Project THEMIS Technical Report No. 6

TA 7

CER 69/90-23

FLOW SEPARATION IN TIME VARYING FLOW

by

Fang-Kuo Chou and V. A. Sandborn

EXEMPLEMENT OF SOUTH AUG 2 8/70 FRATERLS REPORT AND

FLUID MECHANICS PROGRAM ENGINEERING RESEARCH CENTER COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

Project THEMIS Technical Report No. 6

FLOW SEPARATION IN TIME VARYING FLOW

by

Fang-Kuo Chou

and

V. A. Sandborn

CER69-70FkC-VAS23

ABSTRACT

An exact solution of time varying pipe flow with a fluctuating velocity superimposed on the mean flow is analyzed. The velocity profiles, together with the profile parameters at separation, are computed from a computer program.

The results are compared with the model for relaxed (steady) and unrelaxed (unsteady) separation criteria proposed by V. A. Sandborn and S. J. Kline. For very low frequencies, the correlation curves appear to have a reasonable agreement with the proposed relaxed separation criterion. For high frequencies, the correlation curves have been found to fall approximately on the unrelaxed separation criterion. This result demonstrates further that adjustment time is an important factor for separation to be relaxed or unrelaxed, a new concept proposed by Sandborn.

In addition, J. T. Stuart's solution for the flow along an infinite flat plate with normal suction and periodic external velocity is further analyzed. The results again prove to agree with the proposed new concept.

iii

TABLE OF CONTENTS

Chapter	Pa	ge
	LIST OF TABLES	v
	LIST OF FIGURES	vi
	LIST OF SYMBOLS	lii
Ι	INTRODUCTION	1
II	REVIEW OF LITERATURE	4
	2.1 Introduction	4
	2.2 Lighthill's Theory of the Response of Skin Friction to Fluctuations in the Stream Velocity	6
	2.3 Fluctuating Flow Past an Infinite Flat Plate with Suction	7
	2.4 Unsteady Flow Through Pipe	8
III	ANALYSIS OF UNSTEADY PIPE FLOW SEPARATION AND SEPARATION IN FLUCTUATING FLOW PAST A POROUS	10
	FLAI PLAIE	10
	3.1 Unsteady Pipe Flow	10
	3.1.1 Solution of unsteady pipe flow	10
	3.1.2 Velocity distributions and velocity profile parameters at separation	14
	3.1.3 Comparison with the relaxed and unrelaxed separation correlations	20
	3.2 Fluctuating Flow Past a Porous Flat Plate	25
	3.2.1 Velocity distributions and velocity profile parameters at separation	25
	3.2.2 Comparison with the relaxed and unrelaxed separation correlations	34
IV	CONCLUDING REMARKS	41
	BIBLIOGRAPHY	43

LIST OF TABLES

lable		Page
1	VARIATIONS WITH X OF BER X, BEI X, BER'X, BEI'X FROM X=0 TO X=80	. 47
2	VARIATIONS OF δ^*/R , θ/R , H, AND ε WITH RESPECT TO $\sqrt{\frac{\omega}{\nu}}$ R FOR TIME VARYING PIPE FLOW	. 49
3	VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUCTUATING FLOW PAST A POROUS FLAT PLATE	. 51

LIST OF FIGURES

Figure		Page	,
1	Relaxed and unrelaxed separation correlations	. 5	
2	Plots showing the functions Ber x, Bei x, Ber' x, Bei' x	. 13	
3(a-c)	Velocity profiles at separation for time varying pipe flow	. 16-	18
4	Comparison of the high frequency separation profile with the velocity profile for steady flow, and the low frequency separation profile with the relaxed separation profile of Eq. (2-2)	. 19	
5	Some particular types of separation profiles in time varying pipe flow calculated from Eq. (3-13)	. 21	
6	Variations of ε with respect to $\sqrt{\frac{\omega}{\nu}} R$ for time varying pipe flow at separation	. 22	
7	Comparison of time varying pipe flow separation profile parameters with the empirical relaxed and unrelaxed separation correlations for various ω t's.	. 24	
8	Variations of the form factor at separation with the pressure gradient parameter $\frac{R^2}{\nu} \frac{1}{U} \frac{dU}{dt}$ for time varying pipe flow	. 26	,
9	Variations of the form factor at separation with the pressure gradient parameter $\frac{\theta^2}{\nu} \frac{1}{U} \frac{dU}{dt}$ for time varying pipe flow	. 27	
10(a-e)	Variations of ϵ and U/U_O at separation with respect to λ for fluctuating flow past a porous flat plate	. 29,	30
11(a-c)	Velocity profiles at separation for fluctuating flow past a porous flat plate	. 31-	33
12	Comparison of separation profile parameters of fluctuating flow past a porous flat plate with the empirical relaxed and unrelaxed separation correlations	. 35	
13(a-b)	Separation velocity profiles for the points on the hooks	. 37,	38

LIST OF FIGURES - Continued

Figure

14	Variations of the form factor at separation	
	with the pressure gradient parameter $\frac{\delta^2}{\nu} \frac{1}{U} \frac{dU}{dt}$	
	for fluctuating flow past a porous flat plate 39	9
15	Variations of the form factor at separation	

Variations of the form factor at separation with the pressure gradient parameter $\frac{\theta^2}{\nu} \frac{1}{U} \frac{dU}{dt}$ for fluctuating flow past a porous flat plate 40

Page

LIST OF SYMBOLS

Sy	mbol	Definition
	С	Constant
	Н	Velocity form factor
	Jo	Bessel function of the first kind and zeroth order
	К	Constant
	m	Constant
	Р	Static pressure
	R	Radius of pipe
	r	Radial distance from the axis of pipe
	t	Time scale
	U	Free stream velocity or velocity in the axis of pipe
	υ _o	Mean of U
	u	Velocity in x-direction
	u _o	Mean of u
	ν	Velocity in y-direction
	vo	Mean of v
	v _w	Constant velocity component normal to the wall
	x	Coordinate parallel to wall or to the axis of pipe
	У	Coordinate normal to wall
	α	Phase lead
	δ	Boundary layer thickness
	*۵	Displacement thickness
	δ * Ο	Displacement thickness of the unperturbed boundary layer
	ε	Constant

LIST OF SYMBOLS - Continued

Symbol	Definition
εU _o	Amplitude of free stream velocity fluctuation or of velocity fluctuation in the axis of pipe
εul	Amplitude of velocity fluctuation in x-direction
εv ₁	Amplitude of velocity fluctuation in y-direction
n	Non-dimensional variable $y v_w / v$
n ₁	Non-dimensional variable y/δ
ζ ₀ (y)U ₀	Mean velocity in x-direction
ζ ₁ (y)εU _o	Amplitude of velocity fluctuation in x-direction
θ	Momentum thickness
λ	Frequency parameter $\omega v / v_w^2 = \omega \delta_o^{*2} / v$
λt	Pressure parameter in unsteady flow $-\frac{R^2}{v}\frac{1}{U}\frac{dU}{dt}$ or $-\frac{\delta^2}{v}\frac{1}{U}\frac{dU}{dt}$
λ _δ	Pohlhausen pressure parameter $-\frac{\delta^2}{v}\frac{dU}{dx}$
λ _θ	Pressure parameter in unsteady flow $-\frac{\theta^2}{\nu}\frac{1}{U}\frac{dU}{dt}$
μ	Absolute viscosity
ν	Kinematic viscosity
ρ	Density
το	Unperturbed wall shear stress
τw	Shear stress at wall
ω	Frequency (rad/s)
ω o	Critical frequency
Suffixes	
1.7	Denotes value evaluated at the wall

W	Denotes	value	evaluated at the wall
S	Denotes	value	of quasi-steady solution

Chapter I

INTRODUCTION

The problem of boundary layer separation has become very important in recent times, especially, in the field of aeronautics; in actual applications it is often necessary to prevent separation in order to reduce drag and to attain high lift.

A model classifying boundary layer separation, either laminar or turbulent, as relaxed (steady) and unrelaxed (unsteady) was first proposed by Sandborn and Kline (13). The proposed model was further demonstrated both theoretically and experimentally by Liu (6). The relaxed boundary layer separation was defined as the point or line where shear stress at the wall vanishes continuously in both time and space. For the unrelaxed case, Sandborn (11) recently suggested the start of the unrelaxed boundary layer separation could be taken as the forward most point where shear stress at the wall vanishes instantaneously.

Sandborn (11) further points out that the time required for the boundary layer to adjust to the changes at the boundaries appears to be the most important difference between the relaxed and unrelaxed separations.

There is increasing evidence that relaxation time for shear flow development at separation appears to be one of the important aspects of relaxed separation. Lighthill (5) analyzed the response of the laminar boundary layer to fluctuations in the oncoming stream, when the stream fluctuates in magnitude but not in direction. Stuart (19) derived an exact solution of the Navier-Stokes equations, where the free stream velocity fluctuates about a constant mean, and velocity normal to the wall is constant. Both Lighthill's and Stuart's studies demonstrate that adjustment time is important in determining the velocity profile of a time varying shear flow. Sandborn (11) explored a pulsing flow, where a pulsing free stream velocity was produced by a siren, and found that the profile correlations at separation fall on the proposed empirical unrelaxed separation criterion. Sandborn's test thus constitutes an experimental proof of the new concept. But so far there appears to be no well defined parameters to specify limits for relaxed and unrelaxed separations.

The present analysis investigates a particular type of time varying shear flow, to study time adjustment effects on separation. A pipe flow that has a regular fluctuating velocity superimposed on the mean flow is analyzed. The velocity distributions and the velocity profile parameters, displacement thickness, momentum thickness, and form factor, are computed from a computer program. The results are compared with the model for relaxed and unrelaxed separation proposed by Sandborn and Kline. For high frequencies the boundary layer has little time to adjust, so the instantaneous zero wall shear stress profile correlations fall on the unrelaxed separation curve. For low frequencies there exists sufficient flow time for the boundary layer to adjust to the absence of a viscous force at the surface, thus the separation profile correlations agree with the relaxed separation curve. Stuart's solution is also analyzed. The results again agree with the proposed new concept, i.e., adjustment time is important in determining relaxed or unrelaxed separation. Separation criteria in terms of the non-dimensional pressure gradient parameter $\left(\frac{\theta^2}{v}\frac{1}{U}\frac{dU}{dt}\right)$

and the velocity profile form factor are also given for both the unsteady pipe flow and Stuart's solution. The results show the separation velocity profiles may not be a one parameter family of velocity profiles as implied by the separation model of Sandborn (11).

