
 

DISSERTATION 

 

ASSESSMENT OF RAPID EVAPORATIVE IONIZATION MASS SPECTROMETRY 

(REIMS) TO CHARACTERIZE BEEF QUALITY AND THE IMPACT OF OVEN 

TEMPERATURE AND RELATIVE HUMIDTY ON BEEF 

 

 

Submitted by 

Devin Gredell 

Department of Animal Sciences 

 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Fall 2018 

 
Doctoral Committee: 
  

Advisor: Dale Woerner 
 
 Keith Belk 
 Terry Engle 
 Jessica Prenni 
 Adam Heuberger



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Devin Gredell 2018 

All Rights Reserved



 ii 

ABSTRACT 
 
 
 

ASSESSMENT OF RAPID EVAPORATIVE IONIZATION MASS SPECTROMETRY 

(REIMS) TO CHARACTERIZE BEEF QUALITY AND THE IMPACT OF OVEN 

TEMPERATURE AND RELATIVE HUMIDTY ON BEEF 

 

The objective of experiment 1 was to evaluate the ability of rapid evaporative ionization 

mass spectrometry (REIMS) to predict beef eating quality characteristics. Striploin sections (5 

cm in thickness; N = 292) from 7 beef carcass types (Select, Low Choice, Top Choice, Prime, 

Dark Cutter, Grass-fed, and Wagyu) were collected to achieve variation in fat content, sensory 

attributes, tenderness, and production background. Sections were aged for 14 d, fabricated into 

2.54 cm thick steaks, and frozen until analysis. Trained descriptive panel rated tenderness, flavor, 

and juiciness attributes for sensory prediction models. Slice shear force (SSF) and Warner-

Bratzler shear force (WBS) values were measured to predict tenderness classifications. A 

molecular fingerprint of each sample was collected via REIMS to build prediction models. 

Models were built using 80% of samples that were selected randomly for this purpose and tested 

for prediction accuracy using the remaining 20%. Partial least squares (PLS) discriminant 

analysis was used as a dimension reduction technique before building a linear discriminant 

analysis (LDA) model for classification. When Select and Low Choice samples, as well as Top 

Choice and Prime samples, were combined, balanced prediction accuracy reached 83.8%. Slice 

shear force and WBS tenderness classifications (tough vs tender) were predicted with 75.0% and 

70.2% accuracy, respectively. Sensory models were built to assign samples into positive and 

negative classifications based on either all sensory attributes (i.e., tenderness, juiciness, and 
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flavor) or only flavor attributes. Overall sensory class was predicted with 75.4% accuracy and 

flavor class with 70.3%. With future fine-tuning, these data suggest that REIMS produces a 

metabolic fingerprint to provide a method to meaningfully predict numerous beef quality 

attributes in an on-line application. 

The objective of the second study was to evaluate the roles of cooking rate and relative 

humidity on sensory development of beef strip steaks. Thirty USDA Choice beef strip loins were 

collected from a commercial packing facility. Each strip loin was cut into steaks and randomly 

assigned to 1 of 6 cooking methods utilizing 2 oven temperatures (80°C and 204°C) and 3 levels 

of relative humidity [zero (ZH), mid (MH), and high (HH)]. Cooked steaks were used to evaluate 

internal and external color, Warner-Bratzler and slice shear force, total collagen content, protein 

denaturation, and trained sensory ratings. Relative humidity greatly reduced cooking rate, 

especially at 80°C. Steaks cooked at 80°C-ZH had the greatest (P < 0.01) cook loss of all 

treatments, and cook loss was not affected (P > 0.05). Steaks cooked at 80C-ZH appeared the 

most (P < 0.01) well-done and had the darkest (P > 0.01) surface color. Total collagen was 

greatest (P < 0.01) in steaks cooked with ZH, regardless of oven temperature. Myosin 

denaturation was not affected (P > 0.05) by treatment. Increased (P = 0.02) sarcoplasmic protein 

denaturation was observed with ZH and MH, while increased (P = 0.02) actin denaturation was 

observed only with ZH. Oven temperature did not influence (P > 0.05) protein denaturation. 

Trained panelists rated steaks most tender (P < 0.01) when cooked at 80°C and with ZH and 

MH. Humidity did not affect (P > 0.05) juiciness at 204°C; however, MH and HH produced a 

juicier (P < 0.01) steak when cooked at 80°C. Humidity hindered (P < 0.01) the development of 

beefy/brothy and brown/grilled flavors but increased (P = 0.01) metallic/bloody intensity. Lower 
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oven temperatures and moderate levels of humidity could be utilized to maximize tenderness, 

while minimally affecting flavor development. 
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CHAPTER I 
 
 
 

INRODUCTION 
 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is a relatively new technology 

that is emerging in many areas of science, including human medicine and biological sciences. 

REIMS-based tissue analysis generally takes only a few seconds and can provide histological 

tissue identification with 90 to 98% correct classification performance (Balog 2013). Recently, 

utilization of REIMS in meat products provided very promising results across various 

classification scenarios (Balog et al., 2016; Verplanken et al., 2017). Using time-of-flight (TOF) 

mass spectrometry, REIMS profiling provides in situ, real-time molecularly-resolved 

information by ionizing biological samples in real-time without any sample preparation. Waters 

Corporation (Wilmslow, UK) has developed this technology and coupled it to a hand-held iKnife 

sampling device, allowing for tremendous mobility in the sampling procedure. This technology 

would allow for meat quality attributes, such as flavor profile and tenderness, to be predicted and 

characterized in real-time via broad biochemical profiling of tissue samples. Unlike other 

metabolomic approaches that require tedious sample preparation and analysis times, this 

technology could be further developed as an on-line system in the processing environment to 

enable meaningful sorting of beef products into categories reflecting tangible differences in 

eating characteristics. 

Current beef quality grading standards are applied via visual assessment of carcass traits 

marbling score, physiological maturity, sex class, and lean texture/firmness. Research has shown 

that these grading standards generally separate carcasses based on predicted eating experiences 

(Smith et al., 1987; Platter et al., 2003; Emerson et al., 2013).  In 2016, only 1.8% of graded beef 
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carcasses had an overall USDA maturity score of C or greater (Boykin et al., 2017). This 

indicates that, among carcasses derived from the fed cattle supply, carcass maturity plays a very 

minimal role in determining quality grades in today’s industry and that marbling score is the 

primary determinant of USDA quality grade. It is the general consensus that as marbling score 

increases, the probability of a positive eating experience also increases (Emerson et al., 2013). 

Although marbling is a major component of the grading system, it has shown to account for as 

little as 5% of variation in eating quality (Wheeler et al., 1994), clearly leaving significant 

sources of variation unaccounted for during the grading process. Biochemical components of 

beef muscle are known to influence beef eating quality and may explain variation not accounted 

for by marbling score alone (Mottram, 1998), but cannot be visually assessed by a human grader 

or grading camera. Therefore, the objective of experiment 1 was to evaluate the ability of rapid 

evaporative ionization mass spectrometry to predict various components of beef quality 

including: carcass type, sensory attributes, and objective tenderness measurements. 

Tenderness is one of the most important attributes when determining consumer 

acceptability of beef (O’Quinn et al., 2012), which was shown to be influenced by cooking 

method (Yancey et al., 2011). Therefore, it is critical to establish cooking parameters that 

maximize eating satisfaction, without sacrificing efficiency and practicality of the cooking 

process. In previous tenderness studies, researchers credited the addition of humidity to the 

cooking environment as a way to improve the process of tenderization (Kolle et al., 2004; 

Bowers et al., 2012). Moisture has shown to be useful in the breakdown of protein and the 

solubilization of collagen, which is especially beneficial when cooking tougher muscles (Cover 

and Smith, 1956). Collagen shrinks and denatures around 65C, contributing to the toughening 

of meat during cooking; however, if held above 70C for extended periods, denatured collagen 
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will begin to gelatinize and increase tenderness (Purslow, 2005, Bailer and Light, 1989). For this 

reason, rate of cooking plays a significant role in the tenderness of cooked beef. The objective 

experiment 2 was to evaluate the influence of relative humidity and oven temperature on external 

and internal color appearance, protein denaturation, collagen content, shear force values, and 

sensory attributes of beef strip steaks cooked using varying oven temperatures and relative 

humidity levels. 
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CHAPTER II 
 
 
 

REVIEW OF LITERATURE – PART I 
 
 

Beef Grading 

 The USDA’s voluntary beef grading service began in 1926 in an effort for packers to 

effectively segregate beef carcasses based on inherent quality differences (USDA, 2017). Since 

the implementation of the grading system, standards have been amended several times 

throughout the years as we have increased our understanding of the factors influencing beef 

quality. Until 1989, it was required that a graded carcass receive both a quality and a yield grade; 

however, the standards were amended so these 2 grades could be applied separately or together. 

USDA quality grades were established using carcass characteristics to predict eating quality and 

an overall eating experience. In today’s standards, carcasses can qualify for one of eight quality 

grades: Prime, Choice, Select, Standard, Commercial, Utility, Cutter and Canner. Only steer, 

heifer, cow, and bullock carcasses qualify for quality grades; whereas, bulls are only eligible for 

yield grades. USDA quality grading standards are applied via visual assessment of carcass traits 

marbling score, physiological maturity, sex class, and lean texture/firmness. Marbling score is a 

visual assessment of the amount of intramuscular fat within the exposed longissimus muscle 

between the 12th and 13th ribs. An overall maturity score is determined by balancing a skeletal 

maturity score along with a lean maturity score taken from the 12th and 13th rib juncture. 

