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ABSTRACT 
 
 
 

THE VASCULATURE WITHIN THE PARAVENTRICULAR NUCLEUS OF THE 

HYPOTHALAMUS: INFLUENCE OF DEVELOPMENT, GAMMA-AMINOBUTYRIC ACID 

(GABA) RECEPTORS, AND PRENATAL GLUCOCORTICOIDS 

 
 
The paraventricular nucleus of the hypothalamus (PVN) is a critical brain region that regulates 

many homeostatic and stress responses.  In addition to its dense cytoarchitecture, it also 

contains a vast network of blood vessels.  These blood vessels within the mouse PVN have a 

higher density than other brain regions, which develops postnatally.  Loss of gamma 

aminobutyric acid (GABA) signaling or prenatal dexamethasone (dex) treatment decreased the 

blood vessel density.  Dex also decreased blood brain barrier (BBB) competency while 

increasing desmin-immunoreactive pericytes at postnatal day (P)20.  Long-term consequences 

included a decrease in GFAP contact with blood vessels selectively in dex-treated females, and 

an increase in depression-like behaviors in dex-treated males.   

 

Chapter 2 examines the blood vessel density within the PVN.  Initially the blood vessel density 

is similar than surrounding brain regions, then after P8 there was an increase that resulted in a 

highly vascularized network around P20.  The highest densities were restricted to the rostral 

and mid regions of the PVN, where the neuroendocrine neurons are housed.  In addition, mice 

lacking a functional GABAB receptor had a significant decrease in blood vessel density in the 

mid region at P20.  

 

The protein endocan has been proposed to be a “tip cell” marker, indicating angiogenesis.  To 

further characterize the postnatal angiogenic period within the PVN, recently developed 

antibodies against endocan were used. Chapter 3 provides evidence that endocan is normally 
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expressed in the mouse brain but not restricted to tip cells.  In addition, prior perfusion with 

fluorescein isothiocyanate (FITC) prevents endocan-immunoreactivity (ir) and provides a novel 

method for identifying non-functional blood vessels.   

 

Chapters 4 and 5 show that excess fetal glucocorticoids alters the BBB within the PVN at two 

time points.  At P20, there was a loss of BBB integrity accompanied by an increase in desmin-ir 

pericytes on a reduced blood vessel network due to dex-treatment for both prepubertal males 

and females.  In contrast at P50, the blood vessel density and BBB were no longer disrupted 

following fetal dex-treatment.  However, there was a decrease in glial fibrillary acidic protein 

(GFAP)-ir astrocytes in dex-treated females and an increase in desmin-ir pericytes in dex-

treated males.   

 

In conclusion, the work set forth in this dissertation indicates that the dense vascular network 

within the PVN develops postnatally and is susceptible to regulation by both exogenous and 

endogenous factors. 
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CHAPTER 1. INTRODUCTION 

 

Currently, cardiovascular disease (CVD) is the leading cause of death in the United States and 

worldwide (Thayer et al., 2010).  Individuals suffering from CVD are more likely to have the most 

prevalent mental disorder major depressive disorder (MDD; The World Health Report, 2001).  

This co-morbidity constitutes an approximate 20% population prevalence (Reviewed in 

Goldstein et al., 2014) and by 2020 is postulated to be the number one cause of disability 

worldwide (The World Health Report, 2001).  To understand the etiology with hopes of reducing 

the incidence of MDD and CVD, independently and collectively, studies are needed to identify 

potential mechanisms.   

 

A key brain region that may be involved in the comorbidity of CVD and MDD is the 

paraventricular nucleus of the hypothalamus (PVN; Baune et al., 2012; Goldstein et al., 2014).  

The PVN is an important locus for understanding disorders of the hypothalamic-pituitary-adrenal 

(HPA) axis with potential impact for mood disorders and other comorbid disorders with ties to 

PVN functions, including obesity and CVD (Brunton, 2010; Tobet et al., 2013).  HPA axis activity 

is regulated through secretion of corticotropin-releasing hormone (CRH) and arginine 

vasopressin (AVP) from the PVN that act on the pituitary to release adrenocorticotrophic 

hormone (ACTH), which then stimulates the secretion of glucocorticoids from the adrenal cortex 

(Pariante, 2009).  In addition to the HPA axis, neurons in the PVN integrate peripheral signals 

into a succinct neuronal response important for maintaining homeostasis, vasomotor tone, 

energy balance, and behavioral functions (Ferguson et al., 2008; Handa & Weiser, 2013; 

Swanson & Sawchenko, 1983).  In a recent review, glucocorticoids were shown to change the 

neural circuitry within the PVN resulting in HPA dysregulation, similar to the effects observed in 

patients with depression (Levy & Tasker, 2012).  The PVN also contains neurons that attenuate 

hypertension (Braga et al., 2011; Ferguson et al., 2008; Sriramula et al., 2011).  For example, 
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an increase of the Na(+)-K(+)-2Cl(-) cotransporter-1 decreases gamma aminobutyric acid 

(GABA)ergic synaptic inhibition and increases the sympathetic drive from the PVN, which 

contribute to the development of hypertension (NKCC1; Ye et al., 2012).  Therefore, the PVN 

may provide a site for cell-based mechanisms that underlie the co-morbidity of CVD and MDD.   

 

The PVN is comprised of a number of different neuronal phenotypes that are critical for 

regulating many important functions that range from initiating flight or fight responses, 

maintaining homeostasis (Ferguson et al., 2008; Swanson et al., 1983) and regulating the 

physiological response to energetic challenges (Hill, 2012).  The PVN is located in the anterior 

region of the hypothalamus situated along the dorsal portion of the third ventricle (Herman et al., 

2005; Swanson & Sawchenko, 1983).  In the rat it has a volume of approximately 0.5mm3 and 

contains approximately 100,000 neurons (Handa & Weiser, 2013). The PVN has a dense three-

dimensional clustering of cells adjoining the dorsal portion of the third ventricle (Simmons & 

Swanson, 2009).  The neurons of the PVN are characterized by their neuropeptides, including 

CRH, AVP, oxytocin (OT), thyrotropin-releasing hormone (TRH), somatostatin, and angiotensin 

(Armstrong et al., 1980; Biag et al., 2012; Ford-Holevinski et al., 1991; Handa & Weiser, 2013; 

Simmons & Swanson, 2009; Swanson and Sawchenko, 1983).  Neurons within the PVN contain 

receptors for GABA, estrogens, androgens, glucocorticoids, and angiotensin II type 1 and many 

other signaling systems (Bingham et al., 2006; Fan et al., 2012; Lund et al., 2004; McClellan et 

al., 2010; Mitra et al., 2003).  Individually and collectively these cell types and expressed 

receptors distinguish extensive cellular heterogeneity in the PVN. This emphasizes the need to 

understand the relationships among the diverse cellular elements of the PVN in maintaining 

homeostasis and initiating stress responses. 

 

Neurons within the PVN can be grouped by their function (Biag et al., 2012; Handa & Weiser, 

2013).  One such group, referred to as neurosecretory parvocellular neurons, project their axons 
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to the median eminence and release CRH, AVP, TRH and somatostatin into the portal 

vasculature targeting the anterior pituitary.  A second group is comprised of neurosecretory 

magnocellular neurons that have terminals that secrete OT and AVP into general circulation 

through fenestrated capillaries of the posterior pituitary.  A third group of neurons are long-

projecting and directly innervate the brainstem and spinal cord.  The location of these neurons 

in the mouse varies throughout the PVN and parvocellular and magnocellular neurons are 

indistinguishable (Biag et al., 2012).  By contrast in rats, they are grouped into subdivisions 

dependent on cell type and can be distinguished based on size (Handa & Weiser, 2013).  In the 

mouse, the rostral and mid regions house the majority of the neurosecretory parvocellular and 

magnocellular CRH, OT, AVP, TRH and somatostatin neurons and the caudal portion holds the 

majority of long-projection neurons that provide autonomic innervation (Biag et al., 2012).    

 

During fetal development, there are high levels of GABAA and GABAB receptors within the PVN, 

while surrounding the PVN are cells and fibers containing immunoreactive GABA (McClellan et 

al., 2010).  Global deficiencies in GABA signaling through the loss of heterodimeric G protein 

coupled GABAB receptors in mice results in decreased female reproductive function (Catalano 

et al., 2005), altered glucose homeostasis (Bonaventura et al., 2008), generalized epilepsy 

(Prosser et al., 2001), severe memory impairment (Schuler et al., 2001), increased anxiety-like 

behavior (Jacobson et al., 2007; Mombereau et al., 2005), and antidepressant-like behavior 

(Mombereau et al., 2005).  These behavioral changes have been linked to inappropriate 

development of brain cytoarchitecture, including several hypothalamic components (McClellan 

et al., 2006; McClellan et al., 2008).  Region-specific changes in cell position and the level of 

protein expression have been observed in a sex-dependent manner in mice lacking a functional 

GABAB receptor.  For example, within the PVN, mice lacking functional GABAB receptors 

through a gene disruption of the R1 subunit (GABABR1) showed significant alterations in the 

locations of cells containing immunoreactive estrogen receptor alpha selectively in females and 
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a more widely distributed spread of immunoreactive neuronal nitric oxide synthase (nNOS) 

(McClellan et al., 2010).  Changes in levels of immunoreactive proteins within the PVN have 

also been observed in GABABR1 knockout (KO) mice.  There was decreased immunoreactive 

brain-derived neurotrophic factor (BDNF; McClellan et al., 2010) and an increase in 

immunoreactive CRH in the rostral PVN region in females (Stratton et al., 2011). GABA 

signaling within the PVN can also control sympathetic vasomotor tone and contribute to CVD (Li 

& Pan, 2007).  These findings suggest that GABA is important to the development and 

regulation of neurons that come to reside in the PVN. 

 

Among its dense cytoarchitecture, the PVN contains a 3-fold denser blood vessel matrix 

compared to surrounding brain regions across multiple species (Ambach & Palkovits, 1974; 

Finley, 1938; van den Pol, 1997).  There is a lack of studies focused on the development of this 

dense vascular bed.  Increases in PVN vascular density have been shown during postnatal 

development in male rats and differences in density were observed as a function of location 

within the nucleus rather than strictly aligning with magnocellular and parvocellular divisions 

(Menendez & Alvarez-Uria, 1987). While this dense vascular matrix has been known for some 

time (e.g. (Ambach & Palkovits, 1974; Basir 1931; Craigie, 1940; Finley, 1938; Poppi, 1928), its 

development and function have not been well characterized.  Currently whether this unique 

vasculature plays a role in the development of CVD, MDD, or any other disorder remains 

unknown.   

 

If the blood vessels within the PVN experience a postnatal angiogenic period in mice, when this 

occurs should be identified.  Previous studies have shown endocan as a potential marker for 

angiogenesis (Roudnicky et al., 2013; Sarrazin et al., 2010).  Endocan is a secreted 

proteoglycan and has been proposed as a biomarker for cancer.  Recently, antibodies have 
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been developed for endocan, which may identify when the postnatal angiogenic period is 

occurring in the PVN (Frahm et al., 2013).     

 

The blood vessels in the brain vary from those in the periphery.  The brain receives 20% of 

cardiac output yet accounts for only 2% of body mass (Quaegebeur et al., 2011).  These 

complex and highly regulated cerebral blood vessels exist to supply oxygen and nutrients to the 

brain while protecting it from potentially harmful items such as toxins and pathogens (Chip et al., 

2013).  What sets brain blood vessels apart is that a large portion of them maintain a restrictive 

barrier known as the blood-brain barrier (BBB). The purpose of the BBB is to regulate a 

microenvironment necessary for reliable neuronal signaling by protecting the brain from 

potentially harmful items such as toxins. The BBB consists of a continuous layer of endothelial 

cells, which form the walls of blood vessels, connected to one another through tight junctions.  

These tight junction proteins are the initial barrier and restrict permeability by forming a physical 

barrier composed of several different proteins including, but not limited to, the transmembrane 

claudins and occludins that are stabilized by linking to zonula occludens (Reviewed in Abbott et 

al., 2006; Hawkins & Davis, 2005; Iadecola, 2004; Saunders et al., 2013).  Other components of 

the BBB include pericytes and astrocytic endfeet that surround endothelial cells (Hawkins & 

Davis, 2005). Changes in any of these components that together form the BBB could 

compromise its functional integrity.  

 

Pericytes, first described in 1873, are also referred to as Rouget cells (Reviewed in Dore-Duffy 

& Cleary, 2011) and play a role in tight junction formation, structural stability, angiogenesis 

(Armulik et al., 2010; Daneman et al., 2010) as well as regulate vascular stability (Winkler et al., 

2011).  Pericytes have contractile properties that can regulate capillary diameter and blood flow 

through their finger-like processes that ensheath capillary walls (Iadecola, 2004; Winkler et al., 

2011).  Loss of pericytes results in an increased permeability of the BBB (Daneman et al., 
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2010).  Studies imply that during early prenatal development cross-talk between pericytes and 

astrocytes is essential but in vivo work is needed to corroborate this hypothesis (Bonkowski et 

al., 2011). 

 

Astrocytes are glial cells that detect and modulate neuronal activity and blood vessel function 

through regulation of endothelial cells junctions and transport (reviewed in Daneman, 2012).  

Astrocytes have an enrichment of connexin 30 and 43, which form gap junction channels 

allowing ion and small molecule exchange between cells, which develop postnatally in the 

mouse (Ezan et al., 2012).  Inhibition of astrogliogenesis during early postnatal development 

results in increased endothelial cell proliferation, blood vessel diameter and pericyte coverage 

(Ma et al., 2012).  Astrocytic endfeet in close proximity to microvessel walls are specialized and 

contain aquaporin 4 and the Kir4.1 K(+) channel, which are important for maintaining ion and 

volume regulation (Abbott et al., 2006).   

 

Recently, there has been a focus on expanding our understanding of the BBB in the context of 

communication with neurons.  There are coordinated interactions that exists between neurons, 

astrocytes, and pericytes that are essential for the health and function of the central nervous 

system, referred to as the neurovascular unit (NVU; Hawkins & Davis, 2005).  In adulthood, the 

NVU is formed by astrocytic endfeet and pericytes in close proximity to blood vessels (Saunders 

et al., 2013).  Decreases in blood vessel density result in neuronal loss (Bell et al., 2010) and 

within the PVN this loss could potentially result in a wide range of diseases and disorders 

(Quaegebeur et al., 2011). 
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Figure 1.1. Image of blood vessels, pericytes and astrocytic endfeet in the mouse brain.  
High magnification of a blood vessel (green), surrounded by a pericyte (red) and ensheathed 
with astrocytic endfeet (blue). 
 
 
Many assume that the BBB is uniform throughout the brain; however, markers for the BBB in rat 

endothelial cells show differential expression between venules and capillaries as well as 

between capillaries themselves (Saubamea et al., 2012).  Some brain regions, such as the 

circumventricular organs (CVO), do not have a typical BBB.  It is frequently stated that these 

regions lack a BBB (Norsted et al., 2008), but this is likely misleading.  There are differences in 

vascular permeability to dye extravasation among the CVO (Morita & Miyata, 2012).  One 

subset of CVOs had different vascular permeability for both low- and high-molecular-mass 

molecules than the others.  Furthermore, all CVOs have a decrease in permeability compared to 

peripheral organs, indicating some maintenance of barrier function (Morita & Miyata, 2012).  

The CVOs have the ability to modulate their permeability.  A recent study showed that changes 

in feeding state, such as fasting, increased permeability in a CVO known as the median 
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eminence (Langlet et al., 2013).  Therefore, there is much work to be done to look at the BBB in 

a region-dependent manner and how it can vary.   

 

The BBB can be modulated and its breakdown has been implicated in disease onset and 

progression (Dalkara et al., 2011; Gosselet et al., 2011; Hawkins & Davis, 2005; van Sorge & 

Doran, 2011).  During inflammation, tight junctions can open, increase BBB permeability and 

contribute to edema (Abbott et al., 2006) while in patients with disease such as multiple 

sclerosis (Waubant, 2006), HIV, Parkinson’s disease and Alzheimer’s disease there is an 

associated BBB breakdown (Abbott et al., 2006).  During adulthood in mice, loss of pericytes 

diminished cerebral blood flow and increased BBB breakdown resulted in neuronal 

degeneration (Bell et al., 2010).  Spontaneously hypertensive rats exhibit increased BBB 

permeability allowing circulating angiotensin II to leak into the PVN (Biancardi et al., 2013). To 

determine if the physiological relevance of these findings, more context-dependent in vivo 

studies are needed.   

 

One factor that contributes to CVD is prenatal stress (Maccari et al., 2003; Baum et al., 2003).  

In rodent studies, the synthetic glucocorticoid dexamethasone (dex) has been suggested to 

mimic at least one component of maternal stress (O’Regan et al., 2004).  Prenatal exposure to 

dex has been shown to increase anxiety-like (Hossain et al., 2008) and depressive-like 

behaviors in adulthood (Roque et al., 2011).  There are multiple ways that the developing brain 

can be exposed to excess levels of glucocorticoids. First, the glucocorticoid metabolizing 

enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) is highly expressed in the 

placenta and fetus, and normally allows approximately 20% of maternal glucocorticoids to reach 

the fetus in an active form (Wyrwoll & Holmes, 2012; Zandi-Nejad et al., 2006). High levels of 

maternal stress, however, may decrease 11ß-HSD2 in the placenta and allow excess active 

glucocorticoids to reach the developing brain. Second, a low protein diet reduces 11ß-HSD2 
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increasing the ratio of active to inactive glucocorticoids reaching the developing fetus (Bertram 

& Hanson, 2002).  Next, glucocorticoids are administered during early gestation (5-6 weeks) to 

mothers whose children are at high risk for congenital adrenal hyperplasia to prevent 

ambiguous genitalia if the fetus is female (Vos & Bruinse, 2010).  Finally, the synthetic 

glucocorticoid dex (Liggins & Howie, 1972) has been administered since 1972 prior to preterm 

delivery to promote lung development and is currently administered in 12% of pregnancies 

(Damsted et al., 2011; Karemaker et al., 2008).  Dex has high glucocorticoid receptor (GR) 

activity, low mineralocorticoid receptor activity, and a 90% bioavailability that peaks in plasma 

within 2 hours (Damsted et al., 2011).  Concerning 11ß-HSD2, dex is a poor substrate and 

therefore not metabolized or affected by it (Holmes et al., 2006; Zandi-Nejad et al., 2006).  