Chapter II

REVIEW OF LITERATURE

2.1 Introduction

Sandborn (12) developed an empirical velocity profile that can be used in laminar as well as turbulent flow. From the analysis of this empirical velocity profile, two types of separation, relaxed (steady) and unrelaxed (unsteady), were identified. For the unrelaxed case the empirical relation among the profile parameters was given as

$$H = 1 + \frac{1}{(1 - \delta^* / \delta)} \quad . \tag{2-1}$$

For the relaxed separation case the relation between the profile parameters can be given parametrically in terms of λ_{f}

$$\frac{\delta^*}{\delta} = \frac{2\sqrt{-\lambda_{\delta}} + 1}{(\sqrt{-\lambda_{\delta}} + 1)^2}$$
(2-2a)

$$\frac{\theta}{\delta} = \frac{(2\sqrt{-\lambda_{\delta}} + 1)}{(\sqrt{-\lambda_{\delta}} + 1)^{2}} - \frac{2(\sqrt{-\lambda_{\delta}})^{2}}{(2\sqrt{-\lambda_{\delta}} + 1)^{3}} - \frac{2(\sqrt{-\lambda_{\delta}})^{2}}{(2\sqrt{-\lambda_{\delta}} + 1)^{3}}$$

$$= \frac{2\sqrt{-\lambda_{\delta}}}{(2\sqrt{-\lambda_{\delta}} + 1)^{2}} - \frac{1}{(2\sqrt{-\lambda_{\delta}} + 1)}$$
(2-2b)

where

$$\lambda_{\delta} = \frac{-\delta^2 dU}{v dx}$$

Equations 2-1 and 2-2 are replotted in Figure 1. The upper curve is called the relaxed, $\overline{\tau}_{W} = 0$, separation correlation, while the lower one corresponds to the unrelaxed separation correlation. Both the relaxed and unrelaxed separation curves shown on Figure 1 have been

Figure I Relaxed and unrelaxed separation correlations

found, by Sandborn and Kline (13), to agree well with experimental measurements as well as with analytic solutions.

Many solutions of the laminar boundary layer equations for a steady two-dimensional incompressible flow have been evaluated analytically or numerically for various forms of free stream velocity distributions U(x), for example, by Schlichting (15), Thwaites (20), Head and Hagasi (3), and Curle (1). The velocity components, u and v, as well as the variations with x of the skin friction and the momentum and displacement thickness, can be calculated to the separation point. For the solutions of unsteady laminar boundary layer equations references can be made to Rosenhead (10) and Schlichting (15).

2.2 Lighthill's Theory of the Response of Skin Friction to Fluctuations in the Stream Velocity

Lighthill (5) first treated the laminar boundary layer about a cylindrical body when the velocity of the oncoming flow oscillated in magnitude but not in direction. For high-frequency approximation, Lighthill obtained a solution identical to the solution for the shear-wave boundary layer, whose main stream fluctuates about a zero mean. Physically it means the effect of viscosity can be felt for the oscillation only within the small layer near the wall, with thickness of order $\sqrt{\nu/\omega}$. In other words, at high frequencies the fluctuating part of the velocity responds instantly, except within the very thin shear-wave boundary layer close to the wall. For low-frequency approximation, Lighthill used a Karman-Pohlhausen method (9) to solve the equations and found velocity fluctuation approximately consists of a part depending on the instantaneous stream velocity and a part depending on the stream acceleration.

Skin friction for both high-frequency and low-frequency approximations has a phase lead over the velocity fluctuation of the stream. The critical frequency separating the ranges of validity of the highand low-frequency approximations is suggested by Lighthill as

$$\omega = \frac{3\tau}{\rho U_0 \delta^*} = \omega_0 \quad . \tag{2-3}$$

For frequencies $\omega < \omega_0$, both the amplitude and phase lead increase with frequency, the latter rises from zero to $\pi/4$; for frequencies $\omega > \omega_0$, the phase lead has the constant value $\pi/4$, and the amplitude increases with the square root of the frequency. The theory thus illustrates the large influence which a fluctuation has upon the transient velocity distributions and skin friction.

2.3 Fluctuating Flow Past an Infinite Flat Plate with Suction

Based on the classical exact "asymptotic suction" solution of steady flows developed by Schlichting (15), Stuart derived an exact solution of the Navier-Stokes equations, where the free stream velocity fluctuates about a constant mean and the normal velocity is constant toward the wall. It was found that for low frequencies the velocity distributions are closely approximated as the sum of parts proportional to the instantaneous velocity and acceleration of the main stream. For high frequencies the solution tends to the shearwave solution with a periodic boundary layer without a mean flow as described by Lighthill.

Furthermore, the skin-friction fluctuations show much the same characteristics as that of Lighthill's. The amplitude of the skinfriction fluctuations rises with frequency, while the phase lead of

the skin-friction over the main stream velocity fluctuation rises from zero at zero frequency to $\pi/4$ at very high frequencies. The velocity profiles and skin-friction for Stuart's solution will be further analyzed in Chapter III. In particular, detailed evaluation of the boundary layer parameters and the velocity distributions at separation is made.

2.4 Unsteady Flow Through a Pipe

Several solutions for the flow through a long straight pipe under the influence of an unsteady pressure gradient have been reported. Sex1 (16) first derived the solution for a pipe flow due to a periodic pressure gradient. Ito (4) considered the cases: (1) a pressure gradient changes linearly with time, (2) a pressure gradient that changes impulsively from one value to another, and (3) a damped oscillatory pressure gradient. The solutions were obtained by using a Laplacetransform technique.

For the case of the flow with a periodic pressure gradient the solution was given by Sexl as

$$u(\mathbf{r},t) = \frac{-ik}{\omega} e^{i\omega t} \left\{ 1 - \frac{J_{o}(\mathbf{r}\sqrt{-i\omega/\nu})}{J_{o}(\mathbf{R}\sqrt{-i\omega/\nu})} \right\}$$
(2-4)

where J_0 denotes the Bessel function of the first kind and of zeroth order.

The velocity distributions for both low- and high-frequency approximations were evaluated. For very low frequencies, the velocity distribution was found to be in phase with the pressure distribution,

the amplitude being a parabolic function of the radius, as was the case in steady flow. For very high frequencies, the phase shift of the flow at a large distance from the wall is $\pi/2$ with respect to the exciting force. No specific evaluation of $\tau_w = 0$ profiles has been made.

Chapter III

ANALYSIS OF UNSTEADY PIPE FLOW SEPARATION AND SEPARATION IN FLUCTUATING FLOW PAST A POROUS FLAT PLATE

3.1 Unsteady Pipe Flow

3.1.1 Solutions of unsteady pipe flow - The time varying pressure gradient flow in a pipe was solved independently of the studies discussed in Chapter II. Let x denote the coordinate in the direction of the axis of the pipe, r denote the radial distance from the axis, and u is the velocity component in x-direction. For a very long pipe, the velocity variations with x are negligible and the only component of the flow is u. Thus, the laminar boundary layer equation for the unsteady axially symmetrical pipe flow with constant density ρ and kinematic viscosity ν takes the form

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = -\frac{1}{\rho} \frac{\partial \mathbf{P}}{\partial \mathbf{x}} + v \frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} + \frac{v}{\mathbf{r}} \frac{\partial \mathbf{u}}{\partial \mathbf{r}} \quad . \tag{3-1}$$

(3-2)

The boundary conditions are

$$u = 0$$
 at $r = R$

and

u = U at r = 0.

We assume that the pressure gradient fluctuates about a constant mean and is given by

$$-\frac{1}{\rho}\frac{\partial P}{\partial x} = K(1 + \varepsilon e^{i\omega t})$$
(3-3)

where K is a constant, and K ϵ is the amplitude of fluctuations. Now we are seeking a solution of the form

 $u = U_0[\zeta_0(r) + \varepsilon \zeta_1(r) e^{i\omega t}]$ (3-4)

in which U_0 is the mean velocity along the axis as obtained for Poiseuille flow. Substituting Equations 3-3 and 3-4 in Equation 3-1 and equating non-periodic and periodic terms separately to zero, we have

$$r\zeta_{0}^{"}(r) + \zeta_{0}^{'}(r) = -\frac{rK}{\nu U_{0}}$$
(3-5)

$$\zeta_{1}^{"}(\mathbf{r}) + \frac{1}{\mathbf{r}} \zeta_{1}^{'}(\mathbf{r}) - \frac{i\omega}{v} \zeta_{1}(\mathbf{r}) = \frac{-K}{vU_{o}}$$
 (3-6)

Equation 3-5 is a second order nonhomogeneous differential equation, whereas Equation 3-6 is a Bessel equation of order zero with an imaginary parameter (21). The boundary conditions for Equation 3-5 are

$$\zeta_0'(r) = 0$$
 at $r = 0$, $\zeta_0(r) = 0$ at $r = R$,
and $\zeta_0(r) = 1$ at $r = 0$, (3-7)

and, hence, the solution is

$$\zeta_0(\mathbf{r}) = (1 - \frac{\mathbf{r}^2}{\mathbf{R}^2})$$
 (3-8)

where use was made of the following relation

$$U_0 = KR^2/4v$$
.