Beginning in 2018, the grading standards were amended to allow for dentition to be an optional 

determination of a carcass being over or under 30 months of age for quality grading purposes, 

regardless of physiological maturity (USDA, 2017). Once a carcass has been evaluated for each 
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of the USDA quality grading parameters, it can receive an overall quality grade based on the 

combination of all attributes. 

 In the early days of beef grading, grades were applied via the visual assessment of carcass 

characteristics using trained human graders employed by USDA’s Agriculture Marketing 

Services. A significant portion of beef quality grades are still assigned by human graders; 

however, beginning in the early 2000s, grading instruments were developed and verified for use 

in applying official USDA quality and yield grades. Two grading instruments were approved in 

2001 to assess ribeye area, official USDA quality grades were approved to be applied via 

instrumentation in 2007, and two instruments to assess marbling score were approved in 2009. 

By assigning grades using more objective measurements, consistency is greatly improved, and 

producers selling livestock based on carcass grades can feel more confident in the accurate 

assignment of those grades. 

 Fed beef carcasses are marketed using combinations of both USDA yield and quality 

grading carcass characteristics, receiving premiums or discounts based on the combination of 

these characteristics, along with other factors. By applying premiums for both high quality and 

low yielding carcasses, it provides economic incentives for producers to manage cattle in a way 

that improves the overall beef supply and increases the consistency in beef products reaching 

consumers. Starting with Certified Angus Beef in 1978, branded beef programs allow companies 

to further segregate beef carcasses meeting a unique set of specifications that consider attributes 

beyond those evaluated by the USDA quality grading system. Each branded program has a 

unique set of specifications that include attributes to guarantee quality, yield, muscle dimension, 

breed-type, and production background, among others. The success of Certified Angus Beef 

ignited the fire for the spread of branded beef programs in the United States. Today, the USDA 
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certifies 90 individual branded beef programs, which does not include those programs monitored 

by individual companies and retailers (USDA, 2018). With earned trust from consumers, beef 

from branded programs can grow to garner premiums beyond those that would be achievable 

from the USDA grading system alone. 

Inadequacies of the Current Beef Grading System 

Quality grade is used to predict overall eating quality of beef carcasses as assessed by the 

combined effects of tenderness, juiciness, and flavor. Generally, as marbling score increases, 

tenderness, juiciness, and flavor also increase (Platter et al., 2003). Even before the 

implementation of instrument grading, the USDA quality grading system was effectively 

segregating carcasses by overall eating quality (Smith et al., 1987). After the implementation of 

instrument grading, it was further validated that instrument assigned marbling scores continued 

to segregate carcasses into groups with increased probabilities of a positive overall eating 

experience (Emerson et al., 2013). Although marbling score is a principal component of the 

quality grading system, marbling score itself does not explain the entirety of variation in beef 

sensory attributes (Wheeler et al., 1994; Platter et al., 2003). Both Wheeler et al. (1994) and 

Platter et al. (2003) found marbling score to explain roughly 5% of the variation in longissimus 

eating quality attributes. On the other hand, O’Quinn et al. (2018) and Emerson et al. (2013) 

determined marbling score to explain a greater amount of variation in eating quality attributes 

(14-16% and 61%, respectively). Nevertheless, each of these studies still leaves portions of 

variation in eating quality left unexplained. Emerson et al. (2013) trained sensory panelists to 

rate samples for an overall sensory experience based on a combination of individual tenderness, 

juiciness, and flavor attributes and specifically instructed to not include personal preference. The 

use of a trained sensory panel to determine an overall sensory experience may partially explain 
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why the authors found marbling score to account for a greater amount of variation in comparison 

to other studies. 

 According to the 2016 National Beef Quality Audit, only 1.8% of graded beef carcasses 

from fed cattle had overall maturity scores of C or greater (Boykin et al., 2017). This audit 

occurred before USDA’s amendment to their maturity determining standards; therefore, it would 

be expected that current numbers of graded beef carcasses of fed cattle falling into a C or greater 

maturity score would be lower today. This is not to say that mature carcasses are not entering 

packing facilities, but rather, that current USDA quality grading standards do not accurately 

reflect the merchandising value associated with market cow carcasses (Woerner, 2010). Thus, 

the majority of mature carcasses do not receive official USDA quality grades. As a result, when 

only considering the population of beef carcasses receiving USDA quality grades, maturity plays 

a very minimal role in quality grade determination, leaving significant contribution of final 

USDA quality grade determination on marbling score. 

 Higher quality grades do increase the probability of a positive eating experience when 

consuming beef (Smith et al., 2008; Emerson et al., 2013; O’Quinn et al., 2018). Current grading 

standards appropriately predict the probability of an overall eating experience. But, it is the 

variation in individual sensory responses within a quality grade that can be highly variable, 

particularly within lower grades. Smith et al. (2008) compiled sensory results from 14 previous 

studies to evaluate the probability of an unsatisfactory eating experience within each quality 

grade. They found the probability of an unsatisfactory eating experience to be 1 in 33 for Prime, 

1 in 10 for Upper 2/3 Choice, 1 in 6 for Low Choice, 1 in 4 for Select, and 1 in 2 for Standard. In 

support of these findings, similar probabilities have been obtained from others (Tatum, 2015; 

O’Quinn et al., 2018). Especially within lower quality grades, there is clear variation that is not 
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being accounted for within the current grading system. Discovering the ability to identify beef 

from lower grading carcasses that will result in a positive eating experience during the grading 

process would result in added value to currently discounted product. Alternatively, the ability to 

identify and remove low performing beef carcasses from Prime and Top Choice quality grades 

would further increase the guarantee the probability of a positive eating experience, allowing 

packers to obtain additional premiums. 

 It is well understood that numerous attributes, in addition to marbling score and maturity, 

significantly influence beef eating quality. These include characteristics such as breed type, 

muscle fiber type, enzymatic activity, pH, collagen content, production background, fatty acids, 

amino acids, reducing sugars, and metabolic rates, to name a few (Wheeler et al., 1994; Chriki et 

al., 2013; Kerth and Miller, 2015; Grayson et al., 2016; O’Quinn et al., 2016; Starkey et al., 

2017). This is clearly not an exhaustive list but begins to describe the complexity of sensory 

development. Some of these attributes can be estimated by visual assessment; i.e., hide color or 

neck hump height, and have been incorporated into various branded beef programs. 

Nevertheless, the majority of these attributes are biochemical components that cannot be visually 

assessed. Others could be verified via certification; however, this can be logistically cumbersome 

on a large-scale application. Therefore, an instrument with the ability to assess biochemical 

components of fat and lean at chain speed would prove to be most accurate in not only 

segregating carcasses into meaningful eating quality groups, but also verifying other claims such 

as breed-type and production background. Coupled with the current USDA grading standards, an 

instrument of this caliber would prove to have substantial monetary value for the beef industry. 

 

 



 9 

Beef Grading Instruments 

 Although the first beef grading instrument was not approved for use until 2001, the 

USDA identified the importance and necessity to develop instrument grading systems in 1978 

(Woerner and Belk, 2008). In conjunction with the National Aeronautics and Space 

Administration (NASA) in 1979, the USDA’s Food Safety and Quality Service (FSQS) 

recognized ultrasound and video image analysis (VIA) as two technologies with potential for the 

assessment of beef quality and yield grading characteristics (Cross and Whittaker, 1992). At the 

time, it was suggested that the precision and consistency of an objective grading system would 

improve the specificity of the grading system and would benefit producers, packers, and 

consumers. As a result, research progressed with the further evaluation of VIA as an instrument 

grading technique (Cross and Whittaker, 1992). Early work showed that beef carcass yield 

prediction using VIA measurements increased (93.6% vs. 84.42%) the coefficient of 

determination of equations when compared to yields predicted using non-instrument 

measurements (Cross et al., 1983). The VIA system utilized chilled and ribbed carcass; however, 

in 1984, industry leaders decided to shift the instrument grading focus away from chilled and 

ribbed carcasses towards unchilled and unribbed carcasses (Woerner and Belk, 2008). Thus, 

instrument focus shifted away from VIA towards ultrasound analysis to predict ribeye area, fat 

thickness, and marbling score. Little progress was made in the development of ultrasound as an 

online beef grading tool; thus, instrument grading focus was once again placed on VIA (Cross 

and Whittaker, 1992). 

 In order for a grading instrument to be successful, it not only needs to accurately measure 

predictors, but it needs to be rapid enough to handle chain speed and be robust enough to handle 

the extreme environmental conditions of carcass coolers. In 1990, the National Cattleman’s 
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Association created an Instrument Grading Subcommittee charged with the task of determining 

the most promising avenues for instrument grading in the beef industry. An initial outcome of 

this committee was to establishment a set of parameters that must be met for the successful 

installment of an instrument grading system. They identified that an instrument grading system 

must 1) predict the percentage of lean, marbling, and skeletal maturity with high accuracy, 2) it 

must produce repeatable measurements of individual factors, 3) it must be completely automated, 

including the interpretation of the image or the output, 4) it must be able to predict all necessary 

carcass traits at a rate that can be maintained with production speeds, 5) it must be able to 

withstand extreme changes in temperature (0-40C) and humidity (up to 100%), 6) it must be 

tamper proof to prevent assessment errors, and 7) recalibration must be precise, quick, and easy 

(Cross and Whittaker, 1992). 

