

to anyone who has studied heaps. Details are given below. In the meantime, given the prob-

lems solved by Remove and Add, we can now explain the main procedures of the section,

Delete and Insert, in terms of calls to Remove and Add.

The Delete procedure updates the position heap when a block of characters is deleted

from the text so that it is the position heap of the new text.

Definition 7.1.2 An algorithm for Delete

• Let h be the height of the input position heap.

• Call Remove and Add, using the modified text, on the h−1 characters that lie to the

left of the deleted block.

• Using Remove, remove the position pointers to the deleted characters.

The reason for the second step is illustrated in Figure 7.1, where, for ease of under-

standing, the positions are identified with their position numbers in the original text, rather

than with position pointers. The figure depicts the situation that arises when Delete is

performed on just a single character, the one at position 10.

Each position p that is correctly placed is stored at a node X that has an occurrence at

position p in the original text. Position 11 is not involved in the edit, but it is no longer

correctly placed because it is stored at abb. The occurrence of abb previously at position

11 no longer occurs, because the first b of it has been deleted at position 10. Therefore,

position 11 is no longer correctly placed. Therefore, Delete calls Remove and Add on

85

position 11 so that it is correctly placed, without creating any new incorrect placements.

All such un-edited positions that become incorrectly placed as a result of an edit lie within

h− 1 positions to the left of the edited position, because h− 1, being the height of the

tree, is the maximum length of the string that must occur at a position in order for it to be

correctly placed. Let us call these h−1 positions the affected positions; they are not edited

by the edit operation, but their placement in the heap is nevertheless affected by the edit. 1

Lemma 7.1.3 Delete is correct.

Proof: Initially, no pointer to the right of the edited position is incorrectly placed, since

the naive algorithm inserts these in the same way, whether it is operating on the unedited

or edited text. As explained above, an incorrectly placed pointer to the left of the edited

positions must be among the h−1 affected positions. The pointers to the block of positions

that have been removed are also incorrect.

Each call to Remove followed by Add correctly places an affected position pointer p

without changing the set of position pointers, disrupting the heap property, or creating new

violations of property 4 at any other position pointers. The net effect of this is therefore

to reduce the number of incorrectly placed position pointers by one, while maintaining

the other properties. There are at most h− 1 affected positions immediately to the left of

the edited position, so when the second step has finished, there are no incorrectly placed

position pointers to the left of the edited positions.

1We have defined Delete so that it performs a Remove and Add on positions on the four positions 11
through 14, since the height of the tree is 5. However, it is unnecessary to perform this operation on position
13. It is easy to see by Lemma 5.1.3, that once such a correctly-placed position is found to the left of the
edited position, all positions to the left of the position are correctly placed. This observation can make the
algorithm run somewhat faster, but since it does not affect the asymptotic bound, we omit the proof of it here.

86

24 23 22 21 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 118
b b b a b a a a b b aababbaaabbba a

13 23

a

a b

b a ba

bb a

5

8 11

12 1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

4

15
a

7

13 23

a

a b

b a ba

bb

5

8

12 20

a b

a

a b

a b

a b b

2

36

9 16

192114

b

24

1

4

a

7

17

22

18

15

11 13 23

a

a b

b a ba

b

5

8

20

a b

a

a b

a b

a b b

2

36

9 16

192114

b

24

1

4

a

7

17

22

18

15

11

a

12

A B

C D

13 23

a

a b

b a ba

bb a

5

8 11

12 1820

a b

a

a b

a b

a b b

2

36

9 16

192114

b

24

1

4

15
a

7

17

22

Figure 7.1: Deletion of the b at position 10. First, position 10 is removed from the trie with
Remove (Figure B). Since position 11 resides at node abb, position 11 is supposed to be an
occurrence of abb. This is no longer the case, because the deletion of position 10 removes
the first b from this occurrence. Position 11 is no longer correctly placed, and this is fixed
with a call to Remove, followed by a call to Add that correctly places it using the new string
(Figure C). Similarly, position 12 is no longer correctly placed and this must be repaired in
the same way (Figure D). If no node is a string that is longer than h, there can be no more
than h−1 positions to the left of the edited position that are affected in this way.

87

Because Remove removes the position pointers to the block of b defunct positions, does

not otherwise change the set of position pointers, and does not cause any new position

pointers to be incorrectly placed. It follows that after this step, the trie adheres to all four

properties of Lemma 7.0.3, so the modified trie is the position heap of the modified text.

The Insert procedure updates the position heap when a character is inserted to the

text.

Definition 7.1.4 Implementation of An algorithm for Insert

• Using Add, insert position pointers to the b new characters into the trie.

• Let h be the current height of the trie.

• Call Remove and Add on the h−1 characters that lie to the left of the inserted block.

The proof of correctness of Insert is identical to that of Delete; it is essentially the

inverses of the sequence of calls to Add and Remove in Delete.

