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ABSTRACT 
 
 
 

EPIDEMIOLOGICAL INVESTIGATION OF ANTIMICROBIAL RESISTANCE IN BEEF 

PRODUCTION USING METAGENOMIC SEQUENCING 

 
 
 

Globally, the emergence of antimicrobial resistance (AMR) resulting in treatment failure is 

recognized as a growing public health threat. Antimicrobial use practices used in beef production 

are thought to be a direct driver of increasing antimicrobial resistance in pathogens and the 

environment, in part due to the higher volumes of antimicrobial drug necessary to treat cattle 

weighing 10 times more than an average person. This has led policy makers and public health 

organizations to promote “judicious use” or outright ban of antimicrobial drugs in livestock 

production. Use of antimicrobials is unavoidable for the treatment of disease and we must 

therefore learn how we can best adjust our AMD use to reduce selection of AMR pathogens. 

However, outside of important indicator organisms and pathogens, little is known about how 

different antimicrobial drug use practices affect communities of microorganisms, or 

microbiomes, and the AMR gene determinants, or resistome, shared between pathogen and non-

pathogens alike. With advances in high-throughput sequencing (HTS), we can perform culture-

independent studies and gain a better understanding of how antimicrobial drug use practices in 

livestock production affect AMR epidemiology. 

This dissertation consists of five studies that employ HTS to characterize the microbiome and 

resistome of samples with differing AMD exposure along the beef production line. Projects begin 

with a look into the short-term effects on the microbiome and resistome of feedlot cattle 

following treatment with a macrolide drug, tulathromycin, in the manuscript “Investigating 
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Effects of Tulathromycin Metaphylaxis on the Fecal Resistome and Microbiome of Commercial 

Feedlot Cattle Early in the Feeding Period”. Fecal samples collected in this project also were 

processed with aerobic culture, polymerase chain reaction (PCR), and lateral flow immunoassay 

for identification of Salmonella enterica and the comparison of these results are presented in “A 

Cautionary Report for Pathogen Identification Using Shotgun Metagenomics; a Comparison to 

Aerobic Culture and Polymerase Chain Reaction for Salmonella enterica Identification”. 

Samples collected as part of a longitudinal study in feedlot cattle were analyzed to characterize 

the associations between AMD use and AMR in two bacterial species. These archived samples 

are leveraged for a broader understanding of AMR dynamics by adding a community-level 

perspective to results from aerobic culture. Results in individual cattle are presented in 

“Antimicrobial Drug Use in Beef Feedlots; Effects on the Microbiome and Resistome Dynamics 

in Individual Cattle” and results at the pen-level in “Metagenomic Investigation of the Effects of 

Antimicrobial Drug Use Practices on the Microbiome and Resistome of Beef Feedlot Cattle”. 

Finally, in “Metagenomic Characterization of the Microbiome and Resistome in Retail Ground 

Beef” we examined the end of the beef production line by comparing the microbiome and 

resistome of retail ground beef products from either conventional production systems or those 

labeled as “raised with antibiotics” (RWA).  

The five studies presented in this dissertation each contribute to the collective understanding 

of how AMD use in livestock production system can affect the ecology of AMR in microbial 

communities. These projects are useful first steps in learning to manage AMR in beef production 

systems; encompassing a targeted look at the use of one type of AMD, characterizing the 

resistome dynamics in individual cattle and pens over time in a feedlot, a comparison of the 

resistome in ground beef products, and many other aspects of AMR epidemiology. The final 
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study, describing limits to incorporating HTS for pathogen identification, serves as a cautionary 

reminder that with new technologies come new challenges and that research must keep pace. 
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PREFACE 
 
 
 

 At the risk of sounding overly dramatic, I believe microbiology is currently in the early 

stages of a paradigm shift in the scale of the transition from the miasma theory to the germ 

theory in the 19th century. Instead of focusing on just individual bacterial species, the field of 

microbiology is rapidly expanding thanks to advances in high-throughput sequencing to consider 

multiple microorganisms at the same time (metagenomics). I remember my mentor, Paul Morley, 

first explaining to me why he was so excited about using metagenomics as a new tool to study 

the epidemiology of antimicrobial resistance (AMR) in livestock production. Then, he offered 

that I “ride the wave” with his lab and contribute to cutting edge research. Unbeknownst to him I 

was ready to sign-on before he shared his analogy, but this phrase would become a mantra of 

sorts to help me through the struggles of graduate school. Before getting to enjoy riding the 

wave, one must first pick the right surfboard and be ready to paddle until your arms feel like they 

might fall off. Before getting to enjoy contributing to cutting edge research, I had to paddle my 

arms off to learn the bioinformatic skills and knowledge necessary to discern which is the best 

tool for the job. 

 My doctoral dissertation aims to contribute to the understanding of how antimicrobial 

drug use in beef production affects the microbiome and the profile of antimicrobial resistance 

genes present (the “resistome”). Antimicrobial resistance is a pressing public health threat and I 

am fortunate to have worked with multidisciplinary team to evaluate several aspects important to 

beef production. The entirety of the results from my dissertation only push the needle forward a 

very small increment, but I feel privileged to have worked alongside amazing people to add 
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toward humanity’s understanding of antimicrobial resistance. I will continue on this mission and 

undoubtedly will enjoy the company of the friendships I made along the way. 
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CHAPTER 1: LITERATURE REVIEW: USES AND LIMITATIONS OF HIGH-

THROUGHPUT SEQUENCING TO UNDERSTAND THE EPIDEMIOLOGY OF 

ANTIMICROBIAL RESISTANCE AND PATHOGENS IN BEEF PRODUCTION 

 
 
 

GLOBAL BURDEN OF ANTIMICROBIAL RESISTANCE (AMR) 

Concurrent with the discovery of penicillin, a medical marvel in 1940, Abraham and 

Chain (1) found that some bacteria produce an enzyme that can destroy the penicillin molecule, 

thereby making the organism resistant to treatment. Since then, an “arms race” has existed 

between innovative drug discovery for treatment of human and animal infections and the equally 

rapid phenomenon of antimicrobial resistance (AMR) (2–4). Now, in the 21st century, AMR in 

pathogens has emerged as one of the greatest public health challenges, threatening to push back 

medical progress by making previously treatable infections resistant to even the strongest 

antimicrobial drugs (AMDs) (5–7). A major cause for concern is that despite this decreasing 

effectiveness of currently employed AMDs due to resistance, there also is a relative decrease in 

the development of novel AMDs due to decreased investment, increased regulation, and high risk 

of failure (8). The CDC estimates that each year in the United States at least 2 million people are 

infected with drug resistant pathogens and 23,000 people die because of these resistant infections 

(5). Alarmingly, a report by the O’Neil Commission predicted that by 2050, 10 million deaths 

will be attributed to AMR infections (9). As a result, many countries and public health entities 

recognize AMR as a global public health threat and have created plans for combating AMR (9–

11). Understanding drivers of AMR and improving systems for AMR surveillance are two 

important priorities shared across most plans and will be considered in the context of beef 

production in this review. 
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Use of AMDs is commonly accepted to be driving the rise of AMR in humans because 

the use of certain of these drugs or classes of drugs can also extend to livestock production, pets, 

crops, and aquaculture (12). While the magnitude of the threat from AMD use in livestock 

production is still poorly understood, beef production is of interest due to high AMD sale 

numbers and particular AMD use practices like the mass treatment of animals to prevent disease 

(13–16). In the US, the Federal Drug Administration (FDA) implemented the Veterinary Feed 

Directive (VFD) Regulation to promote the judicious use of AMDs and to restrict  the use of 

AMDs for production purposes including growth promotion and feed efficiency (17). However, 

understanding how the epidemiology of AMR will shift in response to changes in AMD use 

practices is challenging and until recent years, studies relied on describing phenotypic patterns of 

resistance in certain “indicator” bacterial species. This work provides necessary insight into 

certain groups of bacteria, such as coliforms and obligate pathogens, but the results are 

complicated due to the sharing of AMR gene determinants between pathogens and non-

pathogens, both of which could be reservoirs of AMR (18–21). We lack the ecological 

perspective of resistance and may be missing important dynamics between the microorganisms 

in a community (microbiome) and the AMR genes they carry (resistome). 

Advancements in high-throughput sequencing now allow for non-targeted sequencing of 

a random portion of all the DNA present in a sample to either sequence across multiple genomes 

and study community-level structure (metagenomics) or capture extensive information about a 

single organism’s genome, known as whole-genome sequencing (WGS). High-throughput 

sequencing allows an unprecedented look at the microbial environment and with its rapidly 

decreasing sequencing cost, has emerged as a powerful new tool for epidemiological studies of 

AMR. This chapter provides an update on the current state of AMR epidemiology in beef 
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production, describes relevant advances in high-throughput sequencing tools (metagenomics and 

WGS), and explores the uses for, and limitations of, incorporating these tools into future studies 

of AMR epidemiology.  

EPIDEMIOLOGICAL STUDY OF AMR IN BEEF PRODUCTION 

There is a dearth of knowledge regarding AMR dynamics in beef production. The extent 

to which different countries employ AMR surveillance varies greatly and much of the focus of 

surveillance is on AMR risk in humans, not animals. Notable examples of countries that have 

developed robust AMR surveillance programs in beef production include Canada (22), 

Denmark(23), and Sweden (24). Comparably, the United States is the largest beef producer 

globally and has limited AMR surveillance in beef production systems with patterns primarily 

for Salmonella enterica and nontype-specific Escherichia coli, as well as a growing program for 

Enterococcus spp isolates available through data from the United States Department of 

Agriculture’s (USDA) National Animal Health Monitoring System (NAHMS) (25). 

Conducting AMR surveillance and identifying drivers of AMR in beef production 

environments is challenging for a variety of reasons. Past research has primarily focused on just 

a few “indicator” bacterial species which overlooks the ecological perspective of AMR in the 

larger microbial ecology (25–28). Often, zoonotic enteric pathogens such as Campylobacter and 

Salmonella or indicator species like E. coli and Enterococcus spp are selected because of their 

importance in human disease, their ability to be isolated and cultured from healthy animals, and 

the availability of guidelines for the classification of resistance (29). Typically, culture is 

employed with selective media to isolate individual bacterial species found in samples from 

feedlot settings. Once isolated, bacteria are tested for the phenotypic expression of resistance to 

specific AMDs using either broth microdilution or Kirby-Bauer disk diffusion. In practice, these 
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tests work by exposing bacterial cultures to AMDs and establishing minimum inhibitory 

concentrations (MIC) with broth microdilution or establishing MIC “equivalent” values by 

converting the zone of inhibition measured by disk diffusion. Then, to designate whether an 

isolate can be classified as “resistant” or “sensitive” to each drug, MICs are compared to 

established breakpoints created by standardization bodies such as the Clinical Laboratory 

Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST)(30, 31). In cases where bacterial species do not have established breakpoint for 

certain AMDs, laboratories must set their own therapeutically-relevant thresholds. 

These methods provide a useful overview of general trends in resistance for important 

bacterial species but are accompanied by complicating factors that limit our understanding of 

AMR ecology and therefore our ability to manage resistance. Genes known to confer AMR when 

expressed in pathogens can be shared between bacterial species through horizontal gene transfer 

among a wide range of microbial hosts to be maintained in the environment (6, 32, 33). Isolating 

and testing just a few “indicator” species for resistance to certain AMDs, therefore, cannot 

capture the complexity and full potential for resistance in an environment. Additionally, research 

shows that the selection of two different indicator species can provide distinct answers about the 

effect of AMD use on resistance (34) and can be biased by laboratory methods employed (35, 

36). For example, polymerase chain reaction (PCR) can be used to test a sample for the presence 

of multiple AMR genes; however, the creation of targeted probes for specific nucleotide 

sequences inherently limits analyses to identifying known AMR determinants. Therefore, AMR 

surveillance programs employing PCR must continuously be updated to include probe designs 

for AMR genes important to public health but could miss the presence of novel resistance genes 

and underestimate the risk of AMR. The metagenomic approach, made possible by high-
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throughput sequencing, can be used to complement current methods for AMR research and 

surveillance by providing a non-targeted approach that represents the total resistance potential in 

a sample across all organism’s present. 

HIGH-THROUGHPUT SEQUENCING TECHNOLOGIES 

Starting with the push to sequence the human genome, high-throughput sequencing 

(HTS) technologies improved rapidly in sequencing quality and capacity while also decreasing in 

cost (37, 38). These advances have spurred creation of the “omics” field of study that consist of 

non-targeted sequencing of a particular type of molecule in a sample; DNA (genomics), mRNA 

(transcriptomics), ancillary DNA characteristics such as methylation and folding that affect 

transcription dynamics (epigenetics), amino acids and proteins (proteomics), and predicted 

metabolic genes (metabolomics). As comprehensive reviews pertaining to the various types of 

HTS tools are available elsewhere, the focus of this chapter will be on two widely used genomic 

methods, metagenomics and whole-genome sequencing (39–41). 

 Metagenomic sequencing (MGS) is a holistic approach to comprehensively sample the 

DNA extracted from a community of microbes. Unlike PCR, which requires targeted probes for 

the amplification of select nucleotide fragments, metagenomic sequencing studies are commonly 

conducted in the following three ways: shotgun sequencing (or whole metagenomics 

sequencing), marker-gene amplicon sequencing (e.g. 16S rRNA for bacteria, internal transcribed 

spacer (ITS) for fungi), and environmental clone libraries (functional metagenomics). 

Metagenomic sequencing has been shown to work on a growing list of sample matrices, 

including soil, feces, water, meat, blood, air and even samples collected from surfaces using 

swabs. On the other hand, WGS entails using non-targeted HTS typically on a sample consisting 

of a single isolate to obtain detailed information about sequence variation along the entire 
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genome of that organism. WGS allows an unprecedented view at the genetics of a single 

bacterial species and allows finer scale ecological modeling. 

Advantageously, HTS sequencing results and the bioinformatic methods used to analyze 

them are publicly available through the National Center for Biotechnology Information (NCBI) 

genetic sequence database service and the software repository website GitHub. The quantity of 

stored sequencing data is rapidly growing (42, 43) and provides a wealth of knowledge that can 

be re-analyzed as computational resources and analytic methods improve. 

USES OF HTS TOOLS FOR EPIDEMIOLOGICAL STUDIES 

 High-throughput sequencing has enabled the fields of metagenomics and WGS which are 

uniquely suited to revolutionize the study of AMR in beef production by improving AMR 

surveillance and the identification of factors driving AMR (44–46). As with all new tools, the 

potential uses and limitations are still being tested and evaluated, but recent reports presented 

below highlight exciting ways to use HTS for the study of AMR epidemiology. 

Metagenomics 

The use of culture-independent metagenomic sequencing removes the need for AMR 

research to be targeted to just a few species. Notably, past research supports the “great plate 

count anomaly” which suggests that only 1% of all bacteria on Earth can be isolated using 

culture methods (47). Estimates refined a decade later further suggest that out of roughly 61 

distinct bacterial phyla in soil, 31 cannot be cultured (48). Whereas culture-dependent methods 

overlook the role played by these “unculturable” bacteria, metagenomic sequencing captures 

their resistance potential in the community. This approach opens up the possibility of identifying 

known AMR genes, metabolic genes, and virulence factors all in the same sample (49–51). 

Further HTS can be used to study multiple mechanisms of resistance. For example, certain 
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organisms can become resistant to AMDs and also the antimicrobial properties found in metals  

(52–54). This is thought to occur either through co-selection when both genes are present and 

selected for in the same organism, or through a single mechanism, such as multi-drug efflux 

pumps, which can confer resistance to both the metal and the AMD. HTS can be used in this 

context to study the co-selection of multiple AMR gene determinants with metal resistance 

providing previously unknown insights into resistance mechanisms. 

Studies using metagenomic sequencing to investigate drivers of AMR in beef feedlot 

production are contributing to the knowledge about how AMR occurs at distinct points 

throughout the production line. Bovine respiratory disease (BRD) is an economically important 

disease in North American beef cattle whereby cattle deemed at high risk for BRD are often 

given parenteral antimicrobials metaphylactically. Metagenomic studies found that the 

nasopharyngeal microbiome and resistome are significantly affected by the administration of an 

antimicrobial (55). However, this antimicrobial administration does not seem to significantly 

alter the fecal microbiome and resistome composition (56). Testing the impact of in-feed AMD 

use on the resistome in the rumen of feedlot cattle did not show significant differences between 

treated and non-treated groups (57). Another study characterized changes throughout the beef 

production system and identified a decrease in resistome diversity from when cattle arrived to the 

feedlot, to when they were shipped for slaughter, to when they were processed at the abattoir 

(56). By the time the final product was ready for retail packaging, the resistome was at an 

undetectable level (58). When looking at retail beef products, results suggest that AMD use has a 

minor effect on the overall resistome when comparing between conventional production system 

products and those labeled “raised without antimicrobials” (52). 
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We speculate that using metagenomics to further explore the feedlot environment and 

characterize shifts occurring in cattle entering and exiting the feedlot could identify management 

practices positively associated with reducing AMR. It is possible, for example, that beef feedlot 

environments could have small-scale areas of increased resistance, similar to patterns observed 

in the intensive care unit environment within a hospital (60). Studies show that man-made or 

built environment can have a strong effect on the microbiome and resistome (61–63) and offers 

the possibility that built environments in beef feedlots could be altered to manage AMR 

dynamics. 

 

Whole-genome sequencing (WGS) 

The application of WGS is particularly well suited for AMR research in beef production 

systems and has been the most widely applied of the “omics” tools in food safety research (64). 

Because a lot of AMR surveillance programs were already relying on isolating bacterial species 

using culture, WGS can easily be implemented into the workflow at the end of the typical 

protocol to further characterize specific isolates. The subtyping of pathogenic isolates is 

specifically necessary for epidemiological studies and until recently subtyping was performed 

using pulsed-field gel electrophoresis (PFGE) and multiple-locus variable tandem number repeat 

analysis (MLVA) (65, 66). Mounting evidence suggests WGS can help with outbreak 

investigations by providing increased discrimination of isolates into epidemiologically relevant 

groups. Thus, as of 2017, PulseNet International, the network of collaborating laboratories 

dedicated to surveillance for food-borne diseases, will transition away from PFGE subtyping and 

replacing their workflow with WGS using whole genome multilocus sequence typing 

(wgMLST). 
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The following examples provide evidence of where WGS has been successfully utilized. 

One study of enterohemorrhagic Escherichia coli (EHEC) O26 species demonstrated the 

capability of WGS to improve the overall identification of O26 strains while simultaneously 

screening for AMR and virulence genes (67). Bioinformatic strategies to characterize bacterial 

species in this detailed manner is being applied to a multitude of livestock species to help address 

knowledge gaps in AMR ecology. This work includes the ability to identify novel AMR genes in 

phenotypically resistant isolates of Clostridium difficile (68) and the discovery of plasmids 

encoding multi-drug resistance genes that are widely distributed in E. coli isolates from different 

livestock species (69). In another example, a study used WGS to characterize nontyphoidal 

Salmonella across the beef production system in Mexico and their results identified clonal 

expansion of typhoidal toxin genes and VirB/D4 plasmids containing a virulence factor (70). 

These data also demonstrated that more than two decades before the isolates identified had been 

previously implicated in human clinical cases of Salmonellosis in Mexico.  These findings 

highlight the importance of clonal expansion and persistence of Salmonella in the beef 

production environment. Use of WGS for AMR surveillance and outbreak investigation is well 

established and is increasingly being adopted worldwide (46, 71–75), but further exploration is 

warranted to determine further potential uses. 

LIMITATIONS AND CHALLENGES 

 Metagenomic sequencing and WGS are promising tools for the study of AMR 

epidemiology, but as with all tools, their use must be cautiously evaluated. A typical workflow 

for both metagenomics and WGS would include the same basic steps; sample collection, sample 

processing, DNA extraction, library preparation, sequencing, and subsequent bioinformatic 

analysis. There are limitations and challenges at each step, starting with the lack of standardized 



10 
 

laboratory methods for sample collection and processing. For example, evidence shows that the 

external validity of an experiment could be compromised by differences in sample handling 

which could significantly influence the microbiome composition (76, 77). Similarly, the choice 

of DNA extraction kit provides different results from the same sample (78–80). Further, the 

choice of kit for library preparation and the choice of sequencing platform can each bias the 

results contributing to the necessity of standardized protocols (81, 82). In samples with high 

background host DNA such as carcass trimmings and meat rinsates, the development of 

laboratory methods to improve “on-target” sequencing of AMR genes is necessary to minimize 

sequencing costs and optimize sequencing depth. Currently, two methods have been proposed; 

depletion of vertebrate host DNA using a methyl-CpG binding domain (MBD) (83) and an 

alternate approach using biotinylated baits to target-enrich AMR genes prior to sequencing (84). 

An important limitation is that currently no standard exists for estimating absolute quantities of 

the genetic features identified in each sample, but a multitude of methods are being developed to 

address this (85–87). 

Once sequencing is completed, the choice of bioinformatic methods selected to analyze 

HTS results is a critical component that is under debate for both metagenomic sequencing (88–

90) and WGS (74, 91, 92). Identifying which genes are present in samples is not as 

straightforward as using the Burrows-Wheeler Aligner (BWA) software (93) to map the sample 

reads to a reference database. This is of vital importance to AMR studies because the function of 

some AMR genes cannot be inferred simply by their presence in a sample. Some genes, like 

gyrA, encode for an integral part of cellular biology for bacterial species but can confer 

resistance to AMDs through a point mutation in the gyrA gene. This point mutation prevents 

fluoroquinolone antimicrobials from binding to their target, alpha-subunit, thereby making the 
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organism resistant. The typical method of alignment, usually with the bwa software(93) and a 

reference database would miss this nuance and could classify wild-type gyrA genes in a sample 

incorrectly to overestimate the presence of fluoroquinolone resistance. The additional step of 

confirming the location of the resistance conferring point mutation relies on extensively curated 

annotations and several groups are attempting to address this and improve AMR classification 

(94, 95). Tied to that, the validity of the results garnered from HTS relies heavily on the integrity, 

diversity, and accuracy of the reference databases employed for classification (49, 96, 97). 

Finally, performing bioinformatic analysis using command line coding can be quite 

challenging and may discourage scientists from incorporating HTS into their workflow. The 

Galaxy platform (98) was created to make bioinformatic analyses more accessible to other 

researchers and their graphical user interface (GUI) can be run directly from a web browser 

which avoids installing any bioinformatic software. However, running larger experiments on the 

Galaxy platform can be slow and little support is provided to help guide analytic decisions. With 

continuing development of user-friendly bioinformatic applications and increasing awareness of 

the expertise a bioinformatician can impart to ensure that sequencing effort is optimized, HTS 

tools can overcome major limitations and contribute valuable data to our understanding of AMR 

dynamics. 

CONCLUSIONS 

Antimicrobial resistance is considered the quintessential One Health issue that intersects 

the health of people, animals, and the environment (99). Microbes in the environment contained 

AMR before people started using AMDs (2, 4) and growing evidence points to the importance of 

the environment as a reservoir for resistance (100–102). Tools using HTS will undoubtedly play 

a role in future epidemiologic studies of AMR ecology. For AMR surveillance, both 
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metagenomics and WGS are already starting to be used to contribute a holistic community-level 

perspective and a detailed characterization of AMR gene sequence variance in specific isolates, 

respectively. This use will continue to increase as sequencing costs decrease and bioinformatic 

pipelines are streamlined. Outside of adopting the latest technologies to study the association 

between AMD use and AMR, it is necessary to be able to accurately estimate the selection 

pressure faced by a microbiome exposed to AMDs. Though the first step toward that goal is 

access to AMD use records, most AMD estimates rely on sales data that are likely leading to 

biased estimates (103) since sales data does not equate to what the animal was actually exposed 

to. Comparing AMD use across different species or collection methods is difficult therefore 

establishing a method to standardize these exposures is an ongoing target of research (26, 34, 34, 

104). It is likely that AMD is only one driver of AMR and future studies must comprehensively 

evaluate the impact of environmental variables that are often ignored in microbiome and 

resistome experiments (e.g. temperature, humidity, pH, etc.) as well as management variables 

(e.g. stocking density, AMD use records, weight, source, etc.). Tackling the complex challenges 

posed by AMR cannot be addressed by a single scientific field, just as there is not a single tool 

that can reduce the risk of AMR in isolation. Instead, it will require collaboration from multi-

disciplinary research teams to bring different tools and perspectives to the research table. 
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CHAPTER 2: INVESTIGATING EFFECTS OF TULATHROMYCIN METAPHYLAXIS ON 

THE FECAL RESISTOME AND MICROBIOME OF COMMERCIAL FEEDLOT CATTLE 

EARLY IN THE FEEDING PERIOD 

 
 
 

SUMMARY 

Background 

 Use of metaphylaxis treatment in beef feedlot production systems is thought to increase 

antimicrobial resistance. 

Objectives 

 Characterize changes in the resistome and microbiome associated with metaphylactic 

treatment with tulathromycin in feedlot cattle early in the feeding period. 

Animals 

 Two pens of cattle were used, with all cattle in one pen receiving metaphylaxis treatment 

(800mg subcutaneous tulathromycin) at arrival to the feedlot, and all cattle in the other pen 

remaining unexposed to parenteral antibiotics throughout the study period. 

Methods 

 Shotgun sequencing was performed on isolated metagenomic DNA, and reads were 

aligned to a resistance and a taxonomic database to identify alignments to antimicrobial 

resistance (AMR) gene accessions and microbiome content. 

Results 

 Overall, we identified AMR genes accessions encompassing 9 classes of AMR drugs and 

encoding 24 unique AMR mechanisms. Statistical analysis was used to identify differences in the 

resistome and microbiome between the untreated and treated groups at arrival to the feedlot (Day 
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1) or at a second sampling time (Day 11), as well as over time. Based on composition and 

ordination analyses, the resistome and microbiome were not significantly different between the 

two groups at either time point. However, both the resistome and microbiome in both groups 

changed significantly between these two sampling dates. 

Conclusions 

 These results indicate that the transition into the feedlot – and associated changes in diet, 

geography, conspecific exposure, and environment – may exert a greater influence over the fecal 

resistome and microbiome of feedlot cattle than common metaphylactic antimicrobial drug 

administration. 

 INTRODUCTION 

 One of the most critical periods in managing the health and wellbeing of beef cattle is 

when they are transitioned from less intensive production settings, such as pasture or 

backgrounding operations, to feedlots. During this transition, animals are exposed to varied 

stressors associated with handling, transport, processing, commingling, and a shift to a high-

energy feedlot diet (105). In response to these stressors, animals may become more susceptible to 

infectious disease, such as those that cause bovine respiratory disease (BRD), the single largest 

cause of morbidity and mortality among feedlot cattle in the United States (106, 107). Because 

groups of cattle that are deemed to have a high risk for the development of BRD can already be 

incubating infections that can become life-threatening despite the absence of clinical signs, these 

cattle are sometimes administered antimicrobial drugs (AMDs) at the time they enter the feedlot, 

a practice that is known as metaphylaxis. Metaphylactic administration of an AMD to an entire 

group of cattle with a high risk of BRD can be highly efficacious in preventing life-threatening 

disease. Parenteral administration of therapeutic doses of tulathromycin have been shown to be 
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highly effective when used metaphylactically for preventing illness and death related to BRD 

(108–111). However, the administration of AMD’s to groups of animals are subject to increasing 

concern and scrutiny because of the potential for public health impacts related to AMR in 

bacteria that may be transferred to consumers through the food chain or environmental routes. 

 In the most recent national survey data available, 45.3% of feedlots reporting 

metaphylaxis use of tulathromycin to prevent BRD when cattle arrived at the feedlot (112). 

Tulathromycin use has been demonstrated to be highly effective in reducing BRD morbidity in 

feedlot cattle with only minor adverse side-effects (15, 108). Cardiotoxicity has been reported, 

with the use of Tulathromycin, in several species such as mice and rabbits(113, 114). 

Tulathromycin is a macrolide, a class of antimicrobials considered critically important for human 

medicine (12). Despite increasing scrutiny of antimicrobial use practices in livestock production, 

little work has been performed to study the effect of tulathromycin metaphylaxis on 

antimicrobial resistance (AMR) in cattle. Past research has frequently focused on phenotypic 

resistance to a limited number of AMDs in one, or at most a few, bacterial species using 

traditional culture methods(115, 116). However, the response to antimicrobial use varies among 

bacteria and because resistance genes can be transmitted amongst a wide variety of bacteria; 

results found in one bacterial species cannot be extrapolated to the community level (117, 118). 

