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ABSTRACT OF DISSERTATION 

Numerical Solutions of Nonlinear Systems Derived From Semilinear Elliptic Equations

The existence and the number of solutions for N-dimensional nonlinear boundary value problems has 

been studied from a theoretical point o f view, but there is no general result that states how many solutions 

such a problem has or even to determine the existence of a solution. Numerical approximation o f all solutions 

(complex and real) o f systems o f polynomials can be performed using numerical continuation methods. In this 

thesis, we adapt numerical continuation methods to compute all solutions o f finite difference discretizations 

of boundary value problems in 2-dimensions involving the Laplacian. Using a homotopy deformation, new 

solutions on finer meshes are obtained from solutions on coarser meshes. The issue that we have to deal with 

is that the number o f the solutions o f the complex polynomial systems grows with the number o f mesh points 

o f the discretization. Hence, the need o f some filters becomes necessary in this process.

We remark that in May 2005, E. Allgower, D. Bates, A. Sommese, and C. Wampler used in [1] a similar 

strategy for finding all the solutions o f two-point boundary value problems in 1-dimension with polynomial 

nonlinearities on the right hand side. Using exclusion algorithms, we were able to handle general nonlineari­

ties.

When tracking solutions sets o f complex polynomial systems an issue of bifurcation or near bifurcation 

o f paths arises. One remedy for this is to use the gamma-trick introduced by Sommese and Wampler in [2], 

In this thesis we show that bifurcations necessarily occur at turning points o f paths and we use this fact to 

numerically handle the bifurcation, when mappings are analytic.

Stefan-Gicu Cruceanu 
Department of Mathematics 

Colorado State University 
Fort Collins, Colorado 80523 

Spring 2007
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PREFACE

This thesis deals with the problem of numerically approximating all of the solutions of 

a class of nonlinear second order semilinear elliptic boundary value problems with homo­

geneous boundary conditions on a rectangular domain. It has been noted, see e.g. [5], that 

there are very few theoretical results concerning how many solutions such a problem may 

have, or indeed, if there are any solutions at all. This state of affairs is somewhat better 

in the corresponding case of second order ordinary differential equations, where a number 

of existence and multiplicity results are available in several papers and books, see, e.g., 

the references in [1]. The approach taken here is to perform a standard finite difference 

approximation to the partial derivatives and then to numerically seek all of the solutions to 

the resulting nonlinear systems of equations. This approach worked very successfully for 

the ordinary differential equation case when the nonlinearities are of polynomial type, [1]. 

In this case, the totality of solutions of the polynomial systems of equations was found by 

regarding the systems in a complex setting and applying a numerical homotopy continua­

tion method. In recent years, a considerable literature and a library of computer programs 

for finding all complex solutions to polynomial systems has come into being. However, 

an increasing demand of accuracy for the discretization requires an increasing size of the 

polynomial system, and this in turn brings about an enormous number of complex solu­

tions, among which are the few real solutions which are actually of interest. To illustrate 

this point, let us mention the familiar theorem of Bezout [6 , 7, 8 ], which essentially states 

that the number of (finite) complex solutions, with accounting for multiplicities, can be as 

much as the product of the degrees of each of the equations. So, for example, ten quadratic 

equations would generally have 2 10 =  1024 complex solutions in C 10. Furthermore, even 

among the real solutions, there may be spurious solutions which arise as numerical artifacts
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and do not converge to solutions of the boundary value problem.

The above drawbacks were treated in [1] by means of two remedial steps. The first step 

was to discard the obviously irrelevant solutions, including the real solutions which did 

not exhibit properties which theoretical results showed must hold, for example, symmetry 

properties. The second remedy was to start with a crude mesh (and hence a low dimensional 

system) and then to introduce continuously a new mesh point via a mesh deformation. 

Assuming that the solutions have been obtained for a uniform mesh with, say n  points, 

a new point was introduced, for example, at the right boundary and this point was then 

allowed to be moved leftward until a uniform mesh with (n +  1) points is achieved. This 

device was suggested in [9] and was implemented in [1], It uses numerical continuation 

in yet another way since the homotopy parameter now is used to deform the mesh size in 

the difference equations. Starting points for solutions when the new point is introduced are 

simply the zero points of a single polynomial equation, which are generally easy to find. 

For example, one may apply an algorithm for finding the eigenvalues of the corresponding 

companion matrix.

In essence, it would seem straightforward to extend the ideas used in [1] to a corre­

sponding case of partial differential equations in two dimensions. One new issue which 

needs to be confronted is that of introducing mesh points in a manner which does not re­

quire a large number of new points, due to the fact that the number of solutions would grow 

too rapidly. Such a moving mesh is described in Chapter II. The approach proceeds as fol­

lows. Suppose that the solutions have been found for a uniform square mesh in the square 

domain. In a fashion as described in the previous paragraph, a new point is introduced at 

the right boundary of the first row of mesh points and is allowed to move leftward until 

the points in the first row are again equally spaced. The same thing is done for each of the 

rows and the for each of the columns, this time by introducing a point at the top of each 

column until once again a uniform square mesh is attained. The entire procedure requires a 

careful handling of the underlying stiffness matrices for the moving meshes. Now however,

vii
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the resulting meshes do not generally exhibit symmetries even at termination of introduc­

ing the moving mesh-point unless the mesh is once again symmetric too. So symmetry 

conditions for discarding spurious solutions need to be correspondingly adapted. On the 

other hand, since the boundary value problem is being considered on a rectangular domain, 

whatever symmetric solutions arise are likely to occur on multiple homotopy paths. It turns 

out that, in a natural way there arises the phenomenon of bifurcation of homotopy paths. 

For the class of problems being considered here, the homotopy paths are the solutions of a 

system of equations of the form H(z,  t) — 0 where H  : Cn x [0,1] —» Cn is analytic in the 

z-variables. In Chapter 1, we show that in the above analytic setting any turning point of 

a homotopy path is necessarily also a bifurcation point; we also show that the bifurcating 

directions are orthogonal. Thus the tangent vectors at the bifurcation point are orthogonal 

and the numerical continuation at such points is conveniently handled. These results also 

offer other advantages particularly in handling some of the ’endgame’ issues at the termi­

nation of the homotopy. Since numerical continuation is arising in several different ways in 

this thesis, (as homotopy methods for systems, as mesh deformations for difference meth­

ods, and as intrinsic bifurcation problems, in Chapter III), a recapitulation of numerical 

continuation is also presented in Chapter I.

In a paper by Breuer, McKenna and Plum [5], a particular boundary value problem 

involving a quadratic nonlinearity on a square domain is studied. The authors prove a the­

orem showing the existence of at least four solutions for a particular value of a parameter 

arising in the equation. They conjecture a specific bifurcation diagram and suggest that 

more than four solutions may occur as the parameter is increased. In Chapter III, the meth­

ods presented in the thesis are applied to verify the bifurcation diagram and to demonstrate 

that no more than four solutions occur over a large positive range of the parameter values.

In Chapter IV, a generalization is made which allows nonpolynomial nonlinearities in 

the partial differential equation. This changes matters in two fundamental ways. First of all, 

one does not any longer know how many solutions the discretized system has, or indeed,
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if there are any, or whether there are only finitely many solutions. The second issue arises 

when one seeks the solutions of a non-polynomial equation at the introduction of a new 

mesh point. In the polynomial case, the starting solutions were obtained as the eigenvalues 

of the corresponding companion matrix. Since there may now be infinitely many complex 

solutions, it is necessary to seek solutions in a bounded region, which is taken to be a 

compact rectangular (2d)-cell, where d represents the dimension of the equation. The real 

solutions are then found by means of a cellular exclusion algorithm. Cellular exclusion 

algorithms have recently been studied by several authors, see e.g. [1 0 ] and the reference 

therein. With cellular exclusion methods, all real solutions within a rectangular n-cell can 

be found to systems of equations, provided the nonlinearity satisfies some very general 

conditions. This approach is applied to the familiar Bratu equation in one dimension. For 

completeness, the cellular exclusion method is reviewed.

The present study has been restricted to a special, but familiar class of boundary value 

problems mainly to illustrate the effectiveness of the techniques presented. One may read­

ily envision generalizing the differential operator, the domain and the boundary conditions. 

Moreover, other discretization methods, such as finite element methods may also be en­

visioned. Now the matter of introducing a low number of elements presents other issues 

which would be worthy of investigation. It should be emphasized, that the methods pre­

sented here are not meant to provide fast and accurate methods for solving partial differen­

tial equations. Rather, the idea is to glean reliable information concerning the number and 

qualitative properties of solutions. The approximations which are obtained may however, 

be used as starting values to obtain more accurate solutions on much finer meshes.
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CHAPTER I

NUMERICAL CONTINUATION FOR ANALYTIC 

MAPS

The problem of numerically finding all the solutions for second order ordinary differen­

tial equations was successfully approached by the authors in [1] for the case of polynomial 

nonlinearities. The first section of this chapter will familiarize us with the notion of the ho­

motopy and, since numerical continuation will be arising in several different ways in this 

thesis, a recapitulation of it is also presented here. A path tracking algorithm (necessary to 

track all the solutions of such a function) with some useful choices for implementing some 

of its steps will be presented at the end of this section.

In the next section, we summarize the theory from [1] and present the algorithm used 

by the authors to numerically find all the solutions for this particular case of problems.

The need for handling turning points for some tracked paths has become very important 

in our attempt to generalize the method to a class of nonlinear second order semilinear 

elliptic boundary value problems with homogeneous boundary conditions on a rectangular 

domain. Therefore, we review the concept of arclength continuation in the third section 

and prove two important results (generalizations of two theorems from [1 1 ]) characterizing 

turning points of homotopy paths for analytic maps as bifurcation points.

In the last part of this chapter we present all the possible paths we can meet in our 

tracking, and also some better choices for the ‘End Game’ of tracking.

1
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1.1 Homotopy Numerical Continuation

In this section we will first present an illustrative example which gives the basic ideas 

of how Homotopy Numerical Continuation can be used to find the roots of a polynomial. 

Then, we will describe a path tracking algorithm that will help us in tracking the solutions of 

the homotopy as its f-parameter goes from 1 to 0 , as well as some choices for implementing 

some of its steps.

Suppose we want to find the roots of a polynomial p(z) of degree d of the form

p(z) =  z d +  ad^ \ z d~l +  . . .  +  a0.

For this, we first consider z d — 1 =  0 for which we already know the roots

z*k =  e2wki/d, k  = l , . . . , d ,  where i =  \ / ^ I .

Now, we form the homotopy

H(z,  t) :=  t ( zd -  1 ) +  (1  -  t)p(z).

At t =  1 we have the system H(z,  1) =  z d — 1 with known roots, and at t =  0, we have the 

system H(z ,  0) =  p(z ) with the roots we want to find. We seek to numerically track the 

solution paths from t — 1 to f =  0 .

First, observe that each solution path zk{t) satisfies the Davidenko differential equation 

(see [1 1 ]) for all t:

H z( 4 ( t ) , t ) - ^  + H t(z*k(t), t) = 0 (1)

For our particular polynomial case, this implies that

dzj{t) = H t {z*k( t ) , t ) =  z*k(t)d -  1 -  p{z*k{t))
dt H z(z*k(t), t) tdz*k (t)d~l + ( l - t )p ' ( z*k(t))

Therefore, we can find zl(t)  as a solution of an ordinary differential equation with initial 

value given for ^ ( 1 ).

2
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Another idea (more numerically stable, and which also takes advantage of the fact that 

the solution paths satisfy the equation H(z( t ) , t )  — 0) is to use a simple path-tracking as 

described in the next algorithm:

Simple Path-Tracking Algorithm

•  Begin

•  Set up a grid (uniform for example) t0, . . .  , t N, h = and tj = ( N  — j ) h

• For each k  — 1 , . . . ,  d do

(1) initialize w0 =  Zfc(l)

(2) for each j  = 1 , . . . ,  iV do

i. use one step of Euler’s method to define w = Wj — ^ ~ h

ii. find the solution Wj+i of H ( z , t j ) =  0 using Newton-Raphson’s methods 

with start value w.

•  End.

A main problem here is that we might have multiple roots or no solutions for the homotopy 

and the Newton’s method does not work so well in these cases. Let’s take, for instance,

p(z) — 3 — z 2 and

H( z , t )  = t{z2 — 1) +  (1 — t)( 3 — z 2).

It is clear that we have some trouble at t = 3 /4  (because H(z,  3/4) =  ( l /2 )z 2 has a double 

root) and at t =  1/2 (because H(z,  1/2) =  1 has no solution). We can eliminate these 

problems by using the gamma-trick: introduce a random angle 9 e  [—n, ir] and modify the 

homotopy function from above to

H(z,  t) = teie(zd — 1) +  (1 — t)p(z) = 0 

3
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where i =  y /^1 .  Note that at t — 1 and t =  0, we have the same starting and ending points 

respectively, but now, due to the complex factor 7 =  el6), the paths are well-behaved for all

* e  [0 , 1].

The heart of any numerical continuation method is its path-tracking algorithm, for 

which we can use a predictor/corrector method based on having an explicit homotopy 

H(z( t ) , t ) .  Such a method is highly preferred because the corrector step avoids the build-up 

error which often accumulates in a numerical ODE solver (see [2]).

correct predict
t= 0 t=1

Figure 1: Schematic of the prediction (Euler) and correction (Newton) for path-tracking.

Basic prediction and correction can both be accomplished by considering a local model of 

the homotopy function via its Taylor series:

H ( z  +  A z, t + At )  = H(z ,  t ) +  H z(z, t ) A z  + Ht{z, t ) A t  +  H.O.T.

If we have a point (zx, t i )  near the path, i.e. H( z \ , t \ )  ~  0, then one can predict to a new 

solution at t x + A t  by setting H(z i  +  Az ,  t x +  At)  =  0 and so lv ing  the first order terms to 

get

A z  = (3) 

On the other hand, when H( z \ , t \ )  is not small enough, one may hold t constant by setting

4
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A t  — 0 and solving the equation to get

A z = - H ~ 1{z1, t 1) H( z1, t 1) (4)

These are what we call the Euler prediction and Newton correction.

In general (see [11]), if / /  : R ^ 41  —> R N, and u is a point near the path, i.e. H{u)  «  0

then the prediction to a new solution v is made by taking v := u + ht(H'(u)),  where 

t (H' (u )) e  R ^ 41  is the tangent vector induced by H'{u)\  if H{v)  is not small enough, 

then correct v by repeating

w := v — H'{v)+H(v)  

v :=  w

until convergence (here, H'(v)+ is the Moore-Penrose inverse of H'(v)).

The main concern of a numerical path-tracking algorithm is deciding which of these to

do next and how big a step A t  to use in the predictor.

We will present next a generic path-tracking algorithm (see [11]), in which we assume 

that the path parameter s (arclength, for example) is strictly monotonic and therefore there 

are no turning points). This is a consequence of the assumption that the Jacobian is non­

singular along the path.

5
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Path-Tracking Algorithm

Given: A full-rank system of equations, F(v,  s ) =  0; initial point v0 at s0 =  1 such that 

^ (v0,s 0) ~  0 ; and initial step length h.

Find: A sequence of points (\ j ,  Sj), j  = 1 ,2 , . . .  , n  along the path such that F( \ j ,  Sj) m 0, 

sJ+i < Sj, and terminating with sn =  0. Return a high accuracy estimate for vn. 

Procedure: For j  = 1 , 2 . . .  , n  do:

•  Prediction: Predict a solution (u, s') such that ||(u, s') — (Vj_i, S j-i)|| ~  h with

s '  <  S j - 1 .

•  Correction: Try to find a corrected solution (w, s") in a neighborhood of (u, s') such 

that F(w , s") «  0 .

•  Update: If the correction step was successful, update (vj, s3) := (w, s") and incre­

ment j .

•  Adjust: Adjust the step length h.

•  Terminate Loop: Terminate the loop when Sj =  0 or non-convergence of the path 

has been detected.

6
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We present below some useful choices for implementing each of these steps:

Prediction: The simplest predictor is u =  Vj_i, but it is better to use a linear or a higher- 

order prediction. One can use for example, one of the following linear predictors:

• Secant Predictor Use the last two points on the path to linearly extrapolate to the 

next:

(u, s') =  ( V j _ i ,  s) +  f t p j j f ,  where A j = (vj_ 1 -  V j _  2, S j-i -  S j _ 2 )

•  Tangent Predictor Step along the tangent direction:

where a  is calculated to give the desired step length (this is what we call Euler’s 

method).

Step Length: The step length can be measured by any preferred norm of (u — Vj, s' — Sj_i). 

A simple choice is ||(u — \ j ,  s' — Sj_i)|| :=  |s' — Sj_i|.

Correction: One can use the following common corrector: hold s constant, i.e. s" =  s', 

and compute w by Newton’s method, allowing a fixed number of iterations.

Step Length Adjustment: In case of a failure of the corrector, one can cut the step length 

by half. In the case of m  successive corrections at the current step size, one can double it 

(a choice of m  in between 2 to 5 works well).

Final Step: Near the end of the path-tracking interval, one needs to adjust the step length 

to land exactly on s =  0 .

Terminate: Eventually, we must arrive at s = 0 or else |s' — S j-i| must become progres­

sively smaller. One should set a minimum threshold for progress in s, below which we 

declare the path is either diverging or approaching a singularity. One can also terminate if 

the magnitude of the solutions grows too large.

Refine: Newton’s method will work fine for nonsingular endpoints.

7
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1.2 Homotopy Continuation for 1-D ordinary differential 
equations

Consider the second order boundary value problem on the interval [a, b] c  R

u" = f ( x , u , u ' )  (5)

with the boundary conditions u(a) =  a  and u(b) =  (3. Using a central difference approxi­

mation with a uniform mesh for example, we can approximate a solution u(x)  of (5) by an 

iV-tuple of numbers (ux, u 2, . . . ,  um)t  such that Ui ss u(xi),  Vz =  1 , . . . ,  N,  where we set 

h Xi := a +  ih, Vz — 0 , . . . ,  N  +  1, u0 — a,  and upf+x =  (3. The discretization of

(5) takes the form of the following system V N:

u0 -  2 m  +  u2 =  h2f { x X)u u ^ ^ - )

V N <

uN_x -  2 u N + u N + 1 = h2f  (xN , u N , UN+1̂ N~1)

We are seeking all the real solutions of (5) and we know that depending upon the right

hand side / ,  equation (5) may have no solution, a unique solution, multiple solutions, or

even infinitely many solutions. There are many theorems that state the existence solutions

for such equations, but even when the existence is known, the number of solutions is often

not. In [1], the authors studied a relatively secure numerical technique for finding all the

solutions for such an equation in the case that f ( x ,  u, u') from (5) is just a polynomial

depending on u. The idea is to complexify the problem and find all the solutions (real and

complex) of an associated polynomial system P(z)  using a homotopy function which will

track some known starting solutions to all the solutions of P{z).  It is important to remark

Bezout’s Theorem for Polynomial Systems.

Theorem 1.2.1 (Bezout). Let P  : Cn —> C", P(z)  = {pj(zx, . . . ,  2n)}j=i,...,n be a system 

o f polynomials with dj = deg Pj fo r  any j  = 1, , n.  Then, counting their multiplicity, 

the number o f regular solutions (real and complex) o f P  is
n

d = Y [ d j  
j=i

8
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Another important result about the number of solutions of to a polynomial system can 

be found in [7]. Also, two extensive surveys of homotopy methods for polynomial systems 

are given by Li in [12] and [13].

In this section, we will present briefly the idea and the algorithm for finding the solu­

tions of this 1-D problem. The process of finding these solutions can be sketched in four 

steps:

1. Find all the solutions of the discretization V N for some small N.

2. Discard all unreasonable solutions and denote by f lN the set of the solutions which 

are kept.

3. If the mesh size is not sufficiently small or the cardinality of has not yet stabilized, 

then add a mesh point to obtain the discretization V N+\. Use the solutions in £lN to 

generate solutions of V N+i and then return to Step 2 to generate f2jv+i-

4. Once the mesh size is sufficiently small and the cardinality of f lN becomes stable, 

refine the solutions to a more consistent grid with a fast nonlinear solver.

