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ABSTRACT 

 

MACHINE-LEARNED GAS OPTICS WITH A FOCUS ON GEOSTATIONARY EXTENDED 

OBSERVATIONS (GeoXO) FOR IMPROVING WATER VAPOR OBSERVATIONS IN THE 

LOWER ATMOSPHERE 

 

 In the grand scheme of the earth-atmosphere system, there are few constituents more vital and 

mysterious than water vapor. Vital because of its interwoven thermodynamic, radiative, and dynamic 

influence on the weather and climate of the planet, and mysterious because of our limited capacity in 

observing its time evolution in horizontal and vertical space. The advancements in the spectral and 

radiometric accuracy of next-generation infrared sounders are expected to bring unprecedented value 

to our observational capability with improved profiling of lower tropospheric water vapor where it is 

most abundant.  

Essential to performing satellite observations and their assimilation to dynamical models is the 

accurate and efficient radiative transfer calculations. In this process, calculating the atmospheric 

absorption by various gases is one of the most important steps. The ‘line-by-line’ approach of 

computing the influence of every absorption and emission line is operationally impractical for many 

observations that can contain hundreds of absorption lines. The existing radiative transfer models, 

therefore, use parameterized gaseous absorption using methods like pre-computed lookup tables or 

regression methods. The conventional methods compute channel values and can only be used for a 

specific sensor and channel. 

Here, we present a new method of performing gas absorption calculations using machine 

learning that can be applied to the spectral interval of any channel. With an example spectral interval 
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of the new water vapor channel on the upcoming GeoXO infrared sounder, we train neural networks 

to emulate the line-by-line layer optical depths on a consistent grid of 100 atmospheric layers defined 

by 101 pressure levels spanning from 1100 hPa to 0.005 hPa. We sample a diverse set of 8640 profiles 

around the globe for the year 2014 from the Medium-Range Weather Forecasts (ECMWF) 

atmospheric reanalyses dataset (ERA5) and use 80% of these profiles as training data and 20% of the 

profiles as validation data. We test the performance of the emulators using a completely independent 

set of 83 profiles from ECMWF for the year 2006-2007, known as ECMWF83 profiles that have been 

widely used for training the atmospheric transmittance due to gas absorptions. The atmospheric optical 

depth used as the truth in all datasets is calculated from the line-by-line Monochromatic Radiative 

Transfer Model (MonoRTM). 

 The evaluation results from the testing dataset show that the trained neural networks are able 

to predict line-by-line layer optical depths with a mean percent error of 0.47%. Radiative transfer 

models used for simulating satellite radiances, like Community Radiative Transfer Model (CRTM), 

require channel layer-to-space transmittance profiles for solving the radiative transfer equation. 

Transmittance profiles were calculated using the predicted line-by-line layer optical depths with a 

mean percent error of 0.02%. Further, the predicted values are also able to accurately calculate the 

channel weighting functions with the mean percent error of 0.13%. The results show the feasibility of 

utilizing neural networks in predicting line-by-line optical depths that can be applied for any spectral 

interval and can be highly useful for the designing of future sensors.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Water vapor is the most fascinating constituent of the earth-atmosphere system. With its 

interwoven thermodynamic, radiative, and dynamic influence, water vapor lies at the heart of a 

wide range of atmospheric processes governing the weather and climate of the planet. It is not only 

the most dominant greenhouse gas (Kiehl & Trenberth, 1997), water vapor is also a dominant 

feedback variable constituting a strong positive radiative feedback that amplifies CO2-caused 

global warming and also affects the global climate sensitivity to CO2 perturbations (Held & Soden, 

2000).  

Water vapor manifests its strongest control on atmospheric processes by modulating the 

energy flows of the earth system. It governs the distribution of energy between the surface, 

atmosphere, and space through the exchange of latent heat from the surface in form of evaporation 

and condensation in the atmosphere (Allan, 2012). The latent heat of water vapor also accounts 

for roughly half the poleward, and most of the upward heat transport (Sherwood et al., 2010).  The 

thermodynamic effects of water vapor in the lower troposphere influence the formation of clouds. 

With the water vapor dominating the net radiative cooling of the troposphere, it also determines 

the strength and depth of convection, especially in the tropics (Stevens et al., 2017). As a result, 

the thermodynamics of the water vapor couples with the radiative effects and plays an active role 

in the dynamical processes that shape the global circulation of the atmosphere (Schneider et al., 

2010).   

 Water vapor, with its rich infrared (IR) absorption spectrum, regulates the radiative energy 

flows in both the longwave and shortwave portions of the electromagnetic spectrum. Kim et al. 

(2022) show that the shortwave absorption by water vapor shapes the mean climate patterns of sea 
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surface temperature (SST) and also as a result, imposes a significant energy constraint on the 

global-mean precipitation. In the longwave, the moisture profile of the troposphere is found to act 

as an important control on the variability of outgoing longwave radiation (OLR) to space which is 

the primary cooling mechanism of the earth-atmosphere system (Allan et al., 1999).  Further, it is 

also found that even though the stratosphere contains very low concentrations of water vapor, it 

plays an important role in setting the surface temperatures and its trend on the decadal timescales 

(Forster & Shine, 1999; Forster & Shine, 2002; Solomon et al., 2010; Dessler et al., 2013).  

Advancing the observational capacity to understand the variability of water vapor by better 

representing the four-dimensional distribution of water vapor is thus essential to improve the 

knowledge and prediction of all these key atmospheric processes. Satellite observations, with its 

global coverage and high spatial resolution in low-earth orbit, and unprecedented temporal 

resolution in the geostationary orbit, are the backbone to the continuous effort of measuring the 

time evolution of horizontal and vertical structures of the atmospheric fields. Improved data 

assimilation capacity with the availability of large volumes of satellite observations has not only 

improved the quality of global reanalysis dataset with better general circulation model (GCM) 

outputs (Fasullo & Trenberth, 2008; Trenberth et al., 2009), but the prediction skill of numerical 

weather predictions (NWP) has also enhanced manifolds (Bauer et al., 2015; Menzel et al., 2018).  

Commonly used passive remote sensing satellite instruments record upwelling radiances 

in the absorption bands of both, shortwave (SW) and longwave (LW) portions of infrared and in 

the microwave (MW) regions of the electromagnetic spectrum. The radiation field in these spectral 

bands is absorbed by various atmospheric molecules such as water vapor, carbon dioxide, ozone, 

nitrous oxide, oxygen, etc. The subsequent emission from these absorbers as a function of 

atmospheric temperature characterizes the spectral radiance received by the satellite instrument at 
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the top-of-atmosphere. The absorption and emission properties of the atmospheric constituents are 

then utilized to infer the profiles of atmospheric state-variables like water vapor concentration and 

temperature.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) has water vapor channels 

in the water vapor absorption band around 0.94 µm in near-infrared spectral region. MODIS is an 

imager that retrieves the column integrated water vapor (IWV) amounts by making observations 

of the reflected solar radiation in near-infrared along with the use of atmospheric window bands 

at 0.86 and 1.24 µm (King, 1992; King et al., 2003). Column integrated quantification of water 

(IWV) is crucial for studies focusing on high-impact weather phenomena like atmospheric rivers 

and other extreme precipitation events for their description of moisture availability and transport 

(Wick et al., 2013; Rutz et al., 2019; de Vries, 2021). In the longwave, commonly used satellite 

channels rely on absorption and emission in the short wavelength and long wavelength side of the 

thermal-infrared v2 vibrational band centered at 6.3 µm, or in the short wavelength side of the 

rotational band between 17 to 18.6 µm (Smith et al., 1999). The microwave radiometers exploit 

the absorption lines produced by the electric field interaction of water molecules at around 22.3 

GHz, which is a weak absorption band, and the stronger absorption band at 183.3 GHz (Goldberg 

& Weng, 2006).  