Such AMD exposures have the potential to affect the entire gut ecology, and as such, a broader 

perspective is needed in investigating potential effects of metaphylactic AMD use on microbial 

communities. 

 High-throughput sequencing (HTS) techniques now enable a culture-independent 

metagenomic approach that can be used to study the resistome and microbiome, allowing access 

to the complete repertoire of resistance genes and bacteria within a given sample. Therefore, this 
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study was conducted to investigate the impact of metaphylactic AMD use of tulathromycin on 

the fecal resistome and microbiome of commercial feedlot cattle in the early feeding period using 

shotgun metagenomics. 

MATERIALS AND METHODS 

Overview of study design and population 

 Two groups of cattle were identified for enrollment in the study before their arrival at a 

commercial cattle feedlot in Texas. Cattle were purchased from a single backgrounding facility 

and were delivered in two groups of 193 and 186 steers (300-400 kg body weight/animal) each.  

Each group was housed in separate pens after arrival (Day 1), and one group was randomly 

selected to be given parenteral tulathromycin metaphylactically while the other group served as 

an unmedicated control. All cattle in the group that had an AMD administered received a 

subcutaneous injection of 800 mg tulathromycin (Draxxin®; Zoetis, Florham, NJ) while cattle in 

the other group did not. This single tulathromycin exposure was expected to result in therapeutic 

tissue concentrations in the lung for up to 14 days (119), and this drug has a withdrawal period of 

18 days in the U.S. with regard to slaughter for human consumption of tissues (120). Essentially 

all of this drug is eliminated unmetabolized from the body via biliary excretion and subsequent 

fecal elimination. With the exception of the administration of tulathromycin to the one group, 

both groups of cattle underwent identical arrival processing, including administration of vaccines 

for clostridial and respiratory diseases, avermectin anthelmintic, and application of growth-

promoting hormone implants (Table 2.1). After initial processing and placement into pens, cattle 

were fed the same corn-based diet throughout 11-day study period which contained tylosin (also 

a macrolide class of antimicrobial) to prevent liver abscesses at an FDA approved target intake of 

90 mg per head per day and ionophore feed additives (monensin) conforming to nutritional 
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recommendations of the National Research Council (121). Cattle were provided ad libitum 

access to water and their health and welfare were monitored daily by trained feedlot personnel 

under the supervision of consulting veterinarians. 

 Fecal samples were collected from cattle per rectum at arrival (Day 1), and 11 days later 

(Day 11). After transport to the laboratory, fecal samples were processed to isolate total 

metagenomic DNA, upon which shotgun metagenomic sequencing was performed. During the 

11-day study period, no cattle were identified as being ill, and therefore none received additional 

therapeutic AMD treatments. 

 

Sample collection 

 Using individually packaged sterile gloves a total of 379 fecal samples (≥ 25 g/sample) 

were obtained per rectum from each steer at arrival processing, prior to tulathromycin injection 

of all cattle in one group. Each fecal sample was placed into a sterile Whirl-Pak bag (Nasco). 

Fecal samples were then placed into coolers with ice packs and transported to the laboratory 

within 8 hours of sample collection for storage at -80°C. 

As part of another study evaluating methods for Salmonella enterica identification, all 

samples were processed prior to freezer storage with aerobic culture and lateral-flow 

immunoassay strips. Three cattle were identified as culture-positive for S. enterica; these 3 

animals were from the AMD administered group. Not all animals that were sampled on Day1 

were re-sampled.  Animals that were sampled at the second sampling time, Day 11, included the 

3 animals that were positive for S. enterica and 31 randomly selected animals. These 34 cattle 

(17 per group) were again palpated per rectum with sterile gloves to collect feces. Four animals 

had minimal feces in the rectum at this time (2 per group); therefore, fecal samples were 
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collected from 30 cattle (15 per group) and transported on ice to the laboratory for frozen 

storage. Only calves that had fecal samples at both time points were selected for further genomic 

investigation and processed for shotgun metagenomic sequencing.  A total of 60 fecal samples 

collected at the two time points (Day 1 and Day 11) were analyzed.  

 

DNA extraction 

 The 60 fecal samples were thawed at room temperature and total DNA was isolated. To 

remove excess plant debris and decrease inhibitors in fecal DNA samples, 10 grams from each 

sample were mixed with 30 mL of buffered peptone water (BPW), vigorously shaken, and 

allowed to sediment for 10 minutes. Supernatant was transferred to sterile 50 ml conical tubes 

and centrifuged at 4,300 ×g for 10 min at 4°C. Resulting pellets were rinsed with 5 mL of 

molecular-grade 1X phosphate buffered saline (PBS) and centrifuged again (4,300 ×g, for 10 

min, at 4°C). After removal of supernatant, total DNA was isolated from the pellet using the 

PowerMax Soil DNA Isolation Kit (MO BIO Laboratories) following the manufacturer’s 

protocol. DNA concentration and quality were evaluated using a NanoDrop™ spectrophotometer 

(Thermo Fisher Scientific, Inc.). Using NanoDrop results, samples with 260nm:280nm 

ratios >1.3 and DNA concentrations >20 ng/µl were sent for sequencing; samples that did not 

meet the concentration threshold were concentrated by ethanol precipitation before sequencing. 

 

DNA library preparation and sequencing 

 Purified DNA (100 µl aliquots) from all 60 samples were delivered to the Genomics and 

Microarray Core at University of Colorado Denver (Aurora, CO) for library preparation and 

sequencing. Genomic libraries were prepared using the TruSeq DNA Library Preparation Kit 
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(Illumina, Inc.) and next-generation sequencing was completed on the HiSeq 2000 (Illumina, 

Inc.) with 5 samples per lane, V4 chemistry, and paired-end reads of 125 bp in length. 

 

Processing of metagenomic sequence data 

 De-multiplexed sequence reads were analyzed using the AmrPlusPlus bioinformatic 

pipeline (49). Starting with read trimming and quality filtering using Trimmomatic (122), 

AmrPlusPlus then identifies host DNA with alignment to the Bos Taurus genome (123) using the 

Burrows-Wheeler-Aligner (BWA) software (93) and removes those reads with SamTools (124) 

to create non-host reads for subsequent characterization of the resistome and microbiome. 

 

Analysis of sequencing quality 

 The FastQC software (125) was used to assess sample read quality. Summary statistics 

regarding the number of raw, trimmed, and non-host reads for each sample were compared using 

generalized linear models with the “glm” function and the R platform (126) to assess systematic 

bias across the following sequencing metadata: sequencing run, batch, and lane. For study design 

metadata, primary comparisons of interest were between treated vs. untreated cattle, and between 

sampling time points (Day 1 versus Day 11). To test for potential DNA contamination, sample 

reads were aligned to the human genome using BWA and the number of successfully aligned 

reads in each sample were compared between groups using the “wilcox.test” function. Similarly, 

differences in sequencing results between sample groups were tested with the Wilcoxon signed-

rank test when comparing paired values from the same animal (Day 1 to Day 11) and the 

Wilcoxon rank-sum test was employed when comparing animals at either time point. 
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Resistome: Identification of resistance genes in metagenomic sequence data 

 In order to identify reads matching to resistance genes in the 60 samples, reads were 

aligned with BWA to the database MEGARes (49), a non-redundant nucleotide database of 

publicly available AMR gene sequences. For descriptive and statistical analyses, only genes 

with >80% “gene fraction”, defined as the percent of nucleotides in each AMR reference gene 

that aligned to at least one read, were considered to be present in a sample. All gene accessions in 

the MEGARes database have been classified into an acyclic taxonomic hierarchy (drug class, 

mechanism, and group).  

 Accessions in the MEGARes database that are known to cause resistance as a result of 

single nucleotide polymorphisms (SNPs) in genes otherwise not associated with resistance were 

evaluated by visualizing the BWA alignments with Integrative Genomics Viewer (127). Reads 

were confirmed to align to the resistant allele sequence with 100% peptide homology (to allow 

for silent nucleotide substitutions) across the middle 95% of the reference AMR gene. Genes 

identified in our samples and included in this post-processing verification step were: parE, rpoB, 

phoP, phoQ, evgS, evgA, crp, evgA, envR, marA, cpxA, cpxR, ompF, and blaR. Any alignments 

that failed this verification step were removed from downstream analyses, as those reads likely 

represented wild-type DNA sequences that do not confer resistance to antimicrobials. 

Additionally, critically important resistance determinants (when expressed in human disease-

causing agents) were identified a priori: (bla(OXA), bla(SME), bla(IMI), bla(NDM), bla(GES), 

bla(KPC), bla(cphA), bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), vga/vat, cfr). Alignments 

to these genes accessions were specifically searched for in all 60 samples. 

 

Microbiome: Identification and classification of bacterial sequences 
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 Kraken (version 1) (128) was used to assign taxonomic labels to quality trimmed, paired 

non-host reads. To employ NCBI’s RefSeq “Release 86” from January 12, 2018 (96), we created 

a custom kraken database consisting of RefSeq bacterial and archaeal genomes classified as 

either “reference genome” or “representative genome” and all complete viral genomes in 

RefSeq. Based on the recommendation of kraken’s developers, all low-complexity regions were 

masked using DUST (129). Additionally, plasmid sequences were extracted from the genomic 

files and assigned to the “unidentified plasmid” taxa number ID “45202” to increase the 

specificity of taxonomic read classification and account for the horizontal transfer of plasmids in 

microbial communities (see full script at https://github.com/colostatemeg/meglab-kraken-

custom-db). 

 

Statistical analysis 

 Statistical analyses of the resistome and microbiome were accomplished using R 

packages “metagenomeSeq” and “vegan” (130, 131). Sparsely represented resistome and 

microbiome features (genes and taxa, respectively), that were identified in fewer than 5% of 

samples, were removed from further analysis to reduce likelihood that these features would bias 

abundance comparisons (131). Two different methods were used to normalize resistome and 

microbiome feature counts. Resistome counts were normalized using an equation (18) that 

allows for AMR gene abundance to be expressed as “copy of AMR gene per copy of 16S-rRNA 

gene” by accounting for differences in sequence length of AMR genes and bacterial load in the 

samples. Alignment to the full Greengenes database (97) using BWA with default settings in a 

paired-end manner was employed to identify 16S sequences in all non-host reads. Subsequently, 
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the “AMR gene abundance” of each gene identified within a sample was calculated using the 

equation (18): 

AMR gene abundance= ∑𝑛
1

𝑁AMR−likesequence × 𝐿reads 𝐿AMRreferencesequence⁄𝑁16Ssequence × 𝐿reads 𝐿16Ssequence⁄  

with NAMR-like sequence as the number of alignments to one specific AMR gene sequence; Lreads as 

the sequence length of the Illumina reads (125 nt); LAMR reference sequence as the sequence length of 

the corresponding AMR gene sequence; N16S sequence as the number of alignments to 16S 

sequences; and L16S sequence as the average length of the 16S sequences in the Greengenes database 

(mean= 1401 nt).  

Resistome data were analyzed at the class and mechanism levels to avoid biased diversity 

measures caused by differences in the scientific criteria used for identification and publication of 

new resistance genes for different drug classes at the “gene” level (132). Alternatively, numbers 

of reads that matched microbial taxa were normalized to account for sequencing depth using 

cumulative sum scaling (CSS) (131). Sparseness of count data called for using a default 

percentile of 0.5 for normalization based on published recommendations (131). Corresponding 

taxonomic lineage for each taxon in the microbiome was identified and alignments were summed 

to these 6 Linnaean taxonomic levels: phylum, class, order, family, genus, and species. In total, 

there were 6 count matrices for the microbiome, but to reduce the repetitive reporting of results 

at all levels and because results at lower taxonomic levels are not considered very reliable (133), 

statistical results for microbiome are presented at the phylum, class and order levels. In total, 8 

unique normalized count matrices (i.e., 6 count matrices describing the microbiome and 2 count 

matrices characterizing the resistome) were analyzed and reported. Figures were created using 

the base plotting functions in R, the ggplot2 package, and the Tableau software (134). 
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Ordination generation and testing 

 Normalized count matrices were Hellinger-transformed (135) and used for ordination 

analysis with the metaMDS function from “vegan”. The metaMDS function employs non-metric 

multidimensional scaling (NMDS) on Euclidian distances with random starts to discover a stable 

ordination solution for plotting on two dimensions. Significance of separation between sample 

groups was tested using analysis of similarities (ANOSIM) (136). To assess the degree of 

correlation between the resistome and microbiome, the “procrustes” function was used to 

superimpose metaMDS ordination graphs and minimize the sum of squared differences. In the 

same manner, the correlation between the untreated and treated group’s microbiomes and 

resistomes were calculated at both Day 1 and Day 11. Then, the function “protest” was used to 

calculate a M2 statistic for each procrustes result. 

 

Richness and diversity comparisons 

 For all 8 count matrices, the richness (i.e., the total number of unique features in each 

sample) and Shannon’s diversity (i.e., the number and proportion of unique features in each 

sample) were compared between sample groups using the “wilcox.test” function in R. 

 

Analysis of log-fold change in abundance 

 In order to identify specific features in count matrices with significantly different 

numbers of alignments between sample groups, metagenomeSeq’s “fitZig” function (131) was 

used to fit multivariate zero-inflated Gaussian mixture models for all 8 count matrices separately. 

To avoid spurious feature comparisons, only features present in abundances greater than the 15th 

quantile in each count matrix were considered. Statistical models consisted of fixed effects for 
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sample group (e.g., treated vs. untreated, or Day 1 versus Day 11) and sequencing batch number. 

The option “useMixedModel” and “block” was employed to account for repeated measures on 

cattle. Pairwise comparisons of feature abundance between sample groups were evaluated using 

limma’s “makeContrasts” function (137) on the multivariate model, using alpha=0.05 on 

adjusted P-values as the cut-off value for statistical significance. This function outputs an 

estimate of the log2-fold change in abundance between groups for each feature (i.e., 

class/mechanism/phylum/order/etc.) with an associated P-value adjusted for multiple 

comparisons using the Benjamini-Hochberg procedure (138). 

 

Data Submission 

 Quality-trimmed sequencing reads for all 60 samples described in this project have been 

deposited to the NCBI collection of biological data (BioProject). Accession PRJNA309291 ID: 

309291 

RESULTS 

Sequencing results 

 Across all 60 samples, shotgun metagenomic sequencing generated 5.89 billion reads 

(2.95 billion paired reads) with an average of 49.1 million paired-end reads per sample (range 

13.49 – 80.36 M, Supplemental Table 2.1). The average Phred quality score of raw reads across 

all samples was 35.2 (range 34.54 – 35.82) and only 4.4% of all reads were removed due to low 

quality (minimum per sample = 2.48%, maximum = 8.21%). Of the remaining reads, 19.69% 

(55.44M reads) were identified as bovine DNA and removed from subsequent analysis; 3 

samples contained nearly 37% bovine DNA (probably because the feces were relatively scant in 

the rectum of these cattle at the time of sampling) and the other 57 samples ranged from 19.69% 
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to 27.11%. Alignment of non-host reads to the human genome identified on average 991,958 

reads per sample (range = 210,246 – 4,639,154) and suggested minimal sample contamination 

(2.6% of reads across all 60 samples). There was a small, statistically significant difference in 

Phred scores when comparing samples by time and treatment due to high quality reads in all 60 

samples (mean = 35.23, range = 34.54 – 35.82). This difference was not considered to be 

biologically meaningful. Additionally, because no other metadata comparisons yielded 

statistically significant differences, our results suggested that there was no systematic bias in 

sequencing effort. 

 

Resistome composition 

 4,054,637 reads aligned to 208 AMR gene accessions in the MEGARes reference 

database. Following confirmation of genes conferring resistance due to single nucleotide 

polymorphisms (SNPs) and removal of sparsely represented genes (i.e., those found in less than 

3 samples), there were 134 unique gene accessions in the MEGARes database that were 

identified from 3,773,873 reads. In all, these represented resistance to 9 unique AMR drug 

classes via 24 mechanisms of resistance, though the clear majority of reads aligned to gene 

accessions that confer resistance to tetracycline and the macrolide-lincosamide-streptogramin 

(MLS) class of antibiotics (76% and 18% of aligned reads, respectively). More than 99% of 

reads that aligned to tetracycline resistance gene accessions are known to confer resistance 

through ribosomal protection proteins, and 77% of the reads that aligned to MLS resistance gene 

accessions are known to confer resistance through macrolide efflux pumps. The 7gene accessions 

associated with multi-drug resistance (e.g., non-specific multi-drug efflux pumps) and resistance 

to the following drug classes; phenicol, bacitracin, fluoroquinolones, cationic antimicrobial 
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peptides, aminoglycosides, and betalactams. This pattern of fecal resistome composition was 

observed in both study groups and was seen in samples collected at both Day 1 and Day 11 

(Figure 2.1). Of the a priori identified critically important resistance determinants, we only 

identified one AMR gene accession, bla(CTX-M), in a single sample from the treated group on 

Day 11. 

 The overall resistome composition was similar between the treated and untreated groups 

at both Day 1 and Day 11 (Figure 2.2). Apart from alignments to tetracyclines and MLS gene 

accessions, less than 3% of the resistome was characterized by alignments to multi-drug, 

betalactam, and aminoglycoside resistance gene accessions, with alignments to remaining classes 

of drugs each accounting for less than 1% of all alignments. While we did identify a difference in 

AMR Shannon’s diversity when comparing treated and untreated cattle at Day 1 (P = 0.05), there 

was no evidence of significant differences in the relative abundances of AMR classes or 

mechanisms. In contrast by Day 11, the untreated group had significantly different AMR richness 

at the mechanism level (P = 0.02) and contained significantly higher abundance for the AMR 

mechanism, Tetracycline inactivation enzymes, than the treated group (P < 0.05). 

In contrast to the lack of difference between treated and untreated groups either time 

point, there was a dramatic change in the resistome of both groups overtime between Day 1 and 

Day 11, such that there appeared to be a convergence toward a “common” resistome between 

groups. The untreated group’s resistome shifted significantly at the class (ANOSIM R = 0.22, P 

= 0.002) and mechanism levels (ANOSIM R = 0.30, P = 0.001), as did the resistome of the 

treated cattle (ANOSIM R = 0.21, P = 0.001 for AMR drug class and ANOSIM R = 0.40, 

P=0.001 for AMR mechanism)(Figure 2.2). In both study groups, total AMR abundance, defined 

as “copies of alignments to AMR gene accessions per copy of 16S-rRNA gene”, increased over 
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time (Day 1 to Day 11) from 3.04 to 5.29 in the untreated group and from 3.71 to 5.56 in the 

treated group. Consequently, the relative abundance of alignments to the two most abundant 

AMR classes, tetracyclines and MLS, increased between Day 1 and Day 11 for both the treated 

and untreated groups (P<0.05). The untreated group’s resistome increased in abundance in two 

additional AMR classes, aminoglycoside and betalactam resistance (P < 0.05) albeit without 

exposure to these drugs. Correspondingly, the untreated group’s significant changes in 

abundance were all increases in relative abundance of alignments to 5 of 20 resistance 

mechanisms between Day 1 and Day 11 (P < 0.05). Alternatively, the treated group had 15 

mechanisms with significant changes in abundance, but 10 of 15 mechanisms decreased in 

abundance over time (Figure 2.3). Three AMR mechanisms increased in relative abundance in 

both groups, including tetracycline resistance ribosomal protection proteins, macrolide resistance 

efflux pumps, and class A betalactamases. The other 2 AMR mechanisms that increased in 

abundance over time differed by treatment group; aminoglycoside O-phosphotransferases and 

aminoglycoside N-acetyltransferases in the treated group, compared to increases in alignments to 

tetracycline inactivation enzymes and chloramphenicol acetyltransferases in the untreated group. 

Shannon’s diversity indices of the treated group at the mechanism level decreased significantly 

over time (P=0.04), whereas there were no significant changes in richness or Shannon’s diversity 

in untreated group (Figure 2.4). During these shifts in the resistome over time, procrustes 

analysis suggests that class level AMR resistome composition of treated and untreated cattle 

became more similar as they were significantly correlated only at Day 11 ( M2 = 0.71, P = 0.02). 

While major trends in the most abundant AMR features can be observed at the treatment 

group level, there was considerable variation in the presence of low abundance AMR 

mechanisms between animals (Supplemental Figure 2.1). Interestingly, the number of samples 
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with alignments to phenicol and glycopeptide AMR classes increased over time in both study 

groups, though differential abundance comparisons were not possible due to their low abundance 

and sparse representation across all 60 samples. There were no samples with phenicol resistance 

gene accessions at Day 1, but alignments were present in 8 of 15 cattle from each treatment 

group by Day 11. Similarly, no samples had alignments to glycopeptide resistance gene 

accessions at Day 1; however, by Day 11 glycopeptide class resistance genes were identified in 3 

of 15 untreated animals. 

 

Microbiome composition 

 On average, 96.14% of sample reads were not classified as bacteria, archaea, or viruses 

(range = 93.71 – 96.98%). Alignments to a total of 5,910 taxa were identified across the 60 

samples. Sparsely represented taxa were removed prior to normalization such that a total of 

5,383 unique taxa were included in subsequent analyses (comprising alignments attributed to 38 

phyla, 74 classes, 170 orders, 384 families, 1,211 genera and 3,943 species). The majority of 

microbiome alignments were to bacteria; alignments to Firmicutes, Bacteroidetes, Proteobacteria 

and Actinobacteria were most common, accounting for 99.7% of the total normalized hit counts 

at the phylum level (37%, 24%, 18% and 15%, respectively). At the class level, Clostridia (29%), 

Bacteroidia (21%), Gammaproteobacteria (10%), and Coriobacteriia (7%) were the predominant 

classes to which alignments were classified, representing more than two thirds of normalized 

counts. Clostridiales (32%), Bacteroidales (21%), and Enterobacteriales (6%) were the most 

abundant taxa at the order level (Figure 2.5). 

No significant differences in the overall microbiome were observed between treated and 

untreated groups at Day 1 (ANOSIM P >0.05), and taxa were not differentially abundant at the 
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phyla, class, or order level after adjusting for multiple comparisons. Similarly, at Day 11, 

ordination comparisons showed no distinct separation of microbial communities between the 

treated and untreated groups (Figure 2.6), and relative abundance of microbiome features did not 

differ at the phyla, class, or order levels. Moreover, richness and Shannon’s diversity did not 

differ significantly between groups at either Day 1 or Day 11 (Figure 2.7). Unlike the resistome, 

procrustes analysis did not identify significant correlations between the groups’ microbiomes at 

either time point. 

Despite evidence suggesting that both groups had similar fecal microbiomes at Day 1 and 

Day 11, the composition shifted significantly over time in the feedlot at all microbiome levels for 

both the untreated group (phylum level: ANOSIM R=0.51, P=0.001) and the treated group 

(phylum level: ANOSIM R=0.50, P=0.001). The major shift that occurred in the composition of 

both study groups’ microbiomes between sampling dates was characterized by an increase in the 

proportion of Actinobacteria and Firmicutes, which together accounted for 58% of the untreated 

and 64% of the treated group’s resistome at Day 11 compared to 51% and 45% at Day 1, 

respectively (Figure 2.5). In the treated group, 17 of 38 phyla show significant changes in 

abundance over time, although there were only shifts in 7 of 38 phyla in the untreated group. 

Both groups’ microbiome significantly increased in relative abundance of Firmicutes and 

Actinobacteria phyla, combined with a decrease in relative abundance of Gemmatimonadetes, 

Euryarchaeota, Candidatus Saccharibacteria, and Candidatus Planctomycetes (P < 0.05). Of the 

remaining phyla with significant changes in the treated cattle, 4 of 10 taxa increased in relative 

abundance, while the other 6 phyla decreased in abundance (P<0.05). Notwithstanding the major 

changes in microbiome composition, neither richness nor Shannon’s diversity measures changed 

over time in either group. 
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Relationships between the fecal resistome and microbiome 

 Procrustes analyses suggests no statistically significant correlations were present between 

the resistome and microbiome within treatment groups at either time point (P>0.05). 

DISCUSSION 

 Results of this study suggest that parenteral metaphylactic treatment of cattle with 

tulathromycin had minimal, if any, detectable short-term impact on the fecal resistome and 

microbiome of commercially raised feedlot cattle when evaluated using shotgun metagenomic 

sequencing. This is important because of critical concerns about public health in relation to AMD 

use in food-producing animals and also because this is an important drug for treatment and 

control of life-threatening respiratory disease in feedlot cattle. This study was conducted in a 

commercial feedlot operation to improve the practical relevance of our findings, but this also 

introduces important limitations. USDA data suggests that over 70% of feedlot cattle in the U.S. 

receive low doses of tylosin, a macrolide drug, in-feed for prevention of liver abscesses (112). 

While tylosin exposure of all study cattle may have confounded our ability to independently 

investigate the effects of tulathromycin (a different macrolide drug), this study aims to 

characterize the effect of additional metaphylactic AMD use in the context of commercial feedlot 

cattle production systems. Likewise, other studies have described that parenteral treatment with a 

tetracycline drug (oxytetracycline) can cause discernible changes in AMR even when cattle are 

also exposed to another in-feed tetracycline AMD (chlortetracycline) (55, 139). Comparing fecal 

samples collected at Day 1 to those collected on Day 11 uncovered several notable changes in 

the resistome and microbiome, suggesting that the transition from backgrounding operations to 

concentrated feeding in a commercial feedlot is a critical time for influencing the microbial 

community of beef cattle. The ancient phenomena of AMR is not likely to be eliminated from 
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microbial communities in natural environments (2), so techniques used to manage food animal 

populations (e.g., AMD use, diet changes, prebiotics, probiotics) need be evaluated as a way to 

support animal health and productivity while reducing AMR prevalence and transmission (140, 

141). This study provides an ecological perspective suggesting metaphylactic tulathromycin 

treatment may be employed without incurring drastic changes to the resistome and microbiome 

of feces from typical feedlot cattle. 

Between treated and untreated groups, shifting abundance from Day 1 to Day 11 in 

resistome and microbiome features differed by treatment, but ultimately maintained a “common” 

composition and total AMR abundance comprised principally of relatively few, highly-abundant 

taxa. In particular, procrustes analysis for the correlation between the groups’ resistome was only 

significant at Day 11. Further, the resistome and microbiome of treated and untreated groups 

were largely similar on Day 11, suggesting that other selective pressures besides tulathromycin 

metaphylaxis (e.g., common environmental exposures, exposure of all study cattle to in-feed 

tylosin) are potentially stronger influences on changes to the resistome and microbiome in cattle 

that have been newly introduced to the feedlot environment. Limited sample size of 15 animals 

per treatment group could limit statistical power to detect differences in the resistome and 

microbiome caused by tulathromycin exposure, but a search of the relevant literature indicated a 

lack of power calculation tools for shotgun metagenomic sequencing experiments. The 

difference in Shannon’s diversity observed between treated and untreated cattle could have 

occurred because individual cattle randomization into the two pens was not logistically feasible 

due to constraints imposed by the feedlot operator. Specifically, to address logistical complexities 

in cattle production, the cattle in this study were shipped in two separate container trucks from 

the backgrounding facility, and these separate groups automatically became the treated and 
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untreated groups upon arrival in the feedlot, as they were housed in separate pens due to arrival 

processing considerations. Nevertheless, this study contributes an ecological perspective into the 

microbial communities of individual feedlot cattle and emphasizes the utility of studying the 

bacterial community in beef feedlot operations to better characterize AMR dynamics. 

 This study verifies past reports that tetracycline and MLS resistance is commonly 

identified in cattle environments (142–144). Consistent with our group’s previous research, 

resistome composition was largely dominated by abundance of sequence alignments to two 

mechanisms of resistance, representing tetracycline (ribosomal protection proteins) and MLS 

(macrolide efflux pump) classes of resistance which accounted for >60% and >28% of resistance 

in the treated and untreated study groups (58, 145). It is notable that there were no other 

parenteral antimicrobial drug treatments because of illness in the study cattle prior to Day 11, 

including a lack of exposure to drugs commonly used to treat illness in feedlot cattle such as 

tetracyclines, betalactams, and fluoroquinolones. It is possible that this influenced the decrease in 

alignments to AMR gene accessions in samples from both groups that encode for resistance to 

drugs not used in the study, such as bacitracin and fluoroquinolone. Interestingly, glycopeptide 

drug use is prohibited in beef cattle in the U.S., and while resistance was not identified at Day 1, 

three animals in the untreated group contained alignments to glycopeptide gene accessions. 

