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ABSTRACT 

An exact solution of time varying pipe flow with a fluctuating 

velocity superimposed on the mean flow is analyzed. The velocity pro-

files, together with the profile parameters at separation, are computed 

from a computer program. 

The results 1re compared with the model for relaxed (steady) and 

unrelaxed (unsteady) separation criteria proposed by V. A. Sandborn 

and S. J. Kline. For very low frequencies, the correlation curves 

appear to have a reasonable agreement with the proposed relaxed separa-

tion criterion. For high frequencies, the correlation curves have been 

found to fall appr oximately on the unrelaxed separation criterion. 

This result demonstrates further that adjust11ient tin1e is an important 

factor for separation to be relaxed or unrelaxed, a new concept pro-

posed by Sandborn. 

In addition, J. T. Stuart's solution for the flow along an 

infinite flat plate with normal suction and periodic external velocity 

is further analyzed. The results again prove to agree with the pro-

posed new concept. 
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Chapter I 

INTRODUCTION 

The problem of boundary layer separation has become very important 

in recent times, especially, in the field of aeronautics; in actual 

applications it is often necessary to prevent separation in order to 

reduce drag and to attain high lift. 

A model classifying boundary layer separation, either laminar or 

turbulent, as relaxed (steady) and unrelaxed (unsteady) was first pro-

posed by Sandborn and Kline (13). The proposed model was further 

demonstrated both theoretically and experimentally by Liu (6). The 

relaxed boundary layer separation was defined as the point or line 

where shear stress at the wall vanishes continuously in both time and 

space. For the unrelaxed case, Sandborn (11) recently suggested the 

start of the unrelaxed boundary layer separation could be taken as 

the forward most point where shear stress at the wall vanishes instan-

taneously. 

Sandborn (11) further points out that the -time required for the 

boundary layer to adjust to the changes at the boundaries appears to 

be the most important difference between the relaxed and unrelaxed 

separations. 

There is increasing evidence that relaxation time for shear flow 

development at separation appears to be one of the important aspects 

of relaxed separation. Lighthill (5) analyzed the response of the 

laminar boundary layer to fluctuations in the oncoming stream, when 

the stream fluctuates in magnitude but not in direction. Stuart (19) 

derived an exact solution of the Navier-Stok~s equations, where the 
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free stream ve l ocity fluctuates about a constant mean, and velocity 

normal to the wall is constant. Both Lighthill's and Stuart's studies 

demonstrate that adjustment time is important in determining the veloc-

ity profile of a time varying shear flow. Sandborn (11) explored a 

pulsing flow, where a pulsing free stream velocity was produced by a 

siren, and found that the profile correlations at separation fall on 

the proposed empirical unrelaxed separation criterion. Sandborn's 

test thus constitutes an experimental proof of the new concept. But 

so far there appears to be no well defined parameters to specify 

limits for relaxed and unrelaxed separations. 

The present analysis investigates a particular type of time 

varying shear flow, to study time adjustment effects on separation. 

A pipe flow that has a regular fluctuating velocity superimposed on 

the mean flow is analyzed. The velocity distributions and the veloc-

ity profile parameters, displacement thickness, momentum thickness, 

and form factor, are computed from a computer program. The results 

are compared with the model for relaxed and unrelaxed separation pro-

posed by Sandborn and Kline. For high frequencies the boundary layer 

has little time to adjust, so the instantaneous zero wall shear stress 

profile correlations fall on the unrelaxed separation curve. For low 

frequencies there exists sufficient flow time for the boundary layer 

to a<ljust to the absence of a viscous force at the surface, thus the 

separation profile correlations agree with the relaxed separation 

curve. Stuart's solution is also analyzed. The results again agree 

with the proposed new concept, i.e., adjustment time is important in 

determining relaxed or unrelaxed separation. Separation criteria in 

terms of the non-dimensional pressure gradient parameter (~ .!_ dU) 
V LJ dt 



3 

and the velocity profile form factor are also given for both the 

unsteady pipe flow and Stuart's solution. The results show the separa -

tion velocity profiles may not be a one parameter famil y of ve locity 

profiles as implied by the separation model of Sandborn (11). 



2.1 Introduction 

4 

Chapter II 

REVIEW OF LITERATURE 

Sandborn (12) developed an empirical velocity profile that can 

be used in laminar as well as turbulent flow. From the analysis of 

this empirical velocity profile, two types of separation, relaxed 

(steady) and unrelaxed (unsteady), were identified. For the unrelaxed 

case the empirical relation among the profile parameters was given as 

1 
H = 1 + c1 - o*/o) (2-1) 

For the relaxed separation case the relation between the profile param-

eters can be given parametrically in terms of A0 

2~+ 1 
(2-2a) 

(~ + 1) 2 

8 (2~ + 1) 2( /-A 0) 2 
- = 0 (~ + 1)2 (2~ + 1) 3 

2~ 1 0 (2-2b) 
(2~ + 1) 2 (2~+ 1) 

where 

A = -o 2du 
0 vdx 

Equations 2-1 and 2-2 are replotted in Figure 1. The upper curve 

is called the relaxed, T = 0, separation correlation, while the w 

lower one corresponds to the unrelaxed separation correlation. Both 

the relaxed and unrelaxed separation curves shown on Figure 1 have been 
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found , by Sandborn and Kline (13), to agree well with exp er imental 

measurements as wel l as with analytic solutions . 

