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ABSTRACT 

PROGRESS TOWARDS THE TOTAL SYNTHESIS OF THE 

WELWITINDOLINONE ALKALOIDS AND THE DISCOVERY OF A 

NOVEL TANDEM O–H INSERTION CONIA-ENE CYCLIZATION 

 

 The broth of blue-green algae Hapalosiphon wewitschii and Westiella intricate 

was shown to possess interesting biological activity, including insecticidal and P-

glycoprotein inhibiting capabilities. Upon further investigation, the welwitindolinone 

alkaloids were isolated from the lipophilic extracts and shown to be responsible for the 

observed biological activity. Herein are described efforts towards the total synthesis of 

the welwitindolinone alkaloids and novel chemistry developed in the process. 

 In efforts towards N-methylwelwitindolinone C isothiocyanate, we employed a 

sequential O–H insertion Claisen rearrangement to provide compounds capable of 

undergoing a [3+2] dipolar cycloaddition to access the bicyclo[4.3.1] core. Attempts to 

install the requisite quaternary center of N-methylwelwitindolinone C isothiocyanate 

during the [3+2] dipolar cycloaddition event were unsuccessful. Ultimately, a 

chloronium-ion semi-Pinacol rearrangement was utilized to install the key quaternary 

center. 

 Due to complications encountered during the synthesis of N-methyl-

welwitindolinone C isothiocyanate we shifted our focus to N-methylwelwitindolinone D



 iii 

isonitrile. Investigation into the construction of the bridged ether embedded within N-

methylwelwitindolinone D isonitrile led to the discovery of a novel tandem O–H 

insertion Conia-ene cyclization.  
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Chapter 1 

The Welwitindolinone Alkaloids: Complex Natural Products 

from Cyanobacteria with Promising Biological Activity 

 

1.1 Background and Introduction. 

 

1.1.1 Isoation and Biological Activity. 

 

 In 1994 Moore and coworkers found that “the lipophilic extracts of the blue-green 

algae (cyanobacteria) Hapalosiphon wewitschii W. & G.S. West (UH strain IC-52-3, 

Stigonemataceae) is antifungal and inhibits P-glycoprotein-mediated multidrug resistance 

(MDR) in a vinblastine resistant subline (SK-VLB) of a human ovarian adenocarcinoma 

line (SK-OV-3) and the lipophilic extracts of Westiella intricate Borzi (UH strain HT-29-

1, Stigonemataceae) shows insecticidal activity against blowfly larvea.”1 Intrigued by the 

biological activity demonstrated by the extracts Moore sought to isolate the compounds 

responsible. As a result, he discovered fischerindoles 1 → 4, hapalosin (5), hapalindoles 

6 → 9 (Figure 1.1.1), and a new class of alkaloids termed the welwitindolinones (10 → 

16) (Figure 1.1.2). Five years later Moore isolated oxidized welwitindolinones 17 → 20 

from the epilithic algae Fischerella muscicola (Thuret) Gomont (HG-39-5) and 

Fischerella major Gomont (HX-7-4).2 Unfortunately, no biological assays have been 

conducted on welwitindolinones 17 → 20 and therefore they remain of unknown 

biological relevance. 
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Moore’s investigation of the isolated compounds found that N-

methylwelwitindolinone C isothiocyanate (16) and hapalosin (5) were responsible for the 

MDR-reversing-activity associated with the extracts.3,4 Studies with hapalosin (5) 

displayed a chemosensitization of P-glycoprotein-overexpressing breast carcinoma 

(MCF-7/ADR) cell lines with doses as low as 2.5 µM.3 Close inspection of the 

welwitindolinone 10 → 16 congeners found that N-methylwelwitindolinone C 

isothiocyanate (16) and its demethylated analogue, welwitindolinone C isothiocyanate 

(14, welwistatin), possessed the most relevant biological activity of the entire family. A 

report in 1995 by Smith and coworkers showed that N-methylwelwitindolinone C 

isothiocyanate (16) potentiates vinblastine (21) and actinomycin (25) accumulations in 

the MCF-7/ADR cell lines with chemosensitization doses as low as 1 µM.4 
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Figure 1.1.2 
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This study also found that welwistatin (14) possessed significant cytotoxicity 

towards MCF-7 cell lines with an IC50 value of approximately 0.12 µM. Additional 

assays discovered that welwistatin (14) inhibited cell proliferation of SK-OV-3 and A-10 

cells with IC50 values of 72 nM and 900 nM, respectively.5 These results prompted 

investigation into welwistatin’s mode of action that revealed 14 to be a microtubule 

inhibitor.  
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1.1.2 Microtubule Structure and Function 

 

Microtubules are responsible for a variety of functions in eukaryotic cells 

including structure, motility, and transport.6-9 Microtubules are composed of α- and β-

tubulin (each with about 450 amino acid residues) arranged in an alternating pattern that 

constitute protofilaments. These protofilaments are arranged in a spiral pattern (usually 

about 13 units) to form a hollow tube with a diameter of about 25 nm. Microtubules are 

polar by nature and stretch outward from their nucleating centers (negative), where γ-

tubulin and γ-tubulin ring complex (γ-TuRC) are located, to the outer ends (positive) 

where there is a constant flux of elongation and contraction. Microtubules undergo a 

process of dynamic instability as a result of their constant polymerization and 

depolymerization. Each β-tubulin is bound to GDP except for the β-tubulin located at the 

very end of the microtubule. This β-tubulin is bound to GTP, which along with 

magnesium ions assists in microtubule elongation via hydrolysis.7 

 The microtubule cytoskeletal structure interacts with a large number of proteins 

including MAPs (microtubule associated proteins), +TIPs (plus-end tracking proteins), 

and motor proteins that support cellular function. The motor proteins kinesin and dynein 

help cell division and interphase when coupled with microtubules. Disruption of the 

microtubule polymerization and depolymerization equilibrium inhibits transport of 

kinesin and dynein motor proteins and the cell cannot function properly.9 

There are several drugs that affect the polymerization and depolymerization of 

microtubules and thus affect mitosis (Figure 1.1.3). Drugs that depolymerize 

microtubules tend to bind to tubulin at the colchicine binding site (named after the natural 
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product colchicine) and inhibit mitotic progression. Some of these drugs include synthetic 

indanocine (22) and the natural product vinblastine (21) (a vinca alkaloid). Drugs that 

bind β-tubulin, such as paclitaxel (21), increase the stability of the microtubule lattice by 

promoting nucleation and thus increase polymerization. This process, in turn, locks a cell 

in prometaphase.6,9 

According to Smith and Zhang, welwistatin (14) binds similarly to colchincine 

and the vinca alkaloids. Treatment of aortic smooth muscle (A-10) cells with welwistatin 

(14) (monitored by indirect immunofluorescence) displayed a disruption and eventual 

loss of microtubules. Tubulin was then detected via staining, providing evidence of 

welwistatin’s ability to depolymerize microtubules. To further support this conclusion A-

10 cells were pretreated with varying doses of paclitaxel (21), which prevented 

microtubules from depolymerizing when welwistatin was added. However, when 

welwistatin pretreated cells were exposed to paclitaxel (21) the restoration of 

microtubules was seen.5 

 

1.1.3 MDR and P-glycoprotein 

 

Multidrug resistance (MDR) is the ability of a cell to resist treatment with 

cytotoxic drugs. Some current methods for cancer therapy involve the treatment of 

cancerous cells with multiple, structurally unrelated drugs in order to avoid creating 

mutant MDR cells. However, studies have shown an alarming rate of resistance 

suggesting a commonality for MDR development.10-17 
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In 1950 Burchenal and coworkers reported the first account of drug resistance 

while studying the effects of 4-amino-N10-methyl-pteroylglutamic acid on mouse 

leukemia cells. Approximately 20 years later Chinese hamster ovarian cells, chosen for 

their resistance to colchicines (23 for example), were found to be resistant to daunomycin 

(27) and puromycin (26) (Figure 1.1.3).15 Around the same time Dano and coworkers 

discovered that Ehrlich ascites tumor cells transported daunorubicin (28) outward to the 

extracellular space via active transport. They proposed a carrier-mediated efflux as an 

MDR mechanism. Efforts were then made to understand the cause of MDR and 

eventually lead to the discovery of a 170 kDa plasma membrane glycoprotein or P-gp 

(mistakenly named for its affect on membrane permeability).15  

Figure 1.1.3 
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Figure 1.1.4 
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P-gp is an ATP-binding cassette (ABC) transporter that contains about 1280 

amino acid residues and is encoded by the MDR1 (ABCB1) gene located on chromosome 

seven in humans. It is believed that human P-gp is a single polypeptide chain that consists 

of two transmembrane domains that each contain six transmembrane α-helices connected 

by extracellular or cytosolic linkers. A cytosolic domain containing two nucleotide-

binding domains (in this case ATP-binding domains) comprises the core of the protein. It 

is believed that within this domain two asynchronous ATP hydrolysis actions promote 

drug efflux.16 P-gp expression was not only found in cancerous cells, but also in normal 

tissue cells such as the blood-brain barrier, the placenta, and intestinal epithelial cells. 

This suggests that P-gp acts as a defense against uptake of toxins from the digestive track 

or blood stream into sensitive organs.13 
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There are currently three models of P-gp mechanism of action: classical pump, 

vacuum cleaner, and flippase.14 The classical pump model suggests that toxins (i.e. drugs) 

in the cytoplasm interact with the cytosolic region of the two transmembrane domains. 

This interaction creates a flexible drug-binding pocket within P-gp. Hydrolysis of ATP 

initiates a conformational change that expels the toxins from the cell and a second ATP 

hydrolysis returns the protein to its original position. The vacuum cleaner model uses a 

similar mechanism, however this model proposes a removal of hydrophobic toxins from 

the lipid bilayer as well as the cytoplasm. The last model to be proposed is the flippase 

model. It suggests that P-gp interacts with toxins in the inner leaflet of the lipid bilayer 

and “flips” them to the outer leaflet, thus eliminating toxins via diffusion to the 

extracellular medium. All three models are experimentally supported, however 

significant evidence suggests the classical pump method is the most likely.14 

Since its discovery, significant effort has been made to overcome P-gp’s 

mechanism of action through MDR-inhibitors (Figure 1.1.4).11,12,17 P-gp was found to 

interact with a variety of compounds that can be grouped into two main categories: 1) 

hydrophobic, positively charged or neutral compounds and 2) modulators (P-gp 

interacting compounds that are not transported). P-gp interacts with a wide range of 

compounds and serves as a defense mechanism for healthy cells, therefore exclusive 

inhibition of P-gp without cytotoxic effects makes drug development extremely difficult. 

As a consequence, there is a constant need to screen and create new transport modulators. 

In 1995 Smith and coworkers screened the extracts of approximately 1500 strains 

of cyanobacteria in an effort to find MDR-reversing compounds. During this study they 

found that the hydrophobic extracts of Hapalosiphon welwitschii chemosensitized SK-
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VLB-1 cells to daunomycin (27) and actinomycin D (25) and increased [3H]-vinblastine 

(21) accumulation. Upon further investigation, Smith discovered that N-

methylwelwitindolinone C isothiocyanate (16) potentiates vinblastine (21) and 

actinomycin (25) accumulations in the MCF-7/ADR cell lines with chemosensitization as 

low as 1 µM and an IC50 value of 2.88 µM.5 These results beckon further investigation 

into analogues of this class of natural product. 

 

1.2 Biosynthesis. 

 

1.2.1 Biogenesis of the Welwitindolinone Alkaloids and Their Relationship to the 

Fisherindoles and Hapalindoles. 

 

Moore and coworkers identified the hapalindoles as biosynthetic precursors for 

the fisherindoles and the welwitindolinones (Scheme 1.2.1). They proposed that 12-epi-

hapalindole E isonitrile (6) could be constructed from a chloronium ion-induced 

cyclization of dehydrated geraniol adduct 33 and tryptamine derivative 34. Alternatively, 

the dechlorinated hapalindoles could arise via a protonation/tertiary allylic carbocation 

cyclization mechanism with the aforementioned starting materials (not shown). An 

enzyme-controlled protonation/cyclization of the isopropenyl group onto the C2 position 

on the indole ring of 6 followed by loss of a proton could give access to 12-epi-

fischerindole G isonitrile (3). 

 Moore suggested that further elaboration of 6 through oxidation would provide 

oxindole intermediate 35 where another enzyme-controlled protonation/cyclization of the 
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isopropenyl group could forge the cyclobutane moiety found within welwitindolinone A 

isonitrile (10). In contrast to Moore’s proposed biosynthesis, Baran’s construction of 

welwitindolinone A isonitrile (10) proceeded through an oxidative ring contraction of 12-

epi-fischerindole G isonitrile (3) (Baran’s synthesis of welwitindolinone A isonitrile is 

discussed in more detail in Section 1.3.2.1).34,35 His synthesis casts doubt on the details of 

Moore’s hypothesized biosynthesis, yet reinforces the biogenesis of the 

welwitindolinones from the fischerindoles. An enzyme-controlled oxidation of the vinyl 

isonitrile to the isocyano epoxide 36 could eventually provide welwitindolinone B 

isonitrile (11) following rearrangement. Subsequent methylation, oxidation, and 

isothiocyanate formation could then furnish 16. 
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 After isolating the C3 oxidized welwitindolinones (17 → 20), Moore proposed 

that singlet oxygen was responsible.2 Oxidation of the C3 carbon of N-

methylwelwitindolinone C isonitrile (15) could result in peroxide 37. Reduction of the 

peroxide from an external source could then give 3-hydroxy-N-methylwelwitindolinone 

C isonitrile (17). However, an intramolecular oxidation of the vinyl chloride could lead to 

chloroepoxide 38. Examples from the literature have shown chloroepoxides capable of 

rearrangement to α-chloroketones. However, these reactions require elevated 

temperatures and thus the mechanistic pathway from 38 to 39 is discredited. Instead, 
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direct opening of the chloroepoxide by the C3-hydroxyl group to a chlorohydrin, 

followed by immediate expulsion of the chloride could give N-methylwelwitindolinone D 

isonitrile (20). 

 

Scheme 1.2.2 
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1.3 Synthetic Efforts Toward the Welwitindolinone Alkaloids 

 

 Since the welwitindolinones were discovered, there has been significant effort 

from the synthetic community to devise an elegant and concise route to these structurally 

complex molecules. There are currently 21 published synthetic works on the 

welwitindolinone family by 12 separate groups spanning the globe.18-39 Within this body 

of work are only two completed total syntheses of welwitindolinone A isonitrile (10) by 

Baran34-36 and Wood.38, 39 
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1.3.1 Welwitindolinone C Synthetic Efforts 

1.3.1.1 Wood’s “Application of Reactive Enols in Synthesis: A Versatile, Efficient, 

and Stereoselective Construction of the Welwitindolinone Carbon Skeleton.” 

 

In 1999 our group published preliminary efforts toward the synthesis of N-

methylwelwitindolinone C isothiocyanate (16).20 This strategy was designed to 

incorporate a sequential O–H insertion Claisen rearrangement, methodology that was 

developed in our laboratory to access the bicyclo[4.3.1] backbone of welwitindolinone C. 

To that end, the synthesis began with construction of two key α-diazoketones (44 and 52, 

Scheme 1.3.1, 1.3.2, and 1.3.3). The first α-diazoketone 44 was synthesized starting from 

commercially available isatin (40) (Scheme 1.3.1). In the forward sense, a Wittig 

homologation with ethyl triphenylphosphoranylidene acetate provided enoate 41. 

Subsequent exposure to isopropyl triphenylphosphorane and MeI gave clean conversion 

to the cyclopropyl adduct 42. Saponifaction of the ethyl ester delivered acid 43. 

Treatment of acid 43 with oxalyl chloride and DMF produced the intermediate acid 

chloride (not shown), which was immediately displaced by trimethylsilyldiazomethane to 

produce the first key α-diazoketone 44 in good overall yield. 
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Scheme 1.3.1 
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 With α-diazoketone 44 in hand, our attention shifted to implementing an 

intramolecular aryl C–H insertion reaction that would access an intermediate en route to 

the second desired α-diazoketone 52 (see Scheme 1.3.3). Studies conducted in our 

laboratory have shown that the use of Rh2(TFA)4 produced trace amounts of spirocycle 

46, in addition to equal molar amounts of the undesired cycloheptatriene 49 and the 

desired tetracycle 50. Both products 49 and 50 presumably arose via the interconversion 

of norcaradiene 47 and cycloheptatriene 48. After considerable screening efforts, it was 

found that a mildly Lewis acidic clay, Montmorillonite K10, led to formation of the aryl 

C–H insertion product in notably higher yield. 
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Scheme 1.3.2 
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Having established a facile route to aryl C–H insertion product 50, we next 

implemented our strategy to access α-diazoketone 52 (Scheme 1.3.3). To that end, 

benzylic oxidation of 50 using PCC/Celite forged diketone 51, which was followed by  a 

regioselective diazotization to complete the synthesis of the second, key α-diazoketone 

(52). The stage was set to employ our sequential O–H insertion Claisen rearrangement 

chemistry. Our previous studies on the sequential O–H insertion/Claisen rearrangement, 

revealed that the substitution on the allylic alcohol influenced the rate of the Claisen 

rearrangement after the initial O–H insertion reaction. As illustrated in Scheme 1.3.3, 

when α-diazoketone 52 was exposed to allyl alcohol (56) in the presence of a rhodium(II) 

catalyst the resulting allyl vinyl ether did not undergo a Claisen rearrangement, but rather 
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proceeded to open the cyclopropane ring and produce cycloheptenone 58 in excellent 

yield. In contrast, when α-diazoketone 52 was exposed to allylic alcohol 53, containing 

accelerating functionality, in the presence of a rhodium(II) catalyst, the resulting vinyl 

enol ether (54) rapidly underwent a Claisen rearrangement to afford alcohol 55. Attempts 

were made to use the more functionalized Claisen product 55 to build the 

welwitindolinone core, but our efforts ultimately proved futile. Attention was then 

redirected to cycloheptenone 58 for the completion of N-methylwelwitindolinone C 

isothiocyanate. 
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 As illustrated in Scheme 1.3.4, exposure of ketone 58 to ethynyl magnesium 

bromide and subsequent heating yielded ene-yne diastereomers 59 and 60 as a 98:2 

mixture, respectively. Fortunately, the major diastereomer 59 had the allyl group 

positioned on the same face as the alkyne group, thus making ring-closing metathesis an 
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appealing strategy to construct the last ring of welwitindolinone C (16). Reduction of the 

alkyne using Lindlar’s catalyst followed by treatment of the resulting diene with Grubbs 

first generation catalyst afforded the welwitindolinone core 61. Attempts were made to 

convert the bridgehead hydroxyl group to the amine using Ritter chemistry, but 

unfortunately were unsuccessful. This synthetic strategy was the first to access the core of 

welwitindolinone C and was conducted in an efficient and stereoselective manner (15 

steps).20 

 

Scheme 1.3.4 
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1.3.1.2 Konopelski’s “Stereoselective Conjugate Addition Directed by an 

Enantiomerically Pure Ketal. Preparation of the Cyclohexanone Fragment of N-

Methylwelwitindolinone C Isothiocyanate.” 

 

Konopelski’s strategy towards the synthesis of N-methylwelwitindolinone C 

isothiocyanate utilized a convergent approach that initially focused on the six-membered 

ring embedded within the bridged polycyclic alkaloid.21 In 1998 he reported a concise, 

stereoselective synthesis of a functionalized cyclohexane ring system (Scheme 1.3.5). In 

the event diol 62 was subjected to mono-oxidation with Jones reagent followed by 

protection of the resultant ketone with (R,R)-hydrobenzoin to provid acetal 63 in 70% 
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yield over the two steps. A TEMPO oxidation and acylation gave the corresponding β-

keto ester 64. The key enone 66 was obtained following a five-step procedure involving 

enone installation, methyl magnesium bromide conjugate addition, and enone re-

installation. The enantiomerically pure acetal then dictated the diastereoselectivity of the 

subsequent copper-mediated vinyl Grignard addition (81:19, 78% yield). Hydrolysis and 

decarboxylation then afforded the functionalized cyclohexane 67. 
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1.3.1.3 Konopelski’s “Aryllead(IV) Reagents in Synthesis: Formation of the C11 

Quaternary Center of N-Methylwelwitindolinone C Isothiocyanate.” 

 

Konopelski’s approach began with a coupling of aryllead indole 68 with 

cyclohexanone 69 to forge the requisite carbon–carbon bond between C4 and C11 in high 

yield (Scheme 1.3.6).22 Subsequent heating of the Boc-protected indole 70 at 200 °C 

furnished free indole 71. A two-step sequence involving methylation and oxidation then 

delivered compound 72 with the desired oxindole motif present in N-
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methylwelwitindolinone C isothiocyanate (16). Konopelski suggested that advancement 

of oxindole 72 was difficult, yet they are still attempting to build the welwitindolinone 

core via this process. In 2007, Konopelski reported an exploration of the aryllead(IV) 

couplings with  substituted cyclohexanone ring systems as a welwistatin support study. 

He found that increasing substitution on the cyclohexanone ring system resulted in 

markedly decreased yields.  

 

Scheme 1.3.6 
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1.3.1.4 Avendaño’s “Controlled Generation of Three Contiguous Stereocentres in 

the Michael Addition of 1-Pyrrolidinocyclohexene to (E)-(1-Methyl-2-oxoindolin-3-

ylidene)acetophenone.” 

 

Avendaño designed a synthesis that relied on the aryl C–H insertion of 76 to 

deliver the core of 16 (Scheme 1.3.7).23 In the process of constructing their desired α-

diazoketone for the planned aryl C–H insertion, they explored the stereochemical 

outcome of the Michael addition of 1-pyrrolidinocyclohexene (74) onto (E)-(1-methyl-2-

oxoindolin-3-ylidene)acetophenone (73). Avendaño found that by changing the reaction 

temperature and time, the reaction could be tuned to deliver 75 in good yield. 
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Unfortunately, their attempts to produce the targeted α-diazoketone (76) via deacylative 

or debenzoylative diazotransfer ultimately failed and they abandoned this route. 

 

Scheme 1.3.7 
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1.3.1.5 Jung’s “Rhodium-Catalyzed Decomposition of Indole-Substituted α-Diazo-

β-Keto Esters: Three Different Reactions Based on Indole Oxidation State.” 

 

Jung reports an exploration of rhodium-catalyzed aryl C–H insertions of oxindole- 

or indole-tethered diazo compounds to construct the seven-membered bridged ring 

system found within N-methylwelwitindolinone C isothiocyanate (16).24 Unfortunately, 

after considerable experimentation, he was unable to effect this plan and instead reports 

his findings of varying reactivities of different indolyl substrates. A representative 

example is highlighted in Scheme 1.3.8. In the case of oxindole 84, intermediate carbonyl 

ylide formation out-competed the desired aryl C–H insertion reaction and generated 
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compounds 85, 86, and 87 through proton transfers or intermediate epoxide formations, 

respectively. 

 

Scheme 1.3.8 
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1.3.1.6 Rawal’s “Rapid Synthesis of the N-methylwelwitindolinone Skeleton.” 

 

Reported in 2005, Rawal’s approach to the N-methylwelwitindolinone skeleton 

highlights the utility of a Lewis acid-mediated alkylative coupling to assemble the carbon 

framework, a Pd-catalyzed intramolecular enolate arylation reaction to forge the [4.3.1] 

bicyclic backbone, and a Curtius rearrangement to install the bridgehead isocyanate 

(Scheme 1.3.9).25 Starting from commercially available 4-bromoindole (88), a three-step 

process (not shown) gave access to tertiary alcohol 89. Using modified Natsume’s 

conditions silyl enol ether 90 and tertiary alcohol 89 were coupled in the presence of 

TiCl4 in good yield providing adduct 91. After four additional steps, Rawal arrived at key 

β-ketoester 92, a substrate poised for implementation of a Pd-catalyzed intramolecular 

enolate arylation reaction. Fortunately, exposing 92 to Pd(OAc)2, tBu3P, and KOtBu 

generated intermediate 93 possessing the bicyclo[4.3.1] backbone of N-
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methylwelwitindolinone C isothiocyanate (16). Saponification of methylester 93 failed, 

but dealkylative conditions provided carboxylic acid 94 without formation of side-

products resulting from decarboxylation. Exposure of acid 94 to diphenylphosphoryl 

azide led to a Curtius rearrangement, which gave isocyanate 95 in the absence of an 

external alcohol nucleophile. 
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1.3.1.7 Simpkins’ “Rapid Access to the Welwitindolinone Alkaloid Skeleton by 

Cyclization of Indolecarboxaldehyde Substituted Cyclohexanones.” 

 

Simpkins was the first to highlight the utility of an enolate arylation reaction as a 

means to forge the bicyclo[4.3.1] backbone of N-methylwelwitindolinone C 

isothiocyanate (16) in his 2005 report (Scheme 1.3.10).26,27 Starting from readily 

available 4-bromo-N-methylindole (96), an arylation reaction with cyclohexanone was 
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performed using conditions pioneered by Buchwald. Subsequent Vilsmeier-Hack 

formylation gave cyclohexyl adduct 97 in variable yield. Exposure of 97 to p-toluene 

sulfonic acid induced an intramolecular aldol reaction that was sequentially treated with 

Et3SiH to reduce the intermediate extended iminium ion to produce core structure 98. 

Oxidation to the oxindole (99) proceeded via treatment of 98 with NBS in tBuOH, and 

thus completed the welwitindolinone core. 

 

Scheme 1.3.10 
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1.3.1.8 Funk’s “An Approach to the Total Synthesis of Welwistatin.” 

 

Funk’s approach to the total synthesis of welwistatin (14) was designed to 

incorporate several methods developed within his lab (Scheme 1.3.11). His synthesis 

highlighted the utility of a masked bromomethyl vinyl ketone (101) to forge a 

bicyclo[4.3.1] system and an annulation sequence to construct indoles.28 He began his 

synthesis from easily accessible cyclohexanone 100 where formation of the kinetic 

enolate and alkylation from the α-face with allylic bromide 101 resulted in compound 

102 with good diastereoselectivity. The relative stereochemistry was assigned after a 

regioselective cyanation provided α-ketonitrile 103. Heating 103 in toluene in a sealed 

tube at 165 °C initiated a retro-cycloaddition that extruded formaldehyde and generated 

an intermediate enone (not shown) whereupon subsequent treatment with triethylamine 
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forged bicyclo[4.3.1] 104 via an intramolecular Michael addition. A three-step process 

involving silyl enol ether formation, reduction of the bridgehead carbonyl, and protection 

of the resulting alcohol yielded 105 in good overall yield. Formation of vinyl bromide 

107 proceeded through an α-selenylation (106), and a one-pot α-bromination, selenium 

oxidation, and selenoxide elimination sequence. 
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 Tandem alkylations with LiHMDS and MeI generated the requisite gem-dimethyl 

moiety (108) present within welwistatin (14). A Stille coupling with α-stannyl 

enecarbamate 109 and vinyl bromide 108 provided triene 110, a compound set for Funk’s 

annulation sequence. Heating triene 110 initiated a 6π-electrocyclization to generate the 

intermediate cyclohexadiene moiety (not shown) where subsequent treatment with DDQ 

aromatized the ring to construct aniline derivative 111. Removal of the Boc-protecting 

group with TFA provided the free aniline that underwent reductive amination forming 

glyoxylic acid 112. Treatment of acid 112 with acetic anhydride and triethylamine at 130 

°C delivered acylated indole 113. A two-step process involving hydrolysis of the nitrile 

using Parkins’ catalyst (114) to amide 115 and a modified Hofmann rearrangement 

delivered isocyanate 116. 

 Funk’s approach to welwistatin (15) is an elegant, precisely designed synthesis 

that sets itself apart from other attempts. To date, there have only been two reported 

routes that have generated the welwitindolinone C core containing a quaternary center at 

C12 (Funk and Wood). Funk’s synthetic effort is unique in that it generates the correct 

vicinal fully substituted centers, a feat that no one had accomplished previously. 

 

1.3.1.9 Shea’s “A Synthesis of the Welwistatin Core.” 

 

Shea’s 2006 report of their synthetic efforts toward the synthesis of the 

welwistatin core exploited a type 2 intramolecular Diels–Alder reaction to build the 

bicyclo[4.3.1] core and bridged indole present within welwistatin (Scheme 1.3.12).29 To 

that end, they started from 4-bromoindole (88) and in a three-step sequence converted it 
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to allylic alcohol 121. Exposure of allylic alcohol 121 to activated MnO2 in methylene 

chloride at room temperature oxidized the allylic alcohol to the intermediate enone 122 

that spontaneously underwent a type 2 intramolecular Diels–Alder reaction to give the  

welwitindolinone backbone (123) in a single operation. 
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1.3.1.10 Shea’s “Synthesis of the Bicyclic Welwitindolinone Core via an 

Alkylation/Cyclization Cascade Reaction.” 

 

Shea’s synthesis of the bicyclic welwitindolinone core builds on his previous 

report highlighting an intramolecular Diels-Alder reaction. In an impressive and facile 

eight-step sequence, he was able to construct a functionalized welwitindolinone core 

(Scheme 1.3.13).30 Beginning with 4-bromoindole 124, oxidation of an intermediate 2-

indolyl boronic ester delivered oxindole 125 in good overall yield. An acid induced Boc-

removal and subsequent methylation provided N-methyloxindole 126. A vinylation 

reaction with diethylfumarate under Heck coupling conditions afforded diester 127 as a 
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7:1 (Z:E) mixture of olefin isomers in 63% yield. In the course of installing the silyl enol 

ether moiety present in oxindole 128, Shea discovered that the olefin isomers of 127 were 

equilibrated exclusively to the corresponding Z-isomer. Exposure of 128 to ZnI2 and 

tertiary alcohol 129 promoted the intermediacy of an alkylated product (not shown) that 

immediately underwent an intramolecular Diels-Alder reaction to forge the bicyclo[4.3.1] 

core of welwitindolinones B, C, and D. Removal of the TIPS protecting group proceeded 

in the presence of HF to produce a 25:1 mixture of enone 131 and lactone 132. 