The boundary conditions for Equation 3-6 are

$$\zeta_1 = \text{finite at } r = 0$$
 , $\zeta_1 = 0$ at $r = R$. (3-9)

Expressing the solution of Equation 3-6 in terms of ber and bei functions, we obtained

$$\chi_{1}(\mathbf{r}) = \frac{\nu}{i\omega} \frac{4}{R^{2}} \left[1 - \frac{\operatorname{ber} \sqrt{\frac{\omega}{\nu}} \mathbf{r} + i\operatorname{bei} \sqrt{\frac{\omega}{\nu}} \mathbf{r}}{\operatorname{ber} \sqrt{\frac{\omega}{\nu}} R + i\operatorname{bei} \sqrt{\frac{\omega}{\nu}} R} \right] \quad . \tag{3-10}$$

The total velocity component in x-direction becomes

$$u = U_{o}\left[\left(1 - \frac{r^{2}}{R^{2}}\right) + \varepsilon e^{i\omega t} \frac{v}{i\omega} \frac{4}{R^{2}} \left(1 - \frac{ber\sqrt{\frac{\omega}{v}}r + ibei\sqrt{\frac{\omega}{v}}r}{ber\sqrt{\frac{\omega}{v}}R + ibei\sqrt{\frac{\omega}{v}}R}\right].(3-11a)$$

The fluctuating part of Equation 3-11a is equivalent to Equation 2-4 obtained by Sex1 (16). The transient velocity in the center reduces to

$$U = U_{o} \left[1 + \varepsilon e^{i\omega t} \frac{v}{i\omega} \frac{4}{R^{2}} \left(1 - \frac{1}{ber \sqrt{\frac{\omega}{v}} R + ibei \sqrt{\frac{\omega}{v}} R} \right) \right] . \quad (3-11b)$$

The shear stress at the wall is

$$\tau_{\rm W} = \mu \frac{\partial u}{\partial r} \bigg|_{r=R}$$
$$= -\mu U_{\rm O} \frac{2}{R} \bigg[1 + \varepsilon e^{i\omega t} \frac{2}{iR} \sqrt{\frac{\omega}{\nu}} \frac{\text{ber'} \sqrt{\frac{\omega}{\nu}} R + i\text{bei'} \sqrt{\frac{\omega}{\nu}} R}{\text{ber} \sqrt{\frac{\omega}{\nu}} R + i\text{bei} \sqrt{\frac{\omega}{\nu}} R} \bigg] (3-12)$$

where primes denote differentiation with respect to r , and

ber x =
$$\sum_{j=0}^{\infty} \frac{(-1)^j x^{4j}}{2^{4j} [(2j)!]^2}$$

bei x =
$$\sum_{j=0}^{\infty} \frac{(-1)^j x^{4j+2}}{2^{4j+2} [(2j+1)!]^2}$$

ber' x =
$$\sum_{j=1}^{\infty} \frac{(-1)^j 4j x^{4j-1}}{2^{4j} [(2j)!]^2}$$

bei' x =
$$\sum_{j=0}^{\infty} \frac{(-1)^{j} (4j+2) x^{4j+1}}{2^{4j+2} [(2j+1)!]^{2}}$$

Plots of ber x , bei x , ber' x , and bei' x are shown in Figure 2. The graphs are seen to oscillate with ever-increasing amplitudes. Table 1 shows the variations with x of ber x , bei x , ber' x , and bei' x from x = 0 to x = 80.

3.1.2 Velocity distributions and velocity profile parameters at separation - The real parts of Equation 3-11 and Equation 3-12 reduce to

$$\frac{u}{U_{o}} = 1 - \left(\frac{r}{R}\right)^{2} + \varepsilon \frac{4}{\frac{\omega}{v}R^{2}} \left[\cos\omega t \frac{\left(\operatorname{bei}\sqrt{\frac{\omega}{v}}R\right)\left(\operatorname{ber}\sqrt{\frac{\omega}{v}}r\right) - \left(\operatorname{ber}\sqrt{\frac{\omega}{v}}R\right)\left(\operatorname{bei}\sqrt{\frac{\omega}{v}}r\right)}{\left(\operatorname{ber}\sqrt{\frac{\omega}{v}}R\right)^{2} + \left(\operatorname{bei}\sqrt{\frac{\omega}{v}}R\right)^{2}}\right]$$

+ sin
$$\omega$$
t - sin ω t $\frac{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} r) + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)(\operatorname{bei}\sqrt{\frac{\omega}{\nu}} r)}{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)^2 + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)^2}]$ (3-13a)

$$\frac{U}{U_{o}} = 1 + \varepsilon \frac{4}{\frac{\omega}{v} R^{2}} \left[\frac{\operatorname{bei} \sqrt{\frac{\omega}{v}} R}{(\operatorname{ber} \sqrt{\frac{\omega}{v}} R)^{2} + (\operatorname{bei} \sqrt{\frac{\omega}{v}} R)^{2}} \right] \cos \omega t$$

+
$$\sin\omega t - \frac{\operatorname{ber}\sqrt{\frac{\omega}{\nu}}R}{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}}R)^2 + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}}R)^2} \sin \omega t \right]$$
 (3-13b)

$$\tau_{\rm W} = -\mu U_{\rm O} \frac{2}{R} \left[1 + \frac{2}{R} \sqrt{\frac{\nu}{\omega}} \varepsilon \left\{ \cos \omega t \frac{(\operatorname{ber} \sqrt{\frac{\omega}{\nu}} R) (\operatorname{bei}' \sqrt{\frac{\omega}{\nu}} R) - (\operatorname{bei} \sqrt{\frac{\omega}{\nu}} R) (\operatorname{ber}' \sqrt{\frac{\omega}{\nu}} R)}{(\operatorname{ber} \sqrt{\frac{\omega}{\nu}} R)^2 + (\operatorname{bei} \sqrt{\frac{\omega}{\nu}} R)^2} \right]$$

+ sinut
$$\frac{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)(\operatorname{ber}'\sqrt{\frac{\omega}{\nu}} R) + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)(\operatorname{bei}'\sqrt{\frac{\omega}{\nu}} R)}{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)^2 + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)^2} \right\} (3-14)$$

respectively.

The shear stress, τ_w , is zero when the coefficient of ε in Equation 3-14 is equal to $-1/\varepsilon$ which corresponds to a velocity profile with zero skin friction. Thus the velocity profiles at separation can be obtained by substituting

$$\frac{1}{\varepsilon} = \left[\cos\omega t \quad \frac{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R) (\operatorname{bei}'\sqrt{\frac{\omega}{\nu}} R) - (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R) (\operatorname{ber}'\sqrt{\frac{\omega}{\nu}} R)}{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)^2 + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)^2} + \operatorname{sin}\omega t \quad \frac{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R) (\operatorname{ber}'\sqrt{\frac{\omega}{\nu}} R) + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R) (\operatorname{bei}'\sqrt{\frac{\omega}{\nu}} R)}{(\operatorname{ber}\sqrt{\frac{\omega}{\nu}} R)^2 + (\operatorname{bei}\sqrt{\frac{\omega}{\nu}} R)^2} \right] \frac{2}{R}\sqrt{\frac{\omega}{\omega}}$$
(3-15)

in Equation 3-13.

Figure 3 shows the velocity profiles at separation for various frequencies, where y is the vertical distance from the wall. Figure 4 compares the high frequency separation velocity profile with the velocity profile for steady flow, and the low frequency separation velocity profile with the relaxed separation velocity profile of Equation 2-2. For high frequencies (large values of $\sqrt{\frac{\omega}{\nu}}$ R), viscosity does not have time to adjust the velocity to the changes imposed by the exciting pressuregradient fluctuations, except in a 'shear-wave layer' near the wall. The high frequency separation profile remains the same as the velocity profile for steady flow, except in a thin layer near the wall where the effect of viscosity can be felt for the oscillations. Thus the high frequency separation belongs to the class of unrelaxed separation profiles as will be demonstrated later. On the other hand, for very low frequencies the solution corresponds to the quasi-steady solution. The separation profile has a good agreement with the relaxed separation profile of Equation 2-2, with the same form factor, H . This comparison supports the evidence that adjustment time is an important factor for separation to be relaxed or unrelaxed, the concept proposed by Sandborn (11).

It has been found that some separation velocity profiles of Equation 3-13 can only occur in unsteady flow. These profiles are not

Figure 3 Velocity profiles at separation for time varying pipe flow

Figure 4 Comparison of the high frequency separation profile with the velocity profile for steady flow, and the low frequency separation profile with the relaxed separation profile of Eq. (2-2).

likely to occur in a boundary layer type flow. Figure 5 gives examples of such separation profiles including: (1) a velocity profile which is not monotonic, (2) values u/U > 1 occur in the velocity profile, and (3) a velocity profile with reverse flow.

The variations of ε with respect to $\sqrt{\frac{\omega}{\nu}} R$ for several values of ωt , as calculated from Equation 3-15, are plotted in Figure 6. For high frequencies, the values of ε for which separation occurs, are large. When frequencies decrease, separation is reached in most cases for smaller values of ε . This result is different from the results obtained by Stuart.

The velocity profile parameters, displacement thickness $~\delta^*$, momentum thickness $~\theta$, and form factor ~H , are defined as:

$$\delta^* = \int_{y=0}^{\infty} \left(1 - \frac{u}{U}\right) dy , \quad \theta = \int_{y=0}^{\infty} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy , \quad H = \frac{\delta^*}{\theta} \quad (3-16)$$

respectively.

Profile parameters at separation for various frequencies and ω t's are computed from a computer program. In calculating these parameters 40 mesh points were taken across each velocity profile. The relationship between the form factor H and ratio of δ^*/δ is compared with the relaxed and unrelaxed separation correlation criteria, proposed by Sandborn and Kline (13), in Section 3.1.3. It is well known that the laws of flow deduced from the study of flows through pipe can be applied to the description of the flow in a boundary layer.

3.1.3 Comparison with the relaxed and unrelaxed separation correlations - Table 2 illustrates the variations of H , δ^*/δ , and

Figure 5 Some particular types of separation profiles in time varying pipe flow calculated from Eq. (3-13) (A), a velocity profile which is not monotonic; (B) values u/U occur in the velocity profile; (C) a velocity profile with reverse flow.