While this study cannot confirm the function of these genes, these results suggest glycopeptide 

resistance may have been present in the feedlot environment and spread amongst feedlot cattle. 

Similarly, chloramphenicol resistance was not identified at Day 1 and despite study cattle not 

being exposed to chloramphenicol drugs, at Day 11 both groups of cattle had 8 of 15 animals 

with alignments to chloramphenicol resistance gene accessions. 
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 For the microbiome, time in the feedlot from Day 1 to Day 11 was associated with 

significant shifts in the microbial population in both groups, though ultimately maintained 

similar composition that was dominated by Firmicutes, Bacteroidetes, Proteobacteria, and 

Actinobacteria. Temporal changes in the microbiome of cattle acclimatizing to feedlot rearing 

have reported dramatic changes in the nasopharyngeal microbiota of beef cattle after arrival at a 

feedlot (146, 147). These shifts in the fecal microbiome might be expected given the changes 

cattle are experiencing after arrival to the feedlot. In the microbiome of both groups, for 

example, we detected an increase of typical carbohydrate-digesting bacteria such as 

Lactobacillales, along with an increase of organisms with diverse metabolic functions within the 

phyla Firmicutes from Day 1 to Day 11 (148–150). Notably, the exposure to tulathromycin might 

have caused the decrease in relative abundance to the Proteobacteria and Verrucomicrobia phyla 

in the treated group. Both phyla consist of gram negative bacteria not typically considered 

macrolide targets, but their decrease in relative abundance is associated with concurrent increases 

in Firmicutes as reported with exposure a different macrolide drug, azithromycin (151). This 

corroborates previously published data asserting that microbiome similarity between cattle is 

strongly driven by exposure to comparable management practices and/or the same geographic 

region (152). 

 Though we were not able to obtain information about the management of study cattle 

before arrival at the feedlot (i.e., source of cattle, diet, antimicrobial use, etc.), the lack of major 

differences in the resistome between groups at Day 1 might be attributed to rearing in the same 

backgrounding facility under similar husbandry practices immediately prior to being shipped to 

the feedlot. It is important to note that the lack of difference between treated and untreated 

groups either at Day 1 or Day 11 could also be explained by the high abundance of sequences 
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(>90% relative abundance) coding for resistance to tetracyclines and MLS making a “core” 

resistome which could potentially mask important differences in less abundant resistance genes 

(153). The pharmacokinetics of tulathromycin tissue concentration have been previously 

described (154), so the choice of 11 days between sampling points ensured that tulathromycin 

was still in therapeutic concentrations, but its influence on the fecal resistome and microbiome is 

undefined and future studies should consider time series sampling to capture temporo-dynamic 

changes in AMR ecology. Future research is needed to estimate the risk of different resistome 

compositions compared to our understanding from AMR patterns found in certain pathogens 

through traditional culture-based approaches. Additionally, while sequencing processes and 

bioinformatic analyses techniques continue to improve, we need broad collaboration from the 

scientific community to standardize AMR gene nomenclature and bioinformatic analysis so that 

results can be comparable across studies (132, 155).  
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Table 2.1. Products administered to study cattle at the time of arrival-processing (Day 1). 
Product type Commercial 

name 

Manufacturer Volume per 
animal 

Additional 
information 

Antimicrobial* Draxxin Zoetis 8 cc Macrolide 
antimicrobial for 

treatment of cattle at 
high risk for bovine 
respiratory disease 

(BRD). 
Anthelmintic Noromectin Norbrooks Labs 7 cc 

 
 

Ivermectin parasiticide 
for the treatment and 

control of internal and 
external parasites of 

cattle. 
Anthelmintic Safeguard Merck Animal 

Health 
18 cc For use in beef cattle 

for the removal and 
control of lung, 

stomach and intestine 
worms. 

Vaccine BoviAnthelmintic-
Shield GOLD 

Zoetis 2 cc Protects cattle from 
infectious bovine 

rhinotracheitis (IBR) 
and bovine viral 
diarrhea (BVD). 

Vaccine Vision® 7 Merck Animal 
Health 

2 cc For use in healthy 
cattle as an aid in the 
preventing disease 

caused by Clostridium 
spp. 

Steroid implant Revalor-XS Merck Animal 
Health 

Implant Trenbolone acetate and 
estradiol. It improves 
rate of gain and feed 

efficiency. 
*Only the treated group received the antimicrobial treatment 
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Figure 2.1. Total AMR gene abundance determined by shotgun metagenomic sequencing and 
normalized using 16S rRNA abundance, by drug class, among treated and untreated cattle in 
samples obtained at Day 1 and again at Day 11. Values are formulated from the number of reads 
that aligned to AMR genes and normalized to bacterial abundance characterized by alignments to 
16S gene sequences from the Greengenes database. 
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Figure 2.2. Ordination comparing resistome composition at the AMR drug class and resistance 
mechanism, using non-metric multidimensional scaling (NMDS), for the two study groups at 
Day 1 and Day 11. Separation of resistomes from treated and untreated cattle was not statistically 
significant at either Day 1 or Day 11 (Day 1 vs. Day 11; ANOSIM P > 0.05). However, the 
resistomes of the treated and untreated groups were significantly separated over time (Day 1 vs 
Day 11; ANOSIM P < 0.05). 
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Figure 2.3. Log-fold change in abundance to AMR mechanisms for the treated (red bars) and 
untreated (grey bars) over time from Day 1 to day11. Bars to the right of the 0-line signify and 
increase in abundance, the size of the bars represent the average expression of the AMR 
mechanism and bars are labeled with adjusted p values < 0.05. 
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Figure 2.4. Boxplot of resistome richness and Shannon’s diversity at the AMR class and 
mechanism levels of the two study groups at Day 1 and Day 11. The horizontal line is the median 
value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 
IQR of the lower and upper quartiles, and individual points show outlier values. 
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Figure 2.5. Average relative abundance of CSS normalized counts of shotgun metagenomic reads 
aligning to bacterial, archaeal and viral genomes at the phylum level for both study groups at 
Day 1 and Day 11. Phyla comprising less than 3% of each sample group were combined into the 
category “Low abundance phyla”. 
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Figure 2.6. Ordination comparing microbiome composition at the phylum, class, and order 
levels, using non-metric multidimensional scaling (NMDS), for treated and untreated groups of 
cattle at Day 1 and Day 11. Separation of microbiomes from treated and untreated cattle was not 
statistically significant at either Day 1 or Day 11 (treated vs. untreated; ANOSIM P > 0.05). 
However, microbiomes for the study groups differed significantly over time (Day 1 vs Day 11; 
ANOSIM P < 0.05). 
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Figure 2.7. Boxplot of microbiome richness and Shannon’s diversity at the phylum, class and 
order levels of the two study groups at Day 1 and Day 11. The horizontal line is the median 
value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 
IQR of the lower and upper quartiles, and individual points show outlier values. 
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CHAPTER 3: A CAUTIONARY REPORT FOR PATHOGEN IDENTIFICATION USING 

SHOTGUN METAGENOMICS; A COMPARISON TO AEROBIC CULTURE AND 

POLYMERASE CHAIN REACTION FOR SALMONELLA ENTERICA IDENTIFICATION 

 
 
 

SUMMARY 

 This study was conducted to compare aerobic culture, polymerase chain reaction (PCR), 

lateral flow immunoassay (LFI), and shotgun metagenomics for identification of Salmonella 

enterica in feedlot cattle feces. Fecal samples were collected from the rectum of 30 cattle upon 

arrival at a commercial feedlot and 11 days later. Samples were then analyzed in parallel using 

all 4 tests. Aerobic culture and PCR results had 100% agreement and indicated low abundance 

with 5.0% (3/60) of samples positive for S. enterica, which disagreed with results of LFI and 

metagenomic sequencing. Although low S. enterica prevalence restricted formal statistical 

comparisons, metagenomic analysis using k-mer alignment for classification using the RefSeq 

database identified that 18.3% (11/60) of samples contained reads matching to S. enterica. 

However further examination revealed that plasmid sequences are often included with bacterial 

genomes submitted to NCBI, which can lead to incorrect taxonomic classification. As such, we 

separated all plasmid sequences included with RefSeq genomes and reassigned them to a unique 

taxon representing plasmids. Reclassification of sequencing data using this revised database 

indicated that only 10% (6/60) of samples contained sequences specific for S. enterica, 

suggesting increased relative specificity. Reads identified using alignment were further evaluated 

using BLAST and NCBI’s nr/nt database, which indicated that only 2/60 samples contained 

reads that exclusively aligned to S. enterica chromosomal genomes. This study re-affirms that 

the traditional techniques of aerobic culture and PCR provide similar results for S. enterica 
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identification in cattle feces. On the other hand, metagenomic results are largely influenced by 

the matching method and reference database employed meaning that computationally-based 

identification of bacterial species must be interpreted cautiously. 

INTRODUCTION 

 The study and detection of microbial organisms has long been reliant on cultivation and 

characterization of certain species, but advancements in sequencing technologies have revealed 

an underlying microbial diversity largely ignored by culture-based techniques (156–158). High-

throughput sequencing techniques now enable a culture-independent metagenomic approach that 

provides access to DNA from all bacteria (microbiome) within a given sample. This rapidly 

developing technology provides great potential for investigating the complexity of bacterial 

communities (19, 145, 159). However, there are limited numbers of investigations evaluating the 

relationship between metagenomic results and traditional diagnostic methods. Metagenomic 

approaches have been used to find novel pathogens when traditional methods were not fruitful 

(160, 161), but the increased sensitivity in metagenomic approaches raises important questions 

about their use in identification of foodborne pathogens in fecal samples. One such example is 

Salmonella enterica, an important zoonotic pathogen that causes over 93 million cases of 

gastroenteritis in humans globally every year (162) and has been implicated in outbreaks 

associated with beef products (163). Accurate identification and characterization of S. enterica is 

critical for improving food safety and preventing foodborne disease outbreaks. Therefore, 

utilizing samples obtained from another study of feedlot cattle (56), we compared a metagenomic 

approach for Salmonella enterica identification to the traditional techniques of aerobic culture, 

polymerase chain reaction (PCR), and lateral flow immunoassays (LFI). 

METHODS 
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Sample collection 

  As previously described (56), 2 groups of cattle originating from a single facility were 

enrolled into the study before their arrival at a commercial cattle feedlot in Texas and 

individually sampled during arrival processing at the feedlot and 11 days later. Cattle were 

shipped, housed, and managed in two separate groups of 193 and 186 steers (300-400 kg body 

weight/animal). One group was selected to be administered a subcutaneous injection of 800 mg 

tulathromycin (Draxxin®; Zoetis, Florham, NJ), but otherwise the study cattle underwent 

identical management including administration of vaccines for clostridial and respiratory 

diseases, avermectin anthelmintic, and application of growth-promoting hormone implants 

(Table 3.1). Cattle were fed a corn-based diet with ionophore feed additives conforming to 

nutritional recommendations of the National Research Council (121), provided ad libitum access 

to water. Tylosin, a macrolide class of antimicrobial, was included in the feed to prevent liver 

abscesses at a target intake of 90 mg per head per day. Under the supervision of consulting 

veterinarians, trained feedlot personnel monitored cattle health and welfare daily.  

On arrival processing, we attempted to sample 193 control and 186 treated cattle per 

rectum. Of these 379 cattle, 29 could not be sampled due to absence of feces in the rectum and 

another 4 samples had to be discarded for a total of 346 cattle sampled at arrival. In all, 29 cattle 

had less than 25 grams of feces for sample collection but were still included in the study. Three 

samples of those collected at arrival were culture-positive for Salmonella enterica (0.87% 

prevalence, 3/346); all three of these samples were obtained from cattle in the treated group. 

Fecal samples were stored in a sterile Whirl-Pak bag (Nasco), then placed into coolers with ice 

packs and transported to the laboratory. Within 8 hours of collection, samples were processed for 

culture and PCR and the remaining portion was placed in frozen storage (-80°C). Budgetary 
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limitations for shotgun metagenomic sequencing and PCR testing did not allow evaluation of all 

cattle sampled at arrival. Fecal samples collected on day 11 from 30 animals (15 treated and 15 

untreated cattle) were selected, along with their arrival samples, for total DNA extraction and 

shotgun metagenomic sequencing. At day 11 sampling, we attempted to re-sample 17 cattle per 

rectum from each group. Of these 34 cattle, 4 could not be sampled due to absence of feces 

(including a steer that was culture-positive for S. enterica at arrival processing), and 3 samples 

had less than 25 grams of feces. 

 

Salmonella enterica culture and PCR 

 As some cattle had scant feces present in their rectum at the time of sampling, samples of 

< 25 gm were processed in smaller quantities for aerobic culture. Upon delivery to the 

laboratory, all fecal samples were thoroughly mixed and aliquots of 4 gm of feces were removed 

from samples of >25 gm while 1 gm aliquots of feces were removed from smaller volume 

samples. The remainder of fecal samples were frozen at -80° C. Fecal samples undergoing 

aerobic culture were enriched for 18hrs at 43° C in tetrathionate broth (9:1 broth volume:fecal 

mass; Difco Laboratories, Sparks, MD).  After initial enrichment, samples were mixed and 0.1 

ml was passed into 10 ml of Rappaport-Vassiliadis R10 broth (Difco Laboratories) and incubated 

for 18 hrs at 43° C. After secondary enrichment, samples were thoroughly stirred and streaked 

for isolation on xylose-lysine-tergitol (XLT-4) agar plates (BD Diagnostic Systems, Sparks, 

MD). Bacterial growth was evaluated after 24 hours of incubation at 43° C.  For samples that had 

colonies with characteristics indicative of S. enterica (smooth, round, black colonies), a single 

colony was arbitrarily chosen and streaked for isolation on tryptic soy agar with 5% sheep’s 

blood (TSA) (BBL, Sparks, MD), and incubated for 24 hrs at 37C. Individual colonies were then 
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tested with polyvalent O antiserum (Difco Laboratories) for Salmonella serogroup confirmation. 

Antisera (Difco Laboratories) specific to 5 different common serogroups (B, K, D, C1, E) were 

used to further characterize the isolates. Additionally, for each sample during aerobic culture, 

lateral flow immunoassays strips (Reveal 2.0, NEOGEN Lansing, MI) were used to test the 

tetrathionate broth for S. enterica identification. These strips have been tested with horse fecal 

samples and show promising sensitivity and specificity for rapid identification of S. enterica 

(164, 165), but have not been tested extensively in cattle feces. Fecal samples were also tested by 

qPCR for S. enterica detection (Applied Biosystems, Foster City, CA) using a 2 ml aliquot of 

enriched culture media (TET). The target for this PCR is proprietary information, but this 

commercial PCR kit is routinely used at the Colorado State University (CSU) Diagnostic 

Medicine Center. 

 

DNA extraction 

 Fecal samples selected for metagenomic sequencing were thawed and processed for DNA 

extraction. To remove excess plant debris and decrease inhibitors in fecal DNA samples, 10 gm 

from each sample were mixed with 30 mL of buffered peptone water (BPW), vigorously shaken, 

and allowed to sediment for 10 minutes. Supernatant was transferred to sterile 50 ml conical 

tubes and centrifuged at 4,300 ×g for 10 min at 4°C. Resulting pellets were rinsed with 5 mL of 

molecular-grade 1X phosphate buffered saline (PBS) and centrifuged again (4,300 ×g, for 10 

min, at 4°C). After removal of supernatant, following the manufacturer’s protocol total DNA was 

extracted from the pellet using the PowerMax Soil DNA Isolation Kit (MO BIO Laboratories). 

DNA concentration and quality were evaluated using a NanoDrop™ spectrophotometer (Thermo 

Fisher Scientific, Inc.). Samples with 260nm:280nm ratios >1.3 and DNA concentrations >20 
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ng/µl were sent for sequencing; samples that did not meet these thresholds were concentrated by 

ethanol precipitation before sequencing. 

 

DNA library preparation and sequencing 

 100 µl aliquots of purified DNA from all 60 samples were delivered to the Genomics and 

Microarray Core at University of Colorado Denver for library preparation and sequencing 

(Aurora, CO). Genomic libraries were prepared using the TruSeq DNA Library Preparation Kit 

(Illumina, Inc.). Next-generation sequencing was completed on the HiSeq 2000 (Illumina, Inc.) 

with 5 samples per lane, V4 chemistry, and paired-end reads of 125 bp in length. 

 

Trimming and filtering of metagenomic sequence data 

De-multiplexed sequence reads from libraries sequenced on the HiSeq 2000 were 

processed using the AMRPlusPlus bioinformatic pipeline (49). Briefly, the Trimmomatic 

software (122) was used to remove low quality sequences, and the “ILLUMINACLIP” command 

was employed to remove Illumina TruSeq adapters added during library preparation For each 

read, the first 3 and last 3 base pairs were removed. Then, starting at the 3’ end of the read, a 

sliding window encompassing 4 nucleotides calculated if the average Phred score was lower than 

15, in which case the 3’ most nucleotide was removed and the window was moved forward until 

the average R score above 15. A Phred score is generated for each sequenced nucleotide by the 

Illumina HiSeq 2000 and a score of 15 signifies 96.8% nucleotide call accuracy.  Based on 

Trimmomatic’s default settings, any reads with fewer than 36 nucleotides were removed from 

further analysis. In order to remove any DNA that may have come from the host (i.e., bovine 

DNA), the remaining reads were aligned to the reference Bos taurus genome (123) using the 
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Burrows-Wheeler aligner (BWA) (93) with default settings for paired-end reads. Reads aligning 

to either of these genomes were removed from samples to create the “non-host reads” that were 

used for subsequent analysis. Sequencing results resulting from the number of raw, trimmed, and 

filtered reads and the average Phred score for each sample were compared using the generalized 

linear models with the “glm” function and the R platform (126) to assess systematic sequencing 

bias across sequencing batches. Similarly, differences in sequencing results between sample 

groups were tested with the Wilcoxon signed-rank test when comparing paired values from the 

same animal (arrival to day 11) and the Wilcoxon rank-sum test was employed when comparing 

animals at either time point. 

 

Microbiome - Classification of bacterial sequences and identification of Salmonella enterica 

 Kraken 2 (128) was used to assign taxonomic labels to shotgun metagenomic DNA 

sequences using NCBI’s reference genome database, RefSeq. RefSeq represents the most 

comprehensive, integrated, well-annotated set of genomes that includes viruses, archaea, and 

bacteria. Kraken uses the metagenomic sample reads that are typically 125 nucleotides each, 

partitions the reads into pieces that are 31 nucleotides in length, and searches for exact matches 

to the RefSeq reference database. Every match is scored with kraken’s lowest-common-ancestor 

algorithm and the read is classified to the taxonomic level with the most points. The number of 

samples with reads classified as Salmonella enterica were identified and sample prevalence 

results were compared in contingency tables for shotgun metagenomics, aerobic culture and 

PCR. Reads classified as S. enterica were re-classified using the complete NCBI’s nr/nt database 

using BLAST. Results suggested that plasmid sequences were being misclassified as S. enterica 

so to increase classification accuracy, we created a kraken “modified database” consisting of 
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curated bacteria, archaea, and viral genomes from RefSeq for a total of 5,200 genomes. Plasmid 

sequences were extracted from the genomic files and assigned to the “unidentified plasmid” ID 

(NCBI:txid45202) to increase the specificity of taxonomic read classification and account for the 

horizontal transfer of plasmids in microbial communities (see full script at 

https://github.com/colostatemeg/meglab-kraken-custom-db). Kraken’s highest confidence value 

of “1” was selected to increase the alignment score threshold required for species-level 

classification and increase the accuracy of classification at higher taxonomic levels. Without the 

confidence flag, all 60 samples were incorrectly reported as S. enterica-positive. To further 

improve specificity, reads classified as S. enterica were re-classified with BLAST and NCBI’s 

nr/nt database to confirm that sequences are truly unique to S. enterica when considering all 

available sequences on NCBI (see full script at https://github.com/EnriqueDoster/MEG-kraken-

species-ID). 

RESULTS 

Study population and study design 

 This study compared aerobic culture, PCR, lateral flow immunoassays, and shotgun 

metagenomic sequencing for Salmonella enterica identification in fecal samples collected from 

feedlot cattle. These samples are from a published investigation on the effect of metaphylactic 

treatment with tulathromycin (one of the most commonly used antimicrobial drugs in American 

beef feedlots) on the resistome and microbiome of feedlot cattle (56). 

 

Sample collection, culture, lateral flow immunoassay and PCR results 

 Aerobic culture and LFIs were used to test for the presence of Salmonella enterica on 376 

fecal samples collected from study cattle.  Use of culture yielded 4 positive samples and 

https://github.com/colostatemeg/meglab-kraken-custom-db
https://github.com/EnriqueDoster/MEG-kraken-species-ID
https://github.com/EnriqueDoster/MEG-kraken-species-ID
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agglutination tests revealed that of 3 isolates recovered from arrival processing samples 2 were 

serogroup C1 (including from the animal unsuccessfully sampled on day 11) and another 

serogroup K isolate, while the isolate recovered on day 11 was serogroup C1 (Supplemental 

Table 3.1). Regarding LFI assay, results suggest it might not be appropriate for evaluation of 

feces of feedlot cattle due to a high number of false-positive samples compared to the gold 

standard method, aerobic culture (Table 3.2). In these 60 samples, aerobic culture and PCR had 

100% concordance, suggesting a 5% (3/60) overall prevalence for Salmonella enterica during 

the study period. 

 

Sequencing results 

Shotgun metagenomic sequencing generated 5.89 billion reads (2.95 billion paired reads) 

across 60 samples with an average of 98.20 million reads per sample (range 26.98 – 160.71 M 

[Supplemental Table 3.1]). The average Phred quality score of raw reads across all samples was 

35.2 (range 34.54 – 35.82). Because of the high average Phred scores across samples, only 

3.82% of reads were removed for low quality (minimum per sample = 2.21%, maximum = 

6.36%). Of the remaining reads, 0.03% (1.8 M reads) were identified as bovine DNA and 

removed from subsequent analysis; two samples were nearly 20% bovine DNA and the other 58 

samples ranged from 0.03% to 4.57%. Overall, there was no evidence of systematic bias in the 

sequencing effort for all samples. 

 

Identification of Salmonella enterica using shotgun metagenomics 

 Following quality-based read trimming and removal of host genetic contamination, the 

kraken 2 software (128) was used to classify shotgun metagenomic reads taxonomically with the 
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National Center for Biotechnology Information’s (NCBI) (166) Reference Sequence Database 

(RefSeq) (96). The kraken 2 flag, ‘--confidence’ was used with the highest value of “1” to 

increase the score required to meet the threshold for species level classification. On average, 

99.8% of the reads in each sample were unclassified (minimum 97.89%, maximum 99.91%). In 

all, more than 7.3 million reads were taxonomically classified with an average of 122,900 reads 

per sample. Using kraken 2 to analyze these data, Salmonella enterica was identified in 18.3% 

(11/60) of samples, compared to 5% prevalence using culture or PCR (Supplemental Table 3.2). 

However, through further examination of the RefSeq database structure, we noted that plasmid 

sequences, which can be actively transferred between bacteria, are commonly included within 

the reference genome files for each species. Kraken then incorrectly classifies these plasmids as 

being conserved (species-specific) to the organism that carried the plasmid when it was 

sequenced and submitted to NCBI.  Therefore, we modified the creation of the kraken 2 database 

by separating the plasmid sequences included with RefSeq genomes and re-assigning them to a 

single taxon for all plasmid and synthetic vector sequences. Following re-classification of reads 

with the modified database, only 10% (6/60) of samples were S. enterica-positive, suggesting 

increased relative specificity compared to the standard database (Table 3.3). The number of 

misclassified reads as plasmids, on average, made up 16.6% of each sample’s total reads 

classified using kraken (Figure 3.1). Finally, to further investigate the specificity of species level 

identification with the modified database, all sequences classified as S. enterica were isolated, 

and classification was confirmed using BLAST (167) version 2.8.1 and NCBI’s largest database 

of genetic sequences, nucleotide collection (nr/nt). Out of 6 samples positive based on kraken 2, 

only 2 samples had sequences that were confirmed to be unique to S. enterica, but these results 

were not concordant with the positive culture and PCR results (Table 3.3). Remaining reads were 
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misclassified at the species level with greater than 99% sequence identity, but there was no 

evidence of misclassification above the family level, Enterobacteriaceae. 

DISCUSSION 

 Results from this study demonstrate that metagenomic sequencing does not provide 

results comparable to culture and PCR for Salmonella enterica detection. Metagenomics 

provides access to information unavailable via culture and PCR alone, and has immense potential 

to fill knowledge gaps in microbial genetics and ecology. Metagenomics will inevitably fit a 

complementary role in pathogen detection and surveillance as sequencing costs decrease, 

reference databases improve, and bioinformatic analyses are streamlined (168). However, results 

from this study demonstrate that metagenomic approaches are reliant on proper use of 

bioinformatic methods, availability of extensive databases, and presence of uniquely-identifying 

genetic sequences within the taxonomic tree; or alternatively use of long-read sequencing 

technology for metagenomic samples. Until these requirements are available, it will be necessary 

to combine metagenomic results with traditional methods. 

Aerobic culture and PCR are the most commonly used techniques for Salmonella enterica 

identification; in this sample set, these methods provided 100% concordant results with 5% 

positive samples (3/60). Low prevalence impaired the ability to make formal statistical 

comparisons, but results suggest that the LFI assay evaluated in this study is unsuitable for 

detection of Salmonella in the feces of feedlot cattle.  Standard metagenomic analysis with 

default kraken parameters identified DNA sequences from S. enterica in 100% (60/60) of 

samples. However, increasing the threshold score required for species-level classification 

decreased the percentage of S. enterica positive samples to 18.3% (11/60) of samples and these 

results were 18.1% discordant with PCR/culture; these results could be misconstrued to signify 



54 
 

an overabundance of foodborne pathogens in the beef production system. Bioinformatic 

processing was critical to this result, including the choice of parameter settings and reference 

database, and we identified that plasmid sequences can cause false-positive S. enterica 

identification. Namely, removal of these plasmid sequences during database creation led to 

increased relative specificity with only 10% (6/60) positive samples and 10% discordant results 

with PCR/culture. Further, reference databases are inherently incomplete and the difficulty in 

identifying discriminatory regions between bacterial genomes is underscored by limitations in 

classification of short-read sequencing. Re-analyzing the reads classified as S. enterica using the 

most comprehensive sequence database, nr/nt, only 3.3% (2/60) of samples contained sequences 

unique to S. enterica. This decreased the estimated prevalence of S. enterica closer to results 

from aerobic culture and PCR, but the biological relevance of these results is still unknown. One 

of the samples with Salmonella-specific reads contained twelve such reads, while the other 

sample contained only one and neither sample was culture or PCR positive for S. enterica. The 

low number of matching reads could be a function of low sequencing depth, and future shotgun 

metagenomic studies will require deeper sequencing depth for species-level identification. 

Achieving accurate and biologically-relevant results from metagenomic analysis poses a 

challenge and opportunity to the scientific community.  As this cautionary tale demonstrates, 

scientists must intensely scrutinize results obtained from metagenomic data, including fulsome 

discussion of the full range of possible reasons for why the results may or may not be valid.  This 

point is especially salient as the research, medical and regulatory communities continue to 

discuss application of shotgun metagenomics for purposes of disease diagnosis and pathogen 

detection across a variety of environments. The possibilities of metagenomic data must not be 

allowed to overshadow the methodical yet critically important requirements of the scientific 
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approach.  As this work demonstrates, our ability to merge highly innovative methods with 

practical applications will depend on a successful cooperation between scientists studying 

bacteria with traditional methods, those experimenting with a metagenomics approach, and 

scientists developing bioinformatic tools.  
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Table 3.1. Products administered to study cattle at the time of arrival-processing (Day 1). 