Infrared instruments, owing to their ability to sample absorption lines of varying optical 

depths at the hyperspectral resolution, provide a large number of unique weighting functions of 

various strengths when compared to microwave instruments (Wulfmeyer et al., 2015). As a result, 

infrared instruments provide better vertical-sounding resolution, and consequently, the IR 

information content is typically 2-3 times larger than MW (Löhnert et al., 2009). The prime 

advantage of microwave sounders is their ability to observe in the presence of nonprecipitating 
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clouds which significantly extends the number of observations that can be assimilated to the NWP 

model over the oceans. On the other hand, infrared sounders can be deployed in the geostationary 

orbit (GEO) and provide unparalleled temporal resolution crucial for weather forecasting and 

nowcasting applications (Schmit et al., 2009). Microwave remote sensing is restricted to low-earth 

orbits (LEO) because in order to achieve the required signal-to-noise ratio (SNR) and practical 

integration time for weakly emitted MW signal from the earth at GEO flight level would require a 

very large antenna (Thies & Bendix, 2011; Wulfmeyer et al., 2015). The new technological 

development in microwave instrumentation aims to solve this and it is also expected to have 

hyperspectral observation capability for improved vertical resolution (Blackwell et al., 2011).  

The most positive impact of satellite observations is the strengthened capacity for the 

timely issuance of high-quality short-range forecasts (Joo et al., 2013). However, the performance 

of the existing suite of operational satellites is still deficient when it comes to profiling the lower 

part of the troposphere (Crevoisier et al., 2014). Low-level, near-surface profiling in the thermal-

IR spectrum gets challenging due to the thermal emissions of the earth’s surface. Because of 

similar brightness temperatures (BT) from surface and near-surface atmospheric emissions, 

sounders require large-enough information content to accurately contrast surface and atmospheric 

emissions. Microwave sounders are not affected by this difficulty, particularly over the ocean, 

because of low emissivity. However, both, infrared and microwave sounders struggle over land 

from the uncertainties in the surface emissivity and information on soil moisture. With 

improvements in the radiometric accuracy of observing instruments and efforts towards improving 

simultaneous retrievals of surface emissivity, the hyperspectral instruments are expected to 

reliably resolve the near-surface radiances (Zhou et al., 2011; Capelle et al., 2012). However, the 

progress is limited.  
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Future American and European missions planned by both, NOAA and EUMETSAT, have 

proposed hyperspectral infrared sounders preferably in the geostationary orbit with an important 

objective of better representing the boundary layer processes in the NWP models (Adkins et al., 

2021; Holmlund et al., 2021). The induction of a geostationary hyperspectral infrared sounder in 

operational use will be especially beneficial for the prediction of high-intensity storms (Smith et 

al., 2020; Wang et al., 2021). The environment leading to severe storms is associated with high 

temporal and spatial variations in the lower-tropospheric moisture (Di et al., 2021). With improved 

vertical resolution from hyperspectral observations and a higher sampling rate in the time domain, 

crucial information regarding the water vapor distribution and instability of the pre-convective 

environments will lead to substantial improvement in nowcasting and short-term forecasts of 

severe weather (Li et al., 2012). The hydrological cycle is intimately linked to water vapor 

available in the lower troposphere providing the main resource for precipitation in all weather 

systems (Trenberth et al., 2005). Precipitation picks up exponentially with the increase in column 

relative humidity (Bretherton et al., 2004; Sherwood et al., 2010). The distribution of total column 

water vapor which is concentrated in the first few kilometers in the lower troposphere has a very 

influential control over radiative fluxes that set the surface heat budget (Zhang et al., 2006; Allan, 

2012; Stevens et al., 2017). With the warming of the climate, the amount of moisture in the 

atmosphere with the Clausius-Clapeyron relation is expected to rise faster than the total 

precipitation amount which is governed by the surface heat budget through evaporation (Trenberth 

et al., 2003). As a result, the improvement in the quality of observations will bring high value in 

understanding how precipitation changes with trends of moisture availability.  Further, the climate 

modeling community will also benefit in narrowing the largest uncertainty introduced by clouds 

as Vial et al., (2017) note the important role of humidity variation in determining the cloud amount.  
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1.2 Research in this thesis 

The central question in the remote sensing of a physical system is – given a set of radiation 

measurements, what can be deduced about the physical state of the system (Isaacs et al., 1986). 

The quality of this deduction or retrieval of the physical state depends on the accuracy of the 

forward and inverse modeling employed in carrying out this inference. The radiance recorded by 

a passive remote sensing instrument is a dependent quantity of a number of independent state 

variables, primarily – temperature, pressure, and the atmospheric constituents that absorb, emit, 

and scatter the radiation such as gas molecules, clouds, and aerosol. The mapping of the dependent 

variable on the independent state variables is expressed by the wavelength dependent radiative 

transfer processes on the prescribed atmospheric path. However, the process of retrieving the 

physical state of the system by the means of remote sensing is fundamentally an ill-posed problem, 

i.e., for the same value of the dependent variable there exist a non-unique and non-continuous set 

of independent variables. The inversion of the dependent variable means approximating the values 

of the independent variables, which in the context of remote sensing is the retrieval of the state 

variables. This process is known as inverse modeling. Crucial to solving the inverse problem is 

forward modeling. It is the process of constraining the ill-posed and ill-conditioned relationship of 

the dependent variable on independent variables with the use of a-priori knowledge of the physical 

state of the system. An a-priori for remote sensing purposes can be a set of climatological profiles 

of various atmospheric parameters or in the case of the NWP model, it can be the best estimate of 

the model state from the previous analysis step. Using this a-priori information, the forward model 

simulates the dependent variable by solving the radiative transfer equation. The simulated values 

are then compared with the observed values to iteratively update the a-priori until they converge. 

The retrieved variables or observed radiance are similarly assimilated in the NWP model by 
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optimally adjusting the model-state variables that match with the observed values to provide the 

best estimate of the state of the physical system.  

 The radiative transfer models commonly used by the remote sensing and data assimilation 

community to solve the forward and inverse problems are, Community Radiative Transfer Model 

(CRTM) and Radiative Transfer for TOVS (RTTOV). These are fast and accurate one-dimensional 

radiative transfer models for the simulation of top-of-atmosphere visible, infrared, and microwave 

radiances observed by downward viewing space-borne passive sensors (Liu et al., 2012; Saunders 

et al., 2017). They also contain K-matrix (Jacobian) models for solving inverse problems. The 

value of these models in their application to operational usage is their ability to efficiently and 

accurately solve the radiative transfer equation.   

1.2.1 Calculation of gas absorption in radiative transfer models  

Various methods are used for accounting the gas absorption in radiative transfer models. 

The most basic and simple method is look-up tables. It lists a precalculated set of near-

monochromatic absorption coefficients for a range of temperature and pressure for a specified 

spectral interval (Strow et al., 1996; Buehler et al., 2011). This approach strictly limits the 

flexibility as calculations can only be carried out for precalculated spectral intervals. A more 

flexible approach that retains its accuracy and speed is the technique called Optimal Spectral 

Sampling (OSS). This method optimally selects wavelengths in the bandwidth of a sensor’s 

channel and appropriately weights the monochromatic spectral points contributing to the channel 

(Moncet et al., 2004). Using a similar approach principal component (PC) based fast model 

PCRTM (Principal Component Radiative Transfer Model) weights the monochromatic spectral 

points using the PC scores (Liu et al., 2005). These methods are mainly focused on simulating 

remote sensing instruments’ channel radiances. The radiative transfer models used in general 
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circulation models also require efficient calculation of gas absorption for computing broadband 

fluxes. Rapid Radiative Transfer Model for GCM (RRTMG) is a commonly used radiative transfer 

model in many GCMs. It uses an innovative way of reducing the required number of radiative 

transfer calculations by using the correlated k-distribution (CKD) method (Mlawer et al., 1997). It 

exploits the fact that the absorption spectrum varies irregularly but in a given absorption band 

multiple wavelengths share absorption coefficients of the same magnitude. By grouping all such 

wavelengths, the CKD method then rearranges them to monotonically increasing value of the 

absorption coefficient. This results in a cumulative density function (CDF) that represent the 

occurrence frequency of a given absorption coefficient value. The integration over the CDF gives 

the broadband gas absorption contribution over the specified spectral interval. The process of 

calculating these CDFs is carried out for a wide range of environmental conditions that accounts 

for the change in absorption coefficient values and line shapes of the spectrum.  