7.2 Algorithms for Remove and Add

We now give algorithms for the Remove and Add operations, which remove or add a single

position pointer to one of the intermediate tries during a call to Delete or Add. The Remove

operation is illustrated in Figure 7.2.l

Definition 7.2.1 Remove on position p. The position p must be removed from the node X

that contains it in the current trie. Though a pointer to X is given by N(p), it is convenient

to find the path from the root to X by indexing into Tp, where T is the text before the edit

operation. This text is known from the new text and the edited block, which are both known

88

by the call to Delete or Insert that calls Remove. This gives the depth of X if X is not

the root.

Removing p leaves X with an empty position pointer. This must be filled without vi-

olating the heap property. This can be accomplished by finding the child Y of X whose

position pointer into T is rightmost, and promoting (moving) that position pointer to the

parent. This, in turn, leaves an empty position pointer at Y , which may be filled recursively,

ending at a base case where the node is a leaf, which is deleted.

To update the record h of the height of the trie, we assume that Remove and Add jointly

maintain a list that gives, for each depth, a count of the number of nodes at that depth. The

counter at the depth of the removed leaf is decremented, and if this counter goes to 0, it is

removed from the end of this list and the variable h is decremented.

The Add operations is illustrated in Figure 7.2.

Definition 7.2.2 Add position p. If p is the position pointer to be inserted, we index on Tp

until we can’t index any farther, or else a position q to the left of p is found.

If we cannot index any farther, let X be the last node on the indexing path. We create a

new child Y of X reachable on letter ||X ||+1 of Tp and store p in it.

Otherwise q must be pushed down to preserve the heap property. Let X be the node

that contains q. The push-down operation is accomplished as follows. As a base case, if

X has no child Y reachable on character ||X ||+1 of Tq, then such a child is created and q

is stored in it. If Y exists, the position pointer r in Y is pushed down recursively, and q is

stored in Y .

To update the record h of the height, increment the counter for the number of nodes at

the depth of the new leaf, and increment h if the new leaf is the first node at that depth.

89

13 23

a

a b

b a ba

bb a

5

8 11

12 1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

4

15
a

7

13 23

a

a b

b a ba

bb a

5

8 11

12 1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

13 23

a

a b

b a ba

bb a
11

12 1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

5

8

13 23

a

a b

b a ba

b a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

5

8

12

13 23

a

a b

b a ba

bb a
8 11

12 1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

5

13 23

a

a b

b a ba

bb a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

5

8

12

24 23 22 21 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 118
b b b a b a a a b b aababbaaabbba a

Figure 7.2: Using the Remove operation to remove the pointer to position 4 from a position
heap. Removing the pointer from its position-heap node leaves the node with an empty
position pointer. This is filled by promoting the position pointer of the child whose position
in T is smallest (rightmost), in this case the pointer to position 5, to the empty parent. The
child is now empty, and it is filled recursively. As a base case, the empty node is a leaf, and
it is deleted. The only change to the shape of the tree is the deletion of a leaf.

90

13 23

a

a b

b a ba

b a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

78

12 13 23

a

a b

b a ba

b a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

12

4

5

4

13 23

a

a b

b a ba

b a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

4

5

8

12

b

5

8

13 23

a

a b

b a ba

b a
11

1820

a b

a

a b

a b

a b b

a

2

36

9 1016

1719

22

2114

b

24

1

15
a

7

4

5

8

12

24 23 22 21 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 3 2 118
b b b a b a a a b b aababbaaabbba a

4

Figure 7.3: The Add operation performs the inverse of Remove. To add the pointer to
position 4 back in, index into the tree on T4 = abba until a node X is encountered that has
a larger position label. In this case, X is the node with a pointer to position 5 in it. This
pointer is pushed down to the child reachable on the letter ||X ||+1 of T5. Since ||X ||= 1,
this is the letter a at position 2 of T5 = aaba. This makes it necessary to push down the
pointer to position 8 recursively. As a base case, the pointer (to position 12) is pushed down
to a new leaf. The only change to the shape of the tree is the addition of a new leaf.

91

7.3 Use of Splay Trees for Representing Dynamic Texts
and Other Lists

When T changes dynamically, we can no longer assume that the characters of T are in an

array. For completeness, we specify a straightforward way to represent a dynamic text in a

way that supports array-like operations with a small extra cost. This allows us to generalize

what we have developed above without defining too many new operations.

In particular, we use what we could call a dynamic array abstract data type,

which supports the following operations on ordered lists.

• makelist(v): Create a new dynamic array of length 1 containing a single element, v;

• join(L1,L2): Join dynamic arrays L1 and L2, returning the concatenation L1L2;

• split(L,v): Given element v in dynamic array L, split L into two dynamic arrays, L1

consisting of the part of the array up through v, and L2 consisting of the part of the

array following v;

• L[i] Return the element currently in position i of L;

• i(L,v): Given a pointer to element v of L, return its current position number i in L;

Sleator and Tarjan show how to implement makelist in O(1) time, and join and split

in O(logn) amortized time [57, 58]. The data structure is based on splay trees, which are

binary trees whose represented list is given by their inorder traversal. To obtain the bounds,

every time they traverse a path in the tree, they perform a splay on the path. This consists of

a set of rotations that alter the shape of the tree without altering the represented list. Their

operations traverse the path from v to the root, without affecting the O(logn) amortized

bound.