Many solutions of the laminar boundary layer equations for a 

steady two-dimensional incompress ible flow have been eva 1 uat ,' J ana. l y-

tica lly or numerically for various forms of free stream ve l oci ty 

distributions U(x) , for examp l e , by Schlichting (15), Thwai tes (20 ), 

Head and Hagasi (3), and Curle (1). The velocity components, u and 

v, as well as the variations with x of the skin friction and the 

momentum and displacement thickness, can be calculated to the separa-

tion point. For the solutions of unsteady laminar boundary layer 

equations references can be made to Rosenhead (10) and Schlichting (15 ). 

2.2 Lighthill's Theory of the Response of Skin Friction to Fluctuations 
in the Stream Velocity 

Lighthill (5) first treated the laminar boundary layer about a 

cylindrical body when the velocity of the oncoming flow oscillated in 

magnitude but not in direction. For high-frequency approximation, 

Lighthill obtained a solution identical to the solution for the shear-

wave boundary layer, whose main stream fluctuates about a zero mean. 

Physically it means the effect of viscosity can be felt for the osc il -

lation only within the small layer near the wall, with thickness of 

order lv/w. In other words, at high frequencies the fluctuating 

part of the velocity responds instantly, except within the very thin 

shear-wave boundary layer close to the wall. For low-frequency 

approximation, Lighthill used a Karman-Pohlhausen method (9) to solve 

the equations and found velocity fluctuation approximately consists 

of a part depending on the instantaneous stream velocity and a part 

depending on the stream acceleration. 
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Skin friction for both high-frequency and low-frequency approxi-

mations has a phase lead over the velocity fluctuation of the stream, 

The critical frequency separating the ranges of validity of the high-

and low-frequency approximat i ons i s suggested by Lighthill as 

3T 
0 w=----,,.-=w 

pU o* o 
0 0 

For frequencies w < w 
0 

(2-3) 

, both the amplitude and phase lead increase 

with frequency, the latter rises from zero to n/4; for frequencies 

w > w , the phase lead has the constant value n/4, and the ampli-o 

tude increases with the square root of the frequency. The theory 

thus illustrates the large influence which a fluctuation has upon the 

transient velocity distributions and skin friction. 

2.3 Fluctuating Flow Past an Infinite Flat Plate with Suction 

Based on the classical exact "asymptotic suction" solution of 

steady flows developed by Schlichting (15), Stuart derived an exact 

solution of the Navier-Stokes equations , where the free stream veloc-

ity fluctuates about a constant mean and the normal ve l ocity is con-

stant toward the wal l . It was found that for low frequencies the 

velocity distributions are closely approxi mated as the swn of parts 

proportional to the instantaneous velocity and acceleration of the 

main stream. For high frequencies the solution tends to the shear-

wave solution with a periodic boundary layer without a mean flow as 

described by Lighthill. 

Furthermore, the skin-friction fluctuations show much the same 

characteristics as that of Lighthill's. The amplitude of the skin-

friction fluctuations rises with frequency, while the phase lead of 
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the skin-friction over the main stream velocity fluctuation rises from 

zero at zero frequency to n/4 at very high frequencies. The velocity 

profiles and skin-friction for Stuart's solution will be further 

analyzed in Chapter III. In particular, detailed evaluation of the 

boundary layer parameters and the velocity distributions at separation 

is made. 

2.4 Unsteady Flow Through a Pipe 

Several solutions for the flow through a long straight pipe under 

the influence of an unsteady pressure gradient have been reported. 

Sexl (16) first derived the solution for a pipe flow due to a periodic 

pressure gradient. Ito (4) considered the cases: (1) a pressure gra-

dient changes linearly with time, (2) a pressure _gradient that changes 

impulsively from one value to another, and (3) a damped oscillatory 

pressure gradient. The solutions were obtained by using a Laplace-

transform technique. 

For the case of the flow with a periodic pressure gradient the 

solution was given by Sexl as 

( t) _ -ik . iwt {l ur --- e -, w 
J O (rv'- iw/v)} 

J (Rv'-iw/v) 
0 

(2-4) 

where J denotes the Bessel function of the first kind and of zeroth 
0 

order. 

The velocity distributions for both low- and high-frequency 

approximations were evaluated, For very low frequencies, the velocity 

distribution was found to be in phase with the pressure distribution, 
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the amplitude being a parabolic function of the radius, as was the 

case in steady flow. For very high frequencies, the phase shift of 

the flow at a large distance from the wall is n/2 with respect to 

the exciting force . No specific evaluation of T = 0 profiles has w 
been made, 
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Chapter III 

ANALYSIS OF UNSTEADY PIPE FLOW SEPARATION AND SEPARATION 
IN FLUCTUATING FLOW PAST A POROUS FLAT PLATE 

3.1 Unsteady Pipe Flow 

3.1.1 Solutions of unsteady pipe flow - The time varying pres-

sure gradient flow in a pipe was solved independently of the studies 

discussed in Chapter II. Let x denote the coordinate in the direc-

tion of the axis of the pipe, r denote the radial distance from 

the axis, and u is the velocity component in x-direction. For a 

very long pipe, the velocity variations with x are negligible and 

the only component of the flow is u. Thus, the laminar boundary 

layer equation for the unsteady axially symmetrical pipe flow with 

constant density p and kinematic viscosity v takes the form 

au 1 aP a2u V au at= -+ V -- + - ar p ax ar 2 r (3-1) 

The boundary conditions are 

u = 0 at r = R 

and (3-2) 

u = u at r = 0 

We asswne that the pressure gradient fluctuates about a constant mean 

and is given by 

1 aP 
- -- = 

p ax K(l iwt) + Ee (3-3) 

where K is a constant, and KE is the amplitude of fluctuations. 

