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Abstract 

The following are copies of slides of a talk presenting a method of four dimensional data 

assimilation based on the adjoint method via considering a simple example. 

"11 



,· 

DATA ASSIMILATION AND THE ADJOINT METHOD 

The following are copies of the slides of a talk presenting some facts con­
cerning the adjoint method via considering a simple example. 

Data assimilation, the effective integration of observations into predic­
tive dynamical equations has been a major topic of investigation for some 
30 years in meteorology. 

* Using optimization theory, Le Dimet and Talagrand (1986) and Tala­
grand and Courtier (1987a, 1987b, 1990) have proposed an approach for 
this problem called the adjoint method. 

* Define a real valued function measuring the "distance" between the model 
solution corresponding to a given initialization and the available observa­
tions. The goal is to select an initialization that minimizes this distance. 

* Using the adjoint method, the gradient of this distance function with 
respect to the initial condition can be calculated so that a gradient based 
minimization algorithm can be applied. 

* Thus, using this initialization the model will predict values that most 
closely fit the known observational data. 

* The current wisdom is that this procedure is most effective when applied 
to the actual predictive equations used in the dynamical model. 

* Since these codes are (usually) based upon some sort of discretization, 
the above minimization problem becomes the minimization of a function of 
several variables and the adjoint method is an application of the chain rule 
for calculating the gradient of this function. 
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As a simple example of this approach consider the following continuous 
model: Given u0(z, 0), find u(z, t), for O ~ z ~ Landt> 0, such that 

au au —+u—=0, 0 ~ z ~ L, t > 0, at. -8z 
u(O, t) = u(L, t), t > 0, (1) 

u(z, 0) = uo(z, 0), 0 ~ z ~ L. 

Discretizing in space, by setting Zi = ih, h = L/N, ui(t) = u(zi, t) 
for i = 0, · · ·, N and applying centered differences, gives the initial value 
system of N ordinary differential equations: 

duj尸＝－U, （t） ( ut+1(t)2_h虻iQl) , i = 0, · · ·, N - l (2) 

叫0) = uo (Zi, 0), i = 0, · · · , N - 1 

where uN(t) = u0(t) and u一 1 (t) = u N _ 1 (t) for all t 2:: 0. 

Writing 

x(t) = (uo(t),··•,uN-1(t))T and F(x) = (fo(x),···,fN-1(x))T, (3) 

where 

f」 (x) = -u」(旳+1 -h朽－~), j = 0, · · ·, N - 1, 

this system can be rewritten in vector form 邸

dx(t) 
dt 

= F(x(t)), 

x (0) = Xo = (Uo (0), ·.., u N _ 1 (0)) T. 

(4) 

At this point a time discretization (advection scheme) must be selected. 
We shall consider the Adams-Bashforth method of order 2. Thus, the ad­
vection formulas are given by 

X1 = Xo + hF(xo) 
h 

X」 =Xj-1 + j[3F(Xj-1) - F(Xj-2)] 」~ 2, 
(5) 

where F is given by (3) and here the solution x」 is an approximation for 

(u(zo,jh), · · ·,u(zN- i,jh))T. 
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Now, suppose that the exact initialization for (1) is not known, but 
that observations exist for certain values of u(zi, t) at some distinct times 
t」. .Then, one seeks to determine an initialization, x0 = (x8, · · ·, x辶）亡
for which the model solution of (1) corresponding to this initialization is the 
"closest" to these observations from the class of all possible initializations. 

*Fora given initialization x0 define target values xts corresponding to the 
set of advected values x」 predicted by x0 by requiring that xts have the 
components determined by the observational data where ever possible and 
have all remaining components identical with those of the of model solution. 

* Next, assuming all observations occur by the time step tr = rh, define a 
cost function J(x0) by 

「

J(xo) =芷（Xj-X户）T(x」 -X户）．
j=O 

(6) 

* Because of the manner in which x户 has been defined, J (Xo) is pre­
cisely the sum of the squares of the differences of the model values and 
observational values at all components where the observational data can be 
represented. 

* In this setting the problem of data ass画lation is taken to mean 

solve 1nin{ J(xo) : Xo E JR勺． (7) 

* This can be done using a black box gradient based (iterative) minimization 
routine (e.g. Buckley (1985) ) when one is using the adjoint method since 
this method calculates'1x0J(x0), the gradient of J(x0) at xo, which is 
required at each iterat ion step of such a minimization scheme. 
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Since, in this setting, one must simply apply the chain rule to find 
the gradient of J(x0) with respect to x0, we shall now summarize some 
derivatives rules for functions of several variables. 

* If f : ]RN --+ 1R is a differentiable function then the derivative of f with 
respect to x E 1R n is the gradient of f and is given by 

8J 8f 
Dxf = Vxf=(—...) where x = (xo, · · ·, XN-1). 

8xo''8xN-1 

* Ify e1RN then one writes 

句'
Dxf(y) ＝図f(y) =(— (y),... 

8f 

8x。 '8XN-1
(y)) 

to represent the gradient off evaluated at y. 