 ε with respect to $\sqrt{\frac{\omega}{u}}$ R for various values of ωt . Figure 7 is a comparison of the separation profile parameters as calculated from Equations 3-13, 3-15, and 3-16, with the empirical relaxed and unrelaxed separation correlations. In plotting Figure 7, the separation profiles that have the same characteristics as described in Figure 5 are excluded. For very low frequencies, the separation correlations for all values of wt fall almost on a simple curve, which is slightly below the empirical relaxed separation curve. As frequencies increase and reach a specific point where the value of δ^*/δ approximately equals 0.395, the correlation curves separate as illustrated in Figure 7. The values of $\sqrt{\frac{\omega}{\omega}}$ R where departure starts to occur are different for different values of ωt . For very high frequencies all the correlation curves appear to end at the same point directly on the empirical unrelaxed separation curve. The velocity profiles for very high and very low frequencies, as shown in Figure 4, agree well with the relaxed separation profile and the velocity profile for steady flow, respectively. This result suggests the empirical curves may be a reasonable approximation and confirms that adjustment time is an important factor in determining if separation is relaxed or unrelaxed. In Figure 7, it can also be seen that the transitions from the unrelaxed separation correlation to the relaxed separation correlation may be quite different. In determining if reverse flow occurs near the wall, 80 mesh points have been taken across the velocity profiles. The results are slightly different from that of only 40 mesh points. Therefore, in Figure 7 the points where the correlation curves are cut off are only approximate.

Figure 7 Comparison of time varying pipe flow separation profile parameters with the empirical relaxed and unrelaxed separation correlations for various wts; A, ωt = 135°; B, ωt = 142.5°; C, ωt = 150°; D, ωt = 157.5°; E, ωt = 180°; F, ωt = 210°; G, ωt = 240°; H, ωt = 270°.

As pointed out by Sandborn (11), these correlations of Figure 7 are not applicable in predicting separation, since it is nearly impossible to evaluate all of the three required parameters. In Figure 8 the form factor H is plotted against the pressure gradient parameter

$$\lambda_{t} = -\frac{R^{2}}{\nu} \frac{1}{U} \frac{dU}{dt} ,$$

which is similar to the parameter

$$\lambda_{\delta} = -\frac{\delta^2}{\nu} \frac{\mathrm{d}U}{\mathrm{d}x}$$

in the steady state flow. It can be seen that the three correlation curves for $\omega t = \pi$, 7/6 π , and 4/3 π are consistent only when the parameter λ_t is greater than about 40. As shown in Figure 9, similar results are obtained when the form factor H is plotted against the pressure gradient parameter

$$\lambda_{\theta} = -\frac{\theta^2}{\nu} \frac{1}{U} \frac{dU}{dt}$$

These results show velocity profiles at separation may not be a one parameter family of velocity profiles as implied by the separation model of Sandborn (11). It is suspected that this discrepancy may indicate the dependency on the time history is not adequately expressed by the classical pressure gradient parameter.

3.2 Fluctuating Flow Past a Porous Flat Plate

3.2.1 <u>Velocity distributions and velocity profile parameters</u> <u>at separation</u> - Stuart's solution for fluctuating flow past a flat plate with suction was reviewed in Chapter II. From Stuart's derivation we have

Figure 9 Variations of the form factor at separation with the pressure gradient parameter $-\frac{\theta^2}{\nu} \frac{1}{U} \frac{dU}{dt}$ for time varying pipe flow.

$$\frac{u}{U_0} = 1 - e^{-\eta} + \varepsilon \cos \omega t - \varepsilon e^{-h_r \eta} \cos(\omega t - hin)$$
(3-17a)

$$\frac{u}{U} = \left[1 - e^{-\eta} + \varepsilon \cos \omega t - \varepsilon e^{-h} r^{\eta} \cos(\omega t - hi\eta)\right] \frac{1}{1 + \varepsilon \cos \omega t} \quad . \quad (3-17b)$$

The shear stress at the wall reduces to

$$\frac{\tau_{W}}{\rho U_{O} |v_{W}|} = 1 + \varepsilon |h| \cos(\omega t + \alpha)$$
(3-18)

where

$$h = h_{r} + ih_{i} = \frac{1}{2} + \frac{1}{2} \left[1 + (4\lambda)^{2}\right]^{\frac{1}{4}} \cos\left(\frac{1}{2} \tan^{-1} 4\lambda\right)$$
$$+ \frac{i}{2} \left[1 + (4\lambda)^{2}\right]^{\frac{1}{4}} \sin\left(\frac{1}{2} \tan^{-1} 4\lambda\right)$$
$$\alpha = \tan^{-1} h_{i}/h_{r} , \quad \lambda = \omega \nu / v_{w}^{2}$$

Provided $\left.\epsilon\left|h\right| \geq 1$, the shear stress, $\left.\tau_{_W}\right.$, is zero when

$$\cos (\omega t + \alpha) = -\frac{1}{\varepsilon |h|} , \qquad (3-19)$$

which corresponds to a transient separation velocity profile. Figure 10 shows variations of ε and U/U₀ at separation with respect to λ for different values of ωt ; for high frequencies separation occurs at very small values of ε . The separation velocity profiles are plotted in Figure 11. From Figure 11 we can see that the high-frequency separation profiles become identical with the velocity profile for steady flow except in the layer near the wall where the separation profiles adjust to satisfy $\partial u/\partial y = 0$ at the wall. From Equations 3-17 and 3-19 the separation profile parameters, displacement thickness and momentum thickness, are obtained in the form

$$\frac{\delta^{*}}{\delta_{0}^{*}} = \int_{0}^{\infty} (1 - \frac{u}{U}) \frac{dy}{\delta_{0}^{*}}$$

$$= \frac{1}{(1 + \varepsilon \cos \omega t)} \left\{ -e^{-\eta} \right\}$$

$$+ \varepsilon \frac{e^{-h_{r}\eta} [\cos \omega t (h_{i} \sinh_{i}\eta - h_{r} \cosh_{i}\eta) - \sin \omega t (h_{r} \sinh_{i}\eta + h_{i} \cosh_{i}\eta)]}{(3 - 20)}$$

$$\frac{\left[(\cos\omega t(n_{i} \sin n_{i} n - n_{r} \cos n_{i} n) - \sin\omega t(n_{r} \sin n_{i} n + n_{i} \cos n_{i} n)\right]}{(h_{r})^{2} + (h_{i})^{2}}$$

where $\delta_0^* = \left| \frac{v}{v_w} \right|$ is the unperturbed displacement thickness

 $\frac{\theta}{\delta_{O}^{\star}} = \int_{O}^{\infty} \frac{u}{U} (1 - \frac{u}{U}) \frac{dy}{\delta_{O}^{\star}}$

$$= \frac{\delta^{\star}}{\delta^{\star}_{0}} - \left\{ 2\varepsilon e^{-(h_{r}+1)\eta} \frac{[h_{i}\sinh_{i}\eta - (h_{r}+1)\cosh_{i}\eta]\cos\omega t - [(h_{r}+1)\sinh_{i}\eta + h_{i}\cosh_{i}\eta]\sin\omega t}{(h_{r}+1)^{2} + (h_{i})^{2}} \right\}$$

$$+ \frac{\varepsilon^2}{2} \left[e^{-2h_r \eta} \frac{(2h_i \sin 2h_i \eta - 2h_r \cos 2h_i \eta) \cos 2\omega t - (2h_r \sin 2h_i \eta + 2h_i \cos 2h_i \eta) \sin 2\omega t}{(2h_r)^2 + (2h_i)^2} \right]$$

$$-\frac{e^{-2h}r^{\eta}}{2h} - \frac{e^{-2\eta}}{2} \bigg\}_{0}^{\infty} \frac{1}{(1+\varepsilon\cos\omega t)^{2}} \qquad (3-21)$$

The profile parameters H and δ^*/δ again are calculated by using a computer program. Table 3 contains parts of the computed results. The results are also plotted in Figure 12 together with the empirical relaxed and unrelaxed separation correlation curves. Also, in preparing Figure 12 we have neglected the separation profiles which have the same properties as described in Figure 5.

3.2.2 <u>Comparison with the relaxed and unrelaxed separation</u> <u>correlations</u> - From Figure 12, we can see, for very high frequencies all the correlation curves also appear to terminate at a specific point,

Figure 12 Comparison of separation profile parameters of fluctuating flow past a porous flat plate with the empirical relaxed and unrelaxed separation correlations. A, ωt = 75°; B, ωt = 90°; C, ωt = 165°; D, ωt = 180°.

as in the case of unsteady pipe flow, but now the point is slightly below the empirical unrelaxed correlation curve. As frequencies decrease, these correlation curves pass across the empirical unrelaxed correlation curve and fall in the region between the two separation curves. For very low frequencies these curves approach the relaxed separation curve, but there exists a 'hook' at the end of each curve. Figure 13 shows some separation profiles corresponding to points on the hooks. The appearance of these hooks is not understood at the present time. Stuart's solution thus lends theoretical justification to the unrelaxed separation correlation, and provides more evidence about the importance of the time factor in separation.

Figures 14 and 15 show the variations of the form factor H with respect to the pressure gradient parameters λ_t and λ_{θ} , respectively. The correlation curves again are diverged at small values of λ_t and λ_{θ} as in the unsteady pipe flow case. Thus, both results suggest that this may be an important deviation from the separation model of Sandborn (11).

Figure 13 Separation velocity profiles for the points on the hooks

Figure 15 Variations of the form factor at separation with the pressure gradient parameter $-\frac{\theta^2}{\nu}\frac{1}{U}\frac{d'U}{dt}$ for fluctuating flow past a porous flat plate.

Chapter IV

CONCLUDING REMARKS

A time varying pipe flow was analyzed. The velocity distributions and velocity profile parameters at separation were computed and compared with the model for relaxed (steady) and unrelaxed (unsteady) separation criteria proposed by Sandborn and Kline.