 Through continued research, VIA has shown success in accurately predicting beef yield 

characteristics (Cross et al., 1983; Wassenberg et al., 1986; Shackelford et al., 1998; Lorenzo et 

al., 2018). However, error still occurred, primarily due to inadequacies in fat estimations. Belk et 

al. (1998) determined that VIA could accurately measure preliminary yield grade (PYG) and 

ribeye area (REA) but could not appropriately evaluate the more subjective measurement of 

adjusted preliminary yield grade (APYG) to account for total carcass fatness and/or dressing 

defects. Thus, it was suggested that VIA yield grade assessment augmented with USDA grader 

adjusted fat thickness provided a more accurate and efficient use of VIA determined yield 

grades. Further development of VIA in the prediction of APYG resulted in improved accuracy 

and the ability for image analysis variables to account for 88% of the variation between 

calibration and predicted measurements for APYG (Shackelford et al., 2003). Video image 

analysis was approved for measuring ribeye in 2001, approved to calculate USDA yield grade in 
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2005, and began official use for applying yield grades in 2007 (Mafi et al., 2014). While VIA 

proved its ability to calculate yield parameters, it is has shown to be less successful in assessing 

marbling score. Shackelford et al. (2003) showed VIA assessment of marbling score to account 

for 76% of variation, concluding that it did not meet the criteria for industry application. 

 Advancements in VIA technology led to 2 cameras with the ability to accurately assess 

marbling score: CVS (Computer Vision System; RMS Research Management Systems, USA, 

Inc., Fort Collins, CO) and VBG2000 (E + V Technology, Oranienburg, Germany). In 2006, 

each of these systems managed to surpass the first phase of USDA’s Performance Requirements 

for Instrument Marbling Evaluation (PRIME) program (Woerner and Belk, 2008). The USDA 

Agriculture Marketing Service Livestock, Poultry, and Seed Program (USDA-AMS LPS 

Program) developed PRIME to provide performance standards for instruments used to assess 

beef marbling scores (USDA-AMS LPS, 2006). To pass the first phase (PRIME I), an instrument 

must demonstrate its ability to repeatedly predict marbling score of stationary carcasses. To do 

so, marbling score must be measured 3 times per carcass and the values of each of the 3 

measurements must be within 20 marbling score units of the average. The second phase (PRIME 

II) evaluates the accuracy and precision of the instrument at production speeds compared to 

marbling scores assigned by a panel of 5 expert human evaluators. In order to pass PRIME II and 

receive final approval for quality grade assignment, the instrument must have an average residual 

of 0  10 marbling score units compared to panel assigned score, a standard deviation of 

residuals  35 marbling score units, and line of best fit with a slope of 0.000  0.075 when 

plotting the residuals from panel assigned marbling score versus the instrument marbling score 

(USDA-AMS LPS, 2006). The CVS system proved to have an accuracy of 89% with 

repeatability greater than 99.5% in determining marbling score (Moore et al., 2010). 
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Additionally, the E + V system appropriately applies marbling scores to segregate beef carcasses 

into meaningful sensory-based groups (Emerson et al., 2013). 

Tenderness Prediction Instruments 

 Methods to either identify or predict beef tenderness during carcass merchandising has 

been an area of great interest. Consumer studies have identified a willingness to pay premiums 

for beef that can be guaranteed tender (Shackelford et al., 2001); however, the current USDA 

quality grading system does not completely segregate between tough and tender beef, 

particularly at lower grades (O’Quinn et al., 2018). With lower quality carcasses either not 

qualifying for premiums or receiving discounts, value is being lost from tender beef within these 

quality grades, as a greater probability of being tough is assumed due to a lack of intramuscular 

fat. On the contrary, carcasses meeting specifications for higher quality grades, especially those 

further qualifying for premium boxed beef programs, do not completely remove tough beef from 

those populations. Branded beef programs rely on their reputation and the consistency of high-

quality beef in order to gain consumer trust, earn repeat business, and garner significant 

premiums for their products. Although the likelihood is often reduced, inclusion of a low 

percentage of tough beef into these programs could result in lost business. Therefore, the ability 

to identify tough versus tender beef prior to carcass merchandising would provide increased 

marketability, consumer trust, and added value throughout the entire beef system. 

 Warner-Bratzler shear force (WBS) has long been an industry standard as an objective 

prediction of beef tenderness. However, the protocol is relatively time consuming and results in 

the destruction of product. Shackelford et al. (1999) developed and validated a rapid alternative 

to WBS, called slice shear force (SSF). The new method proved to be repeatable ( r = 0.89) and 

have the ability to accurately segregate samples into tender, intermediate, and tough 
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classifications with an overall accuracy of 94.4% (Shackelford et al., 1999). Although proving to 

be more rapid and have a simpler protocol than its WBS predecessor, SSF is not able to keep up 

with chain speed and still requires an entire 2.54 cm think strip steak for analysis. For these 

reasons, producers believe this method too costly as verification for guaranteed tender programs 

(Wheeler et al., 2002). Regardless, the SSF method has retained great popularity within 

academic research, as well as, with individual companies as an off-line method to track 

tenderness of branded beef programs (Woerner and Belk, 2008). 

 In addition to SSF, less destructive approaches have been evaluated for on-line 

tenderness prediction, but an instrument method to predict beef tenderness has yet to be 

implemented into production systems. Evaluated methods include: Tendertec Tenderness Probe, 

objective color measurements, near-infrared (NIR) spectroscopy, and hyperspectral images, 

among others. The TenderTec Tenderness Probe uses an electromechanical penetrometer 

inserted into the longissimus muscle. It was originally identified by the Australian Meat Research 

Corporation for its potential ability to predict beef tenderness; however, when used on US beef 

carcasses, it was found to only have a slight tenderness predictive ability with mature, but not 

youthful carcasses (Belk et al., 2001). Objective b* measurements of longissimus muscle have 

been found to have a stronger relationship to sensory tenderness than marbling score, but still 

only explained 14% of tenderness variation (Wulf et al., 1997). Later integration of objective 

lean and fat color measurements with predicted marbling and adjusted REA showed 

improvement in prediction accuracy to using b* values alone (Vote et al., 2003). In this study, all 

measurements were obtained with a CVS camera adapted with a BeefCam module. Although 

the BeefCam system was able to correctly identify tender carcasses with an overall accuracy of 

80%, this accuracy was significantly affected when samples were variable in marbling score. 
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Thus, it was concluded that the BeefCam system would be most effective when implemented 

after the administration of an USDA quality grade (Vote et al., 2003). 

 Tenderness prediction using NIR-spectroscopy was first evaluated by Misumoto et al. 

(1991), achieving 68% accuracy in predicting beef tenderness. Near-infrared spectroscopy is the 

measurement of the absorbance of electromagnetic radiation, which can provide information 

regarding the biochemical makeup of a substance. Later work found NIR to explain 67% of the 

variation in shear force values, but was able to segregate between tough and tender samples with 

an overall accuracy of 79% (Park et al., 1998). More recently, hyperspectral imaging (HSI) has 

been evaluated for its use in predicting beef tenderness. Hyperspectral imaging is essentially a 

combination of NIR and VIA, having the ability to capture textural information from VIA and 

molecular information from NIR (Konda et al., 2008). By separating beef longissimus samples 

into tough and tender categories based on SSF values, HSI predicted the classification of tender 

and tough samples with 96.3% and 62.5%, respectively, for an overall accuracy of 77% (Konda 

et al., 2008). 

Of any of the technologies discussed thus far, prediction accuracies presented by Konda 

et al. (2008) captured from HSI clearly provided the greatest prediction accuracy. However, there 

was a significant class imbalance issue with this data set, as only 5% of collected samples fell 

into the tough category. Therefore, even without prediction using HSI, there is still 95% chance 

of selecting a tender sample if one was chosen at random. Additionally, misclassification rates 

were determined using cross-validation of a single data set, as opposed to building the model on 

a train set and testing the accuracy of the model on a new test data set. Because models are built 

to specifically fit the training set, training error rates are typically overly optimistic and are not 

necessarily an indication of an appropriate model (Ghatak, 2017). Furthermore, the authors used 
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a canonical discriminant model with partial least squares regression images as the predictor 

variables. Both canonical discriminant analysis and partial least squares regression are 

supervised statistical methods, meaning that consideration for the response is taken to discover 

the variation in the data set. Combining both of these modeling techniques, selection for 

variation specifically explaining the tenderness response would have been performed twice. 