Now we are seeking a solution of the form 

iwt u = U [s (r) + Es 1 Cr) e ] 
0 0 (3-4) 
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in which U is t he mean velocity along the axis as obtained for 
0 

Poiseuille flow. Substituting Equat i ons 3-3 and 3-4 i n Equation 3-1 and 

equating non-peri odi c and periodic t erms separately to zero, we have 

ri:;" (r) + i:; ' (r) = - rK (3-5) 
0 0 vu 

1 i:; "(r) + - i:; ' (r) 1 r 1 

0 

l. W -K 
v i:; l (r) = vU 

0 

(3-6) 

Equation 3-5 is a second order nonhomogeneous differential equation, 

whereas Equation 3-6 is a Bessel equation of order zero with an imaginary 

parameter (21). The boundary condi t i ons for Equation 3-5 are 

i:; '(r) = 0 at r = 0 
0 

and i:; (r) = 1 at r = 0 
0 

and, hence, the solution is 

r 2 
i:; o(r) = (1 - R2) 

i:; (r) = 0 at r = R 
0 

where use was made of the following r e l ation 

U = KR 2 /4v . 
0 

The boundary condit i ons f or Equation 3-6 are 

i:; 1 = finit e at r = 0 i:; = 0 1 at r = R 

Expressing the solut i on of Equation 3-6 in terms of ber and 

functions, we obtained 

4 [1 ber j~r+ ibei ~r 

J i:; l (r) 
\) 

= 
l. W R2 

~R -ff R ber + ibei 
\) 

The total velocity component in x-direction becomes 

u = [ ( 
r 2 ) i wt v 4 

Uo 1 - R2 + e: e i w R2 
ber~ r + 

ber[f R + 

ibei JT{ r ~ 

ibei j ~ R 

(3- 7) 

(3-8) 

(3 - 9) 

bei 

(3-1 0) 

.(3-l la) 
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The fluctuating part of Equation 3-lla is equivalent to Equation 2-4 

obtained by Sexl (16). The transient velocity in the center reduces to 

iwt v Ee 4 

( 
1 

- ber R R : ibei Jf R) J 
The shear stress at the wall is 

au 

lr=R 
T = )1 w ar 

- µU ~ [ 1 + iwt 2 ~ 
ber' ~ R + ibei' /g R 

where 

= o R 

primes denote 

00 

ber x = l 
j=O 

00 

bei X = l 
j=O 

00 

ber' X = l 
j:: l 

00 

bei I X = l 
j=O 

Ee iR V ber J!f R + ibei ~ R 

diffe.rentiation with respect to 

( -1) j 4· 
X J 

24j [(2j)!]2 

(-l ) j X 
4j+2 

24 j+2 [(2j+l)!] 2 

( -1) j 4j X 
4j-l 

24j [(2j) !]2 

(-l)j (4j+2) x4j+l 
24j+2[(2 j+l) !] 2 

r , and 

(3-llb) 

J (3-12) 

Plots of ber x, bei x, ber ' x , and bei' x are shown in Figure 2. 

The graphs are seen to oscillate with ever-increasing amplitudes. 

Table 1 shows the variations with x of ber x, bei x, ber ' x, 

and bei' x from x = 0 to x = 80. 
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Figure 2 Plots showing the functions Ber x, Bei x, Ber' x, and Bei' x 
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3.1.2 Velocity distributions and velocity profile parameters at 

separation - The real parts of Equation 3-11 and Equation 3-12 reduce to 

u r 2 
- = 1 - (-R) + £ uo [ 

(bei € R) (ber ~ r)-(ber ~ R) (bei ff, r) 4 Vv V v V v v -- cos wt ___ ,;._ _______________ _ 
~ R2 r;; 1w 
v (ber V~ R) 2 + (beiv~ R) 2 

\) \) 

+ sinwt - sinwt 
(ber /¥ R) (ber /![ r) + (bei ~ R) (bei Jg r) J 

v ' v v v (3-13a) 

(ber [f; R) 2 + (bei ff, R) 2 
\) \) 

U l + £ 4 
~ = ~ R2 

[ bei ~R 

(her {!i R) 2 : (bei ff, R) 2 
coswt 

\) 
\) \) 

+ sinwt -
ber~ R 

sin wt] (3-13b) 

+ sinwt 

respectively. 

(ber jf R) 2 + (bei[f R) 2 

2 IV { (ber jf R) (bei' jf R)- (bei Jf R) (ber' Jf R) 
jfV~ £ coswt -------------.--------

(ber fl{ R) 2 + (bei jf R) 2 

(ber Jf R) (ber' Jf R) + (bei Jf R) (bei I Jf R) }] 

(ber Jf R) 2 + (bei Jf R) 2 

(3-14) 

The shear stress, , , is zero when the coefficient of £ in w 

Equation 3-14 is equal to -1/£ which corresponds to a velocity pro-

file with zero skin friction. Thus the velocity profiles at separa-

tion can be obtained by substituting 
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(ber/f: R) (bei' Ji R) - (bei~ R) (ber' ~ R) 
V V V V 

(ber ~ R) 2 + (bei J ~ R) 2 

+ sinwt 
(ber ~ R) (ber' fl[ R) + (bei ~ R) (bei' ~ R) l 

(ber {f R) 2 + (bei/i§ R) 2 j 
in Equation 3-13. 