For very low frequencies, the velocity profile at separation for the unsteady pipe flow agree well with the empirical relaxed separation profile with the same form factor. The separation correlation curves lie slightly below the empirical relaxed separation correlation criterion. For very high frequencies, viscosity does not have time to adjust the velocity to the changes imposed by the exciting pressuregradient fluctuations across the greater part of the layer. The solved high-frequency separation profile thus resembles the velocity profile for steady flow except in a thin layer near the wall where the effect of viscosity can be felt for the oscillations. The separation correlation curves appear to end at a point on the empirical unrelaxed separation correlation criterion. The present studies thus suggest that the empirical relaxed and unrelaxed correlation curves may be a reasonable approximation, and confirm adjustment time is an important factor for separation to be steady or unsteady.

Stuart's solution for fluctuating flow past an infinite porous flat plate was further analyzed. The solved high-frequency separation correlation curves appear to terminate at a point below the empirical unrelaxed separation correlation curve. The low-frequency separation correlation curves approach the relaxed separation correlation curve,

but bend down slightly at the end. The results also demonstrate adjustment time is important in separation.

Separation criteria in terms of the non-dimensional pressure gradient parameter and the velocity profile form factor are also given for both the unsteady pipe flow and the Stuart's solution. The results show velocity profiles at separation may not be a one parameter family of velocity profiles as implied by the separation model of Sandborn (11). It is suspected that this discrepancy may indicate the dependency on the time history is not adequately expressed by the classical pressure gradient parameter.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Curle, N., A Two-Parameter Method for Calculating the Two-Dimensional Incompressible Laminar Boundary Layer. Jour. Royal Aeronautical Soc., Vol. 11, p. 117, 1967.
- Doenhoff, A. E. von and Tetervin, N., Determination of General Relations for the Behavior of Turbulent Boundary Layers. NACA Report 772, 1943.
- Head, M. R., and Hayasi, N., Approximate Calculations of the Incompressible Laminar Boundary Layer. Aeronautical Quarterly, August 1967.
- Ito, H., Theory of Laminar Flow Through a Pipe with Non-Steady Pressure Gradient. Rep. Inst. High-Speed Mech., Tohoku Univ., No. 3, p. 163, 1953.
- Lighthill, M. J., The Response of Laminar Skin Friction and Heat Transfer to Fluctuations in the Stream Velocity. Proc. Royal Soc. A, Vol. 224, p. 1, 1954.
- Liu, C. Y., Boundary Layer Separation. Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, 1967.
- Liu, C. Y., and Sandborn, V. A., Evaluation of the Separation Properties of Laminar Boundary Layers. Aeronautical Quarterly, Vol. XIX, p. 235, 1968.
- Liu, C. Y., and Sandborn, V. A., Laminar Velocity Profiles in Adverse Pressure Gradients. Journal of Aircraft, Vol. 5, p. 93, 1968.
- 9. Pohlhausen, K., Zur Waherungsweisen Integration der Laminaren Reibungsschicht. ZAMM 1, p. 252, 1921.
- Rosenhead, L., Laminar Boundary Layer. Oxford at the Charendou Press, London, 1963.
- Sandborn, V. A., Characteristics of Boundary Layers at Separation and Reattachment. Research Memorandum No. 14, Department of Civil Engineering, Colorado State University, 1969.
- Sandborn, V. A., An Equation for the Mean Velocity Distribution of Boundary Layers. NASA Memo 2-5-59E, 1959.
- Sandborn, V. A., and Kline, S. J., Flow Models in Boundary Layer Stall Inception. Jour. of Basic Engineering, Trans. ASME, Series D, Vol. 83, p. 317, 1961.
- 14. Sandborn, V. A., and Liu, C. Y., On Turbulent Boundary Layer Separation, Journal of Fluid Mechanics, Vol. 23, p. 293, 1968.

- Schlichting, H., Boundary-Layer Theory. Sixth Edition, McGraw-Hill Publishing Co., N. Y., 1968.
- Sex1, T., Uber den von E. G. Richardson rntdeckteu Annulareffekt.
 Z. Phys. 61, p. 349, 1930.
- Stratford, B. S., The Prediction of Separation of the Turbulent Boundary Layer. Journal of Fluid Mechanics, Vol. 5, p. 1, 1959.
- Stratford, B. S., An Experimental Flow with Zero Skin Friction Throughout Its Region of Pressure Rise. Journal of Fluid Mechanics, Vol. 5, p. 17, 1959.
- Stuart, J. T., A Solution of the Navier-Stokes and Energy Equations Illustrating the Response of Skin Friction and Temperature of an Infinite Plate Thermometer to Fluctuations in the Stream Velocity. Proc. Royal Soc. A., Vol. 231, p. 116, 1955.
- 20. Thwaites, B., Approximate Calculation of the Laminar Boundary Layer. Aeronautical Quarterly, Vol. 1, p. 245, 1949.
- 21. Wylie, C. R. Jr., Advanced Engineering Mathematics. Third Edition, McGraw-Hill Publishing Co., N. Y., 1966.

TABLES

x	Ber x	Bei x	Ber' x	Bei' x
0	1	0	0	0
1	9.84382E-01	2.49566E-01	-6.24458E-02	4.97397E-01
2	7.51734E-01	9.72292E-01	-4.93067E-01	9.71014E-01
3	-2.21380E-01	1.93759E+00	-1.57985E+00	8.80482E-01
4	-2.56342E+00	2,29269E+00	-3,13465E+00	-4 91137E-01
5	-6,23008E+00	1.16034E-01	-3.84534E+00	-4 35414F+00
6	-8.85832E+00	-7 33475E+00	-2 93080F-01	-1.08462E+01
7	-3.63293E+00	-2 12394F+01	1.27645E+01	-1.604021+01
8	2.09740E+01	-3 50167E+01	3 83113E+01	-7.66032E+00
9	7 39357E+01	-2 47128E+01	6 56008E±01	-7.00032L+00
10	1 38840E+02	5 63705E+01	5.300031+01	1 7E 700E . 02
11	1 3305/E+02	2 572055+02	3.12933E+01	1.35309E+02
12	1 205125+02	2.37203E+02	-9.42119E+01	2.04119E+U2
12	-1.20512E+02	5.409496+02	-4./2509E+U2	2.72670E+02
13	-0.0204/E+U2	0.40030E+02	-1.04/34E+03	-1.92606E+02
14	-2.13120E+03	-1.60938E+02	-1.31609E+03	-1.61609E+03
15	-2.90/25E+03	-2.952/1E+03	9.10553E+01	-4.08776E+03
10	-6.5949/E+02	-8.19071E+03	5.34930E+03	-6.00952E+03
1/	9.48445E+03	-1.30873E+04	1.56831E+04	-2.15552E+03
18	3.09623E+04	-7.45434E+03	2.63984E+04	1.68409E+04
19	5.60035E+04	2.85273E+04	1.79336E+04	5.90294E+04
20	4.74894E+04	1.14775E+05	-4.88032E+04	1.11855E+05
21	-7.61557E+04	2.33698E+05	-2.71321E+05	9.65772E+04
22	-4.15521E+05	2.53881E+05	-4.63869E+05	-1.20194E+05
23	-9.53546E+05	-1.52737E+05	-5.45342E+05	-7.79084E+05
24	-1.24183E+06	-1.46040E+06	1.80849E+05	-1.88032E+06
25	9.79772E+03	-3.80879E+06	2.70052E+06	-2.61958E+06
26	4.93575E+06	-5.74444E+06	7.45727E+06	-4.59934E+05
27	1.48935E+07	-2.30784E+06	1.18858E+07	8,94431E+06
28	2.55309E+07	1.57762E+07	6.43694E+06	2.89280E+07
29	1.82477E+07	5.69504E+07	-2,76897E+07	5.21872E+07
30	-4.61176E+07	1.10956E+08	-1,09599E+08	4.32922E+07
31	-2.12456E+08	1.07975E+08	-2,22436E+08	-7.63424E+07
32	-4.61092E+08	-1,13201E+08	-2.38742E+08	-4 04349E+08
33	-5.53103E+08	-7,70090E+08	1.61924E+08	_9 2/055E+08
34	1.59559E+08	-1.88756E+09	1 44532F+00	-1 10306E±00
35	2.69363E+09	-2.66087E+09	3 74773E+00	-1.155901+09 6 15600E+07
36	7.55140E+09	-5 45406E+08	5 62005E+00	1 06217E+00
37	1.21922E+10	8 98464F+09	2 10104E+00	4.90213E+09
38	6.86654E+09	2.95191F+10	_1 6110/E±10	1.40331E+1U
39	-2.79417E+10	5.38524F+10	-5.7/805510	2.33388E+10 1.76264E,10
40	-1.12597E+11	$4.56281E \pm 10$	-3.74005E+10 -1.10/71E+11	1.702046+10
41	-2.30841F+11	-7 70/08F+10	-1.104/16+11	-4./9332E+10
42	-2 51327E+11	-4 17860F+11	1 20700E+11	-2.10/01E+11
13	1.61180F+11	-9.6/0655+11	7.077675.11	-4.0021UE+11
40	1.50121E+12	_1 25025E+12	1.93/03E+11	-3.30392E+11
	1.001610.16	1.200201-12	1.9940/6+12	1.033312+11

TABLE 1 VARIATIONS WITH X OF BER X, BEI X, BER'X, BEI'X FROM X=0 TO X=80

TABLE 1 VARIATIONS WITH X OF BER X, BEI X, BER'X, BEI'X FROM X=0 TO X=80 - Cont'd.