Compound 131 was found to slowly rearrange to lactone 132 under basic or Lewis-acidic 

conditions. 
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1.3.1.11 Trost’s “Access to a Welwitindolinone Core Using Sequential 

Cycloadditions.” 

 

Trost formulated a strategy toward the welwitindolinone core using previous work 

performed in his lab on an asymmetric palladium-catalyzed trimethylenemethane (Pd-

TMM) [6+3] cycloaddition reaction (136 → 139) (Scheme1.3.14).31 Starting from known 

ethyl ester 133, three steps were conducted including saponification to acid 134, 

subsequent protection as the PMB ester (135), and demethylation of the methyl enol ether 

that provided tropone 136. Exposure of tropone 136 to Pd(dba)2 in the presence of 

phosphoramidite ligand 137 and the cyano TMM donor 138 induced a key [6+3] 

cycloaddition to forge cycloadduct 139 in 80% yield and 94% ee. Having established the 

desired functionalized bicyclo[4.3.1] motif, they next needed to build the oxindole moiety 

of the welwitinolinones. An isomerization of the exo-methylene of 139 was necessary to 

avoid [3,3] rearrangement side-products. Treatment of 139 with DMAP at 50 °C in DCE 

followed by removal of the PMB group delivered acid 140 in excellent yield. Creation of 

the intermediate mixed anhydride and subsequent displacement with N-Boc-amidofuran 

141 afforded the [4+2] cycloaddition precursor 142. Upon heating 142, a Diels-Alder 

reaction produced oxabicycle 143 as a single diastereomer in near-quantitative yield. Use 

of Yb(OTf)3•H2O then converted 143 to oxindole 144 in moderate yield. 
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Scheme 1.3.14 
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1.3.1.12 Garg’s “Concise Synthesis of the Bicyclic Scaffold of N-

Methylwelwitindolinone C Isothiocyanate via an Indolyne Cyclization.” 

 

Garg presents a concise synthesis of the bicyclo[4.3.1] backbone of N-

methylwelwitindolinone C isothiocyanate highlighting the utility of an iodine Lewis acid-

mediated conjugate addition and indolyne cyclization (Scheme 1.3.15).32 His strategy 

began with an iodine Lewis acid-mediated conjugate addition of 5-bromo-N-

methylindole (145) onto enone 146 to construct indole 147. Exposure of 147 to NaNH2 

and tBuOH induced an in situ indolyne formation and subsequent trapping with the 
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pendant enolate. The products were the result of both C-arylation (148) and O-arylation 

(149) in a 1.2:1 ratio, respectively, and in a combined moderate yield (approx. 31% yield 

for 148 and 25% yield for 149). Garg also investigated the oxidation of indole 148 to the 

corresponding oxindole 150. He found after extensive experimentation that a two-step 

process involving NBS bromination and HCl-promoted hydrolysis afforded oxindole 150 

cleanly and with the correct relative stereochemistry. 
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1.3.1.13 Martin’s “Approaches to N-Methylwelwitindolinone C Isothiocyanate: 

Facile Synthesis of the Tetracyclic Core.” 

 

 In 2010 Martin published their group’s effort towards N-methylwelwitindolinone 

C isothiocyanate (16) (Scheme 1.3.16).33 In this report, Martin highlighted the utility of 

an enolate arylation reaction and an allylic alkylation to forge the core of the target 

natural product. Starting from 4-bromoindole (88), a N-methylation and acetylation 

provided 151. Subsequent exposure of 151 to methylmagnesium bromide gave the 

unstable tertiary alcohol 89 that was immediately treated with 152 in the presence of 

TMSOTf to afford acetal 153 in 35% yield over 4 steps. Heating acetal 153 in methanol 

and toluene at 100 °C resulted in the opening of the acetal to the methyl ester (not 

shown). Treatment resulting methyl ester with [Pd(tBu3P)2]2 at 150 °C in a microwave 

initiated an enolate arylation producing 154 in good yield. Desilylation of 154 and 

sequential acylation delivered allylic acetate 155. Palladium catalyzed allylic alkylation 

then converted 155 to the core of N-methylwelwitindolinone C isothiocyanate (156). 

Oxidative cleavage of the 1,1-disubstituted olefin within 156 provided the corresponding 

ketone (157), leaving functionality for later conversion to the natural product. 
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Scheme 1.3.16 
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1.3.2 Welwitindolinone A Isonitrile Syntheses. 

 

1.3.2.1 Baran’s “Enantioselective Total Synthesis of Welwitindolinone A and 

Fischerindoles I and G.” 

 

 The design of Baran’s enantioselective synthesis of welwitindolinone A and 

fischerindoles I and G focuses on a strategy that utilized novel chemical reactions to 

avoid the use of protecting groups. The result was a concise synthesis of the target 

compounds (Scheme 1.3.17).34-36 Starting from commercially available (S)-carvone oxide 

(158), an in situ protection of the carbonyl as the enolate followed by vinylmagnesium 

bromide addition provided alcohol 159 diastereoselectively and with the desired 
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quaternary center installed in a single operation. Alcohol 159 was converted to alkyl 

chloride 160 using NCS and PPh3. Subsequent treatment of ketone 160 with LiHMDS 

followed by addition of indole and copper(II)-2-ethylhexanoate forged 161 in moderate 

yield. Microwave irradiation of 161 in the presence of Montmorillonite K10 clay 

furnished Friedel–Crafts cyclization product 162, thus completing the core of the 

fischerindoles. 

 Conversion of the carbonyl of 162 to the vinyl isonitrile of fischerindole I proved 

more difficult than Baran had anticipated. Ultimately they discovered that a reductive 

amination (162 → 163), formylation (163 → 164), and oxidation/dehydration sequence 

(164 → 1) delivered (–)-12-epi-fischerindole I (1). Exposure of 1 to tBuOCl under basic 

conditions followed by addition of an acidic solution successfully induced a ring 

contraction to give (+)-welwitindolinone A (10) and (+)-3-epi-welwitindolinone A (165) 

as a 10:1 mixture, respectively. 
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Scheme 1.3.17 
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1.3.2.2 Wood’s “Total Synthesis of (±)-Welwitindolinone A Isonitrile.” 

 

Intrigued by the structural complexity of welwitindolinone A isonitrile, our group 

initiated a strategy towards its synthesis in 2002. Four years later we reported the 

efficient total synthesis of welwitindolinone A isonitrile (2.5% yield overall with an 

average yield of 81%).37-39 Its construction began with a stereo- and regioselective [2+2] 

cycloaddition of cyclohexadiene acetonide 166 and dimethyl ketene (derived from 

isobutyryl chloride) to deliver bicyclo[4.2.0] 167 in excellent yield (Scheme 1.3.18). 

Addition to the carbonyl of 167 with aryl magnesium bromide 168 from the convex face 

of the fused bicycle gave alcohol 169 as a single diastereomer. A four-step sequence 

composed of a chemoselective reduction of the triazene moiety, protection of the 
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resultant aniline as the urethane, deprotection of the acetonide, and selective oxidation of 

the allylic alcohol provided enone 170 in good overall yield.37 

 

Scheme 1.3.18 
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 Having built the welwitindolinone A core, attention then turned to incorporating 

the necessary functionality in the cyclohexane portion (Scheme 1.3.19).38,39 The two-step 

sequence began with initial protection of alcohol 170 as the TIPS silyl ether. The 

intermediate TIPS-protected 170 was then treated with LiHMDS to protect the urethane 

in situ as the lithium anion before reduction of the enone with L-selectride and trapping 

of the enolate as the vinyl triflate could occur to produce 171. A palladium catalyzed 

carbonylation reaction converted the vinyl triflate of 171 to enoate 172 that when 

exposed to excess methylmagnesium bromide provided tertiary allylic alcohol 173. 

Treatment of 173 with NaOCl and CeCl3•7H2O initiated a chloronium-ion induced semi-

pinacol rearrangement that delivered the all-carbon quaternary center and requisite 

secondary chloride in a single operation and with the correct relative stereochemistry to 

deliver 174. Based upon the relative stereochemistry of 174, the chloronium ion 

approached from the more hindered concave face of the molecule. Our group postulated 

that the TIPS-protected alcohol forced the incoming chloronium ion to approach from the 

concave face of the olefin, thus giving the desired relative stereochemistry. Completion 



 36 

of the cyclohexane portion to give 175 proceeded through desilylation of the protected 

hydroxyl group and reduction of the ketone. Using Martin’s sulfurane the less hindered 

secondary alcohol was selectively converted to the monosubstituted alkene and oxidation 

of the more hindered alcohol created 176. 
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We next turned to the assembly of the spiro-oxindole functionality. Previous 

studies in our lab set precedence for a SmI2-mediated reductive cyclization onto aryl 

isocyanates to form spiro-oxindoles. Opening of urethane 176 was accomplished via a 

one-pot Boc-protection/CO2 extrusion sequence to give the protected aniline moiety that 

was directly followed by condensation of O-methylhydroxylamine to form oxime ether 

177. Reduction of the oxime ether and formylation of the generated methoxylamine 

provided 178, a compound now susceptible to N–O bond cleavage. The N–O bond was 
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successfully cleaved in the presence of SmI2 and the aniline was unmasked under acidic 

conditions to deliver 179 in good yield. A two-step one pot process involving initial 

isonitrile formation with phosgene and subsequent treatment of the crude mixture with 

LiHMDS at –78 °C successfully completed the total synthesis of 10 as a single 

diastereomer. 
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Chapter 2 

Construction of the Welwitindolinone C Core: 

[3+2] Dipolar Cycloaddition and Michael Addition 

 

2.1 Initial Considerations. 

 

 To date, our efforts towards the synthesis of N-methylwelwitindolinone C 

isothiocyanate have encompassed the works of six graduate students1 and seven 

postdoctoral researchers2 over twelve years. Each has contributed significant ideas to the 

project, and the synthetic work outlined in this chapter builds upon their contributions. 

 Although our first-generation synthesis of the core of N-methylwelwitindolinone 

C isothiocyanate was concise (see Chapter 1, Section 1.3.1.1), it provided a skeletal 

system lacking much of the functionality required for subsequent elaboration to the 

natural product.3 Based upon this assessment, we decided to develop an alternate route. 

We began by focusing on the construction of bonds A and B depicted in Figure 2.1.1. 

Upon close inspection of the two vicinal, fully-substituted carbon centers (i.e. C11 and 

C12), we realized that a [3+2] dipolar cycloaddition would not only forge bond B, 

completing the bicyclo[4.3.1] system but would also establish the desired cis-relationship 

between the methyl at stereogenic C12 and the isothiocyanate functionality at C11.4-9 To 

test this hypothesis, we needed to construct a bridged oxindole capable of undergoing a 

[3+2] dipolar cycloaddition. Fortunately, chemistry already developed in our first-

generation efforts could be applied to create bond A via aryl C–H insertion. 
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2.2 First Generation [3+2] Dipolar Cycloaddition Approach. 

 

2.2.1 Retrosynthetic Analysis. 

 

 Implementation of our nitrone-mediated dipolar cycloaddition strategy 

necessitated the development of a concise retrosynthetic blueprint (Scheme 2.2.1). To 

that end, we planned late stage installation of the potentially labile isothiocyanate moiety 

as well as formation of the vinyl chloride. In order to gain access to functional groups 

capable of being converted to the desired substituents, N–O bond cleavage of 

isoxazolidine 181 followed by deacylation and oxidation of the resultant alcohol to the 

ketone would be required. The quaternary center would then be installed via alkylative 

processes. 

 Key isoxazolidine 181 would be constructed by our planned [3+2] dipolar 

cycloaddition of the pendant olefin of 182 onto an in situ-generated nitrone at the 

benzylic carbonyl position. The allylic acetate side-chain of 182 would be created using 
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rhodium(II)-catalyzed O–H insertion sequential Claisen rearrangement chemistry of an 

appropriate allylic alcohol and α-diazoketone 52. Finally, α-diazoketone 52 would arise 

via aryl C–H insertion of α-diazoketone 44, a compound previously proven to be 

accessible from commercially available isatin (40). 
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2.2.2 Aryl C–H Insertion and Construction of Diazoketone 52. 

 

 According to our proposed retrosynthetic approach, we began our synthesis by 

utilizing chemistry previously developed in our lab.10,11 As reported in our first synthetic 

attempt towards N-methylwelwitindolinone C isothiocyanate (16), we developed methods 

to access key α-diazoketones 44 and 52. Their syntheses are outlined in Scheme 2.2.2. 

Starting from commercially available and inexpensive isatin (40), a Wittig-

olefination afforded enoate 41. Subsequent Michael addition of isopropyl 
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triphenylphosphorane and treatment with MeI provided spiro-cyclopropane adduct 42. 

Saponification of the ethyl ester then delivered carboxylic acid 43. The four-step, two-pot 

sequence was conducted without purification prior to a final recrystallization from 

methanol to give 43 in a 79% overall yield. Conversion of the carboxylic acid to the 

intermediate acid chloride using oxalyl chloride was followed directly by displacement 

with TMSCHN2 to forge key α-diazoketone 44. 

Having built α-diazoketone 44, efforts were then directed towards the 

construction of α-diazoketone 52. After exhaustive catalyst and additive screening, our 

group discovered that we could generate tetracyclic ketone 50 from an intramoleculer 

aryl C–H insertion of diazoketone 44 in good yield using rhodium(II) trifluoroacetate 

dimer in the presence of Montmorillonite K10 clay (a mild Lewis-acid source). Benzylic 

oxidation and a regio- and chemoselective diazotization successfully created the second 

desired α-diazoketone 52. 
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2.2.3 O–H Insertion Sequential Claisen Rearrangementand [3+2] 

Dipolarcycloaddition Model. 

 

 Having established an effective route to requisite diazoketone 52, we were poised 

to test our projected [3+2] dipolar cycloaddition reaction that would construct the core of 

N-methylwelwitindolinone C isothiocyanate. To that end, we decided to focus on an 

easily accessible model system that would challenge the viability of our strategy. We 

began by targeting a substrate with a pendant olefin capable of cyclizing onto a benzylic 

nitrone (Scheme 2.2.3). For this purpose, 183 was chosen.  

Starting from our diazoketone 52 and allyl alcohol, we initiated an O–H insertion 

by exposing the reaction mixture to rhodium(II) acetate dimer. The resultant O–H 

insertion product immediately enolized to intermediate 57 and subsequently underwent a 

ring-opening event to give allyl vinyl ether 58. Heating this compound in xylenes at 

reflux induced a Claisen rearrangement that delivered terminal olefin adduct 183 in good 

yield.  
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With our targeted mono-substituted olefin (183) in hand, we hoped to condense a 

hydroxylamine to form a nitrone on the inherently more reactive benzylic carbonyl. 

Fortunately, upon exposure of diketone 183 to N-methylhydroxylamine in methanol at 

reflux, we were able to form and isolate the corresponding N-methylnitrone (not shown). 

Further optimization of the reaction conditions led to the establishment of a one-pot, two-

step sequence wherein the intermediate N-methylnitrone was concentrated, diluted in 

ethanol and heated in the presence of imidazole hydrochloride to produce isoxazolidine 

184 (Scheme 2.2.4). 
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Although we were pleased with this operationally simple strategy for the 

installation of the welwitindolinone backbone, we recognized that N–O bond cleavage of 

an N-methylisoxazolidine was potentially problematic; thus, we decided to pursue 

alternative N-substituted-hydroxylamines within our model system. As a representative 

example we exposed diketone 183 to the dipolar cycloaddition conditions developed to 

construct isoxazolidine 184, except N-methyl hydroxylamine was substituted with N-

benzyl hydroxylamine (Scheme 2.2.5).4 From this reaction, our desired isoxazolidine 185 

was isolated in almost equal amounts with oxazole side-product 186. Unfortunately, no 

further manipulation of reaction conditions could curb formation of oxazole side-product 
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186.12,13 Because the use of other N-substituted-hydroxylamines led to formation of 

undesired side-products, we decided to advance our synthesis with N-

methylhydroxylamine and to address the issue of ring size.14  
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2.2.4 Construction of the Welwitindolinone C Core via [3+2] Dipolar Cycloaddition. 

 

 The success of a [3+2] dipolar cycloaddition in our model system prompted the 

design of a synthetic strategy to reach the core of N-methylwelwitindolinone C 

isothiocyanate (16). We realized that in order to use the same method to arrive at our 

goal, we needed to extend the dipolarophile tether by a single methylene unit as depicted 

by the curved arrow above compound 190 in Scheme 2.2.6 (see compound 183 in 

Scheme 2.2.4 for comparison). In light of the results obtained with our model system, 

compound 190 was expected to undergo a [3+2] dipolar cycloaddition to produce 191. 

However, in contrast to olefin 183, homologated olefin 190 could not arise from our 

established O-H insertion/Claisen directly. Rather than deviating from our plan, we 

devised a strategy that would start from an O–H insertion of functionalized allylic alcohol 

187 with diazoketone 52 to give allyl vinyl ether 188. Claisen rearrangement would 
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provide disubstituted olefin 189 in which the functionality represented by R would be 

transposable. Transposition of the R-group would thus deliver desired compound 190. 
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  In accordance with our strategy, O–H insertion of known allylic alcohol 192 with 

diazoketone 52 afforded allyl vinyl ether 193, which was subsequently heated at reflux in 

xylenes to produce allylic acetate 194 in good yield (Scheme 2.2.7).15 Palladium-

catalyzed allylic transposition of 194 gave the contra-thermodynamic allylic acetate 182 

in poor yield; however, recycling the recovered starting material provided ample material 

to press forward.16 Heating terminal olefin 182 in ethanol in the presence of free-based N-

methylhydroxylamine gratifyingly forged the welwitindolinone C core structure 195.17-19 
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2.2.5 Unexpected Result from Alternative Allylic Alcohol. 

 

Concurrent to the studies that led to the construction of the core of N-

methylwelwitindolinone C isothiocyanate (16) we briefly pursued the use of alternative 

allylic alcohols in hopes of installing alternative functionalities. In the course of our 

screen, the use of allylic alcohol 196 resulted in an unexpected but fortuitous formation 

of 200 (Scheme 2.2.8).20-22 

Rhodium(II)-mediated O–H insertion of allylic alcohol 196 with diazoketone 52  

gave allyl vinyl ether 197, whereupon subsequent heating induced a Claisen 

rearrangement to produce ene-yne 198. Because the tether of compound 198 contains two 

functional groups capable of undergoing a [3+2] dipolar cycloaddition, multiple product 
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outcomes are possible. We predicted that exposure of compound 198 to our standard 

[3+2] dipolar cycloaddition conditions would provide bicyclo[4.3.1] 199. However, in 

the event, we isolated isoxazolidine 200, the structure of which was confirmed by X-ray 

crystallography.4,23 Attempts to modify the chemoselectivity of the cycloaddition by 

removal of the trimethylsilyl group or by olefin functionalization were unsuccessful. 

Although the selectivity observed in the cycloaddition of 200 was undesired, we were 

encouraged by our ability to stereoselectively forge the fully-substituted quaternary 

carbon adjacent to the bridgehead nitrogen of 16. Indeed, this observation motivated the 

pursuit of an alternate strategy wherein the requisite bicyclo[4.3.1] backbone and C12 

quaternary center would be produced in a single step. 
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2.3 Second Generation [3+2] Dipolar Cycloaddition. 

 

2.3.1 Revised Retrosynthetic Analysis. 

 

 With the discovery that we could introduce a quaternary center of the 

welwitindolinone core via a [3+2] dipolar cycloaddition (Scheme 2.2.8), we decided to 

revise our retrosynthetic strategy to take advantage of this method. Incorporation of a 1,1-

disubstituted olefin within a dipolarophile tether would thus enable quaternary center 

formation. This single reaction would install the core components of 16 including the 

bicyclo[4.3.1] system, the vicinal, fully-substituted carbon centers, the correct 

substitution at the quaternary center, and the bridgehead nitrogen. 

As shown in Scheme 2.3.1, N-methylwelwitindolinone C isothiocyanate (16) 

would arise from cleavage of the N–O bond within isoxazolidine 201. Deoxygenation of 

the resultant primary hydroxyl group, isothiocyanate formation from the free amine, and 

conversion of the secondary hydroxyl group to the vinyl chloride moiety would complete 

the synthesis of 16. In order to achieve these late stage manipulations, a [3+2] dipolar 

cycloaddition between the 1,1-disubstituted olefin and the nitrone of compound 202 

would need to be successful to produce isoxazolidine 201. Synthesis of diene 202 would 

commence from an O–H insertion of diazoketone 52 and allyl alcohol where a 

subsequent Claisen rearrangement would give known olefin 183. The olefin within 183 
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would serve as a functional handle for conversion to the diene moiety within substrate 

202.  

 

Scheme 2.3.1 
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2.3.2 Model System: Attempted Installation of Quaternary Center via Nitrone 

Cycloaddition and Epoxide-opening. 

 

 To quickly assess the viability of simultaneously installing a quaternary center 

and a bicyclo[4.3.1] system via a nitrone-mediated dipolar cycloaddition, we devised a 

simplified model system (Scheme 2.3.2). We believed that a cross-metathesis of terminal 

olefin 183 with a suitable coupling partner would provide trisubstituted alkene 203. An 

epoxidation and epoxide-opening sequence (203 → 205) would then give requisite 1,1-

disubstituted olefin 205. Nitrone formation and intramolecular dipolar cycloaddition 

would then deliver isoxazolidine 206, the target model system substrate. 
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 In the event, we successfully conducted an O–H insertion of allyl alcohol with 

diazoketone 52 to produce allyl vinyl ether 58 (Scheme 2.3.3).3 Subsequent heating of 

allyl vinyl ether 58 in xylenes at reflux induced a Claisen rearrangement to give terminal 

olefin 183. After screening several olefin cross-metathesis coupling partners, we found 

that 2-methyl-2-butene in the presence of Grubbs 2nd generation catalyst and terminal 

olefin 183 afforded our desired trisubstituted alkene 203 in excellent yield.24 Epoxidation 

of trisubstituted alkene 203 with DMDO in acetone delivered epoxide 204 in near 

quantitative yield as a 1:1 mixture of diastereomers. Other oxidation conditions were 

screened, including m-CPBA; however, only Baeyer-Villiger side-products were 

observed. 
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 Before we could test the nitrone-mediated dipolar cycloaddition of our model 

system, we needed to open epoxide 204 to allylic alcohol 207. Unfortunately, under a 

variety of conditions we were unable to achieve this task. Most applied conditions either 

resulted in exclusive isolation of starting material or complete starting material 

decomposition. As a result, we were forced to develop an alternate model system. 
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2.3.3 Model System: Installation of Quaternary Center via Nitrone Cycloaddition 

and Chloronium-ion-mediated Elimination. 

 

 As an alternate means of arriving at a model system capable of undergoing a 

[3+2] dipolar cycloaddition, we turned to a chloronium ion-mediated oxidative 

isomerization to generate allylic chloride 208 (Scheme 2.3.4).25 We were hopeful that 
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exposing compound 208 to our [3+2] dipolar cycloaddition conditions would construct 

isoxazolidine 209 with the secondary chloride as a functional handle for further 

manipulations. 

 

Scheme 2.3.4 
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In the event, we discovered that when trisubstituted olefin 203 was exposed to 

sodium hypochlorite and cerium(III) trichloride heptahydrate, allylic chloride 208 was 

isolated as a 2:1 mixture of diastereomers in good yield (Scheme 2.3.5). The reaction is 

thought to proceed via E1-type elimination of a chloronium-ion intermediate to generate 

1,1-disubstituted olefin 208. Treatment of 208 with N-methylhydroxylamine formed 

nitrone 210 in low yield, presumably because of competing SN2 or SN2’ chloride-

displacement pathways. Despite the low yielding production of 210, we attempted to 

induce a dipolar cycloaddition to produce isoxazolidine 209. However, heating nitrone 

210 in a variety of solvents at reflux resulted only in intractable mixture of products with 

no trace of desired product. 
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Scheme 2.3.5 
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2.3.4 Attempted Installation of Quaternary Center via Nitrone Cycloaddition. 

 

The inability to advance our model systems to substrates capable of undergoing a 

[3+2] dipolar cycloaddition prompted us to consider alternative routes to cyclization 

product 201 from intermediates along the established pathway outlined in Scheme 2.3.1. 

We began by directing our attention to the synthesis of the [3+2] dipolar cycloaddition 

precursor 202.  

Allylic alcohol 202 was prepared in a sequence that began with cross metathesis 

of diketone 183 and silyl ether 211 followed by silyl deprotection (Scheme 2.3.6).24,26 

The derived alcohol 212 was isolated as an inconsequential 2:1 mixture of E/Z, 
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respectively. Selenenylation of 212 via the method of Grieco [o-(NO2)C6H4-SeCN and 

P(n-Bu)3] furnished selenide 213 which, upon oxidation with DMDO provided the 

corresponding epoxy selenoxide (not shown).27-29 As expected the latter was unstable and 

upon work-up underwent clean elimination to deliver vinyl epoxide 214 in good yield.30 
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Having accessed 214, attention was turned to opening the epoxide and delivering 

the cycloaddition substrate (202). After considerable fruitless experimentation with 

several Lewis acids we eventually explored a palladium-catalyzed isomerization 

approach pioneered by Noyori31 and modified more recently by Radinov.32 Under 

Radinov’s conditions, opening of vinyl epoxide 214 in the presence of a fluorinated 

alcohol proceeded to furnish hemiacetals 216α  and 216β  as an inseparable mixture of 

diastereomers. Although the intermediacy of the hemiacetals was expected, the effect of 

the altered electronics on the subsequent cycloadditon was uncertain (cf., 198 and 116). 

Unfortunately, exposure of 216α  and 216β  to N-methylhydroxylamine under forcing 
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conditions did not produce any of the desired cycloadduct 217. We speculate that 

geometric constraint of the hemi-acetal prevented the dipolar cycloaddition from 

occurring. 
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2.4 Chloronium-ion Semi-Pinacol. 

 

2.4.1 Revised Retrosynthetic Analysis. 

 

 Ultimately, our attempts to install the quaternary center of N-

methylwelwitindolinone C isothiocyanate (16) via [3+2] dipolar cycloaddition proved 

unsucessful. As a result, we began to explore alternate strategies that would install the 

quaternary center at C12 at a later stage in the synthesis. To that end, we decided to build 

on familiar chemistry utilized in our welwitindolinone A isonitrile (10) synthesis 
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(Scheme 2.4.1).33,34 In the synthesis of 10, chloronium-ion induced semi-pinacol 

rearrangement of tertiary allylic alcohol 173 installed the secondary chloride and 

quaternary center of 174. Further functional group manipulations eventually enabled 

completion of the total synthesis of 10. 
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 We believed that a chloronium-ion-induced semi-Pinacol rearrangement could be 

used in a similar fashion to install the quaternary center in 16 (Scheme 2.4.2). In order to 

test this hypothesis, we needed first to arrive at intermediate 218, a structure containing a 

tertiary allylic alcohol motif poised for rearrangement. Having already established a 

facile approach to the core of N-methylwelwitindolinone C isothiocyanate (16) via 

nitrone-mediated dipolar cycloaddition, we wanted to expand and incorporate that 

approach into our projected chloronium-ion semi-Pinacol rearrangement strategy. 

Construction of alcohol 218 would proceed through N–O bond cleavage of isoxazolidine 

195, which in turn would arise from a [3+2] dipolar cycloaddition of the pendant olefin 

within compound 182.  

 

 

 



 64 

Scheme 2.4.2 
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2.4.2 Construction of the Requisite Tertiary Alcohol.  

 

As illustrated in Scheme 2.4.3, isoxazolidine 195 was advanced first by 

rearrangement to the corresponding aminal (219). Conversion of 195 to 219 was poor; 

however, the remaining starting material was isolated and recycled, thereby providing 

enough material to move forward. Subsequent treatment of 219 with hydroxylamine 

hydrochloride produced amino-alcohol 220 in 95% yield. To set the stage for eventual 

introduction of the bridgehead isonitrile, 220 was bis-formylated.35,36 Selective 

deformylation of the derived formates produced alcohol 221 that, in a three-step process 

involving oxidation with Dess–Martin periodinane (DMP),37 base-induced elimination to 

the enal, and addition of methyl magnesium bromide, was converted to secondary alcohol 

222 as an inconsequential mixture of diastereomers. In practice, the instability of the 

intermediates produced in this three-step sequence to silica gel required that the sequence 

be performed without purification. Finally, oxidation of alcohol 222 to enone 223, 

followed by addition of methyl magnesium bromide provided desired tertiary allylic 

alcohol 218, albeit in low yield.  
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Scheme 2.4.3 
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2.4.3 Attempted Alternate Route to Tertiary Alcohol. 

 

 In an attempt to improve the synthesis of 218 as outline in Scheme 2.4.3, we 

devised a possible alternate route (Scheme 2.4.4). We envisioned a [3+2] dipolar 

cycloaddition of trisubstituted olefin 224, having the requisite gem-dimethyls of tertiary 

allylic alcohol 218 embedded within the dipolarophile tether, to generate isoxazolidine 

225. Cleavage of the N–O bond of the corresponding isoxazolidine (225) would lead 

directly to tertiary allylic alcohol 218. 
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Scheme 2.4.4 
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 In the event, a Grubbs 2nd generation catalyst-mediated cross metathesis of 

terminal olefin 183 with 2-methyl-3-buten-2-ol produced allylic alcohol 226 in excellent 

yield (Scheme 2.4.5).24 Allylic transposition of tertiary alcohol 226 to secondary alcohol 

224 proved more difficult than anticipated. Our first attempts to acylate alcohol 226 and 

transpose the allylic acetate failed due to our inability to functionalize the tertiary alcohol. 