92

The textbook [12] shows how to implement the last two operations of the abstract data

type in time proportional to the path from the root to v in their chapter, Augmenting Data

Structures. The idea is to label each node x with size(x), which is the number of nodes in

subtree rooted at x. Let l and r be the left and right children of the root. To look up L[i], if

i≤ size(l), recursively find L[i] in the left subtree, if i = size(l)+1, then L[i] is at the root,

and if i > size(l)+1, recursively find L[i− size(l)−1] in the right subtree. As always, the

path traversed by this operation is splayed. During a rotation, it is easy to update the size

labels of the nodes involved in the rotation in O(1) time, using the size labels of their new

children after the rotation.

This gives the following:

Lemma 7.3.1 On the dynamic array abstract data type, the makelist operation takes

O(1) time, and each of the other operations takes O(logn) amortized time.

Corollary 7.3.2 Given two elements v and w of an instance L of the dynamic array abstract

data type, and another instance L2 of the dynamic array abstract data type, the following

take O(logn) amortized time:

• Determine which of v and w is earlier in L by looking up i(L,v) and i(L,w);

• Remove the segment of L between v and w, yielding two dynamic arrays, what re-

mains of L and a dynamic array consisting of the removed section, by splitting L

before v and after w, and joining the two dynamic arrays on either side of this sec-

tion;

• Insert L2 in L starting at position i, by splitting L before position i and concatenating

the three dynamic arrays;

93

The data structure for the dynamic version of the position heap is identical to that of

the static version, except that the dynamic array data structure is used to represent the text,

rather than an array of characters, and instead of a position number, a node of the position

heap has a pointer to the node of the dynamic array data structure. The position in memory

of a splay-tree node never changes, even though the shape of the splay tree that represents

it may, so the position pointers from the position heap do not have to be updated during a

splay operation on a path. Above, we say that there must be a pointer from each position p

of the text to the position-heap node that contains p. This pointer can be stored as the label

N(p) on the corresponding splay-tree node in the representation of T .

To obtain amortized bounds, we assume that the text T starts out as the empty string,

and evolves through a series of insertions and deletions. The time bound is amortized

beginning at this starting point.

7.4 A Time Bound for the Naive Query Algorithm on the
Dynamic Position Heap

In this section, we examine the effect of the new implementation on the time bound for the

naive query algorithm given by Definition 3.3.1.

• Index into the position heap to find the longest prefix X of P that is a node of H(T).

For each ancestor X ′ of X (including X), look up the pointer p into T stored in X ′.

This is a pointer to an occurrence of X ′ in T . Determine whether this occurrence

is followed by P−X ′ by calling T [i(p)+ ||X ′||], T [i(p)+ ||X ′||+ 1], . . . , T [i(p)+

||X || − 1] to find the substring of T that follows this instance of X ′, and comparing

this with P−X ′.

• If X = P, also report all positions stored at descendants of X .

94

Recall from Lemma 3.3.3 that, in the static case, the position heap takes O(min(m2,mh(T))+

k) time.

Lemma 7.4.1 The naive query algorithm on the dynamic position heap takes O(min(m2,mh(T)) logn+

k) amortized time, where m is the length of the query string, and k is the number of occur-

rences of it in T .

Proof: For each ancestor X ′ of X , it takes O(||X || logn) amortized time to traverse the first

||X || characters of Tp(X), comparing them with X . Since the height of the tree is O(h(T)),

there are O(min(m,h(T)) ancestors of X . Multiplying the number of ancestors by the time

spent at each ancestor gives O(min(m2,mh(T)) logn) time for these steps.

If X = P, that is, if P is a node of the position heap, it also takes O(k′) time to return

the k′ pointers in the subtree rooted in its subtree, each of which points to an occurrence of

P. There are O(k) of these, so they take O(k) time to return.

7.5 Time Bounds for Delete and Insert

Lemma 7.5.1 The time for a call to Add or Remove on the dynamic implementation of a

trie of height h is O(h logn), amortized.

Proof: For Remove, we must descend along a recursive path, identifying at each node the

child that can be promoted without violating the heap property. This is the child whose

pointer into the text T is rightmost in T . Comparing two pointers to see which is rightmost

requires O(logn) amortized time by Corollary 7.3.2, and it takes at most |Σ|−1 such com-

parisons, which is O(1) comparisons, since we have assumed that Σ is O(1). Promoting

a pointer p takes O(1) time to move it to the parent, and O(1) time to change the pointer

N(p) at position p of the text so that it points to the new node where p resides. The height

95

of the tree is O(h), so the total time is O(h logn), amortized. It takes O(h) time to update

the counts of the number of nodes at each level, and O(1) to update the pointer N(p) to the

node that contains p.