The regression-based procedures used in CRTM and RTTOV are based on the same 

method originally developed by McMillin & Fleming (1976). The method was restricted to gases 

having a constant mixing ratio, for example, carbon dioxide, and for a slant path defined by a 

single zenith angle. With subsequent developments, the original method was improved to 

incorporate calculations at an arbitrary zenith angle (Fleming & McMillin, 1977), and further for 

gases with variable mixing ratios, for example, water vapor (McMillin et al., 1979). Based on these 

methods, the U.S. National Environmental Satellite, Data, and Information Service (NESDIS) 

implemented a fast radiative transfer model (Weinreb et al., 1981) for operational sounders. Later 

Eyre & Woolf (1988) built upon the original methods to simultaneously handle the absorption 

from gases with fixed and variable mixing ratios for microwave region. At its core, these methods 

regress channel transmittance profiles with the profiles of various environmental predictors such 
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as temperature, pressure, absorber concentration, etc., to obtain regression coefficients. With the 

methods described in McMillin et al. (1979) and Eyre & Woolf (1988), the European Centre for 

Medium-Range Weather Forecasts (ECMWF) developed the fast radiative transfer model for 

satellite sounding systems and for data assimilation in NWP models (Eyre, 1991). A significant 

shift in the methodology of implementing fast gas absorption came with the introduction of 

OPTRAN – Optical Path Transmittance (McMillin et al., 1995a; McMillin et al., 1995b). In the 

earlier methods, the atmosphere was stratified in the vertical coordinate using a fixed set of 

pressure levels – this approach was also known as Pressure Level Optical Depth (PLOD).  

OPTRAN, on the other hand, stratifies the atmosphere with the layers defined by a fixed set of 

absorber amounts. The primary reason for this design choice was to improve the variable gas 

predictions by making the effect of variable gas concentration on transmittance values implicit in 

the layering scheme on which the regression coefficients are calculated. This marked the beginning 

of independent fast radiative transfer model development as the American centers adopted 

OPTRAN in their operational models and the European counterparts continued using the PLOD 

approach. However, the subsequent developments in both American and European operational 

models continued to share a resemblance. For example, the concept of effective transmittance and 

correction terms to sum up the influence of multiple gases in the same channel were introduced 

around the same time in RTTOV and OPTRAN (Saunders et al., 2006; McMillin et al., 2006). The 

same also introduced separate treatments of water vapor lines and continuum.  

With the current version of CRTM, the American centers continue using the further 

developed version of OPTRAN – Compact-OPTRAN, named for its efficient memory utilization 

due to the lesser number of coefficients (Liu et al., 2012). However, apart from Compact-

OPTRAN, which is called ODAS (Optical Depth on Absorber Space) in CRTM, it also implements 
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a method based on PLOD known as ODPS (Optical Depth on Pressure Space), while RTTOV 

continues to use regression methods based on PLOD approach (Hocking et al., 2021).   

However, with ODAS and ODPS, the ability to simulate satellite radiances in CRTM is 

limited to specific channels for which the ODAS and ODPS regression coefficients are generated. 

As a result, for any applications using satellite observations in new channels, ODAS and ODPS 

coefficients need to be regenerated by performing new line-by-line radiative transfer calculations 

and regression analyses, which can pose a great challenge for CRTM users.  

1.2.2 New machine-learning method for calculating gas absorption  

Artificial intelligence techniques are increasingly being adopted in the atmospheric and 

climate science community, particularly the machine learning (ML) methods are commonly used 

in numerical modeling to represent various sub-grid processes by simple parametric relations 

(Brenowitz & Bretherton, 2018; O’Gorman & Dwyer, 2018; Rasp et al., 2018). Also, in the remote 

sensing and data assimilation community, AI techniques are being exploited to tackle data-

intensive tasks (Rasp & Lerch, 2018; Boukabara et al., 2019). Unlike the parameterization of sub-

grid processes in dynamical models, the radiative transfer processes are well known but the exact 

solution of the radiative transfer equation remains the most expensive and time-consuming, and 

therefore not feasible for operational purposes. As a result, the use of machine learning techniques 

for radiative transfer purposes is focused on implementing parametric computations that are more 

efficient than the solutions from exact formulations (Ukkonen et al., 2020). Previous studies 

focused on using machine-learning techniques for radiative transfer purposes are focused on 

calculating broadband shortwave and longwave fluxes for radiation computations in the general 

circulation models (Chevallier et al., 1998, 2000; Krasnopolsky et al., 2008). Generally, these 

methods train neural networks (NN) to emulate the correlated k-distribution parameterization of 
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RRTMG (Veerman et al., 2021). To the best of our knowledge, at the time of writing this thesis, 

there is only one study focused on applying machine learning methods for gas absorption 

calculations in the forward modeling of satellite radiances. The recent study carried out by 

Stegmann et al. (2022), is focused on evaluating the feasibility of neural networks for the 

prediction of channel transmittance profiles using an example of two infrared channels of Visible 

Infrared Imaging Radiometer Suite (VIIRS). The design of the study proposed by Stegmann et a. 

(2022) is focused on replacing the ODAS and ODPS regression-based methods in CRTM.  

In the present study, we aim to explore the use of machine learning techniques to emulate 

line-by-line optical depths and thus transmittance, replacing the regression-based approach used 

in CRTM. This helps facilitate the remote sensing community in designing the spectral 

characteristics of new sensors. With the capability of simulating satellite radiances using CRTM 

for hypothetical sensors, a better spectral design can be selected for future sensors from the 

comparison of a range of spectral intervals. We also demonstrate the use of our method in 

calculating channel-convolved quantities for their application in CRTM for a new water-vapor 

channel in thermal infrared on the proposed Geostationary Extended Observations (GeoXO) 

mission by NOAA. The objective of our study is to explore the usefulness and possible challenges 

associated with line-by-line emulation of layer optical depths which can be later convolved with a 

given sensor response function and used by CRTM.  

1.3 Outline of the thesis 

 The thesis is organized as follows. In Chapter 2, we start by briefly discussing the 

theoretical background of computing gas absorption optical depths. After providing the basic 

spectral information about the infrared channel used in this thesis, we discuss the gas absorption 

in this channel using a standard atmospheric profile. Additionally, the atmospheric absorption 
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characteristics of the channel are briefly explained with the calculations of the weighting function 

and its comparison with existing thermal-infrared water vapor channels. Further, the conventional 

methods of gas absorption parameterization used in the current operational forward radiative 

transfer models are described. We then provide an overview of our machine learning based method 

of gas absorption calculations. The methodology of preparing the training, validation, and testing 

data is explained with the design of the neural networks trained to predict line-by-line layer optical 

depth.  

 In Chapter 3, the performance of the trained neural networks is evaluated with a discussion 

on the sources of prediction errors. Further, the prediction skill for channel transmittance values is 

also discussed. The error statistics of the trained neural networks are summarized.  