We then turned to metal-mediated allylic transpositions of alcohols and found that 

standard VO(acac)2 conditions gave a 1:1 mixture of transposed product to starting 

material (224:226).38 Efforts to separate and recycle the mixture were made, but recovery 

was inefficient, and we eventually pursued more exotic methods for transposition. 

 In 2005, Grubbs and Morrill outlined the utility of O3ReOSiPh3 as an efficient 

catalyst for 1,3-isomerizations of allylic alcohols.39 They related that proper solvent 

choice and the presence of N,O-bis(trimethylsilyl)acetamide (BSA) delivered less-

hindered allylic alcohols with high selectivity. They proposed that the difference in rate 

of silation of primary, secondary, and tertiary alcohols with BSA controlled the 

equilibrium of transposed product to starting material. Delighted by this finding, we 

applied the reported reaction conditions to our system and found that after some 

optimization we could transpose 226 to allylic alcohol 224 in good yield and high 
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regioselectivity. Unfortunately, we were unable to prevent hydrolysis of the secondary, 

in-situ generated silyl ether (not shown), and collapse of the resultant alcohol onto the 

corresponding carbonyl to generate acetal 227 was unavoidable (Scheme 2.4.6). As in our 

earlier model systems (see Scheme 2.3.7 for comparison), formation of acetal 227 

prevented a [3+2] dipolar cycloaddition from occurring, and we were thus unable to 

advance our strategy. As a result, we returned to our original route to 218 (Scheme 2.4.3). 
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Scheme 2.4.6 
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2.4.4 Installation of Quaternary Center via Chloronium-ion Semi-Pinacol. 

 

Despite its poor overall yield, the unoptimized synthetic sequence leading to 218 

provided sufficient material to explore the proposed halonium ion-induced semi-pinacol 

rearrangement. In the event, exposure of 218 to CeCl3•7H2O and NaOCl was found not to 

produce the expected product 228, but rather undesired product 229 (Scheme 2.4.7). 

Extensive NMR analysis indicated that chloronium ion activation and subsequent 

rearrangement had occurred from what appeared to be the desired and sterically more 

encumbered face (see Section 2.4.4.1 for rationale). However, this transformation was 

accompanied by over-chlorination. Given our success in applying this type of semi-

pinacol in the welwitindolinone A (10) synthesis (Scheme 2.4.1), we were both surprised 

and disappointed by the indiscriminate reactivity observed. Recent efforts to overcome 

this problem by limiting stoichiometry of the oxidant revealed that the aromatic system in 

substrate 218 reacts first, followed by the formamide and then the trisubstituted olefin. 
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2.4.4.1 Relative Stereochemical Rationale of Chloronium-ion semi-Pinacol 

Rearrangement. 

 

 At first, the relative stereochemical outcome of the chloronium-ion semi-Pinacol 

rearrangement seemed counterintuitive (see Scheme 2.4.7 for referenced reaction). The 

chloronium-ion appeared to approach from the more hindered face of the trisubstituted 

olefin in 218. This pathway is represented by Path A in Scheme 2.4.8. In this process, the 

chloronium-ion approaches from the bottom face of the olefin represented by 

intermediate 230. A methyl-shift then may occur antiperiplanar to the chloronium-ion in 

a chair-like transition state to directly generate conformer 231 that is equivalent to the 

observed product 229. To further support our rationalization, we address the approach of 

a chloronium-ion from the top face of the olefin (218).  

As shown in Path B (Scheme 2.4.8), if the chloronium-ion approaches from the 

top face of olefin 232, a methyl-shift occurring antiperiplanar to the chloronium-ion 

would proceed through a boat-like transition state leading to the energetically disfavored 

boat-like conformer 233. A ring-flip would then be necessary to arrive at the more 

favored chair conformer 234. 3-D structure 234 is equivalent to 2-D structure 235, which 

is not observed in the reaction. 
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Scheme 2.4.8 
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2.5 Michael Addition Approach. 

 

2.5.1 Retrosynthetic Analysis. 

 

 With the unfortunate turn of events in our attempt to install the quaternary center 

of 16 via a chloronium-ion semi-Pinacol rearrangement (see Section 2.4), we formulated 

a new synthetic strategy towards N-methylwelwitindolinone C isothiocyanate (16) 

(Scheme 2.5.1). Our plan depended on an intramolecular Michael addition of the derived 

enolate of the α-isonitrile ketone within 236 onto the pendant enal to forge the C–C bond 

between C11 and C12.40 Additional functional group manipulations would then provide 

16. Construction of the γ-hydroxy enal motif of 236 would arise from the oxidation and 

epoxide ring-opening of epoxy alcohol 237. Isonitrile formation from the corresponding 

protected amine would complete the synthesis of 236. We envisioned a cross-metathesis 
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of pendant olefin 238 with a functionalized olefin to provide a skeletal appendage for 

conversion to 237. The protected α-amino ketone (238) would arise through a reductive 

amination of an intermediate imine starting from diketone 183. 
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2.5.2 Indium-Mediated Reductive Amination. 

 

 We began the synthesis of the Michael precursor by exploring reductive 

amination conditions to build 238 in Scheme 2.5.1. This seemingly straightforward 

transformation proved more difficult than anticipated (Scheme 2.5.2). Ultimately, we 

were unable to condense a primary amine onto the benzylic carbonyl of 183 to make 

keto-imine 239. We speculated that primary amines were not nucleophilic enough to 

form our requisite imine. Given this result, we considered condensation of O-alkylated 
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hydroxylamines to form oxime ethers; here, exploitation of the α-effect would increase 

nucleophilicity while still maintaining the necessary nitrogen functionality. 

 

Scheme 2.5.2 
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In 2001, Moody and coworkers described a direct conversion of ketones to 

protected secondary amines through the use of an indium(0)-mediated reductive 

amination of oxime ethers.41 We decided to apply this method to our current strategy. Our 

findings are outlined in Scheme 2.5.3. Condensation of 183 with O-benzylhydroxylamine 

formed the corresponding O-benzyloxime ether (240) in near quantitative yield. We were 

elated to find that exposure of oxime ether 240 to indium(0), acetic acid, and either 

BOC2O or formic acetic anhydride at 70 °C in THF gave the protected secondary amines 

241 and 242, respectively, in good yield. Having established an efficient method for 

assembly of 238, we turned our attention to the conversion of formamide 242 into the 

necessary isonitrile moiety. 
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Scheme 2.5.3 
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2.5.3 Attempted Formation of an Isonitrile from 242. 

 

 Ultimately, we planned to reveal the isonitrile of 244 after installation of the 

pendant protected epoxy alcohol within 243 (Scheme 2.5.4). This strategy, if successful, 

would eventually lead to core structure 245, a compound containing enough functionality 

for the completion of 16. However, rather than pursuing conditions to form the isonitrile 

moiety at a later stage, we decided to use formamide 242 as a test substrate to optimize 

the reaction conditions for later implementation. 
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Scheme 2.5.4 
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 According to standard methods of isonitrile preparations, formamides can be 

converted to isonitriles when exposed to phosgene and an amine base. Unfortunately, 

when formamide 242 was treated with phosgene and triethylamine, we did not isolate any 

of our desired isonitrile (246) (Scheme 2.5.5). Instead, we isolated oxazole 247 as the 

exclusive product. Attempts were made to avoid oxazole formation by varying the base 

and reaction temperature, but all proved unsuccessful. 
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 The formation of oxazole 247 can be rationalized by the mechanism outlined in 

Scheme 2.5.6. Initial addition of formamide within 242 onto phosgene generates iminium 

248, which is intercepted by the adjacent carbonyl to form oxocarbenium 249. Beta-

deprotonation would quench the oxocarbenium, giving intermediate 250. A final push of 

electrons from nitrogen to extrude carbon dioxide and HCl would result in the formation 

of oxazole 247. 
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2.5.4 Trisubstituted Olefin Formation: Cross-Metathesis. 

 

 Despite our failures to convert formamide 242 to the corresponding isonitrile 246, 

we decided to attempt the projected Michael addition without preforming the isonitrile. 

To that end, we needed to construct the functionalized side-chain present in structure 243 

of Scheme 2.5.4. Starting with olefin 241, a Grubbs 2nd generation-mediated cross 

metathesis with homo allylic silyl ether 21142 gave trisubstituted olefin 251 as an 
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inseparable, 2:1 mixture of diastereomers in a 52% yield (Scheme 2.5.7). The mass 

balance of the reaction was accounted for by isolation of dimer 252 in 40% yield. 

Fortunately, dimer 252 could be resubjected to the reaction conditions to produce 

trisubstituted olefin 251 in approximately 40% yield. Although we could not separate the 

diastereomers of 251 at this point, we discovered that upon deprotection of the silyl enol 

ether 251 with PPTS in methanol, we could separate the olefin isomers as alcohols 253 

and 254 (Scheme 2.5.8). 
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Scheme 2.5.8 
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2.5.5 Formation of Requisite γ-Hydroxy Enal 257. 

 

 Having separated alcohols 253 and 254, we were poised for smooth formation of 

requisite γ-hydroxy enal 257 (Scheme 2.5.9). Alcohol 253 was exposed to m-CPBA in 

the presence of NaHCO3 to deliver epoxy alcohol 255 in 87% yield as 3.5:1 mixture of 

diastereomers. Oxidation of alcohol 255 to the intermediate aldehyde (not shown) and 

subsequent treatment with triethylamine provided targeted γ-hydroxy enal 257. Because 

of the similarities between alcohols 253 and 254, the same chemistry for the conversion 

of alcohol 253 to γ-hydroxy enal 257 was used to transform alcohol 254 to γ-hydroxy 

enal 257 with comparable yields and selectivities. 

 

Scheme 2.5.9 
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2.5.6 Attempted Michael Additions. 

 

 Establishment of an efficient route to γ-hydroxy enal 257 set the stage to test our 

projected Michael addition. Although 257 was less ideal a substrate than α-isonitrile 

ketone 236 (vida supra) to test our hypothesis, we believed that γ-hydroxy enal 257 was 

still capable of undergoing cyclization upon exposure to excess base. However, when γ-

hydroxy enal 257 was treated with excess base, no cyclization product (258) was 

observed (Scheme 2.5.10). Only trace amounts of furan 259 were isolated from the 

complex product mixture. 

 

Scheme 2.5.10 
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 In an attempt to circumvent the deleterious formation of the furan moiety in 

compound 259, we aimed to protect the secondary alcohol of γ-hydroxy enal 257 

(Scheme 2.5.11). Unfortunately, treatment of γ-hydroxy enal 257 with TBSCl and 
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imidazole in DMF at 80 °C resulted in complete conversion to furan 259. With the 

propensity of γ-hydroxy enal 257 to undergo cyclization to the corresponding furan, we 

abandoned this route and pursued alternative means for the construction of the 

welwitindolinone alkaloids. 

 

Scheme 2.5.11 
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2.6 Conclusion. 

 

 In summary, three related routes were attempted for the synthesis of N-

methylwelwitindolinone C isothiocyanate (16). The first route highlighted the utility of a 

[3+2] dipolar cycloaddition to construct the core of 16. Expansion of this method to 

include installation of a quaternary center in a single step was considered but proved 

unsuccessful. In a second strategy, we aimed to install the requisite quaternary center at 

C12 via a chloronium-ion-mediated semi-Pinacol rearrangement. In the event, we 

successfully installed a quaternary center, but also irreversibly overchlorinated the 

molecule (see structure 229). Our attention was then directed towards a third strategy 

which projected to build the bicyclo[4.3.1] system and quaternary center in a single 
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operation using a Michael addition. Unfortunately, this strategy was inherently flawed 

and resulted in unforeseen oxazole (Scheme 2.5.5) and furan (Scheme 2.5.10) formation. 

 

2.7 Experimental Section. 

 

2.7.1 Material and Methods. 

 

Unless otherwise stated, reactions were magnetically stirred in flame-dried 

glassware under an atmosphere of nitrogen. Triethylamine (Et3N) and methanol were 

dried over calcium hydride and freshly distilled. Benzene, tetrahydrofuran, 

dichloromethane, toluene, and diethyl ether were dried using a solvent purification 

system manufactured by SG Water U.S.A., LLC using technology based upon that 

originally described by Grubbs et al.43 Reagent grade DMF, DMSO, acetone, and 1,2-

dichloroethane were supplied by Fischer Scientific and purchased from the Colorado 

State Chemistry Stockroom. All other commercially available reagents were used as 

received.  

 Unless otherwise stated, all reactions were monitored by thin-layer chromatography 

(TLC) using Silicycle glass-backed extra hard layer, 60 Å plates (indicator F-254, 250 

µm). Column or flash chromatography was performed with the indicated solvents using 

Silicycle SiliaFlash® P60 (230-400 mesh) silica gel as the stationary phase. 

Chromatography was conducted in accordance with the guidelines reported by Still et 

al.44 All melting points were obtained on a Gallenkamp capillary melting point apparatus 

(model: MPD350.BM2.1) and are uncorrected. Infrared spectra were obtained using a 
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Nicolet Avatar 320 FTIR or Bruker Tensor 27 FTIR. 1H and 13C NMR spectra were 

recorded on a Varian Inova 400, Varian Inova 400 autosampler, or Varian Inova 300 

spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to 

internal residual solvent peaks from indicated deuterated solvents. Coupling constants (J) 

are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. Multiplicities are 

defined as: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, m = 

multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dddd = doublet 

of doublet of doublet of doublets, br = broad, app = apparent, par = partial. High-

resolution mass spectra were performed at the Central Instrument Facility by Donald L. 

Dick of Colorado State University. Single-crystal X-ray analyses were performed by 

Susie Miller and Brian Newell of Colorado State University. 

 

2.7.2 Preparative Procedures: 

 

Preparation of Trisubstituted Alkene 203. 

 

N
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O

O

Me

H

O

Me
Me

Me

203
 

 

Trisubstituted Alkene 203. Diketone 183 (99 mg, 0.333 mmol, 1.0 equiv.) and 

2-methyl-2-butene (0.25 mL, 0.999 mmol, 3.0 equiv.) were diluted in CH2Cl2 (13.9 mL) 
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and stirred for 10 minutes. Grubbs 2nd generation catalyst (14 mg, 0.016 mmol, 0.05 

equiv.) was then added and the reaction was stirred at reflux overnight (approx. 12 

hours). Upon completion as indicated by TLC, the reaction was concentrated and 

immediately purified via column chromatography (20% EtOAc/hexanes) to give the 

resulting trisubstituted alkene 203 (84 mg, 78% yield) as a yellow crystalline solid: m.p. 

160-162 °C; FTIR (thin film/NaCl) 2971, 2933, 1717, 1604, 1473, 1372, 1338, 1300, 

1271 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.65 (dd, J = 0.9, 8.1 Hz, 1H), 7.49 (dt, J = 0.9, 

7.8 Hz, 1H), 7.1 (d, J = 7.8 Hz, 1H), 4.86-4.8 (m, 1H), 3.3 (s, 1H), 3.22 (s, 3H), 2.84 (dd, 

J = 2.4, 11.4 Hz, 1H), 2.7 (ddd, J = 7.5, 13.2, 20.7 Hz, 1H), 2.11 (dd, J = 6.0, 13.5 Hz, 

1H), 1.58 (s, 3H), 1.56 (s, 3H), 1.47 (s, 3H), 0.9 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 

205.4, 192.8, 174.5, 145.1, 134.6, 129.6, 129.2, 128.7, 120.7, 120.7, 113.3, 58.1, 53.1, 

38.5, 26.5, 25.8, 24.6, 22.8, 21.0, 17.7; HRMS (EI) m/z 326.1749 [cacl’d for C20H24NO3 

(M+) 326.1751]. 

 

Preparation of Epoxide 204. 

 

N

Me

O

O

Me

H

O

Me
MeO

Me

204
 

 

Epoxide 204. In a flask open to air, trisubstituted alkene 203 (52 mg, 0.16 mmol, 

1.0 equiv.) was diluted acetone (1.60 mL) and cooled to –78 °C. Freshly made 
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dimethyldioxirane in acetone (7 mL, approx. 0.07–0.09 M) was added rapidly. The 

solution was stirred at –78 °C for 30 minutes and then gradually warmed to room 

temperature. The reaction was then concentrated in vacuo and subsequently purified by 

flash chromatography (20% EtOAc/hexanes eluent) to give diastereomeric epoxide 204 

(53 mg, 97% yield) as a yellow solid: m.p. 139-142 °C; FTIR (thin film/NaCl) 2972, 

2933, 2253, 1717, 1604, 1473, 1420, 1373, 1338, 1301, 1272 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.72 (dd, J = 8.4, 8.0 Hz, 2H), 7.52 (dt, J = 2.4, 8.0 Hz, 2H), 7.13 (dd, J = 4.0, 

8.0 Hz, 2H), 3.36 (s, 1H), 3.35 (s, 1H), 3.24 (s, 6H), 3.11 (dd, J = 2.4, 11.6 Hz, 1H), 3.0 

(dd, J = 2.0, 11.2 Hz, 1H), 2.62 (dd, J = 5.6, 7.6 Hz, 1H), 2.5 (dd, J = 4.4, 7.6 Hz, 2H), 

2.39 (ddd, J = 4.4, 11.6, 13.6 Hz, 2H), 2.29-2.23 (m, 2H), 1.75 (ddd, J = 2.0, 6.0, 14.0 

Hz, 1H), 1.47 (s, 6H), 1.24 (s, 6H) 1.23 (s, 6H) 0.92 (s, 3H), 0.9 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 210.3, 210.2, 204.9, 192.2, 174.5, 174.4, 145.2, 145.1, 129.8, 129.7, 

129.2, 128.7, 121.0, 113.5, 113.3,62.6, 62.2, 60.3, 59.7, 55.0, 54.7, 53.1, 53.0, 38.6, 38.5, 

26.6, 25.4, 25.3, 25.2, 24.7, 22.9, 22.7, 21.1, 20.9, 18.9,18.6; HRMS (EI) m/z 342.1703 

[cacl’d for C20H24NO4 (M+) 342.17]. 
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Preparation of Allylic Chloride 208. 
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 Allylic Chloride 208. To a solution of trisubstituted alkene 203 (84 mg, 0.258 

mmol, 1.0 equiv.) in CH2Cl2:H2O (1.43:1.43 mL) was added cerium(III) chloride 

heptahydrate (125 mg, 0.336 mmol, 1.3 equiv.). The solution was stirred for 5 minutes 

before bleach (0.39 mL, 0.336 mmol, 1.3 equiv.) was added dropwise. After 1.5 hrs TLC 

analysis indicated the reaction complete. Saturated Na2SO3 was added and the mixture 

was stirred vigorously, extracted with CH2Cl2, and dried over MgSO4. After filtration and 

concentration, purification via column chromatography (20% EtOAc/hexanes, then 5% 

EtOAc/benzene) gave allylic chloride 208 (53 mg, 57% yield) as a mixture of 

diastereomers: FTIR (thin film/NaCl) 2976, 2937, 1716, 1650, 1605, 1472, 1420, 1373, 

1340, 1300, 1271 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.4 Hz, 1H), 7.56 (d, J 

= 8.4 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.38 (t, J = 8.0, 1H), 7.13 (d, J = 7.6 Hz, 1H), 

6.96 (d, J = 7.6 Hz, 1H), 4.96 (s, 1H), 4.86 (s, 1H), 4.07 (dd, J = 4.4, 9.6 Hz, 1H), 3.87 

(dd, J = 7.2, 10 Hz, 1H), 3.69 (s, 1H), 3.32 (s, 1H), 3.24 (s, 3H), 3.23 (s, 3H), 3.17 (d, J = 

10 Hz, 1H), 2.71 (dd, J = 6.4, 10 Hz, 1H), 2.56 (ddd, J = 4.8, 11.2, 14.4 Hz, 1H), 1.92 

(dd, J = 9.6, 12.4 Hz, 1H), 1.75 (s, 3H), 1.72 (s, 3H), 1.54 (s, 3H), 1.45 (s, 3H), 1.27 (s, 
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3H), 0.92 (s, 3H), 0.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 204.1, 192.0, 174.3, 

145.1, 143.7, 143.3, 133.2, 131.5, 129.9, 129.2, 128.8, 128.5, 126.6, 122.1, 120.9, 115.2, 

113.5, 111.0, 76.4, 65.2, 60.0, 55.0, 53.1, 53.0, 52.9, 41.9, 38.7, 33.4, 27.0, 26.7, 26.6, 

24.1, 22.6, 21.3, 21.1, 17.3, 16.8, 16.7; HRMS (EI) m/z 360.1371 [cacl’d for 

C20H23ClNO3 (M+) 360.1361]. A trace impurity was identified as dihydropyran 344. 

FTIR (thin film/NaCl) 3468, 2975, 2928, 2855, 1716, 1604, 1472, 1420, 1373, 1340, 

1301, 1272 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.0, 1H), 7.56 (t, J = 8.0 Hz, 

1H), 7.15 (d, J = 8.0 Hz, 1H), 3.56 (dd, J = 2.0, 11.6 Hz, 1H), 3.39 (s, 1H), 3.34 (dd, J = 

2.0, 11.6 Hz, 1H), 3.26 (s, 3H), 2.67 (ddd, J = 2.0, 11.2, 13.6 Hz, 1H), 1.77 (ddd, J = 2.0, 

11.6, 13.6 Hz, 1H), 1.49 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H), 0.944 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 205.0, 192.1, 174.4, 145.2, 129.9, 129.2, 128.7, 121.1, 113.6, 72.9, 71.5, 

55.2, 53.2, 38.7, 29.6, 27.0, 26.6, 25.8, 22.6, 21.3; HRMS (EI) m/z 360.1362 [cacl’d for 

C20H23ClNO3 (M+) 360.1361]. 

 

Preparation of Nitrone 210. 
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 Nitrone 210 and Pyran 345. To a solution of allylic chloride 208 (53 mg, 0.148 

mmol, 1.0 equiv.) in MeOH (9.8 mL) was added N-methylhydroxylamine hydrochloride 



 86 

(80 mg, 0.957 mmol, 6.5 equiv.) and pyridine (80 µL, 0.972 mmol, 6.6 equiv.). The 

resulting mixture was heated at reflux until TLC analysis indicated the reaction complete 

(approx. 2hrs). The solution was then concentrated, taken up in EtOAc, filtered over a 

cotton plug, and concentrated. Purification via column chromatography (20% 

EtOAc/hexanes) gave a 3:2 mixture of nitrone 210 (cacl’d 11.6 mg, 20% yield) and pyran 

345 (cacl’d 6.4 mg, 14% yield) as an intractable mixture (18 mg isolated, 34% total 

yield). The mixture was characterized as follows: FTIR (thin film/NaCl) 2974, 2935, 

1711, 1672, 1649, 1606, 1505, 1468, 1392, 1372, 1330, 1301, 1255 cm-1; 1H NMR (400 

MHz, CDCl3) δ 8.14 (d, J = 8.0 Hz, 1H), 7.6 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 

7.39 (t, J = 8.0 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.19 (d, J = 

9.6 Hz, 1H), 5.78 (d, J = 9.6 Hz, 1H), 4.94 (s, 1H), 4.87 (s, 1H), 4.16-4.08 (m, 1H), 4.14 

(s, 3H), 3.69 (s, 1H), 3.24 (s, 3H), 3.18 (s, 3H), 3.08 (s, 1H), 2.89 (d, J = 10.8 Hz, 1H), 

2.60 (ddd, J = 6.0, 10.8, 14 Hz, 1H), 1.84 (dd, J = 8.4, 14 Hz, 1H), 1.78 (s, 3H), 1.74 (s, 

3H), 1.55 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H), 0.85 (s, 3H), 0.78 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 197.4, 184.4, 175.0, 174.6, 144.3, 144.2, 144.1, 143.4, 134.2, 133.6, 

132.5, 128.7, 128.5, 127.5, 126.3, 126.0, 123.3, 122.7, 121.9, 114.5, 110.8, 109.3, 74.3, 

65.8, 56.7, 55.4, 52.9, 52.5, 43.9, 41.0, 33.9, 28.0, 26.6, 26.2, 25.6, 23.6, 21.4, 20.8, 20.4, 

17.6; HRMS (EI) m/z 389.1624 [cacl’d for C21H26ClN2O3 (M+) 389.1626]; HRMS (EI) 

m/z 324.1595 [cacl’d for C20H22NO3 (M+) 324.1594]. 
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Preparation of Diketone 212. 
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Diketone 212. Diketone 183 (187 mg, 0.63 mmol, 1.0 equiv.) and olefin 211 (882 

mg, 4.40 mmol, 7.0 equiv.) were diluted in CH2Cl2 (15.7 mL) and stirred for 10 minutes. 

Grubbs 2nd generation catalyst (54 mg, 0.063 mmol, 0.1 equiv.) was then added and the 

reaction was stirred at reflux overnight (approx. 12 hours). Upon completion as indicated 

by TLC, the reaction was concentrated and immediately purified via column 

chromatography (20% EtOAc/hexanes) to give the resulting coupled adduct (193 mg, 

0.411 mmol). The coupled adduct was taken up in MeOH (41 mL) before pyridinium p-

toluenesulfonate (21 mg, 0.082 mmol, 0.2 equiv.) was added. The reaction was stirred at 

room temperature over 12 hours whereupon TLC indicated the consumption of starting 

material. The reaction was concentrated, re-dissolved in EtOAc, washed with sat. 

NaHCO3, brine, and dried over Na2SO4. Purification of the concentrated mixture by flash 

chromatography (50% EtOAc/hexanes) gave diketone product 212 (104 mg, E/Z: 2:1, 

47% yield, 2 steps) as a yellow oil: FTIR (thin film/NaCl) 3420, 2935, 1715, 1604, 1473, 

1372, 1339, 1300, 1272 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.0 Hz, 1H), 

7.69 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 5.04-4.98 (m, 
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2H), 3.68-3.57 (m, 4H), 3.37 (s, 1H), 3.36 (s, 1H), 3.24 (s, 6H), 2.90-2.86 (m, 2H), 2.82-

2.74 (m, 2H), 2.37-2.25 (m, 2H), 2.22-2.05 (m, 6H), 1.64 (s, 6H), 1.52 (s, 3H), 1.5 (s, 

3H), 0.93 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 205.9, 193.6, 174.5, 145.3, 135.2, 

129.7, 129.0, 128.9, 124.2, 123.9, 120.92, 120.87, 113.5, 113.4, 60.6, 60.2, 58.3, 58.2, 

53.4, 53.2, 43.0, 38.6, 38.3, 35.1, 26.6, 24.6, 24.5, 23.4, 23.0, 22.9, 21.3, 21.2, 15.9; 

HRMS (EI) m/z 356.1862 [cacl’d for C21H26NO4 (M+) 356.1856]. 

 

Preparation of Selenide 213. 
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Selenide 213. A solution of alcohol 212 (60 mg, 0.17 mmol, 1.0 equiv.) in THF 

(1.69 mL) was treated with o-nitrophenylselenocyanate (46 mg, 0.20 mmol, 1.2 equiv.) at 

room temperature. The mixture was stirred for 10 minutes before tri-n-butylphosphine 

(50.5 µL, 0.20, 1.2 equiv.) was added. Upon completion as indicated by TLC (approx. 2 

hours) an aliquot of sat. NH4Cl was added. The resulting brown mixture was extracted 

with Et2O, washed with brine, dried over MgSO4, and concentrated in vacuo. Purification 

of the concentrated mixture by flash chromatography (30% EtOAc/hexanes) gave 

selenide 213 (49 mg, 54% yield) as a yellow oil. The major diastereomer was 

characterized as follows: FTIR (thin film/NaCl) 2970, 2930, 1716, 1604, 1513, 1473, 
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1332, 1303, 1271 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 8.4 Hz, 1H), 7.71 (d, J 

= 8.0 Hz, 1H), 7.58-7.49 (m, 3H), 7.31 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.02 

(t, J = 7.2 Hz, 1H), 3.39 (s, 1H), 3.26 (s, 3H), 2.99-2.88 (m, 3H), 2.81 (ddd, J = 8.0, 13.2, 

13.2 Hz, 1H), 2.39-2.35 (m, 2H), 2.15 (dd, J = 6.0, 13.6 Hz, 1H), 1.70 (s, 3H), 1.53 (s, 

3H), 0.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 205.6, 192.8, 174.5, 147.0, 145.2, 

136.9, 133.8, 129.8, 129.3, 128.8, 126.6, 125.4, 122.9, 120.9, 113.4, 58.1, 53.3, 38.6, 

38.2, 26.6, 24.6, 23.0, 21.2, 16.0; HRMS (EI) m/z 563.1060 [cacl’d for C27H28N2NaO5Se 

(M+) 563.1056]. 

 

Preparation of Vinyl Epoxide 214. 
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Vinyl Epoxide 214. In a flask open to air, selenide 213 (49 mg, 0.09, 1.0 equiv.) 

was diluted CH2Cl2 (7 mL) and cooled to –78 °C. Freshly made dimethyldioxirane in 

acetone (7 mL, approx. 0.07–0.09 M) was added rapidly. The solution was stirred at -78 

°C for 30 minutes and then gradually warmed to room temperature. The reaction was 

then concentrated in vacuo and subsequently purified by flash chromatography (20% 

EtOAc/hexanes eluent) to give diastereomeric vinyl epoxide 214 (23 mg, 72% yield) as a 

pale yellow solid. The mixture of diastereomers were characterized as follows: FTIR 
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(thin film/NaCl) 2970, 1716, 1604, 1473, 1373, 1339, 1300, 1272 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.72 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 

2H), 5.82 (dd, J = 11.2, 17.6 Hz, 1H), 5.61 (dd, J = 10.8, 17.6 Hz, 1H), 5.29 (d, J = 17.2 

Hz, 2H), 5.17 (d, J = 10.8 Hz, 2H), 3.39 (s, 1H), 3.38 (s, 1H), 3.25 (s, 6H), 3.14-3.10 (m, 

2H), 2.70 (dd, J = 3.6, 8.4 Hz, 1H), 2.59 (dd, J = 4.0, 7.6 Hz, 1H), 2.47 (ddd, J = 4.0, 

11.6, 13.6 Hz, 1H), 2.36 (ddd, J = 3.6, 11.6, 14.0 Hz, 1H), 1.59-1.53 (m, 2H), 1.49 (s, 

3H), 1.45 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 0.93 (s, 3H), 0.88 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 204.7, 192.1, 174.5, 145.2, 140.0, 135.5, 129.9, 129.3, 128.7, 121.1, 

118.0, 116.5, 113.5, 63.4, 63.1, 62.1, 60.8, 54.7, 53.1, 38.8, 26.6, 25.4, 24.9, 22.8, 21.8, 

21.1, 15.3; HRMS (EI) m/z 376.1526 [cacl’d for C21H23NNaO4 (M+) 376.1519]. 