For Add, we must find the node where the new position p must be added. This requires

indexing in on Tp until we cannot index further, or else a node is found that contains a

pointer q that lies to the left of p in T . Indexing requires looking up each successive

character of Tp. This takes O(logn) amortized time per character. At each node X on the

indexing path, we must determine whether the position q at the node lies to the left of p,

which takes O(logn) amortized time by Corollary 7.3.2. Since the height of the tree is

O(h), finding the node where p must be added takes O(h logn) amortized time.

We must now analyze the time for the push-down operation. At each node X , we know

||X || because we found it by starting at the root, and each child is one character longer than

its parent. We look up the pointer q in X in O(1) time, find the character ||X ||+1 in Tq in

O(logn) amortized time by using the L[] operator on the dynamic array implementation of

T , and find the child of X reachable on that character in O(1) time. Moving a pointer p

from parent to child and updating N(p) to reflect the move takes O(1) time. The total time

for push-down is O(logn), amortized, at each position on the push-down path, which has

length O(h).

Lemma 7.5.2 Delete on a block of b characters takes O((h(T)+b)h(T) logn) amortized

time, where T is the text before it is edited.

Proof: We perform a Remove and an Add on h−1 positions to the left of the edited block,

where h = O(h(T)) is the initial height of the tree. Since Remove does not increase the

height of the tree, and Add increases it by at most 1, the height can grow by at most h−1

96

during these operations, so it remains O(h(T)) throughout these steps. By Lemma 7.5.1,

these h−1 operations take O(h(T)2 logn) amortized time.

To remove the defunct positions in Delete takes b calls to Remove. Since a call to

Remove never increases the height of the tree, the tree has height O(h(T)) throughout this

step. The b calls to Remove on these positions takes O(bh(T) logn) amortized time.

Lemma 7.5.3 Insert on a block of b characters takes O((h(T ′)+b)h(T ′) logn) amortized

time, where T ′ is the text after it is edited.

Proof: Suppose a block of b characters of a text T ′ is removed, yielding text T . (We

have switched the roles of T and T ′.) A call to Delete on text T ′, resulting in the position

heap of T , takes O((h(T ′)+ b)h(T ′) logn) time by Lemma 7.5.2. This operation can be

inverted by reinserting the block of b deleted positions and calling Insert, yielding the

position heap for T . This replaces the b calls to Remove with b calls to Add, which may be

performed in reverse order, thereby stepping through the same sequence of tries in reverse

order. Each call to Remove in Delete takes the same asymptotic bound as the inverse call

to Add, so these operations take O((h(T ′)+b)h(T ′) logn), just as the call to Delete does.

As shown in the proof of the time bound for Delete the height h of the tree after the

calls to Remove and Add on the affected positions is O(h(T ′)), so the final h− 1 calls to

Remove and Add take O(h(T ′)2 logn) amortized time.

7.6 A Dynamic Implementation of the Augmented Posi-
tion Heap

Recall that the additional features of the augmented position heap are a labeling of the

nodes with maximal-reach pointers and discovery and finishing times.

97

7.6.1 Discovery and Finishing Times

In the static case, the discovery and finishing times are integer labels from 1 to 2n, where

no two discovery/finishing labels are equal. The only purpose of these is so that we can

compare two discovery times or two finishing times to find which is earlier; this is used

in the test of whether one node is an ancestor of another. To support this operation on a

dynamic structure, we consider discovery and finishing of nodes to be events, and create

an event list using the dynamic array abstract data type described above. Instead of being

labeled with integers to represent the discovery and finishing time, a node is labeled with

two pointers into this list, one to its discovery event and one to its finishing event. This

provides all of the functionality of the discovery- and finishing-time labels of the (static)

augmented position heap, but at a cost of Θ(logn) amortized time per comparison, rather

than O(1).

We must update the event list when the topology of the tree changes. Recall that the

only effect of Remove or Add on the topology of the trie is the removal or addition of a leaf.

If the leaf is removed, we remove its discovery and finishing events from the event list in

O(logn) amortized time, using the leaf’s pointers to these two events. If a new leaf Z is

added to the tree, we must find where its discovery and finishing events must be inserted

to the event list. Since Z is a leaf, its discovery and finishing events must be consecutive

in the event list. If Z is leftmost among its siblings, they are added immediately following

the discovery event of its parent. Similarly, if the new leaf is rightmost among its siblings,

they are added immediately preceding the finishing event of its parent. Otherwise, they are

added immediately following the finishing event of the sibling to the left. The correctness

of this placement follows from the order in which nodes are visited in a depth-first search.

When Z is inserted, Add has found the path from the root to Z, so the parent is known. It

98

therefore takes O(1) time to find the parent or left sibling of Z, and then O(logn) amortized

time to insert the new events.