As one can imagine, the key step in this process is number 3. To solve this, we first 

consider the following homotopy function which gives a mesh refinement in continuous 

deformation:

9
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# /v + i ( w i ,u 2, • • • ,uN+i,t)

l i jV -2  — 2 U jV - l  +  UN  

u n - i  ~  2 Mat +  UN+ i ( t )  

U N  —  2 u n + i + U N + 2 ( t )

with

UN — U N - 2h(t )2f  ( A  ;(/), | . -a i j j

M OV ( x K( t ) ,uN, 2h(t)

)
0

-  h{t)2f  ( x N+i{t),UN+i, UN+$ t) UjV)

(6)

Xj(i) := a + ih(t),  Vz =  1 , . . . ,  TV +  1

u0 

h(t) : 

UN+l(t) ■ 

UN+2(t) •

=  O f

«(M)+a - o (la)
:= (1  — t )uN+i +  f3t 

= P(1 ~ t )

(7)

Remarks 1.2.2.

• At t = 0, Hn+i represents the system V N+i.

• At £ =  1, H n+i can be interpreted as the system V N with a new mesh point hav­

ing the value un+i at x N+i — b and a new right-hand boundary having the value

UN+2( 1) =  0  at x N+2 = b + h( 1 ).

•  There is an incompatibility between the old boundary condition at x  = b and the 

new one at x = b + h( 1 ), but this is accommodated by the presence of both u N+1 

and UN+1, which are not necessarily equal. As t goes from 1 to 0, the mesh points 

are squeezed back inside of [a, b] and right hand boundary condition u(b) = (3 is 

transferred from Un +i to Un + 2 as UN+\ is enforced to equal u N+u i.e.

f7jv+2 (0) =  0  and Un +i (0) =  ^iv+i-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To find all the solutions of X)iV+1, we will use continuation to track the zeros of H N + 1 

as t goes from 1 to 0. At t = 1, we have a list Ojv of solutions (u \ , u2, • • •, «iv)T satisfying 

the first N  equations of H n +i, while the final equation is

which is the only place where u^+i appears. For each solution (ux, u2, . . . ,  u N)T in f2jy, 

we use this equation to find the corresponding values of it/v+i- These are the starting points 

of continuation paths leading to solutions of V N+\. Further information about homotopy 

numerical continuation will be given in the next chapter.

Remark 1.2.3. This framework will not change in any of its essentials if we prescribe in 

(7) a different function for Un+ 2 (for example, the constant function Un+2 '■= (3). The 

essential feature o f Ujm+2 is that it goes to (3 as t goes from 1 to 0.

Remark 1.2.4. By the Implicit Function Theorem (IFT), we know that a nonsingular so­

lution u — u* to H n+i(u,  1 ) =  0  will continue uniquely in an neighborhood of t = 1 to 

a nonsingular solution path u(t) satisfying H N+i(u(t), t) =  0 with u( l )  =  u*. However, 

this does not guarantee that the path will remain nonsingular all the way to t = 0 , which 

is what we require to follow the path reliably with numerical continuation. This difficulty 

can be passed over using the gamma-trick (see [2], Chapter 7).

In our case, it is sufficient to introduce a random 7  € C into the homotopy to obtain the 

variant:

H n +i (u\ , u2, . . . ,  Un +i , t )

(8)

r(t) (uN- 2 -  2UN_! +  u N) -  h(t)2f

T ( f )  ( u j v - i  — 2 w j v )  +  £ / / v + i ( f )  —

T{t) (u N  -  2 u n + i  +  (3) -  h(t)2f

M * ) 2/  ( x N - i ( t ) ,  u n -  1 , UN2h {t)- 1’ 2h(t)

)
h{t)2f  ( x N+1(t), uN+1 ,

1 1
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with

r(£) := -f2t +  ( ! - £ )

Ht )  := 7* ( M )  +  (* ~  *) (& £ )

UN+i(t) := (1 -  t )uN + 1 +  7 2/?i

Xj(£) := a + ih(t),  Vi = l , . . . , N  + l

Remark 1.2.5. In essence, the gamma-trick rests upon a parametrized Sard’s theorem (see

Remark 1.2.6. In the case of polynomial nonlinearity when f ( x ,  u, u') from (5) is a real 

polynomial p(u),  we can conveniently obtain the starting points for 

H N + i ( u i , U 2 , . . . ,  «at+i, 1 ) — 0  by solving the polynomial equation:

for u N + 1 given u N from the solutions in i lN . All the solutions (real and complex) of (9) can 

be found using standard available software (for small degree polynomials, the companion 

matrix may be used to find these zeros).

If we denote d — deg p(u),  then one can see that over the complex numbers we obtain

these will continue to finite, nonsingular solutions of P j v + i ,  then will have dN entries. 

Therefore, the number of the solutions for V N+i grows exponentially as N  increases, and 

hence the need of some filters becomes very important. It is important to remark here that 

all the real and complex solutions of (9) (and in general of any polynomial equation) can be 

found using standard available software, e.g. the roots command in Matlab which simply 

involves computing the eigenvalues of the associated companion matrix.

e.g. [11]).

p ( i t j v + i )  =  0 (9)

d values of  u N+l for every solution in f lN. If we suppose that at each stage of the algorithm

12
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Now, we can write the final version of the algorithm:

Algorithm:

1. For N  =  1, find (since 1) is a polynomial in u\  and it may be solved by

any one-variable method).

2. For (V =  2 ,3 , . . .  do the following until some desired behavior occurs:

• Build H n (u i , u2, . . . ,  u n , t).

•  For each solution in f ^ - i ,  solve the last polynomial equation of 

H n (u i , u2, ■ ■ ■, u n , t) (which is (9)) for u n , and then form the set S n  of the 

start solutions for this system H N (ux, u2, . . . ,  u N, t).

•  Use numerical continuation to track all the paths beginning at the points in S N 

at t — 1. The set of all endpoints of these paths will form Ojv after applying 

some filters (if desired).

3. If desired, refine the solutions to more consistent grids using a fast nonlinear solver. 

Some numerical results can be found in [1],

Remark 1.2.7. The homotopy parameter t brings an extra point into the finite difference 

discretization, as one can see in the figure from the next page.

In this thesis, we will extend the concept to 2-D partial differential equations and to 

non-polynomial right hand sides.

13
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1.3 Arclength Continuation and Turning Points

Using just numerical continuation in t to solve H ( t , u ) =  0 is a good idea if turning 

points do not occur as we track the solutions of 77 from t =  1 to t = 0. It was suggested 

in [1] to use the gamma-trick if such turning points are present. The use of this trick 

as explained in section 1 .2  makes the paths well behaved (no turning points), but in our 

experiments we observed that in most of the cases that we used it we ended up finding 

solutions at t — 0  that were also found using continuation in t with other different starting 

solutions at t =  1 (we refer to this process as losing solutions) (see section 2.7.1 for an 

example). Therefore, we needed to introduce arclength continuation [11, 14] in our toolbox 

to track the solutions as t goes from 1 to 0 .

Definition 1.3.1. Let 77 : R x  R” —» R" be sufficiently smooth. Suppose that c : J  —> 

K x l "  is a smooth curve, defined on an open interval J  containing zero, and parametrized 

(for reasons o f simplicity) with respect to arclength such that H(c(s)) — 0 fo r  s £ J. The 

point c(0) is called a bifurcation point o f the equation 77 =  0 i f  there is an e >  0 such 

that every neighborhood o f c{0) contains zero-points z o f H  which are not on c((—e, e)).

Remark 1.3.2. An immediate consequence of this definition is that a bifurcation point c(0) 

of 77 =  0 must be a singular point of 77. Hence, the Jacobian 77'(c(0)) must have a kernel 

of dimension at least two.

Definition 1.3.3. Let 77 : R n+1  —> R” be a sufficiently smooth. A point u £ R n+1  is called

a simple bifurcation point o f the equation 77 =  0 i f  the following conditions hold:

(1) H(u)  =  0;

(2) dim ker77'(u) =  2;

(3) e*H"(u)
(k,

ker H'(u)*.

has one positive and one negative eigenvalue, where e spans

14
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The following three results are summarized from [11] and furnish a criterion for detect­

ing a simple bifurcation point when traversing a curve c.

Theorem 1.3.4. Let H  : R n+1 —> Rn be a sufficiently smooth and u G R ri+1 a simple 

bifurcation point o f the equation H  = 0. Then there exist two smooth curves C i ( s ) ,  c 2 ( s )  € 

Kn+1, parametrized with respect to the arclength s, defined fo r s G (—e, e) and e sufficiently 

small, such that the following holds

(1) H(ci(s))  = 0 ,i G {1,2} ,s  G ( —e, e);

(2) Cj(0) = u ,i  e  {1,2};

(3) Ci(0), c2 (0) are linearly independent;

(4) H ~ 1(0) coincides locally with range(ci) U range(c2); more precisely: u is not in the 

closure o f H ~ l (0) \  (range(ci) U range(c2)).

Lemma 1.3.5. Let u G Mn+1 be a simple bifurcation point o f the equation H  — 0. Under 

the notations o f 1.3.3 and 1.3.4, we obtain

(1) ker H'(u)  =  span {ci(0), c2 (0)};

(2) e*H"(u)  [cj(0), q (0)]  =  0, f o r i  G {1,2}.

Theorem 1.3.6. Let u  G Mn+ be a simple bifurcation point o f the equation H  =  0. Under 

the notations o f 1.3.3 and 1.3.4, the determinant o f the following augmented Jacobian

det
1 ) ) ^  

y  C i ( s ) *

changes sign at s = 0 fo r  % G {1,2}.

Now, let H  : R x R n —» W \  be a smooth homotopy. The important assumption which 

we need to make is that H(t ,  u ) is real analytic in the variables u. Hence it is meaningful 

to replace u in H { t , u) by w  G Cn. In the following we use the notation w = u + iv for

15
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w e  Cn, where u, v e  Rn denote the real and the imaginary parts of w  respectively. Note

( 10)

that H(t,  w) =  H(t ,  w)  since H  is real analytic. Let us define now the real and imaginary 

parts H r , W  : R x Rn x Rn -> R n x Rn by

H r( t ,u ,v)  := \  (H ( t , w ) +  H ( t , w )) ,

H l(t, u, v ) :=  y  (H ( t , iu) -  H(t ,  w ) ) ,

x R" by 

/

H(t ,  u, v ) :=

and the map H  : R x Rn x Kn —»■ ^  v 1D>n

\"

\

V
d o

- H l (t , u, v )

The numerical aspect then consists of tracing a smooth curve c : s i—> ( t ( s) ,u(s) ,v(s))  in 

H ~ 1(0), where for simplicity s is an arclength parameter. Differentiating H(t(s) ,  u(s), v(s)) 

with respect to s yields

( i \ f n\
it —

0

\ y ) wH t Hu / / ,

From (10) we obtain the Cauchy-Riemann equations

H l  = - IP u and H'v = H ru.

( 12)

(13)

and therefore
/

H(u,v) —
TTT -H l

A

r-
V

t t i r r r
u

is symmetric. Furthermore, if ji is an eigenvalue of H(u>v) with the corresponding eigen­

vector Q ), then so is —fi with a corresponding eigenvector . Hence, the eigenvalues 

of H (UtV) occur in symmetric pairs about zero, and det H (u,v) never changes sign.

By using the Cauchy-Riemann equations (13) and augmenting (12) in an obvious way 

we obtain

t u* v 

Ht Hu H v

t 0 * 0 *

u Id 0

v 0 Id

1 it* \

0  K  - H I

0 - H t  - H I ]

( 14)

16
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and therefore

t det

V
Ht H u H

=  det

7

h : -h ,

- h iu - h :
=  det Hi(u,v) • (15)

u j

Consequently, if U is a neighborhood of a parameter value s such that c(s) are regular 

points of H  for s G U \  {s}, then (15) shows that i(c(s)) changes sign at s =  s if and only 

if

det
(  i •*t u v

V
(16)

c(s)
Ht H u Hvj

does. Hence, a turning point of c with respect to the t  parameter is also a bifurcation point 

of the equation H  = 0.

Theorem 1.3.7. Let c(s) = ( t (s) ,u(s) ,v(s))  be a solution curve o f H ~ 1(0). Suppose c(s) 

is a simple turning point o f the equation H  — 0, i.e. t( s ) =  0, t(s) f  0, and the augmented 

Jacobian from (16) has minimum rank deficiency. Then c(s) is a simple bifurcation point 

o f the equation H  — 0 .

Proof. Using the Cauchy Riemann equations (13), the (2n +  1) x (2n  +  1) augmented 

Jacobian for H  takes the form

/  ■ \t i f  i)*

H t Hu Hv

(

c(s)

0  i f \

h i  h : - h i

- H I  - H I  - H l j

(17)

c ( s )

Differentiating H(c(s)) — 0 gives:

H t (c( s ))  H u(c(s)) H v (c(s))

( i f  A  t(s) /  \

u(s) =
0

\ v { s ) J

and therefore, at s =  s we obtain: 

/
Hl(c(s))  —H lu(c(s)) 

-Hl(c(s))  - H : ( c ( s ) ) J

u(s)

V 7

17
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One can easily see now that also the following holds:

/

Y

m m  - K m )

- H i m )  - h : ( c(s ))

\  ( .M \
v { s )

\ 0/

and therefore (0 , u(s), v(s))T and ( 0  , v ( s ) , —u(s))T are two linearly independent vectors 

from ker H'(c(s))  (it is easy to check the linear independence). Since we know that the 

augmented Jacobian has minimum rank deficiency, we can conclude that ker H'(c(s))  is 

spanned by these two vectors and therefore the first two conditions from 1.3.3 are satisfied.

It is also important to remark that the rank of the augmented Jacobian from (17) is 2n , 

since (0 , -u(s), —ii(s))T spans its kernel.

It remains now to show the non-degeneracy condition for H"(c(s))  (the third condition 

from 1.3.3). Let’s first denote c =  c(s). Let (ei, e2)r  be in the ker i.e.

H'(cy

This can be rewritten as:

(  \ f°^
el

= 0

\ 2y
W

/

Y

h ;(c)-

H ru(c)'

- K ( c y

- m r

- v ' M

- u r n

A

7

(  \
ei = 0

^e2y w
-  H\(c)'e2 =  0 

Hl(c)'e i -  Hi(c)'e2 = 0 

Hi(c)'e , +  H:(c)’e2 =  0 

Consider now the following bilinear form:

(£.*7) 1— > B(Z,r})

(18)

(19)

where

f ° l 0 1
u(s) v(s)

J y-u(s)J

18
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Knowing that t(s)  =  0, the bilinear form can now be rewritten as:

B  K, I?) =  (ej, e'2) ( f t , (c) i (S)  +  H a(c)u(s)  +  f f„(c)ti(s))  +

+  W, eJ )  (ff„„(c) [f«(s),i)i(s)] +  H„(c)  [£»(*),->)u(J)]) +

+  (e j.e j)  Hm (c) ( |fu (s). -ffii(S)] +  K*(5),ij»(S)])

B ( t n )  = ( e \ H l ( c ) - e l H i ( c ) ) U s ) +

+ (e\Hl(c)  -  4H 'u(c)) i ( s ) +

+  (e;HrJ c )  -  e'2H‘(c)) » («)+

+  (»  { t i K J V  ~  ~  ( e l / C ©  “  <3*4(2))}  [*(«),*(*)] +

+  f ’) (e l ^ C ( 2 ) “  e2H 'uv(£)) {[«(«).»(>)] -  [“ («). “ M l}

Differentiating the Cauchy Riemann equations (13) gives:

r r r  _   i r r  r n  __   r r i  t t t  ____ r r i  r n  _  t t t  f9(Yl
1-l vv UW> vv UU1 UV UU'> UV UU’ \ ^ ” )

Using (13), (18), and (20), we obtain:

B( i , r , )  = (r,K

where

K  = 2 ( e j H ' J c )  -  4 K M  [i(S), i(s)] +

+  (e‘iK „ (c )  +  {(ii(s),it(s)] -  [ti(s),*(s)]}

It is clear that the bilinear form £? (£, 77) from (19) has one positive and one negative 

eigenvalue if and only if the constant K  is non-zero. To show this, let’s differentiate twice 

the equation ( e l ,  — e \ )  H ( c ( s )) =  0:

0  =  (el, - e f )  ( Ht(c)t(s) +  Hu(c)u(s) + Hv(c)v(s)^j +

+  (e2 > ~ ei ) ( h uu{c) [u(s), ii(s)} +  Hvv(c) [u(s), u(s)]) +

+  2 (e^, - e ^  Huv(c) [u(s), u(s)]

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Doing the calculations, this becomes:

0 =  (e\Hl(c)  + e\H\(c))  t(5)+

+  (e'2n :(c )  +  e1H'u(c)) ii(5) + (e'2K ( c )  +  ej//>(c)) 8(5)+

+  (el HL( c)  + ei K u ( c ) )  [“ (5), 8(5)] +  (eiHL(c)  + eiH '„(c)) (i(s), 5(s)J +

+  2  (ei HL(c)  +  [«(*). *(»)]

Taking into account (13), (18), and (20), the previous identity simplifies to:

0  =  (e‘2H l(c) +  t(5 ) +  (e \Hlu(c) + [«(g),*(s)] -

-  (e2 HL( c)  + e \H ‘m (c)) [ti(J),*(s)] + 2  ( -e ;f f j„ (c )  +  e ;ff;„(c)) [8(5), 8 (s)] 

which can be rewritten as

s) =  0K  + (e'2H l(c) + e\H \

Since t(s) ^  0, to conclude that K  Y  0, we need to prove that e^Hy (c )+e \Hlt {c) Y  0. Sup­

pose by contradiction that e£H![(c) +  e\H \(c ) =  0. Then, since (e*, e2)T £ ker H(c(s))*,  

we can easily see that

1 H[(c) '  - H j ( c )  

H ru( i y  -H 'J c )  

- H l( c ) ‘ -H 'J c )  

and hence

/

A
/  \ 0

ei
0 and

v62y >0 ,

/ / [ ( c ) *  - H l ( c y  

//[(c)* - Hi ( c )

- / / [ ( c ) *  - / / [ ( c )

A

/

/  \ 0
e2

0

c e , J l 0 1

0  / / [ ( c )*

«(«) H u(c)*

v(s) - H lu(cY 

(

-Hiic)"

~H'u(c)

~ H ru(c)

A V
ei = 0

7 \ e 2J

and

\0/

w 0\
e 2

v- e v

o h ; ( c) ‘ - ///(e)*

K W  - « ! ( « ) ’

\8(5)  -HZ(c)

which implies that the augmented Jacobian from (17) has rank deficiency at least two; this 

is a contradiction since we already remarked before that its rank is exactly 2 n. □

0

v0/
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Let us show now that at such a bifurcation point, the two solution branches have the 

same curvatures (in absolute value), but of opposite signs, and therefore, a choice of fol­

lowing branches is available so that the t co-ordinate is decreasing.

Theorem 1.3.8. Under the assumptions o f 1.3.7, let us now denote the two bifurcating 

solution curves o f by c f s )  := ( t f s ) ,  u f s ) ,  v f s) ) ,  i E {1,2}. The curves are

defined fo r  s near s and c := ci(s) =  C2 (s) is the bifurcation point. Then t i(s) — —̂ (s)-

Proof. Let us denote c(s) :=  (t(s), r/(s), u(s)) for either of the two solution curves c\ or 

c2. Differentiating H(c(s )) =  0 twice with respect to s and taking t ( s ) =  0 into account 

yields

0 =  Ht(c)t(s) +  Hu(c)u(s) +  Hv(c)v(s)+

+ H uu(c) [u(s),u{s)] + H vv(c) [v(s),v(s)] + 2 H uv(c) [w(s),t;(s)]

Let (ei, ef)T be in the ker i.e.

f  H ; ( i y  - h u c)A

(21)

f f ( c y
/  \ 0

ei
~ 0

\ ey , 0 ,

x : ( c y  - H a z y

/

/  \ 0
ei = 0

\ eV tO,

which can be rewritten as:
/

Hl{c)*ei -  Hlt (c)*e2 =  0 

W;(c)*e, -  Hl(c)'e2 = 0 

H'u(c)’e, +  //J(c)*e2 =  0

M ultiplying (21) from the left w ith (e2, ■ c‘ ) gives:

0 =  (e'2H;(c)+e'IH',(c))t(s)+

+ (e'2Hru(c) +  e\H'u(l)) u(s) +  (e\Hl(c) + e‘,H ‘(c)) i(S)+

+ l A K J d  +  A H ‘m (c)) [ti(S),u(s)] + ( e iH K l )  + e*,frm(cl) [i(s), *(S)] + 

+ 2(e;//;„(c) + e;//;„(c))[u(s),*(s)J

(22)
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Using (13), (20), and (22), this simplifies to:

(e'2H;(c) + e',H‘(c)) t(5) =  2 -  e\Hrm (g)) |« (s ),«(»)] -

-  ( 4 K u ( c )  +  e 'iK u(c)) {[*(»).«(«)] -  [*(s),«(s)]}

Substituting each of

ci(s) =  (O.it^s), vi(s))  

c2(s) = ±  (0 , i>i(s), - u i ( s ) )

into the above identity, we obtain

{elHK'c) + elHl(c)) i ^ s )  = 2  ( e ^ ( c )  -  e ^ tt(c)) M * ) , ^ ) ]  -

-  (e2K u i c )  + eiH luu{c)) {[ui{s) ,Ms)]  -  [wi(s),Wi(s)]}

(23)

(e*//[(c) +  e\H \{c)) i a(s) =  2 ( e * ^ u(c) -  e ^ tt(c)) [^(S), -6 ,(5 )]  -

-  (e2 K u ( c )  + e \H luu{c)) { [^ ( s ) ,«!($)] -  [ui(s),Ui(3 )]}

(24)

respectively. One can easily see that the right hand sides of (23) and (24) are equal and 

of opposite signs, and since e\Hl(c)  +  e\H\{c) ^  0 (see the last part of the proof of the 

previous theorem), we conclude that i i(s) =  — hi s ) .  □

For a real solution curve of H ~ l (0), we can relax a part of the hypothesis of the theorem 

1.3.7 and obtain the following result found also in subchapter 11.8  from [11]

Corollary 1.3.9. Let s i— > c(s) =  (A(s), u(s),  0) be a ’’real” solution curve o f H ~ l fS) 

such that the point (A(s) ,u(s))  is a regular point o f the real homotopy H. Suppose 

(A(s), u(s)) is a simple turning point o f the equation H  = 0, i.e. A(s) =  0 and A(s) 0.