While another synthetic glucocorticoid betamethasone has become the suggested standard 

(Lee et al., 2008), the key is that past, present and future patients have exposure to excess 

glucocorticoids during prenatal development. Therefore, increased glucocorticoids can and do 

reach the fetus, and impact normal development with long-lasting consequences for humans 

although the mechanisms are not well understood. 

 

Prenatal stress has been implicated in causing long-term functional consequences such as 

depression-like behavior (Bale, 2005), hypertension (Levitt et al., 1996) and in humans 

alterations in HPA axis function (Wyrwoll & Holmes, 2012). More specifically, prenatal stress in 

rodents alters GR expression in the hippocampus, elevates levels of basal corticosterone (Levitt 

et al., 1996) and increases CRH mRNA within the PVN (Welberg et al., 2001).  In humans, 

neonatal dex treatment blunts the cardiovascular stress response in children (Karemaker et al., 

2008), but it is unknown if blood vessels in the PVN are also affected.  If so, this could be a 

potential mechanism for dysfunction.  
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Glucocorticoids have been proposed to underlie adult disorders like depression (Wyrwoll & 

Homes, 2012) and at the level of the PVN results in HPA dysregulation (Levy & Tasker, 2012).  

Steroid hormones, like glucocorticoids, transmit extracellular signals into changes in gene 

activity (DeFranco, 1997).  Glucocorticoids and dex bind to GR, and when the complex forms 

can then bind specific DNA sequences and trans-activate particular genes (reviewed in Forster 

et al., 2005).  Glucocorticoids provide negative feedback for HPA axis regulation.  This occurs 

through GR binding to negative glucocorticoid response element (nGRE) sites on the promoter 

of the proopiomelanocortin gene, which represses ACTH (Reviewed in Heitzer et al., 2007).   

 

Concerning the vasculature, excess glucocorticoids modify the molecular composition of the 

BBB in vivo (Malaeb et al., 2007; Sadowska et al., 2009) and in vitro (Forster et al., 2005; Gu et 

al., 2009).  Dex inhibits neovascularization (Nakamura et al., 1992) and alters the BBB by 

increasing tight junction proteins (Forster et al., 2005; Malaeb et al., 2007; Sadowska et al., 

2009).  After dex administration, BBB permeability rapidly decreases (Gu et al., 2009; Hedley-

Whyte & Hsu, 1986). There is an increase in mRNA synthesis for the tight junction protein 

occludin in the presence of glucocorticoids. This is due to the presence of a putative GRE in the 

occludin promoter (Forster et al., 2005).  Another tight junction protein claudin-5 in cell culture 

increases promoter activity and mRNA levels in response to dex (Burek & Forster, 2009).  Dex 

treatment of brain endothelial cells increases expression of the drug efflux transporter P-

glycoprotein in a development-dependent manner (Iqbal et al., 2011).  Prenatal dex also 

changes the vascular area fraction in the hippocampus while increasing it in the amygdala 

(Neigh et al., 2010).  Therefore, glucocorticoids can impact components of the BBB and blood 

vessel density but have not been studied in the context of the PVN.  These findings may provide 

a novel mechanism related to the development of MDD and CVD as observed in humans.   
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To examine the dense PVN vasculature and whether it is susceptible to changes, Chapter 2 

focuses on the postnatal blood vessel development of the PVN in the mouse.  In addition, mice 

lacking functional GABAB receptors were also studied and showed a decrease in vascular 

density providing evidence of vascular regulation for this region.   

 

In trying to identify potential markers of angiogenesis, Chapter 3 examines endocan using 

recently developed monoclonal antibodies.  Instead of being a marker for angiogenesis, 

immunoreactive endocan was present globally throughout the blood vessels in the brain.  This is 

the first study to identify endocan in a non-disease state and suggests endocan is normally 

present within the brain.  Also, prior perfusion with fluorescein isothiocyanate (FITC) prevents 

endocan-immunoreactivity (ir) and provides a novel method for identifying non-functional blood 

vessels.   

 

To determine if excess glucocorticoids during development impacts the vascular network in the 

PVN, pregnant mice were treated with dex (E11-17) and their offspring were examined at P20 

and P50.  For both males and females there was a significant decrease in blood vessel density 

and an increase in extravascular FITC leakage and desmin immunoreactive (ir) pericyte 

coverage indicating a disrupted BBB at P20 within the PVN in Chapter 4.  To establish if these 

were transient or maintained into adulthood, Chapter 5 examined blood vessel density, BBB 

competency, GFAP-ir astrocytes and desmin-ir pericytes within the PVN.  There was a female-

specific decrease in GFAP-ir in dex-treated females and an increase in desmin-ir in dex-treated 

males.  However, there were no differences in density or BBB competency observed at P50.  

Therefore, prenatal exposure to excess glucocorticoids impacted the vasculature within the PVN 

in a sex-specific manner.  In addition, both male and female mice exposed to excess 

glucocorticoids during prenatal development also displayed an increase in depression-like 

behavior demonstrating there are long-lasting behavioral consequences.  
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Overall, the work presented in this dissertation demonstrates that in addition to changes in 

neurons, PVN blood vessels are also regulated by GABA and glucocorticoids. 

 

 
 
Figure 1.2. Proposed model of postnatal blood vessel development along with alterations 
due to changes during embryonic development.  Neurons within the paraventricular nucleus 
of the hypothalamus (PVN) migrate laterally from the proliferative zone of the third ventricle (3V) 
with age followed by a postnatal angiogenic period that increases the blood vessel density by 
40% (A).  Changes in neuronal migration during development may impact the postnatal 
angiogenic period (B) and subsequently change in the vascular network (green lines) and blood-
brain barrier in adulthood (C).  
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CHAPTER 2. THE VASCULATURE WITHIN THE PARAVENTRICULAR NUCLEUS OF THE 

HYPOTHALAMUS VARIES AS A FUNCTION OF DEVELOPMENT, SUB-NUCLEAR 

LOCATION, AND GABA SIGNALING 

 

 

Overview 

 

The paraventricular nucleus of the hypothalamus (PVN) is a cell group that plays important roles 

in regulating sympathetic vasomotor tone, food intake, neuroendocrine and autonomic stress 

responses and cardiovascular function. The developing PVN is surrounded by neuronal 

elements containing, and presumably secreting, gamma-aminobutyric acid (GABA). The 

vasculature of the adult PVN is notably denser than in other brain regions or in the PVN during 

perinatal development. To characterize the postnatal angiogenic process in mice, blood vessels 

were analyzed at P8, 20 and 50 in rostral, mid, and caudal divisions of the PVN in males and 

females. Vascular changes relative to disruption of the R1 subunit of the GABAB receptor were 

evaluated at P8 and P20. For defined regions of interest within the PVN there were age 

dependent increases in blood vessel lengths and branching from P8 to 20 to 50 with the most 

notable increases in the middle region. Loss of GABAB receptors did not influence vascular 

characteristics at P8 in any region, but by P20 there was significantly (20%) less blood vessel 

length and branching in the mid-PVN region versus wild type. These findings suggest that the 

loss of GABAB signaling may lead to a late developing defect in angiogenesis.  The loss of 

vascularity with defective GABAB signaling suggests that neurovascular relationships in the PVN 

may be an important locus for understanding disorders of the hypothalamic-pituitary-adrenal 

axis with potential impact for psychiatric mood disorders along with other comorbid disorders 

that may be regulated by cells in the PVN. 
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Introduction 

 

The paraventricular nucleus of the hypothalamus (PVN) is critically involved in regulating a 

number of homeostatic and behavioral functions.  These include stress responses, energy 

balance, as well as autonomic nervous system regulation and neuroendocrine functions 

(Swanson & Sawchenko, 1983; Ferguson et al., 2008).  Neurons located within the PVN have 

been characterized as containing a number of neuropeptides including corticotropin-releasing 

hormone (CRH), oxytocin (OT), thyrotropin-releasing hormone (TRH), and arginine vasopressin 

(AVP; Armstrong et al., 1980; Ford-Holevinski et al., 1991; Swanson & Sawchenko, 1983; 

Simmons & Swanson, 2009).  Receptors for gamma aminobutyric acid (GABA), estrogens, 

androgens and glucocorticoids are also expressed throughout the brain and heavily within the 

PVN (Mitra et al., 2003; Lund et al., 2004, Bingham et al., 2006; McClellan et al., 2010).  

Individually and collectively these cell types and expressed receptors distinguish extensive 

cellular heterogeneity in the PVN.     

 

Brain nuclei are characterized by the clustering of neurons into groups, which is the 

predominant organization for the hypothalamus. The PVN has a unique three-dimensional 

clustering of cells adjoining the dorsal portion of the third ventricle (Simmons & Swanson, 2009). 

Interestingly, the PVN can also be characterized by its dense vascularization (Ambach & 

Palkovitz, 1974; van den Pol, 1997).  While this dense vascular matrix has been known for 

some time (e.g. Finley, 1938), its development and function has not been well characterized.  

One report using male rats indicated that the extensive vascularization occurs during postnatal 

development and may differ by region within the PVN (Menendez & Alvarez-Uria, 1987).  The 

development of PVN vascular density has not been investigated in other species to our 

knowledge.  The importance of examining multiple species is underscored by the several well-

characterized differences in neuronal organization for the PVN between rats and mice (Kádár et 
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al., 2010; Biag et al., 2012). Given the potential that vascular developmental processes are 

susceptible to alterations, the current study examined the vascular development in the mouse 

PVN in the context of a disruption of GABA signaling as described below.  

 

In adulthood, GABA is the major inhibitory neurotransmitter throughout the brain, however, 

during development GABA is usually excitatory and often morphogenetic (McClellan et al., 

2006, 2008, 2010; Davis et al., 2002).  Heterodimeric G protein coupled GABAB receptors have 

been shown to be important for appropriate development of brain cytoarchitecture, including 

several hypothalamic components (McClellan et al., 2006, 2008).  Recent studies have shown 

that loss of GABA signaling within the PVN through the GABAB R1 leads to a decrease in levels 

of immunoreactive brain-derived neurotrophic factor (BDNF; McClellan et al., 2010) and region-

specific differences in immunoreactive CRH levels (Stratton et al., 2011).  In addition, mice 

lacking a functional GABAB receptor show significant alterations in the locations of cells 

containing immunoreactive estrogen receptor alpha and neuronal nitric oxide synthase (nNOS; 

McClellan et al., 2010).  Other developmental events are more dependent on GABAA signaling 

(chloride channel) rather than GABAB signaling, such as the migration of neurons containing 

gonadotropin releasing hormone (GnRH) from the nasal compartment into the brain (Tobet et 

al., 2001).   

 

The current study examined the postnatal development of the vasculature within the PVN in 

mice.  Rostral-to-caudal analysis showed differences in vascular density within the PVN that 

increased strongly in the second postnatal week.  Finally, mice lacking a functional GABAB 

receptor showed a decreased blood vessel density most strongly within the mid region of the 

PVN.    
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Materials and Methods 

 

Animals 

All mice were bred on a C57BL/6J background.  GABAB R1 subunit disrupted mice were 

generated through the insertion of a gene encoding β-galactosidase into the coding region of the 

R1 subunit (Prosser et al., 2001; McClellan et al., 2008).  Mice were maintained in plastic cages 

with aspen bedding (autoclaved Sani-chips, Harlan Teklad, Madison, WI, USA) in the Painter 

Building of Laboratory Animal Resources at Colorado State University.  Food (#8640, Harlan 

Teklad, Madison, WI, USA), tap water and environmental enrichment were provided ad libitum 

in a 14/10h light/dark cycle.  Procedures for animal care and handling were approved by, and 

conducted in accordance with, the Colorado State University Institutional Animal Care and Use 

Committee guidelines. 

 

The day of birth was designated postnatal day (P)0.  Mice were deeply anesthetized by inhaling 

isofluorane (Vet One).  Brains for analysis were removed and immersion fixed with 10 ml (P8) or 

20 ml (P20) 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4) overnight.  Brains were 

changed into 0.1M phosphate buffer for storage at 4°C prior to sectioning and processing for 

immunohistochemistry.  Body weights were measured and sex determination was confirmed by 

PCR analysis for the SRY gene on the Y chromosome.  Mice were genotyped for the GABAB R1 

knockout allele using a standard Taq polymerase PCR kit (Qiagen, Valencia, CA).  

Animals per group are as follows:  n=3 (P8 female KO, P8 male KO, P20 male KO) and n=4 

(P8 female WT, P8 male WT, P20 female WT, P20 male: WT, P20 female KO). 
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Immunohistochemistry 

Brains were embedded in 5% agarose and 50µm coronal sections were cut using a vibrating 

microtome (Leica VT1000S) at 4°C.  Free-floating serial sections were processed as previously 

reported (Davis et al., 2002; Tobet et al., 1996) with slight modifications.  Briefly, sections were 

collected in 0.05M phosphate-buffered saline (PBS), pH 7.5 and excess unreacted aldehydes 

were neutralized in 0.1M glycine for 30 minutes followed by 0.5% sodium borohydride for 15 

minutes.  Sections were washed in PBS then incubated in a PBS blocking solution (5% normal 

goat serum (NGS), 0.5% Triton X-100 (Tx), and 1% hydrogen peroxide) for at least 30 minutes.  

Sections were then incubated in primary antiserum directed against platelet endothelial cell 

adhesion molecule (PECAM also known as CD31, 1:30; BD Biosciences, San Jose, CA) in 1% 

BSA and 0.5% Tx.  Sections were incubated for 2 nights at 4°C in primary antisera.  Sections 

were then washed at room temperature with 1% NGS and 0.02% Tx in PBS.  Sections were 

incubated for 2 hrs in a secondary biotin conjugated donkey anti-rat antiserum (1:1000; Jackson 

Immunoresearch, West Grove, PA) in PBS containing 1% NGS and 0.32% Tx.  As a tertiary 

reaction, sections were incubated in a Vectastain reagent (3µl/ml solutions A and B - Vectastain 

ABC Elite kit; Vector Laboratories, Burlingame, CA) at room temperature for 1 hr. After 1 hr of 

washing in Tris-buffered saline (pH 7.5), reaction product was developed over 5min in Tris-

buffered saline containing 0.025% diaminobenzidine, 0.02% nickel, and 0.02% hydrogen 

peroxide. 

 

Analysis 

Sections were viewed and images digitized using an Olympus BH2 microscope with an Insight 

QE digital camera in Spot Advanced Software.  Using a 40x objective, 300µm x 224 µm serial 

bilateral images were collected throughout the entire PVN.  Images were processed to improve 

contrast using Adobe Photoshop (version CS for Macintosh). Total blood vessel length and the 
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number of branches were used to characterize the vasculature in each region of interest either 

within the PVN or in a lateral cortical control region.  Branch points were manually counted and 

a bilateral average was calculated for each distinct PVN region (rostral, mid, and caudal).  There 

was an average of 2 sections per region with a range of 1 to 3.  There was no consistency in an 

increase or decrease in number of sections for a specific age, sex or genotype.  For blood 

vessel length, images were light corrected (Image J, version 1.43u), analyzed for length using 

Angiogenesis Tube Formation (Metamorph, version 7.7.0.0, Molecular Devices, Inc.)  For each 

animal both sides of the PVN and parietal cortex were quantified in each section. For each 

region a bilateral average was generated (rostral, mid, caudal) and the average value was taken 

for analysis.  Statistical significance was determined by ANOVA as sex X genotype (wild type 

vs. knock out) X age (P8 vs. P20) X region as a repeated measure using SPSS software (SPSS 

Inc., Chicago, IL.).  Values are reported as mean + SEM and p < 0.05 was considered 

significant.   

 

 

Results 

 

A few days after birth (P4) the vascular pattern of the PVN was similar in density to the 

surrounding hypothalamus and then proceeded to expand over the next 3 weeks as shown in 

females (Fig. 2.1A-E).  Even approximately one week after birth (P8) the vasculature of the PVN 

was difficult to distinguish from the surrounding hypothalamus (Fig. 2.1B).  However, by P12 

there was a discernible increase in the vasculature within the PVN compared to surrounding 

brain regions (Fig. 2.1C).  This increase in blood vessel density was expanded by weaning at 

P20 (Fig. 2.1D) and maintained past puberty into young adulthood on P50 (Fig. 2.1E).   
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Since there was a visible increase in blood vessel density within the PVN throughout 

development, we quantified two aspects of this density, vascular length and branching, 

throughout the rostral (Fig. 2.1F), mid (Fig. 2.1G), and caudal (Fig. 1H) aspects of the nucleus.  

The vascular pattern shown in a representative female clearly differed from rostral-to-caudal 

and the densest region was in the middle of the Nissl-defined nucleus at P12 (Fig 1G).  There 

was a notable disparity in the most caudal region where the vasculature within the nuclear 

pattern discernible by Nissl-stain was not notably denser than in the surrounding hypothalamus 

(Fig. 1H).    

 

Through development, there was an increase in blood vessel lengths within the PVN. Within the 

rostral, mid and caudal regions, collectively, there were notable increases in blood vessel length 

on P20 compared to P8 for both males and females (Fig. 2.2; F(1,19) = 136.7 p < 0.001).  On 

P20, there was a significant 30% greater blood vessel length in the mid region as compared to 

the rostral and caudal (F(2,13) = 23.7, p < 0.001).  In mice lacking a functional GABAB receptor, 

there was a significantly greater blood vessel length within the total PVN on P20 as compared to 

P8 (P < 0.05).  However, the mid region of the KO did not have the same increased level of 

blood vessel lengths in the mid region on P20 as observed in WT (Fig. 2.2).  There was 20% 

less blood vessel length within the mid region in GABABR1 KO mice as compared to WT 

(F(2,13)=4.95, p < 0.05).  This contrasts with a non-significant 13% decrease rostrally and a 

slight 4% increase caudally. This suggests that ineffective GABAB signaling may have had an 

impact on the postnatal vascular pattern within the PVN.     