7.7 Remove and Add on the Augmented Dynamic Position
Heap

Let us say that a trie is an augmented trie for a text if it satisfies properties1 and 2 of

Lemma 7.0.3 and its discovery- and finishing-event list is correct. It might not satisfy

properties 3 and 4, and some of its maximal-reach pointers might not be correct.

If X is a node of an augmented trie, let us denote its maximal-reach pointer by m(X).

The position pointer p(X) of X is the position pointer corresponding to m(X) and vice

versa. Recall that m(X) is supposed to point to the node of the trie that is the maximal

prefix of Tp(X) that is a node of the trie. Let us say that m(X) is correct if it satisfies this

property.

A corresponding position pointer and maximal-reach pointer must reside at the same

node, so when a position pointer is promoted (moved from child to parent), or pushed

down (moved from parent to child), so must the corresponding maximal-reach pointer.

When a position pointer is removed from the trie, so must the corresponding maximal-

reach pointer. The asymptotic cost of performing these operations on the maximal-reach

pointer is subsumed by the cost of performing them on the position pointer. When a call

to Add inserts a new position p to a node X , it must insert the maximal-reach pointer to X .

The node that it must point to is found by indexing as far as possible into the trie on Tp(X);

it must point to the last node on this path. This takes O(h logn) amortized time, where h is

the current height of the trie. This is subsumed by the O(h logn) amortized cost of Add, as

described above, for the un-augmented dynamic position heap.

99

An new issue arises in managing the maximal-reach pointers during a call to Remove

that does not arise in managing position pointers. A call to Remove changes the topology

of the trie by removing exactly one leaf Z. Let P be the parent of Z. Let q and m be

corresponding position and maximal-reach pointers, respectively. If m points to Z, then Z

ceases to be the maximal prefix of Tq that is a node of the trie; the next smaller prefix, P, is

now this node. Since Z is a descendant of the node occupied by m, this issue only affects

maximal-reach pointers at ancestors of Z. Since Remove finds the path from the root to Z,

we add a step that checks each node Y on this path to see if m(Y) points to Z, and, if so,

changes it to point to P. This requires traversing O(h) nodes, and at each, performing an

O(1) operation. This O(h) cost is subsumed by the cost of Remove, as described above, for

the unaugmented heap.

The issue also affects a call to Add, which changes the topology of the trie by adding Z

as a child of P. Let c be the letter that labels the edge from P to Z. If m(X) initially points

to P, then P is a prefix of Tp(X). If Z = Pc is also a prefix of Tp(X), then m(X) must point to

Z, not P, in order to be correct in the new trie. Since P is a prefix of Tp(X), this only happens

at ancestors of P. We add a step to Add that traverses each node X on the path from the root

to P, determines whether m(X) points to P, and, if so, whether the character ||P|| positions

to the right of p(X) is c. If it satisfies all of these conditions, then m(X) is changed to point

to Z. Looking up the character ||P|| positions to the right of p takes O(logn) amortized

time using the dynamic array implementation of the text, for a total of O(h logn) amortized

time, which is subsumed by the cost of Add given above. Finally, m(Z) is set to point to Z.

Let us call the operations of Add and Remove that carry these additional steps Add2 and

Remove2. Since the cost of all additional operations performed in Add2 and Remove2 are

subsumed by the cost of operations in Add and Remove, we get the following:

100

Lemma 7.7.1 The time for a call to Add2 or Remove2 on a trie of height h is O(h logn),

amortized.

The additional operations in Add2 and Delete2 allow us to add the following precon-

ditions and postconditions to them, in addition to the ones that apply to Add and Remove

(Definition 7.1.1.)

1. For Remove2, the additional preconditions are that the event list is correct for input

trie but that some maximal-reach pointers may be incorrect. The additional postcon-

ditions are that the event list is correct for the modified trie, that the maximal-reach

pointer corresponding to the removed position has also been removed, and that no

other maximal-reach pointers have been made incorrect by the operation.

2. The additional preconditions for Add2 are also that the event list is correct for the in-

put trie, and some maximal-reach pointers may be incorrect. The additional postcon-

ditions are that the event list is correct for the modified trie, that the maximal-reach

pointer corresponding to the inserted position is correct, and that no other maximal-

reach pointers have been made incorrect by the operation.

7.8 Delete and Insert on the Augmented Position Heap

To modify Delete and Insert for the augmented position heap, we make them call

Remove2 and Add2 in place of Remove and Add. Like the position pointers, the maximal-

reach pointers corresponding to the h− 1 positions to the left of the edited position can

become incorrect, even though they correspond to positions that were not edited. The

reason is exactly the same as it is for the position pointers. The maximal-reach pointer

associated with a pointer q is supposed to point to the longest node Y that is a prefix of Tq.

101

This node can be a string of length as long as h. Since q is within h−1 positions of where

T is edited, Y may no longer be a prefix of Tq after the edit.