Then c(s) is a simple bifurcation point o f the equation H  = 0.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 Possible Tracked Paths and the ‘End Game ’ o f Tracking

No matter what method we use to track the solutions of the homotopy H N from t = 1 

to t — 0 , we must land exactly on t = 0  because only here, the incompatibility between the 

old boundary conditions and the new ones disappears (see Remark 1.2.2 for more details). 

In this sense, the last step of the tracking method (landing exactly on t =  0) plays an 

important role in our implementation and was called the ‘End Game’ o f  Tracking.

Here are the two types of ’End Game’ we used in our research.

i) As we track a solution, the homotopy parameter t will decrease from 1 toward 0. 

When t is very close to 0, we will chose the last steplength such that t lands directly 

on 0. Using this method, t will always stay in the interval [0,1].

ii) The second idea is to track a solution until t passes 0. We stop when t  becomes 

for the first time negative and choose now an opposite steplength such that t lands 

directly on 0 .

It is important to remark that the tracker from HomLab software package used by the 

authors in [1] is based on the first idea. We also used ‘end game’ (i) for tracking our 

solutions with continuation in t, applying the gamma-trick when necessary. We tried to use 

this ‘end game’ also for tracking using arclength continuation, but a major inconvenience 

arose when turning points of tracked solutions occurred near t = 0. In this case, we could 

end up at t = 0  with a solution that had already been obtained from a different starting 

solution at t = 1 , by jumping to a different solution branch that is not connected to our 

actual one. We call this losing solutions. See section 2.7.1 for an example. This problem 

holds also for [1], but was not observed there. Another problem not observed in [1] is also 

related to the turning points near f =  1 where branches must be switched, but as the authors 

said, there is a zero probability that turning points appear when the gamma-trick is used.

The ‘disadvantage’ of the second idea according to which we will need an extra last step 

to land on t =  0  is insignificant in comparison with the following advantage: any turning

23
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point near t — 0 will be seen and the switch to the right branch as suggested in section 1.3 

can be done in the tracking process. This way, we no longer lose solutions as we did using 

the previous idea.

Therefore, we suggest using the ‘end game’ (ii) combined with tracking by arclength 

continuation as presented before in section 1.3.

Possible paths that we might encounter during our tracking are presented in the figure 

below.

t=o t=i

Figure 2: Possible paths in our tracking.

The easiest path to track is the one with no turning points going directly from t = 1 to 

t = 0 .

A different type of path is the one starting and ending back at t = 1 because of a turning 

point somewhere between 1 and 0. In this case, by the theory presented in section 1.3, there 

is another path with opposite curvature having the same bifurcation point. This new path 

might reach t = 0 directly or continue to have turning points. In any case, we should be 

able to switch branches as in section 1.3 and reach our goal, t  =  0.

A third type of path is the one starting at t =  1 and ending at t =  0, having two or more 

turning points, and for which we do not need to switch branches to reach our goal.

24
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Of course, from a numerical point of view, the hard cases are when the turning points 

are near t = 1 or t = 0 .

It is also very important to remark that we do not get solutions going to infinity as in 

the picture below because of the existence of apriori estimates for certain kinds of elliptic 

problems (see [15] for more details).

t=i

Figure 3: Path going to infinity.

25
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CHAPTER II

HOMOTOPY CONTINUATION FOR 2-D PARTIAL 

DIFFERENTIAL EQUATIONS

The method of finding all the solutions of second order ordinary differential equations 

presented in the previous chapter is now generalized to a class of nonlinear second order 

semilinear elliptic boundary value problems with homogeneous boundary conditions on a 

rectangular domain, but still with polynomial nonlinearities. Most of the difficulties met 

for the 1-D case are now transmitted to the new type of problems. Other difficulties that 

appear due to the generalization to a higher dimension are also described in the first section 

of this chapter.

Using the geometry of a rectangular box-interval, we were able to build the homotopy 

function associated to the discretization of the Laplace operator as a combination of some 

sparse matrices and vectors. All the calculations were performed for the case when a new 

mesh point is introduced in a row. For the other case (new mesh point introduced on a 

column), the calculations are similar and therefore we did not present them in this thesis. 

But both of these cases were implemented since we need to alternate introducing mesh 

points on rows and columns. The geometry of the moving mesh-grid is presented in the 

fifth section of this chapter.

The section 2.6 describes the way we refine a solution to a coarser grid once we nu­

merically found it on a crude mesh. Some numerical results for different 2-D problems are 

presented in the section 2.7.

26
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2.1 Difficulties for 1-D ODEs and 2-D PDEs

We now turn to the question of whether it’s feasible to solve similar problems, but in 

2-D or higher dimensions. In particular, we will concentrate on finding all the solutions for 

a problem of the form

Art =  /(A, x, y, u, ux, uy) on Q, C M2

u\dn = 9-

In the next chapters we will develop a theory and a toolbox to solve this problem numeri­

cally. But first, let’s explain some difficulties we met in the 1 -D case.

Generalizing the right hand side to non-polynomial functions

The algorithm described in 1.2 works well for the case when the function /  is a polynomial 

in u, because in this case, (8 ) becomes a polynomial equation (see (1 .2 )) for which one 

knows how to find all the solutions. There is no method to find all solutions if the nonlin­

earity /  is not a polynomial anymore. This difficulty will also apply for the 2-D case and 

higher dimensions.

Exponential growth for the number of the solutions

Even in the case of a polynomial nonlinearity, the number of solutions grows exponentially 

with the number of interior points. The algorithm will stop when we have enough interior 

points or when we see that the number of real solutions stabilizes or grows without bound. 

In all the 1-D problems that we have examined, the number of real solutions stabilized 

or grew without bound. Once this was accomplished, we were able to take these solutions 

with 6-7 interior points and refine them using a sim ple numerical m ethod (N ew ton iteration 

for example). See the section 2.6 for more information. So, now imagine, if 6-7 interior 

points for a 1-D interval will be satisfactory (providing that the number of real solutions 

stabilizes or grows without bound), then for a 2-D problem on a rectangular domain we 

would be satisfied with 36-49 interior points. Clearly so many mesh points will lead to a
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great number of solutions for the homotopy and this will require stricter tests for filtering 

out unwanted solutions. For the 1-D case, knowing some properties about /  would help us 

creating some filters, for example, maybe it can be shown that the solution needs to have 

some symmetries. But in 2-D or higher dimensions, this difficulty becomes greater.

No solutions for the homotopy function

Another difficulty that was met in 1-D is the fact that we would like to know if we can find 

all the solutions also for the case in which /  is not a polynomial in u. Lots of problems 

arising from engineering, chemistry, biology or other areas do not involve polynomial non- 

linearities. In order to find all the solutions even if /  is not a polynomial in u, we need 

a method that can find all solutions for (8 ). So, if we know some properties and methods 

to solve (8 ) for all the solutions (keep in mind that (8 ) will be an equation in which some 

parameters will change every time we come with new interior points) then we are in good 

shape. But even in this case, we might have problems: suppose we know how to find all 

the real solution for (8 ) for the general case; what if the equation (8 ) we solve for small N 

(interior points) does not have real solutions (see section 4.1)? How can we continue with 

our algorithm, since we don’t have any starting solution for our homotopy? Does it mean 

that the problem we are solving does not have any solution? No, it does not! At a first 

glance, it seems like we cannot go further with our homotopy in this case. It is not really 

like that. Remember that even for the polynomial case in 1-D, the idea of throwing away 

the complex solutions could be a mistake, because there might be real solutions coming 

up later in the process (after adding more interior points) that are bom from complex ones. 

This scenario was noticed in [1] and also holds our case. It is possible to have no real 

solutions for small N for (8 ), but to have complex solutions that usually give birth to real 

ones once we add more interior points. Hence, it is not sufficient to know how to solve (8 ) 

only for the real solutions, you need to know how to solve it also for the complex ones! A 

better understating of this difficulty will be given in section 4.1. A solution for this problem
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will come from exclusion algorithms, but these algorithms help find all the real roots of a 

system from a given box-interval, not from all Kn. This is still very helpful since, for the 

problems from engineering or other fields, we are usually looking for solutions in a specific 

box-interval.

Turning points

Another difficulty which was not really met in the 1-D problems we looked at was the 

continuation method we used to find the roots of the homotopy. As the authors in [1] we 

used numerical continuation in t (the homotopy parameter), since we did not really meet 

cases of turning points. But in 2-D, we often met cases of turning points for continuation 

in t, hence we needed to use the gamma-trick or arclength numerical continuation. We also 

had to be very careful with the steplength since we had cases of turning points very close 

to t = 1 or t — 0 (see section 2.7.1 for example).
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2.2 Details on the 2-D grid for  A  u =  / (A,  x, y, u, ux, uy)

The number of solutions and indeed the very existence of solutions to general PDE’s 

is of great interest. Various particular cases of PDE’s have been studied from a theoretical 

point of view, but there is no general result about the number of solutions. In this chapter, 

numerical continuation will be used also to find all the solutions for a problem of the form

Au =  /(A,  x, y, u, ux, uy) on f i c l 2
(25)

u\dQ =  9-

Using a standard central difference approximation, with a uniform mesh with N  interior 

points, the discretization of (25) will take the form of the system

N • A XXU T bxx Ayyl l byy f  (26)

where

• u = (ui, U2 , ■ ■ ■, un )t  is the discretized solution vector of the unknowns,

• A  — A xx +  A yy represents what is called in the literature the stiffness matrix 

(Axx comes from and Ayy comes from |^ ) ,

—# -4
•  the vectors bxx and byy arise from the boundary values of the discretization of (25)(see 

the next numerical example for a better understanding).

Here, the discretization for with incorporating the left and right boundary conditions is

A xxu +  bxx. The discretization for with incorporating the upper and lower boundary
—+

conditions is A yyu +  byy.

Note: These notations A xx, A yy, bxx, byy might appear unconventional, but here are two

reasons for using them: they give the idea where they come from (for instance, A xx and bxx 

come from discretizing with incorporating the boundary conditions) and each of them 

has a nice sparse form (we will see it later).
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Let’s focus now on studying the problem (25) for the case where /  is a polynomial of 

u and Q =  [a, b] x [c, d}. As in 1-D, we will continue introducing one point at a time for 

the 2-D case also.

It is unnecessary to introduce a row or a column of p points at a time instead of one 

point and there are a few reasons to justify this. Introducing a row or a column of p points 

would require solving a system of p polynomial equations to find the starting solutions for 

our homotopy. If the degree of /  is d for example, then each time we add a new point we 

have to track d new solutions of the homotopy as t (the homotopy parameter) goes from 1 

to 0. After introducing p points (each one at a time), we end up tracking down around dp 

solutions. If we introduce a row or a column of p points at once instead, then solving that 

system of p equations would give us the same number of solutions to track, and therefore 

adding the task of solving such a system is not justified. Moreover, if /  is not a polynomial 

function anymore, then solving such a system would become even a harder task.

Another reason is related to filters. After introducing a row or column of p points at a 

time and tracking all dp solutions, we can apply some filters (symmetry filters if available 

for example) to eliminate some unwanted solutions; but we still had to track all dP solutions. 

If instead we are introducing one point at a time, we might be able to still apply some filters 

(not all the previous symmetry filters might be available) and this way, after introducing p 

points, but each one at a time, we may end up tracking less than dP solutions. This will help 

us saving lots of calculation and time for any big number of interior points.
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2.3 Introducing a point on the Ith row. Approximating the 
derivatives.

Let’s rewrite the BVP (Boundary Value Problem) (25) as:

A u  = / (A, x, y ,  u, ux, uy) on 0 = [ a , ! i ] x [ c l ( i ] c R 2 (27)

with BC’s u \qq :

u \x=a =  U a ( y )

u\x=b = ub(y) (28)

U \ y = c =  U c ( x )  

u|y — d li^(x)

The main obstacle to be overcome when introducing extra points one at a time is now 

to approximate the Laplacian on non-regular finite difference meshes. This is achieved by 

appropriate application of linear interpolation.

t=1 0<t<1 t=o

Figure 4: Introducing a new point (♦) on the Ith row: the picture at the initial step t = 1 of 
the homotopy (left picture), the picture at an intermediate step 0  < t < 1 of the homotopy 
0central picture), and the picture at the final step t = 0  of the homotopy (right picture).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



General Case: o < t < l

When we introduce a new point on the Ith column (♦) from the right, all the other points 

on the Ith row shift leftward as in the figure from below. Remark that rows 1 , 2 , . . . , /  have 

N  +  1 points each, and rows Z +  1,Z +  2 , . . . , M  have N  points each.

• A x 0id = j=±

•  L \ t  —  k~ aw L̂ u,new   N + 2

• A Void = d—c
M + l

Ht) = t ( ^ )  + (1 - 1) (£ * )

d(t) =  (b -  a) -  ( N  + 1) h(t) =  . . .  =  (1 N +2

For the following particular picture, our discretized solution u of the system (26) will be

u [U ip , 1*2,1, w3 ,l ,  « 4 ,1 , ^ 1 ,2 , "1*2,2, ^ 3 ,2 , "^4,2, • • ■ , ^ 1 ,5 , ^ 2 ,5 , u 3 ,5]f8 x l  •

0<t<1
(b,d)

Ax‘old

3,5

2,4 '3,4

M

2,2 4,2
ole

(a,c)

Figure 5: Introducing a new point (♦) on the Ith row: the general case of the homotopy:
0 <  t < 1. Approximating the Laplacian at all the points, except the ones on the rows
1 — 1,1, and Z +  1.
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Remark 2.3.O.I. Notice the way we order the unknowns uitj inside of the vector u. When 

a new point will be introduced on a column (from above for example) instead of a row , 

the unknowns inside of the vector u will be ordered differently (to keep the sparsity 

structure of the stiffness matrix A). In this case, the vector u will have the form

U =  [^1,1 , Uj;2 , 141,3, 1*1,4) 1*1,5) 1*2,1 ) 1*2,2? ■ • -]T •

2.3.1 Approximating the Laplacian at all the interior points except the ones on the 
rows 1 — 1,1, and I + 1

We can easily approximate the Laplacian at all the points which are not on the rows 1 — 1,1, 

and I + 1 by

• Formula for {uxx)^k

Vj =  1 , . . . ,  iV (or iV +  1), Mk = 1 , . . . ,  M ,

k ^  I, where

{ A x new l < k < l  1
.

A x 0id i f  I + 1 < k <  M

•  Formula for {uyy)j k

(uyy)j,k ~  V) =  1 , . . . ,  iV (or jV +  1), Vfc =  l , . . . , M ,

k £ {I — 1,1,1 + 1 }, where

A y  = A yoid.
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2.3.2 Approximating the Laplacian at the interior points on the (I -  l)th row

h(t) : c h(t)
X - • x  • m .......... x ... . . . . . . . . . . . . . . . . . . . . . . . .

n

Axnew
A xnew

-1  y

m ^
j+1

X 5
1 

' 
k 

>

CD 5
A xnew

Figure 6: Introducing a new point (♦) on the Ith row. Approximating the Laplacian at the 
points on the (I — l ) th row.

On the (/ — l ) th row we have the following.

• Formula for (uxx)-

~  Vj =  l , . . . , i V  +  l, where

A x  — A x new.

• Formula for

(uvy)j,i- 1  ~   ̂ v j  =  l , . . . , i V  +  l, where

A y  = A y0id

u .  «  u .  :=  u j - i ' i  +  r .  • ( u j j  — u j + i ti),  where

r  j ^ X new — ( j  — 1)h( t )    -I__ _________  ' t
' •  h{t )  1 J  t + N + 1 '

Hence,

\ u y y ) j , l - 1 ---- ----- ---- ----- ---- - - - - - - -- - - - - - - - - - - - -- - - - - ’ V j  -  i , . . . ,  7V +  i .
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2.3.3 Approximating the Laplacian at the interior points on the Ith row, except at the 
new point (♦)

i-1

* x -
i-1 \ i i+i

\  h(t) >;t h(t>

■ O *

new new
i~i i i+i

X
i+1

1+ 1

1 - 1

F igure  7: Introducing a new point (♦) on the Ith row. Approximating the Laplacian at the 
points on the Ith row except at the new point (♦).

On the Ith row, except for the new point (♦), we have the following.

• Formula for {uxx)j l

{ . U x x ) j ti ~  h{t ) 2 > ~  ’ ' ' '  ’ '

• Formula for (uyy). t

(uyy)j,i ~  — Affi+U*. Vj =  1 , . . . ,  N,  where 

A y  = A yold

Mo ~  Mo := 1 +  r0 • («j+i,/-i -  Uj.z-i), where

_  j  A%neiu   _  * t
' °  ~~ A x new ~  ‘ ~  J  AT+i

u . «  u . :=  Uj_i,z+1 +  r .  • (u^+ i -  Uj_ w h e r e

j - h ( t ) - ( j - l ) A x old + _  . i - t
A x old x M iv+ 2-

Hence,

r„ . \  ~  ( l - » ’. ) U j - i , i + i + ( l - r o ) w j , ( - i - 2 u J-tl+ r . u J-ii+ i+ r o t i j+1, i - i  w „- _  AT\uyy)j,l------------------------------ a yfZ ’ Vj -  i , . . ., 7V.
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2.3.4 Approximating the Laplacian at the new point (♦) introduced on the Ith row

h(t) .:. h(t)
>

N*1

Ax Ax

h(t) d(t)

P  row X ■ ■ ...............•

t
♦

N L N * t

'V +  ?

Figure 8: Introducing a new point (♦) on the Ith row. Approximating the Laplacian at the 
new point (♦).

On the Ith row, for the new point (♦), we have the following.

• First, let’s calculate the distance from the new point (♦) to the boundary line x  =  b:

d (t) =  (b — a) — (N  +  1 )h(t) =  . . .  =  (1 — t) b—a
N + 2 '

Observe that d{t) =  r(t)h(t),  where r(t) — t1 t)(N+1)t + N + 1

Formula for (uxx)N+l l

111 \ I — I n  1 n  u N , l ~ u N  + l , l  u N + l , l ~ u b ( y i )
\ ~  ^  h{t)___________ d(t)

\ u x x ) n + 1 , 1  ~  h ( t )  d ( t )  ~  h( t )  d l t )
2 2

( n  \  ~  r ( t ) u Nil- { l + r ( t ) } u N+l i i + u b(c +l - Ay old) „ , h p r „  „ ( f \  _  ( l - t ) ( iV + l )
nence, [uxx)N + l l -------------- m o M o i ------------------ ’ wnere u O  -  t + N + 1 ■

2

Formula for (uyy)N+l l

(uyy)N+i,i ~  ~ ~- U&y2 'l+U' , where A y  =  A y old and

u0 «  u 0 := uN + i +  r 0 • (ub(yi - i )  -  u N + where

^  _  { N + l ) h ( t ) - { N + l ) A X n e w  _  _  +
0 At * * * ^

u.  «  u,  := U/V./+1 4- r. • (u6(y/+1) -  u Nj + i),  where

r- — (N + l ) h . ( t ) - N A x otd _  _  . i / i  _  . a  1
• A x old ■■■ ' - ' T l 1 i ) N + 2-

( l - r . ) u Nil+1 +  (l-7-0)uw+1|| _ 1- 2 u N+1|l+ r . u b(yi+1) + r 0n b(yl_ 1)
Ay:
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h h §  Approxim ating ths Laplaoian a t ths in terior point§ on the ( 1 1 1)^  row

Ax
old

Ax
old

Ar,old

AX,old

X
i - 1

Ax
old

X
J+1

1 + 1

Ax
old

X
i - 1

H
X-

X
j+ 1

1 + 1

1
• x • -0

j+ 1

X

h ( t) h ( t)

Figure 9: Introducing a new point (♦) on the Ith row. Approximating the Laplacian at the 
points on the (I + l ) th row.