};_ ~ RV; 

(3-15) 

Figure 3 shows the velocity profiles at separation for various 

frequencies, where y is the vertical distance from the wall. Figure 4 

compares the high frequency separation velocity profile with the velocity 

profile for steady flow, and the low frequency separation velocity pro-

file with the relaxed sep~ration velocity profile of Equation 2-2. For 

high frequencies (large values of~ R), viscosity does not have time to 
V 

adjust the velocity to the changes imposed by the exciting pressure-

gradient fluctuations, except in a 'shear-wave layer' near the wall. The 

high frequency separation profile remains the same as the velocity profile 

for steady flow, except in a thin layer near the wall where the effect of 

viscosity can be felt for the oscillations. Thus the high frequency sepa -

ration belongs to the class of unrelaxed separation profiles as will be 

demonstrated later. On the other hand, for very low frequencies the solu-

tion corresponds to the quasi-steady solution. The separation profile 

has a good agreement with the relaxed separation profile of Equation 2-2, 

with the same form factor, H This comparison supports the evidence 

that adjustment time is an important factor for separation to be relaxed 

or unrelaxed, the concept proposed by Sandborn (11). 

It has been found that some separation velocity profiles of 

Equation 3-13 can only occur in unsteady flow. These profiles are not 
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Figure 3 Velocity profiles at separation for time varying pipe flow 
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likely to occur in a boundary layer type flow. Figure 5 gives examples 

of such separation profiles including: (1) a velocity profile which 

is not monotonic, (2) values u/U > 1 occur in the velocity profile, 

and (3) a velocity profile with reverse flow. 

The variations of E: with respect to ~R for several values 

of wt ' as calculated from Equation 3-15, are plotted in Figure 6. 

For high frequencies, the values of E: for which separation occurs, 

are large. When frequencies decrease, separation is reached in most 

cases for smaller values of E: This result is different from the 

results obtained by Stuart. 

The velocity profile parameters, displacement thickness 

momentum thickness 8 , and form factor H, are defined as: 

00 00 

o* ' 

o* = f ( 1 - TI° ) dy , 8 = I H = 
o* 
8 (3-16) 

y=O y=O 

respectively. 

Profile parameters at separation for various frequencies and 

wt's are computed from a computer program. In calculating these 

parameters 40 mesh points were taken across each velocity profile. 

The relationship between the form factor H and ratio of o*/o is 

compared with the relaxed and unrelaxed separation correlation cri-

teria, proposed by Sandborn and Kline (13), in Section 3.1.3. It is 

well known that the laws of flow deduced from the study of flows through 

pipe can be applied to the description of the flow in a boundary layer. 

3.1.3 Comparison with the relaxed and unrelaxed separation 

correlations - Table 2 illustrates the variations of H, 0*/ 0 , and 
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£ with respect to J~R 
V 

for various values of wt . Figure 7 is a 

comparison of the separation profile parameters as calculat ed from 

Equations 3-13, 3-15, and 3-16, with the empirical r e laxed and unre-

laxed separation correlations. In plotting Figure 7, the separation 

profiles that have the same characteristics as described in Figure 5 

are excluded. r-or very low frequencies, the separation correlations 

for all values of wt fall almost on a simple curve, which is slightly 

below the empirical relaxed separation curve. As frequencies increase 

and reach a specific point where the value of 6*/6 approximately 

equals 0.395, the correlation curves separate as illustrated in f-ig-

ure 7. The values of /f,; R where departure starts to occur are dif-v 

ferent for different values of wt. For very h~gh frequencies all 

the correlation curves appear to end at the same point directly on the 

empirical unrelaxed separation curve. The velocity profiles for very 

high and very low frequencies, as shown in Figure 4, agree well with 

the relaxed separation profile and the velocity profile for steady 

flow, respectively. This result suggests the empirical curves may be 

a reasonable approximation and confirms that adjustment time is an 

important factor in determining if separation is relaxed or unrelaxed. 

In Figure 7, it can also be seen that the transitions from the unre-

laxed separation correlation to the relaxed separation correlation 

may be quite different. In determining if reverse flow occurs near 

the wall, 80 mesh points have been taken across the velocity profiles. 

The results are slightly different from that of only 40 mesh points. 

Therefore, in Figure 7 the points where the correlation curves are 

cut off are only approximate. 
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As pointed out by Sandborn (11), these correlations of Figure 7 

are not applicable in predicting separation, since it is nearly im-

possible to evaluate all of the three required parameters. In Figure 8 

the form factor H is plotted against the pressure gradient parameter 

R2 1 dU 
V U dt 

which is similar to the parameter 

62 dU 
v dx 

in the steady state flow. It can be seen that the three correlation 

curves for wt= n , 7/6n , and 4/3n are consistent only when the 

parameter At i s gr eater than about 40. As shoWR in Figure 9, s i milar 

results are obtained when the form factor H is plotted against t he 

pressure gradient par amet er 

82 1 dU 
A8 = - v U dt 

These results show velocity profiles at separation may not be a one 

parameter family of velocity profiles as implied by the separation 

model of Sa~dborn (11). It is suspected that this discrepancy may ind1-

cate the dependency on the ti~e history is not adequately expressed by 

the classical pressure gradient parameter. 