 

Preparation of Hemiacetals 216α  and 216β . 
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Hemiacetals 216α  and 216β . Triphenylphosphine (20 mg, 75.0 µmol, 0.5 

equiv.) and  tris(dibenzylideneacetone)-dipalladium(0)-chloroform (7 mg, 7.5 µmol, 0.05 

equiv) were combined and diluted with toluene (0.8 mL). The deep purple mixture 

changed to a deep yellow after 1 hour. 1,1,1,3,3,3-Hexafluoro-2-phenyl-2-propanol (25.3 

µL, 0.15 mmol, 1.0 equiv.) was then added. After 10 minutes the mixture turned a deep 
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red-orange and was added via cannula into a vial containing vinyl epoxide 214 (53 mg, 

0.15 mmol, 1.0 equiv.) The reaction was then submerged in a 35 °C oil bath and left 

overnight (approx. 12 hours) to react. After completion as indicated by TLC, the reaction 

was rapidly concentrated and immediately purified by flash chromatography (20% 

EtOAc/hexanes) to give diastereomeric acetals 216 (31 mg, 58% yield) as an off white 

solid. The mixture of diastereomers was characterized as follows: FTIR (thin film/NaCl) 

3377, 2926, 1699, 1604, 1372, 1339, 1298, 1216 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.64 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.46 (dd, J = 

11.2, 18.0 Hz, 1H), 6.34 (dd, J = 11.6, 18.4 Hz, 1H), 5.45 (s, 1H), 5.3-5.02 (m, 8H), 4.72 

(m, 1H), 4.14 (s, 1H), 4.08 (s, 1H), 3.24 (s, 3H), 3.23 (s, 3H), 3.03 (d, J = 11.6 Hz, 2H), 

2.78 (m, 1H), 2.33-2.15 (m, 4H), 1.96-1.91 (m, 1H), 1.67 (s, 3H), 1.63 (s, 3H), 0.85 (s, 

3H), 0.77 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.6, 196.5, 175.9, 146.1, 145.9, 

144.8, 136.5, 136.1, 131.3, 131.1, 129.0, 128.9, 127.9, 127.8, 122.2, 121.9, 114.7, 114.4, 

114.2, 112.2, 112.1, 103.2, 102.6, 78.0, 75.9, 53.6, 52.7, 52.6, 50.5, 35.4, 35.2, 33.3, 31.1, 

26.4, 25.3, 25.2, 23.8, 23.7; HRMS (EI) m/z 376.1519 [cacl’d for C21H23NNaO4 (M+) 

376.1519]. 
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Preparation of Alcohol 222. 
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Alcohol 222. A solution of alcohol 221 (207 mg, 0.5 mmol, 1.0 equiv.) in CH2Cl2 

(10 mL) was treated with Dess-Martin periodinane (319 mg, 0.75 mmol, 1.5 equiv.) and 

stirred at room temperature for 30 minutes, at which point TLC indicated the reaction 

complete. The reaction was cooled to 0 °C before saturated NaHSO3 (5 mL) and 

saturated NaHCO3 (5 mL) were added. The two layers were separated and the organic 

extract was washed with brine, dried over Na2SO4, filtered and concentrated. The crude 

reaction mixture was diluted in CH2Cl2 (10 mL) and stirred at 0 °C before triethylamine 

(77 µL, 0.55 mmol, 1.1 equiv.) was added. After 30 minutes acetic acid (31 µL, 0.55 

mmol, 1.1 equiv.) was added and the reaction was partitioned between CH2Cl2 (20 mL) 

and saturated NaHCO3 (20 mL). The organic layer was washed with brine, dried over 

Na2SO4, filtered and concentrated. The crude reaction mixture, diluted in THF (10 mL) 

was cooled to 0 °C.  A 3.0 M solution of methyl magnesium bromide in Et2O (0.37 mL, 

1.11 mmol, 3.0 equiv.) was added and the reaction was stirred for 30 minutes. Upon 

consumption of starting material, the reaction was quenched with 1 N NH4Cl, extracted 

with EtOAc, washed with brine, and dried over Na2SO4. The resulting mixture was 

purified by flash chromatography (90% EtOAc/hexanes) to give secondary alcohol 222 
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as a mixture of diastereomers (134 mg, 73% yield, 3 steps). The complex mixture was 

carried through the next step and characterized. 

 

Preparation of Enone 223. 
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Enone 223. A solution of alcohol 222 (20 mg, 0.05 mmol, 1.0 equiv.) in CH2Cl2 

(1.9 mL) was treated with Dess-Martin periodinane (73 mg, 0.17 mmol, 3.0 equiv.) and 

stirred at room temperature for 8 hours, at which point TLC indicated the reaction 

complete. The reaction was cooled to 0 °C before saturated NaHSO3 (2 mL) and 

saturated NaHCO3 (2 mL) were added. The two layers were separated and the organic 

extract was washed with brine, dried over Na2SO4, filtered and concentrated. Purification 

by flash chromatography (75% EtOAc/hexanes) gave enone 233 (7 mg, 35% yield) as a 

pale yellow oil. FTIR (thin film/NaCl) 3329, 3055, 2970, 2917, 1731, 1698, 1609, 1465, 

1368, 1340, 1266, 1243 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 1.2 Hz, 1H), 

7.25 (t, J = 8.0 Hz, 1H), 7.04-7.02 (m, 1H), 6.9 (s, 1H), 6.70 (d, J = 8.0 Hz, 1H), 3.88 (s, 

1H), 3.15 (s, 3H), 2.58-2.49 (m, 2H), 2.45 (s, 3H), 2.36-2.28 (m, 1H), 1.68 (s, 3H), 0.94 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 201.1, 174.9, 160.1, 142.8, 134.6, 129.5, 126.0, 

120.9, 107.2, 69.9, 51.8, 51.7, 37.7, 29.2, 27.8, 27.4, 26.3, 20.6; HRMS (EI) m/z 

389.1480 [cacl’d for C21H22N2NaO4 (M+) 389.1472]. 
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Preparation of Allylic Alcohol 218. 
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Allylic Alcohol 218. A solution of enone 233 (66 mg, 0.18 mmol, 1.0 equiv.) in 

THF (8 mL) was cooled to 0 °C. A 3.0 M solution of methyl magnesium bromide in Et2O 

(0.30 mL, 0.90 mmol, 5.0 equiv.) was added and the reaction was stirred for 7 hours. 

Upon consumption of starting material, the reaction was quenched with 1 N NH4Cl, 

extracted with EtOAc, washed with brine, and dried over Na2SO4. The resulting mixture 

was purified by flash chromatography (2% MeOH/CHCl3) to give allylic alcohol 218 (26 

mg, 26% yield) as a yellow oil. 1H NMR (400 MHz, DMSO-d6) δ 9.42 (s, 1H), 8.02 (s, 

1H), 7.27 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.06 (s, 

1H), 5.81-5.79 (m, 1H), 3.80 (s, 1H), 3.10 (s, 3H), 2.31-2.18 (m, 2H), 1.79-1.73 (m, 1H), 

1.55 (s, 3H), 1.47 (s, 3H), 1.35 (s, 3H), 0.76 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 

201.7, 174.5, 160.1, 147.3, 141.5, 136.4, 128.6, 125.3, 124.4, 121.1, 106.5, 73.0, 70.9, 

51.3, 51.2, 36.5, 31.4, 30.2, 28.5, 25.8, 25.2, 19.8; HRMS (EI) m/z 405.1789 [cacl’d for 

C22H26N2NaO4 (M+) 405.1785]. 
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Preparation of Allylic Alcohol 226. 
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 Allylic Alcohol 226. Diketone 183 (30 mg, 0.101 mmol, 1.0 equiv.) was diluted 

in CH2Cl2 (0.63 mL) before 2-methyl-3-buten-2-ol (42.2 µL, 0.404 mmol, 4.0 equiv.) 

was added and the mixture was stirred for 10 minutes. Grubbs 2nd generation catalyst (5 

mg, 0.006 mmol, 0.06 equiv.) was then added and the reaction was stirred at reflux for 

3hrs. Upon completion as indicated by TLC, the reaction was concentrated and 

immediately purified via column chromatography (15–20% EtOAc/CH2Cl2) to give the 

resulting allylic alcohol 226 (34 mg, 95% yield) as a light green foam: FTIR (thin 

film/NaCl) 3480, 2973, 2933, 2252, 1716, 1604, 1473, 1420, 1372, 1340, 1300, 1272, 

1235 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.67 (dd, J = 0.9, 8.1 Hz, 1H), 7.51 (dt, J = 0.9, 

7.8 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 5.61 (d, J = 15.3 Hz, 1H), 5.43 (ddd, J = 6.3, 7.2, 

15.6 Hz, 1H), 3.34 (s, 1H), 3.24 (s, 3H), 2.93 (dd, J = 2.4, 11.4 Hz, 1H), 2.73 (dddd, J = 

0.9, 7.2, 11.7, 13.5 Hz, 1H), 2.18 (dddd, J = 1.2, 2.4, 6.3, 13.8 Hz, 1H), 1.72 (s, 1H), 1.48 

(s, 3H), 1.23 (s, 6H), 0.91 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 205.2, 192.8, 174.4, 

145.2, 141.5, 129.7, 129.1, 128.8, 123.0, 120.8, 113.5, 70.6, 57.7, 53.3, 38.4, 29.7, 29.6, 

28.3, 26.6, 22.9, 21.0; HRMS (EI) m/z 378.168 [cacl’d for C21H25NNaO4 (M+) 
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378.1676]. 

 

Preparation of Hemiacetal 227. 
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 Hemiacetal 227. To a solution of O3ReOSiPh3 (14 mg, 0.027 mmol, 0.03 equiv.) 

in THF (2.2 mL) was added a solution of allylic alcohol 226 (315 mg, 0.887 mmol, 1.0 

equiv.) in THF (2.2 mL). N,O-bis(trimethylsilyl)acetamide (0.26 mL, 1.064 mmol, 1.2 

equiv.) was then added and the mixture was stirred for 10 minutes before TLC analysis 

indicated the reaction complete. Concentration and purification via column 

chromatography (30% EtOAc/hexanes) gave hemiacetal 227 (223 mg, 71% yield) as an 

inseparable mixture of diastereomers and as an amorphous white solid: FTIR (thin 

film/NaCl) 3368, 2969, 2930, 2882, 1697, 1604, 1468, 1372, 1341, 1299 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.61 (dd, J = 1.2, 8.0 Hz, 2H), 7.42 (dt, J = 0.8, 7.6, Hz, 2H), 7.02 

(dd, J = 0.8, 7.6, Hz, 2H), 5.31 (dd, J = 1.2, 8.8 Hz, 1H), 5.11-5.09 (m, 2H), 4.69 (ddd, J 

= 6.0, 9.6, 9.6 Hz, 1H), 4.12 (d, J = 4.4 Hz, 2H), 3.34 (s, 2H), 3.23 (d, J = 1.2, 6H), 2.60 

(ddd, J = 7.2, 10.8, 10.8 Hz, 1H), 2.32 (t, J = 9.6 Hz, 1H), 2.21-2.02 (m, 4H), 1.72 (s, 

3H), 1.68 (s, 3H), 1.66 (s, 6H), 1.65 (s, 3H), 1.64 (s, 3H), 0.82 (s, 3H), 0.79 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 196.7, 196.3, 176.1, 144.7, 136.9, 136.1, 131.4, 128.8, 127.8, 
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125.8, 125.4, 122.1, 112.1, 112.0, 103.1, 102.4, 75.5, 74.1, 53.7, 52.9, 52.6, 52.2, 35.5, 

35.4, 33.0, 31.9, 26.4, 25.9, 25.4, 25.3, 23.8, 23.2, 18.3; ; HRMS (EI) m/z 378.168 [cacl’d 

for C21H25NNaO4 (M+) 378.1676]. 

 

Preparation of Chlorinated Product 229. 
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Chlorinated Product 229.  Tertiary allylic alcohol 218 (51 mg, 0.133 mmol, 1.0 

equiv.) was diluted in CH3CN (10 mL) and stirred at 0 °C. Cerium(III) chloride 

heptahydrate (149 mg, 0.40 mmol, 3.0 equiv.) was added followed by addition of a 0.1 M 

aqueous solution of sodium hypochlorite (10.7 mL, 1.07 mmol, 8.0 equiv.). The reaction 

was stirred from 0 °C to room temperature over 9 hours whereupon TLC indicated 

consumption of starting material. The reaction was cooled to 0 °C before saturated 

sodium sulfite (10 mL) was added and stirred for 10 minutes. Chloroform was added and 

the layers were separated. The aqueous layer was extracted twice more with chloroform 

and the organic partitions were combine, washed with brine, and dried over Na2SO4. 

Purification of the filtrate by flash chromatography (33% EtOAc/hexanes) furnished 

chlorinated product 229 (49 mg, 71% yield) as a colorless foam. 1H NMR (400 MHz, 

CDCl3) δ 8.05 (s, 1H) 7.41 (s, 1H), 5.03-4.98 (dd, J = 9.2, 11.6 Hz, 1H), 3.54 (s, 3H), 

3.02 (s, 1H), 2.63-2.57 (dd, J = 9.6, 10.4 Hz, 1H), 2.53-2.45 (ddd, J = 8.8, 10.8, 14.0 Hz, 
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1H), 2.27 (s, 3H), 2.0 (s, 3H), 1.85-1.76 (ddd, J = 9.2, 11.4, 14.0 1H), 1.71 (s, 3H), 0.80 

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 206.5, 175.7, 171.7, 160.0, 140.3, 132.7, 132.6, 

128.2, 127.4, 117.3, 90.3, 75.8, 60.8, 58.0, 54.4, 52.4, 40.6, 34.0, 30.1, 29.9, 26.8, 26.4, 

26.0, 22.0, 21.4, 14.6, 14.5; HRMS (EI) m/z 541.0233 [cacl’d for C22H22Cl4N2NaO4 (M+) 

541.0226]. 

 

Preparation of O-Benzyl Oxime Ether 240. 
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 O-Benzyl Oxime Ether 240a and 240b. Diketone 183 (208 mg, 0.700 mmol, 1.0 

equiv.) was diluted in methanol (4.66 mL) before benzylhydroxylamine hydrochloride 

(128 mg, 0.804 mmol, 1.15 equiv.) was added. The solution was stirred at room 

temperature for 10 minutes whereupon pyridine (125 µL, 1.549 mmol, 2.2 equiv.) was 

added. The heterogenous mixture was stirred at room temperature until starting material 

was consumed as indicated by TLC (approx. 3hrs). The reaction was concentrated, 

diluted with water, extracted with EtOAc, washed with brine, and dried over MgSO4. 

After filtration and concentration, purification via column chromatography (10–15% 

EtOAc/hexanes) gave O-benzyl oxime ethers 240a and 240b (265.0 mg, 94% combined 

yield). 240a. The first diastereomer to elute was isolated as an off white amorphous solid: 
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FTIR (thin film/NaCl) 3077, 3033, 2972, 2936, 2873, 1715, 1642, 1604, 1562, 1497, 

1470, 1389, 1371, 1337, 1300, 1281, 1238 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J 

= 8.1 Hz, 1H), 7.28-7.27 (m, 6H), 6.87 (d, J = 7.8 Hz, 1H), 5.66 (dddd, J = 6.6, 10.2, 

12.6, 16.8 Hz, 1H), 5.42 (dd, J = 12.0, 28.5 Hz, 2H), 4.98 (d, J = 17.7 Hz, 1H), 4.93 (d, J 

= 10.2 Hz, 1H), 3.15 (s, 1H), 3.14 (s, 3H), 2.83 (ddd, J = 6.3, 11.7, 17.7 Hz, 1H), 2.79 (s, 

1H), 2.06 (dd, J = 6.3, 12.6 Hz, 1H), 1.37 (s, 3H), 0.79 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 198.9, 174.9, 152.9, 144.3, 136.1, 135.6, 128.4, 128.3, 128.2, 125.6, 124.0, 

116.6, 109.6, 78.6, 57.6, 52.5, 41.7, 30.1, 26.0, 21.6, 20.4; HRMS (EI) m/z 403.2007 

[cacl’d for C25H27N2O3 (M+) 403.2016]. 240b. The second diastereomer to elute was 

isolated as an off white amorphous solid: FTIR (thin film/NaCl) 3073, 3032, 2974, 2930, 

2873, 1713, 1610, 1466, 1369, 1336, 1299, 1241, 1208 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 7.55 (d, J = 6.0 Hz, 1H), 7.40-7.29 (m, 6H), 6.84 (d, J = 6.0 Hz, 1H), 5.66-5.56 

(m, 1H), 5.27 (s, 2H), 4.95 (d, J = 12.6 Hz, 1H), 4.83 (d, J = 8.1 Hz, 1H), 3.22 (s, 1H), 

3.19 (s, 3H), 2.72 (s, 2H), 2.10 (s, 1H), 1.45 (s, 3H), 0.82 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 200.3, 175.0, 167.4, 144.8, 137.2, 135.7, 129.0, 128.5, 128.4, 128.2, 128.1, 

125.2, 118.3, 116.7, 109.0, 77.9, 52.7, 41.7, 30.8, 26.3, 22.3; HRMS (EI) m/z 403.2017 

[cacl’d for C25H27N2O3 (M+) 403.2016]. 
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Preparation of N-Boc-Protected Amino Ketone 241. 
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 N-Boc-Protected Amino Ketone 241. A solution of O-benzyl oxime ethers 240a 

and 240b (192 mg, 0.477 mmol, 1.0 equiv.) in THF (6.28 mL) was treated with di-tert-

butoxy-dicarboxylate  (385 mg, 1.765 mmol, 3.7 equiv.), acetic acid (190 µL, 3.268 

mmol, 6.85 equiv), and indium(0) powder (300 mg, 2.605 mmol, 5.46 equiv.). The 

resulting mixture was heated at 71 °C overnight (approx. 12hrs). During the course of the 

reaction, the indium(0) powder coagulated indicating the reaction was near complete. 

After 12hr, TLC analysis indicated the reaction was complete. The heterogeneous 

mixture was filtered over celite, washed with NaHCO3, and dried over MgSO4. 

Purification via chromatography (15% EtOAc/hexanes) gave N-Boc-protected amino 

ketone 241 (111.0 mg, 58% yield) as a white powder: m.p. 190-192.5 °C; FTIR (thin 

film/NaCl) 3339, 2977, 2935, 2904, 1699, 1642, 1610, 1469, 1390, 1369, 1343, 1304, 

1278, 1246 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.33-7.27 (m, 2H), 6.74 (d, J = 8.4 Hz, 

1H), 5.64 (dddd, J = 6.8, 6.8, 10.0, 16.8 Hz, 1H), 5.50 (d, J = 5.2 Hz, 1H), 5.29 (d, J = 

6.8 Hz, 1H), 5.00 (d, J = 16.4 Hz, 1H), 4.96 (d, J = 10.4 Hz, 1H), 3.08 (s, 3H), 2.95 (s, 

1H), 2.67 (d, J = 12.0 Hz, 1H), 2.62 (ddd, J = 7.2, 12.0, 18.8 Hz, 1H), 2.07 (dd, J = 6.4, 

12.0 Hz, 1H), 1.39 (s, 9H), 1.34 (s, 3H), 0.71 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 
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208.6, 175.0, 155.6, 144.2, 135.3, 133.6, 129.2, 124.0, 123.4, 117.5, 107.4, 80.1, 80.0, 

79.9, 64.8, 56.8, 52.2, 40.7, 31.1, 28.3, 26.1, 21.8, 20.4; HRMS (EI) m/z 299.1754 [cacl’d 

for C18H23N2O2 (M+) 299.1754]. 

 

Preparation of Formamide 242. 
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 Formamide 242. A solution of O-benzyl oxime ethers 240a and 240b (227 mg, 

0.564 mmol, 1.0 equiv.) in THF (5.0 mL) was treated with acetoformate  (0.28 mL, 2.087 

mmol, 3.7 equiv.), acetic acid (221 µL, 3.863 mmol, 6.85 equiv), and indium(0) powder 

(305 mg, 2.65 mmol, 5.46 equiv.). The resulting mixture was heated at 71 °C overnight 

(approx. 12hrs). During the course of the reaction, the indium(0) powder coagulated 

indicating the reaction was near complete. After 12hr, TLC analysis indicated the 

reaction was complete. The heterogeneous mixture was filtered over celite, washed with 

NaHCO3, and dried over MgSO4. Purification via chromatography (40% EtOAc/hexanes) 

gave formamide 242 (151 mg, 82% yield) as a white powder: m.p. 184.6-186.2; FTIR 

(thin film/NaCl) 3307, 2973, 2937, 2878, 1700, 1610, 1517, 1469, 1417, 1372, 1342, 

1301, 1273, 1236 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.29 (s, 1H), 7.38-7.34 (m, 2H), 

6.94 (d, J = 7.8 Hz, 1H), 6.81 (dd, J = 2.4, 6.3Hz, 1H), 5.78 (d, J = 8.1 Hz, 1H), 5.69 

(dddd, J = 6.9, 6.9, 13.6, 17.1 Hz, 1H), 5.05 (dd, J = 1.2, 17.1 Hz, 1H), 5.01 (d, J = 9.9 
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Hz, 1H), 3.13 (s, 3H), 3.02 (s, 1H), 2.79 (dd, J = 2.4, 11.7 Hz, 1H), 2.66 (ddd, J = 7.5, 

12.9, 12.9 Hz, 1H), 2.15 (ddd, J = 0.9, 6.3, 13.2 Hz, 1H), 1.38 (s, 3H), 0.77 (s, 3H); 13C 

NMR (75 MHz, CDCl3) δ 208.0, 175.0, 161.0, 144.3, 135.1, 132.9, 129.5, 124.2, 123.6, 

117.9, 107.7, 61.8, 57.0, 52.3, 41.0, 31.1, 26.2, 21.8, 20.5; HRMS (EI) m/z 327.1711 

[cacl’d for C19H23N2O3 (M+) 327.1703]. 

 

Preparation of Oxazole 247. 
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 Oxazole 247. A solution of formamide 242 (25 mg, 0.077 mmol, 1.0 equiv.) in 

CH2Cl2 (2.25 mL) was treated with triethylamine (30 µL, 0.199 mmol, 2.6 equiv.) and 

stirred for 10 minutes at room temperature. A 20% solution of phosgene in toluene (122 

µL, 0.23 mmol, 3.0 equiv.) was then added dropwise. The solution was allowed to react 

for 2hrs whereupon TLC analysis indicated the reaction complete. An aliquot of saturated 

NaHCO3 was then added and the solution was extracted with CH2Cl2, washed with brine, 

and dried over Na2SO4. After filtration and concentration, purification via column 

chromatography (30% Et2O/hexanes) gave oxazole 247 (18 mg, 76% yield) as a white 

amorphous solid: FTIR (thin film/NaCl) 3077, 2976, 2874, 1778, 1710, 1640, 1608, 

1593, 1526, 1467, 1393, 1370, 1353, 1331, 1298, 1269, 1224 cm-1; 1H NMR (400 MHz, 
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CDCl3) δ 7.85 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.7 (d, J = 7.6 Hz, 1H), 7.78 (s, 1H), 7.47 

(t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 7.6 Hz, 

1H), 5.85-5.67 (m, 2H), 5.12 (dd, J = 1.2, 17.2 Hz, 2H), 5.03 (d, J = 11.6 Hz, 2H), 3.70 

(s, 1H), 3.23 (s, 3H), 3.22 (s, 3H), 2.99 (s, 1H), 2.93 (dd, J = 4.4, 7.2 Hz, 1H), 2.85-2.78 

(m, 1H), 2.66-2.56 (m, 1H), 2.47 (dt, J = 7.6, 15.2 Hz, 1H), 2.35-2.29 (m, 4H), 1.65 (s, 

3H), 1.41 (s, 3H), 0.94 (s, 3H), 0.70 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 193.7,175.9, 

175.2, 151.7, 150.8, 149.8, 144.8, 143.9, 142.8, 136.2, 136.0, 131.9, 129.0, 128.4, 127.8, 

127.3, 126.1, 124.1, 122.8, 121.5, 120.2, 119.0, 117.3, 117.2, 108.1, 106.8, 73.0, 54.35, 

53.26, 50.2, 46.9, 38.1, 34.2, 29.9, 26.5, 26.4, 25.9, 25.0, 23.6, 22.2; HRMS (EI) m/z 

309.1594 [cacl’d for C19H21N2O2 (M+) 309.1598]. 

 

Preparation of Trisubstituted Olefin 251 and Dimer 252. 

 

N

Me

O

O

Me

H

H
N

Boc

Me OTBS

N

Me

O

O

Me

H

H
N

Boc

H

2

Me Me

251 252
 

 

 Trisubstituted Olefin 251. N-Boc-protected amino ketone 241 (233 mg, 0.585 

mmol, 1.0 equiv.) was diluted in CH2Cl2 (20 mL) before protected homo-allylic alcohol 

211 (821 mg, 4.093 mmol, 7.0 equiv.) was added and the solution was stirred for 10 

minutes. Grubbs 2nd generation catalyst (25 mg, 0.029 mmol, 0.06 equiv.) was then added 

and the reaction was stirred at reflux for 5hrs whereupon the reaction was deemed 
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complete by TLC analysis. Two drops of DMSO were added to the mixture that was 

stirred for 2hrs at which point the solution was concentrated. Purification via column 

chromatography (20–40% EtOAc/hexanes) gave trisubstituted olefin 251 (174 mg, 52% 

yield) as a pale yellow foam: FTIR (thin film/NaCl) 3339, 2958, 2931, 2858, 2252, 1715, 

1610, 1470, 1390, 1368, 1341, 1304, 1276, 1250 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.40 (d, J = 5.6, 1H), 7.35 (dd, J = 6.0, 6.0 Hz, 1H), 6.78 (d, J = 6.4 Hz, 1H), 5.4 (s, 1H), 

5.34 (d, J = 9.6 Hz, 1H), 5.02 (dd, J = 7.6, 13.6 Hz, 1H), 3.63 (t, J = 5.6 Hz, 1H), 3.62 

(ddd, J = 2.4, 6.0, 7.6 Hz, 1H), 3.16 (s, 3H), 3.05 (s, 1H), 3.04 (s, 1H), 2.67 (ddd, J = 6.0, 

9.2, 15.2 Hz, 1H), 2.64 (s, 1H), 2.31-2.26 (m, 1H), 2.18 (t, J = 5.6 Hz, 1H), 2.09-2.03 (m, 

1H), 1.67 (s, 1H), 1.66 (s, 1H), 1.58 (s, 2H), 1.45 (s, 9H), 1.43 (s, 3H), 1.32-1.22 (m, 1H), 

0.87 (d, J = 3.6 Hz, 9H), 0.77 (s, 3H), 0.03 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 209.3, 

175.3, 155.7, 144.4, 135.4, 135.2, 133.9, 133.8, 129.3, 126.1, 124.3, 123.7, 123.3, 122.9, 

107.5, 80.1, 64.9, 62.6, 61.8, 57.6, 57.3, 52.5, 52.4, 43.2, 40.9, 35.7, 34.3, 26.2, 26.1, 

25.6, 24.3, 22.5, 22.0, 20.7, 18.5, 18.4, 16.6, 14.2, -5.1; HRMS (EI) m/z 593.337 [cacl’d 

for C32H50N2NaO5Si (M+) 593.3381]. Dimer 252. FTIR (thin film/NaCl) 3302, 2974, 

2930, 1699, 1609, 1509, 1466, 1389, 1366, 1350, 1318, 1279, 1246 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.43 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 6.77 (d, J = 7.6 Hz, 

2H), 5.55 (s, 2H), 5.29 (s, 2H), 5.26 (s, 2H), 3.15 (s, 6H), 3.04 (s, 2H), 2.70 (d, J = 11.2 

Hz, 2H), 2.59 (dd, J = 4.0, 13.6 Hz, 2H), 2.03 (d, J = 13.2 Hz, 2H), 1.43 (s, 18H), 1.39 (s, 

6H), 0.74 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 208.7, 175.3, 155.9, 144.3, 133.9, 

130.0, 129.3, 124.3, 123.6, 107.4, 80.1, 65.0, 56.9, 52.5, 40.9, 30.0, 28.5, 26.2, 21.9, 

20.7; HRMS (EI) m/z 791.3988 [cacl’d for C44H56N4NaO8 (M+) 791.399]. 
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Preparation of Alcohol 254 and Alcohol 253. 
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 Alcohol 254 and Alcohol 253. To a solution of trisubstituted olefin 251 (174 mg, 

0.305 mmol, 1.0 equiv.) in methanol (18.0 mL) was added PPTS (26 mg, 0.10 mmol, 

0.33 equiv.). The solution was stirred for 4hrs whereupon consumption of starting 

material was indicated by TLC analysis. The reaction was concentrated, taken up in 

EtOAc and water, extracted with EtOAc, washed with sat. NaHCO3 then brine, and dried 

over MgSO4. After filtration and concentration, the mixture was purified via silica gel 

column chromatography (30% EtOAc/hexanes) to give alcohols 254 and 253 (combined 

113 mg, 81% yield). 254. The first compound to elute was isolated as a white foam (70 

mg, 50% yield): FTIR (thin film/NaCl) 3325, 2976, 2935, 1699, 1610, 1510, 1469, 1390, 

1369, 1342, 1280, 1249 cm-1; 1H NMR (300 MHz, CD3CN) δ 7.39 (t, J = 7.8 Hz, 1H), 

7.14 (d, J = 8.1 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 5.81 (d, J = 8.1 Hz, 1H), 5.18 (d, J = 

8.7 Hz, 1H), 5.06 (dt, J = 1.2, 8.1 Hz, 1H), 3.6-3.44 (m, 2H), 3.11 (s, 3H), 3.07 (s, 1H), 

2.86-2.79 (m, 1H), 2.69-2.54 (m, 2H), 2.16 (s, 1H), 2.12 (t, J = 6.3 Hz, 2H), 1.56 (s, 3H), 

1.41 (s, 9H), 1.39 (s, 1H), 1.36 (s, 3H), 0.73 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

209.1, 175.2, 156.2, 144.4, 134.9, 132.4, 129.2, 124.2, 124.1, 123.8, 107.5, 80.7, 65.4, 
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59.6, 57.1, 52.6, 43.3, 40.5, 30.4, 28.4, 26.2, 25.6, 22.0, 20.7, 15.5; HRMS (EI) m/z 

479.2517 [cacl’d for C26H36N2NaO5 (M+) 479.2516]. 253. The second compound to elute 

was isolated as a white solid (43 mg, 31% yield): m.p. 173.5-174.5 °C; FTIR (thin 

film/NaCl) 3343, 2971, 2933, 2873, 1700, 1610, 1495, 1469, 1390, 1369, 1344, 1304, 

1278, 1247 cm-1; 1H NMR (300 MHz, CD3CN) δ 7.39 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 

Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 5.76 (s, 1H), 5.20 (dd, J, = 2.7, 11.4 Hz, 1H), 5.09 (t, J 

= 7.8 Hz, 1H), 3.51 (dd, J = 6.9, 12.6 Hz, 2H), 3.11 (s, 3H), 3.09 (s, 1H), 2.69 (dd, J = 

2.1, 11.7 Hz, 1H), 2.59 (ddd, J = 7.5, 13.5, 20.4 Hz, 1H), 2.51 (t, J = 5.7 Hz, 1H), 2.31 

(ddd, J = 6.9, 6.9, 13.2 Hz, 1H), 2.11 (ddd, J = 6.6, 6.6, 13.5 Hz, 1H), 1.96 (s, 1H), 1.65 

(s, 3H), 1.41 (s, 9H), 1.35 (s, 3H), 0.73 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 210.8, 

209.5, 175.2, 155.9, 144.4, 135.9, 134.8, 133.5, 129.3, 128.4, 125.7, 124.4, 124.2, 123.7, 

107.6, 80.3, 65.1, 60.6, 57.5, 52.5, 40.9, 35.1, 34.4, 30.5, 29.8, 28.4, 26.3, 25.4, 23.7, 

22.0, 21.3, 20.7; HRMS (EI) m/z 479.2516 [cacl’d for C26H36N2NaO5 (M+) 479.2516]. 