Product type Commercial 
name 

Manufacturer Volume per 
animal 

Additional 
information 

Antimicrobial* Draxxin Zoetis 8 cc Macrolide antimicrobial 
for treatment of cattle at 

high risk for bovine 
respiratory disease 

(BRD). 
Anthelmintic Noromectin Norbrooks Labs 7 cc Ivermectin parasiticide 

for the treatment and 
control of internal and 
external parasites of 

cattle. 
Anthelmintic Safeguard Merck Animal 

Health 
18 cc For use in beef cattle for 

the removal and control 
of lung, stomach and 

intestine worms. 
Vaccine BoviAnthelmintic-

Shield GOLD 
Zoetis 2 cc Protects cattle from 

infectious bovine 
rhinotracheitis (IBR) 

and bovine viral 
diarrhea (BVD). 

Vaccine Vision® 7 Merck Animal 
Health 

2 cc For use in healthy cattle 
as an aid in the 

preventing disease 
caused by Clostridium 

spp. 
Steroid implant Revalor-XS Merck Animal 

Health 
Implant Trenbolone acetate and 

estradiol. It improves 
rate of gain and feed 

efficiency. 
*Only the treated group received the antimicrobial treatment 
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Table 3.2. Aerobic culture and lateral flow immunoassay results for S. enterica identification in 
all 376 fecal samples collected at arrival and day 11. 

  

Aerobic culture

Lateral Flow Positive Negative Total
Positive 0 63 63

Negative 4 309 313
Total 4 372 376
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Table 3.3. Aerobic culture and PCR (100% agreement) compared to shotgun metagenomic 
analysis with Kraken for S. enterica identification in 60 samples. Results are compared between 
using the standard kraken database, a modified Kraken database which considers plasmid 
sequences as unique taxa, and the modified database with additional confirmation using BLAST 
and NCBI’s nr/nt database. Kraken was run with the “--confidence” flag at the highest value, 
“1”. 

Culture and PCR

Kraken – standard db Positive Negative Total

Positive 1 10 11
Negative 2 47 49

Total 3 57 60

Kraken – modified db
Positive 1 5 6

Negative 2 52 54

Total 3 57 60

Positive 0 2 2

Negative 3 55 58

Total 3 57 60

Kraken – modified db + 
blast confirmation
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Figure 3.1. 60 individual samples on the x-axis with the total number of reads classified 
taxonomically using kraken in the y-axis. Reads classified using the standard database are shown 
in red and the decreased number of reads classified using the modified database are shown in 
green. 
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CHAPTER 4: ANTIMICROBIAL USE IN BEEF FEEDLOTS; EFFECTS ON THE 

MICROBIOME AND RESISTOME DYNAMICS IN INDIVIDUAL CATTLE 

 
 
 

INTRODUCTION 

 Antimicrobial resistance (AMR) in bacteria is an ancient phenomenon that has emerged 

as a global public health threat due to widespread antimicrobial drug (AMD) use. Modern beef 

feedlot production systems administer AMDs to treat, control, and prevent disease, but studies 

raise the concern that AMD use may drive an increase in AMR bacteria that could be transmitted 

to people (16, 169) and cause treatment failure. Of particular interest, drug classes considered 

critically important for human medicine are used in beef production and could be selecting for 

bacteria resistant to these drugs (12). Globally, countries are attempting different methods to 

promote judicious use of AMDs, particularly to reduce the use for growth promotion in the US, 

Canada, Denmark, Norway and Sweden (17, 23, 24). Therefore, it is critical that we understand 

how AMD use in beef feedlot production affects AMR dynamics if we hope to ameliorate the 

risks of AMR promotion and transmission from livestock production systems. 

 Traditionally, previous AMR studies relied on aerobic culture to isolate a few bacterial 

species and test their resistance patterns with phenotypic testing (i.e. broth microdilution, Kirby-

Bauer disk diffusion). Results from these tests provide details into AMR patterns for certain 

bacteria, but often lack the holistic perspective of considering the surrounding microbial 

community (microbiome) known to share a profile of AMR genes shared between species in this 

community (resistome). However, advances in high-throughput genetic sequencing allow us to 

characterize the genetic material in a sample and expand our understanding of how bacterial 

communities respond to AMD exposure in beef feedlot production systems. 



61 
 

 Our study leveraged previously described fecal samples from a longitudinal study in four 

Canadian feedlots with detailed AMD use records (34). The gastrointestinal commensal species, 

Escherichia coli, and an upper respiratory pathogen, Mannheimia haemolytica, were isolated 

from rectal fecal samples and nasopharyngeal swabs, respectively. All isolates were tested for 

AMR using broth microdilution and Kirby-Bauer disk diffusion. The goal of this study was to 

use high-throughput genetic sequencing to investigate the effects of AMD use on AMR dynamics 

in the microbiome and resistome. Additionally, we compare our results with those gleaned from 

traditional methods to better inform future studies using these techniques to investigate AMR. 

METHODS 

Study Overview 

Metagenomic sequencing was used to characterize the effect of AMD exposure on the 

fecal microbiome and resistome collected during a previously published 3-year longitudinal 

study of Canadian beef feedlot operations. Out of all pens of cattle arriving to the feedlot, 30% 

were randomly selected for inclusion into the study along with 10% of the animals in each pen. 

Fecal samples were collected per-rectum during arrival-processing at the feedlot (Arrival 

samples) and at a second time point > 60 days on feed (DOF) when all cattle were individually 

re-handled to conduct routine management procedures. All exposure to antimicrobial drugs, 

including parenteral treatments and in-feed exposures, was recorded and standardized across 

different drug classes using animal defined daily dose (ADD) (170, 171). Samples were 

processed for 16S rRNA amplicon sequencing and target-enriched shotgun to characterize the 

microbiome and resistome, respectively. 

 

Sample Collection 
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 As previously described (170), fecal samples were collected per rectum from individual 

cattle that were housed at four participating feedlots in western Canada. Cattle feces were 

collected when animals arrived at the feedlot, and again when they were re-handled at the 

facility. Samples were collected longitudinally from 8 October 2009 to 6 April 2010. Prior to 

shipment to the laboratory for processing, due to sample collection and shipment logistics, 

samples were kept refrigerated and preserved in in Cary-Blair transport medium as previously 

described (34) (https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-9-216). 

Samples were archived in Whirl-Pak bags or 30mL medium transport tubes at -80°C until 

shipment on dry ice to Colorado State University (CSU) in May of 2017. At CSU they were 

stored again at -80°C until samples were individually thawed for DNA isolation and extraction. 

Each arrival sample and re-handling sample were labelled and archived together, so that these 

corresponding samples from each animal could be correlated after extraction. 

 

Sample selection for DNA Isolation and metagenomic sequencing 

 Samples from a total of 60 animals were selected for use in this study, including fecal 

samples collected from two time points that were used for metagenomic sequencing. Samples 

were selected with stratified-random sampling primarily to capture different levels of parenteral 

ADD exposure (range: 0 - 7); no parenteral treatment, low parenteral exposure (<4 ADD), and 

high exposure (>4 ADD). 

 Fecal samples were thawed at 4°C and 5g was aliquoted into 50mL conical tubes. DNA 

was extracted the Qiagen PowerMax Soil Kit (Qiagen Laboratories) according to manufacturer’s 

instructions, except for the first centrifugation. We found that samples provided a higher yield 

when centrifuged for 5 minutes in the PowerBead tubes, rather than the recommended 3 minutes. 
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Isolated DNA samples were eluted using 3mL of the kit’s provided buffer solution and passed 

through the silica DNA filter twice for optimal yield. Following extractions, 6.6mL of molecular 

grade ethanol was added to each sample, as well as 300μL 0.3M sodium acetate (NaOAc), to 

facilitate DNA precipitation by ethanol. Precipitation was further facilitated by storing samples at 

-20°C overnight. Samples were then aliquoted into 2mL tubes, and centrifuged at 13,000 x g for 

20 minutes, allowing a pellet of crude DNA to form. The supernatant was removed after each 

centrifugation, and 2000μL of each sample was added to the same tube with the DNA pellet and 

centrifuged again. This was repeated until the entire sample was centrifuged and the DNA 

allowed to form a single pellet for each sample. Once the pellet of crude DNA was formed, 

700μL of 70% ethanol was added to wash the pellet by removing salts and centrifuged again at 

13,000 xg for 10 minutes. The remaining supernatant was removed, the pellet was air-dried to 

insure no ethanol remained, and the DNA was resuspended in 150μL of the provided elution 

buffer. 

 Following resuspension, each extraction’s concentration was quantified using the Qubit 

2.0 Fluorometer and dsDNA High Sensitivity Buffer and Reagent (Thermo Fischer Scientific), 

according to the manufacturer’s specifications. Concentration for each sample were averaged 

between two separate measurements. The concentration results were and sample purity (260/280 

measurement) were verified with the use of the NanoDrop 1000 Spectrophotometer (Thermo 

Fischer Scientific). Average DNA yield was then calculated in micrograms. If a sample failed to 

reach a total DNA yield of >9ug, it was re-extracted. Because some re-extractions required more 

sample material than was provided, 2-5mL of PBS was used to rinse the Whirl-Pak bags or 

transport tubes each deficient sample was stored in. The volume of rinsate used was dependent 

upon the weight of the remaining sample, with more PBS used for samples with less weight, in 
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order to reach a 5g extraction volume. Pooled samples (30μL) were shipped on ice to the 

Novogene Corporation for 16S sequencing. 

 

Library Preparation and Metagenomic sequencing 

 For microbiome sequencing, we sent between 200-500 ng of DNA from each sample 

(n=120) to the Novogene Corporation for 16S rRNA gene amplification and sequencing.  The V4 

region of the 16S subunit was amplified with the primer set 515F/806R [5’-

GTGCCAGCMGCCGCGGTAA-3’]/[5’-GGACTACHVGGGTWTCTAAT-3’], with a fragment 

length of 292 bp.  Amplicon sequencing was performed on the Illumina HiSeq 2500 Sequencing 

System to produce paired end 250 bp reads (PE 250) at a targeted read depth of 100,000 PE reads 

per sample.  

 SureSelectXT HS Reagent Kit for Illumina Paired-End Multiplexed Sequencing Library 

(Agilent Technologies) was used to prepare samples for target-enriched resistome sequencing. A 

custom bait design targeting AMR genes, ‘MEGaRICH’ (84) was used to improve “on-target” 

sequencing and ameliorate the challenge of sequencing microbes from a sample primarily 

consisting of host DNA. Denver Genomics and Microarray Core Facility (Denver, CO) 

sequenced all study samples using the NovaSeq 6000 Sequencing System (Illumina), targeting a 

read depth of 100 million paired end reads per sample of 150bp in length. 

 

Analysis of sequence quality 

 Summary statistics regarding the number of raw, trimmed, and non-host reads for each 

sample were compared using generalized linear models with the “glm” function and the R 

platform (126) to assess systematic bias across the following sequencing metadata: sequencing 
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run, batch, and lane. For study design metadata, primary comparisons of interest were between 

varying antimicrobial drug exposure levels and DOF when the sample was collected (sampling 

time). Differences in sequencing results between sample groups were tested with the Wilcoxon 

signed-rank test when comparing paired values from the same animal and the Wilcoxon rank-

sum test was employed when comparing between sampling time. 

 

Microbiome and Resistome characterization 

 To describe the profile of microbes present in feedlot cattle feces, reads from 16S rRNA 

amplicon sequencing were analyzed using the collection of tools contained in Quantitative 

Insights Into Microbial Ecology version 2 (Qiime2-2017.12) (172). Briefly, all reads were 

processed for sequence quality and denoising using DADA2 (Callahan et al., 2016), taxonomic 

classification using a naive bayes classifier trained on the GreenGenes database (97), and 

removal of chloroplast and mitochondrial DNA contaminants. Results were then exported into 

count tables and summarized using the R statistical software. 

 To identify the resistome in feedlot cattle feces, the targeted AMR metagenomic 

sequencing samples were processed using the AMRPlusPlus bioinformatic pipeline and the 

MEGARes resistance database (49). Two updates were added to AMRPlusPlus pipeline; one to 

deal with PCR duplication introduced with targeted AMR amplification and another to improve 

the classification of AMR genes requiring the presence of specific SNPs. Further details on the 

pipeline can be found in the documentation website ( http://megares.meglab.org/AMRPlusPlus). 

Read trimming and quality filtering was performed using Trimmomatic (122). Host 

contamination was identified using the Burrows-Wheeler Aligner (BWA) software (93) with 

alignment to the Bos Taurus genome (123) and removal of those reads with SamTools (124). 

http://megares.meglab.org/amrplusplus
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These non-host reads were then aligned to the MEGARes database with BWA. Read de-

duplication was performed with SamTools on the resulting .sam files from alignment to 

MEGARes. 

Only genes accessions with reads aligning to >80% of the reference nucleotide sequence 

were considered for further analysis, with the exception of reads aligned to genes that require the 

presence of specific single nucleotide polymorphisms to confer resistance. These reads were 

identified, pulled from the samples, and re-classified separately using Resistance Gene Identifier 

(95) and the “strict” paradigm which incorporates detection models and CARD's curated 

similarity cut-offs to increase accuracy in identifying functional AMR genes (see full script: 

https://github.com/EnriqueDoster/MEG-AMRPlusPlus-RGI-SNPconfirmation). A list of 

important AMR gene determinants in human-associated pathogens were identified a priori and 

searched for in all samples: (bla(OXA), bla(SME), bla(IMI), bla(NDM), bla(GES), bla(KPC), 

bla(cphA), bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), vga/vat, cfr). 

 

Count matrix processing 

 Differences in the microbiome and resistome of individual feedlot cattle were analyzed 

using the R statistical programming software. Cumulative sum scaling (CSS) (131) was used to 

normalize counts and account for differences in sequencing depth. The resistance data was then 

summarized to the class and mechanisms level to avoid bias at the “gene” level associated with 

irregular naming criteria for new resistance genes (132). Statistical analysis was accomplished 

using the R packages “metagenomeSeq” and “vegan” (130, 131). Sparsely represented resistance 

gene accessions which were identified in fewer than 5% of samples were removed from further 

analysis based on published recommendations (131). The taxonomic lineage was identified for 

https://github.com/EnriqueDoster/MEG-amrplusplus-RGI-SNPconfirmation
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each taxon in the microbiome and counts were aggregated to these 6 Linnaean taxonomic levels: 

phylum, class, order, family, genus, and species. In total, there were 6 count matrices for the 

microbiome, but to reduce the repetitive reporting of results at all levels and because results at 

lower taxonomic levels are not considered very reliable (133), statistical results for microbiome 

are presented at the phylum, class and order levels. Richness and Shannon’s diversity indices 

were calculated for each sample using “vegan” at all levels. In total, 8 unique normalized count 

matrices (i.e., 6 count matrices describing the microbiome and 2 count matrices characterizing 

the resistome) were analyzed and reported. 

 

Statistical analysis 

 The primary analysis of interest was between sampling time (Arrival vs Re-handling) and 

total ADD exposure categories. The total ADD exposure for each animal was calculated as the 

sum of ADDs from all sources and categorized into 3 categories based on ADD sample 

distribution; Low ADD exposure (< 8), medium ADD exposure (8 – 18, and high ADD exposure 

(> 18). Similarly, the DOF for each animal at the time of sample collection during Re-handling 

was categorized into 5 ranges (arrival - 3 DOF, 4-70 DOF, 71-120 DOF, 121-180 DOF, and > 

180 DOF). Diversity indices were statistically compared using the Wilcoxon signed-rank test 

(“wilcox.test” function in R) for samples from the same animal and “glm” to test differences 

between other sample groups. CSS- normalized counts were Hellinger-transformed (135) for 

ordination using the metaMDS function from “vegan”, which employs non-metric 

multidimensional scaling on Euclidian distances. Analysis of similarities (ANOSIM) (136) was 

used to test differences in the microbiome and resistome between categorical metadata sample 

groups (e.g., Arrival vs Re-handling samples, ADD exposure category, and DOF sampling 



68 
 

category). MetagenomeSeq’s “fitZig” function was used to fit a zero-inflated Gaussian model 

and compare log2-fold differences (131) in microbiome and resistome features between sampling 

time. Limma’s “makeContrast” function (137) were then used for pairwise comparisons, P-

values were adjusted for multiple tests using the Benjamini-Hochberg procedure (138), and 

alpha=0.05 was selected as the statistical significance cut-off value. To account for spurious 

statistically significant differences in low abundance features, only features with an average 

expression > 1 were considered. 

 Raw counts were hellinger-transformed (135) and redundancy analysis was performed on 

the microbiome and resistome composition to further evaluate the potential significance of 

different AMD use practices using the “rda” function in R. Significance of the correlation 

between independent variables and the variance in the microbiome and resistome composition 

were then tested using the “anova” function in R. With the goal of characterizing the effect ADD 

exposure and time in the feedlot (days on feed or DOF) have on the microbiome and resistome, 

samples were grouped into 18 metadata categories for analysis. Values for ADD exposures were 

aggregated by route of administration (in-feed vs parenteral) and by drug class including 

macrolides-lincosamides-streptogramin (MLS), tetracyclines, phenicol, and bactrim 

(sulfamethoxazole and trimethoprim combination). Samples were summarized into metadata 

variables that reflect the amount and type of antimicrobial drug exposure as well as time in the 

feedlot and days since the most recent parenteral treatment (Supplemental Table 4.1). Variables 

included: 

“Sampling_Time”,"Total_ADD","Feed_ADD","Parenteral_ADD","DOF","num_tx","Days_since

_tx","total_tetracycline_ADD","total_MLS_ADD","feed_MLS_ADD","feed_tetracycline_ADD

", 
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"parenteral_tetracycline_ADD","parenteral_MLS_ADD"parenteral_phenicol_ADD","parenteral

_sulfonamide_ADD", and “Feedlot_ID”. All of these variables were included in the starting 

model for step-wise variable selection and anova testing to identify the best fitting model. 

Additionally, an a-priori model was included to test the effect of time (DOF), in-feed ADD 

exposure and parenteral ADD exposure. 

RESULTS 

Sequencing results 

 In this study we employ metagenomic sequencing to characterize the effect of AMD use 

on the microbiome and resistome in feces collected during a previously published 3-year 

longitudinal study of Canadian beef feedlot operations. Out of 120 samples selected for inclusion 

in this study, only 94 were successfully sequenced using AMR targeted-enrichment (resistome) 

because of low starting DNA concentrations not meeting the threshold for AMR targeted-

enrichment.  All 120 were successfully sequenced using 16 rRNA amplicon sequencing 

(microbiome).  Across the remaining 94 samples, >1.49 billion paired end reads were produced 

(mean: 15,926,612, range: 3,113,837 – 25,239,487 [Supplemental Table 4.2]). Filtering to 

improve overall read quality and to remove bovine host DNA a total of 336,463,224 reads were 

excluded and on average, these reads made up 22.9% of each sample (range: 3% - 38.5%). There 

was a statistically higher number of raw sequencing reads in samples from the second time point 

(mean = 16,997,789) compared to arrival samples (mean = 14,855,436). There were no 

significant differences in sequencing the microbiome. More than 17.6 million reads were 

produced from 16S rRNA sequencing across 120 samples (mean: 147,046, range: 101,543 – 

208,020). Quality filtering, identification of sequence variants with DADA, and removal of 
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chloroplast and chimeric sequences identified a total 4,902,718 sequence variants with each 

sample averaging 40,855 unique sequence variants per sample (range: 20,943 – 65,270).  

 

Resistome results 

  Following alignment of reads to the MEGARes AMR database, removal of duplicate 

reads, and re-classification of reads aligning to gene accessions requiring SNP confirmation with 

RGI, a total of 3,548,954 alignments to AMR gene accessions were identified across 94 samples 

(mean: 3,548,954 reads per sample, range: 11,635 – 129,357). These counts were classified as 

representing 1,608 different gene accessions in the MEGARes database, confering resistance to 

26 different drug classes through 80 distinct resistance mechanisms. Out of the 26 drug classes 

identified, half were in low abundance across all samples and together made up 0.05% of reads 

aligning to AMR gene accessions. Regardless of the time of sample collection, the seven most 

abundant drug classes were tetracyclines (46%), multidrug resistance mechanisms (such as 

multidrug efflux pumps - 16.7%), aminoglycosides (12.5%), macrolide-lincosamide-

streptrogramin (MLS) (6.6%), sulfonamides (6.4%), betalactams (6.3%), and phenicol (4.1%) 

with the remaining 19 classes each making up less than 1% of classified reads. Of the alignments 

to genes that confer tetracycline resistance, 69.6% of all alignments were to tetracycline 

resistance ribosomal protection proteins and 27.5% were to major facilitator superfamily (MFS) 

efflux pumps. In the second most abundant group of resistance determinants, multidrug 

resistance, 65.4% of alignments were to the multidrug efflux pumps and 34.6% to MDR 

regulator mechanisms. 

 While tetracycline and multidrug mechanisms dominated the resistome composition in all 

samples, multidrug resistance mechanisms were less abundant when cattle were resampled at the 
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second time point such that aminoglycoside resistance became the second most abundant drug 

class (Figure 4.1). ANOSIM testing suggests that the overall resistome composition shifted 

significantly over time at the class level (ANOSIM R = 0.32, P = 0.001) and mechanism level 

(ANOSIM R = 0.34, P = 0.001) (Figure 4.2). Despite these changes in resistome composition, 

richness and Shannon’s diversity indices did not undergo a significant change between sampling 

time. The ZIG model identified that out of 15 drug classes with an average expression > 1, the 

relative abundance of 12 drug classes shifted significantly between sampling times. Most 

commonly, these shifts were related to increased abundance of alignments to tetracyclines, MLS, 

sulfonamides and phenicol resistance alignments increased over time and a decreased abundance 

for hits for 8 other drug classes (P-value < 0.05). 

 To further investigate how much of the variation in the resistome composition among 

different samples could be explained by independent variables (sampling time, feedlot ID, AMD 

exposure in ADD units, etc.), redundancy analysis was performed starting with a full model 

containing all 18 metadata categories (Supplemental Table 4.1). Step-wise selection to identify a 

model that maximized the amount of explainable variation identified sampling time as the only 

significant variable (ANOVA P < 0.05); this model explained 2.5% of the constrained variance 

and 8.6% of the total variance in resistome composition (Figure 4.3). Because of the significant 

shifts in resistome composition over time, the resistome of animals collected at the second time 

point were similarly analyzed with redundancy analysis. This best-fitting redundancy model for 

samples collected at the second time point included only two variables (ANOVA P < 0.05): DOF 

and in-feed MLS ADD exposure. The final model explained 4.6% of the variation in the 

resistome and suggests that only 0.49% of that variation can be explained by the independent 

variables measured in this study. Of the constrained variance, DOF and in-feed MLS ADDs 
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explain an equal amount of variance (~0.25) though neither tested statistically significant (P < 

0.07). In-feed MLS ADDs were only given to 11/47 animals in the study compared to 30/47 

receiving parenteral treatment with a macrolide AMD and all 47 animals exposed to in-feed 

tetracyclines. 

 Of the a priori list of 13 genes identified as important to medicine when expressed in 

human pathogens, all genes were identified in at least one sample in our study (bla(OXA), 

bla(SME), bla(IMI), bla(NDM), bla(GES), bla(KPC), bla(cphA), bla(TEM), bla(SHV), 

bla(CTX-M), bla(CMY), vga/vat, cfr). Across 47 samples, 204,934 reads mapped to these genes 

and were predominantly (>98%) represented by alignments to cfr, bla(OXA), bla(CTX-M), 

bla(TEM), and vat. Between sampling time points, the number of animals with alignments to 

these 5 genes generally increased over time and decreased for the remaining 8 genes investigated 

as being of high importance (Figure 4.4). Though samples were collected from animals located 

in 4 different feedlots, similar patterns emerged in the prevalence of these genes over time in the 

feedlot. The bla(TEM) and cfr group of gene accessions were in the highest relative abundance 

of all five genes and could be identified in 85.1% (40/47) and 95.7% (45/47) of arrival samples, 

respectively. Though the low abundance of normalized counts precluded the ability to 

statistically compare logFold changes in abundance over time, the sum of alignments decreased 

for bla(TEM) and cfr (FIG). Alternatively, prevalence and alignments to bla(OXA), bla(CTX-M) 

and vat gene accessions increased over time.  

 

Microbiome results 

 A total of 794,953 reads were classified taxonomically into 33,623 amplicon sequence 

variants. Together, these taxa represented 29 phyla, 63 classes, and 100 orders. Three phyla, 
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Proteobacteria, Firmicutes and Bacteroidetes, predominated in the microbiome and accounted 

for > 93% of all normalized counts (45.4%, 36.9%, and 10.9%, respectively). These 3 phyla were 

each predominantly represented by a single taxonomic class which contained a majority of hits 

within these phyla. The Clostridia class made up 74.6% of all Firmicutes alignments and the 

Gammaproteobacteria class was 99.4% of all Proteobacteria across all samples. 

Pseudomonadales (44.7%), Clostridiales (26.9%), Bacteroidales (8.7%), Lactobacillales (6.6%), 

RF39 (2.7%) and Flavobacteriales (2%), and Enterobacteriales (1.1%) were the most abundant 

taxa at the order level, with the remaining taxa each making up less than 1% of classified reads. 

 Overall, the microbiome composition in feedlot cattle were dominated by Proteobacteria, 

Firmicutes, and Bacteroidetes at both sampling time points with the majority of the identified 

phyla accounting for < 0.01% of all classified reads (Figure 4.5). Though there were no 

significant differences in richness or Shannon’s diversity, ANOSIM testing confirms that 

microbiome composition shifted significantly between sampling time points at the phylum 

(ANOSIM R = 0.19, P < 0.01), class (ANOSIM R= 0.21, P < 0.01), and order (ANOSIM R= 

0.22, P < 0.01) taxonomic levels (Figure 4.6). Out of the 10 phyla with an average expression >1 

as calculated by the ZIG, 7 phyla significantly changed in relative abundance between sampling 

times (P-value < 0.05). Bacteroidetes, Proteobacteria, and Spirochaetes significantly increased in 

relative abundance between the first and second sampling, with an accompanying decrease in 

Firmicutes, Cyanobacteria, Actinobacteria, and Verrucomicrobia. 

 Redundancy analysis and step-wise selection of exposure variables that best explain the 

variance in the microbiome resulted in a statistically significant model (ANOVA P < 0.05) 

explaining 1.7% of the variance between all samples (Figure 4.7). Of the 4 variables included in 

the model, only sampling time and in-feed ADD were significantly (ANOVA P < 0.05) 
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associated with explaining 1.2% and 0.2% of the microbiome variance, respectively. By the 

second sampling time point, however, 9.6% of the total variance in the microbiome could be 

explained with a redundancy model containing two variables, in-feed tetracycline resistance 

ADD and total in-feed ADD. Only total in-feed ADD was significantly associated with 

representing 1% of the constrained variance. 

DISCUSSION 

 Our results suggest that, as evaluated by metagenomic sequencing, exposure to 

antimicrobial drugs might exert a greater effect on the microbiome than on resistome 

composition in beef feedlot cattle. However, this effect is likely small compared to impacts 

associated with the amount of time cattle spent in the feedlot as a marker for other un-measured 

factors in the environment that could impose a greater overall impact. The largest measurable 

association was sampling time (Arrival vs Re-handling) which accounted for 2.5% of the 

variation in the resistome, but these changes in the resistome were not associated with increasing 

DOF or AMD exposure at the second sampling point. Major shifts that are not related to AMD 

use that could account for the differences between arrival and re-handling resistome composition 

may be related to a multitude of environmental pressures involved with initial transportation to 

the feedlot, processing at the feedlot and diet changes once in the feedlot (173). The microbiome 

likewise was also significantly influenced by sampling time, but additionally by the total amount 

of time cattle spent in the feedlot. Comparing only samples from the second sampling time, in-

feed antimicrobial drug exposure explained only 1% of differences in the microbiome of 

samples.  