 In the final Chapter 4, the summary of the work presented in this thesis is provided, and 

key conclusions are briefly discussed with thoughts on future work.  
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CHAPTER 2: METHODOLOGY 

 

2.1 Theoretical background on computing gas absorption optical depths 

 Calculations of optical depths require spectroscopic information of a given spectral region 

and information on the environmental conditions – particularly, pressure, temperature, absorber 

concentration, and path length. HITRAN (High Resolution Transmission Molecular Absorption 

Database) provides spectroscopic parameters such as line-by-line (as a function of wavenumber) 

transition intensity (S – units, cm–1/(molecule/cm2)) for gas molecules at the reference condition 

of 296 K and 1 atmospheric pressure (Rothman et al., 2013). With the use of temperature and 

pressure dependence spectral parameters of each gas molecule also provided in the HITRAN 

database, the reference values of 𝑆 are scaled to pressure and temperature values of interest. The 

Voigt line-shape function accounts for the effect of pressure and temperature on the broadening of 

line shapes. For any given wavenumber (𝑣), multiplying the line intensity value 𝑆 with line-shape 

function (𝑉) gives the value of absorption cross-section (𝜎 – units, cm2/molecule) as: 

𝜎(𝑣) = 	𝑆(𝑣) ∙ 𝑉(𝑣). (2.1) 

Once we have the absorption cross-section for a given gas molecule at the given environmental 

conditions, the volume absorption coefficient (𝛽 with units of cm–1) can be calculated by: 

𝛽	 = 	𝜎 ∙ 𝜌, (2.2) 

where 𝜌	is the density of absorbing material expressed in molecules/cm3 for gases. Assuming a 

homogeneous absorbing medium, 𝛽 provides the measure of absorption as a function of path 

length, denoted as 𝑙. At last, the optical depth (𝜏) of a given gas species can be calculated by:  

𝜏	 = 	𝛽 ∙ 𝑙. (2.3) 
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Optical depth is a unitless quantity expressing the opacity of an absorbing medium. The fraction 

of incident electromagnetic radiation that is transmitted through an absorbing medium is then given 

as:  

𝒯	 = 	 𝑒!", (2.4) 

where the transmittance, 𝒯, is the quantity that is generally used in the radiative transfer equations 

to account for the gas absorption. From the above discussion, we can recognize that the physical 

variables controlling gaseous absorption are pressure, temperature, and absorber amount. The 

process of calculating optical depth or transmittance is summarized in the flow chart below.  

	
Figure 2.1. Flowchart explaining the process of optical depth / transmittance calculation.  

 

 

2.2 Spectral characteristics of the channel  

2.2.1 Basic spectral information of the channel 

 The new GeoXO water-vapor channel with a central wavelength of 5.15 µm is a thermal 

infrared channel aimed at retrieving water-vapor information in the lower troposphere. The 

channel is located on the short wavelength side of the v2 (bending mode) fundamental vibration 

band at 6.3 µm. The radiation in this channel is influenced by the earth’s emission and shortwave 

radiation, but the impact of Rayleigh and aerosol scattering on this channel is small. The spectral 

detail of this channel is outlined in Table 2.1.  
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Table 2.1. Spectral information of the new GeoXO water-vapor channel.  

Parameter Value 

Beginning wavelength (wavenumber) 4.93909 µm (2024.66 cm–1) 

Ending wavelength (wavenumber)  5.36091 µm (1865.35 cm–1)  

Number of spectral points  302 

Spectral resolution  0.0014 µm 

 

 The Spectral Response Function (SRF) describes the relative sensitivity of the observing 

instrument to incident radiant power as a function of wavelength. As shown in Figure 2.2, the new 

GeoXO water vapor channel has an SRF that peaks at the central wavelength of 5.15 µm with 

wings of the channel having zero relative response.  

 

Figure 2.2. The spectral response function of the new GeoXO water vapor channel. 

 

2.2.2 Gas absorption in the channel  

 From the HITRAN database, we know that six gas absorbers have transition lines in the 

spectral region of the new GeoXO channel between 4.94 – 5.36 µm. These gas absorbers are water 

vapor (H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon monoxide (CO), and 
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methane (CH4). To understand the gas absorption in the atmosphere, we ran MonoRTM (Clough 

et al., 2005) using the U.S. Standard Atmosphere profile. The details of MonoRTM are described 

later in Section 2.4.1. The total layer optical depth due to all six gas absorbers are shown in Figure 

2.3. As explained in Section 2.1, the layer optical depth depends on the absorption coefficient at 

the given wavenumber. We calculated the absorption coefficients associated with the gas 

molecules using HAPI – the HITRAN Application Programming Interface (Kochanov et al., 

2016). The absorption coefficient spectrum is shown in Figure 2.5. HAPI is a Python-based library 

developed by the HITRAN working group to facilitate the calculations of various spectroscopic 

quantities using the HITRAN database. HAPI uses spectral parameters from the HITRAN database 

and computes the absorption coefficient by scaling the reference line-transition intensity values 

(𝑆) to the input pressure and temperature values. We used the Voigt line-shape function for the 

calculations of absorption cross-sections (𝜎).  

 

Figure 2.3. Line-by-line layer optical depth calculated using the U.S. Standard Atmosphere profile 

over the spectral band of the new GeoXO water vapor channel.   
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Water vapor is the primary and dominant absorber in the channel. However, water vapor 

is dominant only from the surface up to 200 hPa (~13–14 km). In the upper atmosphere with 

pressures less than 200 hPa, carbon dioxide and ozone have the largest contribution to the total 

layer optical depth (Figures 2.4(b) and 2.4(c)). It can be attributed to a lower concentration of water 

vapor and an increase in the ozone concentration. However, from Figure 2.5, we can see that it is 

largely because the absorption coefficient values of ozone and carbon dioxide become comparable 

to that of water vapor in the upper atmosphere. Since the upper atmosphere does not have 

appreciable amounts of water vapor present, the largest contribution to the total optical depth 

comes from ozone and carbon dioxide except in the strongly absorbing water vapor wavelengths.  

 The absorption spectrum shown in Figure 2.5 also illustrates the impact of pressure 

broadening on the line shape. In the lower pressures of the upper atmosphere, the line shapes are 

remarkably narrow and absorption coefficient values change sharply compared to the surface 

spectrum. As a result, the layer optical depth values in the upper atmosphere change rapidly as a 

function of wavelength.  

Other gas molecules such as nitrous oxide, carbon monoxide, and methane have only a few 

absorbing wavelengths and are located in the wings of the channel. As can be seen in Figures 2.4 

(d) and (e), these absorbers have negligible impact on the radiance received by the satellite since 

wavelengths associated with their absorption lie in the wings of the channel where the SRF is zero. 

Methane (Figure 2.4f) shows absorption for pressures less than 1 hPa with only one wavelength 

(~ 5.18 µm) near the center of the channel. However, this wavelength contributes less than 10% to 

the total optical depth, and as a result, the impact of methane can also be considered negligible.  
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Figure 2.4. Fractional contribution to total layer optical depth from (a) water vapor (b) carbon 

dioxide, (c) ozone, (d) nitrous oxide, (e) carbon monoxide, and (f) methane. The spectral layer 

optical depth profiles are overlaid with the spectral response function of the new GeoXO water 

vapor channel.  

 

(a) (b)

(c) (d)
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Figure 2.5. Absorption coefficient spectrum of water vapor (H2O), carbon dioxide (CO2), and 

ozone (O3), for (a) the atmosphere at 10 hPa pressure and 230 K temperature, and (b) for the 

atmosphere at 1000 hPa pressure and 300 K temperature.  

 

2.2.3 Absorption in the atmosphere 

 An important aspect of selecting the spectral interval for a channel is to understand where 

the radiation received by the satellite instruments comes from in the atmosphere. This 

understanding provides the basis for designing the application of the channel. Calculating the 

weighting functions of the channel as a function of pressure or altitude provides this essential 

information. Weighting functions are derivatives of transmittance with respect to pressure or 

(a)

(b)
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height and it estimates the relative contribution of each atmospheric layer to the radiation received 

by the satellite instrument.  

 The spectral intervals of the channels that are used for sounding of atmospheric variables 

are generally selected in the wings of the absorption bands because, in the center of the absorption 

band, the absorption is so strong that radiation from only the uppermost layers of the atmosphere 

can reach the instrument. As we move towards the wings of the absorption band the absorption 

strength progressively decreases, allowing the radiation from increasingly lower layers in the 

atmosphere to reach the instrument.  