 

Preparation of Epoxy Alcohol 255. 
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 Epoxy Alcohol 255a and 255b. To a solution of alcohol 253 (43 mg, 0.094 

mmol, 1.0 equiv.) in CH2Cl2 (10 mL) was added saturated NaHCO3 (17 mL) and cooled 
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to 0 °C. m-CPBA (40 mg, 0.178 mmol, 1.89 equiv.) was then added and the reaction was 

stirred for 3hrs at 0 °C whereupon TLC indicated consumption of starting material. An 

aliquot of a saturated solution of Na2S2O3 was then added and the solution was extracted 

with CH2Cl2, washed with NaHCO3, and dried over Na2SO4. After filtration and 

concentration, purification via column chromatography (40–50% EtOAc/hexanes) gave 

epoxy alcohol 255a and 255b (39 mg, 87% yield) as a mixture of diastereomers and as a 

white foam. 255a.  FTIR (thin film/NaCl) 3326, 2976, 2935, 2877, 1700, 1611, 1517, 

1469, 1391, 1369, 1342, 1304, 1281, 1249 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.37 (t, J 

= 8.8 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 5.61 (d, J = 8.8 Hz, 1H), 

5.21 (d, J = 9.2 Hz, 1H), 3.65 (s, 2H), 3.39 (s, 1H), 3.17 (s, 3H), 3.04 (s, 1H), 2.86 (dd, J 

= 2.0, 12.0 Hz, 1H), 2.83 (dd, J = 4.4, 8.8 Hz, 1H), 7.07 (dd, J = 12.8, 21.6 Hz, 1H), 1.95 

(dt, J = 4.4, 14.8 Hz, 1H), 1.81 (d, J = 13.6 Hz, 1H), 1.65-1.58 (m, 1H), 1.47 (s, 9H), 1.41 

(s, 3H), 1.22 (s, 3H), 0.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 208.4, 175.1, 156.5, 

144.4, 132.6, 129.5, 124.1, 123.7, 107.6, 80.8, 64.5, 62.1, 61.0, 58.4, 53.8, 52.3, 41.1, 

40.4, 28.4, 26.3, 21.9, 20.6, 17.1; HRMS (EI) m/z 495.2461 [cacl’d for C26H36N2NaO6 

(M+) 495.2466]. 255b. FTIR (thin film/NaCl) 3327, 2975, 2934, 1703, 1610, 1511, 1468, 

1390, 1368, 1342, 1303, 1281, 1248 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 

2H), 6.79 (d, J = 7.6 Hz, 1H), 5.78 (d, J = 8.4 Hz, 1H), 5.31 (d, J = 6.4 Hz, 1H), 3.78 

(ddd, J = 4.8, 10.8, 16 Hz, 1H), 3.66-3.61 (m, 1H), 3.18 (s, 3H), 3.07 (s, 1H), 2.82 (dd, J 

= 5.2, 8.0 Hz, 1H), 2.79 (dd, J = 2.0, 14.0 Hz, 1H), 2.5-2.43 (m, 1H), 2.32 (dd, J = 3.2, 

17.2 Hz, 1H), 1.94-1.89 (m, 1H), 1.67-1.61 (m, 2H), 1.45 (s, 12H), 1.26 (s, 3H), 0.78 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 209.0, 175.1, 156.3, 144.4, 133.2, 129.4, 126.1, 
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124.1, 123.5, 107.5, 80.6, 64.2, 61.2, 60.1, 58.9, 54.2, 52.3, 40.9, 40.5, 28.4, 26.9, 26.3, 

22.2, 20.7, 16.7; HRMS (EI) m/z 495.2464 [cacl’d for C26H36N2NaO6 (M+) 495.2466]. 

 

Preparation of Epoxy Alcohol 256. 

 

N

Me

O

O

Me

H

H
N

Boc

MeOHO

Me

256
 

 

 Epoxy Alcohol 256a and 256b. To a solution of alcohol 254 (95 mg, 0.207 

mmol, 1.0 equiv.) in CH2Cl2 (10 mL) was added saturated NaHCO3 (17 mL) and cooled 

to 0 °C. m-CPBA (72 mg, 0.321 mmol, 1.89 equiv.) was then added and the reaction was 

stirred for 3hrs at 0 °C whereupon TLC indicated consumption of starting material. An 

aliquot of a saturated solution of Na2S2O3 was then added and the solution was extracted 

with CH2Cl2, washed with NaHCO3, and dried over Na2SO4. After filtration and 

concentration, purification via column chromatography (40–50% EtOAc/hexanes) gave 

epoxy alcohol 256a and 256b (88 mg, 90% yield) as a mixture of diastereomers and as a 

white foam. 256a.  FTIR (thin film/NaCl) 3333, 2974, 2934, 2882, 1704, 1610, 1509, 

1469, 1390, 1368, 1343, 1304, 1279, 1248 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.38-7.31 

(m, 4H), 6.80 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 5.65 (d, J = 7.6 Hz, 1H), 5.48 

(d, J = 8.4 Hz, 1H), 5.20 (s, 2H), 3.92-3.72 (m, 4H), 3.17 (s, 6H), 3.06 (s. 2H), 2.91 (dd, J 

= 2.4, 12.0 Hz, 2H), 2.7 (dd, J = 5.6, 8.4 Hz, 1H), 2.59 (dd, J = 4.8, 7.6 Hz, 1H), 2.31-
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2.26 (m, 2H), 2.21 (ddd, J = 8.8, 11.2, 14.0 Hz, 1H), 2.0 (s, 1H), 1.81-1.67 (m, 6H), 1.46 

(s, 9H), 1.45 (s, 9H), 1.42 (s, 3H), 1.40 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 0.78 (s, 3H), 

0.76 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 209.2, 175.3, 175.1, 144.5, 133.4, 132.9, 

129.5, 129.3, 124.4, 124.2, 123.7, 107.7, 107.6, 80.3, 64.9, 62.5, 61.6, 61.4, 59.8, 59.5, 

54.3, 54.0, 52.3, 52.1, 41.2, 41.0, 34.3, 34.1, 28.4, 26.3, 26.2, 25.7, 22.6, 22.5, 22.1, 21.9, 

20.7, 20.5; HRMS (EI) m/z 495.2468 [cacl’d for C26H36N2NaO6 (M+) 495.2466]. 256b. 

3338, 2976, 2935, 1707, 1611, 1517, 1469, 1390, 1369, 1342, 1304, 1280, 1249 cm-1; 1H 

NMR (400 MHz, CD2Cl2) δ 7.36 (t, J = 8.0 Hz, 1H), 7.2 (d, J = 8.0 Hz, 1H), 6.79 (d, J 

=7.6 Hz, 1H), 5.56 (d, J = 8.8 Hz, 1H), 5.44 (d, J = 8.4 Hz, 1H), 3.60 (t, J = 4.0 Hz, 2H), 

3.11 (s, 3H), 2.99 (s, 3H), 2.84 (dd, J = 2.44, 12.0 Hz, 1H), 2.74 (dd, J = 4.4, 8.0 Hz, 1H), 

1.88 (dt, J = 4.8, 14.4 Hz, 1H), 1.74 (d, J = 12.0 Hz, 1H), 1.58-1.51 (m, 1H), 1.45 (s, 9H), 

1.35 (s, 3H), 1.17 (s, 3H), 0.75 (s, 3H); 13C NMR (100 MHz, CD2Cl2) δ 208.6, 175.2, 

144.8, 133.0, 129.5, 124.0, 107.7, 80.7, 64.7, 62.1, 61.0, 58.6, 53.9, 52.4, 41.2, 40.7, 28.4, 

26.4, 26.3, 21.8, 20.6, 17.1; HRMS (EI) m/z 495.2469 [cacl’d for C26H36N2NaO6 (M+) 

495.2466]. 

 

Preparation of γ-Hydroxy Enal 257. 
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 γ-Hydroxy Enal 257. A solution of epoxy alcohol 255 (39 mg, 0.082 mmol, 1.0 

equiv.) was diluted in CH2Cl2 (10 mL) before BAIB (57 mg, 0.177 mmol, 2.5 equiv.) and 

catalytic TEMPO (2 mg, 0.013 mmol, 0.16 equiv.) were added. The reaction was stirred 

for 24hrs whereupon TLC analysis indicated the reaction complete. Saturated Na2S2O3 

was added and the mixture was extracted with CH2Cl2, washed with saturated NaHCO3, 

and dried over Na2SO4. Filtration and concentration gave a yellow oil that was 

subsequently diluted in CH2Cl2 (8.0 mL) before diisopropylethylamine (100 µL, 0.574 

mmol, 7.0 equiv.) was added. The reaction was stirred for 5 minutes then concentrated. 

Purification via column chromatography (50–60% EtOAc/hexanes) gave γ-hydroxy enal 

257 (17 mg, 96% yield) as a mixture of diastereomers. The complex mixture was carried 

through the next step and characterized. 

 

Preparation of Furan 259. 

 

N

Me
Me

O

O

Me

H

H
N

Boc

O
Me

259
 

 

 Furan 259. To a solution of γ-hydroxy enal 257 (13 mg, 0.028 mmol, 1.0 equiv.) 

in DMF (1 mL) was added imidazole (8 mg, 0.113 mmol, 4.6 equiv.) and TBSCl (5 mg, 

0.033 mmol, 1.1 equiv.). The mixture was stirred at room temperature for 10 minutes 

before heating at 80 °C for 1hr. Upon completion as indicated by TLC analysis, the 
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solution was poured into a separatory funnel containing H2O (15 mL) and was extracted 

with EtOAc, washed with brine, and dried over Na2SO4. After filtration and 

concentration, purification via column chromatography (5% EtOAc/benzene) gave furan 

259 (12 mg, 95% yield) as a white solid: m.p. 177.8-178.8 °C; FTIR (thin film/NaCl) 

3339, 2974, 2929, 1709, 1610, 1493, 1469, 1390, 1368, 1342, 1303, 1276, 1245 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.34 (d, J = 6.0 Hz, 2H), 7.19 (d, J = 1.67 Hz, 1H), 6.78 (dd, 

J = 4.0, 4.0 Hz, 1H), 6.11 (d, J = 2.0 Hz, 1H), 5.33 (d, J = 7.6 Hz, 2H), 3.17 (s, 3H), 3.14 

(s, 1H), 3.07 (dd, J = 11.2 Hz, 1H), 2.65 (dd, J = 2.4, 11.2 Hz, 1H), 2.65 (dd, J = 2.4, 14.4 

Hz, 1H), 1.90 (s, 3H), 1.52 (s, 3H), 1.44 (s, 9H), 0.81 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 208.9, 175.2, 155.6, 148.0, 144.4, 140.7, 134.0, 129.3, 124.3, 123.4, 115.0, 

113.1, 107.5, 80.1, 63.9, 55.5, 52.3, 40.8, 29.8, 28.4, 26.3, 23.4, 22.0, 20.5, 9.8; HRMS 

(EI) m/z 475.2202 [cacl’d for C26H32N2NaO5 (M+) 475.2203]. 
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Figure A.1.1  1H NMR (300 MHz, CDCl3) of compound 203.
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Figure A.1.2  Infrared Spectrum (thin film/NaCl) of compound 203. 
 
 
 
 
 
 

 
Figure A.1.3  13C NMR (75 MHz, CDCl3) of compound 203. 
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Figure A.1.4  1H NMR (400 MHz, CDCl3) of compound 204.
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Figure A.1.5  Infrared Spectrum (thin film/NaCl) of compound 204. 
 
 
 
 
 
 

 
Figure A.1.6  13C NMR (100 MHz, CDCl3) of compound 204. 
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Figure A.1.7  1H NMR (400 MHz, CDCl3) of compound 208.
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Figure A.1.8  Infrared Spectrum (thin film/NaCl) of compound 208. 
 
 
 
 
 
 

 
Figure A.1.9  13C NMR (100 MHz, CDCl3) of compound 208. 
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Figure A.1.10  1H NMR (400 MHz, CDCl3) of compound 344.
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Figure A.1.11  Infrared Spectrum (thin film/NaCl) of compound 344. 
 
 
 
 
 
 

 
Figure A.1.12  13C NMR (100 MHz, CDCl3) of compound 344. 
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Figure A.1.13  1H NMR (400 MHz, CDCl3) of compound 210 and 345.
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Figure A.1.14  Infrared Spectrum (thin film/NaCl) of compound 210 and 345. 
 
 
 
 
 
 

 
Figure A.1.15  13C NMR (100 MHz, CDCl3) of compound 210 and 345. 
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Figure A.1.16 1H NMR (400 MHz, CDCl3) of compound 212.
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Figure A.1.17  Infrared Spectrum (thin film/NaCl) of compound 212. 
 
 
 
 
 
 

 
Figure A.1.18  13C NMR (100 MHz, CDCl3) of compound 212. 
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Figure A.1.19  1H NMR (400 MHz, CDCl3) of compound 213.
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Figure A.1.20  Infrared Spectrum (thin film/NaCl) of compound 213. 
 
 
 
 
 
 

 
Figure A.1.21  13C NMR (100 MHz, CDCl3) of compound 213. 
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Figure A.1.22  1H NMR (400 MHz, CDCl3) of compound 214.
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Figure A.1.23  Infrared Spectrum (thin film/NaCl) of compound 214. 
 
 
 
 
 
 

 
Figure A.1.24  13C NMR (100 MHz, CDCl3) of compound 214. 
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Figure A.1.25  1H NMR (400 MHz, CDCl3) of compound 216.
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Figure A.1.26  Infrared Spectrum (thin film/NaCl) of compound 216. 
 
 
 
 
 
 

 
Figure A.1.27  13C NMR (100 MHz, CDCl3) of compound 216. 
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Figure A.1.28  1H NMR (400 MHz, CDCl3) of compound 223.
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Figure A.1.29  Infrared Spectrum (thin film/NaCl) of compound 223. 
 
 
 
 
 
 

 
Figure A.1.30  13C NMR (100 MHz, CDCl3) of compound 223. 
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Figure A.1.31  1H NMR (400 MHz, CDCl3) of compound 218.
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Figure A.1.32 13C NMR (100 MHz, CDCl3) of compound 218. 
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Figure A.1.33  1H NMR (300 MHz, CDCl3) of compound 226.
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Figure A.1.34  Infrared Spectrum (thin film/NaCl) of compound 226. 
 
 
 
 
 
 

 
Figure A.1.35  13C NMR (75 MHz, CDCl3) of compound 226. 
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Figure A.1.36  1H NMR (400 MHz, CDCl3) of compound 227.
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Figure A.1.37  Infrared Spectrum (thin film/NaCl) of compound 227. 
 
 
 
 
 
 

 
Figure A.1.38  13C NMR (100 MHz, CDCl3) of compound 227. 
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Figure A.1.39  1H NMR (400 MHz, CDCl3) of compound 229.
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Figure A.1.40 13C NMR (100 MHz, CDCl3) of compound 229. 
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Figure A.1.41  1H NMR (300 MHz, CDCl3) of compound 240a.
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Figure A.1.42  Infrared Spectrum (thin film/NaCl) of compound 240a. 
 
 
 
 
 
 

 
Figure A.1.43  13C NMR (75 MHz, CDCl3) of compound 240a. 
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Figure A.1.44  1H NMR (400 MHz, CDCl3) of compound 240b.
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Figure A.1.45  Infrared Spectrum (thin film/NaCl) of compound 240b. 
 
 
 
 
 
 

 
Figure A.1.46  13C NMR (100 MHz, CDCl3) of compound 240b. 
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Figure A.1.47  1H NMR (400 MHz, CDCl3) of compound 241.
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Figure A.1.48  Infrared Spectrum (thin film/NaCl) of compound 241. 
 
 
 
 
 
 

 
Figure A.1.49 13C NMR (100 MHz, CDCl3) of compound 241. 
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Figure A.1.50  1H NMR (300 MHz, CDCl3) of compound 242.
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Figure A.1.51  Infrared Spectrum (thin film/NaCl) of compound 242. 
 
 
 
 
 
 

 
Figure A.1.52  13C NMR (75 MHz, CDCl3) of compound 242. 
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Figure A.1.53  1H NMR (400 MHz, CDCl3) of compound 247.
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Figure A.1.54 Infrared Spectrum (thin film/NaCl) of compound 247. 
 
 
 
 
 
 

 
Figure A.1.55  13C NMR (100 MHz, CDCl3) of compound 247. 
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Figure A.1.56  1H NMR (400 MHz, CDCl3) of compound 251.
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Figure A.1.57  Infrared Spectrum (thin film/NaCl) of compound 251. 
 
 
 
 
 
 

 
Figure A.1.58  13C NMR (100 MHz, CDCl3) of compound 251. 
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Figure A.1.59 1H NMR (400 MHz, CDCl3) of compound 252.
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Figure A.1.60 Infrared Spectrum (thin film/NaCl) of compound 252. 
 
 
 
 
 
 

 
Figure A.1.61  13C NMR (100 MHz, CDCl3) of compound 252. 
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Figure A.1.62  1H NMR (300 MHz, CD3CN) of compound 253.
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Figure A.1.63  Infrared Spectrum (thin film/NaCl) of compound 253. 
 
 
 
 
 
 

 
Figure A.1.64  13C NMR (100 MHz, CDCl3) of compound 253. 
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Figure A.1.65  1H NMR (300 MHz, CD3CN) of compound 254.
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Figure A.1.66  Infrared Spectrum (thin film/NaCl) of compound 254. 
 
 
 
 
 
 

 
Figure A.1.67  13C NMR (100 MHz, CDCl3) of compound 254. 
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Figure A.1.68  1H NMR (400 MHz, CDCl3) of compound 255a.
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Figure A.1.69  Infrared Spectrum (thin film/NaCl) of compound 255a. 
 
 
 
 
 
 

 
Figure A.1.70  13C NMR (100 MHz, CDCl3) of compound 255a. 
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Figure A.1.71  1H NMR (400 MHz, CDCl3) of compound 255b.
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Figure A.1.72  Infrared Spectrum (thin film/NaCl) of compound 255b. 
 
 
 
 
 
 

 
Figure A.1.73  13C NMR (100 MHz, CDCl3) of compound 255b. 
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Figure A.1.74  1H NMR (400 MHz, CDCl3) of compound 256a.

N

Me

O

O

Me

H

H
N

Boc

MeOHO

Me

256a



 171 

 
 
 

 
 

Figure A.1.75  Infrared Spectrum (thin film/NaCl) of compound 256a. 
 
 
 
 
 
 

 
Figure A.1.76  13C NMR (100 MHz, CDCl3) of compound 256a. 
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Figure A.1.77  1H NMR (400 MHz, CD2Cl2) of compound 256b.
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Figure A.1.78  Infrared Spectrum (thin film/NaCl) of compound 256b. 
 
 
 
 
 
 

 
Figure A.1.79  13C NMR (100 MHz, CD2Cl2) of compound 256b. 
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Figure A.1.80  1H NMR (400 MHz, CDCl3) of compound 259.
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Figure A.1.81  Infrared Spectrum (thin film/NaCl) of compound 259. 
 
 
 
 
 
 

 
Figure A.1.82  13C NMR (100 MHz, CDCl3) of compound 259. 
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Chapter 3 
 

N-Methylwelwitindolinone D Isonitrile and the Advent of a 
 

Tandem O–H Insertion Conia-ene Cyclization 
 

3.1 Initial Considerations. 

 

Although our attempts thus far were unsuccessful for the synthesis of N-

methylwelwitindolinone C isothiocyanate (16), our resolve was unwavering. We were 

determined to devise a new approach to accessing 16 that drew from the lessons of our 

previous routes. To that end, we began by directing our attention to the entire 

welwitindolinone family as possible synthetic precursors.  We believed that this approach 

would address the inherent similarities among the family, including the bicyclo[4.3.1] 

system, the bridged oxindole, and the C12 quaternary center, by presenting the same 

synthetic challenges in a new light. 

 After considering several welwitindolinone congeners, N-methylwelwitindolinone 

D isonitrile (20) presented itself as an exciting new synthetic target. Structurally, the core 

of 20 is the same as 16 containing a bicyclo[4.3.1] system and bridged oxindole (see 

Figure 3.1.1 for comparison). However, an oxidized C3 position that forms a bridged 

spiro-ether distinguishes 20 from the welwitindolinone family. We speculated that we 

could exploit this inherent difference for its construction through a convergent process. 

We envisioned that the coupling of a functionalized cyclohexane piece and an oxindole 

would forge the embedded tetrahydrofuran ring system that would then be used to direct 

the completion of 20.  
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Figure 3.1.1 
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3.2 Carbonyl-ylide Approach. 
 

3.2.1 Retrosynthetic Analysis. 

 

 As outlined in Scheme 3.2.1, our plan for completing N-methylwelwitindolinone 

D isonitrile (20) depends on the late stage installation of the isonitrile through a Curtius 

rearrangement of 260.1,2 A key palladium-mediated intramolecular arylation reaction of 

β-keto ester 261 would forge the core of 20 represented by structure 260.3 Access to β-

keto ester 261 would be achieved through a four-step process involving hydroboration of 

the disubstituted olefin in 262, oxidation of the resulting secondary hydroxyl group, 

acylation of the ketone, and a reduction of the enone (not shown). Spiro-dihydrofuran 

262 would arise via metal catalyst carbonyl-ylide 1,4-addition (263)4 of diazoisatin 264 

and enone 265.  
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Scheme 3.2.1 
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3.2.2 Carbonyl-ylide Model System. 

 

 Before committing resources to our synthetic strategy, we wanted to investigate 

the viability of a metal-catalyzed carbonyl-ylide 1,4-addition. To that end, we proposed a 

model system that would incorporate diazoisatin (264) and a simplified enone coupling 

partner (265) (Scheme 3.2.2).  We projected that when a metal catalyst, such as 

rhodium(II) acetate dimer, was added to a mixture of diazoisatin 264 and enone 265, 

dediazotization of 264 would result in the formation of intermediate oxonium ylide 266 

(catalyst omitted for clarity). Oxonium ylide 266 would then undergo a sequential 1,4-

addition to construct spiro-oxindole 267. 
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Scheme 3.2.2 
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 We began our model system with the construction of a diazoisatin piece similar to 

diazoisatin 268 (Scheme 3.2.3).5,6 Starting from commercially available 4-bromoisatin 

(268), a three-step procedure involving condensation of tosylhydrazide (268 → 269), 

base induced diazo-formation (269 → 270), and methylation (270 → 271) generated our 

desired diazoisatin 271 with a single purification in excellent overall yield. 

 

Scheme 3.2.3 
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 With diazoketone 271 in hand, we attempted to implement a metal-catalyzed 

carbonyl-ylide 1,4-addition reaction (Scheme 3.2.4). Unfortunately, when diazoketone 

271 was exposed to enone 265 in the presence of a variety of catalysts, desired spiro-

oxindole 272 was not produced. Instead, we exclusively observe dimer product 273 that 
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rapidly decomposes to hydrolyzed side products upon attempted isolation. We 

hypothesize that under the reaction conditions, oxonium-ylide formation (see Section 

3.2.3) was reversible and when dissociated, the carbenoid species dimerizes. 

 

Scheme 3.2.4 
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3.2.3 A Redesigned Coupling Partner Leads to New Reaction Sequence. 

 

 As illustrated in Scheme 3.2.5, we speculated that our carbonyl-ylide model 

system failed due to the equilibrium between metal-carbenoid 274 and oxonium-ylide 

275. Presumably, dimerization of 274 was faster than the projected intramolecular 1,4-

addition of oxonium-ylide 275, which was supported by the reaction outcome. To avoid 

dimerization, we decided to change our model system to incorporate an initial O–H 

insertion where reversibility would be slower than the oxonium-ylide case (Scheme 

3.2.6). To that end, we designed a two-step sequence that would begin with a metal-

catalyzed O–H insertion of homo-allylic alcohol 276 with diazoisatin 271 to form enol 
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ether 277. Treatment of 277 with a π-Lewis acid would initiate a cyclization to form a 

metalated spiro-oxindole (not shown) that upon protonolysis would deliver spiro-

oxindole 279, a compound equivalent to spiro-oxindole 267. 
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Scheme 3.2.6 
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Implementation of our new model system started with the creation of a homo-

allylic alcohol (Scheme 3.2.7). Simple exposure of iso-propenylmagnesium bromide to 

cyclohexene oxide (280) in the presence of CuCN provided trans-related homo allylic 

alcohol 281 in excellent yield.7 At this point, rather than conducting a Mitsunobu reaction 

to reverse the alcohol stereochemistry, we decided to conduct the O–H insertion (Scheme 

3.2.8). Surprisingly, predicted O–H insertion product 282 was not observed, but rather 
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spiro-oxindole 283 was exclusively isolated, albeit in moderate yield. To confirm our 

finding, we obtained an X-ray crystal of 283 as shown in Figure 3.2.1. Further 

examination of this reaction revealed it to be an O–H insertion sequential Conia-ene 

cyclization, an extension the O–H insertion tandem 3,3- and 2,3-rearrangement chemistry 

developed in our lab.8-10  
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Figure 3.2.1 
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3.3 O–H Insertion and Conia-ene Cyclization Background. 

 

3.3.1 O–H Insertion Claisen Rearrangement. 

 

Scheme 3.3.1 
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First published in 1999 by our laboratory, the rhodium catalyzed O–H 

insertion/Claisen rearrangement was developed to provide a method for the assembly of 

β-hydroxy esters (for example compound 288, Scheme 3.3.1).8 We initially planned to 

execute this sequence in a two-step process wherein the O–H insertion product α-

allyloxy-β-ketoester 286 would be isolated and subjected to a subsequent thermal 
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rearrangement to provide desired α-hydroxy ketone 288. However, we discovered that 

under the reaction conditions, 284 proceeded directly to 288 in a highly stereoselective 

manner. We proposed and confirmed experimentally that this process proceeds through 

an O–H insertion event that delivers reactive enol 287 and not the anticipated α-allyloxy-

β-ketoester 286. These efforts revealed for the first time that rhodium-mediated O–H 

insertion reactions of α-diazoketones proceed via initial proton transfer to oxygen. As 

illustrated in Scheme 3.3.2 the scope of the reaction with acyclic α-diazoketones and both 

chiral and achiral allylic alcohols is broad. Additional mechanistic investigations revealed 

that the rate of Claisen rearrangement was unaffected by Rh(II).9 Kinetic studies were 

performed over a range of 5–90% conversion, and first-order kinetics were observed. 
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 Although catalyst does not affect the [3,3] rearrangement of the intermediate α-

allyloxy enols, we discovered that the Rh(II) catalyst does influence the related 

rearrangement of propargylic alcohols.10 Incorporating a propargylic alcohol into the O–

H insertion sequence gives α-hydroxy allenes 295 and 296 (Scheme 3.3.3) via the 

transient propargyloxy enols (not shown). This process not only provides the opportunity 

to access the expected [3,3] product (295) but also a [2,3] product (296). Importantly, the 

distribution of [3,3] and [2,3] products can be controlled by catalyst identity. As 

illustrated in Scheme 3.3.3, propargyloxy enols undergo a [3,3] rearrangement to the 
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corresponding allene when exposed to Rh2(cap)4 and a [2,3] rearrangement when exposed 

to Rh2(TFA)4. Control experiments indicate that the [2,3]-pathway is mediated by Rh(II).  