3.2 Fluctuating Flow Past a Porous Flat Plate 

3.2.1 Velocity distributions and velocity profile parameters 

at separation - Stuart's solution for fluctuating flow past a flat 

plate with suction was reviewed in Chapter II. From Stuart's deriva-

tion we have 
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-h n r cos(wt-hin) 

[ 
-h n J 1 uU = 1 - e- n + Ecoswt - Ee r cos(wt-hin) l+ ECOS Wt 

The shear stress at th e wa ll r educes to 
t 

where 

U I~ j = 1 + EJhJ cos(wt+a ) 
0 W 

h = h + ih. r 1 
1 1 .k 1 -1 

= 2 + 2 [l + ( 4:X.) 2 ] 4 cos (2 tan 4:X.) 

1 Y. 1 -1 + 2 [l + (4 :X. ) 2 ] 4 sin (2 tan 4:X. ) 

-1 a= tan h . /h 
1 r A = wv/v2 

w 

Provided EJhJ > 1 , the shear stress, t w is zero when 

cos (wt+a) 1 
= - EfhT 

(3-l 7a) 

. ( 3- l 7b) 

(3-18) 

(3-19) 

which corresponds to a transi ent separation velocity profile. Figure 10 

shows variations of E and U/U
0 

at separation with respect to A for 

different values of wt for high frequencies separation occurs at 

very small values of E The separation velocity profiles are plotted 

in Figure 11. From Fi gur e 11 we can see that the high-frequency separa-

tion profiles become identical with the velocity profile for steady flow 

except in the layer near the wall where the separation profiles adjust 

to satisfy au/ ay = 0 at the wall. From Equations 3-17 and 3-19 the 

separation profile paramet ers, displacement thickness and momentum 

thickness, are obtained in the form 
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00 

6* J (1 u ~ -= - -) o* u 6* 
0 0 0 

1 [_ e-11 = (l+ ECOSwt) l 
(3-20) 

+ E 

-hrn 
e [coswt(h . s inh .n-h cosh.n)- sinwt(h sinh. n + 1 1 r 1. r 1 

00 

(h ) 2 + (h.) 2 
r 1 

h .cosh.n) ] I 
1 1 ) 

0 

···here s: * -- 1-v I · h b d d · h · k ~ u 1st e unpertur e 1splacement t 1c ness 
0 V 

00 

6~ = J 
0 0 

w 

u (1 - ~) ~ 
U U 6* 

0 

6* r 
{ 

-(h +l)n [h . sinh . n-(h +l)cosh.n]coswt-[(h +l)sinh.n+h.cosh.n]sinwt 1 1 r 1 r 1 1 1 = - - 2se 6* 
0 (h +1) 2 + (h. ) 2 

r :r 

2 [ -2h n (2h.sin 2h.n-2h cos2h.n)cos2wt-(2h s in2h.n+ 2h. cos2h.n)sin2wt E r 1 1 r 1 r 1 1 1 
+Te 

( 2h ) 2 + ( 2h . ) 2 
r 1 

00 

-2h n 1 

_e_2=h-:-J - .-:n J 1 

(l+ECOSwt) 2 
(3-21) 

0 

The profile parameters H and 6* /6 again are calculated by using 

a computer program. Table 3 contains parts of the computed results. 

The results are also plotted in Figure 12 together with the empirical 

relaxed and unrelaxed separation correlation curves. Also, in preparing 

Figure 12 we have neglected the separation profiles which have the same 

properties as described in Figure S. 

3.2.2 Comparison with the relaxed and unrelaxed separation 

correlations - From Figure 12 , we can see, for very high frequencies 

all the corre lat ion curves also appear to terminate at a specific point , 
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as in the case of unsteady pipe flow, but now the point is slightly 

below the empirical unrelaxed correlation curve. As frequencies 

decrease, these correlation curves pass across the empirical unrelaxed 

correlation curve and fall in the region between the two separation 

curves. For very low frequencies these curves approach the relaxed 

separation curve, but there exists a 'hook' at the end of each curve. 

Figure 13 shows some separation profiles corresponding to points on the 

hooks. The appearance of these hooks is not understood at the present 

time. Stuart's solution thus lends theoretical justification to the 

unrelaxed separation correlation, and provides more evidence about the 

importance of the time factor in separation. 

Figures 14 and 15 show the variations of the form factor H 

with respect to the pressure gradient parameters At and \ 0 , respec-

tively. The correlation curves again are diverged at small values of 

At and Ae as in the unsteady pipe flow case. Thus, both results 

suggest that this may be an important deviation from the separation 

model of Sandborn (11). 



6.0--------------......... -----r-----mr----------------

(a) wt = I 65° 

4.5 

71 3.0 

1.5 H = 2.82 8*/8=.290 E: .932 
H = 2.91 8*/8=.299 e = .834 
H = 2.97 8*18=.303 E: .705 
H = 2.95 8*18=.285 E : .570 

.2 .4 .6 .8 1.0 
u/U 

Figure 13 Separation veloc i ty profil es for the points on the hooks 



6.0------,.-------------....,..----.....--------------. 
( b) wt = 90° 

4.5 

77 3.0 

1.5 

.2 

Figure 13 Continued 

.4 .6 
u/U 

.8 1.0 

H = 2,72 8*18 = .274 
H = 2. 7 6 8* I 8 = • 2 8 I 
H = 2.78 8*18 = .279 

E =4.395 
E: 2544 E=l .600 



H 

5----.....---..----.,-------r-----r----r---.-----,------, 

4 

3 

2 

----
wt= 165° --- wt= 90° 

--- -wt= 135° --- ------- ------- ----------= ---
40 60 100 

----~;;:;.;-~-~-~-===---=-=:::.:-~=-==--:a:===---

200 , 400 600 

2 8 I du ~ =----t 1/ u dt 

1000 2000 4000 

Figure 14 Variations of the form factor at separation with the pressure gradient parameter 