On the (I +  l ) th row we have the following.

• Formula for {uxx)- l+1

(uxx)jH1 ~  ^ ~ 1-<+1~2^ + 1+uj+1-l+1) Vj =  1, . . .  , N ,  where A x  =  A x oid.

• Formula for {uyy). /+1

(uyy)j,i+1 ~  - - ~-aV+U' ’'+2 > Vj =  1 , . . . ,  AT, where 

A y  =  AyoW

Wo ~  Uo :=  Ujti +  r Q • -  % /), where

j A x 0 id- j h { t )  _  _  ■ i - t
1 ° h{t) ■ ■ ■ J  t + N + l -

Hence,

(r,, \  ~  (1~  r° ) u j , i — 2u j,l + i + u .i,l + 2 + r ° u .i + l,i w .-   1
yuyy)j,i+i Ay2. . >
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2.3.6 The discretized equations for A u =  /(A, x, y, u, ux, uy) necessary to build the 
homotopy.

0<t<1

Axold

2,5 3,5

2,4

X  2 ' 3

2,2 4,23,2

new
(a,c)

Figure 10: Introducing a new point (♦) on the Ith row: the general case of the homotopy, 
0 < t < 1.

We can now easily write for this particular case the equations of the discretized system 

which will help us later in building the homotopy for the general case

=  . (29)

where
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<**“ 4,1 =  ( “ 3,1 ~  2 “ M  +  Ub(yi))

3yUl,l =  M ^ ln e J  ~  2 « 1,1 +
v o i d

<?u2,i =  ) -  2 u2,i +  ^ 2,2]

<5^3,1 =  A ^ r - [u c {X3new) -  27X3,1 +  ^ 3,2]
v o i d

<^“ 4,1 =  A7*“  K (^ 4 ne.  ) -  2u4ii +  7X4,2]*o/d

^ Ul ,2 =  Ax̂  (Ua{y2) ~  27X1,2 +  ^ 2,2 )
netx;

^xu 2,2 =  Ax̂ — ( U l>2 — 2 “ 2.2 +  “ 3-2)

$ x U 3 , 2  =  a T ^ —  ( u 2,2  —  27X 3 2 +  7X4 2 )
4-*x neu>

5 x “ 4,2 =  Ax^ ( “ 3,2 -  2 7X4, 2  +  7X6 ( t / 2 ) )‘-*'Lnew

f iyu i , 2 =  x j r -  K 1 -  r , ) u a ( y 3 ) +7X J.1 -  2tx1j2 +  r .7 x li3 ] , w h e r e  =
v o i d

&yu 2,2 =  T 3  [ ( 1  -  r . )  7X1,3 +  «2,1 -  27x2;2 +  r .7 x 2,3] , w h e r e  r .  =  1 -  2 ^ ^ ^ -
v o i d

Sv u 3.2 =  A ^  K 1 “  r *) “ 2.3 +  “ 3,1 -  2tx3,2 +  r .7 x 3,3] , w h e r e  r .  =  1 -  3 ; ^ ^
v o i d

5w“ 4>2 =  K 1 “  r *) “ 3-3 +  “ 4-1 ”  2 u 4,2 +  r.7X4,3] , 7X ;/iere r .  =  1 -  4 ^ ^ - j -
v o i d

^ “ l , 3 =  Jj^jT  ( « a ( j /3 )  -  2 tXi ,3 +  7X2,3 )

<5xU 2,3 =  J f t ) 2  W l ,3  -  2tX 2 , 3  +  7X3 ,3 )

^ x u 3 ,3  =  / ^ 2  ( w 2 ,3  —  2 7X3 ,3 +  7X4 ,3 )

tfv“  1,3 =  Au^ K 1  _  r * )  “ a ( j /4 )  +  ( 1  -  r 0 ) 7X1 > 2  -  27X1,3 +  r .7 X i , 4  +  r 0 7X2,2] ,ô/d
1 - tw h e r e  r ,  =  1 — I t f t o ,  r 0 =  17V+2 ’ ' °  7V+1

^ “ 2,3 =  A ^ -  [ ( 1 ~  r *) “ M  +  ( !  -  r ° )  1X2,2 -  2 tx2,3 +  r .7 x 2,4 +  r 07x3,2]AVold
w h e r e  r ,  =  1 -  2 -4 = ^ ,  r Q =  2 -  f'JV + 2 ’ ° iV+1

^ 113,3 =  a T 2 -  K 1 ~  r «) “ 2,4 +  (1 -  r a) 7X3,2 -  2tx3,3 +  r.7X3,4 +  r 07X4,2] ,void
w h e r e  r .  =  1 -  3 ^ | ,  r c =  3 ^
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&r“ 4,3 — h (t)2 ( i + r (f)“ 3,3 r (t) “ 4,3 +  r (t) ( i+ r (t))

<^«4,3 =  [(1  -  r .)  u 3i4 +  (1  -  7*0) u4j2 -  2 m4i3 +  r .u b(yA) +  r 0u 6 (j/2) ] ,
* o l d

where r(t) = r.  =  t + r0 = t

<S*Ml,4 =  M S f a )  -  2 l i i i4 +  l t 2,4 )
o l d

&XU2A =  A t!2 (ui,4 ~  2 m2i4 +  u3j4)
o l d

<^3,4 =  ^ r -  (lt2,4 -  2 « 3,4 +  Ub{yA))
o l d

5y“ M =  K1 “  r °) “ M “  2“ M +  «1,5  +  ™ 2,3] , where rD =

5y«2 ,4  =  K 1 _  r ° )  “ 2,3 -  2 u 2,4 +  u 2,5 +  r u 3>3] , w / i e r e  r Q =  2 ^ 2 ^ -

^«3,4 =  A ^ [ ( 1 - r ° ) “ 3 ,3-27i3i4 +  7x3i5 +  rM4i3], where ra = 3 j ^ _

< ^ i ,5 =  w p - ( u a(y5) -  2ui i5 + u 2,5)
o l d

^ x U 2,5 =  A x2 ( “ 1.5 — 2 u 2,5 +  7/ 3 ,5 )
o l d

<5x“ 3,5 =  a ^ “  (“ 2,5 -  2 u 3j5 +  U6(y5))
o l d

^ “ 1.5 =  A P T  [“ 1.4 ~  2 “ l,5  +  “ d ^ l o i j ]
v o i d

^ “ 2,5 =  Ay^TT [“ 2.4 -  2 “ 2,5 +  « d ( ^ 2 o(J ]
^ o l d

< ^ 3 ,5  =  a ^  [“ 3,4 _  2 “ 3,5 +  Ud ( x 3old)}
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2.4 The homotopy function for  A  u  =  / (A,  x ,  y ,  u ,  u x , u y )

Remember that our BVP

A u  =  /(A , x, y, u, ux, uy) on Q = [a, b] x [c, d] C R 2 

with u|an given by

^|x=a =  ^a(2/)

u\x=b = M y )  

u\y=c =  uc(x )

u\y=d = M x )

can be discretized as

^XX "t- ^ y y b y y  — f  1

where A — A xx +  Ayy is the stiffness matrix and bxx, byy are what we will call boundary 

vectors. The corresponding homotopy from (6 ), but now for this 2-D BVP is:

t) • (-^ii T  Ayy)lL T  (bXX “f  byy) f  (30)

where the explicit forms for A xx, A yy, bxx, byy, f  will be given soon. We made a little bit

of abuse of notation, since these A xx, A yy, bxx, byy, f  from (30) depend on the homotopy 

parameter L\ they are indeed the components of the stiffness matrix A, but the one associated 

to the grid existent at a value 0 <  t < 1 (see Figure 4). Now, let’s introduce the following 

notations:

•  t - the homotopy parameter,

•  L  - the row where the new point was introduced,

• M  - the number of rows of points,

• N  - the number of points on each of the rows L  +  1 , . . . ,  M; hence, rows 1 L

each has N  + 1 points,
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•  n - the total number of interior points; observe that n = L ( N  + 1) +  (M  — L)N,  

\/t e  [0 , 1 ).

With these notations, the two matrices and the two vectors from above will have the fol­

lowing GENERAL SPARSE form.
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A xx is a block diagonal matrix of the form 1

A —■̂XX

Tt

To

To

where Ti, T2, T3 are tridiagonal square matrices of sizes N  +  1 , N  + 1, and N,  respectively

-2 1

1

- 2

7"1 _ 1
3

-2 1

1 - 2

To = h(ty

- 2  1

1 - 2  1

1 - 2  1

2 2
l+ r ( t )  r(t) where r (t) — (x f)(JV+1)

t+JV+l

1 In the structure o f A, there are L -  1 blocks Ti and M -  L blocks T3
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brr is a block vector of the form

bxx

h (y i )

bi{yL-i) 

h  { v l )  

h ( y L+ i )

h { y M

where bi,b2, b3 are sparse vectors of sizes (N  + 1) x l ,  (N  + l) x l ,  and iV x 1, respectively

hiVi)  =  z k

hiVj)  = 1
Ax%

UaiVj)

0

0

M y j )  

M y j )

o

M y j )

h  iyj) =

UaiVj)

0

M y j ) , where r (t ) — t1 t)(jV+1)t+ N + 1
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Ayy is a block tri-diagonal matrix of the form

- 2  Di Di

D\ —2D\ D\

D\ —2 D\ D\ 

D\ —2D\

B 2

B i

-2D\

C2

Ci

—2 L>2 D 2  

D2 —2D2 B 2

D 2  —2D2 D2 

D 2  —2D 2

1

2

L - 2  

L -  1 

L

L + 1 

L + 2

M -  1 

M

where D i, D 2 are diagonal square matrices of sizes N + l ,  and N,  respectively; i ?2 are 

bi-diagonal square matrices of sizes N  + l\ and C\, C2 are bi-diagonal rectangular matrices 

of sizes (N  + l)  x N,  and N  x (N  + 1 ), respectively

• Di  =  -A-s ■ Ijv+i, where I n +i is the identity matrix of size N + l .

where 1N is the identity matrix of size N.

B x = 1

r .

1 -  r . r.

1 - r ,  r .

r. =  1 - 1 ; t

where

■ t+ w + i 

r  =  1 _  9__ _̂_
' •  1 Z t + N + 1

r. =  1 — (iV +  1) t
t + N + l
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b 2 = Â yl

1 -  ra ra

1 - r Q rQ

r0 =  1 

rQ =  2

N + l

N + l

where

1 -  r0 rD 

1 -  r0

rQ =  N

rQ =  t

N + l

C l ~ * k

r.

1 -  r. r.

1 -  r. r.

1 -  r.

r.

r.

=  1 - 1

=  1 - 2

l - t
N+i
l-t

N + l

where

r. =  1 -  (IV) l- t
N + l

r, =  t + l - t
N + l

1 -  r0 r0 r0 =  1 l - t
t + N + l

where

1 -  rQ r0 ra =  N l - t
t + N + l
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byy is a block vector of the form 2

byy —

where a, (p, $  are vectors of sizes (N  + l)  x 1 , and [3 is a vector of size N  x 1

uc{x ineJ  

WC(Z2„ . J
a  = Ay?

/? =  aTAy?

^  Ay?

Ay?

^c(^iV+lneu,)

Ud ( x 2old) 

Ud ( x N old)

(1  -  r . ) u a(!/i,) 

0

0

(1 -  r . ) u a(yL+1 )

0

0

r .u b(yL+1 ) +  r 0u a (y i + i)

where

r .  =  1 — 1 

r .  =  1 -  2

t
t+AH-l

t
t+N+1

r. = 1 -  (N  +  1) t
t + w + i

r .  =  1 — 1 l - t
N+2 r0 =  1 t

iv+i
r =  1 _  2 -1^ -  
'  •  1  1 V + 2

, where ;

l - tr .  — 1 N  N+2 

r .  =  1 -  (N  +  1) 1“ tjV + 2

2 1 ZN+ 1

r  — /V f 
7V + 1

ra =  t

R e m a r k  2 .4 .1 .  O n e  a lso  n e e d s  to  p a y  s o m e  a tten tio n  fo r  th e  s p e c ia l c a s e s  t  =  1 and i  =  0. 

A similar calculation was also performed to write the homotopy function when the new 

point is introduced on a column instead of a row.

2In the structure o f byy from above, q t  is on the first position, tp1" is on the (L — l ) th position, (jP is on 
Lth position, and PT is on the M th position.
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2.5 Algorithm for the moving mesh-grid

During the process of finding all the solutions of a PDE using our homotopy con­

tinuation toolbox, we alternate introducing mesh-grid points on rows and columns as we 

describe in the next algorithm.

Algorithm: The moving mesh-grid for a box-interval (rectangle) in 2-D

• We start with one interior point and solve.

• We introduce a new point on this row and solve. Hence we will get solutions for a 

mesh with two interior points in a row (they can be seen also as two columns with 

one interior point each).

• We now introduce a new point in the first column and solve. We will get solutions 

for a mesh with three interior points: two on the first column and one on the second 

column.

• We introduce a new point in the second column and solve. We will get solutions 

for a mesh with four interior points: two on the first column and two on the second 

column.

•  We introduce a new point in the first row now and solve. Hence we will get solutions 

for a mesh with five interior points: three on the first row and two on the second row.

• The process continues until we have sufficiently many interior points or until the 

number of solutions we are looking for stabilizes.

Therefore, the procedure of changing the mesh in our homotopy process consists of alter­

nating the following two steps: adding one new interior point to each row at a time until all 

rows get a new interior point each and adding one new interior point to each column at a 

time until all columns get a new interior point each.
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2.6 Refining a solution

It is clear now that we cannot run our algorithm up to hundreds of interior grid points 

because the number of solutions (real and complex) we get grows exponentially. We will 

stop it once we see that the number of real solutions stabilizes. Once we get these real 

solutions, we need to refine the mesh for them and find the new corresponding solutions. 

The idea of getting such a new refined solution goes back to interpolation and Newton’s 

method: add interior points on the old mesh-grid and approximate the values of the solu­

tion on these points using some interpolation for example; then, using this approximative 

solution as an initial guess, use Newton’s method (again, other numerical methods might 

be more effective) to find a more accurate solution on the this new mesh-grid. We will call 

it a refined solution.

Below is the algorithm for a finding a solution on a new refined mesh-grid, in 

ffi2 for example, given that our initial domain is a box-interval (rectangle) of the form

fl =  (a, b) x (c, d).

Algorithm for finding refined solutions

1. Start with a solution found using our toolbox on a mesh with m x n interior grid 

points (m rows of points, each row having n interior points).

2. Add ( m + 1) rows of n interior points each and approximate the values of the solution 

at these new points using linear interpolation (for the first row of new points, use the 

boundary and the first row of the old points; for the second row of new points, use the 

first and second rows of old points, etc). Use this solution on (2m  +  1) x n interior 

points as an initial guess for Newton’s method and find the refined solution.

3. Repeat the previous step, but now add (n +  1) columns of (2m +  1) interior points 

each; you will obtain the refined solution on an (2 m +  1 ) x ( 2 n +  1 ) interior mesh 

of grid points.
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4. If the new mesh-grid is not sufficiently small, go back to the first step. Otherwise 

STOP.

Some refined solutions will be presented in the next section.

The reader should also note that this idea of refining a solution is not restricted only 

to a rectangular domain; it can be easily applied to other kinds of domains. Below is an 

example of how the number of the interior points increases as we try to refine a solution.

x  x  x  x  x

x  >4 x  x  x

□  O  X X X 55 X

x  x  x  x  x

Figure 11 : Refining a mesh grid on a box-interval: 2 x 2 , refined to 5 x 5, and then to 
11  x 1 1 .
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2 .7 Numerical results for polynomial right hand side
2.7.1 Numerical results for A u = — (1 +  u 2)

Consider the following 1-D problem

u" — —X(l + u 2) on [0,1]
(31)

u(0 ) =  0  =  u( l )

The bifurcation diagram we obtained using numerical continuation is given in Figure 12.

8

2

0
■5 0 5

X

Figure 12: The bifurcation diagram for u" — — A(1 +  u 2) with zero Dirichlet boundary 
conditions.

The two turning points are reached at ±A*, where A* «  4.7547.

This is just a particular case of the more general boundary value problem

u"{t) =  —Af(u ( t ) ) ,  0  <  t < 1 , u (0 ) =  0  =  u(l ) ,

coming for example, from certain physical problems involving the steady state tempera­

ture distribution in a material bounded by two infinite parallel planes, where /  is a given 

function characteristic of the material, and f ( u ) >  0  for all u > 0 .

Using our homotopy continuation toolbox for (31), we found that there are exactly two 

solutions for |A| < A*, a unique solution for A =  A*, and no solution for |A| >  A*. It is
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important to remark that the authors in [1] obtained two real solutions for |A| < 4 and no 

real solution for |A| >  4, and hence the wrong idea that A* =  4. Indeed, we did observe 

that for A* — e < |A| < A* with e small, our homotopy continuation toolbox will give us no 

real solution for the first few interior points, but as we added more interior points, the two 

real solutions showed up.

3 .5

2.5

3

0.5

0.2 0 .4 0.6
t

Figure 13: The two solutions with 150 interior grid-points for u"(t) =  —3(1 +  u( t)2) 
with zero boundary conditions.

An important result that might help in constructing a filter for our homotopy numerical 

continuation can be found in [16]; it states that any nonzero solution of (32) for A > 0 

is strictly positive and symmetric about the point t — | .  To show the symmetry result, 

consider the following.

•  Any strictly positive solution of (31) has exactly one maximum in (0,1) (assuming 

at least two maxima, then f ( u ) >  0 for all u > 0 is contradicted). Let t0 be the 

point where u( t ) assumes its maximum, i.e. u(t0) =  ||ii||, u'(t) >  0  on [ 0 , t o ] ,  and 

u'(t) <  0  on [t0, 1].
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• Let F(w)  =  Jq f{v)dv; then,

multiplying (32) by u'(t) and integrating gives

5 “ 'W 2 =  —A-F(«(t)) +  Af’(||u ||), 

which can be rewritten as

v ^ A =  L ' ^ 1 . .
v m i “ ii) -  n « ( < »

Integrating from 0 to t when 0 <  t < t0 gives

r^r f u[t) dwt V 2 A =  /   , 0  <  t < t0 ,
Jo v ' f ’(IMI) -  F(w) ~  ~

and integrating from 0  to t when t0 < t < 1 gives

.____  /•“(*) dw
( l - t ) y / 2 X =  . -   , t0 < t < 1

Jo ^ F ( \ \ u \ \ ) - F ( w ) ’ ~  ~

•  Now set t = t0 and u(t) =  ||u|| to see that to = \  and u(t) — u( 1 — t).
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Now, let’s consider the corresponding problem, but in 2-D.

A u — — A(1 +  u2) on Q, — [0, l ]2
(33)

u(0, y) =  u( l ,  y) =  u(x,  0) =  u(x,  1) =  0, Vx, y <E [0,1]

We first used our homotopy method with continuation in t  to track the solutions from t =  1 

to t — 0. We applied the gamma-trick only for solutions that did not converge all the way 

to t =  0 using this continuation in t. For A =  1, this method produced one real solution 

among a total of approximately 2N solutions, as one can see in the next table where

• n  - the number of interior points considered in O;

• L - the row (column) where the new point was introduced;

• row/col  - the new point was introduced on a row or a column; if the new point was 

introduced on a row then

M  - the number of rows of points;

N  - the number of points in each of the rows L + l , . . . ,  M;  hence, rows 1 , . . . ,  L  

each have N  + l  points.

Otherwise,

N  - the number of columns of points;

M  - the number of points in each of the columns L  +  1 , . . . ,  N\  hence, columns 

1, . . .  , L  each have M  + 1 points.