 

There was an apparent decrease in blood vessel density at P20 in mice lacking a functional 

GABAB receptor (Fig. 2.3B) compared to wild type (Fig. 2.3A).  Blood vessel branch points were 

counted as another measure of vascular patterning at P20 between male and female wild type 

versus mice lacking a functional GABAB receptor (Fig. 2.3C).  There were a greater number of 
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blood vessel branch points in the mid region compared to the rostral or caudal regions (F(2,10) 

= 4.8, p < 0.05).  Mice lacking a functional GABAB receptor had significantly less blood vessel 

branching within the mid region as compared to WT (F(1,10) = 3.4, p < 0.05).  Results for 

branch points complemented the data for total blood vessel lengths.  There were no significant 

differences in either parameter by sex. 

 

To determine if blood vessel density was only altered locally or was impacted more globally, an 

identically sized region of interest was defined and analyzed in the parietal cortex (CTX) in the 

same sections (Fig. 2.4A-D).  For CTX, there was a small (~10%), but significant, overall 

decrease in blood vessel length in both male and female mice lacking functional GABAB 

receptors (Fig. 2.4D) compared to male and female wild type (Fig. 2.4B; F(1,10) = 27.9, p < 

0.01).  

 

In addition to impacting the blood vessel density within the PVN, both male and female 

GABABR1 KO mice were 25% lighter when weighed prior to sacrifice on P20 with no evidence 

of a sex difference (WT = 8.1+ 0.37 (n=8), KO = 6.03 + 0.47 (n=7), p < 0.05) as previously 

observed (Prosser et al., 2001).  There was no difference in body weight at P8 for sex or 

genotype (WT = 4.4 + 0.21 (n=8), KO = 4.4 + 0.37 (n = 6)).    

 

 

Discussion 

 

The PVN contains a number of different neuronal phenotypes that are critical for regulating 

many important functions that range from initiating flight or fight responses to maintaining 

homeostasis (Swanson & Sawchenko, 1983; Ferguson et al., 2008).  The current study 

characterizes the development of the vasculature within the PVN in C57BL/6 mice. There is a 
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postnatal angiogenic period within the PVN that results in increased blood vessel density that is 

maintained into adulthood. Importantly, this increase is likely regulated by neural factors such as 

GABA.  PVN vasculature was much less developed in mice in which GABAB signaling was 

deficient. Such regulated changes in vascular patterning may lead to altered function in 

adulthood that can be traced back to PVN function.   

 

PVN vasculature comparison: Rats versus Mice 

A number of studies have characterized the dramatic blood vessel density within the adult PVN 

(e.g. van den Pol, 1997).  In rats, there are 3-fold more blood vessels in the PVN (van den Pol, 

1997) than in other brain regions.  Increases in PVN vascular density have been noted during 

postnatal development in rats and differences in density were observed as a function of location 

within the nucleus rather than strictly aligning with magnocellular and parvocellular divisions 

(Menendez & Alvarez-Uria, 1987). This is consistent with results of the current study in mice 

where there was a postnatal increase in blood vessels, specifically the mid region, of the PVN.  

Though mice do not have distinct magnocellular/parvocellular divisions as in rats, the mid region 

does contain more neurons compared to rostral or caudal (Biag et al., 2012).      

 

As a number of characteristics differ between rats and mice (Bonthuis et al., 2010), so too are 

their differences in PVN vascular development. Rats were reported to have a dramatic increase 

in blood vessel density (5 times) in the PVN on the day of birth that decreased quickly by P2 

(1.5 times).  This was followed by a more persistent increase that resulted in a final 3-fold 

difference compared to other brain regions (Menendez & Alvarez-Uria, 1987).  Based on the 

results of the current study, mice do not have an initial increase followed by a decrease in blood 

vessel density around postnatal day 2 (Menendez & Alvarez-Uria, 1987) suggesting the factors 

responsible for the postnatal angiogenic period in mice that starts around P8 may be delayed 

compared to the expression in rats.     
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Potential Consequences 

The physiological roles of this postnatal increase in blood vessel density within the PVN remain 

unknown.  It has been suggested that the greater vascularization of the PVN does not lead to a 

high basal metabolic capacity of the neurons (Badaut et al., 2000).  The level of blood flow 

through the PVN is similar to surrounding brain regions even though related to other regions it 

has a high vascular network that is hypothesized to serve as a large reserve capacity for blood 

flow (Badaut et al., 2000).  However, significantly fewer blood vessels within the PVN as seen in 

GABABR1 KO mice may reduce accessibility to oxygen and nutrients and impact a neurons 

ability to effectively relay its metabolic needs (Gyurko et al., 2002).  It has been hypothesized 

that the vast blood vessel network of the PVN may be used to detect plasma osmotic pressure 

by magnocellular neurons (Badaut et al., 2000) that are abundant in the mid region in mice 

(Biag et al., 2012).  A decrease in vasculature may result in PVN neurons not being able to 

provide proper feedback resulting in dysfunction.  It is unclear whether other mechanisms 

altered in the GABABR1 KO mice may be responsible for this decrease in blood vessel 

development.  However, examining the development of the PVN from neuronal to vascular may 

provide insight to function as well as help delineate dysfunction.   

 

In the current study the loss of GABAB function through deletion of the R1 subunit resulted in 

decreased vascular density within a restricted portion of the PVN and a region of the parietal 

cortex.  For the PVN, it is notable that this decrease in blood vessel density was spatially 

restricted to the mid region, which has the densest neuronal packing viewable by Nissl-stain 

(Biag et al., 2012).  Changes in cell position and the level of protein expression in a region-

specific manner have been observed in mice lacking a functional GABAB receptor (McClellan et 

al., 2010; Stratton et al., 2011).  GABA modulates immunoreactive CRH specifically in the 

rostral PVN based on GABABR1 KO female mice having increased levels of immunoreactive 

CRH compared to controls (Stratton et al., 2011).  For the central, or mid PVN, GABABR1 KO 
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mice had immunoreactive nNOS that was more widely distributed spatially than in controls 

(McClellan et al., 2010).  Interestingly, there has been no indication of an influence of genetic 

disruption of nNOS itself on neuronal or vascular characteristics in the PVN (unpublished 

observations) in mice for which the loss of NOS activity is complete (Gyurko et al., 2002). Since 

the mid region of the mouse houses the majority of CRH, OT, AVP, TRH and somatostatin 

neurons as compared to the rostral or caudal regions (Biag et al., 2012), changes in vascular 

characteristics may alter their ability to respond properly to signals from the periphery.   

 

Decreases in blood vessel density in the cortex of GABABR1 KO mice show the potential global 

importance of the neurovascular relationship.  These mice are lighter than wild type and have 

changes in reproduction (Catalano et al., 2005), altered glucose homeostasis (Bonaventura et 

al., 2008), develop generalized epilepsy (Prosser et al., 2001), demonstrate an increase in 

anxiety-like behavior (Jacobson et al., 2007; Mombereau et al., 2005), and show 

antidepressant-like behavior (Mombereau et al., 2005).  Whether these are direct or indirectly 

tied to changes in brain vascular function remains to be determined.     

 

GABA impacts the second angiogenic period 

The initial vascular development of the PVN was not disturbed due to altered GABAB signaling.  

On P8, there were no significant differences for blood vessel lengths or the number of branch 

points between the Nissl-defined PVN in the rostral, mid or caudal region of the PVN compared 

to the surrounding hypothalamus.  This might suggest that the most important period for GABAB 

signaling is during the postnatal period when vessel expansion normally begins.  However, it is 

too early to rule out fetal antecedent events that could still play important roles. Cells containing 

estrogen receptor alpha, nNOS and BDNF are already disrupted to differing extents at birth 

(McClellan et al., 2010) and malfunctions in these cells (or others) may interact with specific 

angiogenic factors selectively at the later time points. Studies are needed to examine changes 
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in factors known to influence vascular development and plasticity, such as vascular endothelial 

growth factor, to shed light on why GABABR1 KO mice do not undergo a robust angiogenic 

period as compared to wild type.    

 

In summary, the results of the current study show a progressive postnatal angiogenic period 

with the greatest increase in blood vessel density occurring in the mid region in the mouse PVN. 

In addition, the data suggest that the loss of GABAB signaling may lead to a late developing 

defect in PVN angiogenesis. The relative decrease of vascularity with defective GABAB 

signaling suggests that neurovascular relationships in the PVN may be an important locus for 

understanding disorders of the hypothalamic-pituitary-adrenal axis with potential impact for 

mood disorders and other comorbid disorders with ties to PVN functions, including obesity and 

cardiovascular disease (Brunton, 2010). 
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Figure 2.1. Blood vessels within the paraventricular nucleus of the hypothalamus (PVN) 
across development and region. Digital images in females (A-E) show that during early 
postnatal development, on P4 (A) and P8 (B), the blood vessel pattern was indistinguishable 
from the surrounding regions.  By P12 (C) there was a dramatic increase in blood vessel density 
within the PVN compared to the surrounding regions.  On P20 (D) and into young adulthood on 
P50 (E), the increase in vasculature was maintained. Representative digital images (F-G) of 
50µm sections from a P12 female illustrate that the rostral (F) and mid (G) PVN were dense in 
neuronal elements (Nissl-stain) and blood vessels (PECAM immunoreactive) compared to 
surrounding brain regions.  For the caudal region (H) of the PVN, the density of neuronal 
elements easily illuminates the nucleus, but the vascular density was more similar to the 
surrounding hypothalamus.  The scale bar (100µm) shown in lower left corner panel A applies to 
panels A-E.  The scale bar (200µm) in the lower left corner of panel F applies to panels F-H. 
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Figure 2.2. Changes in total length of blood vessels as a function of age, sex, 
paraventricular nucleus of the hypothalamus (PVN) region and GABAB receptor function.  
The graph illustrates changes in total length of blood vessels as a function of age, sex, PVN 
region, and GABAB receptor status.  For WT, there were significantly greater blood vessel 
lengths in rostral, mid, and caudal regions at P20 as compared to P8 (p < 0.05).  On P20, there 
was also a significantly greater blood vessel length in the mid region of the PVN as compared to 
the rostral or caudal regions (p < 0.05).  Mice lacking a functional GABAB receptor had 
significantly less blood vessel length in the mid region compared to wild type (p < 0.05).  There 
was no significant difference in total blood vessel length on P8 for genotype or PVN region. 
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Figure 2.3. Changes in blood vessels density in the paraventricular nucleus of the 
hypothalamus (PVN) as a function of GABAB receptors. Images (A-B) show a representative 
mid PVN region in wild type (A) and in mice lacking a functional GABAB receptor (B) on P20.  
Matched sections using immunoreactive platelet endothelial cell adhesion molecule (PECAM) to 
visualize blood vessels show a decrease in blood vessel density for mice lacking functional 
GABAB receptors compared to wild type.  The graph (C) shows on P20 there was significantly 
greater blood vessel branching in the mid region as compared to rostral or caudal for both 
males and females (p < 0.05).  Mice lacking a functional GABAB receptor had significantly less 
blood vessel branching in the mid region compared to wild type (p < 0.05). The scale bar 
(500µm) shown in lower left corner panel A applies to panels A-B. 
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Figure 2.4. Changes in blood vessel length in the mid region of the paraventricular 
nucleus of the hypothalamus (PVN) and the cortex (CTX) at the lateral edge of the section 
as a function of GABAB receptors. Images (A-D) on P20 show a decrease in blood vessel 
density for mice lacking functional GABAB receptors (C-D) compared to wild type (A-B) in mid 
sections of the PVN (A, C), and CTX (B, D). The graph (E) shows on P20, there were 
significantly less blood vessel lengths in mice lacking a functional GABAB receptor in the PVN 
and CTX compared to wild type (p < 0.05). In the mid region, the PVN contains more blood 
vessels than the CTX.  The decrease in blood vessel length in GABAB  R1 subunit KO mice was 
twice as great in the PVN compared to the CTX. The scale bar (100µm) shown in lower left 
corner panel A applies to panels A-D. 
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CHAPTER 3. ENDOCAN IMMUNOREACTIVITY IN THE MOUSE BRAIN: METHOD FOR 

IDENTIFYING NONFUNCTIONAL BLOOD VESSELS 

 

 

Overview 

 

Endocan is a secreted proteoglycan that has been shown to indicate angiogenic activity: 

remodeling in several tumor types in humans and mice. Serum endocan levels also indicate 

prognosis and has been proposed as a biomarker for certain cancers. Recently, monoclonal 

antibodies directed against mouse endocan have been developed allowing for further 

characterization of endocan function and potentially as a marker for angiogenesis through 

immunoreactivity in endothelial tip cells. The results of the current study show that endocan 

immunoreactivity in the mouse brain is present in blood vascular networks including but not 

limited to the cortex, hippocampus and paraventricular nucleus of the hypothalamus in 

C57BL/6J and FVB/N mice. Endocan immunoreactivity did not vary during postnatal 

development or by sex. Interestingly, after vascular perfusion with fluorescein isothiocyanate 

(FITC), endothelial cells positive for FITC were immunonegative for endocan suggesting FITC 

interference with the immunohistochemistry. A small number of FITC-negative blood vessels 

were endocan immunoreactive suggesting the identification of new blood vessels that are not 

yet functional. The current study shows that endocan is normally present in the mouse brain and 

prior vascular perfusion with FITC may provide a useful tool for identify newly forming blood 

vessels. 
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Introduction 

 

Endocan, previously known as endothelial cell-specific molecule-1 (ESM-1), was identified with 

its localization restricted to endothelial cells (Lassalle et al., 1996). Endocan is a secreted 

dermatan sulfate proteoglycan that has been suggested to promote angiogenesis (Chen et al., 

2012). Elevated levels of endocan mRNA negatively correlate with cancer survival rates and 

overexpression of endocan leads to tumor formation (Scherpereel et al., 2003; Depontieu et al, 

2012).  High endocan mRNA levels in human tumor tissue correlates with prognosis and is 

proposed to serve as a biomarker for inflammatory disorders and cancer development and 

continues to be investigated as a target for cancer therapy (Sarrazin et al., 2006).  Increased 

levels of endocan have been detected in the serum of sepsis patients (Sarrazin et al., 2006; 

Sarrazin et al., 2010; Scherpereel et al., 2003).  Overall, endocan has shown promise as an 

indicator of angiogenesis and disease progression.    

 

Endocan has also been studied in activated endothelial cells referred to as tip cells, which 

indicate newly forming blood vessels (Sarrazin et al., 2010, Del Toro et al. 2010). Endocan 

mRNA is upregulated on tumor-associated blood vessels and it is proposed that modification of 

endocan interactions with vascular endothelial growth factor receptors may inhibit tumor 

angiogenesis (Roudnicky et al., 2013).  However, beyond its detection in endothelial cells 

undergoing angiogenesis, the role of endocan is not well understood. 

 

To visualize and characterize endocan distributions, monoclonal antibodies were generated to 

study roles in angiogenesis, cancer, and other diseases. Antibody clones MEP14 and MEP19 

were generated against the C-terminus of human endocan and recognize both rat and mouse 

endocan. (Depontieu et al, 2012). The generation of these antibodies may provide a useful tool  
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to characterize changes in the distribution or levels of immunoreactive endocan under normal or 

disease states, and potentially its function.   

 

The goal of the current study was to use selective antibodies directed against endocan to study 

the developing blood vessel network within the paraventricular nucleus of the hypothalamus 

(PVN).  The PVN develops an unusually dense vasculature following a postnatal angiogenic 

period that occurs between postnatal (P) days 8-12 in the mouse (Frahm et al., 2012).  The 

current study examined endocan as a potential marker for angiogenesis, which within the PVN 

may be coordinated with the postnatal angiogenic period. 

 

In examining blood vessels and blood-brain barrier competency, several studies have utilized 

the small molecule dye fluorescein isothiocyanate (FITC).  When perfused through the 

vasculature, FITC accumulates in endothelial cell nuclei and binds covalently to cellular 

components (Miyata & Morita, 2011).  This allows for visualization of functional blood vessels 

and the ability to double or triple label for other proteins of interest in relevant vasculature.  

Extravascular FITC leakages can also indicate a compromised blood-brain barrier (Miyata & 

Morita, 2011).  Mouse brains were processed for endocan with or without prior vasculature 

perfusion of FITC.  

 

Overall, the current experiments demonstrated that immunoreactive endocan is present in a 

pattern that mirrors the vasculature throughout the brain only in certain mouse strains.  Prior 

vascular perfusion with FITC prevented detection of immunoreactive endocan.  Therefore, the 

use of FITC may provide a novel method to identify non-functional blood vessels using 

immunoreactive endocan as a marker.   
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Materials and Methods 

 

Animals 

Male and female mice were on a mixed C57BL/6JxS129xCBA background (Solomon et al., 

2012), or pure bred C57BL/6J or FVB/N backgrounds. The day of birth was designated P0.  For 

tissue collection, mice were anesthetized by ketamine (80 mg/kg) and xylazine (8 mg/kg) and 

transcardially perfused with heparanized PBS with or without FITC (ThermoFisher Scientific, 

MW 389.38) followed by 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4; modified from 

Miyata & Morita, 2011). Brains were removed, post fixed overnight, then changed into 0.1M 

phosphate buffer for storage at 4°C.  

 

Mice were maintained in plastic cages with aspen bedding (autoclaved Sani-chips, Harlan 

Teklad, Madison, WI, USA) in the Painter Building of Laboratory Animal Resources at Colorado 

State University. Food (#8640, Harlan Teklad, Madison, WI, USA) with filtered tap water and 

environmental enrichment was provided ad libitum in a 14/10h light/dark cycle.  Animal care and 

handling was in accordance with the Colorado State University Animal Care and Use 

Committee guidelines. 