82 
I dU - v u cit for fluctuating flow past a porous flat plate. 



4---------....... ---------------,---.---,---,--r--,-------r----.,..---, 

3 

___ £ Separation model of Sandborn (11) 

--------
-- ~ wt=90° 

wt= ~5;;--...__~""-<__...,, - wt= 165° ------~~-z:_ __ _ 
H 2 mwa..awww 

~2 .3 .4 .5 .6 .7 .8 1.0 2.0 3.0 4.0 5.0 8.0 10.0 20.0 30.0 40.0 

Figure 15 Variations of the form factor at separation with the pressure gradient 
82 I dU parameter - 11 U dt for fluctuating flow past a porous flat plate. 



41 

Chapter IV 

CONCLUDING REMARKS 

A time varying pipe flow was analyzed. The velocity distributions 

and velocity profile parameters at separation were computed and compared 

with the model for relaxed (steady) and unrelaxed (unsteady) separation 

criteria proposed by Sandborn and Kline. 

For very low frequencies, the velocity profile at separation for 

the unsteady pipe flow agree well with the empirical relaxed separation 

profile with the same form factor. The separation correlation curves 

lie slightly below the empirical relaxed separation correlation cri-

terion. For very high frequencies, viscosity does not have time to 

adjust the velocity to the changes imposed by the · exciting pressure -

gradient fluctuations across the greater part of the layer. The 

solved high-frequency separation profile thus resembles the velocity 

profile for steady flow except in a thin layer near the wall where the 

effect of viscosity can be felt for the oscillations. The separation 

correlation curves appear to end at a point on the empirical unrelaxed 

separation correlation criterion. The present studies thus suggest that 

the empirical relaxed and unrelaxed correlation curves may be a reason-

able approximation, and confirm adjustment time is an important factor 

for separation to be steady or unsteady. 

Stuart's solution for fluctuating flow past an infinite porous 

flat plate was further analyzed. The solved high-frequency separation 

correlation curves appear to terminate at a point below the empirical 

unrelaxed separation correlation curve. The low-frequency separation 

correlation curves approach the relaxed separation correlation curve, 
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but bend down slightly at the end. The results also demonstrate 

adjustment time is important in separation. 

Separation criteria in terms of the non-dimensional pressure 

gradient parameter and the velocity profile form factor are also given 

for both the unsteady pipe flow and the Stuart's solution. The results 

show velocity profiles at separation may not be a one parameter family 

of velocity profiles as implied by the separation model of Sandborn (11). 

It is suspected that this discrepancy may indicate the dependency on the 

time history is not adequately expressed by the classical pressure 

gradient parameter. 
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8.94431E+06 
2. 89280E+07 
5.21872E+07 
4.329 22E+07 

- 7.63424E+07 
-4.04349E+08 
-9.24955E+08 
-l.19396E+09 

6.15699E+07 
4.9621 3E+09 
1. 4853 1E+ 10 
2.53388E+10 
1. 76264E+ 10 

-4.79332E+10 
-2 .16781E+ 11 
-4.68210E+ll 
- 5.56392E+ll 

l.85531E+ll 
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46 
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48 
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69 
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75 
76 
77 
78 
79 
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TABLE l VARIATIONS WITH X OF BER X, BEI X, 
BER'X, BEI'X FROM X=O TO X=80 - Cont'd. 