Especially without using separate training and test data sets, the combination of two supervised 

statistical methods would greatly increase the risk of overfitting the prediction model. Later work 

using the same HSI technology, but designating training and test sets and having a slightly 

greater proportion of tough samples (18%), reported an overall accuracy of 59.2% (Konda 

Naganathan et al., 2015), supporting the criticisms above. Even with a low overall prediction 

accuracy, the authors were still able to report a tenderness certification accuracy of 87.6%. Out 

of the samples predicted as tender, tenderness certification accuracy was calculated as the 

percent of samples that were truly tender. Although this is arguably a meaningful metric for 

industry practice, it does not reflect the fact that most models still failed to predict over 50% of 

truly tough samples as tough. Again, the lack of class balance is not appropriately reflected in 

this calculation. 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is a relatively new 

form of mass spectrometry originally developed for the medical field to identify cancerous tissue 

in real-time during removal surgeries. However, its abilities have been recognized for use in 

other industries, particularly to assess food quality and authenticity. The uniqueness of REIMS, 

compared to other mass spectrometry methods, comes from its ability to quickly extract and 

ionize molecules with a handheld device, requiring absolutely zero sample preparation (Waters 
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Corporation, 2015). The current collection device is a handheld surgical knife (termed iKnife) 

attached by a 2-3 m tubing, allowing for incredible convenience and mobility during sampling. 

When attached to a time-of-flight (TOF) analyzer, the operator is provided with a highly accurate 

mass spectrum in a matter of seconds. Using mass spectra from known test samples, models can 

then be developed to predict and classify the tissue of interest (Balog et al., 2010). Recent 

application of REIMS has slowly moved into the meat industry with interests in species 

authentication, eating quality prediction, and residue testing (Balog et al., 2015; Verplanken et 

al., 2017; Guitton et al., 2018). 

The uniqueness of REIMS does not come from methods used to detect ions, but rather in 

the sample collection and ionization steps. Few metabolomic techniques allow for a complete 

lack of sample preparation. Some sample preparation methods are more complicated than others, 

but regardless, sample preparation not only requires time, but it also introduces a greater risk of 

technical error. Currently, the source of collection and ionization is a handheld surgical knife 

with a metal tip and the sample must be placed on a return electrode mat. When the iKnife 

contacts the surface of the sample, it creates an electric current that heats the metal tip, 

cauterizing the sample. This creates an aerosol of gas-phased clusters of both ionized and neutral 

molecules containing unique components of the tissue. The knife is connected to a vacuum tube 

that draws the aerosol into the machine through a transfer capillary. The stream of clustered ions 

and neutral molecules then reaches a heated impactor that disrupts the cluster and ionizes the 

remaining neutral molecules (Golf et al., 2015). The molecules are pushed into a StepWave ion 

guide to remove gas and other neutral contaminants, significantly increasing sensitivity during 

the detection phase. The StepWave system is unique in that it is an off-axis guide that pushes 

ions up into the analyzer and gas/contaminants down out of the machine (Waters Corporation, 
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2015). Remaining ions are then detected with a TOF analyzer. The ionization source is a soft 

ionization method; therefore, most ions will be adducted ions without fragmentation. The 

resulting mass spectra can then go through chemometric profiling, similar to methods used with 

other mass spectrometry data. 

 Prediction of various meat attributes using mass spectra collected with REIMS has shown 

incredible potential for its application in various scenarios. As of now, REIMS mass spectra have 

most commonly been analyzed using principal component analysis alone, or as a dimension 

reduction technique coupled with linear discriminant analysis. Balog et al. (2016) showed that 

REIMS had the ability to differentiate between various mammalian meat species and beef breeds 

with 100% and 97% accuracy, respectively. Similarly, REIMS has demonstrated a nearly perfect 

prediction rate (98.99%) in the identification of several fish species (Black et al., 2017). 

Furthermore, Guitton et al. (2018) successfully identified several porcine muscles from animals 

fed with accuracies greater than 95%. Verplanken et al. (2017) even successfully segregated pork 

carcasses with and without boar taint, indicating potential of REIMS in meat eating quality 

prediction. With rapid analysis, high specificity, and lack of sample preparation, REIMS could 

have significant implications in the prediction and verification of several beef quality 

characteristics. 

Currently, identified compounds from REIMS output have almost been entirely restricted 

to various lipid components (Balog et al., 2016). Phospholipids are major components of cell 

membranes, thus have allowed for successful determination of histological characteristics of 

tissues (St John et al., 2017). From a meat quality standpoint, lipid profiles greatly impact flavor 

development, with certain lipids associating with desirable flavor attributes, while others 

associate with severe off-flavor development (Kerth and Miller, 2015). Establishing the 
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capabilities of REIMS to identify other compounds, such as amino acid profiles and proteins, 

would add further value in its use in meat quality research. Although much of the current 

prediction capabilities of REIMS has have been based on lipid profiles, it has shown to be able to 

successfully identify volatile compounds, flavonoids, and carbohydrates from honey samples 

(Stead, 2016). Further understanding the ability of REIMS to identify other biochemical 

components would significantly increase its applications. 

Predictive Modeling 

 With advancements in technology and the ability to track, collect, and store enormous 

amounts of data, prediction modeling has become exceedingly popular in numerous applications, 

from e-mail spam filters to identifying credit card fraud. Predictive modeling can be defined as 

“the process of developing a mathematical tool or model that generates an accurate prediction” 

(Kuhn and Johnson, 2016). Predictive modeling is not concerned with understanding why an 

outcome happens, but rather identifying the probability of an outcome occurring. Interpretability 

of a prediction model is many times a secondary objective but can be a cumbersome task. As 

data sets become larger and pressure is placed on providing an accurate prediction of an 

outcome, models tend to become more complex and more difficult to interpret (Kuhn and 

Johnson, 2016). Some predictive models are more flexible, whereas others are more restrictive. 

Linear models are considered restrictive because they require a linear relationship between 

responses and predictors, resulting in a relatively interpretable relationship. Flexible models, on 

the other hand, do not rely on a linear relationship. Instead, the relationship between the response 

and predictor can take various shapes. But, the estimation of the relationship between response 

and predictor can become incredibly complex and difficult to interpret (James et al., 2013). 

Whether or not focus is placed on prediction or interpretation is largely relative to the issue or 
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severity of the outcome at hand. Therefore, the primary objective of prediction or interpretation 

needs to be decided upon by investigators in order to appropriately address the question of 

concern. 

 Predictive models can be developed to predict either quantitative or qualitative outcomes. 

Although not always the case, predictive models utilizing quantitative responses are considered 

regression problems, whereas, models utilizing qualitative responses are considered 

classification problems (James et al., 2013). Responses of regression problems are required to be 

either continuous values or ordered numerical values and the prediction is of a numerical output 

value. Alternatively, classification responses are unordered categories, thus, the prediction 

assigns the output into a class. With quantitative outcomes usually being more specific and 

numerous than qualitative outcomes, numeric response variables can be grouped into categorical 

classes that provide meaningful separation in a response. By creating a response that is less 

specific, an increase in prediction accuracy would be expected. For instance, one may find better 

accuracy in predicting a USDA beef quality grade as opposed to predicting a specific marbling 

score. The choice of predictive model is based on the characteristics of the response variable and 

whether it is numerical or categorical (James et al., 2013). The majority of predictive models are 

capable of handling both numeric and categorical predictors. 

High-Dimensional Data 

 Advancements in bioanalytic techniques now allow researchers to collect highly 

abundant amounts of data in a relatively cost-effective and timely manner. This has led to the 

development of various “omics” fields within biological sciences, which aim at understanding 

the entirety of a biological system and how it elicits different outcomes. The various omics fields 

are linked together in a cascade-like manner in descending order of: genomics, transcriptomics, 
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proteomics, and metabolomics (Dettmer et al., 2007). Each omics field is related to the next, with 

metabolomics having the most direct relationship with an observed phenotype. With the 

objective of omics approaches to evaluate the entire system, the resulting outputs are high-

dimension data sets. A high-dimensional data set can be described as one that has more variables 

than it does observations (James et al., 2013). Although high-dimensional data contains useful 

information, it also contains too many irrelevant features, which makes fitting a model difficult, 

often referred to as the “curse of dimensionality.” Irrelevant features are known as noise, which 

is information that cannot be captured, but is a source of error in predictive models (Ghatak, 

2017). For that reason, it is critical to apply methods to reduce dimensionality of the data and 

identify features that provide relevant information about the response of interest. 

 Common dimension reduction techniques for metabolomics data include Principal 

Component Analysis (PCA) and Partial Least Squares (PLS; Maitra and Yan, 2008). Both of 

these methods reduce the dimension of a data set by finding linear combinations that best explain 

the variation within the original data to create a new set of latent predictor variables (James et al., 

2013). The newly predicted latent variables for each observation for each principal component 

are referred to as factor scores (Abdi and Williams, 2010). Factor scores can be plotted either 2 

or 3-dimensionally to visually evaluate the spatial projections onto the principal components, 

which is useful in determining clusters of similar samples or potential outliers. Loadings, another 

common output of PCA and PLS, describe the correlation between the original variables with 

each component, providing information on the weight each variable had in calculating factor 

scores (Abdi and Williams, 2010). Loadings are commonly plotted between 2 components, 

allowing for a visual representation of the coefficients assigned to each variable. Additionally, 

imposing loading onto scores plots provide further visualization and interpretability of how 
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individual variables drive the projection of individual sample observations on the principal 

components. 