• S O L S ( n ) - the number of total solutions (real and complex);

• R E A L ( n ) - the number of real solutions;

•  k's - the solutions for which we had to apply the gamma-trick.
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n L row/col M N SO LS{n) RE A L {n) k's
1 1 r 1 1 2 2

2 1 r 1 2 4 2

3 1 c 1 2 6 2 5,7
4 2 c 1 2 1 0 2

5 1 r 2 2 17 2 17,19
6 2 r 2 2 31 2 3,31,33,34
7 1 c 3 2 62 2 7,61
8 2 c 3 2 121 1 15,16,123
9 3 c 3 2 242 1 29
1 0 1 r 3 3 484 1 59
11 2 r 3 3 968 1 119
1 2 3 r 3 3 1936 1 239
13 1 c 4 3 3872 1 479
14 2 c 4 3 7743 1 959
15 3 c 4 3 15485 1 1917
16 4 c 4 3 30966 1 3833

Table 1 : The number of solutions for A u  =  — (1 +  u 2) on 0  =  [0, l ]2 with zero Dirichlet 
boundary conditions. Homotopy with continuation in t  was used to track them from t =  1 
to t  =  0 ; if no convergence for a solution, then the gamma-trick was used instead to track 
it.

We remark that in our research, a solution is considered to be real if the imaginary part at 

each mesh point is zero to at least eight digits. One can also observe the following:

( * ) n =  (N  +  1 )L +  N ( M  — L);

(*) for n > 1, the number of paths tracked at stage n  — 1 is d ■ S O L S ( n  — 1).

During our process, we had to apply the gamma-trick a couple of times. We did not ap­

ply the gamma trick to all the solutions because we lose complex solutions, and we end 

up losing even the real one. From this table, one can also see that we need to have some 

filters such that we can throw away spurious solutions as the number of interior grid points 

increases. W e observed that out o f  those 30966 solutions for 16 interior points, there are 

exactly one real and four complex ones which are invariant to the dihedral group of sym­

metries (flip with respect to x = | ,  rotation with | ) .  Below we have plotted these five 

solutions (the real part of them) and a sixth one (random out of the remaining 30961), as 

we refined them. It is also remarkable that, as we refined the grid, we observed that only

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



these five solutions did not modify their max. One can easily see that the sixth one, 

example, had a big change in the max as we doubled the number of interior grid-points 

each axis. This can be used in our toolbox to build a filter.
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Figure 14: Six solutions for A u — —(1 +  u 2) with 4 x 4  interior points.
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Figure 15: The six solutions for Au = —(1 +  u2) with 4 x 4  interior points refined to 
9 x 9 .
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Figure 16: The six solutions for A u =  — (1  +  u 2) with 4 x 4  interior points refined to 
19 x 19.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y -axis X -aixs

300

o

-100

0.5 0.5

X -aixsY -aixs 0 0

300

ot/>
-100

0.5 0.5
Y -aixs 0 0 X -aixs

Y -aixs Y -aixsX -aixs X -aixs

300

t  200

100

-100

0.5 0.5
Y -aixs 0 0 X -aixs
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Figure 18: The six solutions for A u = —(1 +  u2) with 4 x 4  interior points refined to 
79 x 79.
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We refined the real solution that we have gotten to 39 x 39 interior points and then, 

starting with this new refined one, we decided to apply arclength continuation to see its 

evolution as A in (33) modifies. The result was not very surprising as one can see in the 

bifurcation diagram given in Figure 19.

8

2

O1-
-1 0

X

Figure 19: The bifurcation diagram for Au  =  — A(1 +  u 2) with zero Dirichlet boundary 
conditions.

The two turning points in this diagram are attained at ±A*, with A* =  9.1890.

As one can see, we should have obtained two real solutions as in the 1-D case. What 

happened? Tracking the solutions of the homotopy using continuation in t, combined with 

the gamma-trick when necessary did not handle the turning points well and gave us some­

times identical solutions at t = 0 even if the starting solutions at t = 1 were different. For 

example, after finishing introducing two points, we end up with 4 different solutions for 

our hom otopy H 2 at t =  0. N ow , w e start introducing a third interior point and therefore, 

using a similar equation with (8 ) but corresponding to our 2-D problem, these previous 4 

solutions will give birth to 8  different new starting solutions for our homotopy H 3 at t =  1. 

These 8  solutions have to be tracked all the way down to t = 0. We noticed that 6  of them 

were nicely tracked to t =  0 using continuation in t, but 2 of them (the 5th and the 7th)
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did not reach t =  0 (the step size in t got very small near t =  0.1003). We took these 2 

solutions again from t — 1 and track them but using this time the gamma-trick. The result 

was satisfactory: these 2  solutions could be tracked this time all the way down to t  =  0 , but 

here, they were the same with 2 other solutions from the 6  we got before. So, we found 6  

solutions for 3 interior points. We have continued this process until we reached 16 interior 

points and the results were presented in Table 1.

We have also observed that if we were to use the gamma-trick in tracking all the solu­

tions, we end up losing even the real one that we got for 16 interior points. For this reason 

we decided to introduce the arclength continuation in tracking the solutions as t goes from 

1 to 0 and handle the turning points as we described in the section 1.3. With this method of 

tracking, the results improved a lot as we can see in the next table. This time for example, 

tracking the starting 5th solution of H3 for n  =  3 interior points, we were able to go around 

the turning point at t = 0.1003 and not surprisingly arrive back at the starting 7th solution 

of H 3 at t =  1 (we stayed on the same branch using arclength continuation). Using now 

the theory presented in the section 1.3, we were able to switch branches at the turning point 

and finally arrive at t =  0  where we obtained a solution which was not anymore identical 

with anyone of the other 6  as in the continuation in t tracking case. After tracking all the 

solutions for n — 3 interior points, we got a total of 8  solutions which is the maximum 

possible number of solutions that we can get (by Bezout’s theorem).

Using a tracking method based on arclength continuation [14, 17] combined with the 

‘end game’ presented in section 1.4 we obtained the results presented in Table 2. When 

tracking a path, if we did not reach the goal t =  0  because of a turning point, we proceeded 

to switch branches using the tangents motivated by the Theorem 1.3.8 and the Corollary 

1.3.9.
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n L r /c M N S O L S
(n)

R E A L
(n)

Sols, with same 
turning points

The value of t at 
the turning points

1 1 r 1 1 2 2

2 1 r 1 2 4 2

3 1 c 1 2 8 2 (5,7) 0.1003
4 2 c 1 2 16 2 (11,15) 0.0036

5 1 r 2 2 32 6

(18,26)
(2 ,1 0 )

(23,31)

0.9245
0.8573
0.3553

6 2 r 2 2 64 4

(47.51)
(48.52) 

(3,19)
(35,63)

0.9831
0.9438
0.9242
0.3592

7 1 c 3 2 128 4
(7,39)
(8,72)

(71,127)

0.9739 
0.8996 & 0.0175 

0.3853

8 2 c 3 2 256 4
(79.143)
(80.144) 
(15,255)

0.9970
0.9616
0.4410

9 3 c 3 2 512 2 (31,511) 0.3820
10 1 r 3 3 1024 2 (63,1023) 0.4828
11 2 r 3 3 2048 2 (127,2047) 0.5638
12 3 r 3 3 4096 2 (255,4095) 0.4858
13 1 c 4 3 8192 2 (511,8191) 0.4945
14 2 c 4 3 16384 2 (1023,16383) 0.5907
15 3 c 4 3 32768 2 (2047,32767) 0.5920
16 4 c 4 3 65536 2 (4095,65535) 0.4985

Table 2: The number of solutions for Ait =  — (1  +  u 2) on Ll =  [0, l ]2 with zero Dirichlet 
boundary conditions. Arclength continuation was used to track all the solutions of the 
homotopy associated to the discretization of this problem.

For this table, the following observation can be made.

•  For each n = 1 , . . . ,  16 interior points, we have obtained exactly the maximum pos­

sible number of solutions that the homotopy can have (by Bezout’s theorem).

•  Out of these, the number of real solutions has been stabilized to 2 as n  increased.

• The behavior of the 2" tracked paths has been also stabilized: every time we have 

added a new point, the two out of four real solutions at t = 1 (the (2n — l ) th and the
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(2 n - 4  — l ) th ones) will be on the same bifurcation branch that will not reach t = 0 . 

Using the theory from section 1.3, we are able to switch the branches and reach 

the goal t  =  0 where these two solutions were complex. The (2n)th and (2n~4)th 

solutions were the only real solutions for which their paths behaved well all the way 

down to t = 0  (they remained real as we tracked them from t ~  1 to t = 0 ).

Having also an idea about the bifurcation diagram presented before (Figure 19), we 

conclude that the problem (33) has indeed only 2 real solutions.

Rem ark 2.7.1.1. Using arclength continuation in a smart way (for example, not letting the 

angle between two consecutive tangents get bigger than a specific value) we were able to 

handle well turning points that were very close to our initial or goal values of t (t =  1 , and 

t =  0 respectively): see for example the turning points at t  = 0.0036 and t = 0.9970 for 

n =  4 and n =  8 interior points, respectively. In the past, we would have not even seen that 

there was a turning point at t =  0.0036 for n = 4 interior points. This is because we would 

have used the first idea of ‘end game’ of tracking presented in section 1.4 combined with 

continuation in t instead of arclength continuation and therefore, on the last step of tracking 

done to reach exactly t  = 0 , we would have jumped unintentionally on a different branch 

which was not connected in any way to the one we were tracking; this is the way we were 

obtaining at t  = 0 same solutions from different initial ones. For the other case (turning 

points near our initial t — 1 ), we would have jumped unintentionally from the beginning on 

a different branch than the one we were supposed to follow, because our initial step would 

have been too big.

Rem ark 2.7.I.2. In this example, as in fact in all the ones we studied, during our tracking 

we met all the possible paths presented in section 1.4, except the third type.

Rem ark 2.7.I.3. Out of these 65536 solutions found on a mesh with 16 interior points (see 

Table 2), only the two real ones and four other complex ones (the ones met also in figures 

14, 15, 16, 17, and 18) did not suffer big modifications as we refined the grid. One of these
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two real solutions is plotted in all these five figures, and the other one looks similar, but has 

a higher peak.

2.7.2 Numerical results for A u = — A(1 +  u2), A e  {9,10}

We also considered the equation (27) for f ( u ) =  —A(1 +  u2) on fi =  [0, l ]2 with 

zero Dirichlet boundary conditions and A G {9,10}. For A =  10, our toolbox produced 

no real solutions out of 2N complex ones. For A =  9 (a value close to the turning point 

A* =  9.1890 from the previous bifurcation diagram), we got no real solutions for the first 4 

interior points; one real solution appeared right after introducing the 5th interior point. The 

second one appeared much later.

This is what was expected of course: as we take values for A close to the turning point 

A* =  9.1890, the real solutions will appear after introducing more interior points.

2.7.3 The need for complex solutions?

Consider again the equation (27) for f ( u ) =  —A(1 +  u 2) on =  [0, l ]2 with zero 

boundary conditions and A =  —1. Examining the Table 2 from 2.7.1, the question as 

how can we find the complex solutions of this problem arises? It is clear that our toolbox 

gives also lots of complex solutions, but we have to be careful: lots of them do not have 

correspondents in the continuous case (they are just spurious solutions).

It looks like not much has been done in this sense in the literature. There are some 

results, but only about the real solutions, including the following famous Gidas, Ni, Niren- 

berg Theorem (see also [18]).

Theorem 2.7.3.1 (Gidas, Ni, Nirenberg). Every real solution of

A u =  f (u) ,  u > 0 in  O, u =  0 on dtt  (34)

is radially symmetric provided that Q =  B x(0) C Rn is a ball and f  : [0, oo] —> M is 

locally Lipschitz continuous. I f  B i(0) is replaced by an n-dimensional rectangle

Q = [—<2i, a x] x . . .  x [—an, an]
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then, an analogous symmetry result (Berestycki and Niremberg) holds. It states that

1l ( x  i, . . . ,  X j  — i ,  . . . ,  X n )  = u(x\ ,  . . . : X j —i ,  X j , X j + i ,  . . . , X n ) , Vj 1, . . . , 71.

There are no results about the complex solutions for such systems. One way to find 

these complex solutions is to apply our homotopy continuation and then eliminate maybe 

the spurious ones. Another way is to try to solve the following equivalent system

Aufft =  1 +  lift — Uy

A u j  = 2UfftUj on c R 2 (35)

=  0  =  ua|an

where u<r , uj are real solutions.

One can easily observe that this system (35) and the one considered in subsection 2.7.1 

are indeed equivalent. But the drawback of this system is the fact that it is a coupled one 

and our toolbox needs to be modified to solve something like this.
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CHAPTER III

SOLUTION OF AN OPEN CONJECTURE

In this chapter, using the toolbox described in the previous chapter, we will give a 

solution to McKenna’s open problem.

In 2003, Breuer, McKenna and Plum published a paper [5] in which they discovered 

the following theorem for which they gave a computational multiplicity proof.

Theorem 3.0.1. The equation

A u +  u2 =  800 sin n x  sin Try in f l ,  u = 0  ondVL (36)

where f I = (0 , 1 ) x (0 , 1 ), has at least four solutions.

Our toolbox is built such that it will give all the solutions of (25) not only for f ( u )  being 

a polynomial of u,  but also for any function f ( x ,  y, u ) that is a polynomial as a function 

of u,  because even in this case, the corresponding equation from (9) for our 2-D BVP is 

still a polynomial equation in one unknown. For this particular problem, we found using 

our homotopy continuation that there are exactly four essentially real different solutions. 

Using the toolbox we also got real solutions that are rotations or reflections of these, and 

therefore, after some filtering, we got only the four truly distinct real solutions that appear 

in Figure 20.

The two solutions from the left column are fully symmetric (i.e. symmetric with respect 

to reflections about the axes x  =  y =  x  =  y, and x  =  1 — y), the solution from the 

upper right comer is only symmetric with respect to reflection about y — and the solution 

from the lower right comer is only symmetric with respect to reflection about x +  y = 0 .

The peaks of the positive and negative fully symmetric solutions have the values 61.776, 

and -21.358 respectively; the peak of the solution that is symmetric with respect to the
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Figure 20: The four real solutions for A u +  u2 =  800 sin nx  sin ny.

reflection about y  =  \  has the value 69.923 and is attained at (x,  y)  =  ( \ )  (the 20 x 31 

mesh point); the peak of the solution that is symmetric with respect to the reflection about 

x  +  y  =  0 has the value 76.321 and is attained at (x , y)  «  ( | ,  | )  (somewhere between the 

(21 — 22) x (42 — 43) mesh points) (all these values were found out using a mesh with 

63 x 63 interior points).

But of course, this particular PDE can be generalized to

Am +  u2 =  A sin irx sin iry in 0 ,  m =  0 on d£l. (37)

Starting with those 4 solutions found for A =  800 and refined to mesh-grid with 31x31  

interior points, we used numerical continuation and constructed the bifurcation diagram 

associated with this problem (see Figure 21).

We found a turning point T  at \ T ~  —133.3 (one eigenvalue of the Jacobian changes 

sign) and a symmetry breaking bifurcation S  at As ^  587.7 (a pair of two more eigenvalues 

of the Jacobian (a double eigenvalue) is changing sign).

In order to test our findings, we performed homotopy continuation for a few different 

values of A and indeed, we obtained that there are no real solutions for A < XT, two real 

solutions if Ar < A <  As, and four real solutions if A >  As-
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Figure 2 1 : The bifurcation diagram for A u + u 2 = A sin nx  sin iry with Dirichlet bound­
ary conditions.

We went with values of A up to 8000 and we also looked at the eigenvalues of the 

Jacobian. As expected, one eigenvalue passed through 0 at the turning point, 2 more at the 

bifurcation point and there is no indication that another eigenvalue will approach zero as A 

increases.

We also remark that Breuer, McKenna and Plum state on page 267 in [5] that the 

stronger version o f the conjecture suggests that as A —> oo, more solutions are created 

as bifurcations from the positive curve, considerably further up the positive branch (the 

weaker version says that there are at least four solutions). As they, we also did not detect 

this phenomenon numerically.

We conclude this Chapter by mentioning that the Mountain Pass Algorithm used by 

McKenna, Breuer, and Plum [5] to find the four solutions of (36) is in general restricted 

to semilinear partial differential equations whose solutions are the critical points of an 

associated functional which must satisfy the hypothesis of the Mountain Pass Theorem (see 

appendix B for more details). Our approach works for a much larger group of problems 

and does not require any starting solution.
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CHAPTER IV

HOMOTOPY CONTINUATION FOR 

NONPOLYNOMIAL NONLINEARITY

The problem of generalizing our toolbox to nonpolynomial nonlinearities in our partial 

differential problems arises naturally at this stage. In all the previous cases (polynomial 

nonlinearity), by using companion matrices we were able to find all the solutions of the 

polynomial equation that resulted from the introduction of a new mesh point. Now, we 

have to deal with a new issue, namely finding all the solutions (real and complex) for a 

nonpolynomial equation. Since there may be infinitely many complex solutions, it is nec­

essary to seek solutions in a bounded region, which is taken to be a compact rectangular 

(2(i)-cell, where d represents the dimension of the equation. Therefore, we have to intro­

duce in this chapter the notion of cellular exclusion methods, with the help of which, one is 

able to find all real solutions to systems of equations within a rectangular n-cell, provided 

the nonlinearity satisfies some very general conditions. This approach is applied in this 

chapter to the familiar Bratu equation in one dimension.

A second issue that arises is that one does not any longer know how many solutions the 

discretized system has, or indeed, if there are any, or whether there are only finitely many 

solutions. But, if we restrict ourselves to a bounded n-cell, this problem disappears. This is 

in general the generic situation for most of the problems arising from real life applications 

for which solutions of the variables need to be sought in a specific bounded cell.
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4.1 Bratu Problem and the Necessity o f Exclusion Tests

Recall that the toolbox developed by Allgower, Sommese, Bates and Wampler in [1] 

was able to find all the solutions of a 1-D boundary value problem of the form

u(a) = a, u(b) =  (3

where /  is a polynomial of u. We now consider the case in which /  is not a polynomial of 

u. As an example, we will look at the 1-D Bratu Problem:

Ujt -t- A exp(rt) =  0 on [0,11p i  ; (3g)

u{0 ) -  u ( l)  =  0 .

Associate the homotopy function from (6 ) and (7) to this problem. To be able to use 

our algorithm for finding all the solutions of (38) for a specific value of A, we need to be 

able to find all the roots of the equation (8 ) which, for this case, can be rewritten as

Therefore now, we have to concentrate on finding all the real solutions for the equation

where a and b are positive constants, a =  2(N  + 1)2/A, b — u ^ ( N  + 1)2/A. After a little bit 

of calculus, one can easily see that the number of real zeros for such an equation is either 2 , 

1 or 0 , depending upon whether a * (1  — ln(a)) +  b is negative, zero or positive, respectively 

(see Figure 22). One can easily implement a method to find the zeros of this equation and

bound for these zeros, if they exist).

Using our algorithm for this problem with an black box for solving (40), we were 

very happy to see that we obtained only 2  real solutions every time we introduced a new 

grid point, and therefore we could even refine our solutions up to hundred or thousands of 

interior grid-points using this method.

u" =  f ( x ,  u, u') where x  e  [a, 6]

exp(uN+i) = 0 . (39)

exp(u) — au +  b =  0 , (40)

integrate that into our homotopy continuation toolbox (it might help to see that M s a lower
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2 point intersection 1 point intersection no point intersection

Figure 22: The number of real solution for (40).

Keep in mind that we are solving now (40) only for real solutions, and therefore, every 

time we introduce a new grid point one expects to double the number of solutions from the 

previous step. We did obtain that behavior when we were using our toolbox for polynomial 

case of degree two and looked also for complex solutions. Our method worked very well 

for A G [0,2.1] and it is well known that the bifurcation diagram for the Bratu Problem 

looks like the one presented in Figure 23, where there is a turning point at A* «  3.5127.
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Figure 23: The bifurcation diagram for the Bratu Problem.
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In the interval [2.1, A*] the difficulty we encountered was the fact that the equation (40) 

did not have any real zeros for small values of N, and therefore we could not start using our 

homotopy. This reminds us of a fact encountered in the polynomial case, that sometimes 

real solutions will be bom from complex ones as we increase the number of interior points. 

Therefore, it is not sufficient to know how to solve (40) only for real solutions, but also for 

the complex ones.

Writing u = usr +  iu% and b = b^ + ib$, (40) becomes

exp(u${) cos (tic*) — ausR +  b^ = 0  

exp(ujj) sin(uQ) — au$ + b% = 0 .