 It is important to note that our study faces the same limitations of many high-throughput 

sequencing studies. Sequencing depth could have been inadequate to identify more subtle 
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dynamics occurring in low abundance or “rare” features. Additionally, classification of AMR 

gene accessions in our samples does not ensure the functional activity of these genes and instead 

serves only to identify the potential resistome function. This could misrepresent instances in 

which gene expression of AMR determinants is not represented by genetic composition. Lastly, 

this study leverages previously collected samples and while this serves as an example of the 

benefit of using metagenomics on archived samples to add a different perspective it also impacts 

the potential external validity of microbiome and resistome results garnered from samples not 

originally processed for DNA extraction and sequencing (77). In our study, fecal samples were 

originally processed for aerobic culture, stored in Cary Blair media in a refrigerator prior to 

freezing. Therefore, our internal validity is sound as all samples were processed with the same 

protocols, but comparisons to external studies should be done with caution. 

 In parallel with characterizing broad patterns in resistome changes, high-throughput 

sequencing allows interrogation for the presence of specific genes with medical importance. 

Among the 13 genes considered a priori to be of high importance to public health, we identified 

all of these in the sample set of 94 samples, but five (cfr, bla(OXA), bla(CTX-M), bla(TEM), and 

vat) were identified in at least 32/47 (68%) samples at the second sampling time. The function of 

all these medically important AMR gene accessions cannot be inferred from the methods 

employed in this study and future studies will require incorporating multiple techniques to better 

characterize the risk of AMR emergence.  

A thorough search of the current relevant literature yielded no other metagenomic studies 

of this kind in individual beef feedlot cattle. Paired with extensive antimicrobial drug use records 

across 4 different feedlots and 60 animals sampled at two time points, we characterize general 

trends observed and provide a snapshot into the dynamic microbial ecology involved in livestock 
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production. The power of metagenomic sequencing is likely to be best employed for the culture-

independent surveillance of AMR genes and this study provides an overview of how the 

resistome and microbiome of feedlot cattle are influenced by antimicrobial drug use practices. 

With increasing understanding of how herd management decisions can influence the microbiome 

and the resistome, practices can be identified that maintain the balance of benefiting from the use 

of antimicrobial drugs without increasing the risk of AMR emergence in pathogens. As we learn 

to better manage AMR through livestock production practices, metagenomic analysis will be 

critical for incorporating a holistic perspective into community-wide changes. 
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A) 

 

B) 

Figure 4.1. Resistome composition at the drug class level for all samples by sampling time point; 
Arrival at feedlot or later during the feeding period at Re-handling. A) Shows the 13 drug classes 
present in a relative abundance > 1% of all resistome alignments (Core) and B) is the relative 
abundance for the 13 drug classes in low relative abundance (Rare). 
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Figure 4.2. Ordination comparing resistome composition at the AMR drug class and resistance 
mechanism, using non-metric multidimensional scaling (NMDS), for the two study groups at 
Arrival and Re-handling samples. Separation of resistomes between sampling time was 
statistically significant at the class (ANOSIM R = 0.32, P < 0.05) and mechanism levels 
(ANOSIM R = 0.34, P < 0.05). 
  



79 
 

Figure 4.3. Redundancy analysis (RDA) plot illustrating the relationship between resistome 
composition and antimicrobial drug exposure metadata. Step wise model selection was used to 
determine the combination of variables that best explain the variance in the resistome. Sampling 
time and total exposure to antimicrobial drugs (in ADDs) were included in the final model but 
only sampling time was statistically associated with explaining 2.5% of the variance in the 
resistome across all 94 samples.   
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A) 

B)  

Figure 4.4. A) Heatmap representing the prevalence of medically important AMR genes across 4 
different feedlots. The increasing shade of red represents the relative abundance of counts for 
each gene group on the rows. The number on each cell signifies how many samples contained 
alignment to that gene group. B) Plot of the change in alignments from the arrival samples to exit 
for each medically important AMR gene group across all samples.  
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A)  

B)  

Figure 4.5. Microbiome composition at the phylum taxonomic level for all samples by sampling 
time point; arrival at feedlot or at a second time point closer to exit of the feeding period. A) 
Shows the 8 phyla present in a relative abundance > 1% of all microbiome alignments (Core) and 
B) is the subset of 21 phyla in low relative abundance (Rare).  
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Figure 4.6. Ordination comparing microbiome composition at the phylum, class, and order levels 
using non-metric multidimensional scaling (NMDS), for samples collected at Arrival and Re-
handling. Separation of resistomes between sampling time was statistically significant at the 
phylum (ANOSIM R = 0.19, P < 0.01), class (ANOSIM R= 0.21, P < 0.01), and order (ANOSIM 
R= 0.22, P < 0.01) taxonomic levels. 
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Figure 4.7. Redundancy analysis (RDA) plot illustrating the relationship between microbiome 
composition and antimicrobial drug exposure metadata. Step wise model selection was used to 
determine the combination of variables that best explain the variance in the microbiome. 
Sampling time and in-feed exposure to antimicrobial drugs (in ADDs) were included in the final 
model and statistically associated with explaining 1.2% and 0.2% of the microbiome variance, 
respectively. 
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CHAPTER 5: METAGENOMIC INVESTIGATION OF THE EFFECTS OF ANTIMICROBIAL 

DRUG USE PRACTICES ON THE MICROBIOME AND RESISTOME OF BEEF FEEDLOT 

CATTLE 

 
 
 

INTRODUCTION 

 Beef production systems utilize antimicrobial drugs (AMDs) to greatly benefit animal 

health and welfare, which in turn improves farm sustainability, but the use of these AMDs are 

under increasing scrutiny regarding the risk of antimicrobial resistance (AMR) that affects 

treatment efficacy in humans (15, 169). The presence of AMR pathogens, has been shown to 

affect the duration of morbidity, risks for mortality, need for intensive alternative treatments, 

increased duration of hospitalization, and costs of treatment (174). Genes conferring AMR are a 

naturally occurring part of microbial ecology, which were present in bacteria for several 

millennia prior to the discovery and use of AMDs by humans (2, 4). Concern is mounting, 

however, that the increasing use of AMDs in health care and agriculture is associated with an 

increase in the prevalence of AMR among pathogens (175–177), but there is poor understanding 

of how changing AMD use practices can reduce the risk of AMR. Notably, beef production uses 

AMDs from drug classes considered important for human medicine (12) and the concern is that 

this will directly select for increased resistance to these drugs which can then be disseminated 

into the environment (10, 178, 179). To balance the use of AMDs and ameliorate the risks of 

AMR promotion and transmission from livestock production systems, it is critical that we 

understand how different AMD use practices in beef feedlot production affect AMR dynamics. 

 Until the last decade, studies regarding AMR were primarily culture-dependent and 

consisted of using aerobic culture to isolate a few bacterial species and test their resistance 
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patterns with phenotypic testing (i.e. broth microdilution, Kirby-Bauer disk diffusion). These 

studies have unavoidably targeted culturable bacterial species such as a few bacterial pathogens 

(e.g., Campylobacter spp., Salmonella enterica, etc.) and indicator species (e.g., Escherichia 

coli). While estimating AMR prevalence among a specific limited set of bacterial species can be 

used for evaluating trends in resistance over time, we are lacking the ecological perspective of 

how AMR is transmitted among all constituents of the microbial community (microbiome) in the 

environment. High-throughput genetic sequencing now allows for the culture-independent 

characterization of both the microbiome and resistome. This approach will help to expand our 

understanding of how bacterial communities respond to AMD exposure in beef feedlot 

production systems. 

 Our study leverages archived fecal samples collected in a previously described 

longitudinal study conducted in four Canadian feedlots with detailed AMD use records (34, 171). 

In that study, newly formed pens of feedlot cattle were randomly selected for inclusion into the 

study and composite pen-floor fecal samples were collected at two time points during the feeding 

periods. Pens in the study were managed under conditions typical at large commercial beef 

feedlots in North America, and the AMD use records regarding individual treatment of animals 

and in-feed inclusion of AMD were aggregated to estimate the selection pressure imposed on the 

resistome and microbiome. The gastrointestinal commensal species, non-type-specific 

Escherichia coli, was cultured from all samples and tested for AMR using broth microdilution 

and Kirby-Bauer disk diffusion. The goal of this study is to use next-generation sequencing on 

those samples to investigate the effects of AMD use on AMR dynamics in the microbiome and 

resistome. 
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METHODS 

Study design 

 In this study we employ metagenomic sequencing to characterize the effect of AMD use 

on the microbiome and resistome in feces collected during a previously published 3-year 

longitudinal study of Canadian beef feedlot operations. Out of all pens of cattle arriving to the 

feedlot, 30% were randomly selected for inclusion into the study. All exposure to antimicrobial 

drugs, including parenteral treatments and in-feed exposures, was recorded and standardized 

across different drug classes using animal defined daily dose (ADD). For each pen in the study, 

the ADD exposure for all animals within that pen were aggregated to pen-level ADD exposure. 

Fecal samples were selected from archived samples processed for 16S rRNA sequencing and 

shotgun metagenomics with an AMR gene bait-capture system to describe the microbiome and 

resistome, respectively. 

 

Sample Collection 

 Samples were collected from four participating feedlots in western Canada and composite 

pen-floor fecal samples were collected from each pen soon after arrival (Arrival samples) and at 

a second time point (Re-handling) > 60 days on feed (DOF), as previously described (171). 

Samples were collected longitudinally from 8 October 2009 to 6 April 2010 and stored in Cary-

Blair transport medium as previously described (34). Samples were archived in Whirl-Pak bags 

or 30mL medium transport tubes at -80°C until shipment on dry ice to Colorado State University 

in May of 2017. They were stored at -80°C again until samples were individually thawed for 

DNA isolation and extraction. Each Arrival sample, Re-handling, and Shipment sample was 
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labeled and archived together, so that these corresponding samples from each pen could be 

correlated after extraction. 

 

Sample selection for DNA Isolation and metagenomic sequencing 

 Pen samples were selected using stratified random-sampling to include pens with Re-

handling samples collected before and after 100 DOF. From each DOF time group, 19 pen 

samples were randomly selected. Further, a group of 6 pens with the highest ADD at Re-handling 

were purposively selected for inclusion. A total of 44 pens were selected for enrollment into this 

study and fecal samples collected from two time points were included for DNA isolation and 

metagenomic sequencing. Additionally, 10 samples were included from pens sampled a third 

time just prior to shipment to the abattoir. Fecal samples were processed for DNA extraction and 

metagenomic sequencing using laboratory methods as described in Chapter 4: “Antimicrobial 

Drug Use in Beef Feedlots; Effects on the Microbiome and Resistome Dynamics in Individual 

Cattle”. Briefly, with the exception of increasing centrifugation time from 3 to 5 minutes, we 

utilize the Qiagen PowerMax Soil Kit (Qiagen Laboratories) according to manufacturer’s 

instructions. DNA precipitation by ethanol increases DNA concentration and can be quantified 

using the Qubit 2.0 Fluorometer and its corresponding dsDNA High Sensitivity Buffer and 

Reagent (Thermo Fischer Scientific). Quality and sample purity are further verified using 

NanoDrop 1000 Spectrophotometer (Thermo Fischer Scientific). Pooled samples (30μL) with an 

average fragment length of 292 bp were shipped on ice to the Novogene Corporation for 16S 

rRNA amplicon sequencing. Library preparation was performed in-house for resistome 

characterization and prepped libraries were delivered to UC-Denver Genomics and Microarray 

Core Facility (Denver, CO) for shotgun sequencing. 
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Library Preparation and Metagenomic sequencing 

 For microbiome sequencing, between 200-500 ng of DNA from each sample (N=98) was 

sent to the Novogene Corporation for 16S rRNA gene amplification and sequencing on the 

Illumina HiSeq 2500 Sequencing System. The primer set 515F/806R [5’-

GTGCCAGCMGCCGCGGTAA-3’]/[5’-GGACTACHVGGGTWTCTAAT-3’] was used to 

amplify the V4 region of the 16S rRNA gene and sequence paired end 250 bp reads (PE 250) at a 

targeted read depth of up to 100,000 PE reads per sample. Following total DNA extraction, 

sample aliquots were prepared for resistome sequencing using the SureSelectXT HS Reagent Kit 

(Agilent Technologies) combined with a custom bait design targeting AMR genes, ‘MEGaRICH’ 

(84). Sequencing libraries were transported to UC-Denver Genomics and Microarray Core 

Facility (Denver, CO) and sequenced using the NovaSeq 6000 Sequencing System (Illumina), 

targeting a read depth of 100 million PE reads per sample and paired end 150bp reads (PE 150). 

Systematic bias in sequencing results was assessed across the following sequencing metadata: 

sequencing run, batch, and lane. Generalized linear models were fit on the number of raw, 

trimmed, and non-host reads using the R programming language (126) and the “glm” function.  

 

Microbiome and Resistome characterization 

 To describe the profile of microbes present in feedlot pen floors, reads from 16S rRNA 

amplicon sequencing were analyzed using the collection of tools contained in Quantitative 

Insights Into Microbial Ecology version 2 (172). Briefly, all reads are processed for sequence 

quality and denoising using DADA2 (180), taxonomic classification using a naive bayes 

classifier trained on the GreenGenes database (97), and removal of chloroplast and mitochondrial 
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DNA contaminants. Results were then exported into count tables and summarized using the R 

statistical software. 

 Alternatively, to identify the resistome in feedlot pen floors, the targeted AMR 

metagenomic sequencing samples were processed using the AMRPlusPlus bioinformatic pipeline 

and the MEGARes resistance database (49). Further details on the pipeline can be found in the 

documentation website ( http://megares.meglab.org/amrplusplus) and have been previously 

reported (56). Sample read trimming, quality filtering and host DNA removal are all performed 

to create “non-host reads” that are used for subsequent analysis of the resistome using 

AMRPlusPlus. The AMRPlusPlus pipeline now accounts for PCR duplication by de-duplicating 

alignments to MEGARes and improves the classification of AMR genes requiring the presence 

of specific SNPs by incorporating Resistance Gene Identifier (95). The “strict” paradigm was 

employed as this incorporates detection models and CARD's curated similarity cut-offs to 

increase accuracy in identifying functional AMR genes (see full script: 

https://github.com/EnriqueDoster/MEG-amrplusplus-RGI-SNPconfirmation). A list of important 

AMR gene determinants that are considered to be critically important to public health when 

identified in human pathogens were specified a priori and sequences were specifically searched 

for in all samples (bla(OXA), bla(SME), bla(IMI), bla(NDM), bla(GES), bla(KPC), bla(cphA), 

bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), vga/vat, cfr). 

 

Count matrix processing 

 The R statistical programming software and publicly available packages, 

“metagenomeSeq” and “vegan” (130, 131) were used to analyze count tables representing the 

resistome and the microbiome. Raw counts of alignments were normalized to account for 

http://megares.meglab.org/amrplusplus
https://github.com/EnriqueDoster/MEG-amrplusplus-RGI-SNPconfirmation
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differences in sequencing depth using Cumulative sum scaling (CSS) (131). Sparsely represented 

features identified in fewer than 5% of samples were removed from further analysis based on 

published recommendations (131). Resistome counts were summed to the drug class and 

resistance mechanisms level for each sample to avoid bias at the “gene” level associated with 

irregular naming criteria for new resistance genes (132). Similarly, microbiome counts were 

aggregated to these 6 Linnaean taxonomic levels: phylum, class, order, family, genus, and 

species. In all, 6 count matrices for the microbiome, but to reduce the repetitive reporting of 

results at all levels and because results at lower taxonomic levels are not considered reliable 

(133), statistical results for microbiome are presented at the phylum, class and order levels. 

Diversity was calculated for each sample using “vegan” and summarized with richness and 

Shannon’s diversity index.  

 

Statistical analysis 

 The primary exposure variables of interest were time in feedlot, as evaluated by 

comparisons of microbiomes/resistomes collected at the two sampling times (Arrival vs Re-

handling) and magnitude of ADD exposures. ADD exposures were summarized for each pen by 

calculating the sum of ADDs from parenteral and in-feed treatments grouped into 3 exposure 

categories; Low ADD exposure (< 1000 total ADD), medium ADD exposure (1000 – 5000 total 

ADD), and high ADD exposure (> 5000 total ADD). Similarly, the DOF for each animal at the 

time of sample collection was categorized into 5 ranges (arrival - 3 DOF, 4-70 DOF, 71-120 

DOF, 121-180 DOF, and > 180 DOF). Diversity indices were statistically compared using the 

Wilcoxon signed-rank test (“wilcox.test” function in R) for samples from the same animal and 

“glm” to test differences between other sample groups. CSS- normalized counts were Hellinger-
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transformed (135) for ordination using the metaMDS function from “vegan”, which employs 

non-metric multidimensional scaling on Euclidian distances. Analysis of similarities (ANOSIM) 

(136) was used to test differences in the microbiome and resistome between categorical metadata 

sample groups (e.g., Arrival vs Re-handling samples, ADD exposure category, and DOF 

sampling category. MetagenomeSeq’s “fitZig” function was used to fit a zero-inflated Gaussian 

model and compare log2-fold differences (131) in microbiome and resistome features between 

sampling time. Limma’s “makeContrast” function (137) were then used for pairwise 

comparisons, P-values were adjusted for multiple tests using the Benjamini-Hochberg procedure 

(138), and alpha=0.05 was selected as the statistical significance cut-off value. To account for 

spurious statistically significant differences in low abundance features, only features with an 

average expression > 1 were considered. 

 Additionally, raw counts were hellinger-transformed (135) and redundancy analysis was 

performed on the microbiome and resistome composition to further evaluate the potential 

significance of different AMD exposures using the “rda” function in R. The significance of the 

correlation between independent variables and the variance in the microbiome and resistome 

composition were then tested using the “anova” function in R. With the goal of characterizing the 

effect ADD exposure and time in the feedlot (DOF) have on the microbiome and resistome, 

samples were grouped into 18 metadata categories for analysis (Supplemental Table 5.1). ADD 

exposures were aggregated by route of administration (in-feed vs parenteral) and by drug class 

including macrolides-lincosamides-streptogramin (MLS), tetracyclines, phenicol, and 

sulfamethoxazole-trimethoprim. Categorical and numerical categories were created to 

summarize the amount and type of antimicrobial drug exposure as well as time in the feedlot and 

days since the most recent parenteral treatment. All of these variables were included in the 
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starting model for step-wise variable selection and ANOVA testing to identify the best fitting 

model. Additionally, a model was evaluated with a priori inclusion of variables regarding the 

duration that cattle had been in the feedlot environment (days on feed or DOF), sum of ADD 

exposures in feed, and the sum of parenteral ADD exposure. 

RESULTS 

Sequencing results 

In all, samples from 44 pens of cattle were selected for metagenomic sequencing and 

included two sampling time points for all samples (Arrival vs Re-handling) and a third sampling 

point for 10 samples for a total of 98 samples. Sequencing of the resistome using target-enriched 

shotgun sequencing produced 1.61 billion paired-end reads across 98 samples (mean: 16,470,077 

reads per sample, range: 6,192,389 -  25,456,702 reads). Of these reads, filtering to improve 

overall read quality and to remove bovine host DNA excluded a total of 301.7 M reads, and on 

average, these reads made up 18.7% of each sample (range: 3.3% - 48% [Supplemental Table 

5.2]). There was a lower number of raw sequencing reads in samples from the 10 samples 

collected immediately prior to shipment (mean = 14,429,269 reads per sample) compared to 

arrival samples (mean = 17,101,05 reads per sample) and samples collected at the second time 

point (mean = 16,302,917 reads per sample; P < 0.05). However, this difference in number of 

sequencing reads was not present after removal of contaminant host DNA. Comparably, there 

were no differences in sequencing effort for the microbiome. More than 19.4 million reads were 

produced from 16S rRNA sequencing across 98 samples (mean: 197,889, range: 94,433 – 

219,918). Quality filtering, identification of sequence variants with DADA, and removal of 

chloroplast and chimeric sequences identified a total 4,941,757 sequence variants with each 

sample averaging 50,426 unique sequence variants per sample (range: 25,435 – 81,128). 
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Resistome results 

 Following alignment of reads to the MEGARes AMR database, removal of duplicate 

reads, and re-classification of reads aligning to gene accessions requiring SNP confirmation with 

RGI, a total of 55,155,938 reads aligning to AMR gene accessions (“hits”) were identified across 

98 samples (mean: 562,816 reads per sample, range: 278,635 – 1,084,706). These hits were 

classified as corresponding to 1,951 different gene accessions which represented genes that 

confer resistance to 26 different AMD classes through 91 distinct resistance mechanisms. Out of 

the 26 drug classes identified, hits to a majority (19/26) were present in low abundance and 

together comprised only 1.4% of all reads aligning to AMR gene accessions. After removal of 

sparse features and CSS normalization of counts, hits to the seven most abundant drug classes 

were represented by tetracyclines (52.4%), aminoglycosides (11.2%), MLS (10.8%), 

mechanisms conferring resistance to multiple types of drugs (e.g., multidrug efflux pumps -- 

9.6%), betalactams (6.4%), sulfonamides (5%), and phenicol (3.2%) with the remaining 18 

classes each consisting of <1% of normalized counts. Of the hits aligning to genes that confer 

tetracycline resistance, 68.4% were aligned to gene accessions encoding tetracycline resistance 

ribosomal protection proteins and 28.6% encoded for major facilitator superfamily (MFS) efflux 

pumps.  In the second most abundant resistance class, aminoglycosides, the 3 most abundant 

resistance mechanisms were aminoglycoside O-phosphotransferases, aminoglycoside O-

nucleotidyltransferases, and aminoglycoside efflux pumps. 

 Tetracycline and multi-drug resistance mechanisms made up the majority of resistome 

composition in arrival samples, but by the second sampling period aminoglycoside resistance 

had replaced multi-drug efflux pumps as the second most abundant drug class (Figure 5.1). 

ANOSIM testing suggests that the overall resistome composition shifted significantly over time 



94 
 

at the class (ANOSIM R = 0.12, P = 0.001) and mechanism levels (ANOSIM R = 0.13, P = 

0.001) (Figure 5.2). Despite these changes in resistome composition, richness and Shannon’s 

diversity indices did not undergo a significant change over time at any resistance level. To 

identify which resistance determinants in feedlot pens shifted in relative abundance over time, a 

ZIG model was fit on 23 drug classes and identified that 15 drug classes were present at an 

average expression > 1, and the only significant changes occurred to 9 drug classes decreasing 

from arrival to the second time point samples (P < 0.05). Similarly, 21 mechanisms shifted in 

abundance and only 1 mechanism, Macrolide resistance efflux pumps, increased between 

sampling time. 

 To further investigate how much of the variation in the fecal resistomes of feedlot cattle 

could be explained by independent variables (sampling time, feedlot ID, AMD exposure in ADD 

units, etc.), redundancy analysis was performed starting with a full model containing all 14 

independent variable categories (Supplemental Table 5.1). Step-wise selection to identify the best 

model included 4 independent variables (Sampling Time, parenteral macrolide ADD, total ADD, 

and parenteral fluoroquinolone ADD), and explained 1.4% of the constrained variance and 4.4% 

of the total variability among resistomes in different samples (Figure 5.3.A). Of the 4 

independent variables in the model, only sampling time and total ADD were statistically 

significant (ANOVA P < 0.05) representing 0.9% and 0.3% of the constrained variance, 

respectively. Because of the significant shifts in resistome composition over time, samples 

collected at the second time point and just prior to shipment were found to be highly similar in 

the redundancy analysis. For these samples collected after arrival, the redundancy model with the 

best fit included 3 variables (ANOVA P < 0.05): total parenteral fluoroquinolone ADD exposure, 

in-feed tetracycline ADD exposure, and feedlot ID (Figure 5.3.B). The final model explained 
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2.6% of the variability in the resistomes of different samples, and suggested that only 0.77% of 

that variation can be explained by the independent variables measured in this study. Of the 

constrained variance, total parenteral fluoroquinolone ADD exposure and feedlot ID were 

significantly associated with explaining only 0.33% and 0.38% of the variance in the resistome, 

respectively (P < 0.05). 

 Of the a priori list of genes selected as being important to public health when expressed 

in human pathogens, the following gene groups were identified in at least one sample in our 

study: (bla(OXA), bla(SME), bla(IMI), bla(NDM), bla(GES), bla(KPC), bla(cphA), bla(GES), 

bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), vga/vat(A/B/C/D/E), cfr). Across 98 samples, 

307,485 reads mapped to these genes and were predominantly (>95.6%) comprised of reads 

aligning to bla(CTX-M), bla(OXA), bla(TEM), cfr, and vat(A/E) gene accessions. Between 

sampling times, the number of samples (each representing different pen populations) containing 

reads aligning to these 6 gene accessions generally was similar, whereas the number of samples 

with low abundance gene groups decreased over time (Figure 5.4). 

 

Microbiome results 

 A total of 4,328,330 reads were classified taxonomically into 29,683 amplicon sequence 

variants. Overall, these taxa represent 25 phyla, 73 classes, and 113 unique taxonomic orders. 

Five phyla, Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Tenericutes 

predominated in the microbiome and accounted for > 95.6% of all normalized counts (46.5%, 

21.1%, 20.1, 5% and 4.9% respectively). The top three phyla consisted of a single taxonomic 

order making up a majority of counts. Across all samples, the order Clostridiales made up 73.2% 
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of Firmicutes alignments, the Bacteroidales order made up 97.8% of Bacteroidetes, and 

Pseudomonadales were the dominant order of proteobacteria (97.3%). 

 Overall, the microbiome composition in feedlot pen floor fecal samples was dominated 

by Firmicutes, Bacteroidetes, and Proteobacteria at all sampling time points with the majority of 

phyla (20/25) accounting for < 0.01% of all classified reads (Figure 5.5). There were no 

significant changes in Shannon’s diversity index at any level. At arrival the microbiome richness 

averaged 11.5 at the phylum level, 20.2 at the class, and 27.3 at the order level, but richness 

decreased significantly from Arrival to Re-handling samples at the class (18.6) and order (25.3) 

levels (P < 0.05). Further, significant shifts in the microbiome were observed at the phylum 

(ANOSIM R = 0.08, P = 0.01), class (ANOSIM R= 0.12, P < 0.01), and order (ANOSIM R= 

0.14, P < 0.01) taxonomic levels between sampling times (Figure 5.6). Eleven phyla were 

identified with an average expression >1 and 6 phyla significantly changed in relative abundance 

from Arrival to Re-handling. Cyanobacteria, Verrucomicrobia, and actinobacteria decreased 

significantly in abundance over time accompanied with increases in Tenericutes, Spirochaetes, 

and Euryarchaeota (P < 0.05). 

 Redundancy analysis and step-wise selection of metadata variables that best explain the 

variance in the microbiome resulted in a statistically significant model (ANOVA P < 0.05) 

explaining 8% of the variance between all samples (Figure 5.7.A). Three variables, DOF, total 

parenteral ADD exposure, and parenteral sulfonamide ADD were included in the model together 

explained 1.3% of the constrained variance. While all three variables were significantly 

associated with the microbiome composition (p < 0.05), results suggest DOF explains a higher 

variance (0.87%) than total parenteral ADD exposure (0.25%) or parenteral sulfonamide ADD 

(0.2%). Performing redundancy analysis on all other samples not collected at arrival resulted in a 
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statistically significant model (ANOVA P < 0.05) explaining 5.3% of the variance between all 

samples. Feedlot ID, total in-feed ADD, DOF, and parenteral fluoroquinolones ADD were 

included in the model, but only feedlot ID and total in-feed ADD were statistically significant 

representing 0.63% and 0.36% of the microbiome variance (P < 0.05) (Figure 5.7.B). 

DISCUSSION 

 Our results suggest that exposure to antimicrobial drugs has a relatively small influence 

on the microbiome and resistome of feedlot pens compared to shifts in composition associated 

with DOF after arrival to the feedlot. Overall, our redundancy analysis could only explain < 9% 

of the variance in the microbiome and resistome which suggests that other un-measured factors 

in the environment likely impose a greater overall impact. 

 The resistome and microbiome in all samples were largely dominated by a few abundant 

features, namely alignments to AMR gene accessions that confer resistance to tetracycline, 

aminoglycoside, and MLS drug classes in the resistome and the microbiome consisting of 

Firmicutes, Bacteroidetes, and Proteobacteria. Of all tested metadata variables, the largest 

measurable association was sampling time (Arrival vs Re-handling) and could account for 0.9% 

of the variation in the resistome compared to 0.29% explained by total AMD exposure (ADDs), 

but these changes in the resistome were not associated with increasing DOF when only 

considering the second sampling point. In samples collected from pens > 60 DOF, a small and 

statistically significant percentage of the variance in the resistome could be explained by the 

originating feedlot and increasing use of parenteral treatment with fluoroquinolone AMDs. The 

microbiome likewise was significantly influenced primarily by sampling time and by the amount 

of parenteral AMD exposure to animals in the pen. These major short-term shifts in microbial 

populations occur as cattle are introduced to the feedlot environment (56, 173) and our results 
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suggest that by later in the feeding period, observed differences in the resistome particularly in 

low abundance features can be due to different AMD use practices in distinct feedlots. 