 

Immunohistochemistry 

Tissue was processed as previously described (Frahm et. al., 2012) in an antigen retrieval 

immunohistochemical protocol.  Briefly, brains were embedded in 5% agarose and cut coronally 

into 50µm sections using a vibrating microtome (Leica VT1000S).  Free-floating serial sections 

were collected in 0.05M phosphate-buffered saline (PBS), pH 7.5.  Excess unreacted aldehydes 

were neutralized in 0.1M glycine followed by 0.5% sodium borohydride.  Sections were washed 

in room temperature PBS then were washed in sodium citrate (0.05 M, pH 8.6). The sections 

were then placed into sodium citrate buffer preheated to 80°C to promote antigen retrieval 
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(Dellovade et al., 2001). They were allowed to slowly come back to room temperature after 

which they were returned to PBS for additional washes.  Sections were washed in PBS then 

incubated in a PBS blocking solution (5% normal goat serum (NGS), 0.5% Triton X-100 (Tx), 

and 1% hydrogen peroxide).  Sections were then incubated in primary monoclonal antibodies 

directed against endocan (either clone MEP14 or MEP19, Lunginnov, Lille, France) or platelet 

endothelial cell adhesion molecule (PECAM also known as CD31, 1:30; BD Biosciences, San 

Jose, CA, USA).  All sections were incubated at 4°C overnight in primary antibodies.  Sections 

were then washed in room temperature with 1% NGS and 0.02% Tx in PBS.  Sections were 

incubated with the appropriate secondary antibodies for either biotin conjugated donkey anti-

mouse antibodies (1:2500; Jackson Immunoresearch, West Grove, PA), biotin conjugated 

donkey anti-mouse (1:1000; Jackson Immunoresearch) or Cy3 conjugated anti-mouse (1:200, 

Jackson Immunoresearch) in PBS containing 1% NGS and 0.32% Tx.  For brightfield, sections 

were incubated in a Vectastain reagent (3µl/ml solutions A and B - Vectastain ABC Elite kit; 

Vector Laboratories, Burlingame, CA) at room temperature.  After washing in Tris-buffered 

saline (pH 7.5), reaction product was developed in Tris-buffered saline containing 0.025% 

diaminobenzidine, 0.02% nickel, and 0.02% hydrogen peroxide. 

 

Data Collection 

Brightfield images were acquired using an Olympus BH2 microscope with an Insight QE digital 

camera in Spot Advanced Software. Fluorescent images were acquired on a Zeiss 510-Meta 

laser-scanning confocal microscope.  FITC fluorescence was imaged using a 488/543 nm 

bandpass filter and emission detected using a 505/530 nm bandpass emission filter.  Cy3 

fluorescence indicating endocan was imaged using a 488/543 nm bandpass filter and emission 

detected using a 585/615 nm bandpass emission filter.  Z-stacks were taken with 6 layers every 

3µm obtained at 40x magnification using oil immersion objectives. 
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Results 

 

Endocan immunoreactivity at postnatal day 12 

Brains at P12 were examined for immunoreactive endocan during the postnatal angiogenic 

period specific to the PVN (Frahm et al., 2012).  The distribution of immunoreactive endocan 

resembled the normal blood vessel pattern in the PVN, cortex (CTX) and Hippocampus (figure 

3.1).  Previous studies examining tumors showed that endocan mRNA correlated with newly 

forming blood vessels (Sarrazin et al., 2010, Del Toro et al. 2010).  However, the current 

findings suggest immunoreactive endocan is detectable within virtually all of the vasculature of 

the brain at P12 in FVB/N mice.   

 

Endocan immunoreactivity at postnatal day 20 

To determine if the distribution of immunoreactive endocan varied by age, brains from FVB/N 

(figures 3.2a-c in brightfield) and C57BL/6J  (figures 3.2d-g by immunofluorescence) mice were 

examined at P20.  These strains were selected because they are commonly utilized in our 

laboratory and others.  The distribution pattern of immunoreactive endocan again was 

consistent with general blood vessel patterns.  There was immunoreactive signal throughout the 

brain, although images are specifically provided for cortex (figure 3.2a,d), hippocampus (figure 

3.2b,e) and PVN (figure 3.2c, f) in C57BL/6J and FVB/N background mice. There was no 

labeling in the absence of primary antibody in control sections (figure 3.2g).   

 

Endocan immunoreactivity in FVB/N and C57BL/6J xS129xCBA mixed background mice at 

postnatal day 20 

We next determined endocan immunoreactivity at P20 in a C57BL/6J xS129xCBA mixed 

background mouse used in unrelated experiments due to a specific gene disruption (Solomon et 

al., 2012). C57BL/6JxS129xCBA mice not containing the altered allele were examined 
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alongside FVB/N mice.  The distribution of immunoreactive endocan was similar in the cortex, 

hippocampus and PVN in FVB/N mice (figure 3.3a-c) compared to C57BL/6J mice (figure 3.1a-

c).  Matched sections demonstrate there was no endocan immunoreactivity in the cortex, 

hippocampus or PVN (3.3d-f) of C57BL/6J xS129xCBA mice using MEP19.   

 

Prior vascular perfusion of FITC blocked Endocan immunoreactivity 

The perfusion of FITC allows for visualization of blood vessels and the localization of its 

extravascular leakage that likely indicates compromise of blood-brain barrier function (Miyata & 

Morita, 2011).  However, in C57BL/6J and FVB/N mice, vascular perfusion of FITC prior to 

application of antibodies directed against endocan blocked endocan immunoreactivity (figure 

3.4a, 3.4g).  Images in figure 4a and 4d show blood vessels labeled with FITC indicating 

functional blood vessels.  Only restricted blood vessels or blood vessels devoid of FITC 

contained endocan immunoreactivity (figure 3.4b, e). Confocal microscopy showed no overlap 

or colocalization between FITC and endocan (figure 3.4c, f).  Brightfield images also showed 

immunoreactive endocan in a much more restricted number of blood vessels (figure 3.4g, h).  

Labeling with antibodies against platelet endothelial cell adhesion molecule (PECAM), a protein 

also present in endothelial cells, was not impacted due to prior FITC perfusion (figure 3.4i).  

These studies suggest that vascular perfusion of FITC prior to endocan processing might 

identify developing blood vessels that are not yet functional. 

 

 

Discussion 

 

Elevated endocan has been observed in tumor endothelial cells in human glioblastomas arising 

from cell types such as astrocytes and oligodendrocytes (Maurage et al., 2009) and pituitary 

adenomas (Cornelius et al., 2012).  Endocan immunoreactivity has also been found in normal 
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human pituitary tissue specifically in endocrine cells, demonstrating that endocan is not limited 

to endothelial cells (Cornelius et al., 2012).  Previous studies have also identified endocan as a 

potential marker for angiogenesis (Sarrazin et al., 2010, Roudnicky et al., 2013).  However, the 

recent production of antibodies directed against endocan allows a greater sensitivity for 

visualizing its presence and distribution, particularly in the mouse brain.  Instead of being in a tip 

cell distribution, immunoreactive endocan was visualized in a global blood vessel pattern at P12 

and P20 in brains from C57BL/6J and FVB/N mice. This identification of endocan 

immunoreactivity in mouse brain endothelium calls for further examination of its potential 

function in mouse vasculature.  The presence of immunoreactive endocan in the endothelial 

cells of the brain vasculature may provide insight into the potential source of endocan detected 

in the serum of healthy humans and mice (Depontieu et al, 2012).  

 

Prior studies using northern blot and in situ hybridization analyses of mouse brain (Abid et al., 

2006) or human tissue (Lassalle et al., 1996) were unable to detect endocan. There are at least 

2 potential reasons for lack of mRNA when immunoreactive protein is found. First, the sensitivity 

of the mRNA methods may have been lower than the sensitivity of the immunohistochemistry 

with the new monoclonal antibodies used in the current study. Secondly, it is possible that since 

endocan is a secreted proteoglycan, that immunoreactive endocan in brain is accumulated from 

the circulation after synthesis in peripheral sites. However, the detection of immunoreactive 

endocan in vessels that likely were not exposed to vascular perfusion makes this less probable.  

In addition, endocan present in the brain vasculature may provide a source for releasable 

endocan that may diffuse away and regulate other distant processes (Sarrazin et al., 2010) 

opening a new avenue for investigation.  

 

The antibodies used in this study generated against endocan have been previously shown to 

detect immunoreactivity in C57BL/6J and 129Sv mice, but not BALB/c mice (Depontieu et al, 
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2012).  In the current study, there was a lack of endocan immunoreactivity in 

C57BL/6JxS129xCBA background mice.  Clearly, strain background will be important for future 

studies examining endocan immunoreactivity.   The MEP14 monoclonal antibody used in this 

study recognizes the 6 last C-terminus amino acids, identical in human, mouse and rats 

(Depontieu et al., 2012).  This antibody was selected because it has been shown that in the 

absence or mutation of these 6 amino acids MEP14 did not recognize the peptide while other 

clones did not show this specificity.  For both strains in which immunoreactive endocan was 

seen it was globally maintained in mouse endothelial cells within the brain.  Western blots 

further confirmed the specificity of this antibody because immunoreactive endocan was 

detectable in total brain but not in the pituitary (data not shown).  A previous study showed a 

dissimilar pattern to the findings presented in this study for endocan immunoreactivity.  In 

human brain tissue endocan was localized in neurons and not neuroglia or blood vessels 

(Zhang et al., 2012).  The antibodies utilized were generated by injecting purified recombinant 

human endocan protein into BALB/c mice, and does not indicate the specificity of their antibody. 

This suggests that these recently commercially available antibodies may be useful to further 

investigating the normal and disease state expression of endocan in a variety of tissues and 

cells types.  

 

In addition to visualizing endocan immunoreactivity in numerous contexts, endocan labeling in 

brains taken from mice perfused with FITC may provide a tool to visualize newly forming blood 

vessels.  There was an unexpected immunoreactive pattern in brains following vascular 

perfusion with FITC. Initially after finding poor immunolabeling, additional sections were retested 

with new antibody lots (graciously donated by Lunginnov).  Upon further experiments it became 

clear that only brains either from the C57BL/6J xS129xCBA background or perfused with FITC 

had this appearance.  Experiments comparing FVB/N and C57BL/6J xS129xCBA with or 

without FITC perfusion confirmed these findings.  Only non-FITC perfused brains from 
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C57BL/6J or FVB/N mice showed immunoreactive endocan.  A preliminary experiment 

attempted to block endocan labeling by adding FITC to the blocking step of a western blot.  

Although there was a decrease, it did not result in a total loss of labeling (data not shown).  To 

determine if FITC perfusion impacted the immunoreactivity of other proteins in endothelial cells, 

FITC brains were processed for immunoreactive PECAM.  The labeling of antibodies against 

PECAM was not altered due to FITC perfusion. Although the exact mechanism for the lack of 

endocan immunolabeling in FITC positive vasculature remains unknown, there is a strong 

potential benefit of this reliable finding. FITC labels and identifies blood vessels in which 

blood/perfusate can flow.  Only if the dye reaches the endothelial cell will they be stained. 

Endocan antibodies can recognize the proteoglycan, regardless of whether it is part of a 

functional blood vessel. Images acquired using confocal microscopy showed endocan-positive 

blood vessels connecting with FITC-positive blood vessels, with no colocalization. Therefore, 

vascular perfusion with FITC followed by examination of immunoreactive endocan may provide 

a tool for viewing nonfunctional blood vessels. 

 

Overall, immunoreactive endocan was detected abundantly in a pattern consistent with the 

majority of cerebral vasculature in the mouse brain.  At P12 and P20, C57BL/6J and FVB/N 

mice showed this distribution pattern, while immunoreactive endocan was absent in a C57BL/6J 

xS129xCBA mixed background.  Brains perfused with FITC only had endocan immunoreactivity 

where FITC was not present, perhaps indicating locations where blood vessels are not yet 

functional.  In conclusion, immunoreactive endocan provides another tool for examining cerebral 

vasculature and in the presence of FITC perfusion may also provide a tool to visualize newly 

forming blood vessels.   
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Figure 3.1. Immunoreactive endocan was distributed throughout the mouse brain at 
postnatal day 12.  There was a global blood vessel pattern of immunoreactive endocan that is 
exemplified by images from the cortex (a. CTX), hippocampus (b), and paraventricular nucleus 
of the hypothalamus (c. PVN).  Scale bar = 100µm. 
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Figure 3.2. Immunoreactive endocan was distributed throughout the brain in C57BL/6J 
background mice on postnatal day 20.  There was a global blood vessel pattern of 
immunoreactive endocan that is exemplified by images from the cortex (a, d; CTX), 
hippocampus (b, e), and paraventricular nucleus of the hypothalamus (c, f; PVN). 
Immunoreactivity was not detected in the absence of primary antibodies (g). Scale bar = 100µm 
for top images and 50µm for lower images. 
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Figure 3.3. Immunoreactive endocan was distributed throughout the brain in FVB/N but 
not mixed C57BL/6J /S129/CBA background mice on postnatal day 20. There was a global 
blood vessel pattern of immunoreactive endocan in the cortex (a. CTX), hippocampus (b), and 
paraventricular nucleus of the hypothalamus (c. PVN) of FVB/N, but no immunoreactivity in 
C57BL/6J /S129/CBA background mice (d-f). Scale bar = 100µm 
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Figure 3.4. Vascular perfusion of FITC allowed identification of cerebral vasculature, but 
blocked detection of endocan immunoreactivity. Images of FITC labeled blood vessels (a,d) 
show lack of colocalization with endocan (c,f). Immunoreactive endocan was only found in blood 
vessels devoid of FITC (b,e).  Vascular perfusion of FITC did not block detection of 
immunoreactive platelet endothelial cell adhesion molecule (i).  This procedure may reveal 
prefunctional blood vessels in the brain (g, h). Scale bar = 50µm for top images and 100µm for 
lower images. 
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CHAPTER 4. DEVELOPMENT OF THE BLOOD-BRAIN BARRIER WITHIN THE 

PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMIS: INFLUENCE OF FETAL 

GLUCOCORTICOID EXCESS 

 

 

Overview 

 

The blood-brain barrier (BBB) is a critical contributor to brain function. To understand its 

development and potential function in different brain regions, the postnatal (P) BBB was 

investigated in the mouse cortex (CTX), lateral hypothalamus (LH), and paraventricular nucleus 

of the hypothalamus (PVN). Brains were examined on postnatal days (P)12, P22 and P52 for 

BBB competency and for pericytes as key cellular components of the BBB demarcated by 

immunoreactive desmin. Glucocorticoid influences (excess dexamethasone; dex) during 

prenatal development were also assessed for their impact on the blood vessels within these 

regions postnatally.   At P12 there was significantly more extravascular leakage of a low 

molecular weight dye (fluorescein isothiocyanate) in the CTX than within hypothalamic regions. 

For pericytes, there were low levels of desmin immunoreactivity at P12 that increased with age 

for all regions. There was more desmin immunoreactivity present in the PVN at each age 

examined.  Fetal dex exposure resulted in decreased blood vessel density within the PVN at 

P20. In the CTX, dex exposure increased BBB competency, in contrast to the PVN where there 

was a decrease in BBB competency and increased pericyte presence.  Overall, unique 

alterations in the functioning of the BBB within the PVN may provide a novel mechanism for 

fetal antecedent programming that may influence adult disorders. 
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Introduction  

 

The vasculature of the brain differs from the periphery in several characteristics.  A key 

difference is the blood-brain barrier (BBB), which restricts access to the brain parenchyma 

through a complex network of tight junction proteins, proteoglycans, endothelial cells, basal 

lamina, vascular smooth muscle cells, pericytes and glial cells (Norsted et al. 2008).  As more 

research implicates the BBB in disease onset and progression (Gosselet et al. 2011; Daneman 

2012; Abbott & Friedman 2012), its development and function becomes a more important area 

of focus.  

 

Pericytes play a role in the development and integrity of the BBB.  Immunoreactive desmin 

provides a reliable biochemical marker of pericytes (Hellstrom et al. 1999). When pericytes are 

deficient (e.g., PDGF KO mice; Armulik et al. 2010) there is an improper astrocyte end-feet 

distribution and an increase in injected tracers present in brain parenchyma.  Neuronal 

degeneration resulting in memory impairment is preceded by pericyte loss (Bell et al. 2010). 

During disease states such as stroke, pericytes can migrate in to coordinate blood flow 

regulation, permeability of the BBB, and reestablishment of neurovascular unit (Liu et al. 2012).  

 

Although much BBB research focuses on the cerebral cortex (CTX), there is no a priori reason 

to assume that all other brain regions maintain the BBB under the same rules. For example, 

circumventricular organs maintain a more permeable BBB within the brain but vary in their 

permeability (Morita & Miyata 2012).  The current study focused on the paraventricular nucleus 

of the hypothalamus (PVN) that contains a 3-5 fold denser matrix of blood vessels than 

surrounding brain regions (Finley 1938; Ambach & Palkovits 1974; van den Pol 1982) and may 

play by different rules. The PVN houses neurons containing corticotropin-releasing hormone 

(CRH), arginine vasopressin and angiotensin that control physiological homeostasis, vasomotor 
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tone, and stress responses (Tobet et al. 2013). The vascular density arises postnatally and 

varies from rostral to caudal (Frahm et al. 2012). The greater density in the rostral and mid 

region corresponds with the general location of neuroendocrine neurons (Biag et al. 2012). 

Altering exposure of specific neurons to peripheral signals through a compromised BBB may 

contribute to various diseases and disorders (Quaegebeur et al. 2011). Within the PVN, 

decreases in BBB integrity might have effects amplified by the 3-fold greater vascular network 

(Goldstein et al. 2013). 

 

Prenatal glucocorticoid excess leads to long-term functional consequences in adulthood 

(reviewed in Harris & Seckl 2011; Tobet et al. 2013). At a cellular level, prenatal glucocorticoids 

alter glucocorticoid receptor expression in the hippocampus in adulthood (Levitt et al. 1996) and 

increase CRH levels within the PVN (Welberg et al. 2001).  Concerning the vasculature, 

prenatal glucocorticoid excess may decrease blood vessel density (Neigh et al. 2010; Vinukoda 

et al. 2010) and increase pericyte coverage (Vinukonda et al. 2010). A goal of the current study 

was to assess whether the dense blood vessel network in the PVN is impacted by fetal 

glucocorticoid excess.  