The necessity of solving this system for the reals ug? and led us to consider the exclusion

algorithms. Using these algorithms, we were able to find all the solutions u$t and of this

system in a box-interval.
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4.2 Exclusion Tests

In this section we will give some background about the exclusion algorithms that we 

will use in the thesis (see also [10]). The exclusion tests are well known as a very useful 

tool for finding all the solutions of a nonlinear system of equations over a compact domain. 

They are also used sometimes for finding the global minima of a function. The ideas go 

back to Moore [19], 1977, but the real research into this direction began sometimes in the 

middle of the ’90s when few researchers from China developed some cell exclusion algo­

rithms to find all the solutions of a nonlinear system [20, 21, 22, 23]. Then Georg and some 

of his collaborators introduced and analyzed some new tests for finding the zeros and the 

global minima of a function over a compact domain in which the efficiency was improved 

a lot [24, 4, 10]. A min-max test for the exclusion algorithm was recently developed by 

Syam in [25].

4.2.1 Introduction to Exclusion Algorithms

In Kn and Mrnxn we use the component-wise “ <  ” as a partial ordering, “| • |” as 

the component-wise absolute value, and “|| • Hoo” as the max norm. For example, for two 

matrices A ,B  € KmX7\  the symbol A <  B means that A(i, j ) <  B(i, j )  for i =  1 , . . . ,  m, 

j  =  1,... ,n.

Definition 4.2.1.1. An interval a in Mn is a rectangular box o f the form

a =  [ma -  ra, ma +  ra\ =  { x  £ M” : ma -  ra < x  < ma +  ra),

where ma, ra £ Rn are called the midpoint and the radius o f a respectively, with ra(i) > 

0, Vi =  1, ,n. Also, ma — ra and ma +  ra are called the lower and upper corners 

respectively.

Definition 4.2.I.2. Let o  £ R” be an interval and F  : a  —> Kn be a function defined on a. 

A test

Tp(a) £ {0,1} where 0 =  no and 1 =  yes
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is called an exclusion test fo r  F on a iffT F(o) =  0 implies that F has no zero point in o.

Therefore, TF(o) = 1 is a necessary condition for F  to have a zero point in a.

If an exclusion test is given (assuming that TF(a) is available for any subinterval a 

of some initial interval A on which F  is defined), then we can recursively bisect intervals 

and discard the ones which yield to a negative test. This is the basic idea of an Exclusion 

Algorithm.

Remark 4.2.I.3. In order to simplify and unify our efficiency investigations, we will con­

sider only the strategy of cyclic bisections of the intervals along subsequent axes. We say 

that we have reached a new bisection level whenever one cycle of bisections is accom­

plished. We also think of an exclusion algorithm as performing a fixed number of bisection 

levels. We will denote by Tt the list of the intervals generated by the algorithm on the l-th 

level, which are in fact the intervals that have not been discarded after I bisection levels.

Remark 4.2.I.4. It is obvious that if Tt =  <f> for some level I, then the algorithm has shown 

that there are no zero points of F  in the initial interval A.

Exclusion Algorithm

r  *- {A}

for / =  1 : m axim al Jevel 

for a = 1 : n

let f  be obtained by bisecting each o  G T along the axis a 

for o  e  f  

if Tp(cr) =  0

drop a  from f  (er is excluded)

T <- f  

T/ <- r.
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Figure 24: Illustration of Bisection Levels for a box-interval a  C M2

The exclusion tests we discuss are applied component-wise on vector-valued function 

F  : a —> R” . Therefore, we only need to consider an exclusion test for a scalar-valued 

function /  : a  —> R and then combine such (possibly different types of) exclusion tests to 

obtain an exclusion test for a vector-valued function F  = { f i} i=1.n : o  —> M71 by setting

n

TF(c)-.= YlTfl{a) .

1 = 1

Hence, we can concentrate our attention on scalar functions /  : a —> M when designing 

exclusion tests. We also need good exclusion tests which are computationally inexpensive 

but relatively tight, because otherwise too many intervals remain undiscarded on each bi­

section level and this will lead to significant numerical inefficiency. Two simple exclusion 

tests were given in [2 1 ].

Exclusion Test 1
Let L > 0 be a Lipschitz constant for /  on the interval o. Then

f { m a) < L\\ra \\ (41)

is an exclusion test for /  on a.
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Exclusion Test 2

If /  =  g — h is the difference of two increasing functions on a, then

h(m a -  ra) <  g(m a +  ra) and h(m a + ra) > g(m a -  ra) (42)

is an exclusion test for /  on a.

Another exclusion test using power series was given in [22]. To write this, we first need 

some notation.

Notations 4.2.I.5. Let Z+ be the set of the nonnegative integers. For a multi-index 

a  =  (cii, . . . ,  a n) £ Z" we will consider the following notations.

•  The length of a  defined by \a h =  E i  ■

•  The factorial of a  defined by al :=  IIi a*! •

• If x  G Mn, then we define x a := Yli ■

•  Partial derivatives da :=  ^  ■

On the interval [0,1], we also introduce the probability measures

u>k(dt) :=  k (  1 — t ) k~l d t .

Definition 4.2.I.6. For two power series f ( x )  — f ax a and g(x) — Yha 9aXa we define

f  -<-< g ■$=> |/aI <  gaf o r a l l a .

Having this definition, the exclusion test in [22] can be formulated as below.

Exclusion Test 3

If /  -<-< g and if the power series for g converges on o, then

\ f { ma)\ < g{\ma\ + r a) -  g{\ma\) (43)

is an exclusion test for /  on o.

For all these tests, the following complexity result was also shown in [21], [22],
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Theorem 4.2.I.7. Let A c  M71 be an interval, F  : A —> Rn sufficiently smooth and zero 

a regular value o f F. Then there is a constant C  > 0 such that the exclusion algorithm 

started in A generates no more than C intervals on each bisection level, i.e. # (T /) <  C  

independent o f I.

Remark 4.2.I.8. The constant C  can be very big and some numerical experiments have 

shown that the exclusion algorithms in (41), (42) and (43) are not tight enough for more 

demanding non-linear systems, such as those occurring typically in engineering.

The test we used in our research is presented in [10]. We can remark that even higher 

singularities in a solution point (as long as the solution point is isolated) does not destroy 

the complexity addressed in the previous theorem if we use these improved exclusion tests.

4.2.2 Dominant Functions

Using the same notation as introduced in the previous section, we can easily write the 

Taylor’s formula with k  > 0 and integral reminder for a function / :

f ( m  + h) — f ( m ) +  ^  daf ( m ) h a +  ^  f  d0 f ( m  + th)u>k(dt)h^ (44)
0<|a|<fc \ 0 \ = k

Definition 4.2.2.I. Let a C M” be an interval. We denote:

A O )  { /  : o —> Rn : <9Q/  is absolutely continuous fo r  |cv| < k } ,

A O )  :=  {9 G A O )  : 0  <  dag(x ) <  dag( y ) f o r 0  < x < y, \ a \  <  k } .

OO OO

A o O ) :=  P |  A O )  and IC ^ o )  := P |  K k{a).
k = 1 fc=l

Note that Talyor’s formula (44) holds for any function /  e  A O ) -

We can now introduce the notion of a dominant function  which will be the basis for 

building the exclusion algorithm used in this thesis.
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Definition 4.2.2.2. Let f  E Ak{o) and g E /Ck(a). We say that g dominates /  with order

k on u ami write /(.x) -<k g(x) fo r  x  E o iff the estimates

\daf{x) \  < dag(\x\) fo r  x  E o 

hold fo r all x  E a and |a | <  k.

I f f  E Aoo{c) and g E /Coo (o'). / ( ^ )  ^oo g {x ) fo r x  E a  means that f ( x )  -<k g{%) for

x  E C7 am/ all k > 0 .

Note 4.2.2.3. f ( x )  -<k g(x)  for x  E a implies that f ( x )  -<q g(x)  for x  E r  for any t  C a

and q < k. From now on we will try to use the notation f  -<k g instead of f ( x )  -<k g(x ) if

there is no ambiguity about the underlying interval.

A connection between dominant functions and the relation defined in the definition 

4.2.1.6 is given by the following theorem.

Theorem 4.2.2.4. Let f ( x )  = f ax a and g(x)  =  Y la 9ax0t be tw° power series conver­

gent on an interval o C M” which contains the origin. Then

f  ~̂cx> 9  ̂ '' f  9- 

The following examples point out the differences between the various estimates. 

Example 4.2.2.5.

• If g E /Cfc then g -<k g. This includes examples such as exp(m +  x) -<-< exp(m +  x), 

and tan(x) -<-< tan(x) for |x| <

• sin(x) -<-< sinh(x), but sin(x) -<i x, sin(x) -<2 x  +  \ x 2, sin(x) - < 3  x  +  | x 3.

• cos(x) cosh(x),butcos(x) -<i 1 + x , cos(x) -<2 l + | x 2 ,cos(x) - < 3  \- \- \x 2+ \x d‘.

• log(l +  x) -<-< — log(l — x), but log(l +  x) -<3 x  +  \ x 2 + | x 3 for \x\ <  1 .

•  sin(m +  x) -<-< sinh(|m | +  x), but sin(m +  x) -< 2 | sin(m)| +  | cos(m)|x +  \ x 2.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The following theorem consists of a list of rules that can be used as a tool to generate 

dominant functions, in much the same way as rules about differentiation are used as a tool 

to generate derivatives (see the examples following the theorem).

Theorem 4.2.2.6.

1- I f f  -<k 9, then f ( m  + x) <k g(\m\  +  x).

2- I f  f  -<i 9, then | / |  -Cx g.

3- I f  f  -<k 9, then Af  -<k |A|g jo r  any A e  M.

4. I f  fi  -<k gu i = 1 : q, then f  -<k £). 9i-

5. I f  fi  -<k gt, i =  1 : q, then f i  -<k EL 9i-

6. Let f  -<k g and f t -<k gh i =  1 : n. Set F  = f ( f u . . . , /„ ) and G = g(gx, g n). 

Then F  -<k G.

Example 4.2.2.7.

• elsin(m+:,;)l -<! elsin(m)|+:r since e4 -<-< e4 and sin(m +  x) -<i | sin(m)| +  x

• sin(x2) cos(y -  2z) -<;3 (a;2 +  | ( x 2)3) ( l  +  \ ( y  +  2 ^ ) 2 +  \ ( y  +  2 z f )

• 1+iL (x ) ^  i - i d V ^ )  for * £ [~2>/5,4] since ^  ^  for \t\ < 1 and

cos(x) - < 2  1 +  \ x 2

4.2.3 Exclusion Tests Using Dominant Functions

Theorem  4.2.3.1. Let a  C 1 "  be an interval, and q >  0 be an integer. Let f ( m a +  x)  -<q

g(x) for  \x\ < ra. Then

\f{m*)\ < g{ra) -  g{0 ) -  (da9(°) ~  l ^ f i m ^ l Y a  (45)— v---------------V----------- '0 < |q |<9  > 0

is an exclusion test fo r  f  on a.
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Using this theorem, one can summarize the possible exclusion tests.

Corollary 4.2.3.2. Let a C Mn be an interval, and q > 0 be an integer. Let f  -<q g on a.

Then

\ f ( m a ) \ < g ( \ m a\ + ra) - g ( \ m a\ ) -  V  {dag( \ma\) -  f  {mc)\)r* (46)
— s-----------------V-------------- '

0< | q |< 9 > 0

is an exclusion test fo r  f  on o.

Corollary 4.2.3.3 (Lipschitz Constants for f). Let a C W 1 be an interval, let f  E A\ (o) ,  

and consider Lipschitz constants

Ca > supyeCT \daf {y ) \ f or  |a | =  1 .

Then

\ f ( m a)\ < Y  C^ a  (47)
M=i

is an exclusion test fo r  f  on a.

Corollary 4.2.3.4 (Lipschitz Constants for / ') .  Let o C Kn be an interval, let f  e  A i  (cr), 

and consider Lipschitz constants

Cp > supyG(T \d0f ( y ) \ f o r  \0\ = 2 .

Then

l / ( m „ ) l  <  E  l 9 “ / ( m . ) k “  +  E  C l>r °
| a | = l  \0\=2

is an exclusion test fo r  f  on a.

Note 4.2.3.5. The terms inside the summation sign in (45) and (46) are nonnegative, and 

therefore the test tightens as q increases. To increase the efficiency of the implementation, 

one would successively apply the test for q = 1 ,. . ., q0 (for some given q0) and discard the 

intervals as soon as the test fails. Note also that for q = 1, the test (46) reduces to the one 

given in (43); however, instead of requiring /  -<X g, we only need to require /  -<i g in 

this case.
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(49)

4.3 The Solutions for the Bratu Problem

Consider again the Bratu Problem from (38)

uxx +  A exp(u) =  0 on [0,1] 

u(0) = u(l) = 0.

The homotopy function which gives a mesh refinement in continuous deformation for 

this problem is

H n +\{u\,U2, . . . ,  ujv+i, A, t)

uq — 2u\ +  u2 — Xh(t)2 exp(uj)

u n - 2  ~  2uat_i +  u N — Xh(t)2 exp(ujv-i) (50)

ujv-i — 2uN +  (/jv+i(f) — Xh(t)2 exp(iijv) 

uN -  2un+1 +  UN+2{t) -  Ah(t)2 exp(uN+1)

where
/

Xi(t) := i/i(f), Vi =  1 , . . . ,  iV +  1 

u0 := 0

hit) := ^iv+T +  (x — ^)]v+2 (51)

Ĉ jv+i (i) := (1  — t )uN+x

UN+2(t) ■= 0

The starting points it/v+i for H n +i {u\, u2, . . . ,  u^+ i, A, 1) =  0 can be obtained by solving 

for u the following equation

exp(u) — au +  b = 0, (52)

where a and b are constants: a =  2 (N  + 1)2/A, b = un ( N  +  1)2/A.

As we saw in section 4.1, our homotopy numerical continuation worked well for A G 

[0, 2.1], but (52) had no real solutions for A G [2.1, A*] and therefore we had to start looking
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for the complex ones. Considering u =  + iu$  and b =  +  ib%, (52) can be rewritten

as

exp(usft) cos(uq) — ausR +  bsR = 0  

exp(usR) sin(;ucj) — au% +  b% — 0

and now, we can use our exclusion test from (46) to solve this system. 

Let’s take

(53)

F( x , y )
exp(a;) cos(y) — ax  +  6sr 

exp(x) sin(y) — ay + 6$
(54)

and

G(x,y) } + x + Y + t
r-2

X
24

exp ( m l + r p  ^5
120 XL 1 +  vL +  h! +  j /1

L ^  2 ^  24 T  120

1 exp ( m l + r p  5
' 2 6 24 120

j  +  |a |x +  |6sr| 

)  +  \  +  1 2 0 )  +  la l?/ +  N I

where a  =  [ma — ra,m a +  ra\ C R 2 is the box interval in which we are searching for 

zeros of F, m a =  (m^ , m2) and ra =  ( r* , r2) are the middle point and the radius of a, 

respectively. One can easily check that F  -<5 G on any interval a = [ma — ra, m a + rc] C 

R 2. We can apply now our homotopy numerical toolbox to solve (50) for A =  3. We will 

use the exclusion test (46) with q =  5 for the functions above until both components of the 

radii of the generated box-intervals in T/ are less than e =  0.1. The results we obtained are 

shown in Tables 3 and 4.

n SOLS( n ) R E AL ( n )
1 6 0

2 35 1

3 2 1 0 2

4 1259 3
5 7547 3

Table 3: The number of solutions for uxx +  A exp(u) =  0 with zero Dirichlet boundary 
conditions on [0,1] for A =  3. Homotopy with continuation in t was used to track them 
from t =  1 to t =  0; the exclusion algorithm (46) was used to solve (53) in the starting box 
interval given by m a =  (10,0) and ra =  (10,15).
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n S OL S ( n ) R E A L ( n )
1 2 0

2 3 1

3 6 2

4 11 3
5 19 3
6 35 3
7 6 8 3
8 133 3
9 265 5
1 0 527 5

Table 4: The number of solutions for uxx +  A exp(u) =  0 with zero Dirichlet boundary 
conditions on [0,1] for A =  3. Homotopy with continuation in t was used to track them 
from t = 1 to t  =  0; the exclusion algorithm (46) was used to solve (53) in the starting 
box-interval given by m a =  (5, 0) and ra =  (5, 5).

Rem ark 4.3.1. One needs to realize that the exclusion algorithm process can be very costly 

and it is applied in our toolbox often (every time we add a new interior point and for every 

previous solution). For example, in Table 3, for adding one more point to the already 

existing four points implies using the exclusion algorithm 1259 times to solve equations 

of the form (53). Also, to reach the goal of ||7v || <  e, for any u 6  Tj, we needed I =  8 

bisection levels each time we used the exclusion algorithm. Below is an example of how 

the number of intervals a  6  T; modifies as I increases when exclusion algorithm is used to 

solve (53) when a fifth point is added to the already existing four interior points.

the bisection level I 0 1 2 3 4 5 6 7 8

the number of intervals a  obtained 1 4 16 64 247 870 1534 14 9

Table 5: The number of intervals obtained at each bisection level for a time when exclu­
sion algorithm was used to obtain the results from Table 3.

Out of these small nine box-intervals, we did obtain at that moment six different solu­

tions for (53). Therefore, it is not a very good idea to pick a big initial box, unless it is 

necessary.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rem ark 4.3.2. For each n  =  1 , . . . ,  5, all the solutions found in Table 4 have also been 

present in Table 3; this was expected since the box-interval chosen for the exclusion algo­

rithm in Table 3 was bigger and included the one used in Table 4. Out of these real solutions 

(three for Table 3 for n = 5 and five for Table 4 for n  = 10) only two of them were able to 

be refined to more interior points using a process similar with the one explained in section 

2.6. For the other ones, the Newton process did not converge. Below is a plot for these two 

solutions refined to 1407 interior points. The value of the peaks for these two symmetric 

solutions are 0.6401 and 1.975 respectively.

2

1

0
0 1

Figure 25: The two real solutions for the Bratu problem (49) refined from a mesh with 10 
interior points to one with 1407 interior points.
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CHAPTER V

CONCLUSIONS

I will start this paragraph by thanking again to my two advisors for their help, ideas, 

guidance, patience and encouragement throughout my research at CSU. I have learned a 

lot from them not only from a theoretical point of view, but from a practical one also, as I 

started building my toolbox with Matlab codes.

In this chapter we will summarize the work we have accomplished, give some conclu­

sions, and present some extensions, directions and goals.

We started our work by trying to generalize to higher dimensions what E. Allgower and 

the other authors in [1] accomplished in 1-dimension, namely finding all the solutions of 

a second order ODE with a polynomial nonlinearity in the right hand side. A summary of 

their work in this direction was provided in section 1.2. The first problem we had to address 

was the construction of new meshes. We restricted ourselves to a rectangular domain in 2- 

dimensions and built a toolbox that helps approximate the derivatives that appear in the 

Laplace operator. Some calculation and results were presented in the sections 2.3 and 

2.4. We then tried to solve the problem (31) for A =  1 using homotopy with continuation 

in t (the homotopy parameter) path tracking. After getting only one real solution on a 

mesh with 4 x 4  interior points, we refined it and did the classic arclength continuation. 

Not too surprisingly, we realized that we were supposed to obtain two real solutions, as the 

bifurcation diagram shows also. This, together with the fact that we were getting sometimes 

multiple solutions for our homotopy at t =  0  from different initial ones at t = 1 directed 

us toward using arclength continuation for our path tracking. There were some problems 

initially because of different turning points, but they mostly vanished when we generalized 

two results from [1 1 ] which enabled us to switch branches efficiently and still reach the
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goal t = 0. Using this method, we were able to obtain the maximum number of solutions 

for our homotopy at each step (this number is given by Bezout’s theorem). For the mesh 

with 4 x 4  interior points, we obtained exactly two real solutions out of a total of 216. With 

this toolbox, we were also able to solve McKenna’s conjecture [5]. We went further and 

observed that there are really no other bifurcations from the branches we were following 

for A < 8000.

The next interesting step was to try to generalize our problem for a non-polynomial 

nonlinearity. We knew that our algorithm would work nicely for any kind of function /  

from (5) for example, if we knew how to solve an equation like (8 ) for all real and complex 

solutions. That’s when exclusion algorithms came into our help. The only restriction was 

that we had to seek solutions in a box interval; however this is not so bad since we know 

that such an equation may have infinitely many solutions. We expanded our toolbox to this 

case also, and solved Bratu problem in 1-dimension. The results were explained in Chapter 

IV.