However, by the preconditions and postconditions of Remove2 and Add2, calling Remove2

followed by Add2 on the h−1 positions preceding the edited position suffices to repair this

problem at each of these positions without creating any new problems with position point-

ers or maximal-reach pointers at other nodes.

Since the asymptotic time bounds of Remove2 and Add2 are the same as those of Remove

and Add, the analysis of the running time of Delete and Insert is unchanged when it

operates on the augmented position heap. This gives the following, by Lemmas 7.5.2

and 7.5.3.

Lemma 7.8.1 Delete on a block of b characters takes O((h(T)+b)h(T) logn) amortized

time on the augmented position heap, where T is the text before it is edited.

Lemma 7.8.2 Insert on a block of b characters takes O((h(T ′)+b)h(T ′) logn) amortized

time, where T ′ is the text after it is edited.

7.9 Time Bound for Queries on the Dynamic Augmented
Position Heap

Lemma 7.9.1 Using the augmented dynamic position heap, it takes O(m logn+ k) amor-

tized time to find the k occurrences of a string P in T .

Proof: This is obtained by reexamining the proof of Lemma 4.1.5 in light of the fact

that the use of dynamic arrays causes some operations that previously took O(1) time to

take O(logn) amortized time. These are determining whether a node Y is a descendant of

a node X , which takes O(logn) amortized time: we look up whether X’s discovery event

102

precedes Y ’s and X’s finishing even follows Y ’s in the dynamic-array implementation of

the event list. This is accomplished with the i() operator on dynamic arrays. This contrasts

with the O(1) time these comparisons take when the discovery and finishing times are

implemented with integers. We must also determine whether a known occurrence of a

string Xi is followed by a letter b. The position of the occurrence and the length of Xi

gives the position of the next letter. Looking up this letter is accomplished with the L[]

operator on dynamic arrays, which takes O(logn) amortized time instead of the O(1) time

it takes on an array implementation of the text. There are O(m) of these operations, for an

O(m logn) amortized bound for them. Any remaining occurrences of the query string are

reported by traversing the subtree rooted at the query string, which takes time proportional

to the number of positions in this subtree.

103

Chapter 8

Conclusion

In the deluge of information, the world has been changed consistently by the dramatic

information flooding through our society. To filter out useful and valuable information,

string searching or matching is one of methods used. In this research, we have studied

pattern matching algorithms and data structures. Many data structures represent substrings.

Of these, we have briefly presented the suffix tree, the suffix array, the DAWG and the

position heap. Each of these data structures can achieve a construction time in O(n) time

and provide a reasonable time bound for the search. The implementation of the suffix tree

is more complex than the implementation of the suffix array although the search time of

the suffix tree is faster.

In this dissertation, we describe the position heap, augmented position heap, the com-

pact position heap and the augmented position heap and its modification. The strong point

of the position heap is ease of use. Most people who have fundamental knowledge of

data structure can easily understand the naive construction algorithm. The improved data

structure of position heap is the augmented position heap. It reduces the search time from

O(m2 + k) to O(m+ k). Thus, it provides the same construction and search time bound as

the suffix array or DAWG and is simpler to implement.

104

The compact version of position heap has been shown. It can compete with suffix

array’s space requirement. The position heap and the augmented position heap with tree

data structure require more space than suffix array because of the hash table, the maximal-

reach pointers and postorder. The proposed compacted representation of the position heap

now competes against the suffix array. The position heap only uses two integers for each

index of an array and the augmented position heap is also compressed with four integers

for each index of an array. The additional two integers of the augmented position heap give

an advantage for the search time.

The most advanced of the position heap or the augmented position heap are dynamic.

When a text is edited, we can reflect modification to the data structure that costs less than

reconstruction. Even though there are many great and popular algorithms for string search-

ing or matching data structures, most of them do not support the modification of characters

or substrings. The data structure must be rebuilt even for small modifications of text. This

needs at least another O(n) time. In this research, we have proposed the idea of the simple

and dynamic data structure, the position heap and the augmented position heap, which sup-

ports inserting and deleting a single character in O(h(T)2 logn). The maintenance of the

position heap only takes O(h(T)2). We also need O(logn) amortized time for a dynamic

array abstract data type, which is proposed by Sleator and Tarjan [57, 58]. This time bound

provides a great advantage over rebuilding the data structure. Also demonstrated was the

dynamic texting for a block of string such as substitution of substring of a text. We can

easily perform the substitution operation when we know the insertion and deletion process,

since we process deletion operation for substituted substrings and insert these substrings

into the position heap. The substitution operation spends O((h(T + b)h(T) logn) for b

lengths of substrings.

105

Future works include developing an approximate pattern matching algorithm for the

position heap or the augmented position heap. The area of bioinformatics requires a more

approximate pattern matching algorithm than pattern matching exactly.