 

The current study characterized the postnatal development of the BBB and desmin-

immunoreactive pericytes in the CTX, lateral hypothalamus (LH) and PVN. Fetal exposure to 

dex resulted in enhanced BBB integrity in the CTX, while the same treatment resulted in 

decreased blood vessel density and BBB integrity within the PVN. The divergence of effect may 

be related to a selective increase in desmin-immunoreactive pericyte coverage in the PVN in 

offspring exposed to dex during pregnancy.   
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Materials and Methods 

 

Animals 

For experiments selectively examining BBB development, the mice used were from a mixed 

C57BL6/S129/CBA background (Solomon et al. 2012) and for experiments examining the 

influence of prenatal dex mice were from an FVB/N background.  Males and females were 

combined by genotype after analysis (ANOVA sex x treatment x region at P20 p > 0.50) 

indicated no significant differences by sex.  Mice were mated overnight and the day of a visible 

plug was designated as embryonic day 0 (E0).  Pregnant dams were injected with either the 

synthetic glucocorticoid dexamethasone (0.1 mg/kg, Sigma, Inc.; Hadoke et al. 2006; O’Regan 

et al. 2004) or vehicle once daily from E11-17. The day of birth was designated P0.  For tissue 

collection, mice were anesthetized using ketamine (80 mg/kg) and xylazine (8 mg/kg) and 

transcardially perfused with heparanized PBS (pH 7.4) containing fluorescein isothiocyanate 

(FITC, Thermoscientific, MW 389.4) followed by 4% paraformaldehyde in 0.1M phosphate buffer 

(pH 7.4; modified from Miyata & Morita 2011). To examine blood vessel density, a separate 

subset of mice was anesthetized by inhaling isofluorane (Vet One) and brains were removed 

and immersion fixed with 20 ml 4% paraformaldehyde in 0.1M phosphate buffer.  For all mice, 

brains were removed, post fixed overnight, then changed into 0.1M phosphate buffer for storage 

at 4°C. Body weights were measured and sex determination was made through direct 

inspection of the gonads.  There were at least 3 separate litters combined for analysis of each 

treatment.   

 

Mice were maintained in plastic cages with aspen bedding (autoclaved Sani-chips, Harlan 

Teklad, Madison, WI, USA) in the Painter Building of Laboratory Animal Resources at Colorado 

State University. Food (#8640, Harlan Teklad, Madison, WI, USA) with filtered tap water and 

environmental enrichment provided ad libitum in a 14/10h light/dark cycle.  Animal care and 
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handling was in accordance with the Colorado State University Animal Care and Use 

Committee guidelines. 

 

Immunohistochemistry 

Tissue was processed as previously described (Frahm et. al. 2012; 2013).  Briefly, brains were 

embedded in 5% agarose and cut coronally into 50µm thick sections using a vibrating 

microtome (Leica VT1000S).  Free-floating serial sections were collected in 0.05M phosphate-

buffered saline (PBS, pH 7.4).  Excess unreacted aldehydes were neutralized in 0.1M glycine 

for 30 minutes followed by 0.5% sodium borohydride for 15 minutes.  Sections were washed in 

PBS then incubated in a blocking solution (5% normal goat serum (NGS), 0.5% Triton X-100 

(Tx), and 1% hydrogen peroxide in PBS) for at least 30 minutes.  Sections were then incubated 

in primary antiserum directed against platelet endothelial cell adhesion molecule (PECAM also 

known as CD31, 1:30; BD Biosciences, San Jose, CA) or Desmin (1:200; DAKO) in 1% BSA 

and 0.5% Tx.  For desmin, sections were processed for antigen retrieval (Dellovade et al. 2001).  

In place of the standard processing steps prior to antisera application detailed above sections 

were washed in room temperature PBS for 15 min followed by a 1 h wash in sodium citrate 

(0.05 M, pH 8.6). The sections were then placed into sodium citrate buffer preheated to 80°C for 

30 min. They were then allowed to slowly come back to room temperature (approximately 30–

35 min) after which they were returned to PBS for an additional 15 min of washes.  All sections 

were incubated for 2 nights at 4°C in primary antisera.  Sections were then washed in room 

temperature with 1% NGS and 0.02% Tx in PBS.  Sections were incubated with the appropriate 

secondary antibodies for 2h for either biotin conjugated donkey anti-rat antiserum (1:1000; 

Jackson Immunoresearch, West Grove, PA), Cy3 conjugated anti-rabbit (1:200; Jackson 

Immunoresearch) or Cy3 conjugated anti-mouse (1:200; Jackson Immunoresearch) in PBS 

containing 1% NGS and 0.32% Tx.  For PECAM, sections were incubated in a Vectastain 
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reagent (3µl/ml solutions A and B - Vectastain ABC Elite kit; Vector Laboratories, Burlingame, 

CA) at room temperature for 1 hr. After 1h of washing in Tris-buffered saline (pH 7.5), reaction 

product was developed over 5min in Tris-buffered saline containing 0.025% diaminobenzidine, 

0.02% nickel, and 0.02% hydrogen peroxide. 

 

Analysis 

For blood vessel density, images were acquired for the PVN, LH and CTX using an Olympus 

BH2 microscope with an Insight QE digital camera in Spot Advanced Software.  The section 

with the densest vascular network was selected by an investigator blind to treatment group for 

each PVN region (rostral, mid, caudal) for analysis (Frahm et al. 2012).  Image representation 

for the regions selected for analysis (CTX, PVN, and LH) is provided in Figure 4.7. 

 

Total number of blood vessel branches and length were used to characterize the density in each 

region of interest containing the PVN.  For blood vessel length, images were light corrected 

(Image J, version 1.43u) then analyzed for length using Angiogenesis Tube Formation 

(Metamorph Software, version 7.7.0.0, Molecular Devices, Inc.).  Branch points were manually 

identified and counted using Image J (cell counter). Blood vessel width was quantified by 

dividing total area by total length. For Desmin and FITC, images were acquired on a Zeiss 510-

Meta laser-scanning confocal microscope.  FITC was imaged using a 488/543 nm bandpass 

filter and emission detected using a 505/530 nm bandpass emission filter.  Cy3 for Desmin was 

imaged using a 488/543 nm bandpass filter and emission detected using a 585/615 nm 

bandpass emission filter.  Z-stacks were taken with 6 optical sections taken every 3µm obtained 

at 40x magnification using an oil immersion objective.  FITC does not remain in blood vessels 

but rather accumulates in endothelial cell nuclei (Miyata & Morita 2011).  Therefore, to view the 

vascular network within the brain we compiled Z-stacks for analysis. Extravascular leakage was 

analyzed using open-source CellProfiler (available from the Broad Institute at 



 54 

www.cellprofiler.org).  Blood vessels were identified and a 10-pixel expansion was mapped from 

each blood vessel to create a mask to quantify leakage. This intensity was divided by FITC 

intensity within blood vessels to account for differences in perfusions. A representation of the 

CellProfiler analysis is provided in Figure 4.8.   

 

Because blood vessel density varies, final values were normalized to blood vessel area within 

the same section. For Desmin analysis, sections were measured for area of immunoreactive 

and additionally were normalized to blood vessel area using Metamorph software.  

Representative images for figures were normalized for optimal contrast in Adobe Photoshop 

(version CS for Macintosh).  Statistical significance was determined by 2-way ANOVAs: age x 

region for developmental studies and treatment x region for dex studies using SPSS software 

(version 21 for Macintosh, SPSS Inc., Chicago, IL).  In all cases region was considered as a 

repeated measure. This was followed by post-hoc comparisons based on Bonferroni correction.  

Values of p < 0.05 were considered statistically significant and are reported as mean + SEM.  

 

 

Results 

 

Age- and region-dependent changes in BBB competency 

The current study found changes in vasculature structure and extravascular leakage within the 

CTX, LH and PVN from P12 to P22 and P52.  These time points were chosen based on the 

significant increase in PVN angiogenesis over these ages (Frahm et al. 2012). On P12 the BBB 

in the CTX was less competent compared to the LH and PVN. There was significant 

extravascular FITC leakage within the CTX at P12 compared to the LH and PVN (Figs. 4.1a, d, 

g, j; p < 0.05).  This high level of extravascular FITC was not observed in the hypothalamic 

regions of LH and PVN at P12.  At P22, there was significantly less extravascular FITC leakage 
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in the CTX compared to P12 (Figs. 4.1b, j; p < 0.05).  There were no significant differences 

between brain regions concerning extravascular FITC leakage at P22 (Figs. 4.1b, e, h).  At P52 

the BBB appeared fully functional as extravascular FITC leakage did not change in CTX, LH, 

and PVN (Figs. 4.1c, f, I, j) compared to the same brain regions at P22 (Figs. 4.1b, e, h, j). 

These findings suggest that the BBB develops at different rates in the CTX compared to the 

hypothalamic brain regions examined.   

 

Changes in Desmin immunoreactive pericytes by age and region 

Concerning postnatal and region-specific pericyte development, results showed significantly 

greater desmin-immunoreactive pericyte coverage at P22 and P52 compared to P12 (Figs. 

4.2a-i; p < 0.01).  For different brain regions, there was significantly more desmin-

immunoreactive pericyte coverage at P12 in the PVN (Figs. 4.2g-i) compared to the LH (Figs. 

4.2d-f) and CTX (Figs. 4.2a-c).  For the CTX, there was a significant increase in desmin-

immunoreactive pericyte coverage between P12 and P22 (Figs. 4.2a, b, j, k).  At all ages 

examined the PVN had significantly more desmin-immunoreactive pericyte coverage than the 

LH and the CTX (Fig. 4.2j; p < 0.01). When blood vessel density was taken into account, the 

PVN still had significantly more desmin-immunoreactive pericyte coverage than the CTX (Fig. 

4.2k; p < 0.05).  At P52, this increase in desmin-immunoreactive pericyte coverage was due to 

the morphology of the pericytes in the PVN (Fig. 4.3c) compared to the CTX (Fig. 4.3a).  

Desmin in the adult mouse labels processes running along small diameter and encircling larger 

diameter capillaries (Hellstrom et al. 1999).  The pattern of desmin-immunoreactive pericyte 

coverage in the PVN showed a wrapping pattern around blood vessels while in the CTX more 

often it extended along the blood vessels.  There were no differences in desmin-immunoreactive 

pericyte coverage in the LH (Fig. 4.3b) compared to the CTX or PVN after 50 days of age. To 

determine if the difference in pericyte coverage coincided with the size of blood vessels, blood 

vessel width was quantified (Fig. 4.3).  Blood vessel widths were greater in the hypothalamus 
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(LH – Fig. 4.3b, PVN – Fig. 4.3c) compared to the CTX (Fig. 4.3a).  Quantification showed a 

statistically significant greater blood vessel width in the PVN (but not the LH) compared to the 

CTX (Fig. 4.3d; p < 0.05) indicating that at P52, the greater desmin-immunoreactive pericyte 

coverage in the PVN (Figs. 4.2i-k) was associated with an increase in blood vessel width (Fig. 

4.3d).  To examine if this was due to the presence of larger arterioles, antibodies against 

smooth muscle actin (SMA), a marker for smooth muscle cells that surround cerebral arteries or 

arterioles (Ladecola 2004) was examined.  SMA immunoreactivity was observed in the brain, 

however, not within the PVN (data not shown) suggesting the larger width of blood vessels 

within the PVN was not due to the presence of arterioles, although this did not rule out the 

presence of venules.  In general, desmin-positive pericyte coverage increased postnatally, 

varied between brain regions, and was related to blood vessel width.   

 

Fetal Dex exposure led to altered vascular characteristics at P20 

Blood vessels that are potentially newly formed and not yet fully functional are not identified by 

vascular perfusion with FITC (Frahm et al. 2013).  Therefore, Immunoreactive PECAM was 

utilized to visualize the more complete endothelial cell population.  PECAM revealed an overall 

13% decrease in blood vessel length in the PVN for dex-treated compared to vehicle-treated 

mice at P20 (Fig. 4.4a; p <0.01).  Offspring of dex-treated mothers had significantly less total 

blood vessel length across all regions of the PVN (Fig. 4.4b; p < 0.01), while decreased branch 

points was restricted to the rostral and mid regions compared to vehicle-treated (Fig. 4.4c; p < 

0.05). Brains perfused with FITC were also examined and dex-exposed offspring had less blood 

vessel density compared to vehicle-treated (data not shown). There were no significant 

differences in blood vessel length or branch points in the LH or CTX due to dex-treatment (data 

not shown). This indicates that prenatal exposure to dex impacts blood vessels within the PVN 

of young offspring.  
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Fetal Dex exposure led to altered BBB competency at P20 

Given that structural blood vessel characteristics were impacted in offspring of mothers treated 

with dex during gestation (Fig. 4.4), it was important to assess the state of the BBB (Fig. 4.5). 

Importantly, the impact of fetal dex exposure on later BBB competency was opposite in the CTX 

versus PVN. In the CTX, there was statistically significant 12% less extravascular FITC leakage 

in offspring from mothers treated with dex compared to those exposed to vehicle (Figs. 4.5a, d; 

p < 0.05).  This suggests there was an increase in the competency of the BBB due to dex-

treatment in the CTX. In stark contrast, the mid region of the PVN showed a statistically 

significant 17% increase in extravascular FITC leakage in dex-treated compared to vehicle-

treated offspring (Figs. 4.5c, f, g; p < 0.05). There was a strong trend for prenatally dex-treated 

mice to have an increase in extravascular FITC in the rostral PVN compared to vehicle-treated 

(data not shown; p < 0.09) with no notable differences observed in the caudal PVN.  For the LH, 

there was no change in extravascular FITC leakage in offspring from mothers either prenatally 

dex- or vehicle-treated (Fig. 4.5b, e).  Due to the possibility of maternal injection providing a 

stressful stimulus that could increase endogenous glucocorticoid levels, a comparison was 

made between offspring of vehicle-injected mothers versus offspring from mothers that were not 

injected (Fig. 4.1). There were no differences in vascular characteristics or BBB competency 

when compared to non-injected mice.  Together these findings suggest that fetal antecedent 

exposure to dex decreased the density and integrity of the blood vessels selectively within the 

PVN when examined in later life.   

 

Fetal Dex exposure led to altered pericytes at P20 

To complement and further expand on the extravascular FITC data, desmin-immunoreactive 

pericyte coverage was assessed. Prenatal dex-treatment led to a significant increase in 

immunoreactive desmin on a vascular network that was less dense at P20 (Fig. 4.6).  When 

total desmin-immunoreactivity was examined in the PVN, LH or CTX, there were no dex-
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dependent differences in any region (Figs. 4.6a-g).  However, when blood vessel density was 

taken into account, there was a significant dex-dependent increase in desmin-immunoreactive 

pericyte coverage in the mid PVN (Fig. 4.6h; p <0.01).  There were no significant differences in 

the rostral or caudal PVN due to treatment.  There were also no significant differences in the 

CTX or LH due to treatment although there was a trend of increased coverage due to dex-

treatment for all brain regions examined.  Overall, prenatal dex-treated mice increased 

immunoreactive desmin on blood vessels within the PVN at P20. 

 

 

Discussion 

 

Interest in the regulation of BBB function ranges from pharmaceutical perspectives for gaining 

or preventing drug access to the brain parenchyma (Abbott 2013), to questions of breakdown 

that might be antecedent to disorder (Gosselet et al. 2011; Daneman 2012; Abbott & Friedman 

2012). The current study was focused on the PVN as a unique site that gains several fold 

greater vascular density than surrounding regions over the course of postnatal development. 

The increased vasculature might make changes in BBB function in this site particularly 

important. As the PVN may be particularly important as a site susceptible to fetal antecedent 

actions of excess glucocorticoids (Tobet et al. 2013), the current study also determined whether 

excess fetal glucocorticoids could impact PVN vascular characteristics. The results highlighted 

several critical points. First, that the development of vascular and BBB characteristics differed in 

the PVN versus the CTX. Secondly, that maternal exposure to excess glucocorticoids during 

pregnancy impacted vascular and BBB characteristics in their offspring. Thirdly, fetal exposure 

to dex impacted the CTX differentially than the PVN. Finally, alterations in BBB competency 

were paralleled by changes in pericyte coverage as assessed by immunoreactive desmin in 

development and as a function of fetal dex-treatment.  



 59 

The ability of compounds to “leak” from blood vessels clearly differs among brain regions and 

can be observed using several methods. Differences in leakage among circumventricular 

organs were shown using FITC even though all are fenestrated and lack a BBB (Morita & 

Miyata 2012).  Many BBB studies predominantly focus on the cortex for changes (e.g., 

Sadowska et al. 2009; Daneman et al. 2010; Vorbrodt et al. 2001; Ezan et al. 2012; Armulik et 

al. 2010; Bell et al. 2010) and occasionally examine the cerebellum (Sadowska et al. 2009; 

Armulik et al. 2010).  For BBB development, reports indicate cortical leakage of high molecular 

weight dyes until postnatal day 21 in rats (Utsumi et al. 2000), and postnatal day 14 in mice 

(Lossinsky et al. 1986; Volbrodt et al. 1986).  The findings presented in this study also suggest 

that differences occur between brain regions such as the CTX and nuclear groups in the 

hypothalamus (i.e., LH and PVN).  Not only were differences in BBB development observed, but 

fetal exposure to dex impacted the postnatal CTX differentially than the PVN and had little to no 

impact on the LH.  This highlights the importance of studying cells in their anatomical context.  

For example, a number of studies have examined BBB competency by injecting Evans blue 

dye, perfusing saline to flush out circulating dye, and then homogenizing tissue to measure and 

analyze residual Evans blue in the tissue of interest (e.g., Bake & Sohrabji 2004).  In the current 

study, this would have concealed differences between hypothalamic subregions.  Overall, these 

findings suggests the need for further investigations to determine region-specific BBB 

development, how factors such as excess glucocorticoids during fetal development can impact 

BBB development, and what role this may play on an organism. 