It is clear now that one goal for the future is to expand our methods for other kinds of 

domains. In both problems (31) and McKenna’s conjecture for square domains, we found 

two solutions that had all the symmetries which the square has. McKenna’s problem had 

two more solutions that that did not have all the symmetries. How many solutions would 

these two problems have on an L-shape domain for example?

There are only a few results about complex solutions! Can the properties of real solu­

tions be extended to complex ones? We don’t really know the answer yet, but it is possible 

to be ‘yes’. The reason we are inclined to say ‘yes’ lies in the fact explained below.

i) After finding the numerical solutions of (33) on a grid with 4 x 4  interior points, we 

tried to refine them to a coarser mesh (79 x 79), and we did that in four steps, using the 

algorithm explained in section 2.6: we first refine them to a 9 x 9 mesh grid, then to 19 x 19, 

39 x 39, and 79 x 79 in the end.

ii) We have observed that out of all solutions, the two real ones and the 4 complex ones

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we discussed in section 2.7 were the only ones for which the peak did not change drastically 

(in fact, it almost did not change at all in the last two steps of our refining algorithm). 

Further these solutions satisfied the famous result of Gidas, Ni, Nirenberg Theorem (34).

iii) For the other complex solutions, the changes were major as we tried to refine them, 

and there were probably spurious solutions; they also did not satisfy the symmetry result 

(34).

It is important to remark that at this time, we cannot really throw away complex solu­

tions found for example at the end of solving the homotopy after introducing a new point. 

We have seen in Chapter IV that one of the two real solutions for (49) with A near the 

bifurcation value is bom only after introducing the 5th interior point. Since the number of 

solutions grows so quickly with the addition of interior points, it would be nice if we can 

develop some theoretical filters to discard spurious solutions during our algorithm.

One may also envision generalizing the differential operator and the boundary condi­

tions. Considering other discretization methods, such as finite element methods, can be 

also taken into consideration in the future. The matter of introducing a small number of 

elements raises other issues which would be worthy of investigation.

We conclude by emphasizing again that the methods presented in this thesis are not 

meant to provide fast and accurate methods for solving PDE’s. Rather, the idea is to obtain 

reliable information about the number of solutions as well as qualitative properties of them. 

However, the approximations we obtain can definitely be used as starting values to get more 

accurate solutions on finer meshes with methods as the one presented in section 2 .6 .
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CHAPTER VI

APPENDICES

6.1 Appendix A: Mountain Pass Algorithm

In this paragraph, we will present some background about the Mountain Pass Algorithm 

used by the authors in [5] to find the four solutions to the McKenna’s conjecture.

The Mountain Pass Theorem was introduced in 1973 by Ambrosetti and Rabinowitz. 

By this method, one can establish the existence of a critical point u of a functional F,  

critical point which is not an extremum point of F,  and has the property that in any neigh­

borhood of u there are two points v and w with F(v) < F(u) < F(w).  Such a critical 

point is called a saddle point of F.

Definition 6.1.1. Let X  be a Banach space. A functional F  £ Cl ( X)  is said to satisfy 

the Palais-Smale condition, fo r  short the (PS) condition, if fo r  any sequence o f elements 

u k £ X  fo r  which

F ( u k) — > p e R ,  F' (uk) — ► 0 (55)

as k  — > oo, there exists a convergent subsequence.

Theorem 6.1.2 (Ambrosetti-Rabinowitz). Let X  be a Banach space and F  £ C1(X). 

Suppose there exist u0, u\ £ X  and r with |u0| < r < |it! | such that

max { F ( u 0), F ( u i ) }  < inf{F(u)  : u £ X,  \u\ =  r}.

Let

T =  { 7  £ C([0,1]; X ) : 7 (0 ) =  u0, 7 (1 ) =  u j  (56)

and

c = inf max F ( /y(t)). (57)
7erte[o,i]
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Then, there exists a sequence o f elements Uk £ X  such that

F ( u k ) — > c, F'{uk) — > 0 as A; — > oo.

//j in addition, F  satisfies the (PS) condition, then there exists an element u £ X  \  {tt0, U]} 

with

F(u)  =  c, F \u )  =  0. (58)

Rem ark 6.1.3. In the previous theorem, T represents the set of all continuous paths joining 

u0 and iii. In other words, the Mountain Pass Theorem says that if we are at the point u0 

of altitude F(uo)  located in a plateau surrounded by high mountains, and we are looking to 

reach to a point u\  of altitude F(ui )  over the other side of the mountains, we can always 

find a path going from u0 to u\  through a mountain pass. To find a mountain pass, we have 

to choose a path which mounts the least.

R em ark 6.1.4. In [26], one can also find Schechter’s version of the Mountain Pass The­

orem which guarantees the existence of a critical point for a nonlinear functional in a 

bounded region of the space.

Introduced in [27] for the study of numerical solutions for elliptic boundary value prob­

lems, the Mountain Pass Algorithm has often been used since then for a variety of other 

variational problems ([28, 29, 30]).

The main idea is an implementation of the naive proof of this theorem. First, one asso­

ciates a functional F(u)  (usually nonlinear) such that the solutions of the semilinear elliptic 

equation correspond to the critical points of this functional. Then, starting with a large fi­

nite dimensional approximating space, one constructs a piecewise linear path (initially a 

straight line) jo in ing  an already known critical point u„ which is a local m inim um  to a 

suitable chosen point e with F(e) < F ( u *).

For example, for

A u +  f (u)  — h(x)  +  s<t>i(x) in Q
(59)

u = 0  on dtt
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where 0 1 is the first (positive) eigenfunction of the Laplacian, one can derive via Green’s 

Theorem an associated functional

F : H ^ { n ) ^ R  F(u)  =  J  (^\X7u\2 - f i ^  + s fau  + h i x ^ d x  (60)

where /  denotes the primitive of / .  It is known [31] that the weak solutions of (59) corre­

spond to the critical points of this functional. It was also shown in [32] that (59) has exactly 

two solutions for large positive s if the derivative of the convex function /  has limits at +oo 

and —oo, namely, / ' ( + oo) and / ' ( —oo), and if

0 < / '( - o o )  < Ai <  / '(+ o o )  < A2.

Then, in a more general setting, Lazer and McKenna have shown in [33] that (59) has at 

least three, and generically four solutions if

- o o  <  / '( - o o )  <  Ai <  A2n < / '(+ o o )  < A2 <  A2n+i

where, in addition, it was assumed that A2 was of odd multiplicity. Two of these solutions 

are asymptotically (as s —► oo) linear, and were approximated by u* =  s0 !/(/'(- |-oo ) — Ai) 

and u* =  s 0 i / ( / ' ( —oo) — Aj). Since u* is almost a linear solution, it was shown that it is 

also a local minimum for the associated functional (60) on the function space Hq 2(Q).

We may apply the Mountain Pass Theorem to (60) by observing that the functional 

F  is in Cl (X) ,  where X  = H l'2(Q) and fl is a nice bounded region in K2. One can now 

construct a piecewise linear path joining u* to a suitable chosen point e  with F (e ) <  F ( u * ) .  

For McKenna’s conjecture, that we can always choose such an e  is clear from the nature 

of the nonlinearity u2 and the associated functional F(u)  with f ( u ) =  u3 / 3. Observe also 

that F(s4>i) —» —oo as s —> oo, and therefore, by going sufficiently far in the direction of 

any fixed positive function u, we can always find such an e.

One then searches along discrete points on the path for the point at which the functional 

F  is maximized. After locating it, one alters that piece of the path by moving that node 

in the direction of steepest descent. One iterates on that procedure, taking appropriate
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safeguards to ensure that the integrity of the piecewise linear path remains intact, without 

too much stretching between successive points. Eventually, the method converges to a 

saddle point. For more details about Mountain Pass Algorithm, one can also refer to [5].

6.2 Appendix B: Manual For Our Toolbox

In this appendix we will present some explanations and some instructions that will al­

low the reader to use our toolbox for the problems we presented in the thesis as well as for 

other similar ones.

The folder ‘HomLabFiles contains’ the files of the HomLab toolbox created by the au­

thors in [2], It is a suite of scripts and functions for the Matlab environment designed as 

an easy entry into the use of polynomial continuation and, for the experienced user, as a 

platform for experimental development of new methods. A user’s guide for it was written 

in the Appendix C from [2].

In the folder ‘DiscretizationForLaplace’, one can find three types of files. One of them 

is SolForm.m where we describe how the solution u of the discretized system (26) looks 

when a new point is introduced on a row or a column of points (see figures 4 and 5 for more 

details).

The other two types of m-files have the names starting with Stiff or boundary. In the 

m-files for which their names start with Stiff, we are building the components A xx and 

A yy of the stiffness matrix A  from (26); in the m-files for which their names start with 

boundary, we are building the vectors bxx and byy arising from the boundary values of 

the discretization of A u from (25) as presented in section 2.2. It is important to remark 

that all these components of the homotopy H N+1 from (30) are sparse and constructed 

with block matrices and vectors as presented in section 2.4. These files can be used for 

any kind of 2-D problem of the form (25) where the domain Q is a rectangle of the form
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fl  — [a, b] x [c, d] C R2.

For example, in Stiff_yy_line.m, we construct the matrix A yy when the new point is 

introduced on a row L  (the form of this matrix can be seen in section 2.4). To call this 

function, one can use a command such as:

Aro=Stiff_yy_line(L, t, N , M , a, b, c, d)\

where

•  L - is the row where the new point was introduced;

• t - is the homotopy parameter;

•  N  - is the number of points on the rows (L + 1 ) , . . . ,  M . Hence, rows 1 , . . . ,  L  each 

has (N  + 1) points;

•  M  - is the number of points on each column;

• a , b , c , d -  are the values corresponding to the rectangular domain of the problem,

0  =  [a, b] x [c, d].

If the new point is introduced on a column instead of a row, then the files we will use 

have the word col instead of line at the end of their names (boundary_xx_col.m, for exam­

ple).

The folder ‘ResultsFor_p_l_0_l’ contains the solutions of the 2-D problem (33)

A u  =  —A(1 4- u 2) on n  =  [0, l ] 2

u(0, y ) = u( 1, y) =  u(x,  0) =  u(x,  1) =  0, Vx, y e  [0,1]

for A =  1. As presented in section 2.7.1, we found all 2N solutions of the homotopy H N 

using a tracker based on arclength continuation and saved them in the subfolder 

‘p_l_0_l^ArcLContTrack_AllSolsUntil4x4IntPoints’; the results were summarized in the
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Table 2 from section 2.7.1. The two real solutions (out of a total of 216) obtained on 4 x 4 

interior points were refined to a coarser mesh-grid (39 x 39) using the method presented 

in section 2.6. Using numerical arclength continuation and starting with any of these two 

refined solutions, we immediately built the bifurcation diagram drawn in Figure 19 (it is 

saved in the ‘p_l_0_l_ArcLContTrack_SolsForBifDiagram’ subfolder).

The initial results of this problem that were found using a tracker based on continuation 

in t (the homotopy parameter) are saved in the folder

‘UsingContIn_t_TrackerWithGammaTrickWhenNeccessary’ 

and summarized in Table 1, section 2.7.1.

The numerical results for the McKenna’s conjecture (presented in Chapter III) can be 

found now in the folder ‘ResultsForMcKennaProblem’. One can also take a look at the 

eigenvalues of the Jacobian saved here as we constructed the bifurcation diagram and ob­

serve the turning point, the symmetry breaking bifurcation and the fact that there are no 

other bifurcations for big values of A (we went with A until around 8000). We can also 

watch some movies with the changes in the solutions as A follows the bifurcation diagram. 

It is easy to observe in this case the symmetry breaking bifurcation point: as A approaches 

As  ~  587.7, any of the two solutions from the right side in Figure 21 tends to become fully 

symmetric and positive, as the one from the top left side of this figure.

The numerical results for the 1-D Bratu Problem (49) using homotopy continuation 

combined with exclusion algorithm were presented in section 4.3 and can be found now in 

the folder ‘ResultsForlDBratu_HomotWExclAlg\

The ‘RunningFiles’ folder contains the main files that one can use to run for the prob­

lems considered in this thesis as well as other similar ones. For example, to solve McKenna’s
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conjecture (36) from the beginning using homotopy with arclength continuation, one would 

call the file

yk_main_2d_mckenna_Arclength.nl

and to solve the problem (33), one would call the file

yk_main_2d_Mmodif_FullAllArclength.m

Note that these files are built for a more general class of problems. When such files are run, 

one can choose

• a different rectangular domain by entering other values for a, b, c, d than 0 , 1 , 0 , 1 ;

•  a different polynomial right hand side by entering other values for the coefficients 

rather than the vector [1 , 0 , 1 ] which stands for u2 + Ou +  1 ; for example, for 

f ( u ) =  u3, one would enter [1 , 0 , 0 , 0 ] from the keyboard when asked to input the 

coefficients of the polynomial right hand side;

•  different value for A.

In fact, one can also solve (59) which is a generalization of McKenna’s conjecture. For 

this, one should first modify correspondingly the file func_f.m, and then run 

yk_main_2d_mckenna_Arclength.m. Below is the Matlab file func_f.m for McKenna’s 

conjecture.

function out = func_f(x,y);

% The function f from:

% Laplace(u) + lambda*p(u) + f(x,y) = 0 
out = -800*sin(pi*x)*sin(pi*y);

Since the solutions we get are usually on a crude mesh, we can refine the ones which 

interest us to a coarser grid by calling one of the refinesol.m files. Then, we can run the 

regular_arclength files to start the arclength continuation and find the bifurcation diagram.
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For example, after refining one of the solutions for McKenna’s conjecture to a mesh with 

a 31 x 31 interior points for A =  800, we ran the mckenna_reguIar_arclengthModif.m 

file and found the bifurcation diagram presented in Figure 21. We need to remark that we 

used only 2nd order discretization for our derivatives. If one saves these solutions found 

at each step of our arclength continuation as columns of a matrix, then, by running the 

sol_movie_arclength.m file we can see a movie with the evolution of the initial solution 

as the bifurcation parameter A changes. Running the movie for any of the two non-fully 

symmetric solutions we found, one can easily observe the symmetry breaking bifurcation 

point, as explained before.

Note that if we would like to run mckenna_regular_arclengthModif.m, but for the 

more general problem (59), we first modify accordingly the file func_f Jambda.m. For the 

McKenna’s conjecture, this file looks like

function out = func_f_lambda(x,y,lambda);

% The function f from:

% Laplace(u) + lambda*p(u) + f(x,y) = 0 

out = -lambda*sin(pi*x)*sin(pi*y);

The exclusion test (46) presented in section 4.2.3 is implemented in the exclusion_18.m 

file. To be able to run this file, one needs to provide two Matlab files corresponding to the 

functions /  and g, files in which we have to include all the partial derivatives needed (recall 

the exclusion test (46)). For example, the Matlab files corresponding to the functions F  

and G (see (54)) for the 1-dimensional Bratu problem (49) were created using the Maple 

9 file ForBratu.mws. The file corresponding to F  (BratuFunctions_F_Filea.m) will be 

presented at the end of this appendix.

To use the exclusion_18.m file for the Bratu problem, one would call

excl = exclusion_18(ab,eps, mm,nnr,nni, qq);

where
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• ab - represents the box-interval in R d x R d where we are looking for the zeros of F;

•  eps - our output intervals in R d (where we might have solutions) will have all d 

components of the radius less than or equal to this eps;

•  mmm, nnr, nni - are the parameters a, b$t, b%, respectively from (54);

• q - represents the maximum order for the derivatives considered in (46).

In section 4.3 we have chosen ab=[10,0,10,15] (and [5,0, 5,5] for a second case), eps=0.1, 

and q=5.

The output of this file will be a matrix named excl in which each row r contains the 

box-intervals generated by the exclusion algorithm at the r th bisection level (they form the 

set T; from Remark 4.2.1.3). The last row of this matrix will be the most updated one, 

having the all the undiscarded intervals of length up to eps. The first element of each row 

r  represents the number of intervals found at the end of the r th bisection level. The next 

elements of a row represent the miniboxes where the test indicated that we might have a 

solution.

Once the miniboxes are obtained, we can call the find_compIex_zeros_bettera.m file 

to find the roots of F inside of them.

To solve 1-dimensional the Bratu problem from the beginning (with the use of homo­

topy numerical continuation combined with exclusion algorithm), one would call the main 

file

yk_main_bratu_complexa.m

Note also that by calling yk_mainJbratu.m, one would solve the Bratu problem (38), 

but using a simple exclusion test (monotonicity, (42)) to find all the real solutions of (40). 

This is indeed a much faster method, but as we saw in the beginning of section 4.1, this 

worked well only for values of A £ [0,2.1].

To run our toolbox for different problems similar to the Bratu problem, one needs
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i) to modify the files funcf.m, funcg.m, funch.m;

ii) to create new files corresponding to the functions /  and g for the exclusion test;

iii) to make some small changes inside of yk_main_bratu_complexa.m;

iv) to run yk_main_bratu_complexa.m .

One of the most important files is tracker_2d_Modify.m which helps us to follow the 

path of a solution as the homotopy parameter t goes from 1 to 0. The listing of one version 

of this file is presented in the next appendix. During our path-tracking, we can pay attention 

also at the angle between two consecutive tangents. For efficiency, the arclength step should 

be decreased if this angle is too big, and it should be increased if the angle is too small. One 

can remark that we have this implemented in our path-tracking file, but we commented it 

out because it significantly slows down the algorithm!

As mentioned before, in the end of this appendix, we present the Matlab code obtained 

for the function F  (see (54)) using the Maple 9 file ForBratu.mws.

function out = BratuFunctions_F_File(x,y, mmm,nnnr,nnni, ms,rs, nrderiv)

% This function contains all the functions corresp to F 

% (including its derivatives) necessary to apply the test (46).

% The function F might have d real component functions, and 

% hence our file will build a function out with this format:

% out(k,i,j), which is the (i,j) derivative of the k'th component of F.