Although the 2 methods share several similarities, a major difference is that PCA is 

considered an unsupervised method, whereas, PLS is considered a supervised method (Maitra 

and Yan, 2008). Principal component analysis does not consider the response variable when 

extracting sources of variation (Kuhn and Johnson, 2016). It proceeds “unguided”; thus, 

considered unsupervised. In some situations, this can be troublesome because the greatest 

sources of variation within a data set may not necessarily be related to the response. The first 

principal component will always explain the greatest amount of variation, the second principal 

component will explain the second greatest amount of variation, and so forth. Additionally, each 

component will be uncorrelated to the others, resolving issues with highly-collinear variables 

that is inevitable with high-dimension data sets. Principal components can be a predecessor for 

Principal Component Regression, where factor scores can be regressed against one or more 

dependent variables (Geladi and Kowalski, 1986). Because it reduces dimension and removes 

collinearity, PCA is commonly used to preprocess data before insertion into other regression or 

classification models. 

Several attributes of PCA hold true with PLS models. In contrast to PCA, however, PLS 

uses the response to find variation in the predictors that best explain the response (Garthwaite, 

1994). Because it is finding the linear combinations of predictor variables that best explain the 

response, the first component will not necessarily explain the greatest amount of variation within 

the predictor variables like with PCA. A PLS model will simultaneously evaluate three 

objectives during the model fitting process: 1) the best explanation of the X space, 2) the best 

explanation of the Y space, and 3) the greatest relationship between the X and Y spaces (Ghatak, 
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2017). Therefore, PLS will calculate two sets of scores that best maximize the covariance 

between the X and Y-spaces (Ghatak, 2017). Even if PCA and PLS create models with similar 

predictive abilities, PLS will typically do so using fewer components and a simpler model. As a 

general rule of thumb, simpler models are preferred over more complicated models (Bro and 

Smilde, 2003). When models become increasingly more complex with more variables or more 

components, slight changes in values of new data have a greater probability of resulting in 

prediction error. For these reasons, PLS is typically preferred over PCA. Furthermore, PLS is 

better suited to handle data sets that have more variables than observations, leading to an 

increased popularity of its use in chemometric analysis (Höskuldsson, 1988). 

Data Pre-Processing 

Data pre-processing is a step in predictive modeling that can severely alter model 

accuracy (Kuhn and Johnson, 2016). The effectiveness of pre-processing methods depends on 

the characteristics of the data set and their relationship with the response and there is no clear 

answer for selection of pre-processing methods (Van Den Berg et al., 2006). Therefore, the 

decision of which pre-processing methods to use will frequently be at the discretion of the 

researcher, their knowledge of the relationship between dependent and independent variables, or 

simply choosing methods that reduce prediction error. Particularly with large data sets, PLS or 

PCA methods described above can fall into the category of pre-processing techniques if they are 

used to reduce collinearity and dimensionality before utilization in further predictive models. 

This type of pre-processing would result in the utilization of newly calculated latent variables as 

opposed to the originally collected predictor variables. However, other pre-processing methods 

preserve the integrity of the original predictors and rely on transformations of observed values. If 

a robust model can be built without latent variables, the interpretability of the model would likely 
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increase. Of the methods that rely on data transformations of individual predictors, mean-

centering, scaling, and skewness transformations or common choices in chemometric data 

analysis (Kuhn and Johnson, 2016). 

To mean-center data, the overall mean is subtracted from each individual observation so 

that the variable has a mean of zero (Van Den Berg et al., 2006). This adjusts for the offset 

between variables that are found in relatively high abundances and those that are found in 

relatively low abundances, converting the data from an interval scale to a ratio-scale (Bro and 

Smilde, 2003). Scaling refers to dividing each variable by a unique scaling factor so that each 

variable in the matrix is represented on a similar scale (Van Den Berg et al., 2006). Unit-variance 

(UV) scaling is a commonly applied scaling method to metabolomics data, in which each 

observation is divided by the standard deviation. By standardizing variable scale using standard 

deviation, emphasis is placed on variables with greater amounts of variation regardless of how 

numerically small or large the original observations may be. This is especially beneficial in 

scenarios where included variables are not measured using the same scale or when there are large 

fold differences between metabolites.  

Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is an approach commonly used in classification 

problems of linear data. It is similar to PLS in that it is a supervised method that finds 

components that best maximize variance, while also maximizing separation between classes. 

Linear discriminant analysis calculates linear discriminants that apply weights to each variable so 

that individual observations can be converted and projected into a 2 or 3-dimensional space as 

scores. The maximum number of linear discriminants is equal to 1 minus the number of 

classification categories. Additionally, discriminant scores are calculated to identify how well 
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each function predicts classification and the sum will always equal 100% of explained variation. 

However, unlike PLS, LDA is not appropriate to handle high-dimension data sets and requires 

that the number of predictors be less than the number of observations (Zelterman, 2015). As a 

general rule of thumb, the number of observations needs to be greater than 5 times the number of 

predictors. For this reason, LDA is not suited to handle raw omics data, although it has shown to 

have high classification accuracy when coupled with a dimension reduction technique (Balog et 

al., 2016; St John et al., 2017; Guitton et al., 2018). As mentioned above, PCA and PLS have 

proven to be appropriate methods for reducing dimension and collinearity of large data sets and 

are commonly coupled with LDA analysis. 
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CHAPTER III 
 
 
 

ASSESSMENT OF EVAPORATIVE IONIZATION MASS SPECTROMETRY (REIMS) TO 

CHARACTERIZE BEEF 

Introduction 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is a relatively new technology 

that is emerging in many areas of science, including human medicine and biological sciences. 

REIMS-based tissue analysis generally takes only a few seconds and can provide histological 

tissue identification with 90−98% correct classification performance (Balog 2013). Recently, 

utilization of REIMS in meat products provided very promising results across various 

classification scenarios (Balog et al., 2016; Verplanken et al., 2017). Using time-of-flight (TOF) 

mass spectrometry, REIMS profiling provides in situ, real-time molecularly-resolved 

information by ionizing biological samples in real-time without any sample preparation. Waters 

Corporation (Wilmslow, UK) has developed this technology coupled to a hand-held iKnife 

sampling device, allowing for tremendous mobility in the sampling procedure. For the first time, 

this technology would allow for meat quality attributes, such as flavor profile and tenderness, to 

be predicted and characterized in real-time via broad molecular profiling of tissue samples. 

Unlike other metabolomic approaches that require tedious sample preparation and analysis times, 

this technology could be further developed as an on-line system in the processing environment to 

enable meaningful sorting of beef products into categories reflecting tangible differences in 

eating characteristics. 

Current beef quality grading standards are applied from the visual assessment of two 

carcass traits: marbling score and carcass maturity. Research has shown that these grading 
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standards generally separate carcasses based on predicted eating experiences (Smith et al., 1987; 

Platter et al., 2003; Emerson et al., 2013).  In 2016, only 1.8% of graded fed beef carcasses had 

an overall USDA maturity score of C or greater (Boykin et al., 2017). This indicates that carcass 

maturity plays a very minimal role in determining quality grades in today’s fed beef industry and 

that quality grade is almost entirely determined by marbling score. It is the general consensus 

that as marbling score increases, the probability of a positive eating experience also increases 

(Emerson et al., 2013). Although marbling is a major component of the grading system, it has 

shown to account for as little as 5% of variation in eating quality (Platter et al., 2003), clearly 

leaving significant sources of variation unaccounted for during the grading process. Molecular 

and biochemical components of beef muscle are known to influence beef eating quality and may 

explain variation not accounted for by marbling score alone (Mottram, 1998), but cannot be 

visually assessed by a human grader or grading camera. Therefore, the objective of this study 

was to evaluate the ability of rapid evaporative ionization mass spectrometry as a novel method 

to predict various components of beef quality including: carcass type, sensory attributes, and 

objective tenderness measurements. 

Materials and Methods 

Institutional Animal Care and Use Committee approval was not required for this study as 

samples were obtained from federally inspected harvest facilities. 

Sample Collection 

 Beef strip loin sections were collected to represent 7 carcass types [Select (n = 42), Low 

Choice (n = 42), Top Choice (n = 41), Prime (n = 42), dark cutter (n = 41), grass-fed (n = 42), 

and Wagyu (n = 42)] in order to provide significant variation in beef flavor attributes, tenderness, 

fat percentages, and animal background. Product specifications for each carcass type were 
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verified by Colorado State University (CSU) personnel using official USDA grades and personal 

communication with individual suppliers to verify origin. From each half of the carcass, a 5 cm 

long strip loin section was fabricated from a point starting at the 13th rib. Each strip loin section 

was fabricated into one 2.54 cm steak. The steak from the left strip loin section was assigned to 

trained sensory analysis, with the remaining portion reserved for rapid evaporative ionization 

mass spectrometry (REIMS). The steak from the right strip loin section was assigned to shear 

force analysis. Steaks were individually vacuum packaged, aged (34C) for 14 d postmortem, 

and frozen (-20C) until analysis. Selection criteria from each carcass type was as follows: 

 Select 

 Select sections were chosen from A maturity carcasses with Sl00-Sl99 marbling scores and 

an overall USDA Select quality grade. Only carcasses presenting typical beef-type characteristics 

were included to avoid dairy-type and bos indicus influence. Additionally, carcasses were 

visually free of dark cutting characteristics. 