Ber x 

3.92920E+l2 
5.94457E+l2 
2.32111E+l2 

-1. 68525E+ 13 
-6.07815E+l3 
-l.17624E+l4 
-l.14082E+l4 

l.26012E+l4 
8.45158E+l4 
2.07324E+l5 
2.92222E+l5 
5.56413E+l4 

-l.01058E+l6 
-3.31407E+l6 
-6.04675E+l6 
-5.08780E+l6 

8.89990E+l6 
4.78075E+l7 
l.10224E+l8 
1. 43683E+ 18 

-6.69167E+l6 
-6.02433E+l8 
-l.81664E+l9 
-3 .11933E+ 19 
-2.18594E+l9 

5.95318E+l9 
2. 70911E+20 
5.88129E+20 
7.02194E+20 

-2. 35511E+20 
-3.57076E+21 
-9.98254E+21 
-l.60867E+22 
-8. 75774E+21 

3.84893E+22 
1. 53509E+23 

Bei x 

3. 6086 7E+ 10 
5.71537E+l2 
1. 56422E+ 13 
2.68901E+l3 
1. 90564E+ 13 

-5.01926E+l3 
-2.30071E+l4 
-5.00145E+l4 
-5.99346E+l4 

1. 877 l 7E+ 14 
2.99342E+l5 
8.38943E+l5 
l.35474E+l6 
7.50677E+l5 

-3.18174E+l6 
-l.27647E+l7 
-2.61668E+l7 
-2.83862E+l7 

1. 90697E+ 17 
1. 73257E+l8 
4.52912E+18 
6.84241E+18 
2.59279E+18 

-l.97903E+l9 
-7.10906E+l9 

· -l.37417E+20 
-l.32493E+20 

1. 51595E+20 
l.00169E+21 
2.45285E+21 
3.44836E+21 
6.08006E+20 

-l.21352E+22 
-3.96497E+22 
-7.2209SE+22 
-6.02449E+22 

Ber' x 

2.70902E+12 
4,78823E+ll 

.,.9.44489E+12 
-3.07555E+13 
-5.58322E+13 
-4.65989E+l3 

8.31471E+13 
4.41561E+14 
1. 01343E+15 
1.31400E+l5 

-7.70891E+l3 
-5.54401E+15 
-1.66367E+16 
-2.84558E+16 
-1. 97 438E+ 16 

5.49125E+16 
2. 47234E+ 17 
5. 34911E+ 17 
6.35783E+17 

-2.20418E+17 
-3.24947E+l8 
-9.05254E+l8 
-l.45431E+l9 
-7.83285E+l8 

3.49718E+l9 
l.38840E+20 
2.83339E+20 
3.04578E+20 

-2.16613E+20 
-l.89940E+21 
-4.93944E+21 
-7.42285E+21 
-2.68901E+21 

2.19001E+22 
7, 80311E+22 
1. 50182E+23 

Bei' x 

2.80366E+l2 
7 .80677E+l2 
1.25351E+l3 
6.81581E+l2 

-2.97016E+l3 
-l.18165E+l4 
-2.41093E+l4 
-2.59722E+l4 

l.79516E+l4 
l.59706E+l5 
4.15578E+l5 
6.25054E+l5 
2.31409E+l5 

-l.81918E+l6 
-6.49864E+l6 
-l.25171E+l7 
-l.19942E+l7 

1.39637E+l7 
9.12753E+l7 
2.22756E+l8 
3.12032E+l8 
5.26377E+l7 

-l.10320E+l9 
-3.59056E+l9 
-6.52095E+l9 
-5.40880E+l9 
9.88166E+l9 
5.22020E+20 
1.19796E+21 
l.55128E+21 

-l.09645E+20 
-6.63296E+21 
-1. 98772E+22 
-3.39747E+22 
-2.33839E+22 

6.63276E+22 

In calculating the functions Ber x, Bei x, Ber' x, and Bei' x, the 
number of terms used in each infinitive series depends on the values 
of x , but in each case the truncation error is less than 0.000001 %. 
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TABLE 2 VARIATIONS OF o* /R, 0/R, H, AND £ ·WITH 

RESPECT TO ~ R FOR TIME VARYING PIPE FLOW 

¥( 3 7 4 3 
4 1T 1T 6 1T 3 1T 2 1T 

6*/R 0.467 0.477 0.466 0.466 0.467 
0.4 0/R 0.127 0.127 0.127 0.127 0.127 

H 3.672 3.770 3.664 3.668 3.669 
£ 1. 144 1.001 1.142 1.934 50.037 

o*/R 0.468 0.477 0.455 0.463 0.466 
1. 2 0/R 0.127 0.127 0.127 0.127 0.127 

H 3.684 3.769 3.570 3.642 3.661 
£ 1. 792 1.042 1.092 1.595 5.885 

o*/R 0.467 0.476 0.516 0.443 0.459 
2.0 0/R 0.127 0 . 127 0.122 0.127 0.127 

H 3.672 3.759 4.228 3.490 3.607 
£ 3 .297 1. 292 1. 187 1.459 2.899 

6'~ /R 0. 452 0 .469 0.485 0.556 0.396 
3,2 0/R 0. 127 0.127 0 .126 0.112 0.121 

H 3 .556 3 .702 3.862 4.970 3.247 
£ 12.380 2.169 1.746 1.884 2.883 

o*/R 0.392 0.442 0.464 0. 499 0.710 
4.8 0/ R 0.1 21 0 .126 0.126 0. 122 0.025 

H 3. 235 3 . 512 3 .696 4.085 27.960 
£ 30. 872 3.380 2.623 2. 743 3.999 

6*/R 0. 295 0.402 0.431 0.465 0.552 
6 . 4 0/ R 0.095 0 . 122 0.124 0.122 · 0.103 

H 3. 097 3.285 3.480 3.797 5.363 
£ 54. 424 4,508 3.448 3.565 5.106 

6*/R 0.127 0.371 0.401 0.432 0.495 
8.0 0/R 0.065 0.120 0.122 0.121 0.111 

H 3.328 3.104 3,296 3.568 4.473 
£ 86.394 5.644 4.276 4.388 6.218 

6*/R 0.179 0.354 0.380 0.404 0.450 
10.0 0/R 0.058 0.121 0.122 0.121 0.113 

H 3.074 2.923 3.115 3.350 3.966 
£ 136.278 7.061 5.311 5.421 7.619 
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TABLE 2 VARIATIONS OF o*/R, 6/R, H, AND E: WITH RESPECT 
TO ff; R FOR TIME VARYING PIPE FLOW - Continued 