 The vibration mode (v2) absorption band centered at 6.3 µm is commonly utilized to 

retrieve water vapor profiles in the IR spectrum. The Advanced Baseline Imager (ABI) on the 

GOES series has three channels centered around 6.19, 6.95, and 7.34 µm for observing respectively 

the upper-level, mid-level, and lower-level water vapor. The new GeoXO water vapor channel 

centered at 5.15 µm is further away from the absorption band center, providing water vapor 

information from lower in the atmosphere. The profiles of layer-to-space optical depth, 

transmittance, and weighting functions of the new GeoXO water vapor channel are shown in 

Figure 2.6. Its weighting function is compared with the weighting functions of ABI water vapor 

channels and shown in Figure 2.7.  
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Figure 2.6. Profiles of (a) layer-to-space optical depth (b) layer-to-space transmittance, and (c) 

weighting function for the new GeoXO water vapor channel calculated using the U.S. Standard 

Atmosphere profile.  

 

 

Figure 2.7. Weighting functions for water vapor channels of GOES-R ABI at wavelengths of 6.18 

µm, 6.95 µm, and 7.34 µm with the new GeoXO water vapor channel at 5.15 µm (denoted by 

GXI), using the U.S. Standard Atmosphere profile.  

 

 

(a) (b) (c)
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2.3 Gas absorption parameterization in radiative transfer models  

 As shown in Figure 2.5, gas absorption lines have a complex structure and thus the most 

precise method for calculating gas absorption is summing the influence of every spectral line and 

non-resonant absorption process for each contributing line. Since these calculations are 

computationally expensive, gas absorptions are often parameterized using various techniques 

introduced in Section 1.2.1. In this section, we detail the regression-based parameterizations 

available in CRTM, to provide a context for our machine-learning-based method.  

2.3.1 Conventional methods of gas absorption parameterization  

Figure 2.8 illustrates how the existing regression coefficients of gas absorption in CRTM 

are derived. First, monochromatic optical depth or transmittance values are calculated using a line-

by-line model using a set of atmospheric profiles representing diverse atmospheric conditions. In 

the second step, the monochromatic values are convolved with SRF to get transmittance profiles 

for the specific channel of the sensor. Lastly, the channel-specific regression coefficients are 

determined using the channel transmittance computed in the second step as predictands and 

atmospheric variables – pressure, temperature, and absorber concentration as predictors. Once the 

channel-specific regression coefficients are computed, they are used as weights in the fast gas 

absorption model to predict channel transmittance for a given input of atmospheric profile.  
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Figure 2.8. Flowchart summarizing the workflow of CRTM Coefficient Generation Package. 

Adapted from Stegmann, (2020).  

 

CRTM contains two regression algorithms, ODPS and ODAS (Chen et al., 2012; Liu et 

al., 2012). Structurally both algorithms are similar and differ conceptually only by how they 

stratify the atmosphere in the vertical coordinate. The regression equations of ODPS predict 

channel transmittance on layers defined by a fixed grid of pressure levels, while ODAS makes 

predictions on layers of fixed absorber amounts. However, both algorithms output values on the 

common grid on which the input atmospheric profiles are supplied.  More details about these two 

algorithms are briefly discussed next. 

2.3.2 Optical Depth on Pressure Space (ODPS)  

 ODPS was originally developed for gases having a constant mixing ratio. The central idea 

is that at a given pressure level in the atmosphere, the layer-to-space transmittance for a well-

mixed absorbing gas is proportional to the atmospheric pressure and varies with the temperature 

profile (McMillin & Fleming, 1976). ODPS calculates regression coefficients by slicing the 

atmosphere into a grid of constant pressures defined by a fixed set of pressure levels. The most 
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commonly used atmospheric layering scheme is designed by the AIRS Science Team and is 

explained in Hannon et al. (1996) and Strow et al. (2003). The 101 pressure levels spanning from 

1100 hPa to 0.005 hPa stratifies the atmosphere in 100 layers. Using the channel optical depth 

values from line-by-line calculations as predictand, ODPS calculates regression coefficients 𝑐#,% 
using the following regression equation (Chen et al., 2010): 

𝑑# − 𝑑#!& =4𝑐#,%𝑋#,%
'!

%(&

 (2.5) 

where, 𝑑# is the level-to-space optical depth from level	𝑖, 𝑁) is the number of predictors, and 𝑋#,% 
is jth predictor for ith layer (e.g., pressure, temperature, and gas concentrations). Thus, the 

regression coefficient is derived basically by relating layer optical depths (𝑑# − 𝑑#!&) to 

atmospheric variables 𝑋. The functional forms of predictors are carried out by trial and error and 

are continuously updated. A list of functional forms of ODPS predictors can be found in Matricardi 

et al. (2004) and Hocking et al. (2021). Although originally developed for well-mixed gases, the 

modern ODPS can incorporate multiple variable gases (Chen et al., 2012).   

2.3.2 Optical Depth on Absorber Space (ODAS)  

 The concept of calculating optical depth in absorber space instead of pressure space was 

first introduced by McMillin et al. (1979). The framework for calculating optical depths on an 

absorber space was adopted because, unlike well-mixed gases, the absorber amounts of variable 

gases (e.g., water vapor) are not fixed for a fixed pressure level, and thus the relation between 

absorber amount and pressure can vary significantly with different atmospheres (McMillin et al., 

1995a). Since transmittance depends strongly on absorber amount, ODAS defines its vertical 

layering with a constant path integrated absorber amount such that the layer optical paths are 
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always constant across a layer (Hannon et al., 1996), which improves the gas absorption 

parameterization for variable gases.  

However, with this approach, each absorbing gas has its own layering grid. The maximum 

and minimum values for the fixed grids for each gas is based on the maximum and minimum 

concentrations of each gas in the training profiles. Hence, predictions cannot be later made for 

absorber amount values outside that range. Another difficulty with this method is that the input 

atmospheric profiles of temperature and gas concentrations are expressed on a grid of fixed 

pressures and must be interpolated to the fixed absorber amounts and the resulting transmittances 

must be interpolated back to the original pressure grid. Back-and-forth interpolation like this 

introduces interpolation errors. However, studies suggest that even with this, ODAS results in 

improved accuracy (Hannon et al., 1996; McMillin et al., 1995a), especially when calculating 

water vapor Jacobians (Chen et al., 2010).  

 Regression equations of ODAS have some key differences when compared to ODPS. 

Because the absorption coefficient is a function of the amount and since ODAS discretizes the 

atmosphere in terms of integrated path absorber amounts, ODAS regression equations first predict 

the absorption coefficient which is later converted to optical depth or transmittance values. 

Another key difference is that ODAS optimally chooses a set of six predictors from a pool of 18 

predefined predictors. The functional forms of these predictors are listed in Chen et al. (2010). 

Unlike ODPS, ODAS uses a polynomial function with integrated gas amount as a dependent 

variable in the regression equation to estimate the vertical variations of coefficients, instead of 

deriving separate regression coefficients for each layer. The following regression equation is used 

by ODAS (Chen et al., 2010): 



 26 

ln:𝑘(𝐴)= = 	 𝑐*(𝐴) +	4𝑐%(𝐴)𝑋%(𝐴)
+

%(&

 (2.6) 

 

where 𝑘(𝐴) is the absorption coefficient for 𝐴 absorber amount. 𝑐%(𝐴) is given by a polynomial 

function,  

𝑐%(𝐴) = 	 4 𝑎%,,𝐴,, 𝑗 = 0, 6; 	𝑛 ≤ 10
-

,(*

 (2.7) 

where, 𝑎%,, are constants obtained through regression. In CRTM, the absorber amount values (𝐴) 

are brought on the scale of 0 to 1 by the following equation:  

𝑍 = 	 1𝛼 	ln J
𝐴 − 𝑏.
𝑏& L ; 0 ≤ 𝑍 ≤ 1, (2.8) 

where, 𝛼 is a constant determined by trial and error, and 𝑏& and 𝑏. are also constants determined 

by the minimum and maximum values of 𝐴.  