 Alignments to the MEGARes database were interrogated for matches to an a-priori list of 

genes with medical importance. We identified 16 a-priori genes across 98 samples, but only the 

following six gene groups were found in > half of the samples at the second sampling time and 

accounted for >98% of alignments to the a priori gene accessions; cfr, bla(OXA), bla(CTX-M), 

bla(TEM), and vat(A/E). Though samples were collected from 44 different pens in 4 commercial 

feedlots, similar patterns emerged in the prevalence of these genes over time in the feedlot. The 

bla(CTX-M), bla(OXA), and bla(TEM) group of gene accessions were in the highest relative 

abundance of important AMR genes and could be identified in 97.7% (43/44) of all samples at 

arrival. Their high prevalence was maintained by the second sampling time point with only 

bla(OXA) and bla(TEM) found in one less pen sample. Though the low abundance of normalized 

counts precluded the ability to statistically compare logFold changes in abundance over time, the 

sum of alignments decreased for all 6 of the genes identified. Importantly, the function of all 

these medically important AMR gene accessions cannot be inferred from the methods employed 

in this study and the bacterial species carrying these AMR genes cannot be determined. 

Similarly, classification of AMR gene accessions in our samples does not ensure the functional 

activity of these genes and instead serves only to identify the potential resistome function. 

Further, sequencing depth could have been inadequate to identify more subtle dynamics 

occurring in low abundance or “rare” features (181). Therefore, differential expression of AMR 

genes cannot be accurately assessed, and future studies will require incorporating multiple 

techniques to better characterize the risk of AMR emergence.    
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 The overall strategy employed in this study to use archived samples and re-process those 

samples for metagenomic sequencing is an example of what is possible with high throughput 

sequencing. Previously collected samples can be re-used to add new community-level insights to 

results originally limited by traditional methods. Beyond being used to study AMR dynamics in 

concurrent studies, metagenomic sequencing can be employed on high quality samples stored 

from past experiments to add further community-level insights with a relatively minor added 

cost. As laboratory methods for DNA extraction and sequencing are known to bias sequencing 

results, future studies must consider the external validity of microbiome and resistome results 

garnered from samples not originally processed for DNA extraction and sequencing (77). 

Originally, the samples utilized in this study were mixed with Cary Blair media and stored in a 

refrigerator prior to freezing. Therefore, our internal validity is sound as all samples were 

processed with the same protocol, but comparisons to external studies should be done with 

caution. 

 To the author’s knowledge, no other metagenomic projects have been performed on 

composite-pen floor samples of commercial feedlots to this scale. Use of high-throughput 

sequencing for AMR surveillance in feedlot environments is set to revolutionize our 

understanding of AMR dynamics, but this is reliant on the availability of ample details regarding 

parenteral and in-feed use of AMDs along with environmental factors about the sample collected 

such as temperature, moisture level, pH, and geographic location (102, 182, 183). Through a 

better understanding of which factors influence the microbiome and the resistome in the feedlot 

environment, AMD use practices can be better tailored to reduce the risk of promoting the 

emergence of AMR in bacteria and the environment. To eventually learn how to manage AMR in 
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a commercial feedlot, as sequencing costs continue to decrease sampling pen-floors may provide 

a cost-effective manner for surveillance of community wide trends.   
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A)  

 

B)  

Figure 5.1. Resistome composition at the drug class level for all samples by sampling time point; 
arrival at feedlot, a second time point during re-handling of pen cattle, or just prior to shipment 
to the abattoir. A) Shows the 12 drug classes present in a relative abundance > 1% (Core) of all 
resistome alignments and B) is the subset of 13 drug classes in low relative abundance (Rare).  
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Figure 5.2. Ordination comparing resistome composition at the AMR drug class and resistance 
mechanism, using non-metric multidimensional scaling (NMDS), for samples collected at 
Arrival, Re-handling, and just prior to Shipment. Separation of resistomes between sampling 
time was statistically significant at the class (ANOSIM R = 0.32, P < 0.05) and mechanism 
levels (ANOSIM R = 0.34, P < 0.05). 
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A)  

 

B)  
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Figure 5.3. Redundancy analysis (RDA) plot illustrating the relationship between resistome 
composition and antimicrobial drug exposure metadata. Step wise model selection was used to 
determine the combination of variables that best explain the variance in the microbiome. A) 
Considering all samples, Time, parenteral macrolide ADD, total ADD, and parenteral 
fluoroquinolone ADD were included in the model and explained 1.4% of the constrained 
variance. B) Excluding arrival samples and performing the same methodology resulted in a 
model with total parenteral fluoroquinolone ADD exposure, in-feed tetracycline ADD exposure, 
and feedlot ID included in the model. Parenteral fluoroquinolone ADD exposure and feedlot ID 
were significantly associated with explaining 0.33% and 0.38% of the variance in the resistome, 
respectively (P < 0.05).  
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A)  

B)  

Figure 5.4. A) Heatmap representing the prevalence of medically important AMR genes across 4 
different feedlots. The increasing shade of red represents the relative abundance of counts for 
each gene group on the rows. The number on each cell signifies how many samples contained 
alignment to that gene group. B) Plot of the change in alignments from the arrival samples to exit 
for each medically important AMR gene group across all samples.   
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A)  

B)  

Figure 5.5. Microbiome composition at the phylum taxonomic level for all samples by sampling 
time point; arrival at feedlot, a second time point closer to exit of the feeding period, or just prior 
to shipment to the abattoir. A) Shows the 8 phyla present in a relative abundance > 1% of all 
microbiome alignments (Core) and B) is the subset of 17 phyla in low relative abundance (Rare).  
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Figure 5.6. Ordination comparing microbiome composition at the phylum, class, and order 
levels , using non-metric multidimensional scaling (NMDS), for samples collected at Arrival and 
Re-handling, and just prior to Shipment. Separation of resistomes between sampling time was 
statistically significant at the phylum (ANOSIM R = 0.08, P = 0.01), class (ANOSIM R= 0.12, P 
< 0.01), and order (ANOSIM R= 0.14, P < 0.01) taxonomic levels.  
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A)  

B) 

Figure 5.7. Redundancy analysis (RDA) plot illustrating the relationship between microbiome 
composition and antimicrobial drug exposure metadata. Step wise model selection was used to 
determine the combination of variables that best explain the variance in the microbiome. A) 
Considering all samples, DOF, total parenteral ADD exposure, and parenteral sulfonamide ADD 
were included in the model together explained 1.3% of the constrained variance. B) Excluding 
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arrival samples and performing the same methodology resulted in a model with feedlot ID, total 
in-feed ADD, DOF, and parenteral fluoroquinolones ADD included in the model. Feedlot ID and 
total in-feed ADD were statistically significant representing 0.63% and 0.36% of the microbiome 
variance, respectively (p < 0.05). 
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CHAPTER 6: METAGENOMIC CHARACTERIZATION OF THE MICROBIOME AND 

RESISTOME IN RETAIL GROUND BEEF 

 
 
 

INTRODUCTION 

 Ground beef and other foods can be a reservoir for a variety of bacteria, including 

spoilage organisms and pathogenic foodborne bacteria. Multiple-hurdle intervention systems 

used at harvest and post-harvest are used to bolster meat safety and have shown to greatly reduce 

the bacterial load in retail-ready products (184). However, even with ongoing improvements in 

food safety, the CDC estimates that in 2016, foodborne outbreaks caused an estimated 14,259 

illnesses, 875 hospitalizations, and 17 deaths in US. Though beef is not the most common source 

of foodborne outbreaks, retail ground beef products have been linked to multi-state outbreaks of 

foodborne illness and it is critical that we understand the bacterial community on retail beef 

products (65). These bacteria can exhibit antimicrobial resistance (AMR) which is a public 

health concern as resistance in pathogens can lead to treatment failure in humans. Additionally, 

concerns regarding of exposure to resistant bacteria or AMDs in food has led to an increase in 

the practice of marketing animal products as being derived from animals that were “raised 

without antibiotics” (RWA) to differentiate from products originating from conventional rearing 

systems (CONV) in which some or all animals were treated with AMDs for control or treatment 

of disease. Consumers are led to believe that not using antibiotics is associated with decreased 

risk of exposure to AMR pathogens, but recent studies suggest minimal to no difference in AMR 

prevalence between these two types of production types (185). Simply removing all 

antimicrobial use from beef production is not straightforward because of welfare concerns 

regarding treatment or control of disease. Recent research that there was no significant difference 
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in the pattern of phenotypic resistance between ground beef product labeled as CONV or RWA 

(185), little is known about how the production practices could affect the resistome, specially 

using culture-independent methods for characterizing resistance patterns. 

 Typically, studies of foodborne bacteria focus on individual pathogens, but high-

throughput metagenomic sequencing can now provide a holistic perspective on the community of 

microbial species (microbiome) and the profile of AMR genes they carry (resistome). Through 

the use metagenomics, many environments previously considered to be sterile or of low bacterial 

biomass are now being re-discovered as having a complex microbiome. However, achieving 

insight into the microbial world comes with challenges in laboratory processing, particularly for 

food matrices (186). Our research group has developed an approach to target enrich AMR genes 

present in DNA samples using biotinylated baits. We have demonstrated biotinylated baits ability 

to increase “on-target” sequencing in cattle feces (MEGARich)(84) and we utilized the same 

approach to sequence the microbiome and resistome in ground beef samples. The goal of this 

study was to characterize the microbiome and resistome of retail ground beef products labeled as 

coming from conventional and raised without antibiotics (RWA) production systems.  

METHODS 

Study design 

 Sixteen different ground beef products were purposefully selected and purchased at 

different retail grocery stores in Fort Collins, Colorado. Samples were processed to allow 

metagenomic characterization of the microbiome and resistome of conventional (CONV) 

products and products carrying a “raised without antimicrobials” (RWA) label claim. Total DNA 

was extracted from each sample and subjected to 16S rRNA amplicon sequencing and target-

enriched shotgun sequencing to characterize the microbiome and resistome, respectively. 
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Microbiome studies of meat samples is complicated due to the high density of DNA percentage 

and low bacterial biomass. Therefore, this study adds biological replicates for each retail ground 

beef product to describe intra-sample variability and tests whether a 1 to 2 dilution of baits 

improves resistome sequencing performance. 

 

Sample Collection 

 Packages of fresh (not currently frozen) ground beef (≥ 1 lb) were purchased from 6 

different retail grocery stores in Fort Collins, Colorado during one day and stored at 4°C until 

further processed. A variety of product brands and packaging types were purposefully selected in 

order to represent a broad diversity in sample types and sources.  Specifically, different 

packaging types that were selected included chub (n=4), vacuum-sealed (n=8), and tray wrap 

(n=4)(187). Additionally, a mix of products were purchased with regard to production claims 

regarding exposure of source animals to AMDs including products with label claims for certified 

organic production or specify the lack of antibiotic use during production (n=8), and other 

products that did not have any label claims specifying antimicrobial drug exposures or organic 

production claims which were considered to originate from “conventional” production systems 

(n=8). This characteristic, as well as other metadata such as store name, product brand name, fat 

percentage, etc. were recorded (Supplemental Table 6.1).  

 

Sample Processing and DNA Isolation 

 To replicate handling of retail ground beef products by typical consumers, samples were 

held at 4°C for 48 hours before being opened. Packages were then opened using aseptically by 

first wiping with 70% ethanol, followed by RNase Away, then and then cut using a sterile 
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disposable scalpel. Ground beef (30g) was removed from each package and placed in a new 

Filtra-Bag (VWR).  Samples were homogenized using 100 ml of PBS and hand-massaged in a 

Filtra-Bag. Supernatant (15 mL) was then transferred to a sterile conical tube and centrifuged at 

10,000 x g for 10 minutes. The supernatant was then discarded, and pellets were stored at -80°C 

until processed for DNA extraction. An aliquot of 950 µL of this pellet was used for DNA 

isolation with the DNeasy PowerFecal Microbial Kit (Qiagen Laboratories) and extracted 

according to manufacturer’s instructions.  Isolated DNA samples were eluted in 50 µL of buffer 

and passed through filter twice to optimize yield. DNA concentrations were measured with the 

Qubit dsDNA HS Assay Kit using the Qubit 2.0 Fluorometer according to manufacturer’s 

instructions (Thermo Fisher Scientific). If sample concentrations were <1ng/µL, multiple 

extractions were pooled together to obtain this concentration. 

 

Library Preparation and Metagenomic sequencing 

 Using between 200-500 ng of DNA from each sample was shipped to Novogene 

Corporation for 16S rRNA gene amplicon sequencing to characterize the microbiome.  The V4 

region of the 16S subunit was amplified with the primer set 515F/806R [5’-

GTGCCAGCMGCCGCGGTAA-3’]/[5’-GGACTACHVGGGTWTCTAAT-3’], with a fragment 

length of 292 bp.  Amplicon sequencing was performed on the Illumina HiSeq 2500 Sequencing 

System to produce paired end 250 bp reads (PE 250) at a targeted read depth of up to 100,000 PE 

reads per sample. Additionally, the SureSelectXT HS Reagent Kit for Illumina Paired-End 

Multiplexed Sequencing Library (Agilent Technologies) was used to prepare samples for target 

enriched resistome sequencing. A customized bait design targeting AMR genes, ‘MEGaRICH’ 

(84), was used to improve “on-target” sequencing and reduce the challenge of sequencing 
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microbial from a sample predominantly containing host DNA. Consequently, on the 

recommendation from Agilent Technologies we included a biological replicate of each sample to 

be processed with ½ diluted baits (N=32) and assess if this improved sequencing performance. 

Samples were transported to UC-Denver Genomics and Microarray Core Facility (Denver, CO) 

and sequenced using the NovaSeq 6000 Sequencing System (Illumina), targeting a read depth of 

100 million PE reads per sample and paired end 150bp reads (PE 150). 

 

Analysis of sequence quality 

 Summary statistics regarding the number of raw, trimmed, and non-host reads for each 

sample were compared using generalized linear models with the “glm” function and the R 

platform (126) to assess systematic bias across the following sequencing metadata: sequencing 

run, batch, and lane. For study design metadata, primary comparisons of interest were between 

CONV vs RWA and typical vs diluted baits. Differences in sequencing results between sample 

groups were tested with the Wilcoxon signed-rank test when comparing paired values from the 

same ground beef product (biological replicate) and the Wilcoxon rank-sum test was employed 

when comparing between treatment groups. 

 

Microbiome and Resistome characterization 

 To describe the profile of microbes present in ground beef products, reads from 16S 

rRNA amplicon sequencing were analyzed using the collection of tools contained in Quantitative 

Insights Into Microbial Ecology version 2 (172). Briefly, all reads are processed for sequence 

quality and denoising using DADA2 (180), taxonomic classification using a naive bayes 

classifier trained on the GreenGenes database (97), and removal of chloroplast and mitochondrial 
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DNA contaminants. Results were then exported into count tables and summarized using the R 

statistical software (126). 

 To identify the resistome in ground beef products, the targeted AMR metagenomic 

sequencing samples were processed using the AMRPlusPlus bioinformatic pipeline and the 

MEGARes resistance database (49). Further details on the pipeline can be found in the 

documentation website ( http://megares.meglab.org/amrplusplus). Briefly, read trimming and 

quality filtering is performed using Trimmomatic (122). Host contamination is identified using 

the Burrows-Wheeler-Aligner (BWA) software (93) with alignment to the Bos Taurus genome 

(123) and removal of those reads with SamTools (124). These non-host reads were then aligned 

to the MEGARes database with BWA. Additionally, two updates were added to AMRPlusPlus 

pipeline; one to deal with PCR duplication introduced with targeted AMR amplification and 

another to improve the classification of AMR genes requiring the presence of specific SNPs. 

Read de-duplication was performed with SamTools on the resulting .sam files from alignment to 

MEGARes.  

Only genes accessions with reads aligning to >80% of the reference nucleotide sequence 

were considered for further analysis, with the exception of reads aligned to genes that require the 

presence of specific single nucleotide polymorphisms to confer resistance. These reads are 

identified, extracted from our dataset, and re-classified separately using Resistance Gene 

Identifier (95) with the “strict” setting which incorporates detection models and CARD's curated 

similarity cut-offs to increase accuracy in identifying functional AMR genes (see full script: 

https://github.com/EnriqueDoster/MEG-amrplusplus-RGI-SNPconfirmation).  Additionally, in 

order to investigate the presence of AMR genetic determinants that have been identified as 

having specific importance to public health when they are identified in human pathogens, this 

http://megares.meglab.org/amrplusplus
https://github.com/EnriqueDoster/MEG-amrplusplus-RGI-SNPconfirmation
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subset of genes was identified a priori and data were searched to identify their presence: 

(bla(OXA), bla(SME), bla(IMI), bla(NDM), bla(GES), bla(KPC), bla(cphA), bla(TEM), 

bla(SHV), bla(CTX-M), bla(CMY), vga/vat, cfr). 

 

Count matrix processing 

 Differences in the microbiome and resistome of RWA and conventional ground beef were 

analyzed using the R statistical programming software. Cumulative sum scaling (CSS) (131) was 

used to normalize counts and account for differences in sequencing depth. The resistance data 

was then summarized to the class and mechanisms level to avoid bias at the “gene” level 

associated with irregular naming criteria for new resistance genes (132). Statistical analysis was 

accomplished using the R packages “metagenomeSeq” and “vegan” (130, 131). Sparsely 

represented resistance gene accessions which were identified in fewer than 5% of samples were 

removed from further analysis based on published recommendations (131). The taxonomic 

lineage was identified for each taxon in the microbiome and counts were aggregated to these 6 

Linnaean taxonomic levels: phylum, class, order, family, genus, and species. In total, there were 

6 count matrices for the microbiome, but to reduce the repetitive reporting of results at all levels 

and because results at lower taxonomic levels are not considered very reliable (133), statistical 

results for microbiome are presented at the phylum, class and order levels. In total, 8 unique 

normalized count matrices (i.e., 6 count matrices describing the microbiome and 2 count 

matrices characterizing the resistome) were analyzed and reported. 

 

Statistical analysis 
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 The richness and Shannon’s diversity was calculated for each sample using “vegan” and 

statistical comparisons were made using the “wilcox.test” function in R. Normalized counts were 

Hellinger-transformed (135) for ordination using the metaMDS function from “vegan”, which 

employs non-metric multidimensional scaling on Euclidian distances. Analysis of similarities 

(ANOSIM) (136) was used to test differences in the microbiome and resistome between 

treatment groups. Alternatively, to identify which specific features had significantly different 

numbers of alignments between treatment groups, metagenomeSeq’s “fitZig” function was used 

to fit a zero-inflated Gaussian model and compare log2-fold differences (131). Limma’s 

“makeContrast” function (137) were then used for pairwise comparisons and P-values were 

adjusted for multiple tests using the Benjamini-Hochberg procedure (138). A value of alpha=0.05 

was selected as the statistical significance cut-off value. To account for spurious statistically 

significant differences in low abundance features, only features with an average expression > 1 

were considered. 

RESULTS 

Sequencing results 

 Sequencing of the 32 samples processed with AMR target-enrichment produced > 1.3 

billion paired end reads (mean: 42,591,676, range: 8,544,874 – 67,058,362). Read quality 

filtering removed on average 3.7% of raw reads from each sample (range: 3.4% - 4.1%), but the 

majority of reads were removed from each sample after removal of bovine host contamination 

(mean: 99.43% of filtered reads per sample, range: 96.8% - 99.95%). With 16S rRNA amplicon 

sequencing, > 3.1 billion paired end reads were produced (mean: 194,408 reads per sample, 

range: 100,939 – 219,822). Filtering to improve overall read quality removed on average 7.3% of 

raw reads from each sample (range: 4.7% - 12.38%). There was a statistical difference in this 



118 
 

number of raw reads produced between label type (P-value < 0.05), but this was likely 

influenced by a decreased count of reads in samples from vacuum sealed packing type (P-value < 

0.05). On average, samples from chub wrap packaging had 51.3 million reads per sample 

compared to 36.9 million reads per sample in vacuum packaging (Supplemental Table 6.2). 

Alternatively, there was no statistical difference in the number of 16S amplicon sequencing reads 

between the treatment groups or packaging types (Supplemental Table 6.3). 

 

Resistome results 

  Following alignment of reads to the MEGARes AMR database, removal of duplicate 

reads, and re-classification of reads aligning to gene accessions requiring SNP confirmation with 

RGI, a total of 267,922 alignments to AMR gene accessions (‘hits’) were identified across all 

samples (mean: 8,372 per sample, range: 80 – 51,868). These reads were classified as hits to 565 

different gene accessions, which represented genes that confer resistance to 17 different drug 

classes through 32 distinct resistance mechanisms. 

 Overall, 87.5% of the classified resistome reads was comprised of hits to tetracycline 

resistance genetic determinants. Of these hits to genes that confer tetracycline resistance, a 

majority were classified as encoding tetracycline resistance ribosomal protection proteins and 

major facilitator superfamily (MFS) efflux pumps (60% and 39%, respectively). The remainder 

of the resistome sequences was comprised of hits to drug classes in low abundance: 5.3% were 

hits to multidrug resistance mechanisms (e.g., multidrug efflux pumps), macrolide-lincosamide-

streptogramin (3.4%), betalactam (1.8%), aminoglycoside (1.4%), and all other 11 drug classes 

each making up less than 1% of hits. This pattern of relative abundance for resistome 

composition was generally consistent across samples (Figure 6.1). Of the list of genes identified 
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a priori as being important to medicine and public health, bla(CTX-M), bla(CMY), vga/vat, 

bla(OXA), bla(SME), bla(IMI), bla(cphA), bla(TEM). Overall, these genes were sparsely 

represented and in total accounted for only 3,439 hits across all 32 samples with bla(TEM) and 

bla(CTX) genes making up more than half of those counts.  

There were no statistically significant differences in the resistome composition between 

biological replicates (Figure 6.2). Technical replicates were included in all subsequent 

comparisons between label type. Further, there was no statistically significant difference in the 

total number of AMR alignments, richness, or Shannon’s diversity with either the typical bait 

processing or half diluted. 

 ANOSIM testing suggests that the overall resistome composition does not differ between 

label type at the class level, however there was a statistically significant separation at the 

mechanism level (ANOSIM R = 0.13, P = 0.018) (Figure 6.3). This difference at the mechanism 

level appears to be largely influenced by which tetracycline resistance mechanism was dominant 

in either treatment group. Richness and Shannon’s diversity index comparisons were not 

significantly different between label type at either the class or mechanism levels (Figure 6.4). 

However, the ZIG model identified that out of 13 drug classes with an average expression > 1, 8 

were significantly different between samples with CONV and RWA package labels. The CONV 

ground beef samples had a significantly higher relative abundance of multi-drug resistance, 

betalactams, cationic antimicrobial peptides, bacitracin and elfamycin (P-value < 0.05), whereas 

alignments to trimethoprim and phenicol resistance was more abundant in RWA products (P-

value < 0.05). While the majority of sample’s resistome consisted of tetracycline resistance, the 

dominant resistance mechanism differs with a significantly higher abundance of Tetracycline 
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resistance major facilitator superfamily (MFS) efflux pump in CONV samples compared to 

RWA. 

 

Microbiome results 

 A total of 585,499 reads were classified taxonomically with an average of 20.15% of 

reads per sample.  In all 2,386 amplicon sequence variants were identified and together represent 

27 phyla, 75 classes, and 124 orders. Two phyla, Firmicutes and Proteobacteria, predominated in 

the microbiome in this study together accounted for > 95% of all normalized counts (65% and 

30.2%, respectively) (Figure 6.5). These phyla also consisted of a single taxonomic class making 

up the majority of counts. The Bacilli class was 97.4% of all Firmicutes alignments and the 

Gammaproteobacteria class was 85.6% of all Proteobacteria across all samples. Lactobacillales 

(62.8%, Vibrionales (21.7%), Clostridiales (1.7%), Neisseriales (1.7%), Enterobacteriales (1.7%) 

and Pseudomonadales (1.2%) were the most abundant taxa at the order level, with the remaining 

taxa making up less than 1% of classified reads. 

 Overall, there were no significant differences observed between CONV and RWA 

microbiomes at the phylum, class, or order level (ANOSIM P-value < 0.05) (Figure 6.6).  

Similarly, there were no significant differences richness or Shannon’s diversity index (Figure 

6.7). Indeed, out of 27 phyla, only 3 were significantly different in relative abundance, with 

CONV samples containing increased proportions of Proteobacteria and decreased 

Planctomycetes and Chloroflexi compared to RWA samples (P-value < 0.05). Correspondingly, 

out of 11 classes differentially abundant between treatment groups, Gammaproteobacteria and 

Clostridia were found in higher relative abundances in CONV samples with the remaining 9 

classes found in lower abundance in RWA samples. 
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 While packaging type did not have a significant effect on microbiome composition, 

sample resistomes significantly separated by source store of purchase (ANOSIM P-value < 0.05) 

(Figure 6.8). Further, both richness and Shannon’s diversity indices were significantly different 

between CONV and RWA samples at the phylum and class level.   

DISCUSSION 

 Our results suggest that the overall resistome and microbiome in retail ground beef 

products doesn’t differ significantly between ground beef products with CONV and RWA 

package labels. Consistent with previously reported patterns of AMR in beef production system, 

the resistome largely consisted of alignments to gene accessions conferring resistance to the drug 

class, tetracycline (58, 170). Interestingly, while there was no significant separation between 

resistomes at the AMR mechanism level, CONV samples had a significantly higher relative 

abundance of the mechanism, tetracycline resistance major facilitator superfamily (MFS) efflux 

pump. 

 Though not the goal of this study, our results suggest that the handling of ground beef 

products by the retail store could potentially influence the microbiome of retail ground beef 

products. Of note, however, we did not identify significant differences in the resistome between 

samples from the 6 different stores. Future studies investigating the microbiome in retail ground 

beef products would benefit from incorporating measures of different product handling protocols 

by each retail store (e.g. product temperature, time on display, shipping lot number, etc.) to 

identify the potential drivers of microbiome changes. 

 In this study we aimed to provide further information about challenges in improving 

metagenomic sequencing of the bacterial community on ground beef. We provide the first 

characterization of the microbiome and resistome of individual retail ground beef products (188) 
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and describe minimal intra-sample variation with resistome sequencing. Based on 

recommendations from Agilent, we sequenced technical replicates of each sample with half-

diluted baits with the goal of reducing host DNA sequencing and improving overall on-target 

AMR sequencing. Overall, our results suggest that there are no statistically significant 

differences between technical replicates in sequencing performance or resistome composition. 

 Metagenomic sequencing is a promising tool for characterizing the microbiome and 

resistome in retail ground beef products and has potential to be used for tracing individual 

sequence variants through the food chain. Nonetheless, innovative methods are needed to reduce 

sequencing cost and improve sequencing depth to get a more detailed perspective of the 

resistome on ground beef. Furthermore, results from metagenomic sequencing must be carefully 

considered in parallel with traditional methods to better characterize the risk of AMR in retail 

products.  
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Figure 6.1. Resistome composition for all ground beef samples in the study (N=32) at the drug 
class level. Individual ground beef samples are on the x-axis and biological replicates are in pairs 
starting from the left.  
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Figure 6.2. Ordination comparing resistome composition at the AMR drug class level, using non-
metric multidimensional scaling (NMDS), between biological replicates from the same ground 
beef product are grouped by color.   
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Figure 6.3. Ordination comparing resistome composition at the AMR drug class level, using non-
metric multidimensional scaling (NMDS), between labeling types on ground beef products; 
conventional (CONV) vs raised without antimicrobials (RWA).   
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Figure 6.4. Boxplot of resistome richness and Shannon’s diversity at the AMR class and 
mechanism levels of the two study groups, CONV vs RWA. The horizontal line is the median 
value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 
IQR of the lower and upper quartiles, and individual points show outlier values.  
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Figure 6.5. Microbiome composition for all ground beef samples in the study (N=32) at the drug 
class level by labeling type. Individual ground beef samples are on the x-axis and biological 
replicates are in pairs starting from the left.   
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Figure 6.6. Ordination comparing microbiome composition at the phylum taxonomic level, using 
non-metric multidimensional scaling (NMDS), between labeling types on ground beef products; 
conventional (CONV) vs raised without antimicrobials (RWA).  
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Figure 6.7. Boxplot of resistome richness and Shannon’s diversity at the taxonomic phylum, 
class and order levels of the two study groups, CONV vs RWA. The horizontal line is the median 
value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 
IQR of the lower and upper quartiles, and individual points show outlier values. 
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Figure 6.8. Ordination comparing microbiome composition at the phylum taxonomic level, using 
non-metric multidimensional scaling (NMDS), between the source retail store for each sample. 
  