106

Appendix A

Suffix Tree

Weiner’s suffix tree with “aabcabcaac”

107

Ukkonen’s suffix tree with “aabcabcaac”

108

REFERENCES

[1] Stephen Altschul and Bruce Erickson. Optimal sequence alignment using affine gap
costs. Bulletin of Mathematical Biology, 48(5):603–616, September 1986.

[2] Amihood Amir, Oren Kapah, and Dekel Tsur. Faster two-dimensional pattern match-
ing with rotations. Theor. Comput. Sci., 368:196–204, December 2006.

[3] Ricardo Baeza-Yates and Gonzalo Navarro. Multiple approximate string matching.
In Frank Dehne, Andrew Rau-Chaplin, Jörg-Rüdiger Sack, and Roberto Tamassia,
editors, Algorithms and Data Structures, volume 1272 of Lecture Notes in Computer
Science, pages 174–184. Springer Berlin / Heidelberg, 1997.

[4] Ricardo Baeza-Yates and Mireille Régnier. Fast two-dimensional pattern matching.
Inf. Process. Lett., 45:51–57, January 1993.

[5] Theodore P. Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM J. Comput., 7(4):533–541, 1978.

[6] Pawe Baturo and Wojciech Rytter. Compressed string-matching in standard sturmian
words. Theor. Comput. Sci., 410:2804–2810, August 2009.

[7] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proceedings of the Seventh International Symposium on String Pro-
cessing Information Retrieval (SPIRE’00), pages 39–, Washington, DC, USA, 2000.
IEEE Computer Society.

[8] Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehren-
feucht. Complete inverted files for efficient text retrieval and analysis. J. ACM,
34(3):578–595, 1987.

[9] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, 1994.

[10] Charles L. A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Buttcher, and Ian MacKinnon. Novelty and diversity in information
retrieval evaluation. In SIGIR’08, pages 659–666. SIGIR’08, 2008.

109

[11] E. Coffman and J. Eve. File structures using hashing functions. Communications of
the ACM, 13(7):427–432, July 1970.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

[13] Maxime Crochemore and Renaud Vérin. Direct construction of compact directed
acyclic word graphs. In CPM, pages 116–129, 1997.

[14] Liuling Dai. An aggressive algorithm for multiple string matching. Inf. Process. Lett.,
109:553–559, May 2009.

[15] Peter J. Denning. Before Memory was Virtual. IEEE Press, 1997.

[16] A. Ehrenfeucht, Ross M. Mcconnell, Nissa Osheim, and Sung-Whan Woo. Position
heaps: A simple and dynamic text indexing data structure. Journal of Discrete Algo-
rithms, in press.

[17] Andrzej Ehrenfeucht, Ross M. Mcconnell, and Sung-Whan Woo. Contracted suffix
trees: A simple and dynamic text indexing data structure. In CPM ’09: Proceedings
of the 20th Annual Symposium on Combinatorial Pattern Matching, pages 41–53,
Berlin, Heidelberg, 2009. Springer-Verlag.

[18] M. Farach. Optimal suffix tree construction with large alphabets. Proceedings of the
38th Annual Symposium on the Foundations of Computer Science, pages 137–143,
1997.

[19] Martin Farach and Mikkel Thorup. String matching in lempel-ziv compressed strings.
In Proceedings of the twenty-seventh annual ACM symposium on Theory of comput-
ing, STOC ’95, pages 703–712, New York, NY, USA, 1995. ACM.

[20] Simone Faro and Thierry Lecroq. The exact string matching problem: a comprehen-
sive experimental evaluation. CoRR, abs/1012.2547, 2010.

[21] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pages 390–, Washington, DC, USA, 2000. IEEE Computer Society.

[22] Paolo Ferragina and Roberto Grossi. Fast incremental text editing. In SODA, pages
531–540, 1995.

[23] Paolo Ferragina and Roberto Grossi. The string b-tree: A new data structure for string
search in external memory and its applications. Journal of the ACM, 46:236–280,
1998.

[24] Paolo Ferragina, Roberto Grossi, and Manuela Montangero. On updating suffix tree
labels. Theor. Comput. Sci., 201(1-2):249–262, 1998.

110

[25] Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching.
Inf. Process. Lett., 100:91–96, November 2006.

[26] Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching.
Inf. Process. Lett., 100:91–96, November 2006.

[27] Z. Galil and K. Park. Truly alphabet-independent two-dimensional pattern matching.
Foundations of Computer Science, Annual IEEE Symposium on, 0:247–256, 1992.

[28] Gaston H. Gonnet. Some string matching problems from bioinformatics which still
need better solutions. Journal of Discrete Algorithms, 2:3–15, March 2004.

[29] O. Gotoh. An improved algorithm for matching biological sequences. Journal of
molecular biology, 162(3):705–708, December 1982.

[30] Ming Gu, Martin Farach, Richard Beigel, and Yale Dimacs Yale. An efficient algo-
rithm for dynamic text indexing (extended abstract), 1993.

[31] D. S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Commun. ACM, 18:341–343, June 1975.