~ 3 7 4 3 
4 1T 7T 6 1T 3 7T 2 7T 

o*/R 0.140 0.342 0.359 0.375 0.399 
16.0 6/R 0.061 0.128 0.127 0.125 0 .121 

H 2.279 2.673 2.833 2.991 3.301 
E: 353.879 11. 308 8.417 8.522 11. 843 

o*/R 0.115 0.337 0.350 0.360 0.375 
24.0 6/R 0.061 0.131 ,-0·.129 0.128 0.125 

H 1.897 2.578 2.700- 2.809 2.996 
E: 802.420 16.967 12.558 12.660 17.490 

o*/R 0.096 0 . 335 0.343 0.349 0 .358 
40.0 6/R 0.061 0.132 0.131 0.130 0.129 

H 1.579 2.527 2.608 2.676 2 .781 
E: 2242.570 28.282 20.840 20.941 28.796 

o*/R 0.081 0.334 0.338 0,341 0.345 
80.0 6/R 0.061 0.133 0 .1.33 0.132 0.131 

H 1.337 2.504 2,549 2.583 2.633 
E: 9073.181 56.566 41.544 41.642 57.070 
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TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR 
FLUCTUATING FLOW PAST A POROUS FLAT PLATE 

"'-"'- wt 
75° rr/2 120° 165° TT 4>., 

o/o* 5.500 6.000 6.500 7.300 7 .700 
0 

6* / 6* 
0 

1.599 1.689 1.834 2.184 2.568 
2 0/0* 0 .576 

0 
0.612 0 . 664 0.750 0.782 

H 2. 775 2.758 2.764 2.913 3.284 
6*/o 0.291 0.281 0.282 0.299 0.333 

o/o* 
0 

4.700 5.300 5.900 6.500 6.900 
o*/6* 

0 
1.364 1.476 1.643 1.970 2.245 

4 8/6* 0.485 
0 

0.532 0.590 0.662 0.682 
H 2.810 2. 776 2.786 2.974 3.293 

o*/o 0.290 0.279 0. 278 - 0.303 0.325 

o/6* 
0 

4.800 5.300 5.700 6.100 6.400 
o*/6* 1.173 1.295 

0 
1.460 1. 737 1. 935 

8 0/0* 0.428 0.479 0.533 0.588 0.600 
0 

H 2.737 2.703 2.737 2.954 3.225 
6*/6 0.244 0.244 0.256 0.285 0.302 

o/6* 5.100 5.400 5.600 5.900 6.100 
0 

6*/o* 1.052 1.170 
0 

1. 317 1. 539 . 1.681 

16 8/ 6* 
0 

0.415 0.460 0.503 0.541 0.548 
H 2.538 2.544 2.618 2.846 3.068 

6*/o 0.206 0.217 0.235 0.261 0.276 

6/6* 5.200 5.300 5.500 5.700 5.900 
0 

6*/ 6* 0.989 1.092 1. 215 1.386 1.488 
0 

32 8/ 6* 0.426 
0 

0.460 0.491 0.515 0.520 
H 2.322 2.373 2.473 2.690 2.863 

o*/o 0.190 0.206 0.221 0.243 0.252 
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TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-
TUATING FLO\\' PAST A POROUS FLAT PLATE - Continued 

~t 4>. 75° rr/2 120° 165° 7T 

6/6* 5.200 5.300 5.500 5.600 5.700 
0 

6*/6* 0.961 1.047 1.145 1. 274 1.346 
0 

64 0/6* 0.445 0.469 0.489 0.503 0.506 
0 

H 2.161 2.234 2.341 2.531 2.663 
6*/6 0.185 0.198 0.208 0.227 0.236 

6/ 6* 5.300 5.300 
0 

5.400 5.500 5.600 
6*/6* 0.954 1.023 

0 
1.097 1.192 1.244 

128 0/6* 0.463 0.478 0.490 0.498 0.499 
0 

H 2.061 2.140 2.240 2.394 2.491 
6*/6 0.180 0.193 0.203 0.217 0.222 

6/6* 5.300 5.300 
0 

5.400 5.500 5.500 
6*/6* 0.957 1.009 1.066 1.135 1.172 

0 
256 0/6* 0.476 

0 
0.485 0.492 0.496 0.497 

H 2 .010 2.082 2.167 2.287 2.358 
6* / 6 0.181 0 .190 0.197 0 . 206 0.213 

6/6* 5.300 5.300 
0 

5.400 5.400 5.500 
6*/6* 0.963 1.002 1.044 1.094 1.120 

0 
512 8 / 6* 0.484 

0 
0.489 0.493 0.495 0.496 

H 1.988 2.049 2.117 2.208 2.259 
6*/ 6 0.182 0.189 0.193 0.203 0.204 

6/ 6* 5.300 5.300 
0 

5.400 5.400 5.400 
6*/ 6* 0.976 0 . 997 1.019 1.045 1.058 

0 
2048 0/ 6* 0.497 

0 
0.493 0.495 0.495 0.495 

1-1 1. 983 2.021 2.060 2.109 2. 135 
6* / 6 0 .184 0.188 0 .189 0.193 0 . 196 
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TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-
TUATING FLOW PAST A POROUS FLAT PLATE - Continued 

R 75° rr/2 120° 165° TT 

6/6* 
0 

5.300 5,300 5.400 5.400 5.400 
6*/6* 0,985 0.995 1.007 1.020 1.027 

0 
8192 8/6* 0.494 0.495 0.495 0, 495 0.495 

0 
H 1. 992 2.013 2.033 2.059 2,072 

6*/6 0.186 1.188 0.186 0.189 0.190 

6/6* 
0 

5.300 5.300 5.400 5.400 5.400 
6*/6* 0.990 0.995 1.001 1.008 1.011 

0 
32768 8/6* 0.495 0.495 0.495 0.495 0.495 

0 

H 2.000 2.011 2.021 2.034 2.041 
6*/6 0.187 0.188 0,186 0.187 0.187 
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