* If F : lRN ---+ lRN is a differentiable function then F = (Jo,···, 」N-I)T
where each Ji : JR N ---+ JR is a differentiable function, for j = 0, · · · , N - l. 

* The derivative of F : ]RN --t IRN with respect to x E ]RN is the jacobian 
of F and is given by 

( 醯 醯 a」0 \ 
8xo 8z1 8XN-1 
g 色 ab 

DxF= I 8xo 8x1 8XN-1 

＼户 . . 
a」N-1 叭－1 J 

8xo am 8XN-1 

* Ify clRN , then one writes 

( 醯8xo (y ) 醯8zl (y ) 8fo () \ 8xN-1 y 
弘8xo-(y ) 紐(y) 8fl () 

DxF(y) = ' 
8XN-1 y 

＼严'(y) 叭－1 () 叭－1 (y) 」aXo ax1 y aXN-l 
to denote the jacobian of F evaluated at y. 
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N At this point in our survey of derivative rules in lRN let x0 =（端 ...'X齿』
represent the independent v疝able of 1R凡

* First, by the product rule, the first term of the sum defining J gives 

Dx0 ((xo - x护）玉－茫）） = 2(xo - x惡了Dx0Xo
= 2(xo - x护）T

since Dx0Xo = I, the N x N identity matrix on JR凡

* Since the advected vectors x」 of the time differencing scheme (5) are all 
functions of x0, their derivatives with respect to x0 can be calculated using 
the chain rule of advanced calculus. 

* For the first step giving x1 we have that 

Dx凶＝ Dx0 (xo + hF(xo)) 

=I+ hDx0F(xo) 

where F defined in (3) is a differentiable mapping of ]RN into ]RN and 
Dx0F(xo) is the jacobian (matrix) of F evaluated at x0. 

(8) 

* For the example being consider here (2) - (5), Dx0F(x0) is a structured 
sparse N x N matrix. Indeed, we have for this particular F that 

Dx0F(xo) = 

1 

2h 

((x~ - X辶）

『
xg 

鳴－砌
-xg 、

丿

01 x 

O0xl

_ 03 x ,'\ 

0OO oo x0O \ 

｀一1 (xo - x辶）」
(9) 

since each 以Xo) =嘉吋(x~+l -x~_1) with the periodicity that x広＝ x辶
andx齿＝端 holding for j = 0, · · · , N - l where x0= （端 ...'X辶）T ElR凡

\ 
。xN-1 。 。
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* Thus, the derivative with respect to x0 of the second term of the sum 
defining J(xo) is given by 

Dx0 ((x1 -茫）玉－茫）） = 2(x1 -茫）TD達0

where the matrix Dx渼0 is given in (8) and (9). 

* Continuing, one sees that for the second advection step giving x2 we have 
by the chain rule that 

Dx凶＝ Dx, (x1 +h ~ [3F(x1) - F(xo)]) 

= Dx0X1 + i[3Dx1F(x1)Dx苾1 - Dx0F(xo)] 
2 

(10) 

where Dx渼1 is defined in (8) and (9), Dx0F(xo) is defined in (9) and 
Dx1 F(xi) is given by (9) with x~ replaced by x} throughout where x1 = 
园， ...'x}

T 
, xN-1) . 

* From this, it follows that the derivative with respect to x0 of the third 
term of the sum defining J (x0) satisfies 

Dx0 ((x2 - X户）玉－茫）） = 2(x2 -這）TD達2

where Dx0X2 is given in (10). 

* This procedure can be continued, however, an iterative scheme for cal­
culating the gradient of J (x0) can be constructed if one differentiates from 
the last term of the sum back to the first. 

* A second procedure for developing an iterative scheme for calculating the 
derivative is a Lagrange multiplier type of procedure that can be used in a 
general setting. We shall finish this example by illsutrating this technique. 
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* In order to describe the Lagrange multiplier approach for generating the 
adjoint scheme corresponding to this example, let us recall that the cost 
function is given by the sum (6) 

J(xo) ＝ L(x」-茫）T(x」一 X户）．
j=O 

where the advected values and target values have been defined in the above 
di 1scuss10n. 

* We begin by introducing a function H of the the complete set of vectors 
Xo, · · ·, Xn and an additional set of r vectors in]RN denoted by 乩...',\「
as follows 

H(xo, · · ·,x「 , >.1'...' 旵＝立（x」-茫）玉－茫）
j=O 

十刈(xo + hF(xo)) (11) 

十幻[x;-1 + ~ (3F(x;-1) - F(x;-2)) - x」]
j=2 

* Note that when we require the vectors x1, • • •, Xr to be defined by the 
Adams-Bashforth method of order 2 then H reduces to J. 

* Now, considering all the arguments of H to be functions of x。 we have 
by the chain rule that 

立。H(xo , · · ·,x「'凡...'旵＝

[2(xo - xgbs)T +.\f + h（刈－軻）Dx0F(xo)]

+ [2(x1 - xrbs)T +.\{ +］［（國－刈）DX1F(x1 ） －叫 Dx洛1
,. 