x	Ber x	Bei x	Ber' x	Bei' x
45	3.92920E+12	3.60867E+10	2.70902E+12	2.80366E+12
46	5.94457E+12	5.71537E+12	4,78823E+11	7.80677E+12
47	2.32111E+12	1.56422E+13	79.44489E+12	1.25351E+13
48	-1.68525E+13	2.68901E+13	-3.07555E+13	6.81581E+12
49	-6.07815E+13	1.90564E+13	-5.58322E+13	-2.97016E+13
50	-1.17624E+14	-5.01926E+13	-4.65989E+13	-1.18165E+14
51	-1.14082E+14	-2.30071E+14	8.31471E+13	-2.41093E+14
52	1.26012E+14	-5.00145E+14	4.41561E+14	-2.59722E+14
53	8.45158E+14	-5.99346E+14	1.01343E+15	1.79516E+14
54	2.07324E+15	1.87717E+14	1.31400E+15	1.59706E+15
55	2.92222E+15	2.99342E+15	-7.70891E+13	4.15578E+15
56	5.56413E+14	8.38943E+15	-5.54401E+15	6.25054E+15
57	-1.01058E+16	1.35474E+16	-1.66367E+16	2.31409E+15
58	-3.31407E+16	7.50677E+15	-2.84558E+16	-1.81918E+16
59	-6.04675E+16	-3.18174E+16	-1.97438E+16	-6.49864E+16
60	-5.08780E+16	-1.27647E+17	5.49125E+16	-1.25171E+17
61	8.89990E+16	-2.61668E+17	2.47234E+17	-1.19942E+17
62	4.78075E+17	-2.83862E+17	5.34911E+17	1.39637E+17
63	1.10224E+18	1.90697E+17	6.35783E+17	9.12753E+17
64	1.43683E+18	1.73257E+18	-2.20418E+17	2.22756E+18
65	-6.69167E+16	4.52912E+18	-3.24947E+18	3.12032E+18
66	-6.02433E+18	6.84241E+18	-9.05254E+18	5.26377E+17
67	-1.81664E+19	2.59279E+18	-1.45431E+19	-1.10320E+19
68	-3.11933E+19	-1.97903E+19	-7.83285E+18	-3.59056E+19
69	-2.18594E+19	-7.10906E+19	3.49718E+19	-6.52095E+19
70	5.95318E+19	-1.37417E+20	1.38840E+20	-5.40880E+19
71	2.70911E+20	-1.32493E+20	2.83339E+20	9.88166E+19
72	5.88129E+20	1.51595E+20	3.04578E+20	5.22020E+20
73	7.02194E+20	1.00169E+21	-2.16613E+20	1.19796E+21
74	-2.35511E+20	2.45285E+21	-1.89940E+21	1.55128E+21
75	-3.57076E+21	3.44836E+21	-4.93944E+21	-1.09645E+20
76	-9.98254E+21	6.08006E+20	-7.42285E+21	-6.63296E+21
77	-1.60867E+22	-1.21352E+22	-2.68901E+21	-1.98772E+22
78	-8.75774E+21	-3.96497E+22	2.19001E+22	-3.39747E+22
79	3.84893E+22	-7.22095E+22	7.80311E+22	-2.33839E+22
80	1.53509E+23	-6.02449E+22	1.50182E+23	6.63276E+22

In calculating the functions Ber x, Bei x, Ber' x, and Bei' x, the number of terms used in each infinitive series depends on the values of x , but in each case the truncation error is less than 0.000001 %.

		RESPECT	V = R FOR	TIME VAR	YING PIPE	FLOW
$\int \frac{\omega t}{v} R$		$\frac{3}{4}$ π	π	$\frac{7}{6}$ m	$\frac{4}{3}$ m	$\frac{3}{2}$ m
0.4	δ*/R	0.467	0.477	0.466	0.466	0.467
	θ/R	0.127	0.127	0.127	0.127	0.127
	Η	3.672	3.770	3.664	3.668	3.669
	ε	1.444	1.001	1.142	1.934	50.037
1.2	δ*/R	0.468	0.477	0.455	0.463	0.466
	θ/R	0.127	0.127	0.127	0.127	0.127
	Η	3.684	3.769	3.570	3.642	3.661
	ε	1.792	1.042	1.092	1.595	5.885
2.0	δ*/R	0.467	0.476	0.516	0.443	0.459
	θ/R	0.127	0.127	0.122	0.127	0.127
	Η	3.672	3.759	4.228	3.490	3.607
	ε	3.297	1.292	1.187	1.459	2.899
3,2	δ*/R	0.452	0.469	0.485	0.556	0.396
	θ/R	0.127	0.127	0.126	0.112	0.121
	Η	3.556	3.702	3.862	4.970	3.247
	ε	12.380	2.169	1.746	1.884	2.883
4.8	δ*/R	0.392	0.442	0.464	0.499	0.710
	θ/R	0.121	0.126	0.126	0.122	0.025
	Η	3.235	3.512	3.696	4.085	27.960
	ε	30.872	3.380	2.623	2.743	3.999
6.4	δ*/R	0.295	0.402	0.431	0.465	0.552
	θ/R	0.095	0.122	0.124	0.122	0.103
	Η	3.097	3.285	3.480	3.797	5.363
	ε	54.424	4.508	3.448	3.565	5.106
8.0	δ*/R	0.127	0.371	0.401	0.432	0.495
	θ/R	0.065	0.120	0.122	0.121	0.111
	Η	3.328	3.104	3.296	3.568	4.473
	ε	86.394	5.644	4.276	4.388	6.218
10.0	δ*/R	0.179	0.354	0.380	0.404	0.450
	θ/R	0.058	0.121	0.122	0.121	0.113
	Η	3.074	2.923	3.115	3.350	3.966
	ε	136.278	7.061	5.311	5.421	7.619

TABLE 2 VARIATIONS OF δ^*/R , θ/R , H, AND ε WITH RESPECT TO $\sqrt{\frac{\omega}{v}}$ R FOR TIME VARYING PIPE FLOW

$\frac{\omega t}{\sqrt{\frac{\omega}{\nu}}R}$		$\frac{3}{4}$ m	π	$\frac{7}{6}$ π	$\frac{4}{3}$ m	$\frac{3}{2}$ m
16.0	δ*/R	0.140	0.342	0.359	0.375	0.399
	θ/R	0.061	0.128	0.127	0.125	0.121
	Η	2.279	2.673	2.833	2.991	3.301
	ε	353.879	11.308	8.417	8.522	11.843
24.0	δ*/R	0.115	0.337	0.350	0.360	0.375
	θ/R	0.061	0.131	-0.129	0.128	0.125
	Η	1.897	2.578	2.700-	2.809	2.996
	ε	802.420	16.967	12.558	12.660	17.490
40.0	δ*/R	0.096	0.335	0.343	0.349	0.358
	θ/R	0.061	0.132	0.131	0.130	0.129
	Η	1.579	2.527	2.608	2.676	2.781
	ε	2242.570	28.282	20.840	20.941	28.796
80.0	δ*/R	0.081	0.334	0.338	0.341	0.345
	θ/R	0.061	0.133	0.133	0.132	0.131
	Η	1.337	2.504	2.549	2.583	2.633
	ε	9073.181	56.566	41.544	41.642	57.070

TABLE 2 VARIATIONS OF δ^*/R , θ/R , H, AND ε WITH RESPECT TO $\sqrt{\frac{\omega}{v}}$ R FOR TIME VARYING PIPE FLOW - Continued

ωt 4λ		75°	π/2	120°	165°	π
	8/8*	5.500	6.000	6.500	7.300	7.700
	δ*/δ*	1.599	1.689	1.834	2.184	2.568
2	θ/δ*	0.576	0.612	0.664	0.750	0.782
	Н	2.775	2.758	2.764	2.913	3.284
	δ*/δ	0.291	0.281	0.282	0.299	0.333
	δ/δ*	4.700	5.300	5.900	6.500	6.900
	δ*/δ*	1.364	1.476	1.643	1.970	2.245
4	θ/δ*	0.485	0.532	0.590	0.662	0.682
	Н	2.810	2.776	2.786	2.974	3.293
	δ*/δ	0.290	0.279	0.278-	0.303	0.325
	٥/٥*	4.800	5.300	5.700	6.100	6.400
	δ*/δ*	1.173	1.295	1.460	1.737	1.935
8	θ/δ*	0.428	0.479	0.533	0.588	0.600
	Н	2.737	2.703	2.737	2.954	3.225
	δ*/δ	0.244	0.244	0.256	0.285	0.302
	۵/۵*	5.100	5.400	5,600	5.900	6.100
	δ*/δ*	1.052	1.170	1.317	1.539	1.681
16	θ/δ*	0.415	0.460	0.503	0.541	0.548
	Н	2.538	2.544	2.618	2.846	3.068
	δ*/δ	0.206	0.217	0.235	0.261	0.276
-	8/8*	5.200	5.300	5.500	5.700	5.900
	δ*/δ <u>*</u>	0.989	1.092	1.215	1.386	1.488
32	θ/δ*	0.426	0.460	0.491	0.515	0.520
	Н	2.322	2.373	2.473	2.690	2.863
	δ*/δ	0.190	0.206	0.221	0.243	0.252
		and the second s	dealers and the second second second			

 TABLE 3
 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR

 FLUCTUATING FLOW PAST A POROUS FLAT PLATE

	10/11/10	o i bon intoi		Bitt Chitte		
4λ wt		75°	π/2	120°	165°	π
	δ/δ*	5.200	5.300	5.500	5.600	5.700
	δ*/δ*	0.961	1.047	1.145	1.274	1.346
64	θ/δ*	0.445	0.469	0.489	0.503	0.506
	Н	2.161	2.234	2.341	2.531	2.663
	δ*/δ	0.185	0.198	0.208	0.227	0.236
	δ/δ*	5.300	5.300	5.400	5.500	5.600
	δ*/δ*	0.954	1.023	1.097	1.192	1.244
128	θ/δ*	0.463	0.478	0.490	0.498	0.499
	Н	2.061	2.140	2.240	2.394	2.491
	δ*/δ	0.180	0.193	0.203	0.217	0.222
	8/8*	5.300	5.300	5.400	5.500	5.500
	δ*/δ*	0.957	1.009	1.066	1.135	1.172
256	θ/δ*	0.476	0.485	0.492	0.496	0.497
	Н	2.010	2.082	2.167	2.287	2.358
	δ*/δ	0.181	0.190	0.197	0.206	0.213
	8/8*	5.300	5.300	5.400	5.400	5.500
	δ*/δ*	0.963	1.002	1.044	1.094	1.120
512	θ/δ*	0.484	0.489	0.493	0.495	0.496
	Н	1.988	2.049	2.117	2.208	2.259
	δ*/δ	0.182	0.189	0.193	0.203	0.204
	δ/δ*	5.300	5.300	5.400	5.400	5.400
	δ*/δ*	0.976	0.997	1.019	1.045	1.058
2048	θ/δ*	0.497	0.493	0.495	0.495	0.495
	Н	1.983	2.021	2.060	2.109	2.135
	8*/8	0.184	0.188	0.189	0.193	0.196

TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-TUATING FLOW PAST A POROUS FLAT PLATE - Continued

ωt 4λ		75°	π/2	120°	165°	π
	δ/δ*	5.300	5.300	5.400	5.400	5.400
	ο δ*/δ*	0.985	0.995	1.007	1.020	1.027
8192	θ/δ*	0.494	0.495	0.495	0.495	0.495
	Н	1.992	2.013	2.033	2.059	2.072
	۵ * ۵	0.186	1.188	0.186	0.189	0.190
	٥/٥*	5.300	5.300	5.400	5.400	5.400
	δ*/δ*	0.990	0.995	1.001	1.008	1.011
32768	θ/δ*	0.495	0.495	0.495	0.495	0.495
	Н	2.000	2.011	2.021	2.034	2.041
	δ*/δ	0.187	0.188	0.186	0.187	0.187

 TABLE 3
 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-TUATING FLOW PAST A POROUS FLAT PLATE - Continued

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R&D					
(Security classification of title, body of abstract and index	ing annotation must be en	ntered when	the overall report is classified)		
1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION			
Fluid Dynamics and Diffusion Laborator	У	Unclassified			
College of Engineering, Colorado State	University	2 b GROUI	P		
Fort Collins, Colorado 80521					
3. REPORT TITLE			•		
Flow Separation in Time Varying	F.TOM				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	-				
Technical Percet					
5. AUTHOR(S) (Last name, first name, initial)					
Chow, Fan-Kuo and Sandborn, V. A.					
6. REPORT DATE	7a. TOTAL NO. OF F	AGES	7b. NO. OF REFS		
December 1969	62		21		
8 a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S R	EPORT NUM	IBER(S)		
N00014-68-A-0493		TA GOO			
b. PROJECT NO.	CERO9- (UFRC	-VA523			
NR 062-414/6-6-68(Code 438)					
c.	9b. OTHER REPORT	NO(S) (Any	other numbers that may be assigned		
d.					
Distribution of this report is unlim	nited				
11. SUPPL EMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY		
	Office of N	aval Res	search		
	U. S. Depar	artment of Defense			
Washington, D.C.					
13. ABSTRACT					
An exact solution of time varying pipe flow with a fluctuating velocity superimposed on the mean flow is analyzed. The velocity profiles, together with the profile parameters at separation, are computed from a computer program.					
The results are compared with the model for relaxed (steady) and unrelaxed (unsteady) separation criteria proposed by V. A. Sandborn and S. J. Kline. For very low frequencies, the correlation curves appear to have a reasonable agreement with the proposed relaxed separation criterion. For high frequencies, the correlation curves have been found to fall approximately on the unrelaxed separation criterion. This result demonstrates further that adjustment time is an important factor for separation to be relaxed or unrelaxed, a new concept proposed by Sandborn. In addition, J. T. Stuart's solution for the flow along an infinite flat plate with normal suction and periodic external velocity is further					
analyzed. The results again prove t	to agree with t	he propo	osed new concept.		

DD FORM 1473

Unclassified Security Classification

14.	KEY WORDS	LIN	LINK A		LINK B		LINK C	
	KET WORDS	ROLE	wт	ROLE	wт	ROLE	wт	
	Flow Separation							
	Time Varying							
	Pipe Flow							
	Velocity Profiles							
	Profile Parameters							

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (*paying for*) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

February 1969

APPROVED DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS ISSUED UNDER CONTRACT N00014-68-A-0493-0001 NR 062-414

Technical Library, Building 313 Aberdeen Proving Ground Aberdeen, Maryland 21005

Dr. F. D. Bennett Exterior Ballistics Laboratory Ballistics Research Laboratories Aberdeen Proving Ground Aberdeen, Maryland 21005

Mr. C. C. Hudson Sandia Corporation Sandia Base Albuguerque, New Mexico 87115

Defense Documentation Center Cameron Station Alexandria, Virginia 22314 (20)

Professor Bruce Johnson Engineering Department Naval Academy Annapolis, Maryland 21402

Library Naval Academy Annapolis, Maryland 21402

Professor W. W. Willmarth Department of Aerospace Engineering University of Michigan Ann Arbor, Michigan 48108

Professor A. Kuethe Department of Aeronautical Engineering University of Michigan Ann Arbor, Michigan 48108

AFOSR (SREM) 1400 Wilson Boulevard Arlington, Virginia 22209

Dr. J. Menkes Institute for Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22204

M. J. Thompson Defense Research Laboratory University of Texas P. O. Box 8029 Austin, Texas 78712

Library Aerojet-General Corporation 6352 N. Irwindale Avenue Azusa, California 91702

Professor S. Corrsin Department of Mechanics Johns Hopkins University Baltimore, Maryland 21218

Professor M. V. Morkovin Aeronautics Building Johns Hopkins University Baltimore, Maryland 21218

Professor O. M. Phillips Division of Mechanical Engineering Institute for Cooperative Research Johns Hopkins University Baltimore, Maryland 21218

Geophysical Research Library Air Force Cambridge Research Center Bedford, Massachusetts 01731

Librarian Department of Naval Architecture University of California Berkeley, California 94720

Professor Paul Lieber Department of Mechanical Engineering University of California Berkeley, California 94720

Professor J. Johnson 412 Hesse Hall University of California Berkeley, California 94720 Professor A. K. Oppenheim Division of Mechanical Engineering University of California Berkeley, California 94720

Professor M. Holt Division of Aeronautical Sciences University of California Berkeley, California 94720

Dr. L. Talbot Department of Engineering Berkeley, California 94720

Professor R. J. Emrich Department of Physics Lehigh University Bethlehem, Pennsylvania 18015

Engineering Library Plant 25 Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York 11714

Mr. Eugene F. Baird Chief of Dynamic Analysis Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York 11714

Library Naval Weapons Center China Lake, California 93555

Library MS 60-3 NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44133

Professor J. M. Burgers Institute for Fluid Dynamics and Applied Mathematics University of Maryland College Park, Maryland 20742

Professor J. R. Weske Institute for Fluid Dynamics and Applied Mathematics University of Maryland College Park, Maryland 20742

Professor Pai Institute for Fluid Dynamics and Applied Mathematics University of Maryland College Park, Maryland 20742

NASA Scientific and Technical Information Facility Acquisitions Branch (S-AK/DL) P. O. Box 33 College Park, Maryland 20740

Professor Loren E. Bollinger The Ohio State University Box 3113 - University Station Columbus, Ohio 43210

Professor G. L. von Eschen Department of Aeronautical and Astronautical Engineering Ohio State University Columbus, Ohio 43210

Computations and Analysis Laboratory Naval Weapons Laboratory Dahlgren, Virginia 22448

Technical Library Naval Weapons Laboratory Dahlgren, Virginia 22418

Dr. J. Harkness LTV Research Center Ling-Temco-Vought Aerospace Corporation P. O. Box 5907 Dallas, Texas 75222

Mr. Adolf Egli Ford Motor Company Engineering and Research Staff P. O. Box 2053 Dearborn, Michigan 48123 School of Applied Mathematics Indiana University Bloomington, Indiana 47401

Commander Boston Naval Shipyard Boston, Massachusetts 02129

Director Office of Naval Research Branch Office 495 Summer Street Boston, Massachusetts 02210

Professor M. S. Uberoi Department of Aeronautical Engineering University of Colorado Boulder, Colorado 80303

Technical Library Naval Applied Science Laboratory Building 1, Code 222 Flushing & Washington Avenues Brooklyn, New York 11251

Professor J. J. Foody Chairman, Engineering Department State University of New York Maritime College Bronx, New York 10465

Mr. F. Dell'Amico Cornell Aeronautical Laboratory P. 0. Box 235 Buffalo, New York 14221

Professor G. Birkhoff Department of Mathematics Harvard University Cambridge, Massachusetts 02138

Professor B. Budiansky Department of Mechanical Engineering School of Applied Sciences Harvard University Cambridge, Massachusetts 02138

Dr. Ira Dyer Bolt, Beranek and Newman, Inc. 50 Moulton Street Cambridge, Massachusetts 02138

Department of Naval Architecture and Marine Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor Patrick Leehey Department of Naval Architecture and Marine Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor E. Mollo-Christensen Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor A. T. Ippen Department of Civil Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor C. C. Lin Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor H. C. Hottel Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Commanding Officer NROTC and Naval Administrative Unit Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor R. F. Probstein Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Technical Library Webb Institute of Naval Architecture Glen Cove, Long Island, New York 11542

Library, MS185 NASA Langley Research Center Langley Station Hampton, Virginia 23365

Dr. B. N. Pridmore Brown Northrop Corporation Norair-Division Hawthorne, California 90250

Dr. J. P. Breslin Davidson Laboratory Stevens Institute of Technology Hoboken, New Jersey 07030

Mr. D. Savitsky Davidson Laboratory Stevens Institute of Technology Noboken, New Jersey 07030

Mr. S. Tsakonas Davidson Laboratory Stevens Institute of Technology Hoboken, New Jersey 07030

Professor J. F. Kennedy, Director Iowa Institute of Hydraulic Research University of Iowa Iowa City, Iowa 52240

Professor L. Landweber Iowa Institute of Hydraulic Research University of Iowa Iowa City, Iowa 52240

Professor John R. Glover Iowa Institute of Hydraulic Research University of Iowa Iowa City, Iowa 52240

Professor E. L. Resler Graduate School of Aeronautical Engineering Cornell University Ithaca, New York 14851

Technical Library Scripps Institution of Oceanography University of California La Jolla, California 92037

Professor S. R. Keim University of California Institute of Marine Resources P. O. Box 109 La Jolla, California 92038

Dr. B. Sternlicht Mechanical Technology Incorporated 968 Albany-Shaker Road Latham, New York 12110