Low Choice 

 Low Choice sections were chosen from A maturity carcasses with Sm00-Sm99 marbling 

scores and an overall USDA Low Choice quality grade. Only carcasses presenting typical beef-

type characteristics were included to avoid dairy-type and bos indicus influence. Additionally, 

carcasses were visually free of dark cutting characteristics. 

Top Choice 

 Top Choice sections were chosen from A maturity carcasses with Mt00-Md99 marbling 

scores and an overall USDA quality grade of either Average or High Choice. Only carcasses 

presenting typical beef-type characteristics were included to avoid dairy-type and bos indicus 

influence. Additionally, carcasses were visually free of dark cutting characteristics. 
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Prime 

 Prime sections were chosen from A maturity carcasses with SlAb00-Ab99 marbling scores 

and an overall USDA Prime quality. Only carcasses presenting typical beef-type characteristics 

were included to avoid dairy-type and bos indicus influence. Additionally, carcasses were free of 

dark cutting characteristics. 

 Dark Cutter 

Dark cutter sections were chosen from dark cutting A maturity carcasses with Sm00-Md99 

marbling scores. Only carcasses presenting typical beef-type characteristics were included to 

avoid dairy-type and bos indicus influence. Additionally, carcasses produced dark cutting 

characteristics. 

Grass-fed 

Grass-fed sections were chosen from lots of beef-type cattle known to have been fed a 

grass diet for the entirety of their lives. Additionally, carcasses were A maturity with Sm00-Md99 

marbling scores and an overall USDA Choice quality grade. Additionally, carcasses were 

visually free of dark cutting characteristics. 

Wagyu 

Wagyu sections were selected from crossbred Wagyu cattle (50% Wagyu, 50% Angus). 

Carcasses were A maturity with SlAb00-Ab99 marbling scores and were visually free of dark 

cutting characteristics. 

Trained Sensory Analysis 

 Before cooking, frozen sensory steaks were thawed at 0-4C for 16-24 h. Steaks were 

cooked in a commercial steam convection oven (Model SCC WE 61 E; Rational, Landsberg am 

Lech, Germany) set at 204C and 0% humidity to a peak internal temperature of 71C. Steak 
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temperature was monitored during the cooking process in the geometric center of a single steak 

using the oven core temperature probe (Model SCC WE 61 E; Rational, Landsberg am Lech, 

Germany). After cooking, the peak temperature of each steak was measured in the geometric 

center of each steak using a probe thermometer (SPLASH-PROOF SUPER-FAST® 

THERMAPEN®, ThermoWorks, Lindon, UT). Steaks were trimmed of all external fat and 

connective tissue, sized into 1 cm2, and served to trained panelists. All panelists were trained to 

evaluate tenderness, juiciness, beef flavor ID, browned, roasted, metallic, fat-like, buttery, 

umami, sour, bitter, burnt, livery, green/hay-like, and rancid flavor attributes on a 100 mm 

unstructured line scale verbally anchored at both end (0 = extremely tough, extremely juicy, not 

present; 100 = extremely tender, extremely juicy, extremely intense) adapted from the beef 

flavor lexicon described by Adhikari et al. (2011). Attributes and references are presented in 

Table 3.1. 

Two sensory sessions were conducted a day. For each session, six panelists evaluated 10-

11 individual samples over 28 sensory sessions. Samples were assigned randomly to panels so 

that three complete replications were analyzed per sensory day, with 11 samples being served on 

odd panel sessions and 10 samples being served on even panel sessions. Before sample 

evaluation, a warm-up sample was served at the beginning of each session in order to keep 

panelists calibrated. Warm-up samples were USDA Low Choice strip steaks cooked using the 

same parameters as experimental steaks. A consensus among warm-up steak attributes was 

agreed upon by panelists before moving forward with remaining samples. 

Shear Force 

 Both Warner-Bratzler (WBS) and slice shear force (SSF) measurements were obtained 

from every steak using procedures described by Lorenzen et al. (2010). Within 5 min of 
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recording peak internal temperature, a 1 cm  5 cm slice was removed from the steak parallel to 

the muscle fibers from the lateral end and sheared perpendicular to the muscle fibers, using a 

universal testing machine (Instron Corp., Canton, MA) equipped with a flat, blunt-end blade 

(crosshead speed: 500 mm/min, load capacity: 100 kg), resulting in a single SSF measurement 

for each steak. The remaining portion of each steak was allowed to equilibrate to room 

temperature (22°C) and at least 4 cores (1.2 cm in diameter) were removed from each steak 

parallel to the muscle fibers. Each core was sheared perpendicular to the muscle fibers using a 

universal testing machine (Instron Corp., Canton, MA) fitted with a Warner-Bratzler shear force 

head (crosshead speed: 200 mm/min, load cell capacity: 100 kg). Peak shear force of each core 

was recorded, and the resulting values were averaged to obtain a single WBSF measurement for 

each steak. 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) 

 Metabolomic fingerprint profiling of strip loin sections was performed using rapid 

evaporative ionization mass spectrometry (REIMS). Before analysis, REIMS samples were 

thawed at 0-4C for 16-24 h. Sample were analyzed using a Synapt G2 Si Q-ToF, fitted with a 

REIMS ionization source coupled with an iKnife sampling device (Waters Corporation, Milford, 

MA). Five burns per sample were collected in negative ion mode, with each burn lasting roughly 

1 sec. The burns from each sample were collected from a 2.54  2.54 cm square from the center 

of the steak (Figure 3.1). The relative abundance values from the 5 burns were averaged to create 

a single value for each sample. Data were collected in the mass range from100-1,000 m/z. Data 

were preprocessed to include lock mass correction (leucine enkephalin), background subtraction, 

and normalized to the total ion current. Additionally, individual peaks were binned in intervals of 

0.5 m/z starting with 100.25 and ending with 999.75 for a total of 1,800 variables. Data binning 
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is a technique used to account for minor errors during data collection. Leucine enkephalin has a 

molecular weight of 555.632 g/mol and its detection would interfere with neighboring 

components. Therefore, mass bins in the range of 550-600 were excluded from the data matrix 

for a total of 1,700 mass bins used for analysis. 

Statistical Methods 

Trained Sensory Panel Ratings and Shear Force Values 

 Although the objective of the study was not to characterize sensory attributes or shear 

force values specific to the carcass types, mean sensory ratings and shear force values are 

provided for reference (Tables 3.2 and 3.3). Sensory data were fit to a linear mixed model to 

evaluate differences among carcass types using the lmer function of the lme4 package in R (R 

Core Team, 2018). Before analysis, individual panelist ratings were averaged per sample so that 

each sample was analyzed using a single value for each attribute. The model was fit using 

carcass type as the main effect, sensory session and sample feed order as random effects, and 

peak cooking temperature as a covariate. Shear force data was also analyzed using a linear mixed 

model with carcass type serving as the main effect and peak cooking temperature included as a 

covariate. 

Composite Sensory Scores 

 In order to evaluate the ability of REIMS to predict samples with similar eating 

characteristics, principle component analysis (PCA) was used to calculate overall sensory scores 

using the PCA function of the FactoMineR package in R (R Core Team, 2018). Principal 

component analysis is a statistical tool that can be used to detect clusters of related samples in a 

multivariate data set. This method can take highly collinear multivariate data and finds 

uncorrelated linear relationships in a multi-dimensional space by calculating new latent 
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variables, called principal components. By default, the first principal component explains the 

greatest amount of variation within the data set, followed by the second component, and so forth. 

Additionally, PCA has the capacity to detect predictor variables that drive differences in the 

values of the newly calculated principal components. For each principal component, a coefficient 

is assigned to each variable and that coefficient is applied to its respective variable for each 

sample. It is the summation of these coefficient-multiplied variables that become the new latent 

variables, or scores. From a sensory standpoint, this allows for the ability to identify individual 

samples with similar or dissimilar overall sensory characteristics. Using these concepts of PCA, 

scores from principal components were used to assign samples into categories based on overall 

sensory characteristics. Two separate PCAs were calculated: one including all measured sensory 

attributes (overall) and one including only flavor attributes. Sensory responses were center scaled 

prior to modeling. Hierarchical clustering analysis was performed on the factor scores of the 1st 2 

components of each model to identify groups of observations with similar characteristics. Each 

scores plot was clustered into 3 groups and identified as positive, neutral, and negative. 

Predictive Model Descriptions 

 Several predictive models were evaluated to assess capabilities of REIMS for numerous 

beef grading and classification scenarios. Modeling objectives included: identification of carcass 

type, sensory prediction, and shear force tenderness classification. Seven total prediction models 

were evaluated: 1) carcass type, 2) overall sensory 3 class, 3) overall sensory 2 class, 4) flavor 3 

class, 5) flavor 2 class, 6) WBS tenderness, 7) and SSF tenderness. 

 The original carcass type model was fit using the 7 individual carcass type classifications 

as described above. Due to severe overlap in the misclassification of Select and Low Choice, as 

well as, Top Choice and Prime predictions, the decision was made to combine these groups of 
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carcass types to create 2 new classification categories: Select/Low Choice and Top 

Choice/Prime. Additionally, in the current study, these treatments produced similar sensory 

responses from trained panelists (Table 2). Therefore, a reduced model to predict carcass type 

included 5 total classification categories: Select/Low Choice, Top Choice/Prime, Dark Cutter, 

Grass-fed, and Wagyu. 