131 
 

CONCLUSIONS 

   

 

 

The overarching goal of this dissertation was to employ high-throughput sequencing and 

metagenomics to contribute toward a “real-world” understanding of how antimicrobial AMD use 

practices in livestock production affects the microbiome and AMR epidemiology by 

characterizing the resistome. The experiments presented in the preceding dissertation function as 

a “first look” into different aspects of this question and will hopefully contribute in the work of 

future research teams.  

Generalizing across the results from projects in this dissertation, we presented evidence 

that the influence of AMD use can be assessed using metagenomics but also suggest that this 

effect is small in comparison to other factors in the environment. We report that metaphylactic 

treatment of study cattle did not appear to cause significant shifts in the overall microbiome and 

resistome by day 11 into the feeding period compared to cattle that did not receive this treatment. 

Instead, we find that the greatest changes in the microbiome and resistome occur over time in 

both groups of cattle. Longitudinal studies, preferably starting with animals before shipment, are 

required to capture the major shifts occurring during transition to the feedlot. We use the same 

samples from chapter 2 and investigate the utility of metagenomic sequencing for species-level 

identification of pathogens, in this case Salmonella enterica, by comparing results to aerobic 

culture, PCR, and lateral flow immunoassay. We reported a lack of concordance between 

methods and updated our publicly-available bioinformatic pipeline to include steps that improve 

the relative specificity of species level identification compared to aerobic culture and PCR. Next, 

we expanded on characterizing how AMD use in beef feedlots effects the microbiome and 

resistome in beef feedlot cattle and pen floor samples, respectively. We observe similar patterns 
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with the resistome largely dominated by alignments to genes that confer resistance to the 

tetracycline drug class and the majority of changes in the lower abundance features associated 

with time in the feedlot. Finally, we move to the end of the beef production line and explore the 

microbiome and resistome differences in ground beef with different product labeling types (ie. 

Conventional vs raised without antimicrobials). There were no major differences in composition 

between label types or biological replicates from the same sample, and although our study design 

was only meant to compare between labeling types, our results suggest that the product handling 

practices at the retail store could have a significant influence on microbiome composition. 

Overall, our results from constrained analysis suggest we are only explaining a small percentage 

of the total variance in the microbiome and resistome. There could be many reasons for this, but 

it is striking that in the 308 samples sequenced metagenomically across the 5 projects in this 

dissertation, none of the samples reads that could be > 10% classified using current bioinformatic 

methods. This should sound the alarm that the improvement of reference databases and 

development of bioinformatic methods, such as probabilistic classification of metagenomic 

reads, will be crucial for improving the reliability of metagenomic analyses. 

We are undergoing a paradigm shift in the field of microbiology broader perspective of 

microbial ecology is added through metagenomics. In an increasingly complex and global 

system of food production, agriculture must strive to be at the forefront of adopting new 

technologies to continuously improve food security and safety for a growing population. 

However, implementation of new technologies like HTS, metagenomics, and the results garnered 

from their use must be cautiously interpreted. Importantly, data sharing must be combined with 

open-source software for bioinformatics and analytic pipelines that wrap software into a user-
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friendly package. This is necessary to facilitate collaboration between research teams with 

distinct fields of study that all benefit from adding a metagenomic perspective to their research. 
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APPENDICES 
 
 
 

Supplemental Table 2.1. Metadata information for sequencing results for all 60 samples.  

Sample ID Time Treatment 

Number 

of paired-

reads 

Number 

of paired-

reads  

 Number of paired 

non-host reads   

 Number of 

paired non-

host reads   

 AMR 

abundance  

   

Pre-

processing 

After 

trimming  

 After removing 

bovine sequences  

 classified 

with kraken   

normalized 

with Li's 

equation 

11_GGCTAC_L001 Day1 Treated 72,985,725 69,992,146 51,643,315 606,695 0.216 

37_CTTGTA_L001 Day1 Treated 45,656,078 43,004,261 37,718,769 2,794,500 0.29 

51_AGTCAA_L001 Day1 Treated 74,700,329 71,482,218 59,626,525 3,173,217 0.224 

62_AGTTCC_L002 Day1 Treated 53,294,398 50,859,060 43,158,901 5,289,938 0.304 

83_ATGTCA_L002 Day1 Treated 55,614,995 52,232,070 39,290,183 2,530,506 0.174 

84_CCGTCC_L003 Day1 Treated 51,280,133 48,350,438 38,255,539 4,633,854 0.264 

92_GTCCGC_L003 Day1 Treated 54,910,092 51,993,321 43,325,943 3,689,555 0.267 

93_GTGAAA_L003 Day1 Treated 58,033,031 55,580,928 40,559,750 3,752,319 0.141 

102_GTGGCC_L004 Day1 Treated 55,591,833 53,370,571 44,638,067 2,553,827 0.244 

103_ATTCCT_L004 Day1 Treated 52,596,429 51,252,192 43,377,011 2,553,209 0.298 

130_ATCACG_L005 Day1 Treated 55,555,652 53,615,411 41,097,185 3,494,778 0.204 
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155_CGATGT_L005 Day1 Treated 76,629,319 73,138,923 58,400,529 1,944,852 0.316 

156_ACAGTG_L005 Day1 Treated 28,066,461 26,719,570 21,964,644 1,839,227 0.262 

158_GCCAAT_L006 Day1 Treated 53,539,553 50,648,293 45,309,724 2,191,052 0.316 

164_TTAGGC_L006 Day1 Treated 41,062,771 39,545,103 31,925,154 3,159,015 0.406 

208_CAGATC_L007 Day1 Untreated 26,209,455 24,443,697 20,612,673 3,335,455 0.182 

216_ACTTGA_L007 Day1 Untreated 70,016,669 67,415,572 56,255,245 3,498,544 0.26 

220_TGACCA_L007 Day1 Untreated 21,907,828 20,695,675 17,656,228 4,102,371 0.216 

227_ATGTCA_L008 Day1 Untreated 55,312,466 52,703,369 45,163,638 2,771,254 0.318 

228_CCGTCC_L008 Day1 Untreated 34,080,311 32,659,118 28,514,109 2,624,568 0.176 

261_GTCCGC_L001 Day1 Untreated 34,338,217 32,563,714 26,198,981 4,182,001 0.203 

281_GTGAAA_L001 Day1 Untreated 36,176,709 34,445,214 29,577,392 2,551,960 0.205 

285_GTGGCC_L001 Day1 Untreated 63,607,565 61,119,500 46,706,718 1,421,774 0.169 

286_GTTTCG_L002 Day1 Untreated 40,564,315 38,467,390 34,000,756 2,913,129 0.228 

287_CGTACG_L002 Day1 Untreated 46,786,199 44,139,338 36,280,650 1,463,575 0.225 
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289_GAGTGG_L003 Day1 Untreated 51,425,202 47,202,248 38,356,312 2,577,947 0.195 

298_ACTGAT_L003 Day1 Untreated 54,748,373 51,867,613 44,958,518 2,831,475 0.173 

349_TGACCA_L003 Day1 Untreated 30,047,796 28,034,966 24,351,778 1,219,836 0.376 

372_CAGATC_L004 Day1 Untreated 23,736,703 22,683,717 16,895,206 2,726,636 0.138 

376_ACTTGA_L004 Day1 Untreated 58,771,628 56,205,618 42,557,433 2,714,509 0.177 

11p2_GATCAG_L001 Day 11 Treated 29,669,806 28,389,347 23,895,589 3,237,473 0.449 

37p2_TAGCTT_L001 Day 11 Treated 52,614,262 50,404,105 41,138,842 3,085,320 0.506 

51p2_GGCTAC_L002 Day 11 Treated 46,571,417 44,048,799 38,220,147 1,647,468 0.524 

62p2_CTTGTA_L002 Day 11 Treated 47,141,374 44,778,876 37,172,830 3,119,388 0.453 

83p2_AGTCAA_L002 Day 11 Treated 65,548,349 62,394,918 39,853,404 2,370,012 0.305 

84p2_AGTTCC_L003 Day 11 Treated 34,443,438 32,743,305 26,206,629 3,744,889 0.623 

92p2_ATCACG_L003 Day 11 Treated 66,782,066 64,222,092 51,185,393 1,158,742 0.266 
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93p2_TTAGGC_L004 Day 11 Treated 48,348,096 47,031,397 37,799,483 2,716,343 0.408 

102p2_TGACCA_L004 Day 11 Treated 30,670,200 29,448,145 23,908,771 2,369,338 0.146 

103p2_ACTGAT_L004 Day 11 Treated 38,074,219 37,083,085 31,243,539 2,219,401 0.328 

130p2_ATTCCT_L005 Day 11 Treated 61,997,511 60,214,244 48,740,862 4,057,605 0.288 

155p2_GTGGCC_L005 Day 11 Treated 29,739,401 28,764,726 18,320,679 2,928,288 0.109 

156p2_GTTTCG_L006 Day 11 Treated 49,975,590 48,532,827 35,376,729 2,290,594 0.352 

158p2_CGTACG_L006 Day 11 Treated 80,355,147 76,323,857 68,065,491 3,965,980 0.398 

164p2_GAGTGG_L006 Day 11 Treated 26,823,553 25,322,716 22,311,700 3,096,126 0.191 

208p2_TAGCTT_L007 Day 11 Untreated 61,286,424 59,749,182 48,543,446 3,268,122 0.377 

216p2_GGCTAC_L007 Day 11 Untreated 42,686,592 41,214,734 36,314,805 1,421,234 0.488 

220p2_CTTGTA_L008 Day 11 Untreated 13,489,760 12,754,079 9,468,742 5,836,885 0.179 

227p2_AGTCAA_L008 Day 11 Untreated 54,923,602 53,563,269 41,505,387 3,322,451 0.281 
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228p2_AGTTCC_L008 Day 11 Untreated 55,020,213 53,474,750 40,519,986 3,235,590 0.288 

261p2_ATGTCA_L001 Day 11 Untreated 54,771,620 52,546,916 39,561,059 3,360,476 0.189 

281p2_CCGTCC_L001 Day 11 Untreated 47,987,247 46,045,972 37,891,591 2,347,754 0.317 

285p2_GTGAAA_L002 Day 11 Untreated 71,610,406 68,824,576 54,010,235 5,102,863 0.328 

286p2_GTCCGC_L002 Day 11 Untreated 45,363,197 43,373,764 32,567,904 2,872,877 0.233 

287p2_ATCACG_L002 Day 11 Untreated 56,833,758 54,532,170 40,870,571 1,727,786 0.479 

289p2_CGATGT_L003 Day 11 Untreated 70,450,534 66,767,595 43,834,559 1,646,611 0.426 

298p2_TTAGGC_L003 Day 11 Untreated 50,745,968 48,555,641 35,772,337 3,786,022 0.336 

349p2_CGATGT_L004 Day 11 Untreated 58,939,701 56,391,886 44,845,183 3,440,191 0.207 

372p2_ACAGTG_L004 Day 11 Untreated 35,654,430 33,845,122 30,347,544 1,676,403 0.484 

376p2_GCCAAT_L004 Day 11 Untreated 40,178,825 38,453,735 33,873,573 3,109,820 0.476 
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Supplemental Figure 2.1. Heatmap showing the number of samples in each group (n=15) along 
the columns with alignments to AMR mechanisms in the rows. 
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Supplemental Table 3.1. Culture, PCR, and sequencing results for all 60 samples.  

Sample name Time Treatment PCR 
Culture 

Serogroup 

[DNA] 

ng/ul 
260:280 

Yield 

(Mbases) 

Nonhost 

paired reads 

11_GGCTAC_L001 Arrival Treated 0 0 29.5 1.54 18392 51643315 

37_CTTGTA_L001 Arrival Treated 0 0 49.8 1.49 11505 37718769 

51_AGTCAA_L001 Arrival Treated 0 0 30.8 1.69 18824 59626525 

62_AGTTCC_L002 Arrival Treated 0 0 30.4 1.59 13430 43158901 

83_ATGTCA_L002 Arrival Treated 0 0 28.3 1.62 14015 39290183 

84_CCGTCC_L003 Arrival Treated 0 0 22.3 1.57 12923 38255539 

92_GTCCGC_L003 Arrival Treated 0 0 22.9 1.77 13837 43325943 

93_GTGAAA_L003 Arrival Treated 0 0 34.7 1.5 14624 40559750 

102_GTGGCC_L004 Arrival Treated 0 0 39.2 1.52 14009 44638067 

103_ATTCCT_L004 Arrival Treated 0 0 51.7 1.66 13254 43377011 

130_ATCACG_L005 Arrival Treated 0 0 21.7 1.51 14000 41097185 

155_CGATGT_L005 Arrival Treated 1 K 26.7 1.63 19311 58400529 

156_ACAGTG_L005 Arrival Treated 0 0 28.6 1.49 7073 21964644 

158_GCCAAT_L006 Arrival Treated 0 0 87.7 1.51 13492 45309724 

164_TTAGGC_L006 Arrival Treated 1 C1 25 1.58 10348 31925154 

208_CAGATC_L007 Arrival Untreated 0 0 57.6 1.47 6605 20612673 

216_ACTTGA_L007 Arrival Untreated 0 0 21.4 1.56 17644 56255245 

220_TGACCA_L007 Arrival Untreated 0 0 58.6 1.74 5521 17656228 

227_ATGTCA_L008 Arrival Untreated 0 0 21 1.47 13939 45163638 
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228_CCGTCC_L008 Arrival Untreated 0 0 30.3 1.42 8588 28514109 

261_GTCCGC_L001 Arrival Untreated 0 0 25.9 1.49 8653 26198981 

281_GTGAAA_L001 Arrival Untreated 0 0 72.7 1.61 9117 29577392 

285_GTGGCC_L001 Arrival Untreated 0 0 25 1.51 16029 46706718 

286_GTTTCG_L002 Arrival Untreated 0 0 95.3 1.36 10222 34000756 

287_CGTACG_L002 Arrival Untreated 0 0 57.4 1.53 11790 36280650 

289_GAGTGG_L003 Arrival Untreated 0 0 70.4 1.51 12959 38356312 

298_ACTGAT_L003 Arrival Untreated 0 0 50.1 1.41 13797 44958518 

349_TGACCA_L003 Arrival Untreated 0 0 53.5 1.59 7572 24351778 

372_CAGATC_L004 Arrival Untreated 0 0 22.5 1.56 5982 16895206 

376_ACTTGA_L004 Arrival Untreated 0 0 26.5 1.5 14810 42557433 

11p2_GATCAG_L001 Day11 Treated 0 0 91.9 1.58 7477 23895589 

37p2_TAGCTT_L001 Day11 Treated 0 0 44.7 1.7 13259 41138842 

51p2_GGCTAC_L002 Day11 Treated 0 0 69.9 1.63 11736 38220147 

62p2_CTTGTA_L002 Day11 Treated 0 0 23.9 1.82 11880 37172830 

83p2_AGTCAA_L002 Day11 Treated 0 0 32.8 1.67 16518 39853404 

84p2_AGTTCC_L003 Day11 Treated 0 0 27.6 1.81 8680 26206629 

92p2_ATCACG_L003 Day11 Treated 0 0 21.4 1.73 16829 51185393 

93p2_TTAGGC_L004 Day11 Treated 0 0 39.8 1.65 12184 37799483 

102p2_TGACCA_L004 Day11 Treated 0 0 55.8 1.69 7729 23908771 

103p2_ACTGAT_L004 Day11 Treated 0 0 65.8 1.73 9595 31243539 

130p2_ATTCCT_L005 Day11 Treated 0 0 64.5 1.76 15623 48740862 
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155p2_GTGGCC_L005 Day11 Treated 0 0 21.5 1.83 7494 18320679 

156p2_GTTTCG_L006 Day11 Treated 1 C1 23.7 1.93 12594 35376729 

158p2_CGTACG_L006 Day11 Treated 0 0 57.4 1.5 20249 68065491 

164p2_GAGTGG_L006 Day11 Treated 0 0 84.8 1.63 6760 22311700 

208p2_TAGCTT_L007 Day11 Untreated 0 0 62.7 1.65 15444 48543446 

216p2_GGCTAC_L007 Day11 Untreated 0 0 57.9 1.69 10757 36314805 

220p2_CTTGTA_L008 Day11 Untreated 0 0 21.1 1.84 3399 9468742 

227p2_AGTCAA_L008 Day11 Untreated 0 0 69.4 1.69 13841 41505387 

228p2_AGTTCC_L008 Day11 Untreated 0 0 48.7 1.67 13865 40519986 

261p2_ATGTCA_L001 Day11 Untreated 0 0 54.7 1.62 13802 39561059 

281p2_CCGTCC_L001 Day11 Untreated 0 0 43.1 1.73 12093 37891591 

285p2_GTGAAA_L002 Day11 Untreated 0 0 25.8 1.63 18046 54010235 

286p2_GTCCGC_L002 Day11 Untreated 0 0 28.4 1.69 11432 32567904 

287p2_ATCACG_L002 Day11 Untreated 0 0 25.5 1.87 14322 40870571 

289p2_CGATGT_L003 Day11 Untreated 0 0 54 1.72 17754 43834559 

298p2_TTAGGC_L003 Day11 Untreated 0 0 19.1 1.52 12788 35772337 

349p2_CGATGT_L004 Day11 Untreated 0 0 57.8 1.78 14853 44845183 

372p2_ACAGTG_L004 Day11 Untreated 0 0 21.9 1.69 8985 30347544 

376p2_GCCAAT_L004 Day11 Untreated 0 0 31.6 1.7 10125 33873573 
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Supplemental Table 3.2. Metagenomic results for Salmonella enterica identification using 4 different kraken databases across 60 
samples.  

Species name Sample ID Raw_mapped_reads Type 

Salmonella enterica 102_GTGGCC_L004 2766 Salmonella_custom_v2 

Salmonella enterica 102_GTGGCC_L004 3231 Salmonella_standard_v2 

Salmonella enterica 102p2_TGACCA_L004 1329 Salmonella_custom_v2 

Salmonella enterica 102p2_TGACCA_L004 1440 Salmonella_standard_v2 

Salmonella enterica 103_ATTCCT_L004 5 Salmonella_custom_filter_v2 

Salmonella enterica 103_ATTCCT_L004 5 
Salmonella_custom_filter_v2_
misclassified Salmonella 

Salmonella enterica 103_ATTCCT_L004 4783 Salmonella_custom_v2 

Salmonella enterica 103_ATTCCT_L004 5 Salmonella_standard_filter_v2 

Salmonella enterica 103_ATTCCT_L004 6029 Salmonella_standard_v2 

Salmonella enterica 103p2_ACTGAT_L004 1827 Salmonella_custom_v2 

Salmonella enterica 103p2_ACTGAT_L004 2084 Salmonella_standard_v2 

Salmonella enterica 11_GGCTAC_L001 2414 Salmonella_custom_v2 

Salmonella enterica 11_GGCTAC_L001 2818 Salmonella_standard_v2 

Salmonella enterica 11p2_GATCAG_L001 1060 Salmonella_custom_v2 
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Salmonella enterica 11p2_GATCAG_L001 1325 Salmonella_standard_v2 

Salmonella enterica 130_ATCACG_L005 2071 Salmonella_custom_v2 

Salmonella enterica 130_ATCACG_L005 2521 Salmonella_standard_v2 

Salmonella enterica 130p2_ATTCCT_L005 2144 Salmonella_custom_v2 

Salmonella enterica 130p2_ATTCCT_L005 2590 Salmonella_standard_v2 

Salmonella enterica 155_CGATGT_L005 3734 Salmonella_custom_v2 

Salmonella enterica 155_CGATGT_L005 4471 Salmonella_standard_v2 

Salmonella enterica 155p2_GTGGCC_L005 856 Salmonella_custom_v2 

Salmonella enterica 155p2_GTGGCC_L005 1034 Salmonella_standard_v2 

Salmonella enterica 156_ACAGTG_L005 1 Salmonella_custom_filter_v2 

Salmonella enterica 156_ACAGTG_L005 1 
Salmonella_custom_filter_v2_
misclassified Salmonella 

Salmonella enterica 156_ACAGTG_L005 1341 Salmonella_custom_v2 

Salmonella enterica 156_ACAGTG_L005 1 Salmonella_standard_filter_v2 

Salmonella enterica 156_ACAGTG_L005 1536 Salmonella_standard_v2 

Salmonella enterica 156p2_GTTTCG_L006 1625 Salmonella_custom_v2 

Salmonella enterica 156p2_GTTTCG_L006 2129 Salmonella_standard_v2 
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Salmonella enterica 158_GCCAAT_L006 2 Salmonella_custom_filter_v2 

Salmonella enterica 158_GCCAAT_L006 2 
Salmonella_custom_filter_v2_
misclassified Salmonella 

Salmonella enterica 158_GCCAAT_L006 2499 Salmonella_custom_v2 

Salmonella enterica 158_GCCAAT_L006 3 Salmonella_standard_filter_v2 

Salmonella enterica 158_GCCAAT_L006 2940 Salmonella_standard_v2 

Salmonella enterica 158p2_CGTACG_L006 3206 Salmonella_custom_v2 

Salmonella enterica 158p2_CGTACG_L006 3654 Salmonella_standard_v2 

Salmonella enterica 164_TTAGGC_L006 3 Salmonella_custom_filter_v2 

Salmonella enterica 164_TTAGGC_L006 3 
Salmonella_custom_filter_v2_
misclassified Salmonella 

Salmonella enterica 164_TTAGGC_L006 1829 Salmonella_custom_v2 

Salmonella enterica 164_TTAGGC_L006 3 Salmonella_standard_filter_v2 

Salmonella enterica 164_TTAGGC_L006 2224 Salmonella_standard_v2 

Salmonella enterica 164p2_GAGTGG_L006 1084 Salmonella_custom_v2 

Salmonella enterica 164p2_GAGTGG_L006 1234 Salmonella_standard_v2 

Salmonella enterica 208_CAGATC_L007 1096 Salmonella_custom_v2 

Salmonella enterica 208_CAGATC_L007 1261 Salmonella_standard_v2 
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Salmonella enterica 208p2_TAGCTT_L007 2244 Salmonella_custom_v2 

Salmonella enterica 208p2_TAGCTT_L007 2787 Salmonella_standard_v2 

Salmonella enterica 216_ACTTGA_L007 3082 Salmonella_custom_v2 

Salmonella enterica 216_ACTTGA_L007 3534 Salmonella_standard_v2 

Salmonella enterica 216p2_GGCTAC_L007 1726 Salmonella_custom_v2 

Salmonella enterica 216p2_GGCTAC_L007 2049 Salmonella_standard_v2 

Salmonella enterica 220_TGACCA_L007 960 Salmonella_custom_v2 

Salmonella enterica 220_TGACCA_L007 1118 Salmonella_standard_v2 

Salmonella enterica 220p2_CTTGTA_L008 392 Salmonella_custom_v2 

Salmonella enterica 220p2_CTTGTA_L008 424 Salmonella_standard_v2 

Salmonella enterica 227_ATGTCA_L008 12 Salmonella_custom_filter_v2 

Salmonella enterica 227_ATGTCA_L008 12 
Salmonella_custom_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 227_ATGTCA_L008 2797 Salmonella_custom_v2 

Salmonella enterica 227_ATGTCA_L008 12 Salmonella_standard_filter_v2 

Salmonella enterica 227_ATGTCA_L008 12 
Salmonella_standard_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 227_ATGTCA_L008 3266 Salmonella_standard_v2 
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Salmonella enterica 227p2_AGTCAA_L008 2441 Salmonella_custom_v2 

Salmonella enterica 227p2_AGTCAA_L008 2703 Salmonella_standard_v2 

Salmonella enterica 228_CCGTCC_L008 1521 Salmonella_custom_v2 

Salmonella enterica 228_CCGTCC_L008 1 Salmonella_standard_filter_v2 

Salmonella enterica 228_CCGTCC_L008 1 
Salmonella_standard_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 228_CCGTCC_L008 1785 Salmonella_standard_v2 

Salmonella enterica 228p2_AGTTCC_L008 2214 Salmonella_custom_v2 

Salmonella enterica 228p2_AGTTCC_L008 1 Salmonella_standard_filter_v2 

Salmonella enterica 228p2_AGTTCC_L008 1 
Salmonella_standard_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 228p2_AGTTCC_L008 2556 Salmonella_standard_v2 

Salmonella enterica 261_GTCCGC_L001 1409 Salmonella_custom_v2 

Salmonella enterica 261_GTCCGC_L001 3 Salmonella_standard_filter_v2 

Salmonella enterica 261_GTCCGC_L001 1687 Salmonella_standard_v2 

Salmonella enterica 261p2_ATGTCA_L001 2241 Salmonella_custom_v2 

Salmonella enterica 261p2_ATGTCA_L001 2645 Salmonella_standard_v2 

Salmonella enterica 281_GTGAAA_L001 1883 Salmonella_custom_v2 
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Salmonella enterica 281_GTGAAA_L001 2210 Salmonella_standard_v2 

Salmonella enterica 281p2_CCGTCC_L001 2016 Salmonella_custom_v2 

Salmonella enterica 281p2_CCGTCC_L001 2267 Salmonella_standard_v2 

Salmonella enterica 285_GTGGCC_L001 2359 Salmonella_custom_v2 

Salmonella enterica 285_GTGGCC_L001 2786 Salmonella_standard_v2 

Salmonella enterica 285p2_GTGAAA_L002 2515 Salmonella_custom_v2 

Salmonella enterica 285p2_GTGAAA_L002 2914 Salmonella_standard_v2 

Salmonella enterica 286_GTTTCG_L002 1792 Salmonella_custom_v2 

Salmonella enterica 286_GTTTCG_L002 2094 Salmonella_standard_v2 

Salmonella enterica 286p2_GTCCGC_L002 1553 Salmonella_custom_v2 

Salmonella enterica 286p2_GTCCGC_L002 1806 Salmonella_standard_v2 

Salmonella enterica 287_CGTACG_L002 1953 Salmonella_custom_v2 

Salmonella enterica 287_CGTACG_L002 2452 Salmonella_standard_v2 

Salmonella enterica 287p2_ATCACG_L002 2120 Salmonella_custom_v2 

Salmonella enterica 287p2_ATCACG_L002 2333 Salmonella_standard_v2 

Salmonella enterica 289_GAGTGG_L003 2199 Salmonella_custom_v2 
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Salmonella enterica 289_GAGTGG_L003 2546 Salmonella_standard_v2 

Salmonella enterica 289p2_CGATGT_L003 2061 Salmonella_custom_v2 

Salmonella enterica 289p2_CGATGT_L003 2447 Salmonella_standard_v2 

Salmonella enterica 298_ACTGAT_L003 2491 Salmonella_custom_v2 

Salmonella enterica 298_ACTGAT_L003 2 Salmonella_standard_filter_v2 

Salmonella enterica 298_ACTGAT_L003 3007 Salmonella_standard_v2 

Salmonella enterica 298p2_TTAGGC_L003 1 Salmonella_custom_filter_v2 

Salmonella enterica 298p2_TTAGGC_L003 1 
Salmonella_custom_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 298p2_TTAGGC_L003 1 
Salmonella_custom_filter_v2_
misclassified Salmonella 

Salmonella enterica 298p2_TTAGGC_L003 1764 Salmonella_custom_v2 

Salmonella enterica 298p2_TTAGGC_L003 1 Salmonella_standard_filter_v2 

Salmonella enterica 298p2_TTAGGC_L003 1 
Salmonella_standard_filter_v2_
Blast confirmed Salmonella 