[32] Christian Hundt and Maciej Liśkiewicz. Two-dimensional pattern matching with
combined scaling and rotation. In Proceedings of the 19th annual symposium on
Combinatorial Pattern Matching, CPM ’08, pages 5–17, Berlin, Heidelberg, 2008.
Springer-Verlag.

[33] Trinh N.D. Huynh, Wing-Kai Hon, Tak-Wah Lam, and Wing-Kin Sung. Approxi-
mate string matching using compressed suffix arrays. Theoretical Computer Science,
352(1-3):240 – 249, 2006.

[34] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evangelos
Theodoridis, and Athanasios Tsakalidis. The weighted suffix tree: An efficient data
structure for handling molecular weighted sequences and its applications. Fundam.
Inf., 71:259–277, February 2006.

[35] S. Inenaga, H. Hoshino, A. Shinohara, and M. Takeda. On-line construction of com-
pact directed acyclic word graphs. Proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching, 2089:169–180, Jan 2001.

[36] S. Inenaga, M. Takeda, A. Shinohara, and H. Hoshino. The minimum dawg for all
suffixes of a string and its applications. Combinatorial Pattern Matching: 13th An-
nual Symposium, pages 153–167, 2002.

[37] Petteri Jokinen and Esko Ukkonen. Two algorithms for approxmate string matching
in static texts. In Andrzej Tarlecki, editor, Mathematical Foundations of Computer
Science 1991, volume 520 of Lecture Notes in Computer Science, pages 240–248.
Springer Berlin / Heidelberg, 1991.

111

[38] J. Karkkainen and P. Sanders. Simple linear work suffix array construction. Proc.
13th International Conference on Automata, Languages and Programming, 2003.

[39] J Karkkainen, P Sanders, and S Burkhardt. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006.

[40] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM Journal on Computing, 6(2):323–350, March 1977.

[41] A. Lempel and J. Ziv. Compression of two-dimensional data. IEEE
Trans.Inform.Theory, 32(1), January 1986.

[42] David Maier. The complexity of some problems on subsequences and superse-
quences. J. ACM, 25:322–336, April 1978.

[43] U. Manber and G. Myers. Suffix array: A new method for on-line string searches.
SIAM J. Compt., pages 319–327, 1990.

[44] R. McConnell and A. Ehrenfeucht. String searching. Book chapter, Oct 2005.

[45] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, 1976.

[46] Webb Miller and Eugene Myers. Sequence comparison with concave weighting func-
tions. Bulletin of Mathematical Biology, 50:97–120, 1988.

[47] J. H. Morris and V. R. Pratt. A linear pattern-matching algorithm. Technical Report
40, University of California, Berkeley, 1970.

[48] Carey Nachenberg. Computer virus-antivirus coevolution. Commun. ACM, 40:46–
51, January 1997.

[49] G. Niklas Norén, Andrew Bate, Johan Hopstadius, Kristina Star, and I. Ralph Ed-
wards. Temporal pattern discovery for trends and transient effects: its application to
patient records. In Proceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’08, pages 963–971, New York, NY,
USA, 2008. ACM.

[50] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences of the United States of America,
85(8):2444–2448, April 1988.

[51] Yi Peng, Gang Kou, Yong Shi, and Zhengxin Chen. A descriptive framework for the
field of data mining and knowledge discovery. International Journal of Information
Technology and Decision Making, 7(4):639–682, 2008.

[52] Rajesh Prasad and Suneeta Agarwal. Parameterized string matching: an application
to software maintenance. SIGSOFT Softw. Eng. Notes, 35:1–5, May 2010.

112

[53] Luís M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales. Ap-
proximate string matching with compressed indexes. Algorithms, 2(3):1105–1136,
2009.

[54] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard. A four-stage algorithm for
updating a burrows-wheeler transform. Theor. Comput. Sci., 410:4350–4359, October
2009.

[55] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard. Dynamic extended suffix ar-
rays. J. of Discrete Algorithms, 8:241–257, June 2010.

[56] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent Mouchard. Dynamic
Burrows-Wheeler transform. In Jan Holub and Jan Žd’árek, editors, Proceedings of
the Prague Stringology Conference 2008, pages 13–25, Czech Technical University
in Prague, Czech Republic, 2008.

[57] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In
STOC ’81: Proceedings of the thirteenth annual ACM symposium on Theory of com-
puting, pages 114–122, New York, NY, USA, 1981. ACM.

[58] R. E. Tarjan. Data structures and network algorithms. Society for Industrial and
Applied Math., Philadelphia, 1983.

[59] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[60] Esko Ukkonen. Approximate string-matching over suffix trees. In Alberto Apos-
tolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial Pat-
tern Matching, volume 684 of Lecture Notes in Computer Science, pages 228–242.
Springer Berlin / Heidelberg, 1993.

[61] P. Weiner. Linear pattern matching algorithms. IEEE 14th Annual Symposium on
Switching and Automata Theory, pages 1–11, 1973.

113