 Both overall sensory and flavor models were fit using the 3 classes as described above. 

Additionally, a second reduced model was built for each by combining neutral and negative 

responses and labeling the aggregating class negative, resulting in a model with a binary 

positive/negative response. Sensory classes were reduced in this manner to identify the ability of 

REIMS Samples were classified as either tough or tender based on SSF and WBS values. Tender 

classification was assigned to any sample receiving a shear force value  3.9 kg or 15.4 kg for 

WBS or SSF, respectively (ASTM F2925-11). Tough classification was assigned to any sample 

receiving shear force values greater than the aforementioned tender threshold. 

Model Building 

 Data preprocessing and splitting into training and testing sets was similar for each model. 

Models were built and classifications predicted using PLS-LDA. Using this method, PLS 

reduced dimensionality and collinearity within the data set before classification with the LDA 

model by using individual scores values from a predetermined number of PLS components as 

input for LDA. Before fitting the model, variables with correlation coefficients  0.90 were 

identified. Of the highly collinear pairs, one was removed from the data set, reducing the number 

of mass bins to 1,332. Mass bins were then log transformed to address skewness of data 

distributions, mean centered, and unit variance scaled so that each variable had a mean of zero 

and an equal distribution. Eighty percent of the pre-processed data were then randomly selected 
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to train the models, with the remaining 20% set aside to test the prediction accuracy of the newly 

developed models. Splitting of the data was performed separately for each model so that each 

classification category could be evenly distributed between training and testing sets. Prediction 

models were fit using the pls.lda function from the plsgenomics package in R (R Core Team, 

2018). The number of PLS components used as inputs for LDA was determined to maximize the 

predictability of the test data set. The advantage in discriminating power of coupling PLS with 

LDA can be observed in Figure 3.2. Table 3.4 presents the number of PLS components used and 

prediction accuracies for the final models. 

Measure of Predictive Abilities 

 Several measures were calculated to evaluate predictive ability of each model using the 

predictions of the model built with the training set on the test set. Two measures were calculated 

to evaluate the overall predictive abilities of each model: overall prediction accuracy and 

balanced prediction accuracy. Overall prediction accuracy was calculated as the number of true 

positives divided by the total number of samples over all classes. However, if class imbalance 

exists in the data set, overall prediction accuracy can be biased towards dominant classes. For 

that reason, balanced prediction accuracy was also calculated for each model to provide a more 

realistic representation of a model’s predictive ability. Balanced prediction accuracy was 

calculated as the average accuracy of each class. Sensitivity and precision were calculated on a 

class-by-class basis. Sensitivity is determined as the number of true positives divided by the 

number of true positives plus false negatives. It is essentially the accuracy of each individual 

class. Sensitivity does not, however, take false positives into consideration; therefore, precision 

was calculated for each class in conjunction with sensitivity. Precision is equal to the number of 

true positives divided by the number of true positives plus false positives. 
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Results and Discussion 

Carcass Type Classification 

Balanced prediction accuracy was 59.7% (Table 3.5) when all 7 carcass types were 

included as response variables in the prediction model. Wagyu carcasses were predicted with 

100.0% sensitivity and 100.0% precision. Therefore, not only was REIMS output able to 

correctly identify every Wagyu carcass, but it also did not misclassify any carcasses as Wagyu. 

Grass-fed carcasses were also predicted with 100.0% sensitivity; however, they had a decreased 

rate of precision (80.0%). REIMS output correctly identified each Grass-fed carcass as such; 

however, it also produced 2 false positive Grass-fed carcasses (1 Low Choice and 1 Prime). Dark 

Cutters were predicted with 75.0% sensitivity, but showed increased precision (85.7%). These 

carcasses were selected to have a wide range in the severity in the visual appearance of dark 

cutting characteristics. Out of all carcass types, Dark Cutters provided the greatest variation in 

sensory ratings. Therefore, misclassification of this treatment group may have been related to the 

severity of the dark cutting condition.  

Although misclassification was minimal for Wagyu, Grass-fed, and Dark Cutter carcass 

types, the carcass types associated with the general USDA quality grades (Select, Low Choice, 

Top Choice, and Prime) suffered from severe misclassification rates. Of the 22 carcasses 

misclassified, 17 of the misclassifications occurred within Select, Low Choice, Top Choice, and 

Prime carcasses. Among these treatments, the model showed the greatest predictive ability to 

correctly predict Prime carcasses. Prime carcasses were predicted with 50.0% sensitivity and 

66.7% precision. Interestingly, the model showed propensity to classify unknown samples as 

Top Choice, with 12 of 55 carcasses being predicted as Top Choice. Furthermore, of these 12 

samples, 9 were false positives. Both Select and Low Choice carcasses were predicted with 
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25.0% sensitivity and 33.3% precision. As shown by the projection of linear discriminant scores 

on the training set, the model easily produces clusters of Wagyu, Grass-fed, Dark Cutter, and 

Prime carcasses; however, severe overlap remains among Select, Low Choice, and Top Choice 

within the first 4 linear discriminants (Figure 3.2). 

In addition to misclassification of Select, Low Choice, Top Choice, and Prime carcasses, 

trained sensory means showed only minor differences between Select and Low Choice carcasses, 

as well as, between Top Choice and Prime carcasses (Table 3.2). Although each group of 

carcasses would provide differences in merchandising value, only minimal differences in 

marbling score exist between adjacent USDA quality grades. Eating quality generally improves 

as marbling score increases (Emerson et al., 2013); however sensory similarities among 

neighboring quality grades can occur (Martinez et al., 2017). In the current study, Prime and Top 

Choice steaks were rated similarly (P > 0.05) for tenderness, juiciness, beef flavor ID, browned, 

buttery, metallic, umami, sour, and green/hay-like flavor notes. Low Choice and Select steaks 

were rated similarly (P > 0.05) for tenderness, browned, fat-like, buttery, umami, sour, and 

green/hay-like flavor notes. The remaining carcass types (Dark Cutter, Grass-fed, and Wagyu) 

provided unique sensory profiles to each other. For several attributes, Dark Cutter carcasses were 

similar (P > 0.05) to Select, including tenderness, beef flavor ID, browned, buttery, umami, 

livery, and green/hay-like. However, Dark Cutter carcasses had the greatest (P < 0.01) rancid 

flavor intensity of all 7 carcass types. Additionally, Dark Cutter carcasses had greater (P < 0.01) 

fat-like intensity and lower (P < 0.05) metallic and sour intensities compared to Select carcasses.  

Therefore, a second prediction model was built to evaluate REIMS’ ability to predict 

carcass type when stratified by similarities in sensory attributes. This second model combined 

Select and Low Choice, as well as, Top Choice and Prime before model fitting, for a total of 5 
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carcass type categories: 1) Select/Low Choice, 2) Top Choice/Prime, 3) Dark Cutter, 4) Grass-

fed, and 5) Wagyu. Re-fitting the model to these classes increased balanced prediction accuracy 

to 83.8% (Table 3.6), with particular improvement in the prediction of Select/Low Choice and 

Top Choice/Prime carcasses. As shown in Figure 3.3, the first 4 linear discriminants of the 

reduced training model clearly separated each of the 5 classes. Select/Low Choice samples were 

predicted with 87.5% sensitivity and 73.6% precision. The 2 misclassified Select/Low Choice 

samples were predicted as Top Choice/Prime. However, the model predicted 5 false positive 

Select/Low Choice samples including 3 Dark Cutters, 1 Top Choice/Prime, and 1 Grass-fed. 

Only a single Top Choice/Prime sample was misclassified, which was predicted to be 

Select/Low Choice. Similar to the previous model, Wagyu carcasses were predicted with both 

100.0% sensitivity and precision, clearly showing a unique metabolomic fingerprint as identified 

by REIMS. Grass-fed and Dark Cutter carcasses were predicted with 100.0% precision, 

indicating that no carcasses were misclassified as either carcass type. However, 1 Grass-fed 

carcass was misclassified as Select/Low Choice and 3 Dark Cutters were misclassified as 

Select/Low Choice; resulting in sensitivity of 87.5% and 62.5%, respectively. 

Although both models used the same observations for Dark Cutter and Grass-fed carcass 

types, differences in prediction measurements differed between the 2 models. Depending on 

model parameters, a prediction model can be attracted to one category over the other, altering 

prediction accuracy of not only the entire model, but also within individual classes. Therefore, 

parameters could be altered to focus on a specific category or categories that may be of greater 

interest. In the case of a packer wanting to verify Grass-fed carcasses, model parameters could be 

altered to favor specificity and sensitivity in predicting Grass-fed beef, specifically. This would 

likely result in a low overall accuracy; however, it may better fit the objective of that specific 
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scenario. Although REIMS struggled to predict assigned carcass types, reducing the model by 

combining carcass types with similarities in mean sensory ratings increased balanced prediction 

accuracy by nearly 25 percentage points. Future work needs to be done to further evaluate this 

observation; however, it may suggest that REIMS has the ability to appropriately segregate 

carcasses based on sensory profiles as opposed to USDA quality grade. Although this proof of 

concept study does not provide prediction accuracies needed for industry application, it does 

present the ability of REIMS to identify metabolomic differences in meat tissues. 