 

Scheme 3.3.3 
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3.3.2 Conia-ene Cyclization. 

 

Scheme 3.3.4 
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Having explored the mechanism and scope of the O–H insertion/Claisen 

rearrangement, we aim to explore the related O–H insertion/Conia-ene cyclization. Conia 

reviewed the thermal cyclizations of unsaturated carbonyl compounds in 1975.11 He 

highlighted a variant to the “classic” ene reaction, reviewed by Hoffman in the late 

60’s.12 In a six-electron process known as the Conia-ene cyclization, thermolysis initiates 

a stereospecific, enol 1,5-hydrogen shift with a pendant olefin to forge new ring systems 

(Scheme 3.3.4).13 The review by Conia addresses the limitation of the Conia-ene to 
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simple substrates imposed by the necessity for high reaction temperatures. Over the past 

ten years, there have been significant advances improving reaction conditions for the 

Conia-ene cyclization. In particular transition metal catalysts have provided decreased 

reaction temperatures; however, many require prior enolate generation,14 strong acid,15 or 

photochemical activation.16 

 

3.3.3 Recent Advances in the Conia-ene Cyclization. 

 

Scheme 3.3.5 
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 More recently, Conia-ene cyclizations have been accomplished under truly mild 

conditions. In 2004 Toste reported a gold(I)-catalyzed Conia-ene  reaction of  β-

ketoesters with alkynes at room temperature with low catalyst loading.17 As illustrated in 

Scheme 3.3.5, treatment of methyl acetoacetate 301 with 1.0 mol% of (PPh3)AuCl and 

1.0 mol% of Ag(OTf) in dichloromethane at room temperature gives cycloadduct 302. 

Toste’s study of substrate scope revealed that acyclic and cyclic substrates both proceed 

with high diastereoselectivity. In addition Toste further expanded the utility of the Conia-
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ene cyclization in an enantioselective modification that used chiral phosphine ligands in a 

palladium/ytterbium triflate catalyst system (not shown).18 
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    Although powerful, the utility of Toste’s method has yet to be demonstrated 

beyond the formation of carbocycles. Given the prevalence of heterocycles in 

pharmaceuticals, this in an obvious and potentially important extension that warrants 

further investigation and could provide a concise method for heterocycle construction. 

Recent work by Kerr, wherein a Conia-ene cyclization has been used to form piperidines, 

exemplifies efforts in this direction.19 In this multi-step, one-pot procedure Zn(NTf2)2 

catalyzes the tandem nucleophilic cyclopropane ring-opening/Conia-ene cyclization 

process to provide functionalized piperidines (Scheme 3.3.6). 

 

 

 

 

 

 

 

 



 189 

Figure 3.3.1 
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 Others have contributed to this field by exploring other transition metals such as 

Zn,20 Cu,14c Ni,21 In,22 and Re23 and through mechanistic elucidation. Nakamura and 

coworkers presented a brief outline of the five suggested mechanistic pathways through 

which metal-mediated Conia-ene cyclizations proceed (Figure 3.3.1): a) enol activation, 

b) alkyne activation, c) ene-yne activation, d) double activation by two metals, and e) 

double activation by a single metal.22a Nakamura also categorizes metals by the 

mechanistic pathway to which they correspond. In the metal catalyzed Conia-ene 

cyclization, alkynes predominate as the ene component in most literature examples. This 

preferential use of alkynes is attributed to the ease with which they are activated by 

metals. 
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3.4 N-Methylwelwitindolinone D isonitrile and a Tandem O–H Insertion 

Conia-ene Cyclization. 

 

3.4.1 Retrosynthetic Analysis. 

 

 In the course of exploring alternate strategies towards the synthesis of the 

welwitindolinone alkaloids, we discovered a new reaction sequence that could easily 

access the spiro tetrahydrofuran embedded within N-methylwelwitindolinone D isonitrile 

(20). This observation prompted the creation of a retrosynthetic analysis that highlights 

the utility of a tandem O–H insertion Conia-ene cyclization. 

 Aligned with our retrosynthetic strategy outlined in Scheme 3.4.1, our new 

strategy would rely on a late stage Curtius rearrangement of ester 260 to install the 

bridgehead nitrogen required for completion of 20. Formation of the welwitindolinone 

core would arise through an intramolecular palladium-mediated arylation of the β-keto 

ester embedded within spiro-tetrahydrofuran 315. Spiro-tetrahydrofuran 315 would be 

constructed through an O–H insertion Conia-ene cyclization of diazoisatin 264 and 

functionalized homo-allylic alcohol 316. 
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Scheme 3.4.1 
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3.4.2 Model System. 

 

 Before committing resources to our planned synthetic route (see section 3.4.1, 

Scheme 3.4.1), we wanted to test the viability of construction the welwitindolinone D 

core. To that end, we devised a model system that would exploit the O–H insertion 

tandem Conia-ene cyclization of a simple homo-allylic alcohol to arrive at spiro-oxindole 

320 (Scheme 3.4.2). A projected regioselective allylic oxidation24 of 320 would create 

allylic alcohol 318 and subsequent oxidation would provide enone 319, a substrate poised 

for an intramolecular arylation. Exposure of enone 319 to Heck-type conditions would 

initiate an in situ epimerization of the indicated proton forcing the enone to come into 

close proximity of the aryl bromide facilitating closure to core 320. 

 

 



 192 

 

Scheme 3.4.2 
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 In order to implement our strategy, we had to first direct our attention to the 

creation of spiro-tetrahydrofuran 317. As depicted in Scheme 3.4.3, we began with the 

creation of a more functionalized homo-allylic alcohol (see Scheme 3.2.7 for comparison 

of homo-allylic alcohols). A mono-epoxidation of 1,4-cyclohexadiene (321) with m-

CPBA in a buffered solution created epoxide 322.25 Opening of epoxide 322 with a 

copper catalyzed iso-propenylmagnesium bromide addition then delivered our requisite 

homo-allylic alcohol 323.7 

 

Scheme 3.4.3 
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 Establishment of an efficient means to our desired homo-allylic alcohol 323 

provided us with the opportunity to advance our model system. Fortunately, our key O–H 

insertion Conia-ene cyclization of diazoisatin 271 with homo-allylic alcohol 323 

successfully forged spiro-tetrahydrofuran 317 (Scheme 3.4.4). An X-ray crystal structure 
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of 317 was obtained and confirmed the consistent relative stereochemical outcome as 

compared to 283 (Scheme 3.2.9). 

 

Scheme 3.4.4 
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 With spiro-tetrahydrofuran 317 in hand, regioselective allylic oxidation of the 

disubstituted olefin within 317 was attempted but proved more difficult than anticipated. 

Initially we turned to Riley conditions for the allylic oxidation.24 We speculated that the 

electronic effect of the electronegative oxygen present in the tetrahydrofuran ring would 

differentiate the allylic carbons by deactivating the undesired site from hydrogen 

abstraction. Unfortunately, Riley oxidation conditions provided complex mixtures and we 

were forced to pursue more exotic conditions. 

 Karasch and Sasnovsky reported the oxidation of allylic carbons to allylic 

alcohols through the use of tert-butyl benzoylperoxide and copper(I) bromide.26,27 

Applying this method to our system, we found that we could produce allylic benzoylate 

324 regioselectively. Subsequent treatment of 324 with a 40% solution of LiOH gave 

allylic alcohol 318 in low yield over two steps. Oxidation of allylic alcohol 318 with 

Dess-Martin periodinane then gave enone 319.28 Unfortunately, when we exposed enone 

319 to basic conditions we were unable to effect an epimerization and the reaction 

produced an aromatized product mixture. 
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Scheme 3.4.5 
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3.4.2.1 Exploration of Reaction Conditions. 

 

 With the deleterious inability to epimerize 319 in our model system, we decided 

to investigate the reaction conditions of the O–H insertion Conia-ene cyclization. We 

hoped that if we optimized the yields of the earlier steps we could provide enough 

material for reaction screening to eventually circumvent aromatization and form the 

targeted welwitindolinone D core (320, Scheme 3.4.2). 

 To begin, we first attempted to isolate and identify the major side-product of the 

O–H insertion Conia-ene cyclization of diazoisatin 271 and alcohol 323 (Scheme 3.4.6). 

Upon purification of the reaction, we were able to identify but not isolate an intractable 

mixture of cyclopropanation products (326) and dimer products represented by 273. This 

observation then led to a quick catalyst screen. After considerable efforts, we found that 

rhodium(II) acetate dimer gave the best results. This was not surprising considering the 

O–H insertion Claisen rearrangement chemistry that was developed in our laboratory 
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determined rhodium(II) acetate dimer to be the optimal catalyst in their system. Further 

analysis of the catalyst screen revealed that the more bulky rhodium(II) dimer ligands, 

such as triphenyl acetate and pivylate, favored cyclopropanation over O–H insertion. 

 Other modifications of the reaction conditions were also attempted including 

solvent screens and addition restrictions. We found that if we varied the solvent among 

methylene chloride, toluene, or benzene we obtained comparable results. Dilution or 

concentration of the reaction mixture also gave indistinguishable observations, thus 

proving the optimization of the production of spiro-THF 317 difficult. 
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 Because of the problematic optimization of the formation of spiro-THF 317, we 

were worried that the reaction sequence was inherently flawed. To prove to ourselves that 

the poor yielding reaction wasn’t universal, we decided to modify the substrate pairing. 

Depicted in Scheme 3.4.7 is our first alteration. We exposed diazoisatin 271 to homo-

allylic alcohol 327 in the presence of rhodium(II) acetate dimer and isolated O–H 

insertion product 328 in 42% yield. Subsequent heating of 328 in deuterated toluene at 
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200 °C in a sealed NMR tube gave spiro-cycle 329 after 48 hours as a 1:1.75 mixture of 

starting material to product, respectively.  

 

Scheme 3.4.7 
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 To further prove to ourselves that the low yield of the reaction sequence in 

Scheme 3.4.6 (271 → 317) was a result of substrate pairing (alcohol vs. diazo 

compound), we changed diazoisatin 271 to methyl diazoacetylacetate 284 (Scheme 

3.4.8). Under the same reaction conditions as seen in Scheme 3.4.6, we initiated an O–H 

insertion to provide β-keto ester 330 in 67% yield, a 25% yield increase from the 

diazoisatin reaction. However, subsequent heating of β-keto ester 330 failed to deliver 

expected spiro-cycle 332. We believe that an inherent 1,3-diaxial interaction within the 

transition state 331 prevented the cyclization. Substitution of homo allylic alcohol 327 

with homo propargylic alcohol 333 (see Scheme 3.4.9) circumvented this problem and 

supports our speculation that the O–H insertion of diazoisatin 271 is the problematic step 

in our model system and that the O–H insertion Conia-ene reaction sequence is not 

flawed. 
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Scheme 3.4.8 
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 In the course of exploring the reaction conditions of the O–H insertion Conia-ene 

cyclization, we made an interesting observation (Scheme 3.4.9). We found that if we 

treated diazo 284 with homo-propargylic alcohol 333 in the presence of rhodium(II) 

acetate dimer we isolated enol-ether 334 after 20 min. Subsequent heating of enol-ether 

334 in benzene for 24 hrs in the absence of rhodium(II) acetate dimer did not afford any 

desired spiro-cycle (335). However, when we exposed methyl diazoacetylacetate 284 to 

homo-propargylic alcohol 333 in the presence of rhodium(II) acetate dimer in a sealed 

tube heated at 85 °C for 24 hrs, we exclusively isolated desired spiro-cycle 335. This 

series of reactions imply that rhodium(II) facilitates the sequential Conia-ene cyclization. 

At this juncture, we are unsure of whether rhodium(II) acts as a π-Lewis acid, 

coordinating to the alkyne or as a Lewis-acid, coordinating to the oxygen thus promoting 

enolization. 
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3.4.2.2 Mechanistic Rationale. 

 

 In an attempt to rationalize the product distribution of the O–H insertion Conia-

ene cyclization of diazoisatin 271 and homo-allylic alcohol 323 (see Scheme 3.4.6 for 

reaction scheme), we devised a mechanism (Scheme 3.4.10). We believe that the 

rhodium(II)-mediated dediazotization of diazoisatin 271 produces rhodium carbenoid 

336. This rhodium carbenoid (336) can then undergo a dimerization to give 

representative dimer adduct 273, thus removing reacting starting material and partially 

explaining a decreased yield. 

As homo-allylic alcohol 323 is slowly added to the reaction flask, rhodium 

carbenoid 336 can form oxonium ylide 337 or cyclopropanation adducts 326. Because 

literature precedence has shown oxonium ylide formations to be reversible,29 we believe 

that the reversibility of oxonium ylide 326 formation siphons off the rhodium carbenoid 

336 as irreversible cyclopropanation products (326). The remaining oxonium ylide 337 

can undergo a 1,4-proton shift to deliver enol 338 and recycle the rhodium(II) catalyst. 

Enol 338 then can undergo a thermally induced Conia-ene cyclization. 

This mechanistic rationale highlights several observations. First, the rhodium-

mediated dediazotization of diazoisatin 271 to form rhodium carbenoid 336 requires heat, 

reflecting the stability of diazoisatin 271. We believe that the heat required to initiate the 

carbenoid formation also increases the reversibility of the oxonium ylide 337 formation. 

Second and in accordance with the first, the product distribution suggests that 

cyclopropanation and dimerization are faster than the 1,4-proton shift.  
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3.4.3 Attempted O–H Insertion Conia-ene Cyclization of a Complex Alcohol: 

Inspiration from Fukuyama. 

 

 Although we were unable to optimize the O–H insertion Conia-ene cyclization of 

our model system, we were determined to use this method for the formation of 

welwitindolinone D isonitrile (20) despite the inherent low yield related to diazoisatin 

271. To that end and to quickly assess the viability of the O–H insertion Conia-ene 

cyclization of a more functionalized homo-allylic alcohol, we searched the literature for a 

known, suitable component. 
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Scheme 3.4.11 
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 Our search eventually led to a report by Fukuyama on the first total synthesis of 

(–)-Hapalindole G (341, Scheme 3.4.11).30 In this report, the synthesis of (–)-Hapalindole 

G (341) was completed in 19 steps starting from commercially available (–)-carvone 

(339). After 10 steps they arrived at ketone 340, a substrate that we believed could be 

transformed into a functionalized homo-allylic alcohol required for our projected O–H 

insertion Conia-ene cyclization. As depicted in Scheme 3.4.12, a Rubottom oxidation of 

ketone 34031 would provide α-hydroxy ketone 342, the homo-allylic alcohol motif 

necessary for the subsequent O–H insertion Conia-ene cyclization (342 → 343). 
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 In accord with our broad strategy outlined in Scheme 3.4.12, we began by 

synthesizing Fukuyama’s ketone 340 by following his exact route. Starting from 
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enantioenriched (–)-carvone (339), an epoxidation provided epoxy-ketone 344 where 

subsequent exposure to anhydrous hydrazine initiated a Wharton transposition to deliver 

allylic alcohol 345. Exposure of allylic alcohol 345 to acid chloride 346 in the presence 

of triethylamine then gave mixed malonyl 347 in excellent yield. Subsequent 

diazotransfer with p-ABSA then created diazomalonyl 348. Treatment of diazomalonyl 

348 with Cu(TBS)2 induced a cyclopropanation that resulted in lactone 349. 

 Heating lactone 349 in DMF in the presence of LiCl and CSA opened the 

cyclopropane ring and induced a Krapcho decarboxylation to deliver compound 350. 

Bromination of lactone 350 to bromolactone 351 followed by a reduction provided 

bromohydrine 352. According to Fukuyama, this two-part reduction is necessary to avoid 

over reduction to the primary alcohol (not shown). Transformation of 352 with zinc-

copper couple to the ethylene moiety in 353 established the desired quaternary center for 

welwitindolinone D isonitrile (20). Jones oxidation of alcohol 353 then completed the 

synthesis of Fukuyama’s ketone (340). 
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 With ketone 340 in hand, we were poised to implement our planned Rubottom 

oxidation to form the requisite homo-allylic alcohol motif (Scheme 3.4.14). Initial 

attempts to form silyl enol ether 354 via deprotonation and silation were unsuccessful. 

Ultimately, we found that exposure of ketone 340 to TMSOTf and triethylamine in 

CH2Cl2 at reflux delivered silyl enol ether 354 in near quantitative yield. Exposure of 

silyl enol ether 354 to m-CPBA resulted in the formation of α-hydroxy ketone 342. The 

relative stereochemistry was determined via analysis of the 1H coupling constants. 
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 The establishment of a functionalized homo-allylic alcohol (342) gave us the 

opportunity to test the viability of the O–H insertion Conia-ene cyclization to construct 

welwitindolinone D isonitrile (20) (Scheme 3.4.15). Unfortunately, when alcohol 342 and 

diazoisatin 271 were subjected to the O–H insertion Conia-ene cyclization conditions, 

spiro-THF 343 was not observed. Crude 1H NMR indicates an intractable mixture of 

cyclopropanation adducts and dimerization of diazoisatin 271. 

 

Scheme 3.4.14 
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3.5 Conclusion. 

 

 After several failed attempts to construct N-methylwelwitindolinone C 

isothiocyanate (16), we shifted our attention to N-methylwelwitindolinone D isonitrile 
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(20) with the intent of accessing the entire welwitindolinone family. Our initial plan to 

build the embedded bridged THF-ring system via a tandem carbonyl-ylide 1,4 addition 

ultimately was unsuccessful, however those failures led to the discovery of a new 

reaction sequence, the O–H insertion Conia-ene cyclization. 

 Our group has conducted extensive studies in the realm of O–H insertion tandem 

[2,3]/[3,3] rearrangements. The discovery of the O–H insertion Conia-ene cyclization 

provided a nice extension to our established studies. This new tandem reaction sequence 

also paved a new pathway for the construction of the embedded THF-ring system within 

welwitindolinone D isonitrile (20). Brief explorations of the reaction conditions revealed 

diazoisatin 271 to be a poor substrate for the sequence, yet we still believed it would 

serve our purpose. A simple model system demonstrated the utility of this method, but 

elaboration to welwitindolinone core 320 proved difficult and the model system was 

abandoned. 

 An attempt to expedite the synthesis of welwitindolinone D isonitrile (20) led to 

the exploitation of a compound built by Fukuyama in 1994. A Rubottom oxidation gave 

the desired homo-allylic alcohol motif necessary for the implementation of our tandem 

O–H insertion Conia-ene cyclization. Unfortunately, our efforts to induce our tandem 

reaction sequence with a more functionalized alcohol failed and we were unable to 

proceed forward. 

 Despite our immediate failed attempts to gain access to the welwitindolinones via 

our newly discovered O–H insertion Conia-ene cyclization, considerable room for 

substrate exploration still remains. The next phase will explore swapping the diazo and 
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alcohol functionalities on the coupling partners and conducting the arylation of the 

coupling partners before the O–H insertion Conia-ene cyclization. 

 

3.6 Experimental Section. 

 

3.6.1 Material and Methods. 

 

Unless otherwise stated, reactions were magnetically stirred in flame-dried 

glassware under an atmosphere of nitrogen. Triethylamine (Et3N) and methanol were 

dried over calcium hydride and freshly distilled. Benzene, tetrahydrofuran, 

dichloromethane, toluene, and diethyl ether were dried using a solvent purification 

system manufactured by SG Water U.S.A., LLC using technology based upon that 

originally described by Grubbs et al.32 Reagent grade DMF, DMSO, acetone, and 1,2-

dichloroethane were supplied by Fischer Scientific and purchased from the Colorado 

State Chemistry Stockroom. All other commercially available reagents were used as 

received.  

 Unless otherwise stated, all reactions were monitored by thin-layer chromatography 

(TLC) using Silicycle glass-backed extra hard layer, 60 Å plates (indicator F-254, 250 

µm). Column or flash chromatography was performed with the indicated solvents using 

Silicycle SiliaFlash® P60 (230-400 mesh) silica gel as the stationary phase. 

Chromatography was conducted in accordance with the guidelines reported by Still et 

al.33 All melting points were obtained on a Gallenkamp capillary melting point apparatus 

(model: MPD350.BM2.1) and are uncorrected. Infrared spectra were obtained using a 
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Nicolet Avatar 320 FTIR or Bruker Tensor 27 FTIR. 1H and 13C NMR spectra were 

recorded on a Varian Inova 400, Varian Inova 400 autosampler, or Varian Inova 300 

spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to 

internal residual solvent peaks from indicated deuterated solvents. Coupling constants (J) 

are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. Multiplicities are 

defined as: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, m = 

multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dddd = doublet 

of doublet of doublet of doublets, br = broad, app = apparent, par = partial. High-

resolution mass spectra were performed at the Central Instrument Facility by Donald L. 

Dick of Colorado State University. Single-crystal X-ray analyses were performed by 

Susie Miller and Brian Newell of Colorado State University. 

 

 

3.6.2 Preparative Procedures: 

 

Preparation of Tosyl Hydrazone 269. 

 

N
H

O

NBr NHTs

269  

 

 Tosyl Hydrazone 269. 4-Bromoisatin (268, 1.0 g, 4.424 mmol, 1.0 equiv.) was 

diluted in MeOH (16.4 mL) before p-toluenesulfonyl hydrazide (832 mg, 4.468 mmol, 

1.01 equiv.) and 2 drops of concentrated hydrochloric acid were added. The solution was 
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stirred for 10 minutes at room temperature and then heated at 45 °C until determined 

complete by TLC (approx. 1hr). The resulting suspension was concentrated, filtered, and 

washed with cold MeOH. Recrystallization from MeOH gave tosyl hydrazone 269 (1.383 

g, 79% yield) as a yellow powder: m.p. 181.5-182 °C; FTIR (thin film/NaCl) 3137, 3072, 

1709, 1619, 1582, 1439, 1395, 1355, 1322, cm-1; 1H NMR (300 MHz, DMSO-d6) δ 12.6 

(s, 1H), 11.38 (s, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 4.2 

Hz, 2H), 6.87 (t, J = 4.2 Hz, 1H), 2.36 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 161.3, 

144.5, 144.0, 136.0, 134.6, 132.5, 129.7, 128.0, 126.8, 117.8, 115.6, 110.2, 21.1; HRMS 

(EI) m/z 393.9853 [cacl’d for C15H13BrN3O3S (M+) 393.9856]. 

 

Preparation of 4-Bromo-Diazoisatin 270. 

 

N
H

O

N2Br

270  

 

 4-Bromo-Diazoisatin 270. Tosyl hydrazone 269 (1.283 g, 3.254 mmol, 1.0 

equiv.) was taken up in THF (10 mL) before a 0.2N solution of NaOH (33 mL, 6.509, 2.0 

equiv.) was added. As determined by TLC, the reaction was complete after 5 minutes. 

CO2 was then bubbled through the reaction for 30 minutes. The resulting suspension was 

filtered, rinsed with cold water, and azeotropically dried with benzene to afford 4-bromo-

diazoisatin 270 (547 mg, 70% yield) as an orange powder: FTIR (thin film/NaCl) 3135, 

2104, 1684, 1616, 1580, 1487, 1444, 1413, 1380, 1313, 1252 cm-1; 1H NMR (300 MHz, 

DMSO-d6) δ 10.94 (s, 1H), 7.15 (dd, J = 3.6, 8.0 Hz, 1H), 7.04 (ddd, J = 4.4, 8.0, 8.0 Hz, 
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1H), 6.92 (dd, J = 3.6, 8.0 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 167.2, 134.2, 

126.7, 124.3, 116.0, 113.3, 109.3; HRMS (EI) m/z 237.9608 [cacl’d for C8H5BrN3O 

(M+) 237.9611]. 

 

Preparation of 4-Bromo-N-Methyl-Diazoisatin 271. 

 

N
O

Me

N2Br

271  

 

 4-Bromo-N-Methyl-Diazoisatin 271. A solution of 4-bromo-diazoisatin 270 (66 

mg, 0.277 mmol, 1.0 equiv.) in DMF (2.77 mL) was cooled to 0 °C and treated with NaH 

(60% by weight, 12 mg, 0.305 mmol, 1.1 equiv.). After stirring at 0 °C for 10 minutes, 

MeI (20 µL, 0.305 mmol, 1.1 equiv.) was added dropwise. The reaction was then slowly 

warmed to room temperature over 1hr whereupon TLC indicated the consumption of 

starting material. 1M HCL was added followed by EtOAc and copious amounts of water 

(approx. 10:1 H2O:DMF). The mixture was extracted with EtOAc, washed with brine, 

and dried over MgSO4. Purification via silica gel chromatography (15% EtOAc/hexanes) 

gave 4-bromo-N-methyl-diazoisatin 271 (62 mg, 89% yield) as an orange solid: FTIR 

(thin film/NaCl) 2101, 1687, 1608, 1456, 1398, 1287 cm-1; 1H NMR (400 MHz, CDCl3) 

δ 7.12 (d, J = 8.4 Hz, 1H), 7.02 (t, J = 8.4 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 3.28 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ 166.6, 135.7, 126.2, 125.3, 116.0, 113.9, 107.4, 94.5, 

27.1; HRMS (EI) m/z 251.9768 [cacl’d for C9H7BrN3O (M+) 251.9767]. 
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Preparation of Homo-Allylic Alcohol 281. 

 

HO

Me

281  

 

 Homo-Allylic Alcohol 281. Cyclohexene oxide (1.0 mL, 9.88 mmol, 1.0 equiv.) 

was diluted in Et2O (5 mL) and cooled to –30 °C before CuCN (186 mg, 2.075 mmol, 

0.21 equiv.) was added. The resulting suspension was stirred for 15 minutes at –30 °C 

whereupon iso-propenylmagnesium bromide (0.59 M, 33.5 mL, 19.766 mmol, 2.0 equiv.) 

was added slowly. The reaction was warmed to room temperature over 2hrs. Upon 

completion as indicated by TLC (approx. 3hrs), a solution of NH4OH:NH4Cl (9:1) was 

added and stirred for 3hrs where a light blue color persisted. The solution was extracted 

with EtOAc, washed with brine, and dried over MgSO4. Filtration and concentration of 

the solution yielded, without purification homo-allylic alcohol 281 (1.387 g, 95% yield). 

All characterization data has previously been reported. 
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Preparation of Spirocycle 283. 

 

N

O
O

Br

Me

H
H

283
 

 

 Spirocycle 283. 4-Bromo-N-methyl-diazoisatin 271 (57 mg, 0.226 mmol, 1.0 

equiv.) and homo-allylic alcohol 281 (38 mg, 0.271 mmol, 1.2 equiv.) were diluted in 

CH2Cl2 (2.26 mL) before rhodium (II) acetate dimer (10 mg, 0.023 mmol, 0.1 equiv.) was 

added. The reaction vessel was sealed and heated to 60 °C. After 20 minutes the reaction 

vessel was cooled to room temperature whereupon TLC indicated the consumption of 

starting material. The reaction was concentrated, taken up in benzene and loaded directly 

onto a column. Purification via column chromatography (10% EtOAc/hexanes) gave 

spirocycle 283 (28 mg, 34% yield) as a crystalline white solid and as a single 

diastereomer: m.p. 131.5-132.5; FTIR (thin film/NaCl) 2936, 2863, 1732, 1604, 1579, 

1453, 1394, 1370, 1339, 1288, 1243, cm-1; 1H NMR (400 MHz, CDCl3) δ 7.10-7.03 (m, 

2H), 6.67 (d, J = 7.2 Hz, 1H), 4.02 (ddd, J = 4.0, 10.8, 10.8 Hz, 1H), 3.05 (s, 3H), 2.27-

2.23 (m, 1H), 2.16 (ddd, J = 3.2, 11.6, 11.6 Hz, 1H), 1.85 (dd, J = 11.6, 20.8 Hz, 2H), 

1.70-1.59 (m, 2H), 1.34-1.08 (m, 4H), 1.05 (s, 3H), 0.89 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 179.4, 146.0, 130.2, 128.7, 127.3, 120.3, 107.2, 91.2, 83.0, 55.2, 48.6, 31.3, 

26.5, 25.8, 25.3, 25.1, 24.2, 23.4; HRMS (EI) m/z 364.0911 [cacl’d for C18H23BrNO2 

(M+) 364.0907]. 
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Preparation of Homo-Allylic Alcohol 323. 