% For example, o u t (2,3,4) means that this is

% 3'rd deriv in x, the 4'th in y of the 4'th component of F.
% For example, o u t (2,0,0) means that this is just the 2'th component of F
% BUT WE KNOW MATLAB DOES NOT LIKE TO WORK WITH 0 AS AN INDICE,

% so we do this convention: out(k,i,j) means now that this is 

% the (i— 1,j— 1) derivative of the k'th component of F. Hence,

% for example, o u t (3,1,1) is just the 3'rd component of F, and

% out(3,2,4) is the l'st deriv in x, 3'rd in y of the 3'rd component of F
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% O B S : You will need also the function G found in BratuFunctions_G_File 

% such that F <_{q} G.

out ( 1, 1, 1) = exp(x)*cos(y)-mmm*x-nnnr

out ( 1, 1, 2) = -exp(x)*sin(y) ;

out ( 1, 1, 3) = -exp(x)*cos(y) ;

out ( 1, 1, 4) = exp(x)*sin(y) ;

out ( 1, 1, 5) = exp(x)*cos(y) ;

out ( 1, 1, 6) = -exp(x)*sin(y) ;

out ( 1, 2, 1) = exp(x)*cos(y)-mmm ;

out ( 1, 2, 2) = -exp(x)*sin(y) ;

out ( 1, 2, 3) = -exp(x)*cos(y) ;

out ( 1, 2, 4) = exp(x)*sin(y) ;
out ( 1, 2, 5) = exp(x)*cos(y) ;

out ( 1, 2, 6) = -exp(x)*sin(y) ;

out ( 1, 3, 1) = exp(x)*cos(y) ;

out ( 1, 3, 2) = -exp(x)*sin(y) ;

out ( 1, 3, 3) = -exp(x)*cos(y) ;

out ( 1, 3, 4) = exp(x)*sin(y) ;

out ( 1, 3, 5) = exp(x)*cos(y) ;

out ( 1, 3, 6) = -exp(x)*sin(y) ;

out ( 1, 4, 1) = exp(x)*cos(y) ;
out ( 1, 4, 2) = -exp(x)*sin(y) ;

out ( 1, 4, 3) = -exp(x)*cos(y) ;

out ( 1, 4, 4) = exp(x)*sin(y) ;

out ( 1, 4, 5) = exp(x)*cos(y) ;
out ( 1, 4, 6) = -exp(x)*sin(y) ;

out ( 1, 5, 1) = exp(x)*cos(y) ;

out ( 1, 5, 2) = -exp(x)*sin(y) ;

out ( 1, 5, 3) = -exp(x)*cos(y) ;

out ( 1, 5, 4) = exp(x)*sin(y) ;

out ( 1, 5, 5) = e x p (x )*cos(y) ;
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out ( 1, 5, 6) = -exp(x)*sin(y) ;

out ( 1, 6, 1) = exp(x)*cos(y) ;

out ( 1, 6, 2) = -exp(x)*sin(y) ;

out ( 1, 6, 3) = -exp(x)*cos(y) ;

out ( 1, 6, 4) = exp(x)*sin(y) ;

out ( 1, 6, 5) = exp(x)*cos(y) ;

out ( 1, 6, 6) = -exp(x)*sin(y) ;

out ( 2, 1, 1) = exp(x)*sin(y)-mmm*y-nnni ;

out ( 2, 1, 2) = exp(x)*cos(y)-mmm ;

out ( 2, 1, 3) = -exp(x)*sin(y) ;
out ( 2, 1, 4) = -exp(x)*cos(y) ;

out ( 2, 1, 5) = exp(x)*sin(y) ;

out ( 2, 1, 6) = exp(x)*cos(y) ;

out ( 2, 2, 1) = exp(x)*sin(y) ;

out ( 2, 2, 2) = exp(x)*cos(y) ;

out ( 2, 2, 3) = -exp(x)*sin(y) ;

out ( 2, 2, 4) = - e x p (x )* c o s (y ) ;
out ( 2, 2, 5) = e x p (x )* sin(y) ;

out ( 2, 2, 6) = exp(x)*cos(y) ;

out ( 2, 3, 1) = exp(x)*sin(y) ;

out ( 2, 3, 2) = exp(x)*cos(y) ;

out ( 2, 3, 3) = -exp(x)*sin(y) ;

out ( 2, 3, 4) = -exp(x)*cos(y) ;

out ( 2, 3, 5) = exp(x)*sin(y) ;

out ( 2, 3, 6) = exp(x)*cos(y) ;

out ( 2, 4, 1) = exp(x)*sin(y) ;

out ( 2, 4, 2) = exp(x)*cos(y) ;
out ( 2, 4, 3) = - e x p (x )*s i n (y ) ;

out ( 2, 4, 4) = -exp(x)*cos(y) ;

out ( 2, 4, 5) = exp(x)*sin(y) ;

out ( 2, 4, 6) = exp(x)*cos(y) ;
out ( 2, 5, 1) = exp(x)*sin(y) ;

out ( 2, 5, 2) = exp(x)*cos(y) ;
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out ( 2, 5, 3)

out ( 2, 5, 4)

out ( 2, 5, 5)

out ( 2, 5, 6)

out ( 2, 6, 1)
out ( 2, 6, 2)

out ( 2, 6, 3)

out ( 2, 6, 4)

out ( 2, 6, 5)

out ( 2, 6, 6)

= -exp(x)*sin(y) ; 

= -exp(x)*cos(y) ; 

= exp(x)*sin(y) ;

= exp(x)*cos(y) ;

= exp(x)*sin(y) ;

= exp(x)*cos(y) ;

= -exp(x)*sin(y) ;

= -exp(x)*cos(y) ; 

= exp(x)*sin(y) ;

= exp(x)*cos(y) ;
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6.3 Appendix C: A version o f a ‘tracker’ file used to solve 
the problem (33)

function [x, tangent,t,success,stepsize,errsize,nfe]= ...

tracker_2d_Mmodif(hfun,xinit,tangent,tinit,stepstart,tgoal,epstrack)

■ k - k - k - k ' k - k i c - k ' k ' k ' k - k - k ' k i ' - k - k - i c - k - k - k - k - k ' k ' k - k ' k ' k - k ' k

*11 = = 1 1 *

* || Path Tracker Algorithm ||

I *
■ k - k ' k ' k - k - k - k - k ' k ' k i c - k - k - k ' k - k - k - k - k - k - k - k - k ' k i r - k i e - k i c - k

INPUTS

hfun = string name of homotopy function h(x,t)

evaluated as [h,hx,ht]=feval(hfun,x,t). 

xinit = starting value of x. An approximate solution of h(x,t)=0.

tangent = tangent at (x,t). If empty, is computed fresh.

If known ahead, passing it in saves a bit of computation, 

tinit = t value at start.

stepstart = initial arclength step size to try. 

tgoal = stopping value for t. We assume tgoal<t.

epstrack = path tracking accuracy to be maintained.

OUTPUTS 

x, t

tangent

success
stepsize

errsize

nfe

= final solution estimate. If successful, t=tgoal.

= tangent at (x,t).

= 1, if successful; 0, if not.
= final step size in t. Can be used as stepstart if we call 

again for progress along the same path.

= last Newton residual.

= number of function evaluations used.
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global stepmin maxit maxnfe epstiny 

global a b e d  pol lambda % L M N

% Some initializations

goodstep = 0; success = 1; nfe = 0;

iter = 0;

% Initialize Newton iteration parameters 

tol=lE-6; tolf=lE-9; nitemax=150; ifail=0;

% Initialize arclength parameters 

xO = xinit; 

n = s i z e (x 0, 1) ; 

arcO = 0; 

tO = tinit;

tauO = zeros(n,1); sigmaO = 1; theta = 0.5;

% Initialize solution 

vO = xinit; v = xinit; 

arcstepmodif = stepstart;

j = l;
arc = 0; 

t = 1 0 ;

% Save this initial values in the "old" variables
tau_old = tauO;

sigma_old = sigmaO;

arc_old = arcO;

v_old = vO;

t_old = tO;

1 0 2
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while (tgoal < t) & (t <= 1)

j = j+i;
arc = a r c + a b s (arcstepmodif);

% Predictor

v = v + arcstepmodif*tauO; 

t = t + arcstepmodif*sigmaO;

% Corrector

nite=0; delz=l; f=l; 
while norm(f) > tolf 

nite = nite + 1;

[f, fz, ft]=feval(hfun,v,t); 

n = s i z e (f ,1);

f(n+l) = theta*tauO'*(v - v O ) + (1-theta)*sigmaO*(t-tO) - (arcO-arc);

f z (1:n, n + 1 ) = f t ;

fz(n+l,l:n) = theta*tauO';

fz(n+l,n+l) = (1-theta)*sigmaO;

delz = fz\f;

z = [v; t] ;

z = z-delz;

v = z (1 : n ) ;

t = z(n+1);

%fp r i n t f ('%3i %8.4f %8.4f %8.4e %8.4e \ n ',

% nite, arc, t, norm(delz), norm(f) );

if nite > nitemax

f p r i n t f ('Maximum number of Newton iterations exceeded\n');
i f a i l  = 1 ;

break

end
end

if ifail == 0
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%f p r i n t f ('Newton iteration converged\n');

tau_old = tauO;

sigma_old = sigmaO;

arc_old = arcO;

v_old = vO;

t_old = tO;
Update tangent vector 

tauO = - (v-vO)/ (arc-arcO); 

sigmaO = - (t-tO)/ (arc-arcO); 

normv = norm([tauO;sigmaO],2); 

tauO = tauO/normv; 

sigmaO = sigmaO/normv;

Update previous solution 

arcO = arc; 

vO = v; 

tO = t;

% Modify the arclength step if the angle between the two

% consecutive tangents is bigger than 30 degrees or less

% than 5 degrees, 

if j >= 3

%costheta=(norm ( tauO,2) " 2 + n o r m ( tau_old,2 ) ~ 2- n o r m ( tauO-tau_old, 2 ) ~ 2 ) /  

% (2*n o r m (tauO,2 ) * n o r m ( tau_old, 2 ) ) ;

costheta = [tau_old;sigma_old]'* [tauO;sigmaO]; 

if costheta < cos(pi/6)

% the angle between 2 consec tangents is bigger than 30

% degrees, hence restart with the last point and reduce
% the step size to half.

arc = arc-abs(arcstepmodif);

arcstepmodif = arcstepmodif/2;

tauO = tau_old;

sigmaO = sigma_old;

arcO = arc_old;
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vO = v_old;

tO = t_old;

else

if costheta > cos(pi/36)

% the angle between 2 consec tangents is less than 5 

% degrees, hence double the arclength step, 

arcstepmodif = 2*arcstepmodif;

end

end

end

if nite <= 3

% Double the arcstep since the number of newton iterations is 

% very small.

arcstepmodif = 2*arcstepmodif;

else

if nite >= 100

% Reduce the arcstep since the number of Newton iterations 

% is too big.

arcstepmodif= . 2 5*arcstepmodif

end

end

else

% In this case, ifail=l, which means that the number of Newton 

% iterations exceeded its maximum. Restart with the prev. solution 

% and reduce the arcstep this time!
tauO — tau old;

sigmaO = sigma_old; 

arcO = arc_old; 

vO = v_old; 

tO = t__old;
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arcstepmodif = 0.25*arcstepmodif;
end

nfe=nfe+iter;

end

if t < 0

fp r i n t f ('We have passed t = 0 directly, after eventually passing'); 

fp r i n t f ('couple of turning points. We did not reach back t = l.\n');

j = j+i;
step = tgoal - t; 

t = t + step;

arc = arc - abs(arcstepmodif)*abs(step/(stepstart*sigma_old)); 

nite=0; delv=l; f=l; 

while norm(f) > tolf 

nite = nite + 1;

[f,fv,ft] = feval(hfun,v,t); 

delv = fv\f; 

v = v-delv;

% f printf('%3i %8.4f %8.4f %8.4e %8.4e \ n ',nite,arc,t,norm(delv),n o r m (f )) 

if nite > nitemax

% We should not really reach this point! But it was implemented 

% just to be sure we did not have a mistake! 

ifail = 1;

e r r o r ('Newton iters, exceeded max when we tryied to land on 0!'
e n d

end

f p r i n t f ('We have reached t = 0 directly, after passing couple of '); 

f p r i n t f ('turning points. We did not reach back t = l.\n'); 
else

if t > 1
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f p r i n t f ('We passed again t = l.\n');

j = j+i;
step = tinit - t; 

t = t + step;

arc = arc - abs(arcstepmodif)*abs(step/(stepstart*sigma_old)); 

nite=0; delv=l; f=l; 

while norm(f) > tolf 

nite = nite + 1;

[f,fv,ft] = feval(hfun,v,t); 

delv = fv\f; 

v = v-delv;

% f printf('%3i %8.4f %8.4f %8.4e %8.4e \ n n i t e , a r c , t , n o r m ( d e l v ) ,n o r m (f )) 

if nite > nitemax

% We should not really reach this point! But it was 

% implemented just to be sure we did not have a mistake 

ifail = 1;

e r r o r ('Newton iters, exceeded max trying to land on 1!')

end

end

f p r i n t f ('We started at t=l ended up again at t=l!\n');

end

end

if t == tgoal

% We've reached the goal t=0; now refine the answer 
x  =  v  ;

iter = 0; 

errsize=l;

while errsize>le-12 & iterclO 

iter = iter+1;

[h,dhx,dht] = feval(hfun,x,t);
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dx = -dhx\h;

esize = max(abs(dx));

x = x+dx;

if esize>2*errsize 

errsize = esize; 

break;

end;

errsize = esize;

end;

[h,dhx,dht] = feval(hfun,x,t); 
tangent = -dhx\dht; 

nfe = nfe+iter+1;

%success = arcstepmodif>stepmin & nfe<maxnfe; 

success = nfe<maxnfe; 

stepsize = arcstepmodif;

else

% We have reached again t = 1 instead of t = tgoal; it means that,

% during our tracking as t was supposed to go from 1 to 0, we found a 

% turning point. We start back with all the initial data, and this 

% time, when we reach the turning point, we will not continue on our 

% arclength path, but we will jump on the path which will be given in 

% this point by the perpendicular tangent on our normal tangent.

% Initialize Newton iteration parameters 

tol=lE-6; tolf=lE-9; nitemax=150; ifail=0;

% Initialize arclength parameters 

xO = xinit; 

n = size(x0,l); 

arcO = 0; 

tO = tinit;

tauO = zeros(n,l); sigmaO = 1; theta = 0.5;
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% Initialize solution 

vO = xinit; v = xinit; 

arcstepmodif = stepstart;

j = i;
arc = 0; 

t = tinit;

% Save this initial values in the "old" variables

tau_old = tauO;

sigma_old = sigmaO;

arc_old = arcO;

v_old = vO;

t_old = tO;

while s i g n(real(sigmaO)* r e a l (sigma_old)) == 1

j = j+i;
arc = a r c + a b s (arcstepmodif);

% Predictor

v = v + arcstepmodif*tau0; 

t = t + arcstepmodif*sigma0

% Corrector 

nite=0; delz=l; f=l; 

while norm(f) > tolf 

nite = nite + 1;
[f,fz,ft]=feval(hfun,v,t); 

n=size(f,1);

f(n+l) = theta*tau0'*(v - v O )+(1-theta)*sigmaO*(t- t O )-(arcO-arc); 
f z (1:n,n+1) = f t ; 

fz(n+l,l:n) = theta*tauO'; 

fz(n+1,n+1) = (1-theta)*sigma0;
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delz = fz\f; 

z = [v; t] ; 

z=z-delz; 

v = z (1: n ) ; 

t = z(n+1);

%fp r i n t f ('%3i %8.4f %8.4f %8.4e %8.4e \n',

% nite, arc, t, norm(delz), norm(f) );

if nite > nitemax

fp r i n t f ('Maximum number of Newton iterations exceeded\n');

ifail = 1;

break

end

end

if ifail == 0

%f p r i n t f ('Newton iteration converged\n');

tau_old = tauO;

sigma_old = sigmaO;

arc_old = arcO;

v_old = vO;

t_old = tO;

% Update tangent vector

tauO = -(v - v O )/(arc-arcO); 
sigmaO = - (t-tO) / (arc-arcO); 

normv = n o r m ([tauO;sigmaO],2); 

tauO = tauO/normv; 

sigmaO = sigmaO/normv;
% Update previous solution

arcO = arc; 

vO = v; 

tO = t ;

% Modify the arclength step if the angle between the two
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% consecutive tangents is bigger than 30 degrees or less 

% than 5 degrees, 

if j >= 3

%costheta=(norm(tauO,2 ) ~2+norm(tau_old,2 ) “2-norm(tauO-tau_old, 2) "2) / 

% (2*norm(tau0,2)*norm(tau_old, 2));

costheta = [tau_old;sigma_old]'* [tauO;sigmaO]; 

if costheta < cos(pi/6)

% the angle between 2 consec tangents is bigger than 30

% degrees, hence restart with the last point and reduce

% the step size to half.

arc = a r c - a b s (arcstepmodif);

arcstepmodif = arcstepmodif/2;

tauO = tau_old;

sigmaO = sigma_old;

arcO = arc_old;

vO = v_old;

tO = t_old;

else

if costheta > cos(pi/36)

% the angle between 2 consec tangents is less than 5 

% degrees, hence double the arclength step, 

arcstepmodif = 2 *arcstepmodif;

end

end

end

if nite <= 3
% Double the arcstep since the number of newton iterations is 

% very s m a l l .

arcstepmodif = 2*arcstepmodif;

else

if nite >= 100

% Reduce the arcstep since the number of Newton iterations
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% is too big.
arcstepmodif=.25*arcstepmodif

end

end

else

% In this case, ifail=l, which means that the number of Newton 

% iterations exceeded its maximum. Restart with the prev. solution 

% and reduce the arcstep this time! 

tauO = tau_old; 

sigmaO = sigma_old; 

arcO = arc_old; 

vO = v_old;

tO = t_old;

arcstepmodif = 0.25*arcstepmodif;

end

nfe=nfe+iter ;

end

% We have reached t=t* a turning point. We know that this turning point 

% is in fact a bifurcation, hence, using the theory presented in
% chapter I, we can swtich the branches. Let's switch now to the

% bifurcating branch! 

tauO = i*tauO; 

sigmaO = -sigmaO;

while real(t) > 0

j = j+i;
arc = arc+abs(arcstepmodif);
% Predictor

v = v + arcstepmodif*tauO;
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t = t + arcstepmodif*sigmaO

% Corrector 

nite=0; delz=l; f=l; 

while norm(f) > tolf 

nite = nite + 1;

[f , f z,f t ]= f e v a l (hfun,v,t); 

n = s i z e (f,1);

f (n + 1 ) = theta*tauO'*(v - v O ) + (1-theta)* s igmaO*(t - t 0)-(arcO-arc);

fz(l:n,n+l) = ft;

fz(n+l,l:n) = theta*tauO';

fz(n+1,n+1) = (1-theta)*sigmaO;

delz = fz\f;

z = [v; t] ;

z=z-delz;

v = z (1 : n ) ;

t = z (n + 1 );

% fp r i n t f ('%3i %8.4f %8.4f %8.4e %8.4e \n');

% fp r i n t f ('nite, arc, t, norm(delz), norm(f) ); 

if nite > nitemax

fpr i n t f ('Maximum number of Newton iterations exceeded\n');

ifail = 1;
break

end

end

if ifail == 0

%fp r i n t f ('Newton iteration converged\n');
tau_old = tauO;

sigma_old = sigmaO;

arc_old = arcO;

v_old = vO;

t_old = tO;
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% Update tangent vector

tauO = - (v-vO) / (arc-arcO); 

sigmaO = - (t-tO) / (arc-arcO); 

normv = n o r m ([tauO;sigmaO],2); 

tauO = tauO/normv; 

sigmaO = sigmaO/normv;

% Update previous solution

arcO = arc; 

vO = v; 

tO = t;

% % Modify the arclength step if the angle between the two

% % consecutive tangents is bigger than 30 degrees or less

% % than 5 degrees.

% if j >= 3

% %costheta=(norm(tauO,2 ) ~ 2+norm(tau_old,2 ) “2-norm(tauO-tau_old, 2 ) " 2 )/

% % (2* n o r m (tauO,2)* n o r m (tau_old,2));

% costheta = [tau_old;sigma_old]'* [tauO;sigmaO];

% if costheta < cos(pi/6)

% % the angle between 2 consec tangents is bigger than 30

% % degrees, hence restart with the last point and reduce

% % the step size to half.

% arc = a r c - a b s (arcstepmodif);

% arcstepmodif = arcstepmodif/2;

% tauO = tau_old;

% sigmaO = sigma_old;

% arcO = arc_old;
% v O = v o Id;

% tO = t_old;

% else

% if costheta > cos(pi/36)

% % the angle between 2 consec tangents is less than 5

% % degrees, hence double the arclength step.
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arcstepmodif = 2*arcstepmodif;
end

end

end

if nite <= 3

% Double the arcstep since the number of newton iterations is 
% very small.

arcstepmodif = 2 *arcstepmodif;

else

if nite >= 100

% Reduce the arcstep since the number of Newton iterations 

% is too big.

arcstepmodif= . 25*arcstepmodif

end

end

else

% In this case, ifail=l, which means that the number of Newton 

% iterations exceeded its maximum. Restart with the prev. solution 

% and reduce the arcstep this time! 

tauO = tau_old; 

sigmaO = sigma_old; 

arcO = arc_old; 

vO = v_old; 

tO = t_old;

arcstepmodif = 0.25*arcstepmodif;

end

nfe=nfe+iter;

end
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% We have reached tctgoal!

if real(t) < 0

j = j+i;
step = tgoal - t; 

t = t + step;

arc = arc - abs(arcstepmodif)*abs(step/(stepstart*sigma_old)); 

nite=0; delv=l; f=l;

%while norm(delv) > tol 

while norm(f) > tolf 

nite = nite + 1;

[f,fv,ft] = feval(hfun,v,t); 
delv = fv\f; 

v = v-delv;

% f p r i n t f ('%3i %8.4f %8.4f %8.4e %8.4e \n');

%f p r i n t f ('nite, arc, t, norm(delv), norm(f) );

if nite > nitemax

% We should not really reach this point! But it was 

% implemented just to be sure we did not have a mistake 

ifail = 1;

e r r o r ('Newton iters, exceeded max trying to land on 1!')

end

end

end

end
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if t == tgoal

% We've reached the goal t; now refine the answer 

x = v; 

iter = 0; 

errsize=l;

while errsize>le-12 & iter<10, 

iter = iter+1;

[h,dhx,dht] = feval(hfun,x,t);

dx = -dhx\h;

esize = max(abs(dx));
x = x+dx;

if esize>2*errsize 

errsize = esize; 

b r e a k ;

end;

errsize = esize;

end;

[h,dhx,dht] = feval(hfun,x,t); 

tangent = -dhx\dht; 

nfe = nfe+iter+1;

%success = arcstepmodif>stepmin & nfe<maxnfe;!!!!!!!!!!!! 

success = nfe<maxnfe; 

stepsize = arcstepmodif;

else

% I am not expecting to reach here, but for any case, I consider also 

% this case to know if I have to debug it!
error('Did not expect this error! I should try to debug it then!'); 

return

end
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