 

2.4 New machine-learning based method 

The goal of the new machine-learning based method is to predict layer optical depth as a 

function of wavelength for a given set of environmental conditions. To train this machine-learning 

model, values of layer optical depths calculated from MonoRTM were used as the truth, using 

8640 atmospheric profiles that covered the diurnal and seasonal range of atmospheric variables, 

pressure, temperature, and gas concentrations. The method for selecting these 8640 atmospheric 

profiles is described in detail in Section 2.4.2. Further, the neural network performance is assessed 

using an independent testing dataset, ECMWF83, which includes 83 profiles for the year 2006–

2007 and will be detailed in Section 2.4.3. 
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2.4.1 Calculating true optical depth values using MonoRTM 

 MonoRTM is designed to process one or a number of exact monochromatic wavenumbers 

accurately and efficiently (Clough et al., 2005). Monochromatic Optical Depth Model (MODM) 

is the core component of MonoRTM handling the calculation of the molecular optical depth. 

Spectroscopic line parameters inputs from the HITRAN database (Rothman et al., 2013) are 

included in MonoRTM by running a line file creation program – LNFL. In addition to that, LNFL 

also includes line coupling parameters and pressure-induced line shifts to the line parameters file 

used by MonoRTM. Based on this spectroscopic information MonoRTM calculates Voigt line 

shape functions for all the input atmospheric levels. The Voigt profile, which is a convolution of 

Lorentz distribution and Gaussian distribution, describes the combined effects of pressure 

broadening and Doppler broadening (caused due to thermal motion of molecules) on the spectral 

line shape.  

 In addition to spectral line parameter information from HITRAN, MonoRTM also 

incorporates the continuum model MT_CKD (Mlawer et al., 2012). It includes self- and foreign-

continuum coefficients for water vapor, carbon dioxide, oxygen, nitrogen, and ozone for the 

relevant spectral region. The continuum model MT_CKD also includes the temperature 

dependence of continuum coefficients. All this spectroscopic information including absorption and 

emission lines as well as the continuum is used by MODM to calculate absorption coefficients and 

from that, layer optical depths. The atmosphere layering routine LBLATM stratifies the 

atmosphere in a discrete pressure grid and defines the layer quantities from input profiles on 

pressure levels. Based on the input pressure and temperature values it also calculates the layer 

thickness using the hypsometric equation. Additionally, MonoRTM also contains a radiative 

transfer solver – RTMmono – for calculating radiances.  
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To train neural networks, the optical depths for 302 exact wavenumbers (see Table 2.1) 

were calculated from MonoRTM on a fixed pressure grid of 101 pressure levels. MonoRTM was 

set up for a viewing geometry of a downward-looking sensor at the top-of-atmosphere. The 

pressure-level grid of 101 levels follows the AIRS science team pressure-level definition (Hannon 

et al., 1996; Strow et al., 2003). The input atmospheric profiles for the training, validation, and 

testing datasets will be all based on these 101 levels. 

 

Figure 2.9. Flowchart summarizing the workflow of the line-by-line model, MonoRTM. 

 

 

2.4.2 Preparation of training and validation dataset  

 The training and validation datasets are based on 8640 atmospheric profiles selected from 

ERA5 Reanalysis data from the year 2014. ERA5 is the fifth generation of ECMWF atmospheric 

reanalysis produced using the 4D-Var data assimilation and model forecasts of the ECMWF 

Integrated Forecast System (IFS) (Hersbach et al., 2020). It provides hourly estimates for several 

atmospheric, ocean-wave, and land-surface properties as global gridded data at the horizontal 

resolution of 0.25 degree.  

 We chose the year 2014 for our training dataset to avoid large-scale patterns in sea surface 

temperature (SST) such as those resulting from ENSO. To select a year without ENSO influence, 

we used two standardized ENSO indices. NOAA Climate Prediction Center and Physical Sciences 

Laboratory calculates Oceanic Niño Index (ONI) and Multivariate ENSO Index (MEI v2) 
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primarily using SST fields in the ENSO region, along with other variables such as sea level 

pressure, surface wind, and outgoing longwave radiation. Together these indices provide a gauge 

of strength on the oceanic and atmospheric part of the ENSO pattern.  

 The idea of selecting a large set of input atmospheric profiles is to capture the diurnal and 

seasonal variation of atmospheric state in the training dataset for different climate zones around 

the world. To ensure such a selection of profiles we sampled data from the 5, 15, and 25th day of 

each month. For these three days in each month, we randomly select 60 locations around the world 

and for those locations, we sample data on timesteps 00, 06, 12, and 18 UTC. With this profile 

selection approach, we generated a dataset of 8640 profiles (3 days x 60 locations x 4 timesteps x 

12 months) for 2160 locations (3 days x 60 locations x 12 months) representing diverse 

environmental conditions. The location of each of these profiles is plotted on a map along with the 

month and shown in Figure 2.10.  

 

Figure 2.10. Locations of 8640 profiles from ERA5 dataset for the year 2014 with corresponding 

month. 

  

We use the following variables from the ERA5 Reanalysis dataset: temperature (K), 

specific humidity (kg/kg), and ozone mass mixing ratio (kg/kg). We use the ERA5 data on 137 

hybrid sigma model-levels to sample these variables. The specific humidity is converted to mass 
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mixing ratio (g/kg) for calculating truth and training the neural networks. To keep it consistent 

with the pressure-level definition described in Section 2.4.1, the profiles are interpolated to 101 

levels spanning from 1100 hPa to 0.005 hPa using linear interpolation.  Variable at pressure levels 

having larger pressures than at the surface are set to constant by using the surface values.   

 As described in Section 2.2.2, there are several CO2 lines in the center and wings of the 

channel. To incorporate the effect of present-day CO2 concentrations on optical depth, we use the 

Copernicus Atmosphere Monitoring Service’s (CAMS) global reanalysis dataset of atmospheric 

composition (EAC4) for CO2 profiles. The reanalysis procedure of CAMS combines model data 

with satellite observations of greenhouse gases into a globally complete and consistent dataset 

using ECMWF’s IFS (Agusti-Panareda et al., 2022). From the CAMS Reanalysis data, we select 

CO2 profiles in the Year 2020 (the latest available) for the same location and hour as the ERA5 

profiles. The CAMS dataset provides a CO2 mass mixing ratio (kg/kg) on 25 pressure levels 

ranging from 1000 hPa to 1 hPa. Similar to the ERA5 dataset, we interpolate CO2 profiles to 101 

pressure levels.  

 Combined with profiles from the ERA5 dataset and CO2 profiles from CAMS, we prepare 

a set of 8640 diverse profiles of temperature, water vapor mixing ratio, carbon dioxide, and ozone 

for input to MonoRTM for calculating corresponding true layer optical depth values for 302 

wavenumbers. After calculating the truth, we split the 8640 profiles into 6912 training profiles 

(80%) and 1728 validation profiles (20%). As later described in Section 2.4.4, neural networks are 

trained separately for each of the 302 wavenumbers. This results in 691200 training (6912 profiles 

x 100 layers) and 172800 (1728 profiles x 100 layers) validation samples for each neural network. 

The split into training and validation data was carried out ensuring that the diurnal and seasonal 
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variability is still represented in both datasets. The summary of the training and validation data is 

provided in Table 2.2.  

 

Table 2.2. Minimum and maximum values of input and output values in the training and validation 

data.  

Training Data (ERA5) 

 Temperature 

(K) 

H2O  

(g/kg) 

CO2  

(ppm) 

O3 

(g/kg) 

Layer Optical 

Depth 

Input  Input Input Input Output 

Maximum value 327.51 22.6 520.4 0.37 3916 

Minimum value 162.8 1.8e-05 359.8 4.8e-07 1.69e-13 

Validation data (ERA5) 

Maximum value 313.38 21.12 520.4 0.37 3666 

Minimum value 163.83 2.8e-06 359.8 7.1e-07 1.79 e-13 

 

 

2.4.3 Testing dataset  

 As mentioned in Section 2.4.1, we use a set of 83 diverse profiles on 101 pressure levels 

from ECMWF, known as ECMWF83 profiles, as the testing dataset for the machine-learning 

model. The ECMWF83 profiles are commonly used in the remote sensing community to train fast 

gas absorption parameterization (Chen et al., 2010, 2012; De Angelis et al., 2017; Saunders et al., 

2017; Turner et al., 2019). These profiles were sampled for the period July 2006 – June 2007 from 

a large profile dataset containing 121,462,560 profiles generated using ECMWF’s IFS (Chevallier 

et al., 2006). To ensure that the values of sampled profiles are capturing the range of various 

environmental parameters, Matricardi (2008) describes the scaling of profiles by using the 

measurements made by the closest station of NOAA’s Climate Monitoring and Diagnostic 

Laboratory (CMDL) and the Advanced Global Atmospheric Gas Experiment (AGAGE) program. 