 

HO

Me

323  

 

 Homo-Allylic Alcohol 323. Starting from 1,4-cyclohexadiene (321), mono-

epoxide 322 was prepared according to reported literature procedures. Mono-epoxide 322 

(1.586 g, 16.498 mmol, 1.0 equiv.) was diluted in THF (8.3 mL) and cooled to –30 °C 

before CuCN (310 mg, 3.465 mmol, 0.21 equiv.) was added. The resulting suspension 

was stirred for 15 minutes at –30 °C whereupon iso-propenylmagnesium bromide (0.50 

M, 66.0 mL, 32.997 mmol, 2.0 equiv.) was added slowly. The reaction was warmed to 

room temperature over 2hrs. Upon completion as indicated by TLC (approx. 3hrs), a 

solution of NH4OH:NH4Cl (9:1) was added and stirred for 3hrs where a light blue color 

persisted. The solution was extracted with EtOAc, washed with brine, and dried over 

MgSO4. After filtration and concentration, purification via column chromatography of the 

resulting oil (5% EtOAc/hexanes) gave isopropenyl-cyclohexen-ol 323 (1.563 g, 69% 

yield) as a pale yellow oil: FTIR (thin film/NaCl) 3360, 2915, 1645, 1437, 1375, 1334, 

1258 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.66-5.56 (m, 2H), 4.97 (t, J = 1.6 Hz, 1H), 

4.92 (s, 1H), 3.83 (ddd, J = 5.6, 9.2, 9.2 Hz, 1H), 2.53-2.46 (m, 1H), 2.34 (ddd, J = 6.0, 

10.4, 10.4 Hz, 1H), 2.17-2.11 (m, 2H), 2.08-1.99 (m, 1H), 1.87 (s, 1H), 1.76 (s, 3H); 13C 

NMR (75 MHz, CDCl3) δ 145.9, 126.1, 124.5, 113.8, 68.0, 50.2, 34.0, 30.5, 19.4; HRMS 

(APCI) m/z 139.112 [cacl’d for C9H15O (M+) 139.1117]. 



 212 

 

Preparation of Spirocycle 317. 

 

N

O
O

Br

Me

H
H

317
 

 

 Spirocycle 317. 4-Bromo-N-methyl-diazoisatin 271 (904 mg, 3.586 mmol, 1.0 

equiv.) and isopropenyl-cyclohexen-ol 323 (2.422 g, 17.524 mmol, 5.0 equiv.) were 

diluted in CH2Cl2 (48 mL) before rhodium (II) acetate dimer (24 mg, 0.036 mmol, 0.01 

equiv.) was added. The reaction vessel was sealed and heated to 60 °C. After 20 minutes 

the reaction vessel was cooled to room temperature whereupon TLC indicated the 

consumption of starting material. The reaction was concentrated, taken up in benzene and 

loaded directly onto a column. Purification via column chromatography (100% CH2Cl2) 

gave spirocycle 317 (397 mg, 30% yield) as a white powder and as a 4:1 mixture of 

diastereomers: m.p. 134.3-135.7 °C; FTIR (thin film/NaCl) 2962, 2917, 2850, 1730, 

1603, 1579, 1453, 1345, 1326, 1287, 1241, 1213 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.13-7.06 (m, 2H), 6.71 (d, J = 7.2 Hz, 1H), 5.76-5.64 (m, 2H), 4.32 (ddd, J = 6.0, 10.4, 

17.2 Hz, 1H), 3.09 (s, 3H), 2.69 (dt, J = 5.2, 16.4 Hz, 1H), 2.56-2.46 (m, 2H), 2.16-2.09 

(m, 1H), 2.06-1.97 (m, 1H), 1.11 (s, 3H), 0.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

179.3, 146.1, 130.4, 128.7, 127.6, 127.4, 126.8, 126.7, 125.2, 124.8, 120.5, 107.3, 107.1, 

91.8, 79.8, 79.3, 51.3, 50.1, 48.2, 47.0, 33.4, 32.1, 26.6, 26.2, 26.0, 25.9, 25.5, 23.8, 23.3, 

21.5; HRMS (DART) m/z 362.0746 [cacl’d for C18H21BrNO2 (M+) 362.075]. 
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Preparation of Allylic Benzoylate 324. 

 

N

O
O

Br

Me

H
H

BzO

324
 

 

 Allylic Benzoylate 324. To a solution of spirocycle 317 (52 mg, 0.144 mmol, 1.0 

equiv.) in CH2Cl2 (0.8 mL) was added rigorously dried CuBr (41 mg, 0.287 mmol, 2.0 

equiv.). The resulting suspension was heated at reflux for 15 minutes then cooled to room 

temperature before t-butylperoxybenzoate (0.11 mL, 0.574 mmol, 4.0 equiv.) was slowly 

added. The reaction was again heated at reflux for 6hrs whereupon TLC indicated the 

reaction complete. Upon cooling to room temperature, an aliquot of sat. Na2S2O3 was 

added and the mixture was stirred for 10 minutes then extracted with CH2Cl2, washed sat. 

NaHCO3, brine, and dried over MgSO4. After filtration and concentration, purification 

via column chromatography (15% EtOAc/hexanes) gave allylic benzoylate 324 (33 mg, 

48% yield) as a colorless oil and as a mixture of diastereomers: FTIR (thin film/NaCl) 

2965, 2932, 2869, 1727, 1604, 1580, 1453, 1350, 1329, 1269 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 8.07 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.17-

7.09 (m, 2H), 6.72 (d, J = 7.6 Hz, 1H), 5.89-5.76 (m, 3H), 4.49 (ddd, J = 5.6, 9.6, 11.6 

Hz, 1H), 3.09 (s, 3H), 3.01 (t, J = 11.6 Hz, 1H), 2.77 (dt, J = 5.6, 16.8 Hz, 1H), 2.67-2.59 

(m, 1H), 1.24 (s, 3H), 1.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.7, 166.1, 146.2, 

133.3, 130.7, 130.1, 129.8, 129.7, 128.6, 128.5, 128.2, 128.1, 127.7, 127.4, 120.6, 107.5, 
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91.8, 71.9, 55.3, 47.9, 31.7, 27.3, 26.7, 23.5; HRMS (EI) m/z 504.0791 [cacl’d for 

C25H24BrNNaO4 (M+) 504.0781]. 

 

Preparation of Allylic Alcohol 318. 

 

N

O
O

Br

Me

H
H

HO

318
 

 

 Allylic Alcohol 318. To a solution of allylic benzoylate 324 (33 mg, 0.068 mmol, 

1.0 equiv.) in THF (2 mL) was added a saturated solution of LiOH (2 mL). The biphasic 

mixture was heated at 70 °C until no starting material remained as indicated by TLC 

(approx. 4hrs). The reaction was cooled to room temperature, extracted with EtOAc, 

washed with NaHCO3, then brine, and dried over MgSO4. After filtration and 

concentration, purification via column chromatography (30% EtOAc/hexanes) gave 

allylic alcohol 318 (7 mg, 27% yield) as an amorphous white solid: FTIR (thin 

film/NaCl) 3436, 2968, 2926, 2877, 1724, 1605, 1580, 1453, 1392, 1349, 1289, 1246, 

1216 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.15 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 7.2 Hz, 

1H), 6.71 (d, J = 7.2 Hz, 1H), 5.76-5.67 (m, 2H), 4.40 (d, J = 8.0 Hz, 1H), 4.33 (ddd, J = 

5.6, 10.4, 10.4 Hz, 1H), 3.09 (s, 3H), 2.65-2.61 (m, 1H), 2.55 (d, J = 10 Hz, 1H), 2.47 (t, 

J = 11.2 Hz, 1H), 2.31 (d, J = 10 Hz, 1H), 1.3 (s, 3H), 1.13 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 179.0, 146.2, 132.5, 130.6, 128.4, 127.4, 125.9, 120.6, 107.4, 91.7, 77.7, 69.4, 
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59.1, 48.2, 31.8, 27.7, 26.6, 23.3; HRMS (EI) m/z 378.0695 [cacl’d for C18H21BrNO3 

(M+) 378.0699]. 

 

Preparation of Enone 319. 

 

N

O
O

Br

Me

H
H

O

319
 

 

 Enone 319. A solution of allylic alcohol 318 (7 mg, 0.019 mmol, 1.0 equiv.) in 

CH2Cl2 (0.62 mL) was treated with DMP (12 mg, 0.028 mmol, 1.5 equiv.) at room 

temperature. After 4hrs the reaction was complete as indicated by TLC. The reaction was 

diluted with water, extracted with EtOAc, washed with brine, and dried over MgSO4. 

After filtration and concentration, purification via column chromatography (20% 

EtOAc/hexanes) gave enone 319 (3 mg, 43% yield) as a white solid: m.p. 168-169 °C; 

FTIR (thin film/NaCl) 2977, 2933, 2876, 1731, 1687, 1604, 1579, 1454, 1378, 1345, 

1325, 1288, 1255, 1226 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.13-7.10 (m, 2H), 6.93 (t, J 

= 8.0 Hz, 1H), 6.72 (d, J = 6.8 Hz, 1H), 6.05 (d, J = 9.6 Hz, 1H), 4.71 (ddd, J = 4.8, 12.0, 

12.0 Hz, 1H), 3.34 (d, J = 12.4 Hz, 1H), 3.10 (s, 3H), 3.06 (dt, J = 5.6, 18.0 Hz, 1H), 2.85 

(dd, J = 10.0, 17.6 Hz, 1H), 1.36 (s, 3H), 1.17 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

196.5, 178.3, 146.3, 145.8, 132.1, 130.9, 127.8, 127.4, 120.3, 107.6, 91.3, 77.8, 61.8, 

47.7, 32.8, 26.7, 26.1, 22.7; HRMS (EI) m/z 376.0545 [cacl’d for C18H19BrNO3 (M+) 

376.0543]. 
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Preparation of Ether 328. 

 

N
O

Me

Br O
Me

328  

 

 Ether 328. To a solution of 4-bromo-N-methyl-diazoisatin 271 (50 mg, 0.179 

mmol, 1.0 equiv.) in CH2Cl2 (0.6 mL) was added 3-methyl-3-butene-1-ol (22 µL, 0.214 

mmol, 1.2 equiv.). The mixture was stirred for 5 minutes before rhodium(II) acetate 

dimer (4 mg, 0.009 mmol, 0.05 equiv.) was added. The reaction vessel was sealed and 

heated at 60 °C for 20 minutes whereupon the reaction was complete as indicated by 

TLC. The solution was concentrated, taken up in benzene, and loaded directly onto a 

silica gel column. Purification via column chromatography (15% EtOAc/hexanes) gave 

ether 328 (23 mg, 42% yield) as a colorless oil: FTIR (thin film/NaCl) 2937, 2869, 1727, 

1650, 1608, 1586, 1457, 1361, 1340, 1299, 1201 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.19 (d, J = 4.4 Hz, 2H), 6.74 (t, J = 4.0 Hz, 1H), 4.82 (s, 1H), 4.79 (s, 1H), 4.78 (s, 1H), 

4.04 (dd, J = 6.8, 15.6 Hz, 1H), 3.79 (dd, J = 6.8, 15.2 Hz, 1H), 3.16 (s, 3H), 2.43 (t, J = 

6.8 Hz, 2H), 1.77 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 174.0, 146.1, 142.5, 131.5, 

126.7, 124.9, 121.0, 111.8, 107.3, 76.7, 68.4, 38.1, 26.4, 22.9; HRMS (EI) m/z 310.0432 

[cacl’d for C14H17BrNO2 (M+) 310.0437]. 
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Preparation of Spirocycle 329. 

 

N

O
O

Br
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 Spirocycle 329. A solution of ether 328 (15.0 mg, 0.48 mmol, 1.0 equiv.) in 

toluene-d8 (0.6 mL) was placed in a Wilmad NMR tube with a J. Young valve and heated 

at 200 °C in an oil bath. The reaction was monitored periodically by NMR analysis. After 

48hrs, NMR analysis of the reaction revealed a mixture of starting material, product and 

decomposition side-products. The reaction was immediately purified via column 

chromatography (15–20% EtOAc/hexanes) to give a mixture of 328:329 (13 mg, 87% 

combined yield) as a 1:1.75 mixture, respectively, and as a colorless oil. Further 

purification via column chromatography (3.0% EtOAc/benzene) gave 329 (5.0 mg, 34% 

yield) and 328 (4.0 mg, 27% yield) as colorless oils. Spirocycle 329 was characterized as 

follows: FTIR (thin film/NaCl) 2964, 2938, 2881, 1728, 1602, 1578, 1452, 1369, 1358, 

1335, 1287, 1236 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 8.4 Hz, 1H), 7.12 (t, J 

= 7.6 Hz, 1H), 6.71 (d, J = 7.2 Hz, 1H), 4.42 (ddd, J = 3.6, 8.0, 8.0 Hz, 1H), 4.37 (ddd, J 

= 6.4, 8.0, 8.0 Hz, 1H), 3.08 (s, 3H), 2.52 (ddd, J = 11.6, 8.0, 8.0 Hz, 1H), 2.02 (ddd, J = 

4.0, 6.4, 13.2 Hz, 1H), 1.21 (s, 3H), 1.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 179.2, 

146.3, 130.4, 127.7, 126.9, 120.3, 107.1, 91.9, 68.5, 48.6, 39.2, 26.7, 26.2, 24.8; HRMS 

(EI) m/z 310.0439 [cacl’d for C14H17BrNO2 (M+) 310.0437]. 
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Preparation of Ether 330. 

 

O

MeO Me
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 Ether 330. Starting from methylacetoacetate, diazomethylacetoacetate 284 was 

prepared according to reported literature procedures. To a solution of 

diazomethylacetoacetate 284 (54 mg, 0.380 mmol, 1.0 equiv.) in benzene (1.27 mL) was 

added 3-methyl-3-butene-1-ol (46 µL, 0.456 mmol, 1.2 equiv.) The mixture was stirred 

for 5 minutes before rhodium(II) acetate dimer (4 mg, 0.009 mmol, 0.05 equiv.) was 

added. The reaction vessel was sealed and heated at 85 °C for 20 minutes whereupon the 

reaction was complete as indicated by TLC. The solution was loaded directly onto a silica 

gel column. Purification via column chromatography (10–15% EtOAc/hexanes) gave 

ether 284 (51.0 mg, 67% yield) as a colorless oil: FTIR (thin film/NaCl) 2956, 1754, 

1729, 1651, 1438, 1357, 1262, 1201 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.78 (s, 1H), 

4.73 (s, 1H), 4.34 (s, 1H), 3.77 (s, 3H), 3.76-3.70 (m, 1H), 3.58 (dt, J = 6.8, 8.8 Hz, 1H), 

2.38 (t, J = 6.8 Hz, 2H), 2.24 (s, 3H), 1.74 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 202.4, 

167.8, 142.0, 112.2, 85.6, 69.8, 52.8, 37.6, 26.4, 22.7; HRMS (EI) m/z 223.094 [cacl’d 

for C10H16NaO4 (M+) 223.0941]. 
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Preparation of Enol Ether 334. 
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 Enol Ether 334. Starting from methylacetoacetate, diazomethylacetoacetate 284 

was prepared according to reported literature procedures. To a solution of 

diazomethylacetoacetate 284 (53 mg, 0.373 mmol, 1.0 equiv.) in benzene (1.24 mL) was 

added 3-butyn-1-ol (34 µL, 0.448 mmol, 1.2 equiv.) The mixture was stirred for 5 

minutes before rhodium(II) acetate dimer (1 mg, 0.002 mmol, 0.006 equiv.) was added. 

The reaction vessel was sealed and heated at 85 °C for 20 minutes whereupon the 

reaction was complete as indicated by TLC. The solution was loaded directly onto a silica 

gel column. Purification via column chromatography (10–15% EtOAc/hexanes) gave 

ether 334 (54.0 mg, 79% yield) as a colorless oil: FTIR (thin film/NaCl) 3288, 2957, 

2883, 1753, 1730, 1662, 1438, 1358, 1262, 1202 cm-1; 1H NMR (400 MHz, CDCl3) δ 

4.42 (s, 1H), 3.78 (s, 3H), 3.76-3.71 (m, 1H), 3.62 (dt, J = 7.2, 9.2 Hz, 1H), 2.56-2.51 (m, 

2H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 201.9, 167.4, 85.6, 80.5, 70.0, 69.3, 

52.9, 26.5, 19.9; HRMS (EI) m/z 207.0629 [cacl’d for C9H12NaO4 (M+) 207.0628]. 
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Preparation of THF 335. 
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 THF 335. Starting from methylacetoacetate, diazomethylacetoacetate 284 was 

prepared according to reported literature procedures. To a solution of 

diazomethylacetoacetate 284 (50 mg, 0.352 mmol, 1.0 equiv.) in benzene (1.17 mL) was 

added 3-butyn-1-ol (32 µL, 0.422 mmol, 1.2 equiv.) The mixture was stirred for 5 

minutes before rhodium(II) acetate dimer (1 mg, 0.002 mmol, 0.006 equiv.) was added. 

The reaction vessel was sealed and heated at 85 °C for 24hrs whereupon the reaction was 

complete as indicated by TLC. The solution was loaded directly onto a silica gel column. 

Purification via column chromatography (10–15% EtOAc/hexanes) gave THF 335 (50.0 

mg, 77% yield) as a colorless oil: FTIR (thin film/NaCl) 2957, 2890, 1749, 1732, 1662, 

1436, 1355, 1244 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.37 (t, J = 2.4 Hz, 1H), 5.35 (t, J 

= 2.4 Hz, 1H), 4.14 (dd, J = 8.4, 14.4 Hz, 1H), 4.07 (dd, J = 7.6, 16.0 Hz, 1H), 3.75 (s, 

3H), 2.69-2.64 (m, 2H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 202.0, 168.8, 143.3, 

112.4, 91.5, 68.6, 53.1, 32.8, 25.6; HRMS (EI) m/z 185.0808 [cacl’d for C9H13O4 (M+) 

185.0808]. 
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Preparation of Silyl Enol Ether 354. 
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 Silyl Enol Ether 354.35 Starting from (–)-carvone (339), ketone 340 was prepared 

according to Fukuyama’s literature procedure. Ketone 340 (77 mg, 0.362 mmol, 1.0 

equiv.) was diluted in CH2Cl2 (3.62 mL). Triethylamine (0.5 mL, 3.62 mmol, 10.0 equiv.) 

was added followed by TMSOTf (0.33 mL, 1.810 mmol, 5.0 equiv.) and the reaction was 

heated at reflux. Upon completion as indicated by TLC (approx. 30 minutes), the reaction 

was cooled to room temperature. An aliquot of water was added and the mixture was 

extracted with CH2Cl2 and dried over Na2SO4. After filtration and concentration, 

purification via column chromatography (100% hexanes) gave silyl enol ether 354 (83 

mg, 80% yield) as a colorless oil: FTIR (thin film/NaCl) 3087, 2963, 2858, 1656, 1447, 

1411, 1371, 1301, 1253, 1217 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.76 (dd, J = 10.8, 

17.6 Hz, 1H), 5.23 (dd, J = 1.2, 10.8 Hz, 1H), 5.18 (dd, J = 0.8, 17.2 Hz, 1H), 4.79-4.78 

(m, 1H), 4.76 (ddd, J = 1.6, 1.6, 3.2 Hz), 4.62 (dd, J = 0.8, 2.0 Hz, 1H), 4.15 (dd, J = 3.2, 

12.8 Hz, 1H), 3.03 (ddd, J = 2.0, 5.6, 10.8 Hz, 1H), 2.18 (dddd, J = 0.8, 3.2, 5.6, 12.8 Hz, 

1H), 1.93 (ddd, J = 11.2, 12.8, 12.8 Hz, 1H), 1.71 (s, 3H), 1.29 (s, 3H), 0.18 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 154.0, 148.1, 142.4, 115.4, 110.7, 105.4, 64.8, 47.8, 42.6, 

35.2, 19.8, 17.7, 0.5. 
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Preparation of α-Hydroxy Ketone 342. 
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 α-Hydroxy Ketone 342. To a solution of silyl enol ether 354 (13 mg, 0.046 

mmol, 1.0 equiv.) in CH2Cl2 (0.46 mL) was added m-CPBA (77% by weight, 11 mg, 

0.048 mmol, 1.05 equiv.) at room temperature. The reaction was stirred until determined 

complete by TLC (approx. 3hrs) whereupon an aliquot of Na2S2O3 was added. The 

resulting mixture was extracted with EtOAc, washed with NaHCO3 and brine, and dried 

over MgSO4. After filtration and concentration, purification via column chromatography 

(10% EtOAc/hexanes) gave α-hydroxy ketone 342 (4 mg, 38% yield) as a colorless oil 

and as a single diastereomer: FTIR (thin film/NaCl) 3486, 3086, 2948, 1715, 1647, 1447, 

1415, 1377, 1285, 1252 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.96 (dd, J = 11.2, 17.6 Hz, 

1H), 5.43 (d, J = 10.8 Hz, 1H), 5.26 (d, J = 17.2 Hz, 1H), 4.99 (ddd, J = 1.6, 1.6, 2.8 Hz, 

1H), 4.92 (s, 1H), 4.45 (d, J = 11.2 Hz, 1H), 4.08 (dd, J = 5.2, 11.2 Hz, 1H), 3.47 (s, 1H), 

2.37-2.18 (m, 3H), 1.85 (s, 3H), 1.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 210.3, 

143.2, 137.9, 117.4, 113.9, 73.2, 63.1, 56.2, 50.9, 35.8, 19.3, 16.3; HRMS (EI) m/z 

227.0842 [cacl’d for C12H16ClO2 (M+) 227.0844]. 
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Figure A.2.1  1H NMR (300 MHz, DMSO-d6) of compound 269.
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Figure A.2.2  Infrared Spectrum (KBr pellet) of compound 269. 
 
 
 
 
 
 

 
Figure A.2.3  13C NMR (75 MHz, DMSO-d6) of compound 269. 
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Figure A.2.4  1H NMR (400 MHz, DMSO-d6) of compound 270.
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Figure A.2.5  Infrared Spectrum (thin film/NaCl) of compound 270. 
 
 
 
 
 
 

 
Figure A.2.6  13C NMR (100 MHz, DMSO-d6) of compound 270. 
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Figure A.2.7  1H NMR (400 MHz, CDCl3) of compound 271.

N
O

Me

N2Br

271



 236 

 
 
 

 
 

Figure A.2.8  Infrared Spectrum (thin film/NaCl) of compound 271. 
 
 
 
 
 
 

 
Figure A.2.9  13C NMR (100 MHz, CDCl3) of compound 271. 
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Figure A.2.10  1H NMR (400 MHz, CDCl3) of compound 283.
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Figure A.2.11  Infrared Spectrum (thin film/NaCl) of compound 283. 
 

 
Figure A.2.12  13C NMR (100 MHz, CDCl3) of compound 283. 
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Figure A.2.13  1H NMR (400 MHz, CDCl3) of compound 323.
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Figure A.2.14  Infrared Spectrum (thin film/NaCl) of compound 323. 
 
 
 
 
 
 

 
Figure A.2.15  13C NMR (75 MHz, CDCl3) of compound 323. 
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Figure A.2.16  1H NMR (400 MHz, CDCl3) of compound 317.
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Figure A.2.17  Infrared Spectrum (thin film/NaCl) of compound 317. 
 
 
 
 
 
 

 
Figure A.2.18  13C NMR (100 MHz, CDCl3) of compound 317. 
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Figure A.2.19  1H NMR (400 MHz, CDCl3) of compound 324.
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Figure A.2.20  Infrared Spectrum (thin film/NaCl) of compound 324. 
 
 
 
 
 
 

 
Figure A.2.21  13C NMR (100 MHz, CDCl3) of compound 324. 
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Figure A.2.22  1H NMR (400 MHz, CDCl3) of compound 318.

N

O
O

Br

Me

H
H

HO

318



 246 

 
 
 

 
 

Figure A.2.23  Infrared Spectrum (thin film/NaCl) of compound 318. 
 
 
 
 
 
 

 
Figure A.2.24  13C NMR (100 MHz, CDCl3) of compound 318. 
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Figure A.2.25  1H NMR (400 MHz, CDCl3) of compound 319.
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Figure A.2.26 Infrared Spectrum (thin film/NaCl) of compound 319. 
 
 
 
 
 
 

 
Figure A.2.27  13C NMR (100 MHz, CDCl3) of compound 319. 
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Figure A.2.28  1H NMR (400 MHz, CDCl3) of compound 328.
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Figure A.2.29  Infrared Spectrum (thin film/NaCl) of compound 328. 
 
 
 
 
 
 

 
Figure A.2.30  13C NMR (100 MHz, CDCl3) of compound 328. 



 251 

 
 

Figure A.2.31  1H NMR (400 MHz, CDCl3) of compound 329.
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Figure A.2.32  Infrared Spectrum (thin film/NaCl) of compound 329. 
 
 
 
 
 
 

 
Figure A.2.33  13C NMR (100 MHz, CDCl3) of compound 329. 



 253 

 
 

Figure A.2.34  1H NMR (400 MHz, CDCl3) of compound 330.
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Figure A.2.35  Infrared Spectrum (thin film/NaCl) of compound 330. 
 
 
 
 
 
 

 
Figure A.2.36  13C NMR (100 MHz, CDCl3) of compound 330. 
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Figure A.2.37  1H NMR (400 MHz, CDCl3) of compound 334.
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Figure A.2.38  Infrared Spectrum (thin film/NaCl) of compound 334. 
 
 
 
 
 
 

 
Figure A.2.39  13C NMR (100 MHz, CDCl3) of compound 334. 
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Figure A.2.40  1H NMR (400 MHz, CDCl3) of compound 335.
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Figure A.2.41  Infrared Spectrum (thin film/NaCl) of compound 335. 
 
 
 
 
 
 

 
Figure A.2.42  13C NMR (100 MHz, CDCl3) of compound 335. 
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Figure A.2.43  1H NMR (400 MHz, CDCl3) of compound 354.
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Figure A.2.44  Infrared Spectrum (thin film/NaCl) of compound 354. 
 
 
 
 
 
 

 
Figure A.2.45  13C NMR (100 MHz, CDCl3) of compound 354. 
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Figure A.2.46  1H NMR (400 MHz, CDCl3) of compound 342.
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Figure A.2.47  Infrared Spectrum (thin film/NaCl) of compound 342. 
 
 
 
 
 
 

 
Figure A.2.48  13C NMR (100 MHz, CDCl3) of compound 342. 
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APPENDIX THREE: X-RAY CRYSTALLOGRAPHY 
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TO CHAPTER THREE 
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X-Ray Crystallography Report For Spirocycle 283 
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A.  Crystal data and structure refinement. 
Identification code  wood11r_0m 
Empirical formula  C18 H23 Br N O2 
Formula weight  365.28 
Temperature  120(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P 21/n 
Unit cell dimensions a = 10.9317(3) Å a= 90°. 
 b = 7.5922(2) Å b= 95.204(2)°. 
 c = 20.0056(6) Å g = 90°. 
Volume 1653.53(8) Å3 
Z 4 
Density (calculated) 1.467 Mg/m3 
Absorption coefficient 2.493 mm-1 
F(000) 756 
Crystal size 0.44 x 0.18 x 0.13 mm3 
Theta range for data collection 2.04 to 33.19°. 
Index ranges -9<=h<=16, -11<=k<=10, -25<=l<=30 
Reflections collected 23412 
Independent reflections 6308 [R(int) = 0.0306] 
Completeness to theta = 33.19° 99.5 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7392 and 0.4033 
Refinement method Full-matrix least-squares on F2 



 265 

Data / restraints / parameters 6308 / 0 / 199 
Goodness-of-fit on F2 1.031 
Final R indices [I>2sigma(I)] R1 = 0.0437, wR2 = 0.1159 
R indices (all data) R1 = 0.0699, wR2 = 0.1271 
Largest diff. peak and hole 1.084 and -1.079 e.Å-3 

 
B. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 
(Å2x103). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________________  
atom x y z U(eq) 

 
Br(1) 6313(1) 7302(1) 422(1) 32(1) 
N(1) 4529(1) 8216(2) 1658(1) 10(1) 
O(1) 4295(2) 7143(2) 3038(1) 27(1) 
O(2) 6235(2) 6076(2) 2948(1) 31(1) 
C(1) 6390(2) 6425(2) 1820(1) 17(1) 
C(2) 7056(2) 6573(3) 1267(1) 23(1) 
C(3) 8322(2) 6234(3) 1327(1) 31(1) 
C(4) 8908(2) 5748(3) 1938(1) 33(1) 
C(5) 8274(2) 5627(3) 2510(1) 27(1) 
C(6) 7033(2) 5997(2) 2438(1) 19(1) 
C(7) 6646(2) 6132(3) 3662(1) 28(1) 
C(8) 5099(2) 6664(3) 2701(1) 18(1) 
C(9) 5044(2) 6612(2) 1925(1) 15(1) 
C(10) 4184(2) 5028(2) 1624(1) 16(1) 
C(11) 3333(2) 6047(3) 1103(1) 16(1) 
C(12) 2043(2) 5386(3) 885(1) 21(1) 
C(13) 1445(2) 6713(3) 380(1) 27(1) 
C(14) 1444(2) 8592(3) 658(1) 30(1) 
C(15) 2738(2) 9220(3) 926(1) 24(1) 
C(16) 3272(2) 7853(3) 1418(1) 18(1) 
C(17) 4904(2) 3579(3) 1301(1) 22(1) 
C(18) 3464(2) 4157(3) 2159(1) 24(1)
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C. Bond lengths [Å] and angles [°]. 
 