 

Prenatal glucocorticoid excess has been implicated in depression-like behaviors (Bale 2005), 

hypertension (Levitt et al. 1996), and hypothamalic-pituitary-adrenal axis dysregulation (Levy & 

Tasker 2012) in adulthood.  Concerning the vasculature, previous work revealed decreased 

blood vessel density in the hippocampus (Neigh et al. 2010) and the germinal matrix at the level 

of the mid-septal nucleus (Vinukonda et al. 2010).  In the current study, prenatal dex-treatment 
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resulted in offspring for which the entire PVN had a reduced vascular network, albeit 

predominantly in the rostral and mid regions.  Rostral and mid regions of the mouse PVN have a 

greater density of blood vessels and neurons that correspond with the general location of 

neuroendocrine neurons. By contrast, the caudal PVN is less densely vascular than rostral 

regions and houses more preautonomic neuronal populations important for sympathetic and 

parasympathetic outflow (Biag et al. 2012).  The findings in the current study indicated that the 

blood vessel density and BBB within the caudal PVN were less impacted by excess 

glucocorticoids during development than rostral and mid regions.  There were no changes 

observed in the LH or CTX.  Even though prenatal dex-treatment is “global” in access, and 

impacts can be broad (physiology and behavior), the influences in the current study were 

selective within brain compartments. 

 

The hallmark of capillaries is the ability to pass red blood cells in single file through tissues of 

the body. If red blood cells are the same size throughout, it is curious that not all capillaries in 

the brain have the same width. Nonetheless, the current results confirm a previous study in rats 

showing that capillaries of the PVN have larger lumens when compared to a region ventrolateral 

to the PVN (Van den Pol 1982).  Although this may be due to a higher presence of venules 

(Ambach & Palkovits 1974), we did not make this determination.  The results of the current 

study extended observations to mice, a comparison to CTX, and further showed that capillary 

widths were not altered due to prenatal dex-treatment even when total capillary volumes 

changed.   

 

The developmental time course for BBB proteins varies for detectability and relationship to BBB 

competency.  In previous studies in mice BBB proteins did not reach adult levels in the CTX 

until around P14 (Vorbrodt et al. 2001).  For the gap junction protein Connexin 30, 

immunoreactivity was detected in the mouse cortex beginning at postnatal P12 with the level of 
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protein comparable to adulthood identified around P15 (Ezan et al. 2012). Results in the current 

study showed higher levels of extravascular FITC leakage occurring in the CTX at P12 than at 

P22, in agreement with the proposal that the BBB is still developing postnatally. At P52, 

compared to P12 and P22, the results showed that the BBB prevented FITC from entering the 

brain parenchyma in all regions examined.  Prenatal exposure to dex impacted the BBB at P20 

with less detectable extravascular FITC leakage in the CTX.  In sheep CTX, prenatal dex 

resulted in an increase in tight junction proteins, a component of a functional BBB (Sadowska et 

al. 2009) and in agreement with the current findings.  By contrast for the PVN, fetal dex led to 

the opposite result, greater extravascular FITC leakage suggesting BBB compromise. Insults 

such as excess prenatal glucocorticoid exposure can alter permeability and integrity in a brain 

region dependent manner and for the PVN where the result is a less-dense vascular network 

that has a compromised BBB; the impact may alter physiology and behavior based on the 

neuronal population involved (Biag et al. 2012; Kádár et al. 2010; Tobet et al. 2013; Goldstein et 

al. 2013).     

  

Prior studies examining pericytes found that fetal glucocorticoids increased cell coverage of 

NG2-positive pericytes in rabbits and humans (Vinukonda et al. 2010).  While the prior report 

was in the germinal matrix for the cerebral cortex, the current study produced similar changes in 

the mid region of the PVN in mice.  For pericytes, immunoreactive desmin suggests that 

changes have occurred, but not whether the number, distribution, or size of pericytes was 

impacted. One explanation for why there is the same level of desmin-immunoreactivity in the 

PVN on fewer blood vessels due to prenatal dex-treatment may be due to recruitment and 

migration. Pericytes migrate in response to new vessel formation, traumatic stress, or under 

hypoxic injury or state (Dore-Duffy et al. 2000).  In dex-treated offspring that exhibited a 

decreased vascular network, this may be a sign of prior hypoxia with pericyte recruitment 

needed to promote recovery.  Enhanced pericyte coverage may serve to help stabilize the 
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vasculature (Vinukoda et al. 2010).  Since pericytes can regulate capillary diameter through 

constricting the vascular wall (Bell et al. 2010), differences due to prenatal glucocorticoid excess 

may impact blood flow within the PVN.  Future studies are needed to determine how changes in 

desmin-positive pericyte coverage in dex-treated offspring impacts the ability of the BBB to 

function properly as observed here through extravascular FITC leakage and whether this 

impacts neuronal function.    

 

In summary, the current study examined the postnatal development of the BBB and 

demonstrated that fetal dex exposure altered the integrity of the BBB in the PVN.  There was an 

increase in BBB permeability at P20 in the highly vascularized middle region of the PVN. 

Decreases in blood vessel density and BBB integrity within the mid (and to some extent rostral) 

regions of the PVN may impact the ability of neuroendocrine neurons (Biag et al. 2012; Kádár et 

al. 2010) to function normally.  Understanding changes in the crosstalk between neurons and 

blood vessels in the PVN may provide insight into the long-term behavioral and physiological 

consequences observed in human and animal studies when exposed to glucocorticoid excess 

during prenatal development.   
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Figure 4.1 Postnatal blood-brain barrier development in the mouse cortex (CTX), lateral 
hypothalamus (LH) and paraventricular nucleus of the hypothalamus (PVN) at P12, P22 
and P52.  Example confocal images for each region are provided in panels a-i, and a 
quantitative summary by graph in j. There was a significant increase in extravascular FITC 
leakage in the CTX (a) compared to the LH (d) and PVN (g) at P12 (j; p < 0.05).  Between P12 
and P22 there was a significant decrease in extravascular FITC leakage specifically in the CTX 
(a, b; p < 0.05).  At P22, there were no significant differences observed in extravascular FITC 
leakage between brain regions (b, e, h).  At P52, there were no significant differences in 
extravascular FITC leakage (c, f, i) compared to P22 or between brain regions (j).  Number of 
animals per group (n=6) is provided in the code for the bars panel j. Significant differences 
between regions indicated by * and for age as #. Scale bar = 50µm in panel a, which applies to 
all images. 
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Figure 4.2 Postnatal desmin-immunopositive pericyte coverage in the mouse cortex 
(CTX), lateral hypothalamus (LH) and paraventricular nucleus of the hypothalamus (PVN) 
at P12, P22 and P52. Example confocal images for each region are provided in panels a-i, and 
a quantitative summary by graph in j and k.  There was a significant increase in desmin-
immunoreactive pericyte coverage in the PVN (g) compared to the CTX (a) and LH (d) at P12 (j, 
k; p < 0.05).  At P22 there was a significant increase in desmin-immunoreactive pericyte 
coverage in the CTX (b) and PVN (h) compared to P12 (j, k; p < 0.05).   There were no 
significant differences in any brain region between P22 and P52 for desmin-immunoreactive 
pericyte coverage (j, k).  There was an overall significant increase in desmin-positive pericyte 
coverage for the PVN at all ages (g-i) compared to the LH (d-f) and CTX (a-c) for all ages (j, k; p 
< 0.05). Number of animals per group (n=5) is provided in the code for the bars panels j and k. 
Significant differences between regions indicated by * and for age as #. Scale bar = 50µm in 
panel a, which applies to all images. 
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Figure 4.3 Blood vessels in the paraventricular nucleus of the hypothalamus (PVN) were 
wider than in the mouse cortex (CTX) at P12 and P52.  Higher magnification of blood vessels 
at P52 visualized with fluorescein isothiocyanate perfusion in the CTX, lateral hypothalamus 
(LH) and PVN show that desmin morphology varied between brain regions with the PVN (c) 
having more of a wrapping pattern compared to the CTX (a) and LH (b).  The wrapping may be 
related to a significantly greater blood vessel width in the PVN compared to the CTX at P12 and 
P22 (d, p < 0.05).  There were no significant differences at P22 or in the LH when compared to 
the CTX or PVN at any age. Number of animals per group (n=5) is provided in the code for the 
bars panels j and k. Significant differences between regions indicated by *. Scale bar = 20µm in 
panel a, which applies to all images. 
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Figure 4.4 Prenatal exposure to dexamethasone (dex) impacted blood vessel density in 
the postnatal mouse paraventricular nucleus of the hypothalamus (PVN) at P20.  There 
was a significant decrease in blood vessel length for the entire PVN for dex-treated compared to 
vehicle-treated mice (a, **p < 0.01).  There was also a region-specific significant decrease in 
blood vessel length in the rostral, mid and caudal regions of the PVN in dex-treated compared 
to vehicle-treated mice (b, ***p < 0.0001).  For branch points, there was only a significant 
decrease in the rostral and mid PVN in dex-treated compared to vehicle-treated mice (c, *p < 
0.05). Number of animals per group (n=8) is provided in the code for the bars in each panel. 
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Figure 4.5 Prenatal exposure to dexamethasone (dex) impacted blood-brain barrier 
development in the mouse cortex (CTX) and paraventricular nucleus of the hypothalamus 
(PVN) at P20. Example confocal images for each region are provided in panels a-f, and a 
quantitative summary by graph in g and h. In the CTX, there was a significant decrease in 
extravascular FITC leakage in dex-treated compared to vehicle-treated mice (a, d, g; p < 0.05). 
For the PVN, there was a significant increase in extravascular FITC leakage in offspring of dex-
treated compared to vehicle-treated mice in the mid region (c, f, g; p < 0.05).  There was no 
impact of fetal dex observed in the lateral hypothalamus (LH; b, e, g). Number of animals per 
group is provided in the code for the bars in panels g and h. Significant differences for treatment 
indicated by *p < 0.05 and **p < 0.01. Scale bar = 50µm in panel a, which applies to all images. 
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Figure 4.6 Prenatal exposure to dexamethasone (dex) impacted desmin-immunoreactive 
pericyte coverage in the mouse paraventricular nucleus of the hypothalamus (PVN) at 
P20. Example confocal images for each region are provided in panels a-f, and a quantitative 
summary by graph in g and h. In the PVN, there was a significant increase in desmin-
immunoreactive pericyte coverage in dex-treated compared to vehicle-treated mice (c, f; *p < 
0.01) when blood vessel density was taken into account (h; *p < 0.01).  There were no 
significant differences observed in desmin-immunoreactive pericyte coverage in the cortex 
(CTX; a, d) or lateral hypothalamus (LH; b, e) between dex-treated or vehicle-treated mice. 
There was a significant increase in desmin-immunoreactive pericyte coverage in the PVN 
regardless of treatment compared to the CTX and LH (g). Number of animals per group is 
provided in the code for the bars in panels g and h. Significant differences between regions 
indicated by * and for treatment as #. Scale bar = 50µm in panel a, which applies to all images. 
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Figure 4.7 Regions selected for analysis. Brightfield image of a coronal section 
immunolabeled for Platelet Endothelial Cell Adhesion Molecule to visualize blood vessels.  
Boxes show representative regions of the Cortex (CTX), Lateral Hypothalamus (LH), and 
Paraventricular Nucleus of the Hypothalamus (PVN) that were selected for analysis. 
 
 

 

 

 

Figure 4.8.  Analysis of vascular permeability. Fluorescence intensities were measured 
outside of blood vessels (i.e., leak) in the Cortex (CTX), Lateral Hypothalamus (LH) and 
Paraventricular Nucleus of the Hypothalamus (PVN). Semi-automated leakage calculations 
were made using CellProfiler software.  Blood vessels were identified in panels a-c, a 10-pixel 
expansion was mapped from each blood vessel to create a mask and intensity was measured 
as shown in panel d, and blood vessel intensity was then subtracted as in panel e to generate 
blood-brain barrier permeability quantification. 
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CHAPTER 5. PRENATAL DEXAMETHASONE ALTERS THE COMPOSITION OF THE 

BLOOD-BRAIN BARRIER WITHIN THE PARAVENTRICULAR NUCLEUS OF THE 

HYPOTHALAMUS OF ADULT MICE  

 

 

Overview 

 

Neurons within the paraventricular nucleus of the hypothalamus (PVN) integrate peripheral 

signals and coordinate responses that are important for maintaining homeostasis, vasomotor 

tone, energy balance, stress responses and behavioral functions.  In addition to the density of 

its cytoarchitecture, the PVN also contains 3-fold more blood vessels than surrounding brain 

regions.  Previously, exposure to excess glucocorticoids during fetal development resulted at 

postnatal day (P)20 in an increased area of desmin immunoreactive (ir) pericytes on a 

significantly smaller blood vessel network within the PVN coincident with increased blood-brain 

barrier (BBB) permeability (Frahm & Tobet, 2013abs).  To further define the temporal 

parameters of these effects, pregnant mice were exposed to vehicle (veh) or the synthetic 

glucocorticoid dexamethasone (dex; 0.1mg/kg) during embryonic days 11-17.  To determine if 

changes observed at molecular and cellular levels impacts behavior, offspring were tested for 

depressive-like behavior using a tail-suspension test (TST) after P50.  After behavior testing, 

males and females were perfused with the low molecular weight dye fluorescein isothiocyanate 

(FITC) and fixed using paraformaldehyde. Brain sections containing the PVN were examined for 

ir-GFAP+ astrocytes and ir-desmin+ pericytes. Veh-treated females had significantly more total 

ir-GFAP than dex-treated females in the PVN.  Astrocyte associations with blood vessels were 

estimated by examining GFAP-ir fluorescent overlap with FITC labeled vasculature. There was 

a similar pattern of significantly decreased ir-GFAP covering blood vessels in dex-treated 

females compared to veh-treated females.  For ir-desmin+ pericytes in the PVN, there was a 
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significant increase in ir-desmin normalized to blood vessel density in dex-treated compared to 

veh-treated males.  There were no significant differences observed for dex treatment or sex in 

extravascular FITC leakage as a proxy for BBB function, or blood vessel density.  For the TST, 

male and female offspring from pregnant mice treated with dex had significantly shorter 

latencies to first bout of immobility compared to vehicles demonstrating that there are long-term 

behavioral consequences of prenatal dex exposure.  We hypothesize that these alterations in 

BBB components in combination with environmental or physiological challenges may result in 

sex-related susceptibility to changes in BBB competency.  

 

 

Introduction 

 

Cardiovascular disease (CVD) is the number one cause of death worldwide (Thayer et al., 

2010).  Individuals suffering from CVD are more likely to have major depressive disorder (MDD; 

The World Health Report, 2001).  This co-morbidity constitutes an approximate 20% population 

prevalence (Reviewed in Goldstein et al., 2014), and by 2020 is postulated to be the number 

one cause of disability worldwide (The World Health Report, 2001).  To understand the etiology 

with hopes of reducing the incidence of MDD and CVD, independently and collectively, studies 

are needed to identify potential mechanisms.   

 

A key brain region involved in the comorbidity of CVD and MDD is the paraventricular nucleus of 

the hypothalamus (PVN; Baune et al., 2012; Goldstein et al., 2014).  The PVN is comprised of 

numerous neuronal phenotypes that integrate peripheral signals to regulate many important 

functions that range from initiating flight or fight responses, maintaining homeostasis, vasomotor 

tone, and energy balance (Ferguson et al., 2008; Handa & Weiser, 2013; Hill, 2012; Swanson & 

Sawchenko, 1983).  PVN neurons contain the neuropeptides corticotropin releasing hormone, 
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arginine vasopressin, oxytocin, thyrotropin-releasing hormone, somatostatin, and angiotensin 

(Armstrong et al., 1980; Biag et al., 2012; Ford-Holevinski et al., 1991; Handa & Weiser, 2013; 

Simmons & Swanson, 2009; Swanson and Sawchenko, 1983).  Receptors for gamma-

aminobutyric acid (GABA), estrogens, androgens, glucocorticoids, and angiotensin II type 1 are 

also present (Bingham et al., 2006; Fan et al., 2012; Lund et al., 2004; McClellan et al., 2010; 

Mitra et al., 2003).  Glucocorticoid signaling within the PVN has been shown to change the 

neural circuitry within the PVN resulting in dysregulation of the hypothalamic-pituitary-adrenal 

(HPA) axis, similar to the effects observed in patients with depression (Levy & Tasker, 2012).  

Interestingly, the PVN also contains neurons that attenuate hypertension (Biancardi et al., 2013; 

Braga et al., 2011; Ferguson et al., 2008; Sriramula et al., 2011).  Therefore, the PVN may 

provide a site for cell-based mechanisms that underlie the co-morbidity of CVD and MDD.   

 

In addition to its dense neuronal population, the PVN also has a high blood vessel density 

(Ambach & Palkovits, 1974; Basir 1931; Craigie, 1940; Finley, 1938; Menendez & Alvarez-Uria, 

1987; Poppi, 1928) that in the mouse develops postnatally (Frahm et al., 2012).  The highest 

density is also localized to the rostral two-thirds of the PVN (Frahm et al., 2012), which 

coincides with the sites of the majority of neuroendocrine neurons (Biag et al., 2012).  The 

role(s) of this dense vascular bed is unknown; however, it has been shown to decrease at 

postnatal day (P)20 due to either a loss of functional GABAB receptors (Frahm et al., 2012) or 

exposure to excess glucocorticoids during prenatal development (Frahm & Tobet, 2013abs).  

The ability to regulate the vascular network within the PVN suggests that changes may impact 

physiology and behavior.   

 

What sets brain blood vessels apart from their peripheral counterparts is a restrictive barrier 

referred to as the blood-brain barrier (BBB). The BBB regulates a microenvironment necessary 

for reliable neuronal signaling by protecting the brain from potentially harmful items such as 
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toxins. The BBB consists of a continuous layer of endothelial cells, which form the walls of blood 

vessels, connected to one another through tight junctions (Reviewed in Abbott et al., 2006; 

Hawkins & Davis, 2005; Iadecola, 2004; Saunders et al., 2013).  Other components include 

pericytes and astrocytic endfeet that surround endothelial cells (Hawkins & Davis, 2005). 

Changes to any of these components that together form the BBB could compromise its 

functional integrity.  

 

Recently, there has been a focus to understand the BBB in the context of communication with 

neurons.  There are coordinated interactions between neurons, astrocytes, and pericytes that 

are essential for the health and function of the central nervous system. This collection of 

anatomical partners is often referred to as neurovascular units (NVU; Hawkins & Davis, 2005).  