Further, the concentrations for CO2 profiles were scaled to the year 2009 assuming a rate of 



 32 

increase of 1.85 ppmv/year. In the set of 83 profiles, the last three profiles, i.e., profiles 81 to 83, 

are respectively the minimum, maximum, and mean of 80 profiles. 

 From the ECMWF83 profiles, we use the same variables as those from ERA5. True layer 

optical depths were calculated for the ECMWF83 profiles by running MonoRTM using these 

variables. The summary of the testing data is provided in Table 2.3.  

 

Table 2.3. Minimum and maximum values of input and output variables in testing data.  

Testing Data (ECMWF83) 

 Temperature 

(K) 

H2O  

(g/kg) 

CO2  

(ppm) 

O3 

(g/kg) 

Layer Optical 

Depth 

Input  Input Input Input Output 

Maximum value 318.26 26.31 399.08 1.78e-02 4826 

Minimum value 166.72 9e-06 366.57 1.15e-05 1.13e-13 

 

 

2.4.4 Neural network emulator for predicting layer optical depths 

 Section 2.2.2 describes the characteristics of gas absorption in the spectral interval of the 

new water vapor channel centered at wavelength 5.15 µm. The section also describes the complex 

structure of the absorption spectrum in the channel marked by sharp changes in absorption 

coefficients as shown in Figure 2.5. To ensure the best possible spectral performance of the neural 

network, we trained each wavelength in the spectral interval of the channel individually. The goal 

of the neural network is to predict layer optical depths as a function of wavelength for a given 

atmospheric input profile. As explained in Section 2.1, the optical depth value changes with 

temperature, pressure, and gas concentration – and thus they constitute crucial predictors of the 

layer optical depth. Since we calculate true optical depth values on a fixed pressure grid of 100 

layers, input pressure rather works as a coordinate than a variable.   
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 The neural networks used for training all the wavelengths have 6 layers (1 input + 5 hidden) 

and 100 nodes. Layer values of pressure, temperature, water vapor, carbon dioxide, and ozone are 

inputs, and layer optical depths on 100 layers are outputs of the neural network. For all the neural 

networks, the input values are the same but the output layer optical depth changes as a function of 

wavelength. All input variables except temperature vary on several orders of magnitude and 

therefore are log-scaled before training. They are further standardized by subtracting the mean and 

dividing by the standard deviation before training. Additionally, all the layers and nodes in the 

networks are trained with the activation function – Rectified Linear Unit (ReLU) (Agarap, 2019). 

The training was carried out in a feed-forward manner by optimizing the gradient calculations with 

Adam optimizer (Kingma & Ba, 2017) and using mean squared error (MSE) as a loss function 

between the predicted and true values. The flowchart shown in Figure 2.11 illustrates the neural 

network set-up used in the study.  

 

 

   

Figure 2.11. Schematic illustrating the neural network architecture of the neural networks used in 

this study.  
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 The neural networks are trained to predict monochromatic layer optical depth values as a 

function of wavelength. The spectral layer optical depth values can be later convolved with the 

spectral response function of a given channel to calculate the channel-specific values, which can 

be further converted to layer-to-space transmittance values that are used as input by the radiative 

transfer equation of CRTM. Since these steps are purely arithmetic in nature, it has no additional 

computational burden.  
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CHAPTER 3: RESULTS AND DISCUSSIONS 

 

3.1 Predictions using machine-learning methods  

 As discussed in Section 2.4.2, the neural networks emulating layer optical depths as a 

function of wavelength are trained using atmospheric profiles from the ERA5 reanalysis dataset 

for the year 2014 as training and validation data, and the performance is evaluated against 

ECMWF83 profiles that correspond to the period 2006-2007. Further, with a goal to incorporate 

the latest available carbon dioxide concentrations we used CO2 profiles from CAMS global 

atmospheric composition reanalysis data for the year 2020. This resulted in a completely different 

distribution of carbon dioxide concentration values between training and testing data as shown in 

Figure 3.1 (a). To be able to evaluate the performance of wavelengths that are absorbed by CO2, 

the CAMS profiles for 2020 are scaled with a random values value between 0.9 and 1.1. As a 

result, the CO2 concentrations used in the training and validation data encompass testing data 

values and future concentrations. The histogram of scaled values is shown in Figure 3.1 (b).  

 
Figure 3.1. (a) Histogram of original training and validation data from CAMS reanalysis for the 

year 2020, respectively in blue solid line and red dashed line, with testing data from ECMWF83 

profiles for the year 2006-2007 shown with the solid green line. (b) Histogram of scaled training 

and validation data.  
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3.1.1 Performance of neural network predictions  

The line-by-line predictions of layer optical depth values for ECMWF83 profiles are 

compared with true values calculated using MonoRTM. The comparison of NN predicted values 

with true values is shown with a density scatter plot in Figure 3.2 (a). The scatter plot demonstrates 

the accurate prediction of optical depth values with points having the highest density closely 

following the one-to-one line. The layer optical depth values vary over several orders of magnitude 

with the lowest optical depth values generally occurring in the upper part of the atmosphere and 

in the weakly absorbing wavelengths. Further, there is large variability in optical depth values with 

wavelength due to the absorption coefficient spectrum showing sharp changes in this spectral 

interval as shown in Figure 2.5. Therefore, in order to compare the performance for wavelengths 

having different absorbing strengths we calculate the percent error between predicted and true 

optical depth values for 100 layers and 302 wavelengths of 83 testing data profiles. The error 

histogram of predicted optical depths is shown in Figure 3.2 (b). The mean percent error of neural 

network predictions of line-by-line layer optical depths for testing data is 0.47%. 

 

Figure 3.2. (a) Density scatter plot comparing predicted line-by-line layer optical depth values 

with truth calculated using MonoRTM. The black solid line represents the one-to-one line. (b) 

Corresponding error histogram with percent error on the x-axis and the corresponding density on 

the y-axis. The red, black, and green vertical dashed lines represent the 25th, 50th, and 75th 

percentiles of the predicted percent error with their values noted in matching colors.  
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3.2 Performance on channel quantities  

3.2.1 Transmittance profiles  

 The radiative transfer code of CRTM requires channel transmittance profiles as input for 

radiative transfer calculations. To evaluate the performance of neural networks on channel 

transmittances, the predicted and true line-by-line layer optical depths values are convolved with 

SRF to calculate the channel layer-to-space transmittance profiles. The scatter plot comparing 

predicted transmittance values for all 83 profiles with true values is shown in Figure 3.3 (a). The 

corresponding error histogram is shown in Figure 3.3 (b). The scatter plot shows that accurate 

channel transmittance can be calculated using the line-by-line values predicted using the neural 

networks. Since channel transmittance values are convolved over SRF, it is not a function of 

wavelength and as shown in the histogram (Figure 3.3b), the error metric significantly improves. 