Br(1)-C(2)  1.891(2) 
N(1)-C(9)  1.424(2) 
N(1)-C(16)  1.440(2) 
O(1)-C(8)  1.211(2) 
O(2)-C(8)  1.369(3) 
O(2)-C(6)  1.403(3) 
O(2)-C(7)  1.459(2) 
C(1)-C(2)  1.383(3) 
C(1)-C(6)  1.403(3) 
C(1)-C(9)  1.511(3) 
C(2)-C(3)  1.402(3) 
C(3)-C(4)  1.378(4) 
C(4)-C(5)  1.392(4) 
C(5)-C(6)  1.380(3) 
C(8)-C(9)  1.550(3) 
C(9)-C(10)  1.609(3) 
C(10)-C(17)  1.530(3) 
C(10)-C(18)  1.534(3) 
C(10)-C(11)  1.542(3) 
C(11)-C(16)  1.513(3) 
C(11)-C(12)  1.523(3) 
C(12)-C(13)  1.531(3) 
C(13)-C(14)  1.531(4) 
C(14)-C(15)  1.542(3) 
C(15)-C(16)  1.510(3) 
C(9)-N(1)-C(16) 107.14(14) 
C(8)-O(2)-C(6) 110.80(16) 
C(8)-O(2)-C(7) 122.15(18) 
C(6)-O(2)-C(7) 123.88(18) 
C(2)-C(1)-C(6) 117.76(18) 
C(2)-C(1)-C(9) 133.79(18) 
C(6)-C(1)-C(9) 108.46(16) 
C(1)-C(2)-C(3) 120.2(2) 
C(1)-C(2)-Br(1) 121.66(16) 
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C(3)-C(2)-Br(1) 118.07(17) 
C(4)-C(3)-C(2) 120.1(2) 
C(3)-C(4)-C(5) 121.3(2) 
C(6)-C(5)-C(4) 117.3(2) 
C(5)-C(6)-C(1) 123.2(2) 
C(5)-C(6)-O(2) 127.11(19) 
C(1)-C(6)-O(2) 109.64(16) 
O(1)-C(8)-O(2) 125.30(18) 
O(1)-C(8)-C(9) 126.98(18) 
O(2)-C(8)-C(9) 107.72(16) 
N(1)-C(9)-C(1) 112.71(15) 
N(1)-C(9)-C(8) 109.33(15) 
C(1)-C(9)-C(8) 101.02(15) 
N(1)-C(9)-C(10) 107.54(14) 
C(1)-C(9)-C(10) 114.91(15) 
C(8)-C(9)-C(10) 111.19(15) 
C(17)-C(10)-C(18) 107.54(16) 
C(17)-C(10)-C(11) 112.15(16) 
C(18)-C(10)-C(11) 111.79(16) 
C(17)-C(10)-C(9) 112.96(15) 
C(18)-C(10)-C(9) 112.38(15) 
C(11)-C(10)-C(9) 100.02(14) 
C(16)-C(11)-C(12) 110.10(16) 
C(16)-C(11)-C(10) 102.69(15) 
C(12)-C(11)-C(10) 121.00(16) 
C(11)-C(12)-C(13) 107.50(17) 
C(12)-C(13)-C(14) 112.79(17) 
C(13)-C(14)-C(15) 112.57(18) 
C(16)-C(15)-C(14) 107.60(18) 
N(1)-C(16)-C(15) 112.79(17) 
N(1)-C(16)-C(11) 103.66(15) 
C(15)-C(16)-C(11) 112.39(16) 
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D. Anisotropic displacement parameters (Å2x103). The anisotropic displacement 
factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
________________________________________________________________________ 
 U11 U22  U33 U23 U13 U12 

 
Br(1) 38(1)  41(1) 20(1)  -1(1) 11(1)  -13(1) 
N(1) 9(1)  7(1) 14(1)  0(1) -4(1)  -2(1) 
O(1) 23(1)  37(1) 20(1)  -5(1) 5(1)  1(1) 
O(2) 33(1)  31(1) 28(1)  1(1) -3(1)  1(1) 
C(1) 15(1)  15(1) 22(1)  -2(1) 4(1)  -1(1) 
C(2) 23(1)  20(1) 26(1)  -5(1) 9(1)  -6(1) 
C(3) 22(1)  28(1) 47(1)  -12(1) 16(1)  -6(1) 
C(4) 15(1)  23(1) 61(2)  -10(1) 6(1)  -1(1) 
C(5) 18(1)  16(1) 45(1)  -4(1) -6(1)  1(1) 
C(6) 17(1)  12(1) 26(1)  -3(1) 0(1)  -1(1) 
C(7) 35(1)  29(1) 19(1)  1(1) -8(1)  -1(1) 
C(8) 19(1)  20(1) 16(1)  -1(1) 1(1)  -1(1) 
C(9) 15(1)  16(1) 15(1)  0(1) 1(1)  0(1) 
C(10) 16(1)  15(1) 17(1)  0(1) 2(1)  -2(1) 
C(11) 16(1)  18(1) 15(1)  0(1) 3(1)  -2(1) 
C(12) 17(1)  26(1) 20(1)  -3(1) 1(1)  -4(1) 
C(13) 20(1)  34(1) 24(1)  -3(1) -5(1)  -1(1) 
C(14) 25(1)  31(1) 31(1)  -2(1) -8(1)  5(1) 
C(15) 23(1)  23(1) 26(1)  2(1) -4(1)  2(1) 
C(16) 15(1)  19(1) 19(1)  -2(1) -1(1)  -1(1) 
C(17) 22(1)  17(1) 27(1)  -3(1) 2(1)  0(1) 
C(18) 25(1)  25(1) 20(1)  5(1) 3(1)  -8(1) 
 
E. Hydrogen coordinates (x104) and isotropic displacement parameters (Å2x103). 
________________________________________________________________________ 
 x  y  z  U(eq) 

 
H(1A) 4898 9213 1644 12 
H(3A) 8766 6337 954 38 
H(4A) 9744 5496 1970 39 
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H(5A) 8671 5309 2923 32 
H(7A) 5945 6181 3918 42 
H(7B) 7146 7157 3756 42 
H(7C) 7117 5095 3783 42 
H(11A) 3767 6171 698 20 
H(12A) 1568 5292 1270 25 
H(12B) 2080 4233 679 25 
H(13A) 605 6353 252 32 
H(13B) 1883 6701 -21 32 
H(14A) 908 8642 1018 35 
H(14B) 1117 9385 306 35 
H(15A) 3253 9349 559 29 
H(15B) 2688 10351 1148 29 
H(16A) 2773 7792 1800 21 
H(17A) 4349 2670 1131 33 
H(17B) 5503 3089 1630 33 
H(17C) 5312 4068 938 33 
H(18A) 2967 3223 1958 35 
H(18B) 2947 5018 2344 35 
H(18C) 4029 3687 2509 35 
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A.  Crystal data and structure refinement. 
Identification code  wood19 
Empirical formula  C18 H20 Br N O2 
Formula weight  362.26 
Temperature  120(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P 21/n 
Unit cell dimensions a = 8.7457(4) Å a= 90°. 
 b = 31.5015(13) Å b= 90.712(3)°. 
 c = 11.5396(6) Å g = 90°. 
Volume 3178.9(3) Å3 
Z 8 
Density (calculated) 1.514 Mg/m3 
Absorption coefficient 2.593 mm-1 
F(000) 1488 
Crystal size 0.28 x 0.19 x 0.06 mm3 
Theta range for data collection 1.88 to 30.75°. 
Index ranges -12<=h<=12, -40<=k<=45, -16<=l<=16 
Reflections collected 67280 
Independent reflections 9819 [R(int) = 0.0532] 
Completeness to theta = 30.75° 98.9 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.8684 and 0.5347 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9819 / 0 / 403 
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Goodness-of-fit on F2 1.041 
Final R indices [I>2sigma(I)] R1 = 0.0482, wR2 = 0.1248 
R indices (all data) R1 = 0.0819, wR2 = 0.1491 
Largest diff. peak and hole 2.237 and -0.988 e.Å-3 
 
B. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 
(Å2x103). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________________
______ 
 x y z U(eq) 

 
Br(1) 3627(1) 5208(1) 3705(1) 26(1) 
Br(2) 4041(1) 2187(1) 8537(1) 26(1) 
C(1) 2300(3) 4821(1) 4458(3) 19(1) 
C(2) 2213(4) 4842(1) 5664(3) 24(1) 
C(3) 1208(4) 4580(1) 6248(3) 24(1) 
C(4) 241(4) 4304(1) 5648(3) 22(1) 
C(5) 341(3) 4297(1) 4457(2) 17(1) 
C(6) 1396(3) 4543(1) 3833(2) 17(1) 
C(7) 1237(3) 4424(1) 2565(2) 16(1) 
C(8) -308(3) 4189(1) 2557(2) 18(1) 
C(9) -2058(4) 3882(1) 4018(3) 22(1) 
C(10) 2571(3) 4124(1) 2082(3) 18(1) 
C(11) 3911(4) 4075(1) 2925(3) 32(1) 
C(12) 2022(5) 3686(1) 1738(5) 50(1) 
C(13) 3100(5) 4403(1) 1048(3) 38(1) 
C(14) 1830(5) 4673(1) 753(3) 41(1) 
C(15) 2187(4) 5034(1) -19(3) 28(1) 
C(16) 3240(4) 4885(1) -953(3) 34(1) 
C(17) 4001(5) 4525(1) -929(3) 37(1) 
C(18) 3947(5) 4211(1) 54(3) 34(1) 
C(19) 4983(4) 2643(1) 9346(3) 20(1) 
C(20) 5020(4) 2635(1) 10547(3) 24(1) 
C(21) 5803(4) 2951(1) 11153(3) 26(1) 
C(22) 6594(4) 3272(1) 10579(3) 22(1) 
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C(23) 6528(3) 3269(1) 9381(3) 18(1) 
C(24) 5699(3) 2969(1) 8743(2) 17(1) 
C(25) 5862(3) 3061(1) 7463(2) 17(1) 
C(26) 7187(4) 3391(1) 7501(3) 22(1) 
C(27) 8541(4) 3828(1) 8972(3) 31(1) 
C(28) 4369(4) 3250(1) 6812(2) 18(1) 
C(29) 2975(4) 3278(1) 7583(3) 28(1) 
C(30) 4662(4) 3694(1) 6311(3) 29(1) 
C(31) 4149(4) 2909(1) 5862(2) 19(1) 
C(32) 5714(4) 2732(1) 5689(3) 20(1) 
C(33) 5671(4) 2310(1) 5073(3) 20(1) 
C(34) 4697(4) 2362(1) 3995(3) 23(1) 
C(35) 3721(4) 2680(1) 3832(3) 24(1) 
C(36) 3426(4) 3030(1) 4708(3) 24(1) 
N(1) -632(3) 4080(1) 3678(2) 18(1) 
N(2) 7318(3) 3536(1) 8620(2) 21(1) 
O(1) -1110(3) 4108(1) 1715(2) 26(1) 
O(2) 1131(3) 4784(1) 1817(2) 19(1) 
O(3) 7992(3) 3496(1) 6715(2) 31(1) 
O(4) 6352(2) 2699(1) 6838(2) 18(1) 
 
C. Bond lengths [Å] and angles [°]. 
 
Br(1)-C(1)  1.901(3) 
Br(2)-C(19)  1.897(3) 
C(1)-C(6)  1.377(4) 
C(1)-C(2)  1.396(4) 
C(2)-C(3)  1.387(5) 
C(3)-C(4)  1.390(4) 
C(4)-C(5)  1.378(4) 
C(5)-C(6)  1.408(4) 
C(5)-N(1)  1.408(4) 
C(6)-C(7)  1.516(4) 
C(7)-O(2)  1.428(3) 
C(7)-C(8)  1.540(4) 
C(7)-C(10)  1.607(4) 
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C(8)-O(1)  1.218(4) 
C(8)-N(1)  1.372(4) 
C(9)-N(1)  1.452(4) 
C(10)-C(12)  1.512(5) 
C(10)-C(11)  1.522(4) 
C(10)-C(13)  1.557(4) 
C(13)-C(14)  1.435(5) 
C(13)-C(18)  1.501(5) 
C(14)-O(2)  1.422(4) 
C(14)-C(15)  1.480(5) 
C(15)-C(16)  1.501(5) 
C(16)-C(17)  1.317(6) 
C(17)-C(18)  1.507(5) 
C(19)-C(20)  1.386(4) 
C(19)-C(24)  1.393(4) 
C(20)-C(21)  1.393(5) 
C(21)-C(22)  1.396(5) 
C(22)-C(23)  1.383(4) 
C(23)-C(24)  1.396(4) 
C(23)-N(2)  1.405(4) 
C(24)-C(25)  1.513(4) 
C(25)-O(4)  1.419(3) 
C(25)-C(26)  1.556(4) 
C(25)-C(28)  1.612(4) 
C(26)-O(3)  1.202(4) 
C(26)-N(2)  1.374(4) 
C(27)-N(2)  1.464(4) 
C(28)-C(29)  1.521(4) 
C(28)-C(30)  1.536(4) 
C(28)-C(31)  1.545(4) 
C(31)-C(32)  1.494(4) 
C(31)-C(36)  1.516(4) 
C(32)-O(4)  1.436(4) 
C(32)-C(33)  1.507(4) 
C(33)-C(34)  1.508(4) 
C(34)-C(35)  1.327(5) 
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C(35)-C(36)  1.522(5) 
C(6)-C(1)-C(2) 120.9(3) 
C(6)-C(1)-Br(1) 121.2(2) 
C(2)-C(1)-Br(1) 117.8(2) 
C(3)-C(2)-C(1) 119.9(3) 
C(2)-C(3)-C(4) 121.0(3) 
C(5)-C(4)-C(3) 117.5(3) 
C(4)-C(5)-C(6) 123.4(3) 
C(4)-C(5)-N(1) 126.8(3) 
C(6)-C(5)-N(1) 109.6(2) 
C(1)-C(6)-C(5) 117.2(3) 
C(1)-C(6)-C(7) 135.0(3) 
C(5)-C(6)-C(7) 107.8(2) 
O(2)-C(7)-C(6) 113.1(2) 
O(2)-C(7)-C(8) 109.2(2) 
C(6)-C(7)-C(8) 101.2(2) 
O(2)-C(7)-C(10) 107.4(2) 
C(6)-C(7)-C(10) 114.9(2) 
C(8)-C(7)-C(10) 110.8(2) 
O(1)-C(8)-N(1) 125.1(3) 
O(1)-C(8)-C(7) 127.0(3) 
N(1)-C(8)-C(7) 107.9(2) 
C(12)-C(10)-C(11) 108.3(3) 
C(12)-C(10)-C(13) 114.2(3) 
C(11)-C(10)-C(13) 108.3(3) 
C(12)-C(10)-C(7) 113.4(3) 
C(11)-C(10)-C(7) 113.3(2) 
C(13)-C(10)-C(7) 99.1(2) 
C(14)-C(13)-C(18) 116.4(3) 
C(14)-C(13)-C(10) 106.2(3) 
C(18)-C(13)-C(10) 120.7(3) 
O(2)-C(14)-C(13) 106.3(3) 
O(2)-C(14)-C(15) 115.2(3) 
C(13)-C(14)-C(15) 115.4(4) 
C(14)-C(15)-C(16) 109.2(3) 
C(17)-C(16)-C(15) 124.6(3) 
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C(16)-C(17)-C(18) 124.1(3) 
C(13)-C(18)-C(17) 109.3(3) 
C(20)-C(19)-C(24) 120.6(3) 
C(20)-C(19)-Br(2) 118.8(2) 
C(24)-C(19)-Br(2) 120.5(2) 
C(19)-C(20)-C(21) 119.6(3) 
C(20)-C(21)-C(22) 121.5(3) 
C(23)-C(22)-C(21) 117.0(3) 
C(22)-C(23)-C(24) 123.1(3) 
C(22)-C(23)-N(2) 127.3(3) 
C(24)-C(23)-N(2) 109.4(2) 
C(19)-C(24)-C(23) 118.0(3) 
C(19)-C(24)-C(25) 132.6(3) 
C(23)-C(24)-C(25) 109.3(2) 
O(4)-C(25)-C(24) 112.0(2) 
O(4)-C(25)-C(26) 108.8(2) 
C(24)-C(25)-C(26) 100.4(2) 
O(4)-C(25)-C(28) 107.9(2) 
C(24)-C(25)-C(28) 116.1(2) 
C(26)-C(25)-C(28) 111.4(2) 
O(3)-C(26)-N(2) 125.0(3) 
O(3)-C(26)-C(25) 127.3(3) 
N(2)-C(26)-C(25) 107.6(2) 
C(29)-C(28)-C(30) 107.8(3) 
C(29)-C(28)-C(31) 111.2(3) 
C(30)-C(28)-C(31) 112.7(2) 
C(29)-C(28)-C(25) 113.6(2) 
C(30)-C(28)-C(25) 111.9(3) 
C(31)-C(28)-C(25) 99.6(2) 
C(32)-C(31)-C(36) 110.4(3) 
C(32)-C(31)-C(28) 104.4(2) 
C(36)-C(31)-C(28) 119.7(2) 
O(4)-C(32)-C(31) 104.4(2) 
O(4)-C(32)-C(33) 112.2(2) 
C(31)-C(32)-C(33) 112.0(3) 
C(32)-C(33)-C(34) 107.7(2) 
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C(35)-C(34)-C(33) 123.7(3) 
C(34)-C(35)-C(36) 124.5(3) 
C(31)-C(36)-C(35) 109.2(3) 
C(8)-N(1)-C(5) 110.5(2) 
C(8)-N(1)-C(9) 123.4(3) 
C(5)-N(1)-C(9) 123.4(2) 
C(26)-N(2)-C(23) 110.6(2) 
C(26)-N(2)-C(27) 121.5(3) 
C(23)-N(2)-C(27) 124.5(3) 
C(14)-O(2)-C(7) 107.5(2) 
C(25)-O(4)-C(32) 107.1(2) 
 
D. Anisotropic displacement parameters (Å2x103). The anisotropic displacement 
factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 
________________________________________________________________________
______  
 U11 U22  U33 U23 U13 U12 

 
Br(1) 25(1)  24(1) 30(1)  -1(1) 6(1)  -9(1) 
Br(2) 26(1)  23(1) 29(1)  1(1) 4(1)  -7(1) 
C(1) 16(1)  21(1) 20(1)  1(1) 1(1)  -2(1) 
C(2) 22(2)  30(2) 20(2)  -7(1) -2(1)  -3(1) 
C(3) 23(2)  37(2) 11(1)  -2(1) 2(1)  0(1) 
C(4) 19(2)  29(2) 17(2)  4(1) 2(1)  0(1) 
C(5) 16(1)  20(1) 14(1)  1(1) -1(1)  -1(1) 
C(6) 17(1)  19(1) 14(1)  1(1) 0(1)  1(1) 
C(7) 18(1)  16(1) 12(1)  4(1) 1(1)  0(1) 
C(8) 18(2)  23(1) 13(1)  2(1) 0(1)  0(1) 
C(9) 21(2)  24(1) 21(2)  2(1) 2(1)  -6(1) 
C(10) 19(2)  18(1) 18(1)  1(1) 2(1)  2(1) 
C(11) 28(2)  35(2) 32(2)  -6(1) -7(2)  12(1) 
C(12) 33(2)  29(2) 88(4)  -24(2) 4(2)  0(2) 
C(13) 47(2)  45(2) 24(2)  14(2) 15(2)  23(2) 
C(14) 63(3)  33(2) 27(2)  10(1) 24(2)  13(2) 
C(15) 21(2)  40(2) 22(2)  16(1) -1(1)  0(1) 
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C(16) 30(2)  59(2) 12(2)  9(2) 0(1)  -15(2) 
C(17) 42(2)  54(2) 16(2)  -8(2) 12(2)  -17(2) 
C(18) 40(2)  33(2) 30(2)  -10(1) 18(2)  -4(2) 
C(19) 19(2)  21(1) 19(1)  0(1) -1(1)  0(1) 
C(20) 23(2)  32(2) 18(2)  8(1) 2(1)  3(1) 
C(21) 28(2)  40(2) 10(1)  2(1) 0(1)  5(1) 
C(22) 24(2)  28(2) 14(1)  -4(1) -4(1)  5(1) 
C(23) 20(2)  21(1) 14(1)  -1(1) 0(1)  2(1) 
C(24) 18(2)  21(1) 13(1)  -2(1) 2(1)  2(1) 
C(25) 18(2)  23(1) 11(1)  -2(1) 0(1)  -4(1) 
C(26) 24(2)  27(2) 16(1)  3(1) -1(1)  -6(1) 
C(27) 37(2)  29(2) 26(2)  -5(1) -6(2)  -14(1) 
C(28) 21(2)  19(1) 14(1)  0(1) 0(1)  -1(1) 
C(29) 24(2)  38(2) 23(2)  2(1) 2(1)  6(1) 
C(30) 35(2)  20(1) 30(2)  1(1) -2(2)  -1(1) 
C(31) 23(2)  22(1) 13(1)  2(1) -3(1)  -1(1) 
C(32) 23(2)  23(1) 12(1)  0(1) -1(1)  -4(1) 
C(33) 21(2)  23(1) 14(1)  -4(1) 1(1)  -2(1) 
C(34) 27(2)  29(2) 12(1)  -6(1) 1(1)  -10(1) 
C(35) 26(2)  34(2) 12(1)  2(1) -5(1)  -11(1) 
C(36) 29(2)  24(2) 17(2)  4(1) -7(1)  -1(1) 
N(1) 16(1)  24(1) 14(1)  2(1) 1(1)  -5(1) 
N(2) 24(1)  24(1) 14(1)  -1(1) -2(1)  -8(1) 
O(1) 24(1)  37(1) 17(1)  0(1) -5(1)  -6(1) 
O(2) 24(1)  18(1) 14(1)  6(1) 6(1)  5(1) 
O(3) 28(1)  40(1) 24(1)  6(1) 3(1)  -17(1) 
O(4) 21(1)  23(1) 10(1)  -2(1) -2(1)  2(1) 
 
E. Hydrogen coordinates (x104) and isotropic displacement parameters (Å2x103). 
________________________________________________________________________
______  
 x  y  z  U(eq) 

 
H(2) 2828 5032 6075 29 
H(3) 1180 4588 7053 29 
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H(4) -447 4132 6035 26 
H(9A) -2748 4097 4290 33 
H(9B) -1860 3681 4626 33 
H(9C) -2508 3740 3364 33 
H(11A) 3568 3940 3620 48 
H(11B) 4322 4350 3110 48 
H(11C) 4690 3904 2575 48 
H(12A) 2869 3523 1462 75 
H(12B) 1260 3710 1135 75 
H(12C) 1588 3548 2398 75 
H(13) 3846 4598 1401 46 
H(14) 1092 4495 331 49 
H(15A) 2671 5259 425 33 
H(15B) 1251 5144 -363 33 
H(16) 3363 5060 -1594 40 
H(17) 4611 4460 -1559 45 
H(18A) 3435 3953 -200 41 
H(18B) 4978 4137 300 41 
H(20) 4525 2419 10945 29 
H(21) 5798 2949 11959 31 
H(22) 7142 3478 10985 27 
H(27A) 9470 3672 9098 46 
H(27B) 8262 3970 9675 46 
H(27C) 8693 4035 8373 46 
H(29A) 2115 3379 7137 42 
H(29B) 3181 3472 8209 42 
H(29C) 2749 3002 7891 42 
H(30A) 3756 3793 5920 43 
H(30B) 5488 3680 5772 43 
H(30C) 4927 3886 6928 43 
H(31) 3523 2682 6192 23 
H(32) 6320 2933 5238 24 
H(33A) 5238 2094 5572 23 
H(33B) 6697 2223 4869 23 
H(34) 4786 2160 3412 27 
H(35) 3179 2688 3133 29 
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H(36A) 3861 3295 4437 28 
H(36B) 2334 3070 4797 28 

 
 



 280 

 
 
 
 
 

APPENDIX FOUR: NOTEBOOK CROSS-REFERENCES 



 281 

 
NOTEBOOK CROSS-REFERENCE 

 
The following notebook cross-reference has been included to facilitate access to the 
original spectroscopic data obtained for the compounds presented in this thesis. Unless 
otherwise labeled, each compound is labeled corresponding to the notebook, page 
number, and compound within the reaction (for example, DBFIV-141-1 represents 
notebook DBFIV, page 141, and compound 1). All spectroscopic data obtained for the 
compounds presented in this thesis are archived in characterization folders with hard 
copies. All spectral data is stored electronically on the Wood Group external hard drive. 
 

Compounds Appearing in Chapter Two 
 

Compound Folder 1H NMR 13C NMR IR 
203 DBF-diketone-

trisubolefin 
DBF-diketone-

trisubolefin 
DBF-diketone-

trisubolefin 
DBF-diketone-

trisubolefin 
204 DBFIV-141-1 DBFIV-141-

1.400.h1 
DBFIV-141-1 DBFIV-141-

1.400.c13 
208 DBFIV-143-1 DBFIV-143-

1.400.h1 
DBFIV-143-

1.400.c13 
DBFIV-143-1 

344 DBFIV-143-2 DBFIV-143-
2.400.h1 

DBFIV-143-
2.400.c13 

DBFIV-143-2 

210 and 345 DBFIV-146-2 DBFIV-146-
1.400.h1 

DBFIV-146-
1.400.c13 

DBFIV-146-2 

212 DBFIII-222-1 DBFIII-222-1 DBFIII-222-
1.c13 

DBFIII-222-1 

213 DBFIII-224-2 DBFIII-224-2 DBFIII-224-2 DBFIII-224-2 
214 DBFIII-225-3 DBFIII-225-3 DBFIII-225-

3.13C.400 
DBFIII-225-3 

216 DBFIII-228-3 DBFIII-228-3 DBFIII-245-
1.13C.400 

DBFIII-228-3 

223 DBFIII-221-1 DBFIII-221-1 DBFIII-221-
2.13C.400 

DBFIII-221-1 

218 DBFIII-226-2 DBFIII-226-
2.1H.400 

DBFIII-226-
2.c13.12.30.09 

 

226 DBFIV-125-1 DBFIV-125-
1.300.h1 

DBFIV-125-
1.300.c13 

DBFIV-125-1 

227 DBFIV-127-4 DBFIV-127-
4.400.h1 

DBFIV-127-
4.400.c13 

DBFIV-127-4 

229 DBFIII-240-1 DBFIII-240-
1.1H.400 

AK-1-151  

240a DBFIV-BOE1 DBFIV-BOE1-
h1 

DBFIV-
BOE1.c13.300 

DBFIV-BOE1 

240b DBFIV-BOE2 DBFIV-
BOE2.300.h1 

DBFIV-
BOE2.400.c13 

DBFIV-BOE2 
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241 DBFIV-129-2 DBFIV-129-
2.400.h1 

DBFIV-129-
2.400.c13 

DBFIV-129-2 

242 DBFIV-133-2 DBFIV-133-
2.300.h1 

DBFIV-133-
2.300.c13 

DBFIV-133-2 

247 DBFIV-172-3 DBFIV-172-3-
PROTON_001 

DBFIV-172-3-
CARBON_001 

DBFIV-172-3 

251 DBFIV-138-1 DBFIV-132-
1_PROTON_001 

DBFIV-132-
1_CARBON_001 

DBFIV-138-1 

252 DBFIV-156-2 DBFIV-156-
2.400.h1 

DBFIV-156-
2.400.c13 

DBFIV-156-2 

254 DBFIV-139-1 DBFIV-139-
1.300.h1.CD3CN 

DBFIV-139-
1.300.400.c13 

DBFIV-139-1 

253 DBFIV-139-2 DBFIV-139-
2.300.h1.CD3CN 

DBFIV-139-
2.400.c13 

DBFIV-139-2 

255a DBFIV-144-1 DBFIV-144-
1.400.h1a 

DBFIV-144-
1.c13.400 

DBFIV-144-1 

255b DBFIV-144-2 DBFIV-144-
2.400.h1 

DBFIV-144-
2.400.c13.b 

DBFIV-144-2 

256a DBFIV-145-1 DBFIV-145-
1.400.h1 

DBFIV-145-
1.400.c13 

DBFIV-145-1 

256b DBFIV-159-1 DBFIV-159-
1.400.h1 

DBFIV-159-
1.400.c13 

DBFIV-159-1 

259 DBFIV-163-4 DBFIV-163-
4_PROTON_001 

DBFIV-163-
4_CARBON_001 

DBFIV-163-4 

 
 

Compounds Appearing in Chapter Two 
 

Compound Folder 1H NMR 13C NMR IR 
269 DBFIV-147-1 DBFIV-147-

1.300.h1 
DBFIV-147-

1.300.c13 
DBFIV-147-1 

270 DBFIV-148-1 DBFIV-148-
1.400.h1b 

DBFIV-148-
1.400.c13 

DBFIV-148-1 

271 DBFIV-
diazoisatin 

DBFIV-
diazoisatin.400.h1 

DBFIV-
diazoisatin.400.c13 

DBFIV-
diazoisatin 

283 DBFIV-153-1 DBFIV-153-
1.400.h1 

DBFIV-153-
1.400.c13 

DBFIV-153-1 

323 DBFIV-158-1 DBFIV-158-
2_PROTON_001 

DBFIV-158-
1.300.c13 

DBFIV-158-1 

317 DBFIV-174-1 DBFIV-174-
1_400_PROTON 

DBFIV-174-
1_400_CARBON 

DBFIV-174-1 

324 DBFIV-181-3 DBFIV-181-3-
2_PROTON 

DBFIV-181-
3_PROTON 

DBFIV-181-3 

318 DBFIV-183-2 DBFIV-183-
2_PROTON_001 

DBFIV-183-
2_CARBON_001 

DBFIV-183-2 

319 DBFIV-184-2 DBFIV-184- DBFIV-184- DBFIV-184-2 
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2_PROTON_001 2_CARBON_001 
328 DBFIV-178-2 DBFIV-178-

2_PROTON_001 
DBFIV-178-

2_CARBON_001 
DBFIV-178-2 

329 DBFIV-192-2 DBFIV-192-
2a_CARBON 

DBFIV-192-
2A_PROTON 

DBFIV-192-2 

330 DBFIV-91-2 DBFIV-91-
2.400.h1 

DBFIV-91-
2.400.c13 

DBFIV-91-2 

334 DBFIV-86-1 DBFIV-86-
1.400.h1 

DBFIV-86-
1.400.c13 

DBFIV-86-1 

335 DBFIV-87-1 DBFIV-87-
1.400.h1 

DBFIV-87-
1.400.c13 

DBFIV-87-1 

354 DBFIV-164-2 DBFIV-164-
2_PROTON_001 

DBFIV-164-
2_CARBON_001 

DBFIV-164-2 

342 DBFIV-167-2 DBFIV-167-
2_PROTON_001 

DBFIV-167-
2_CARBON_001 

DBFIV-167-2 
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