In adulthood, the NVU is formed by astrocytic endfeet and pericytes in close proximity to blood 

vessels (Saunders et al., 2013).  Changes in the NVU within the PVN could potentially result in 

a wide range of diseases and disorders (Quaegebeur et al., 2011).  For example, spontaneously 

hypertensive rats exhibited increased BBB permeability allowing circulating angiotensin II to 

leak into the PVN and directly alter blood pressure regulation (Biancardi et al., 2013). 

 

Increased fetal exposure to glucocorticoids can also contribute to CVD (Maccari et al., 2003; 

Baum et al., 2003; Hadoke et al., 2006) and depression-like behavior (Bale, 2005; Roque et al., 

2011).  At the cellular level, exposure to excess glucocorticoid during prenatal development 

impacts the neuronal (Levitt et al., 1996; Welberg et al., 2001) and vascular network (Frahm & 

Tobet, 2013abs) within the PVN.  Also, mice exposed to excess glucocorticoids during prenatal 

development displayed an increase in extravascular leakage of the low molecular weight dye 

FITC along with an increase in desmin-ir pericytes coverage at postnatal day (P) 20 (Frahm & 

Tobet, 2013abs).  This demonstrates changes in BBB components accompanied by a partial 

breakdown of BBB function following in response to change in glucocorticoid exposure.     
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The current study was conducted to determine the long-term impact of fetal dex exposure on 

changes in PVN NVU. Mice were exposed to excess glucocorticoids during prenatal 

development and examined at P50.  Assessment of blood vessel density, BBB competency, 

desmin-ir pericyte coverage and GFAP-ir astrocytes within the PVN at indicated that there is 

partial recovery of BBB function after puberty, but sex-dependent differences in BBB 

components during adulthood.  Both males and females displayed an increase in depression-

like behavior, indicating long-term functional consequences of fetal glucocorticoid excess.   

 

 

Materials and Methods 

 

Mice from an inbred FVB/N background were maintained in plastic cages with aspen bedding 

(autoclaved Sani-chips, Harlan Teklad, Madison, WI, USA) in the Painter Building of Laboratory 

Animal Resources at Colorado State University. Food (#8640, Harlan Teklad, Madison, WI, 

USA) with filtered tap water and environmental enrichment provided ad libitum in a 14/10h 

light/dark cycle.  Animal care and handling was in accordance with the Colorado State 

University Animal Care and Use Committee guidelines. 

 

Mice were mated overnight and the day of a visible plug was designated as embryonic day 0 

(E0).  Pregnant dams were injected with the synthetic glucocorticoid dexamethasone (dex, 0.1 

mg/kg, Sigma, Inc.; Frahm & Tobet, 2013abs; Hadoke et al. 2006; O’Regan et al. 2004) or 

vehicle (veh) once daily from E11-17. The day of birth was designated P0.  Mice were weaned 

and ear punched for identification on P19 and then left relatively undisturbed until P50 when 

they were subjected to behavior tests followed by tissue collection. Animals were handled for at 

least two days before each behavior test and were tested using the tail suspension test (TST) 

and Sucrose Preference Test (SPT).  For females, cycle stage was determined by analysis of 
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vaginal cytology (Becker et al., 2005) and testing only occurred during estrus.  Behavior tests 

occurred between 11:00 am – 3:00 pm in the light phase, was video recorded using a Sony HD 

Handicam, and analyzed by an individual blinded to treatment and sex using the Stopwatch+ 

program (Center for behavioral Neuroscience; Atlanta, GA).   

 

At least four days after the last behavior test, mice were anesthetized using ketamine (80 

mg/kg) and xylazine (8 mg/kg) and transcardially perfused with heparanized PBS (pH 7.4) 

containing fluorescein isothiocyanate (FITC, Thermoscientific, MW 389.4) followed by 4% 

paraformaldehyde in 0.1M phosphate buffer (pH 7.4; modified from Miyata & Morita, 2011).  

Brains were removed, post fixed overnight, and changed into 0.1M phosphate buffer for storage 

at 4°C.  

 

Behavior Testing 

After P50, mice were tested using the tail suspension test as previously described (Stratton, 

2012).  The TST is widely used to identify changes in depression- and helpless-like behaviors 

(Cryan et al., 2005).  Briefly, mice were suspended by their tail, to a horizontal rod with adhesive 

tape at a height of 40 cm for 6 min and behavior was recorded via camcorder.  Females were 

tested only during estrus.  At least 4 days after the TST, SPT was initiated.  SPT consisted of 

fluid intake measurement of 0.1% sucrose concentration with 2 days acclimation followed by 4 

days with a two-bottle- choice paradigm (Mueller & Bale, 2008).  Specially, mice were allowed to 

acclimate to individual housing and two bottles that were filled with water for two consecutive 

days.  The following two days bottles were changes to contain sucrose.  Days 5 – 9 mice were 

given the choice of either water or sucrose.  Bottle weights were collected during the same time 

period during the 4 testing days and switch daily.  The SPT was omitted because it was 

conducted using a subphysiological 0.1% (Alsio et al., 2011) and results would not be an 

adequate measurement of anhedonia.    
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Immunohistochemistry 

Tissue was processed as previously described (Frahm et al. 2012; 2013).  Brains were 

embedded in 5% agarose and cut coronally into 50µm thick sections using a vibrating 

microtome (Leica VT1000S).  Free-floating serial sections were collected in 0.05M phosphate-

buffered saline (PBS, pH 7.4).  Excess unreacted aldehydes were neutralized in 0.1M glycine 

for 30 minutes followed by 0.5% sodium borohydride for 15 minutes.  Sections were washed in 

PBS and incubated in a blocking solution (5% normal goat serum (NGS), 0.5% Triton X-100 

(Tx), and 1% hydrogen peroxide in PBS) for at least 30 minutes.  Sections were then incubated 

in primary antisera directed against Desmin (1:200; DAKO M0760) or GFAP (1:250; DAKO 

Z0334) in 1% BSA and 0.5% Tx.  For desmin, sections were processed for antigen retrieval 

(Dellovade et al. 2001; Frahm et al., 2013).  In place of the standard processing steps prior to 

antisera application detailed above, sections were washed in room temperature PBS for 15 min 

followed by a 1 h wash in sodium citrate (0.05 M, pH 8.6), then placed into sodium citrate buffer 

preheated to 80°C for 30 min. They were then allowed to slowly come back to room temperature 

(approximately 30–35 min) after which they were returned to PBS for an additional 15 min of 

washes.  All sections were incubated for 2 nights at 4°C in primary antisera.  Sections were then 

washed in room temperature with 1% NGS and 0.02% Tx in PBS followed by incubation with 

the appropriate secondary antibodies for 2h for using either Cy3 conjugated anti-rabbit (1:200; 

Jackson Immunoresearch 711-166-152) or Cy3 conjugated anti-mouse (1:200; Jackson 

Immunoresearch 711-165-150) in PBS containing 1% NGS and 0.32% Tx.   

 

Analysis 

Desmin, GFAP and FITC images were acquired for the PVN, LH and CTX on a Zeiss 510-Meta 

laser-scanning confocal microscope.  FITC was imaged using a 488/543 nm bandpass filter and 

emission detected using a 505/530 nm bandpass emission filter.  Cy3 for Desmin and GFAP 
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were imaged using a 488/543 nm bandpass filter and emission detected using a 585/615 nm 

bandpass emission filter.  Z-stacks were acquired with 6 optical sections taken every 3µm 

obtained at 40x magnification using an oil immersion objective.  The section with the densest 

vascular network was selected by an investigator blind to treatment group for each PVN region 

(rostral, mid, caudal) for analysis (Frahm et al. 2012).  To view the vascular network within the 

brain Z-stacks were compiled. 

 

Blood vessel density, width and extravascular leakage were determined as previously described 

(Frahm & Tobet, 2013abs).  Images were inverted (Photoshop), light corrected (ImageJ, version 

1.43u) then analyzed for length, as a measure of density, using Angiogenesis Tube Formation 

(Metamorph Software, version 7.7.0.0, Molecular Devices, Inc.).  Extravascular leakage was 

analyzed using open-source CellProfiler (available from the Broad Institute at 

www.cellprofiler.org).  Blood vessels were identified and a 10-pixel expansion was mapped from 

each blood vessel to create a mask to quantify leakage. This value was divided by FITC 

measured within blood vessels to account for differences in perfusions.  Total Desmin-ir and 

GFAP-ir was measured for area of immunoreactivity and normalized to blood vessel area using 

Metamorph software.  For GFAP-ir astrocytes in proximity to FITC labeled blood vessels, 

confocal stacks were merged and FITC-labeled blood vessels and GFAP-ir astrocytes were 

independently threshold, converted to binary, multiplied together, and areas that overlapped 

were quantified (ImageJ).  Statistical significance was determined by ANOVA as sex X 

treatment (veh vs. dex) X region as a repeated measure using SPSS software (SPSS Inc., 

Chicago, IL).  Values are reported as mean + SEM and p < 0.05 was considered significant.  

Representative images for figures were normalized for optimal contrast in Adobe Photoshop 

(version CS for Macintosh).   
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For the TST, times spent struggling or immobile were quantified.  Time to first bout of immobility 

was determined as an indication of depression-like and helpless-like despair behavior (Francis 

et al., 2012).  Animals that climbed their tail were removed from the analysis.   

 

 

Results 

 

Blood vessel density was analyzed after P50 in both males and females exposed to excess 

glucocorticoids during prenatal development.  There was a significant increase in the rostral 

(figure 1a) and mid (figure 1b) PVN compared to CTX or LH (p < 0.05), consistent with previous 

studies (Frahm et al., 2012; Frahm & Tobet, 2013abs).  Within the PVN, however, there were no 

differences in offspring of dex-treated mothers when examined after P50 for blood vessel area 

(Figure 5.1).  Looking in the subregions of the PVN, there were no differences observed in the 

rostral (figure 5.1a), mid (figure 5.1b) or caudal (figure 5.1c) regions, or in the cortex or lateral 

hypothalamus due to sex or fetal treatment. These findings show that excess glucocorticoids 

during fetal development did not impact blood vessel density within the PVN in adulthood.  

 

The current study found long-term changes in desmin-ir pericytes due to prenatal dex-treatment.  

To determine if fetal exposure to excess glucocorticoids impacts post-pubertal BBB 

components, desmin-ir pericytes were examined in relation to blood vessel density.  After P50, 

there was a significant increase within the entire PVN for desmin-ir pericyte coverage in the 

male offspring of dex-treated mothers (figures 5.2d & 5.2e) compared to the males of veh-

treated mothers (figures 5.2b & 5.2e; p < 0.05).  For females at P50, there was a strong trend 

for offspring of dex-treated mothers (figures 5.2c & 5.2e) to have less desmin-ir pericyte 

coverage compared to veh-treated (figures 5.2a & 5.2e).  The results suggest that long-term 
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changes in BBB components due to prenatal excess glucocorticoid exposure are dependent 

upon sex.   

 

Astrocytes are another component of the BBB that were examined for long-term changes due to 

prenatal excess glucocorticoid exposure after P50.  Total GFAP-ir was examined as a marker 

for astrocytes.  There was a significant decrease in GFAP-ir within the entire PVN in the female 

offspring of dex-treated mothers (figures 5.3c & 5.3e) compared to female offspring of veh-

treated mothers (figure 5.3a & 5.3e; p < 0.05).  In addition, there was a trend for male offspring 

of veh-treated mothers (figures 5.3b & 5.3e) to have significantly less GFAP-ir than female 

offspring of veh-treated mothers (figures 5.3d & 5.3e).  These results suggest that excess 

glucocorticoids during prenatal development may lead to decreased GFAP-ir astrocytes in 

young adult females. 

 

Astrocytes serve many roles within the brain including their end-feet attachment to blood 

vessels as part of the BBB. GFAP-ir was quantified when there was optical overlap with blood 

vessels as a measure of astrocytes in proximity to blood vessels.  There was a significant 

difference in GFAP-ir covering blood vessels within female offspring of dex-treated mothers 

(figures 5.4c, 5.4g, 5.4m) when compared to female offspring of veh-treated mothers within the 

mid region of the PVN (figure 5.4a, 5.4e, 5.4m; p < 0.05).  There was also a significant decrease 

in GFAP-ir covering blood vessels in male offspring of veh-treated mothers (figure 5.4b, 5.4f, 

5.4m) compared to female offspring of veh-treated mothers in the mid region of the PVN (figures 

5.4a, 5.4e, 5.4m; p < 0.05).  Differences observed in GFAP-ir overlapping blood vessels are 

also present with higher magnification (figures 5.4i-l).  Results demonstrate that sex and excess 

prenatal glucocorticoid exposure impacted astrocytic end-feet coverage of blood vessels within 

the mid, most dense vascular region of the PVN (Frahm et al., 2012).   
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BBB competency was investigated by quantifying extravascular FITC dye leakage to determine 

if there are long-term changes to BBB competency within the PVN.  Despite the alterations in 

BBB components, there were no differences in dye leakage observed due to sex or treatment in 

the CTX (figure 5.5a), LH (figure 5.5b) or PVN (figure 5.5c) at P50.  

 

To test for long-term behavioral consequences of excess glucocorticoids during prenatal 

development, male and female offspring were assessed using the TST.  There was a significant 

decrease in the time until the first bout of immobility in male and female offspring from dex-

treated mothers compared to veh-treated (figure 5.6; p < 0.05).  Thus excess glucocorticoids 

during fetal development resulted in an increase in helplessness- and depression-like behaviors 

compared to veh-treated mice in adulthood.  

 

 

Discussion 

 

The PVN has been known for some time to have a dense vascular network (Ambach & 

Palkovits, 1974; Basir 1931; Craigie, 1940; Finley, 1938; Frahm et al., 2012; Menendez & 

Alvarez-Uria, 1987; Poppi, 1928), but only recently have regulated changes been studied and 

observed (Biancardi et al., 2013; Cortes-Sol et al. 2013; Frahm & Tobet, 2013abs).  The current 

study expands on alterations within the PVN vasculature by examining long-term consequences 

in adult offspring of dex-treated mothers.  Results demonstrated an increase in desmin-ir 

pericyte coverage in male offspring of mice exposed to excess glucocorticoids.  Female 

offspring of dex-treated mothers had a decrease in GFAP-ir astrocytes and a decrease in 

GFAP-ir astrocytes in proximity to blood vessels selectively within the PVN.  In addition, both 

male and female offspring of dex-treated mothers had increased depressive-like behavior. This 

study provides another example of a long-lasting consequence of fetal dex-treatments on 
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behavior of offspring, and a novel view of simultaneous impact on components of the BBB 

within the PVN in a sex dependent manner. 

 

There are a limited number of studies that examine changes in brain vasculature due to fetal 

exposure to excess glucocorticoids (Frahm & Tobet, 2012abs; Neigh et al., 2010).  Prenatal dex 

administration reduced the vasculature within the Ca3 region of the hippocampus in adult 

males, which was further attenuated by restraint stress (Neigh et al., 2010).  Interestingly within 

the basolateral amygdala, dex-treatment initially did not alter the vascular density, but after 

chronic stress there was a significant reduction (Neigh et al., 2010).  Within the PVN, a 

decrease in the blood vessel density was observed in prepubertal males and females following 

fetal exposure to dex (Frahm & Tobet, 2012abs).  In the current study, mice were examined 

after P50 (after puberty and in early adulthood) and blood vessel densities in the PVN were 

similar in offspring from veh- and dex-exposed mothers.  These findings show changes in blood 

vessel density within the brain can be age, region, and activity-dependent.  Further studies are 

needed to determine the direct impact of this diverse regulation on physiology and behavior.   

 

Much work on blood vessels or the BBB focus on the cerebral cortex (Sadowska et al. 2009; 

Vorbrodt et al. 2001; Ezan et al. 2012; Armulik et al. 2010; Bell et al. 2010).  Given the 3-fold 

greater density of vasculature in the PVN, there is significant need to determine the impact of 

stress responses and homeostasis in this region.  For example, spontaneously hypertensive 

rats have a breakdown of the BBB within the PVN causing a feed forward loop increasing blood 

pressure (Biancardi et al., 2013).  In the current study, the increase in desmin-ir pericytes in 

males and decreased GFAP-ir astrocytes in females observed in offspring of dex-treated 

mothers leads us to hypothesize that the BBB may be more susceptible to breakdown in the 

PVN during a disease state such as hypertension.   

 



 85 

Pericytes stabilize vasculature (Vinukoda et al. 2010) and regulate capillary diameter through 

constricting vascular walls (Bell et al. 2010; Hall et al., 2014).  In the current study, adult male 

offspring of dex-treated mothers had increased desmin-ir pericytes within the PVN.  Previously, 

prepubertal males and females had an increase in pericytes coverage due to excess fetal 

glucocorticoids within the PVN (Frahm & Tobet, 2012abs).  Differences due to prenatal 

glucocorticoid excess may impact blood flow within the PVN in males in adulthood, which has 

been shown to modulate metabolic exchange between capillaries and the parenchyma 

(Villringer & Dimagi, 1995).  Within the PVN, changes in capillary diameter have been proposed 

to change blood flow (Cortes-Sol et al., 2013), although real measurements are really needed.       

 

Astrocytic endfeet are an important component for a functional BBB.  Astrocytes covering 

endothelial cells regulate water influx and efflux through aquaporin 4 (AQP4) that is distributed 

throughout the brain (Alvarez et al., 2013; Haj-Yasein et al., 2011; Nico & Ribatti, 2012).  The 

observation that female offspring from dex-treated mothers had decreased GFAP-ir astrocytes 

in proximity to blood vessels may reduce AQP4 and alter water balance within the PVN.  In 

addition, certain endothelial transporters such as P-glycoprotein (P-gp) or the glucose 

transporter GLUT-1 are present in perivascular glial end-feet and alterations could change BBB 

regulation of glucose and other metabolites (reviewed in Nico & Ribatti, 2012).  Studies have 

directly shown glucocorticoids impact levels of PgP during late but not early gestation in the 

entire brain (Petropoulos et al., 2010), but whether these changes occur specifically within the 

PVN or last into adulthood are still unknown. 