Salmonella enterica 298p2_TTAGGC_L003 2205 Salmonella_standard_v2 

Salmonella enterica 349_TGACCA_L003 1449 Salmonella_custom_v2 

Salmonella enterica 349_TGACCA_L003 1714 Salmonella_standard_v2 

Salmonella enterica 349p2_CGATGT_L004 1948 Salmonella_custom_v2 



178 
 

Salmonella enterica 349p2_CGATGT_L004 2416 Salmonella_standard_v2 

Salmonella enterica 37_CTTGTA_L001 1997 Salmonella_custom_v2 

Salmonella enterica 37_CTTGTA_L001 1 Salmonella_standard_filter_v2 

Salmonella enterica 37_CTTGTA_L001 2449 Salmonella_standard_v2 

Salmonella enterica 372_CAGATC_L004 908 Salmonella_custom_v2 

Salmonella enterica 372_CAGATC_L004 1072 Salmonella_standard_v2 

Salmonella enterica 372p2_ACAGTG_L004 1682 Salmonella_custom_v2 

Salmonella enterica 372p2_ACAGTG_L004 1989 Salmonella_standard_v2 

Salmonella enterica 376_ACTTGA_L004 2179 Salmonella_custom_v2 

Salmonella enterica 376_ACTTGA_L004 2509 Salmonella_standard_v2 

Salmonella enterica 376p2_GCCAAT_L004 1916 Salmonella_custom_v2 

Salmonella enterica 376p2_GCCAAT_L004 2238 Salmonella_standard_v2 

Salmonella enterica 37p2_TAGCTT_L001 1755 Salmonella_custom_v2 

Salmonella enterica 37p2_TAGCTT_L001 2242 Salmonella_standard_v2 

Salmonella enterica 51_AGTCAA_L001 2965 Salmonella_custom_v2 

Salmonella enterica 51_AGTCAA_L001 3465 Salmonella_standard_v2 
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Salmonella enterica 51p2_GGCTAC_L002 1712 Salmonella_custom_v2 

Salmonella enterica 51p2_GGCTAC_L002 2193 Salmonella_standard_v2 

Salmonella enterica 62_AGTTCC_L002 2405 Salmonella_custom_v2 

Salmonella enterica 62_AGTTCC_L002 2869 Salmonella_standard_v2 

Salmonella enterica 62p2_CTTGTA_L002 2107 Salmonella_custom_v2 

Salmonella enterica 62p2_CTTGTA_L002 2301 Salmonella_standard_v2 

Salmonella enterica 83_ATGTCA_L002 1946 Salmonella_custom_v2 

Salmonella enterica 83_ATGTCA_L002 2304 Salmonella_standard_v2 

Salmonella enterica 83p2_AGTCAA_L002 1981 Salmonella_custom_v2 

Salmonella enterica 83p2_AGTCAA_L002 2224 Salmonella_standard_v2 

Salmonella enterica 84_CCGTCC_L003 1971 Salmonella_custom_v2 

Salmonella enterica 84_CCGTCC_L003 2227 Salmonella_standard_v2 

Salmonella enterica 84p2_AGTTCC_L003 1346 Salmonella_custom_v2 

Salmonella enterica 84p2_AGTTCC_L003 1558 Salmonella_standard_v2 

Salmonella enterica 92_GTCCGC_L003 2289 Salmonella_custom_v2 

Salmonella enterica 92_GTCCGC_L003 2610 Salmonella_standard_v2 



180 
 

Salmonella enterica 92p2_ATCACG_L003 2641 Salmonella_custom_v2 

Salmonella enterica 92p2_ATCACG_L003 2947 Salmonella_standard_v2 

Salmonella enterica 93_GTGAAA_L003 1986 Salmonella_custom_v2 

Salmonella enterica 93_GTGAAA_L003 2338 Salmonella_standard_v2 

Salmonella enterica 93p2_TTAGGC_L004 1674 Salmonella_custom_v2 

Salmonella enterica 93p2_TTAGGC_L004 1930 Salmonella_standard_v2 

 
  



181 
 

Supplemental Table 4.1. Table of all a-priori metadata variables by type, used to represent AMD exposure for each sample. All 
metadata variables were included in the starting model for redundancy analysis and step-wise model selection was used to identify 
significantly associated variables with the resistome or microbiome.  
 

Categorical 
Continuous: 

ADD 

Continuous: in-feed 

ADD 

Continuous: 

parenteral ADD 
Continuous: Time 

Sampling time 
(Arrival, 

Rehandling) 
Total ADD  In-feed ADD Tetracycline ADD 

Days-on-feed 
(DOF) 

Feedlot ID 
Total macrolide 

ADD 
tetracycline in-feed 

ADD 
Macrolide ADD Days since first tx 

Total ADD 
categories 

Total 
tetracycline 

ADD 

macrolide in-feed 
ADD 

Betalactam ADD Days since last tx 

   
Fluoroquinolone ADD 

  

 

   
Phenicol ADD 

  

 

      Sulfonamide ADD 
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Supplemental Table 4.2. Microbiome and resistome sequencing results for all 120 samples in the study.  

Sample 

ID Time 

16S Raw 

paired reads 

16S dada 

paired reads 

16S dada filtered 

paired reads 

AMR raw 

paired 

AMR QC 

paired 

AMR nonhost 

pair reads 

IA1 Arrival 140704 49101 49101 0 0 0 

IA10 Arrival 156473 39054 39054 0 0 0 

IA11 Arrival 151460 38339 38339 0 0 0 

IA12 Arrival 150609 38428 38428 0 0 0 

IA13 Arrival 143444 41094 41094 6885106 6770930 4253208 

IA14 Arrival 154019 46522 46516 0 0 0 

IA15 Arrival 157856 41219 41195 13336698 12767024 11052170 

IA16 Arrival 149815 35381 35381 18194281 17000763 15493555 

IA17 Arrival 144616 36912 36912 0 0 0 

IA19 Arrival 122561 33900 33887 22268461 21756652 13790848 

IA2 Arrival 149420 43389 43389 3113837 3045174 2119555 

IA23 Arrival 146311 36310 36310 23756211 23046236 16118824 

IA24 Arrival 154089 44938 44938 12163267 11817805 8840755 

IA27 Arrival 143781 35636 35636 0 0 0 

IA29 Arrival 125618 47385 47376 17066935 16648607 12908731 

IA3 Arrival 112200 32641 32641 0 0 0 

IA30 Arrival 154982 39248 39248 9717604 9507432 6720600 

IA32 Arrival 151680 38199 38199 10408872 10215177 6443623 

IA33 Arrival 119859 37598 37598 10126581 9934145 6967346 

IA34 Arrival 147866 51637 51637 13113540 12821912 9270086 

IA35 Arrival 145085 44065 44065 19096271 18559078 15468273 

IA38 Arrival 150252 25769 25769 16998160 16673804 10869383 

IA39 Arrival 176334 45404 45404 16517780 16053959 12749966 

IA4 Arrival 146792 38461 38461 0 0 0 

IA40 Arrival 144712 38655 38655 17364153 16781053 14525989 

IA41 Arrival 149849 35817 35817 18498535 17943350 14562290 

IA43 Arrival 159747 38591 38591 16760676 16262775 13750391 



183 
 

IA44 Arrival 156667 36249 36249 0 0 0 

IA45 Arrival 156332 38316 38316 16660388 16180543 13241837 

IA46 Arrival 147495 33427 33427 5213762 5008062 3425972 

IA47 Arrival 154382 31687 31687 11903784 11545274 8762648 

IA49 Arrival 145691 32027 32027 13351222 12911886 9396998 

IA5 Arrival 157802 55471 55471 18392226 17426039 14443544 

IA50 Arrival 141149 38349 38349 0 0 0 

IA51 Arrival 151384 32223 32223 9908348 9684955 6914998 

IA52 Arrival 156177 30714 30714 17245535 16507286 13464331 

IA53 Arrival 147787 34938 34938 8882200 8637459 5694920 

IA54 Arrival 101543 24539 24539 13789787 13321816 10440449 

IA55 Arrival 153294 33143 33143 13309205 12907268 8173028 

IA56 Arrival 150321 32255 32255 17291458 16393869 14253414 

IA57 Arrival 158787 40613 40594 8521160 8087587 6804680 

IA58 Arrival 108365 25008 25008 19504110 18654819 16478960 

IA6 Arrival 147032 40679 40679 0 0 0 

IA60 Arrival 154506 34222 34222 19906054 18855981 16403164 

IA61 Arrival 146339 28934 28934 14924071 14331765 12051725 

IA62 Arrival 123446 20943 20943 21391921 20864639 15685088 

IA63 Arrival 152160 31535 31535 12765482 12412086 9427508 

IA64 Arrival 140853 43935 43935 20723988 19896626 15724592 

IA65 Arrival 156439 42519 42519 14756702 14118605 11280303 

IA66 Arrival 142067 44414 44414 14775648 14215617 11645321 

IA67 Arrival 149940 44490 44490 12226238 11645032 9719303 

IA68 Arrival 142477 54518 54518 13517390 13127797 11166604 

IA7 Arrival 154469 37497 37497 0 0 0 

IA70 Arrival 142826 47378 47378 18502435 18076053 13761314 

IA71 Arrival 159977 30807 30786 15735681 15329113 11662085 

IA72 Arrival 145745 42373 42373 17381438 16432568 13825225 

IA73 Arrival 150886 47370 47370 14601711 13958795 11953633 

IA74 Arrival 152937 39627 39614 17679730 16867383 14035003 
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IA75 Arrival 146274 49445 49445 15353917 14886637 12343325 

IA76 Arrival 155443 50658 50658 14602926 14057362 10725495 

IE1 Rehandling 156275 48140 48140 13806648 13089954 10591622 

IE10 Rehandling 208020 41463 41463 21193832 20575827 16318227 

IE11 Rehandling 146587 34103 34103 0 0 0 

IE12 Rehandling 156433 36436 36436 0 0 0 

IE13 Rehandling 106351 24930 24930 0 0 0 

IE14 Rehandling 145371 50178 50178 0 0 0 

IE15 Rehandling 146249 43976 43976 19685658 19086296 15729257 

IE16 Rehandling 154160 53384 53384 13743238 13336915 10708659 

IE17 Rehandling 171258 49272 49272 19059692 18440960 14689315 

IE18 Rehandling 157239 46995 46995 16785654 16273548 12936134 

IE2 Rehandling 159866 42133 42133 0 0 0 

IE20 Rehandling 156935 47813 47813 18970820 18462433 13516461 

IE24 Rehandling 159987 62936 62936 21504949 20868588 20858972 

IE25 Rehandling 142662 42072 42072 17953607 17392219 17143446 

IE28 Rehandling 143921 48452 48452 12257958 11903945 9458750 

IE3 Rehandling 153190 48370 48370 0 0 0 

IE30 Rehandling 159772 48234 48234 15142948 14667207 11884237 

IE31 Rehandling 143922 36276 36276 17733210 17208323 13615863 

IE33 Rehandling 150166 41449 41449 18042939 17531530 13210573 

IE34 Rehandling 142918 53187 53187 17223598 16669061 14186473 

IE35 Rehandling 140318 46463 46463 18471701 17908391 14793522 

IE36 Rehandling 152489 38721 38721 13094397 12708668 10127699 

IE37 Rehandling 150312 37912 37912 14245098 13786201 11435285 

IE39 Rehandling 103412 33155 33155 19329174 18712524 15987733 

IE4 Rehandling 199675 65270 65270 0 0 0 

IE40 Rehandling 136214 35955 35955 14439790 13954691 11791550 

IE41 Rehandling 142115 45533 45533 16977386 16555902 12188252 

IE42 Rehandling 158718 49242 49242 16845632 16310340 14119822 

IE43 Rehandling 105581 33674 33674 17868842 17259648 14449697 
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IE44 Rehandling 152088 40244 40244 15882170 15351204 12961009 

IE45 Rehandling 145722 36864 36864 14104305 13658161 11154239 

IE46 Rehandling 131935 43176 43176 9738094 9407972 8141444 

IE47 Rehandling 156928 49793 49793 14187083 13752544 13632490 

IE49 Rehandling 149310 42470 42461 0 0 0 

IE5 Rehandling 111036 31287 31287 0 0 0 

IE50 Rehandling 117846 31907 31907 0 0 0 

IE51 Rehandling 140672 35001 35001 0 0 0 

IE52 Rehandling 141109 53673 53673 17025545 16500001 13614725 

IE53 Rehandling 151051 36111 36082 21767716 21195846 15718097 

IE54 Rehandling 158845 47258 47253 17169236 16645905 13394455 

IE55 Rehandling 148659 33338 33338 19797439 19232007 15068486 

IE56 Rehandling 156905 34387 34387 24082109 23405466 18363671 

IE57 Rehandling 157634 49062 49057 18138331 17585483 14895657 

IE58 Rehandling 142634 42598 42598 8782167 8504175 6819840 

IE59 Rehandling 154698 48224 48185 15375645 14820695 11710440 

IE6 Rehandling 129039 38771 38743 0 0 0 

IE62 Rehandling 155274 44864 44864 25239487 24531366 17114702 

IE63 Rehandling 141720 48541 48541 14628392 14207255 11086453 

IE64 Rehandling 143225 37533 37533 19488355 18840488 13938025 

IE65 Rehandling 171377 61647 61647 16985106 15935624 13911750 

IE66 Rehandling 148742 45584 45584 17682597 16739665 14219806 

IE68 Rehandling 148005 46819 46553 17933154 16890376 14710387 

IE69 Rehandling 146269 33207 32890 16221849 15522573 12186915 

IE7 Rehandling 144425 39397 39274 0 0 0 

IE70 Rehandling 121105 31187 31079 15702305 14948510 12072616 

IE71 Rehandling 143137 43305 43305 15076613 14264924 11960739 

IE73 Rehandling 148566 40010 39898 16343714 15362903 13085037 

IE74 Rehandling 130808 39904 39876 20214701 19083866 16368529 

IE75 Rehandling 158269 49488 49426 15658022 14880889 12403998 

IE77 Rehandling 147345 38690 38584 17295179 16352131 13552227 
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 Supplemental Table 5.1. Table of all a-priori metadata variables by type, used to represent AMD exposure for each sample. All 
metadata variables were included in the starting model for redundancy analysis and step-wise model selection was used to identify 
significantly associated variables with the resistome or microbiome. 
 

Categorical 
Continuous: 

ADD 

Continuous: in-feed 

ADD 

Continuous: 

parenteral ADD 
Continuous: Time 

Sampling time 
(Arrival, Re-

handling) 
Total ADD  In-feed ADD Tetracycline ADD 

Days-on-feed 
(DOF) 

Feedlot ID 
Total macrolide 

ADD 
tetracycline in-feed 

ADD 
Macrolide ADD Days since first tx 

Total ADD 
categories 

Total 
tetracycline 

ADD 

macrolide in-feed 
ADD 

Betalactam ADD Days since last tx 

   
Fluoroquinolone ADD 

  

 

   
Phenicol ADD 

  

 

      Sulfonamide ADD    
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Supplemental Table 5.2. Microbiome and resistome sequencing results for all 98 samples in the study.  

ID 

16S raw 

paired  

reads 

16S dada  

paired 

reads 

16S dada  

filtered 

paired reads 

AMR raw paired 

reads 

AMR QC paired 

reads Time 

PA1 205416 64523 64523 19245266 18651664 Arrival 

PA10 200658 58042 58042 16313306 15760896 Arrival 

PA12 202240 63877 63840 22845224 22021720 Arrival 

PA13 211817 43185 43181 20358235 19667403 Arrival 

PA14 203311 43525 43490 18127401 17746083 Arrival 

PA15 203727 64735 64735 16724173 16198353 Arrival 

PA16 201041 44562 44550 17983263 17478550 Arrival 

PA17 203366 48937 48937 17306645 16676010 Arrival 

PA18 203702 53561 53535 14501953 14287626 Arrival 

PA19 94433 25997 25997 16832557 16319831 Arrival 

PA2 209136 57305 57305 15899902 15353785 Arrival 

PA20 217455 49004 48987 16220163 15688409 Arrival 

PA21 195208 48435 48405 16806805 16293042 Arrival 

PA23 207462 52298 52298 18113698 17597626 Arrival 

PA24 124651 33303 33303 17358216 16856228 Arrival 

PA25 214124 51944 51841 8739016 8480382 Arrival 

PA26 205724 45251 45251 14393063 13950807 Arrival 

PA27 143915 36997 36986 18623839 18043040 Arrival 

PA28 219411 47830 47820 23948621 23160374 Arrival 

PA29 205143 44340 44329 17465674 16820291 Arrival 

PA30 217501 48811 48801 18184183 17532858 Arrival 

PA31 219078 49514 49505 19729423 19133441 Arrival 

PA32 210605 45963 45963 19838299 19220111 Arrival 

PA33 206024 42699 42699 17747396 17181742 Arrival 

PA35 202773 56452 56431 22449389 21653457 Arrival 

PA36 205887 37837 37819 11782368 11362164 Arrival 
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PA37 205783 47474 47474 23922521 21946697 Arrival 

PA38 201088 51123 51123 18012793 17301264 Arrival 

PA39 201971 44042 44024 16101974 15339151 Arrival 

PA4 145111 44552 44508 19966059 19279943 Arrival 

PA40 190351 34962 34824 16032844 15434962 Arrival 

PA41 204697 62960 62939 14235347 13735024 Arrival 

PA42 204651 37223 37199 13237750 12830726 Arrival 

PA43 204198 41821 41821 16540288 15978582 Arrival 

PA45 211854 40277 40271 12191687 11719668 Arrival 

PA46 115191 25441 25435 18517044 17969098 Arrival 

PA47 202969 34288 34281 17649709 17129723 Arrival 

PA48 212282 42536 42536 11188433 10835821 Arrival 

PA49 214693 53228 53224 13878286 13461832 Arrival 

PA50 148209 33657 33641 14745894 14301601 Arrival 

PA7 208792 63902 63902 18534507 17872030 Arrival 

PA8 200763 68276 68268 20241599 19392152 Arrival 

PA9 212354 60190 60190 14877763 14364088 Arrival 

PE10 166623 58715 58715 18605546 18051388 Rehandling 

PE11 207772 66243 66243 17383250 16854961 Rehandling 

PE12 211395 79485 79485 13215632 12766475 Rehandling 

PE13 200454 59544 59544 14794685 14356244 Rehandling 

PE14 211609 61091 61083 12709289 12337805 Rehandling 

PE15 201707 50831 50828 14725154 14285630 Rehandling 

PE16 202647 50785 50748 10966566 10570501 Rehandling 

PE17 203761 43359 43341 11529527 11079686 Rehandling 

PE18 204018 49260 49231 13209126 12765325 Rehandling 

PE19 197577 55147 55141 18008957 17531127 Rehandling 

PE2 215523 39327 39266 19594710 18833188 Rehandling 

PE21 212627 47451 47451 13410196 13001729 Rehandling 

PE22 219091 53854 53854 22258086 21526806 Rehandling 

PE23 215521 55032 55032 21363130 20623950 Rehandling 
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PE25 103458 27701 27701 10303962 9996162 Rehandling 

PE26 206272 47325 47325 11578677 11158964 Rehandling 

PE27 183469 46817 46814 13006223 12504874 Rehandling 

PE28 210838 60535 60523 13680789 13192312 Rehandling 

PE29 95639 26442 26329 12550326 12161506 Rehandling 

PE3 204476 33438 33369 20392844 19805318 Rehandling 

PE30 206102 54367 54338 18434389 17738591 Rehandling 

PE31 212619 50124 50091 22441037 21761975 Rehandling 

PE32 140657 39556 39556 25456702 24669873 Rehandling 

PE33 211518 51242 51242 20318226 19625304 Rehandling 

PE34 206879 63179 63179 14988063 14453478 Rehandling 

PE35 217120 59860 59860 15013056 14446075 Rehandling 

PE36 179664 53362 53347 11422713 11043192 Rehandling 

PE37 200111 57352 57352 14473202 13980445 Rehandling 

PE38 203374 56975 56905 16334138 15511640 Rehandling 

PE39 206855 81136 81128 16984631 15928258 Rehandling 

PE4 200890 38365 38365 16603644 16097593 Rehandling 

PE41 217312 47322 47201 10757992 10399014 Rehandling 

PE42 201411 49164 49164 13160352 12264992 Rehandling 

PE43 213548 61154 61154 17373341 16315254 Rehandling 

PE44 216177 47389 47369 19137749 18472635 Rehandling 

PE45 214722 58763 58612 18328123 17777958 Rehandling 

PE46 214006 63965 63942 21301375 20599212 Rehandling 

PE47 209128 47782 47730 14405735 13953678 Rehandling 

PE48 210815 52862 52837 21461477 20781171 Rehandling 

PE5 201779 35415 35415 14315547 13893309 Rehandling 

PE50 213653 65150 65150 15033985 14271825 Arrival 

PE51 175362 44874 44692 19237624 18579081 Rehandling 

PE52 204758 44950 44919 19299089 18581227 Rehandling 

PE7 211284 72073 72073 17873184 17314678 Rehandling 

PE9 204642 52234 52226 14920293 14468008 Rehandling 
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PS1 205425 54226 54209 20613785 19903805 Shipment 

PS11 188861 57893 57881 15709036 15163390 Shipment 

PS12 203682 51993 51964 15199411 14473307 Shipment 

PS2 206228 56843 56835 13148475 12683065 Shipment 

PS3 129087 36627 36614 13321580 12814782 Shipment 

PS4 205454 54612 54579 14531093 13878706 Shipment 

PS5 219918 46496 46414 18304021 17589335 Shipment 

PS6 218821 58207 58207 15993215 15456393 Shipment 

PS8 213157 71908 71908 11279681 10614287 Shipment 

PS9 214865 49111 49043 6192389 5827204 Shipment 
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Supplemental Table 6.1. Metadata variables for all 16 individual retail ground beef samples in 
the study.  

ID Label Packaging samples Lean Blinded Store 

FC_112 RWA Vacuum(N=16) 90 Store6 

FC_113 RWA Vacuum(N=16) 90 Store2 

FC_122 RWA Vacuum(N=16) 85 Store4 

FC_123 RWA Vacuum(N=16) 90 Store4 

FC_133 RWA Vacuum(N=16) 92 Store1 

FC_134 RWA Vacuum(N=16) 80 Store1 

FC_142 RWA Vacuum(N=16) 93 Store3 

FC_143 RWA Vacuum(N=16) 85 Store3 

FC_161 CONV Chub(N=8) 80 Store1 

FC_162 CONV Chub(N=8) 93 Store1 

FC_172 CONV TrayOverwrap(N=6) 80 Store3 

FC_177 CONV TrayOverwrap(N=6) 93 Store5 

FC_181 CONV StoreGrind(N=2) 90 Store1 

FC_186 CONV Chub(N=8) 80 Store5 

FC_195 CONV Chub(N=8) 85 Store5 

FC_199 CONV TrayOverwrap(N=6) 93 Store3 
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Supplemental Table 6.2. Resistome sequencing results for 16 individual retail ground beef 
samples and their corresponding duplicate sample (N=32) which were processed with a diluted 
AMR bait-enrichment protocol.  

ID Label Dilution 

Blinded 

Store 

 Raw 

paired 

reads  

 QC 

filtered 

reads  

 nonhost 

filtered 

reads  

 deduped 

SNP 

confirmed 

counts  

FC_112 RWA None Store6 
         

38,190,379  
         

36,762,458  
               

28,728  
               

100  

FC_112 RWA Half Store6 
           

8,544,874  
           

8,249,150  
                 

5,538  
               

673  

FC_113 RWA None Store2 
         

34,644,683  
         

33,386,392  
             

167,830  
           

9,628  

FC_113 RWA Half Store2 
         

49,990,544  
         

48,466,450  
             

172,974  
           

3,777  

FC_122 RWA None Store4 
         

42,523,674  
         

41,038,940  
               

98,088  
         

19,089  

FC_122 RWA Half Store4 
         

59,222,209  
         

57,116,177  
             

146,919  
         

12,514  

FC_123 RWA None Store4 
         

37,062,617  
         

35,657,217  
               

20,149  
                 

80  

FC_123 RWA Half Store4 
         

19,036,211  
         

18,357,780  
                 

8,595  
               

271  

FC_133 RWA None Store1 
         

41,617,299  
         

39,968,343  
               

65,852  
               

628  

FC_133 RWA Half Store1 
         

15,200,330  
         

14,620,247  
               

27,615  
           

6,833  

FC_134 RWA None Store1 
         

46,514,396  
         

44,608,097  
               

37,377  
               

984  

FC_134 RWA Half Store1 
         

34,804,270  
         

33,470,715  
               

52,034  
           

1,161  

FC_142 RWA None Store3 
         

34,983,723  
         

33,538,488  
               

78,496  
           

5,303  

FC_142 RWA Half Store3 
         

41,672,381  
         

40,236,202  
               

81,513  
           

1,342  

FC_143 RWA None Store3 
         

45,442,442  
         

43,529,554  
               

51,204  
               

627  

FC_143 RWA Half Store3 
         

41,210,567  
         

39,588,437  
               

40,161  
               

448  

FC_161 CONV None Store1 
         

43,515,676  
         

41,896,445  
             

728,548  
         

51,868  

FC_161 CONV Half Store1 
         

67,058,362  
         

64,579,770  
             

824,877  
         

34,143  

FC_162 CONV None Store1 
         

54,399,943  
         

52,389,506  
             

165,437  
           

2,792  
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FC_162 CONV Half Store1 
         

50,459,468  
         

48,697,965  
             

126,973  
           

1,619  

FC_172 CONV None Store3 
         

45,710,363  
         

44,090,217  
         

1,410,649  
           

2,147  

FC_172 CONV Half Store3 
         

39,790,090  
         

38,407,079  
         

1,104,944  
         

20,120  

FC_177 CONV None Store5 
         

40,915,803  
         

39,211,802  
               

41,483  
         

10,290  

FC_177 CONV Half Store5 
         

54,833,376  
         

52,650,008  
               

45,942  
           

5,686  

FC_181 CONV None Store1 
         

50,492,224  
         

48,832,439  
               

66,376  
               

266  

FC_181 CONV Half Store1 
         

44,527,155  
         

43,105,651  
               

50,912  
               

135  

FC_186 CONV None Store5 
         

46,960,256  
         

45,204,364  
             

736,031  
         

30,259  

FC_186 CONV Half Store5 
         

54,816,543  
         

52,698,955  
         

1,069,355  
         

25,356  

FC_195 CONV None Store5 
         

48,943,119  
         

47,226,073  
             

197,321  
           

4,722  

FC_195 CONV Half Store5 
         

43,918,073  
         

42,408,126  
             

175,310  
         

10,623  

FC_199 CONV None Store3 
         

33,252,253  
         

31,859,552  
             

144,585  
           

3,088  

FC_199 CONV Half Store3 
         

52,680,331  
         

50,601,018  
             

184,951  
           

1,350  
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Supplemental Table 6.3. Microbiome sequencing results for 16 individual retail ground beef 
samples. 

ID Label 

Blinded 

Store 

Raw 

paired 

reads 

QC 

filtered 

reads 

taxa 

classified 

reads 

filtered 

taxa 

reads 

FC_112 RWA Store6 206239 191802 46543 46355 

FC_113 RWA Store2 202019 188456 45206 45039 

FC_122 RWA Store4 213646 197900 40696 40451 

FC_123 RWA Store4 210004 184008 75558 75204 

FC_133 RWA Store1 212618 198432 30161 30078 

FC_134 RWA Store1 219822 198879 19258 18978 

FC_142 RWA Store3 187892 174760 33405 33298 

FC_143 RWA Store3 155859 143060 13081 12877 

FC_161 CONV Store1 180094 167597 42412 42122 

FC_162 CONV Store1 200365 188043 36662 36519 

FC_172 CONV Store3 100939 94569 16556 16363 

FC_177 CONV Store5 178300 162800 30436 28153 

FC_181 CONV Store1 216235 203920 38858 38709 

FC_186 CONV Store5 205446 192819 42174 41987 

FC_195 CONV Store5 207711 192730 46749 46658 

FC_199 CONV Store3 213344 203177 32762 32708 
 

 

 