Mr. P. Eisenberg HYDRONAUTICS, Incorporated Pindell School Road Hovard County, Laurel, Maryland 20810

Technical Library Charleston Naval Shipyard Naval Base Charleston, South Carolina 29408

Director Office of Naval Research Branch Office 219 South Dearborn Street Chicago, Illinois 60604

Technical Library Puget Sound Naval Shipyard Bremerton, Washington 98314

Technical Library Annapolis Division Naval Ship Research & Development Center Annapolis, Maryland 21402

Code ESD-AROD Army Research Office Box CM, Duke Station Durham, North Carolina 27706

Professor Ali Bulent Cambel Chairman, Department of Mechanical Engineering Northwestern University Evanston, Illinois 60201 Professor A. Charnes The Technological Institute Northwestern University Evanston, Illinois 60201

Barbara Spence Technical Library AVCO-Everett Research Laboratory 2385 Revere Beach Parkway Everett, Massachusetts 02149

Dr. Martin Bloom Director of Dynamics Research Department of Aerospace Engineering and Applied Mechanics Polytechnic Institute of Brooklyn-Graduate Center Route 110 Farmingdale, New York 11201

Professor J. E. Cermak Professor-in-Charge, Fluid Mechanics Program -College of Engineering Colorado State University Fort Collins, Colorado 80521

Mr. Seymour Edelberg Lincoln Laboratory Massachusetts Institute of Technology P. O. Box 73 Lexington, Massachusetts 02173

Technical Library Long Beach Naval Shipyard Long Beach, California 90801

Professor A. F. Charwat Department of Engineering University of California Los Angeles, California 90024

Professor R. W. Leonard University of California Los Angeles, California 90024

Professor John Laufer Department of Aerospace Engineering University Park University of California Los Angeles, California 90007

Professor J. F. Ripkin St. Anthony Falls Hydraulic Laboratory University of Minnesota Minneapolis, Minnesota 55414

Lorenz G. Straub Library St. Anthony Falls Hydraulic Laboratory University of Minnesota Minneapolis, Minnesota 55414

Library Naval Postgraduate School Monterey, California 93940

Professor A. B. Metzner Department of Chemical Engineering University of Delaware Newark, Delaware 19711

Technical Library Navy Underwater Sound Laboratory Port Trumbull New London, Connecticut 06320

Technical Library Naval Underwater Weapons Research and Engineering Station Newport, "hode Island 02840

Professor W. J. Pierson, Jr. Department of Meteorology and Oceanography New York University University Heights New York, New York 10405

Professor J. J. Stoker Courant Institute of Mathematical Sciences New York University 251 Mercer Street New York, New York 10003

Engineering Societies Library 345 East 47th Street New York, New York 10017 Office of Naval Research New York Area Office 207 W. 24th Street New York, New York 10011

Commanding Officer Office of Naval Research Branch Office Box 39, FPO, New York 09510 (25)

Professor A. G. Strandhagen Department of Engineering, Mechanics University of Notre Dame Notre Dame, Indiana 46556

Miss O. M. Leach, Librarian National Research Council Aeronautical Library Montreal Road Ottawa 7, Canada

Lockheed Missiles and Space Company Technical Information Center 3251 Hanover Street Palo Alto, California 94301

Professor M. S. Plesset Engineering Science Department California Institute of Technology Pasadena, California 91109

Professor H. W. Liepmann Department of Aeronautics California Institute of Technology Pasadena, California 91109

Dr. Jack W. Hoyt (Code P2501) Associate Head, Ocean Technology Department Naval Undersea Warfare Center 3202 E. Foothill Blvd. Pasadena, California 91107

Dr. F. R. Hama Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

Professor T. Y. Wu Division of Engineering California Institute of Technology Pasadena, California 91109

Professor A. J. Acosta Department of Mechanical Engineering California Institute of Technology Pasadena, California 91109

Director Office of Naval Research Branch Office 1030 E. Green Street Pasadena, California 91101

Professor F. Zwicky Department of Physics California Institute of Téchnology Pasadena, California 91109

Dr. E. E. Sechler Executive Officer for Aeronautics California Institute of Technology Pasadena, California 91109

Dr. R. H. Kraichnan Dublin, New Hampshire 03444

Technical Library (Code 249b) Philadelphia Naval Shipyard Philadelphia, Pennsylvania 19112

Dr. Sinclaire M. Scala Space Sciences Laboratory General Electric Company P. O. Box 8555 Philadelphia, Pennsylvania 19101

Dr. Paul Kaplan Oceanics, Inc. Technical Industrial Park Plainview, L. I., New York 11803

Technical Library Naval Missile Center Point Mugu, California 93041

Technical Library Portsmouth Naval Shipyard Portsmouth, New Hampshire 03801

Technical Library Norfolk Naval Shipyard Portsmouth, Virginia 23709 Professor G. W. Duvall Department of Physics Washington State University Pullman, Washington 99164

Chief, Document Section Redstone Scientific Information Center Army Missile Command Redstone Arsenal, Alabama 35809

Professor M. Lessen, Head Department of Mechanical Engineering University of Rochester College of Engineering, River Campus Station Rochester, New York 14627

Dr. H. N. Abramson Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78228

Editor Applied Mechanics Review Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78206

Dr. S. L. Zieberg, Head Gas Dynamics Section, Fluid Mechanics Building B-1, Room 1320 Aerospace Corporation San Bernardino, California 92402

Mr. Myles B. Berg Aerospace Corporation P. O. Box 1308 San Bernardino, California 92402

Mr. W. B. Barkley General Dynamics Corporation Electric Boat Division Marine Technology Center, P. O. Box 911 San Diego, California 92112

Library (128-000) CONVAIR - Division of General Dynamics P. O. Box 12009 San Diego, California 92112

Technical Library Pearl Harbor Naval Shipyard Box 400, FPO, San Francisco 96610

Technical Library, Code H245C-3 Hunters Point Division San Francisco Bay Naval Shipyard San Francisco, California 94135

Office of Naval Research San Francisco Area Office 1076 Mission Street San Francisco, California 94103

Gail T. Flesher - 44 GM Defense Research Laboratory BOX T Santa Barbara, California 93102

Library The RAND Corporation 1700 Main Street Santa Monica, California 90401

Dr. H. T. Nagamatsu General Electric Company Research and Development Center K-1 P. O. Box 8 Schenectady, New York 12301

Penton Kennedy Document Library The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910

Chief, Library Division Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910

Dr. R. E. Wilson Associate Technical Director (Aeroballistics) Naval Ordnance Laboratory White Oak

Silver Spring, Maryland 20910 Aerophysics Division

Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910 Dr. A. E. Seigel Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910

Dr. S. Kline Mechanical Engineering 501 G Stanford University Stanford, California 94305

Engineering Library Department 218, Building 101 McDonnel Aircraft Corporation P. O. Dox 516 St. Louis, Missouri 63166

Mr. R. W. Kermeen Lockheed Missiles & Space Company Department 57101, Building 150 Sunnyvale, California 94086

Professor S. Eskinazi Department of Mechanical Engineering Syracuse University Syracuse, New York 13210

Professor J. Foa Department of Aeronautical Engineering Rensselaer Polytechnic Institute Troy, New York 12180

Professor R. C. DiPrima Department of Mathematics Rensselaer Polytechnic Institute Troy, New York 12180

Professor L. M. Milne-Thomson Mathematics Department University of Arizona Tucson, Arizona 85721

Dr. E. J. Skudrzyk Ordnance Research Laboratory Pennsylvania State University University Park, Pennsylvania 16801

Dr. M. Sevik Ordnance Research Laboratory Pennsylvania State University University Park, Pennsylvania 16801

Dr. G. F. Wislicenus Ordnance Research Laboratory Pennsylvania State University University Park, Pennsylvania 16801

Dr. A. S. Iberall, President General Technical Services, Inc. 8794 West Chester Pike Upper Darby, Pennsylvania 19082

Dr. J. M. Robertson Department of theoretical and Applied Mechanics University of Illinois Urbana, Illinois 61803

Shipyard Technical Library Code 13017, Building 746 San Francisco Bay Naval Shipyard Vallejo, California 94592

Commander
 Commander

 Naval Ship Research and Development Center

 Attn:
 Code 513
 (1)

 Code 901
 (1)

 Code 942
 (1)

 Code 01 (Dr. Powell)
 (1)

 Code 042
 (1)

 Code 520
 (1)
 Code 800 Washington, D. C. 20007 (1)

Commander Naval Ship System Command Attn: Technical Library (2052) Washington, D. C. 20360 (1)

Director, Engineering Science Division National Sciences Foundation Washington, D. C. 20550

Chief	of Naval Research	
Depart	ment of the Navy	
Attn:	Code 438	(3)
	Code 461	(1)
	Code 463	(1)
	Code 468	(1)
	Code 421	(1)
Washin	gton, D. C. 20360	

Commander Commander Naval Air Systems Command Department of the Navy Attn: Code AIR 370 Code AIR 6042 Washington, D. C. 20360

Librarian Station 5-2 Coast Guard Headquarters 1300 E Street, N. W. Washington, D. C. 20226

Division of Engineering Maritime Administration 441 G Street, N. W. Washington, D. C. 20235

Commander Naval Oceanographic Office Washington, D. C. 20390

Code 2027 Naval Research Laboratory Washington, D. C. 20390

Science and Technology Division Library of Congress Washington, D. C. 20540

Commander Naval Ordnance Systems Command Attn: ORD 913 (Library) ORD 915 C. 20360 (1) (1)

Library National Bureau of Standards Washington, D. C. 20234

Chief of Research and Development Office of Chief of Staff Department of the Army The Pentagon, Washington, D. C. 20310

Dr. Frank Lane General Applied Science Laboratory Merrick and Stewart Avenues Westbury, Long Island, New York 11590

Director Woods Hole Oceanographic Institute Woods Hole, Massachusetts 02543

Mr. W. J. Mykytow AF Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433

Dr. H. Cohen IBM Research Center P. O. Box 218 Yorktown Heights, New York 10598 (1)(1)

(6)