 

Changes in BBB components can impact its function. Loss of the gap junction proteins (i.e., 

connexins) specifically in astrocytes weaken the BBB, allowing circulating factors to gain access 

during increased hydrostatic vascular presser and shear stress (Ezan et al., 2012).  Under 

normal conditions, there is a lack of extravascular FITC leakage (e.g., figure 2), but mice 
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exposed to excess glucocorticoids during prenatal development may have an opening of the 

PVN BBB during an increase in blood pressure or flow.  The loss of GFAP-ir astrocytes in 

proximity to blood vessels in male offspring or the increase in desmin-ir pericyte coverage in 

female offspring of dex-treated mothers may indicate loci of disorder susceptibility under certain 

conditions that decrease BBB function and integrity within the PVN.      

  

In agreement with a number of prior studies (Roque et al., 2011; Bale, 2005) these results 

provide further evidence of long-lasting behavioral consequences due to excess glucocorticoids 

during prenatal development.  A decrease in first bout to immobility demonstrates excess 

glucocorticoids during embryonic days 11-17 increased depression-like behavior in adulthood.  

Previously, prenatal dex has been shown to increase anxiolytic-like (Hossain et al., 2008) and 

depressive-like behaviors in adulthood (Roque et al., 2011).  The results presented in this study 

show a similar increase in depression-like behaviors as well as changes in BBB components 

within the PVN.  Whether other brain regions were impacted by global dex administration and 

may play a role in the observed increase in depression-like behavior in unknown.  In addition, 

what role dex treatment has on pregnant females that may directly or indirectly impact offspring 

in utero or during postnatal maternal care is unknown.   

 

The current study was conducted to test the hypothesis that exposure to excess glucocorticoids 

during prenatal development has long term impact on the vasculature within the PVN and also 

has behavioral consequences that are commensurate with alterations in the HPA axis.  The 

results indicate that maternal treatment with excess glucocorticoids (dex) lead to site selective 

(i.e., within the PVN) changes in components of the BBB in a sex-dependent manner in 

adulthood.  An increase in displayed depression-like behavior was also observed.  Therefore, 

there are long-lasting consequences on the BBB within the PVN and behavior in offspring of 

dex-treated mothers and potentially of all fetuses exposed to excess glucocorticoid stimulation 
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whether by exogenous (e.g., dex injection as per this study) or endogenous (e.g., maternal 

stress) means.    
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Figure 5.1. Prenatal exposure to dexamethasone (dex) does not impact blood vessel 
density within mouse paraventricular nucleus of the hypothalamus (PVN) at P50. The 
Rostral and Mid PVN has significantly more BV area that the CTX or LH.  There were no 
differences due to dex treatment or for sex observed in either the rostral, mid, or caudal area of 
the PVN. 
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Figure 5.2. Prenatal exposure to dexamethasone (dex) impacted desmin-immunoreactive 
pericyte coverage in the male mouse paraventricular nucleus of the hypothalamus (PVN) 
at P50.  There was a significant increase in total desmin-ir in dex-treated males (d) compared to 
veh-treated males (b; p < 0.05).  There were differences observed for veh-treated (a) or dex-
treated (c) females. 
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Figure 5.3. Prenatal exposure to dexamethasone (dex) impacted total GFAP-
immunoreactive astrocytes in the female mouse paraventricular nucleus of the 
hypothalamus (PVN) at P50. There was a significant decrease on total GFAP-ir in the mid 
region of the PVN in dex-treated females (c, e) compared to veh-treated females (a, e; p < 
0.05). 
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Figure 5.4. Prenatal exposure to dexamethasone (dex) impacted ir-GFAP surrounding 
blood vessels in the female mouse paraventricular nucleus of the hypothalamus (PVN) at 
P50. There was significantly more ir-GFAP in proximity to blood vessels in veh-treated females 
(a, e, I, m) compared to veh-treated males (b, f, j, m; p < 0.05) and dex-treated females (c, g, k, 
m; p < 0.05). 
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Figure 5.5. Prenatal exposure to dexamethasone (dex) does not impact the blood-brain 
barrier development in the mouse paraventricular nucleus (PVN) at P50.  There were no 
differences observed in the rostral, mid or caudal regions of the PVN or in the lateral 
hypothalamus or cortex due to sex or treatment. 
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Figure 5.6. Testing for depression-like behavior using the tail suspension test (TST).  
Results showed dex-treated males had a significantly decrease latency until their first display of 
immobility (p < 0.05).  This was true for both males and females treated with dex. 
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CHAPTER 6: DISCUSSION 

 

The current set of studies establishes that the dense vascular network within the PVN develops 

postnatally in mice.  Within the PVN, the blood vessels were selectively densest in the rostral 

and mid regions of the nucleus. Capillaries of the PVN were of larger diameters compared to 

other brain regions. The vascular network of the PVN can be regulated by both endogenous and 

exogenous factors. In mice lacking a functional GABAB receptor blood vessel density was 

decreased in in the mid region at P20. Maternal treatment with exogenous glucocorticoids 

resulted in offspring that at P20 had decreased blood vessel density, and increased 

extravascular FITC leakage and desmin-ir pericyte coverage.  In an independent replication of 

the fetal glucocorticoid treatment that examined offspring PVN vasculature after puberty there 

were sex-dependent alterations of blood brain barrier components, but no steady state 

differences in vascular density or extravascular FITC leakage. Overall, these findings 

demonstrate that GABAergic stimulation and glucocorticoid receptor activation during fetal 

development provide examples of regulatory targets for the development of the uniquely dense 

vasculature of the PVN.  

 

There is a growing body of evidence showing that nonneuronal cells are critical for brain 

development and degeneration.  Astrocytes were previously thought to be “brain glue” or simply 

support cells (Reviewed in Freeman & Rowitch, 2013; Ransom et al., 2003).  Now, it is apparent 

that they enhance neuronal function and play important roles in neurological diseases.  

Progress has been made in advancing the role astrocytes play on neuron development and 

function (Clark & Barres, 2013; del Puerto et al., 2013; Freeman & Rowitch, 2013; Ransom et 

al., 2003), but there is still work to be done on their role in NVUs and the BBB.  Data from 

clinical studies show a reduction in the total number of GFAP-ir astrocytes and astrocytic 

endfeet coverage of blood vessels in patients diagnosed with MDD (Rajkowska et al., 2013).  In 
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female offspring of dex-treated mothers I observed a decrease in total ir-GFAP and in ir-GFAP 

proximal to blood vessels within the PVN.  This suggests a mechanism for how excess 

glucocorticoids during prenatal development could predispose an individual to developing a 

disorder such as MDD in adulthood (Wyrwoll & Holmes, 2012).  The potential role a decrease in 

PVN astrocyte coverage specifically may exert on the physiology and behavior of an organism 

is still unknown.   

 

Vascular coverage by pericytes increased due to excess glucocorticoids during fetal 

development in the germinal matrix of rabbits and humans (Vinukonda et al. 2010).  I found an 

increase at P20 in both dex-treated males and females, but at P50 this increase was limited to 

dex-treated males.  It is possible that at P20 pericytes migrated into the PVN in response to new 

vessel formation, traumatic stress, or other hypoxic injury or state (Dore-Duffy et al. 2000) 

indicated by excess FITC leakage within the PVN.  At P50, enhanced pericyte coverage may 

stabilize the vasculature (Vinukoda et al. 2010).  Since pericytes can regulate capillary diameter 

through constricting the vascular wall (Bell et al. 2010), increases at both P20 and P50 due to 

prenatal glucocorticoid excess may impact blood flow within the PVN and subsequently the 

health of the neuronal population.  

 

The physiological role for the postnatal increase in blood vessel density remains elusive.  Many 

studies have characterized the dramatic blood vessel density within the adult PVN (e.g. Ambach 

& Palkovits, 1974; Basir 1931; Craigie, 1940; Poppi, 1928; van den Pol, 1997).  In rats, this 

increase occurs on the day of birth and decrease by P2, and then increases again over the next 

few weeks (Menendez & Alvarez-Uria, 1987).  Notably I observed at birth the blood vessel 

network is similar to surrounding brain regions.  By P8 there is a significant increase in blood 

vessel density.  This suggests the factors responsible for the postnatal angiogenic period in 

mice may be delayed or different than rats.  It has been hypothesized that the vast blood vessel 
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network of the PVN may be used to detect plasma osmotic pressure by magnocellular neurons 

(Badaut et al., 2000) that are abundant in the mid PVN region in mice (Biag et al., 2012).  A 

decrease in PVN vasculature may reduce accessibility to oxygen and nutrients, which could 

impact a neuron’s ability to effectively relay its metabolic needs (Quaegebeur et al., 2011) or 

receive proper feedback resulting in dysfunction.  Since the mid region of the mouse PVN 

houses the majority of CRH, OT, AVP, TRH and somatostatin neurons as compared to the 

rostral or caudal regions (Biag et al., 2012), changes in vascular characteristics may alter their 

ability to respond properly to signals from the periphery.  Future studies should attempt to 

identify the factor(s) involved in the postnatal angiogenic period and if inhibition disrupts 

physiology and behavior. 

 

GABABR1 deficient mice were used to show disruptions of development for neuronal 

populations within the PVN (McClellan et al., 2010; Stratton et al., 2011).  I observed these mice 

also displayed reduced vasculature at P20 (Frahm et al., 2012).  The mechanisms responsible 

for this decrease in blood vessel development remain unclear.  These findings are consistent 

with the hypothesis that the disruption of cell placement has a direct impact on the postnatal 

angiogenic period.  Whether the phenotypes previously characterized in these mice can be 

directly tied to changes in blood vessel density remain to be determined.  Examining the 

development of the PVN from neuronal to vascular will provide insight into function as well as 

help delineate the loci of dysfunction.  

 

As the blood vessel density increases during postnatal development, so do the components of 

the BBB, maintaining its integrity.  Desmin-ir pericytes significantly increased within the PVN 

between P12 and P22.  For BBB competency, perfusion with FITC at P12 and P22 did not result 

in extravascular dye leakage.  Future studies should delineate developmental timing for BBB 

components (e.g. pericytes and astrocytes as well as particular proteins components).  The 
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timing of BBB component development can then be related to BBB functional development.  

This can be examined through FITC perfusion followed by ir-endocan.  Chapter 3 indicates that 

prior perfusion with FITC blocks endocan immunoreactivity and can be used to identify non-

functional, developing blood vessels during the postnatal angiogenic period (Frahm et al, 2013).       

 

In response to a global treatment, most observed changes were restricted to the PVN. This 

suggests the BBB varies at the individual endothelial cell level (Saubamea et al., 2012).  In fact, 

endothelial cells in the heart respond differently in the myocardium than the brain when exposed 

to glucocorticoids (Forster et al., 2006).  Differences in responsiveness to glucocorticoids in 

cultured brain endothelial cells have been observed depending on the days of embryonic 

collection (Iqbal et al., 2011).  In addition, it has been shown that excess glucocorticoids during 

prenatal development in female rats resulted in changes in vascular responsiveness in different 

blood vessels in adulthood.  Specifically, dex-treated females were less responsive to 

angiotensin II in the aorta while the mesenteric arteries when exposed to norepinephrine, 

vasopressin and potassium were more responsive (Hadoke et al., 2006).  In my studies within 

the PVN there was a loss of blood vessel density that did not occur in the LH or CTX.  

Therefore, future studies should focus on looking at specific brain regions for changes due to 

excess glucocorticoids. 

 

In seeking to identify potential angiogenic markers to further characterize the postnatal 

angiogenic period within the PVN we observed that ir-endocan was present uniformly 

throughout the brain in certain mouse strains.  This suggests that unlike the periphery, endocan 

is not a suitable marker for angiogenesis within the brain.  Endocan in the periphery and 

elevated levels in serum have been proposed to be a biomarker for cancer and sepsis (Lee et 

al., 2014; Sarrazin et al., 2006).  Recently, it was suggested that administering neutralizing 

endocan antibodies to reduce serum endocan levels may provide a therapeutic treatment for 
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sepsis in vivo (Lee et al., 2014).  Therefore, it may be useful to determine the role that endocan 

plays in brain vasculature brain before inhibiting it globally.   

 

The presence of extravascular FITC leakage and decrease in blood vessel density in offspring 

exposed to excess glucocorticoids during prenatal development only at P20 and not in a 

separate cohort at P50 indicates a potential delay in the postnatal angiogenic period within the 

PVN.  In addition, the increased presence of pericytes may indicate they were recruited to aid in 

the postnatal development of the BBB within the PVN.  Further support is shown by a functional 

BBB and normal blood vessel density within dex-treated mice during adulthood.  The exact 

cause of BBB disruption in dex-treated mice at P20 is currently unknown.  Other BBB 

components, such as tight junction proteins, do play a role and should be examined.  Prenatal 

dex increases certain tight junction proteins in the sheep cortex when looking during gestation at 

the cerebral cortex (Malaeb et al., 2007; Sadowska et al., 2009) or in vitro (Burek & Forster, 

2009; Forster et al., 2005; Romero et al., 2003).  It is possible there is a decrease at P20 in tight 

junctional proteins, consequently reducing the integrity of the BBB and permitting FITC to leak 

into the PVN in dex-treated mice.   Preliminary studies to examine tight junctions proteins Z01 

and claudin 5 by immunohistochemistry were not successful due to reagent failures. In situ 

hybridization experiments localized claudin 5 mRNA densely within the postnatal PVN (Zhang & 

Tobet, unpublished findings), but this was not examined relative to fetal dex exposure. 

 

BBB breakdown can be problematic due to disruption of the highly regulated microenvironment 

and the protection from circulating toxins (Erickson et al., 2012). During hypertension, circulating 

angiotensin II gains access to the PVN and its receptor AT1 due to BBB breakdown (Biancardi 

et al., 2013).  Therefore, circulating factors may gain access with physiological consequences.  

In the case of angiotensin II, binding to AT1 contributes to sympathetic outflow and increased 

blood pressure during hypertension (Biancardi et al., 2013).  In addition, during BBB breakdown 
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it is possible for other circulating factors, which are normally regulated by transport across the 

BBB into the PVN, to have free access to their receptors.  It has been shown that increases 

transmission of vasopressin from the PVN can increase blood pressure and heart rate (Kc et al., 

2010).  Therefore, loss of BBB competency can allow circulating factors to penetrate the PVN 

and have negative consequences.   

 

In vitro models may provide important venues for future studies. Organotypic brain slices may 

be used to determine whether excess glucocorticoids or GABAB receptor antagonists such as 

CGP 55845 impact angiogenesis and components of the BBB and neurovascular unit within the 

PVN in real time.  The neuronal population may be initially impacted, then when the postnatal 

angiogenic period initiates it varies due to differences in the placement of neurons.  Since 

differences in desmin-ir pericytes varied at P20 and P50 in dex-treated mice, and blood vessel 

density was decreased in both GABAB KO and dex-treated mice, it suggests that the blood 

vessels and BBB respond to disruptions in the neuronal population.  BBB components and 

blood vessels may respond simultaneously and the use of organotypic slices may delineate this. 

The benefit of in vitro studies is the ability to control variables.  While in vitro studies have 

potential drawbacks such as the absence of blood flow and consequent shear stresses that 

affect the properties of endothelial cells (Warboys et al., 2010), studies have shown that blood 

vessels and neurons can persist in these conditions (Moser et al., 2003). I was able to maintain 

blood vessels up to 3 days in vitro and capture video sequences using Tie2-GFP mice of 

increased GFP-positive endothelial cells (figure 6.1).  Unfortunately, the paradigm was 

unreliable and improvements are still needed.  The benefits of an in vitro system to study blood 

vessel and BBB development within the PVN encourage future efforts.   
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Fig 6.1. Blood vessels maintained in vitro. Top left: Fluorecent vessels in the PVN in an adult 
fixed Tie2-GFP mouse. Provided by MJ Schow. Top right: 20x image of BVs in a P12 slice after 
2 days in vitro. Bottom left: image was taken live from a slice from Tie-2-GFP mouse in vitro for 
48h treated with 30ng VEGF. Bottom right: BVs within the PVN in a P2 slice after 5 days in vitro. 
 
 
 
There is mounting evidence that BBB disruption is associated with neurological disorders.  

Initially it was assumed that BBB disruption was secondary to neuronal loss.  A prime example 

is the amyloid cascade hypothesis, which states that amyloid- peptide deposits in the brain 

initiate Alzheimer’s disease (Erickson & Banks, 2013).  Much research today focuses on this 

hypothesis; however, evidence supports looking at the BBB at its role upstream of amyloid.  

This shift in focus has extended beyond Alzheimer’s disease to other neurological disorders, 

suggesting BBB disruption proceeds and can accelerate degeneration in adulthood and aging 

(Zlokovic, 2008).  For PVN development, these studies show excess glucocorticoids or a loss of 

GABAB receptors directly or indirectly change the vascular network.  Whether there is a 

propensity for BBB breakdown to occur during aging is an area for future study.   
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In summary, this work shows a postnatal angiogenic period with the greatest increase in blood 

vessel density occurring in the rostral and mid regions of the mouse PVN.  This was disrupted at 

P20 in mice either deficient in GABAB signaling or exposed to excess glucocorticoids during 

fetal development.  Excess fetal glucocorticoids also decreased BBB competency at P20 and 

increased desmin-ir pericyte coverage.  Into adulthood, there were long lasting impacts in BBB 

components in a sex-dependent manner.  These changes observed within the neurovascular 

unit, specifically within the PVN in GABABR1 KO or dex-treated mice, may be an important 

locus for understanding disorders of the HPA axis with potential impact for mood disorders and 

other comorbid disorders with ties to PVN functions such as CVD (figure 6.2). 
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Figure 6.2. Current model of postnatal blood vessel development in the paraventricular 
nucleus of the hypothalamus (PVN) along with alterations due to excess glucocorticoids 
during embryonic development.  In the mouse PVN, there is a 40% increase in blood vessel 
density between postnatal (P) days 12 and 20 and is maintained out into adulthood (A).  Excess 
glucocorticoid during prenatal development does not disturb the initial vascular network in the 
PVN but at P20 there is a decreased vascular network that has a compromised blood-brain 
barrier (BBB), while at P50 there are no differences observed in the density or BBB (B). 
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