十芷 [2(x」 -X户）T+ 祐1 + ~回+1- 刈十2)DxjF(x」) －司 DxoX」
j=2 

+ [xo + hF(xo) - x1]D凸 (12)

十立［功－1 十~ (3F(x曰） - F(x;-2)) - Xj r D己」．
j=2 
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* We shall now assume that we are using the Adams-Bashforth method 
as our time advection scheme, so that the last summation of (12) is zero. 
Thus, (12) reduces to 

v'xoH(xo,...'Xr, 凡...'旵＝

[2(xo -這）T +>.f +h(>.f- ；刈） Dx0F(xo)]

+ [ 2(x1 - xfbs)T +刈+ ［回＿刈）Dx1F(x1) -叫 Dx洛1
「

十 L [2(x」 -xJbs)T +).『+1
j=2 

+ ［回+1 -).『+2)Dx」 F(x」） －汀］ DxoX「

(13) 

* At this point we note that (12) and (13) are true for any choice of the 
parameters 凡...'.,\「 .Hence, we recursively select them to force as many 
of the remaining terms of (13) to be zero as possible starting with the terms 
with the largest index and working back through these indices. This will 
give a recursive procedure for calculating v7 xo J (Xo). 

* Thus, we define for notational convenience, Ar+l = Ar+2 = 0. We then 
define the.,\」 parameters of (13) recursively for j = r, r-1, • • •, 1 by requiring 
that (where DxF(y) denotes the jacobian of F evaluated at y) 

汀＝ 2(x」-茫）T+ 汀+1 + ~ (3.,\『+1 - A『+2)DxiF(x」)．（14)

* l\Tote that this defines the complete set.\1, •••,Ar of parameters and that 
the two final parameters,\ 1, 入2) calculated give the gradient of J according 
to 

V x0 J(xo) = 2(xo －這）T +,\{ + h（刈－怛）Dx0 F(xo). (14) 
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* As a final note, we wish to observe that the above development could be 
done completely componentwise using summations rather than matrices and 
vectors. Although this approach would probably be more tedious, it would 
actually exhibit the precise dependence of all the variables and probably 
lead to correct Jacobians in a somewhat more straight forward manner. 

* It would seem that this approach could be effectively coupled with a 
symbolic algebra package to compute the needed partial derivatives. 

* If one could couple with this a symbolic package that could also determine 
the structure of all matrices involved so that matrix vector multiplies could 
be replaced by vector products, then this would be real close to giving an 
effective automated procedure for the adjoint method. This would be useful 
since it would seem that in a production code the size of the vectors would 
dictate that matrix multiplies be avoided. 

* A copy of these slides is available, as well, a more general description of 
these ideas. This latter description treats advection schemes correspond­
ing to a Runge-Kutta second order method and a combining of the above 
Adams-Bashforth explicit scheme with a second order Adams-Moulton cor­
rection to get a combined explicit and implicit scheme. In addition, the de­
velopment of the adjoint method for a FORTRAN code given in appendix 
F of the book "An Introduction to Three Dimensional climate Modeling" 
by Washington and Parkinson is began. (This code is a benchmark weather 
prediction program for comparing the performance of supercomputers that 
was coded by P. Swarztrauber in 1984 at NCAR. It is based on a paper by 
Sadourny, (1975) studying the dynamics of finite difference models of the 
shallow water equations.) Finally, included in these notes is an appendix 
giving some facts about derivatives of functions of several variables. 

9 



· ' 

References 

[1975] Sadourny, R., The dynamics of finite difference models of the shallow 
water equations, J. Atm. Sci., 32, 680 - 689. 

[1986) Washington, W. M. and Parkinson, C. L., An Introduction to Three 
Dimensional Climate Modeling, Oxford Press, New York. 

[1985] Buckley, A., ALGORITHM 630: BBVSCG - A variable-storage algo­
rithm for function minimization, ACM Trans. on Math. Soft., 11, 103 
- 119. 

[1986) Le Dimet, F. X. and Talagrand, 0. , Variational algorithms for analysis 
and assim丑ation of meteorological observations: theoretical aspects, 
Tellus, 38A, 97 - 110. 

[1987a) Talagrand, 0. and Courtier, P., Variational assimilation of meteorolog­
ical observations with the adjoint vorticity equation. I: Theory, Q.J.R. 
Meteorol. Soc., 113, 1311 - 1328. 

[1987b] Talagrand, 0. and Courtier, P., Variational assimilation of meteoro­
logical observations with the adjoint vorticity equation. I: Numerical 
results, Q.J.R. Meteorol. Soc., 113, 1329-1347. 

[1990) Courtier, P. and Talagrand, 0., Variational assimilation of meteorolog­
ical observations with the direct and adjoint shallow-equation, Tellus, 
42A, 531-549. 

10 


	CIRA_023_0001
	CIRA_023_0002
	CIRA_023_0003
	CIRA_023_0004
	CIRA_023_0005
	CIRA_023_0006
	CIRA_023_0007
	CIRA_023_0008
	CIRA_023_0009
	CIRA_023_0010
	CIRA_023_0011
	CIRA_023_0012
	CIRA_023_0013