The mean percent error of transmittance values calculated using predicted line-by-line values is 

0.02%. The ECMWF83 profile set provides minimum, maximum, and mean profiles. The 

transmittance profiles calculated using predicted and true values for maximum and mean profiles 

are shown in Figure 3.3 (c and d). 
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Figure 3.3. (a) Scatter plot comparing layer-to-space channel transmittance values calculated 

using predicted and true line-by-line values. (b) Corresponding error histogram showing the 

percent error density of predicted values. The red, black, and green vertical dashed lines represent 

the 25th, 50th, and 75th percentiles of the predicted percent error with their values noted in 

matching colors. (c and d) Comparison of layer-to-space channel transmittance profiles calculated 

using predicted and true values of maximum and mean profiles of ECMWF83 dataset.  
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3.2.2 Weighting functions  

 Weighting functions are important indicators of the accuracy with which predicted 

transmittance values are sensitive to the correct atmospheric layer. To build confidence in using 

the neural networks for calculating weighting functions of future hypothetical sensors, weighting 

functions are calculated for all 83 test profiles using the predicted and true line-by-line layer optical 

depth values and the sensor response function of the channel. The weighting function values 

calculated using predicted and true values are compared in a scatter plot in Figure 3.4 (a). It 

demonstrates the accuracy of predicted line-by-line values in calculating channel weighting 

functions. The corresponding error histogram is shown in Figure 3.4(b). Similarly, as transmittance 

profiles in Section 3.2.1, the weighting functions calculated using predicted and true values for 

maximum and mean profiles are shown respectively in Figure 3.4 (c and d).  

 

3.3 Summary of error statistics 

 The error statistics of neural network predictions are summarized in Table 3.1. 

 

Table 3.1. Error statistics of the performance of emulators on optical depths at 302 wavelengths, 

and profiles of layer-to-top channel transmittance and weighting function using the testing dataset. 

Mean, 25th, 50th, and 75th percentile errors are listed in %. 

Predicted variable 25th (%) 50th (%) 75th (%) Mean (%) 

Optical depth  –0.46 0.04 0.64 0.47 

Layer-to-top channel transmittance  –0.0049 0.00037 0.00063 0.02 

Channel weighting functions  –0.31 0.021 0.4 0.13 
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Figure 3.4. Same as Figure 3.3, but for weight functions.  
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CHAPTER 4: SUMMARY AND CONCLUSIONS 

 

4.1 Summary and key results  

Significant progress has been made over the past decades to expand the environmental 

parameters being monitored from satellite platforms. This has added immense value to our 

modeling and forecasting efforts through improved data assimilation. Accurate and efficient 

methods of performing gas absorption calculations in the forward radiative transfer models are 

critical for satellite retrievals, radiance simulation, and future satellite mission designs. In most 

radiative transfer models such as CRTM, gas absorptions are parameterized using conventional 

regression methods and the regression coefficients are saved specifically for known sensors. This 

greatly restricts the effort of designing new channels for future hypothetical sensors. Simulating 

satellite radiances using CRTM for these new sensors requires the ability to efficiently and 

accurately calculate line-by-line values for any given spectral interval. 

In this thesis, we demonstrated a method of training neural networks that predicts line-by-

line layer optical depths using an example spectral interval of a new infrared water vapor channel 

on an upcoming GeoXO mission. This spectral interval includes 302 spectral points at a very fine 

spectral resolution of 0.0014 µm and is largely absorbed by three gases, water vapor, carbon 

dioxide, and ozone. With a large variability in optical depth values with wavelength due to sharp 

changes in absorption coefficients at this spectral resolution and changes in the dominant absorber 

with pressure, the spectral interval used here is a representative example of the infrared spectral 

region. 

The performance of trained neural networks was evaluated against the completely 

independent ECMWF83 profiles as testing data. These are 83 profiles carefully sampled by 

ECMWF from a large dataset of about 121 million profiles representing a wide range of 
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atmospheric variables. We showed that the neural networks are accurately able to predict the line-

by-line layer optical depth values with a mean percent error of 0.47%. This demonstrates the 

feasibility of using neural networks in computing line-by-line values.   

To simulate the channel radiances observed by a satellite instrument, CRTM requires 

profiles of channel layer-to-space transmittances. These profiles were calculated using the 

predicted line-by-line layer optical depth values from neural networks. We showed that the 

transmittance values calculated from predicted values are accurate with a mean percent error of 

0.02%. This illustrates that the predicted line-by-line values can be later convolved with a given 

sensor response function to facilitate the radiance simulations using CRTM.  

An important aspect of designing hypothetical channels for a new sensor is the ability to 

accurately calculate channel weighting functions. To build confidence in using the neural network 

calculations for this purpose, the channel weighting functions were calculated for predicted and 

true line-by-line values. We showed that the predicted values accurately calculate channel 

weighting functions with a mean percent error of 0.13%.  

 

4.2 Conclusions  

 The method presented in the thesis demonstrates the feasibility of using neural networks 

for accurately predicting line-by-line layer optical depths. For a given sensor response function, 

the line-by-line values can be easily converted to channel transmittance values later. As a result, 

the method presented here can also be used operationally.  

The goal of the present study is to close the important gap in the ability to facilitate CRTM 

simulations for a given spectral interval of new channels which was previously not possible with 

ODAS and ODPS. The method developed in this thesis achieves the goal by demonstrating 
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accurate predictions of line-by-line layer optical depths. With the accurate calculations of channel 

transmittance profiles and channel weighting functions, the feasibility of using neural networks 

for designing new channels is demonstrated.  

 

4.3 Future work 

 We have shown the feasibility of using machine-learning methods to emulate line-by-line 

layer optical depths with a limited example of a channel in thermal infrared. The simple structure 

of this method makes it flexible enough to expand it to other spectral intervals and regions in the 

electromagnetic spectrum such as microwave. This can be easily carried out by incorporating the 

layer concentration values of relevant absorbing constituents for the spectral region of interest. 

Similarly, the method can be easily extended to the whole infrared or microwave spectral region. 

This can result in a powerful tool that outputs line-by-line values for any arbitrary spectral interval, 

that can be convolved with a given sensor response function to calculate channel quantities.  

While the performance evaluation against the testing dataset shows a mean error of 0.02% 

only in the layer-to-space atmospheric transmittance, it is important to compare the performance 

of the emulator to that of the simple regression model currently used in CRTM, which will be part 

of future work. 

 Another important component of future work is the integration of neural network 

predictions into the CRTM workflow. This integration can be tested with existing ODAS and 

ODPS to compare the impact of these methods on simulated satellite radiances in terms of accuracy 

and speed.  
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LIST OF ABBREVIATIONS 

ABI Advanced Baseline Imager 

AI  Artificial Intelligence 

AIRS Atmospheric Infrared Sounder  

BT Brightness Temperature 

CAMS Copernicus Atmosphere Monitoring Service 

CRTM Community Radiative Transfer Model 

ECMWF  European Centre for Medium-Range Weather Forecasts 

ENSO  El Niño Southern Oscillation  

ERA5  Fifth generation of ECMWF reanalysis  

EUMETSAT 
European Organisation for the Exploitation of Meteorological 

Satellites  

GCM General Circulation Model 

GEO Geostationary Earth Orbit 

GeoXO Geostationary Extended Observations  

GOES Geostationary Operational Environmental Satellite  

HAPI HITRAN Application Programming Interface 

HITRAN HIgh-resolution TRANsmission molecular absorption database 

IFS  Integrated Forecast System  

IR Infrared 

IWV Integrated Water Vapor 

LBLATM  MonoRTM program generating vertical pressure grid 

LBLRTM  Line-by-Line Radiative Transfer Model 

LEO Low-Earth Orbit 

LNFL HITRAN line file creation program in MonoRTM 

LW Longwave 

ML Machine Learning  

MODIS Moderate Resolution Imaging Spectroradiometer  

MODM  Monochromatic Optical Depth Model of MonoRTM  
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MonoRTM Monochromatic Radiative Transfer Model 

MT_CKD  Continuum absorption model  

MW Microwave 

NN Neural Network 

NOAA  National Oceanic and Atmospheric Administration 

NWP  Numerical Weather Prediction 

ODAS Optical Depth on Absorber Space 

ODPS  Optical Depth on Pressure Space 

OLR Outgoing Longwave Radiation 

OPTRAN Optical Path Transmittance 

PLOD Pressure Level Optical Depth  

RT Radiative Transfer  

RTMmono The radiative transfer code in MonoRTM 

RTTOV 
Radiative Transfer for Television and infrared Observation satellite 

operational Vertical sounder 

SNR Signal-to-Noise Ratio 

SRF  Spectral Response Function 

SST Sea Surface Temperature 

SW Shortwave 

 

 

 