Current instruments approved to determine marbling scores do so by capturing an image 

of the entire ribeye exposed between the 12th and 13th ribs. REIMS, on the other hand, only 

captures a small a subsample (as little as a few cm) of the ribeye (Figure 3.1). Thus, REIMS is 

affected by the heterogeneity of marbling distribution, which would be expected to make an 

accurate marbling score prediction problematic. However, unlike human graders or grading 

cameras, REIMS provides a metabolomic fingerprint of the ribeye, allowing for discrimination 

based on factors including muscle lipid profiles, of both neutral and phospholipids. This type of 

online measurement could be beneficial in identifying specific eating quality and biological 

differences among carcasses. Although marbling score and USDA quality grade generally 

segregate carcasses into meaningful groups differing in eating quality attributes, variability still 

exists, especially with lower quality grades and marbling scores (Emerson et al., 2013). The 

current USDA quality grading system does not have the capacity to determine differences in 

characteristics including production background, breed-type, and other biochemical components 

of muscle tissue. At this point, the objective is not to replace the current grading system with 

REIMS, but rather use REIMS to augment the current grading system by providing the ability to 
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identify and predict beef quality parameters using carcass or muscle characteristics that cannot 

be visually assessed. 

Wagyu, Grass-fed, and Dark Cutter carcasses were selected to have marbling scores 

within ranges to allow for the comparison with the USDA quality grades, so that variation 

stemming from total fat content would be minimized and discrimination could be based on other 

compositional components. Although Wagyu carcasses generally provide marbling scores that 

exceed those established by the USDA, those selected for the current study had marbling scores 

necessary for the USDA Prime quality grade (SlAb00-Ab99). Both Grass-fed and Dark Cutter 

carcasses were selected to have marbling scores necessary for the USDA Choice quality grade 

(Sm00-Md99). Previous studies have shown REIMS has the ability to correctly identify different 

beef breeds, as well as, different fish species (Balog et al., 2016; Black et al., 2017; respectively). 

Similar to past results, the current data provide high sensitivity in predicting Wagyu and Grass-

fed beef. Although the exact genetic background of Prime carcasses is unknown, all carcasses 

were selected to be visually free of dairy-type or bos indicus influence. However, Wagyu 

carcasses were verified to have 50% Wagyu and 50% Angus genetics. Although the current 

study does not provide an adequate design to completely evaluate breed-type discrimination, 

future work to evaluate REIMS’ ability to identify different extents of breed influence could 

provide beneficial. Grass-fed beef garners significant premiums at retail. For the month of June 

2018, Grass-fed beef ribeye steaks received an average premium of $8.62 per pound over 

commodity beef at retail (USDA-AMS, 2018). Gathering such a significant premium, 

verification could be beneficial for both retailers and consumers. The ability to objectively 

validate Grass-fed beef by its metabolomic profile at the time of grading would provide packers 

with a verification process that would not rely on a paper certification process or the need to 
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closely monitor Grass-fed carcasses throughout the entire process of harvest, chilling, and 

grading.  

Within both prediction models, the only misclassified Dark Cutter carcasses were 

predicted to either be Select or Select/Low Choice. According to the USDA grading standards, a 

dark cutting carcass can be discounted an entire quality grade depending on the severity of dark 

cutting characteristics (USDA, 2017). Dark Cutter carcasses were selected based on the visual 

appearance of dark cutting characteristics and marbling score, without regard to the applied 

USDA quality grade. Therefore, carcasses misclassified as Select could have had a final USDA 

quality grade as such. Because of the dark lean color, dark cutting beef is easily assessed by 

human and instrument graders. The ability for REIMS to identify general dark cutting carcasses 

is not of much immediate interest. However, the segregation of Dark Cutter carcasses from 

Grass-fed, Low Choice, and Top Choice carcasses provides evidence that there are metabolomic 

characteristics of dark cutting carcasses that could prove to be important biomarkers to aide in 

further understanding of the causes of dark cutting beef. Because dark cutting is a significant 

quality defect and dark cutting carcasses receive severe discounts, research has endeavored to 

identify animals susceptible to dark cutting to provide proactive preventative measures. 

However, prediction of dark cutting carcasses from live animal phenotype leaves much to be 

understood (Mahmood et al., 2016). 

Overall Sensory Classification 

Figure 3.4 provides PCA factor scores and loadings for the first 2 components built from 

tenderness, juiciness, and flavor sensory ratings. Half (50.4%) of the variation in sensory 

attributes was captured in the first component, which was primarily driven by tenderness and 

moderately driven by juiciness, fat-like, beef flavor ID, buttery, and umami flavor notes. The 
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scores plot shows a general distribution by carcass type based on mean values; however, there 

was no obvious clustering of treatments based on sensory ratings. This shows each carcass type 

had within treatment variability of sensory characteristics. Principal component scores plots 

show similarities within a data set, regardless of treatment assignment (Bro and Smilde, 2014). If 

two observations are plotted near one another, it is an indication that they have similar values for 

their combinations of all response variables. In Figure 3.4, closely placed observations would 

have similar ratings for all sensory attributes, thus indicating samples with similar eating 

characteristics overall. Hierarchical clustering of principal component scores allowed for a 

systematic determination of samples with similar factor scores. Clustering divides observations 

into groups so that each member within a group is strongly related to each other, but weakly 

related to observations within other groups (Astel et al., 2007). Therefore, clustering of principal 

components was determined to be an appropriate method to classify samples into groups based 

on projected sensory characteristics, with complete disregard to carcass type. The assignment of 

observations into overall sensory groups based on clustering is presented in Figure 3.5. Although 

Dark Cutter samples generally fall on the left side of the plot and Wagyu samples on the right 

side, comparison of the two factor scores plots show each carcass type had observations fall 

within each overall sensory category. 

The overall sensory model with 3 classes (positive, neutral, and negative) produced a 

balanced prediction accuracy of 56.1% (Table 3.7). Sensitivity and precision decreased as 

samples were predicted from positive to negative. Although prediction accuracy was low, almost 

the entirety of misclassification occurred between neighboring classes (i.e., positive vs neutral 

and negative vs neutral). No positive samples were misclassified as negative; whereas, only 1 

negative sample was misclassified as positive. In a scenario to identify top performing carcasses 
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and apply premiums, the current model would nearly guarantee the exclusion of low performing 

carcasses. In a similar situation in which low performing carcasses were being identified for 

exclusion, no top performing carcasses would be wrongly discounted. The ability for a packer or 

retailer to further guarantee a positive eating experience past the capabilities of USDA quality 

grade could provide advantages in added value, as well as increased trust in a brand and 

consumer loyalty. 

Use of hierarchical clustering of principal components of trained sensory data to assign 

an overall eating classification has not been attempted before. Therefore, the classification 

system used would need to be validated by consumers before bold conclusions can be made. 

Consumer sensory panels were not conducted in the current study to validate this classification 

system, but Table 3.8 provides mean trained sensory scores based on the predicted overall 

sensory classification that was assigned during the prediction of the test data set from the training 

model. Although misclassification error was high during prediction, sensory attributes of 

samples into predicted classes showed logical separation. Samples classified as positive received 

greater (P < 0.05) ratings for tenderness, juiciness, beef flavor ID, fat-like, and umami and lower 

ratings (P < 0.05) for sour and green/hay-like attributes than samples classified as negative. 

Neutral samples were rated similarly (P > 0.05) to positive samples for beef flavor ID, sour, and 

green/hay-like, but similarly (P > 0.05) to negative samples for tenderness, juiciness, fat-like, 

buttery, and umami. 

Plotting the linear discriminant scores of the training model show general separation of 

overall sensory classes, but noticeable overlap still exists (Figure 3.6). Although visualization of 

the training set showed decent separation, test error will be equal to the training error at best, but 

will usually be greater (Ghatak, 2017). Issues with overlapping observations plagues almost all 
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applied predictive models (Kuhn and Johnson, 2016). Even when mean values differ between 

treatments, it is not uncommon for individual observations to have similar characteristics with 

one or more observations from another treatment. Typically, it is within these regions of overlap 

were misclassification occurs (Xiong et al., 2010). In this scenario, predicted class probabilities 

are usually calculated to be nearly equal, but many models default to assigning an observation to 

the class with the greatest probability, even if there is only a miniscule difference. For example, 

in a binary response prediction problem, the model usually defaults to whichever class has a 

probability greater than 0.5. Depending on the objectives of the modeler, the minimum 

probability requirement can be increased to add further certainty that an observation truly 

belongs to an assigned class. Although this would exclude some true positives, it would further 

guarantee true negative samples were identified as such. Using the example of marketing beef 

with a guaranteed positive experience, increasing the minimum probability for class assignment 

would further guarantee a customer received beef with a guaranteed positive eating experience. 

Increasing the minimum probability for classification would inevitably restrict some positive 

beef from receiving premiums due to normal prediction error. But, it would further guarantee 

that a customer paying a premium for a positive eating experience would not be disappointed 

with a low performing product, thus earning customer trust, satisfaction, and repeated business. 

Due to class overlap, a second overall sensory model was built by combining neutral and 

negative samples, creating a binary response of positive and negative. The reduced model 

provided a balanced prediction accuracy of 75.43% (Table 3.9). Negative samples were correctly 

classified with 89.7% sensitivity, whereas, positive samples were only classified with 61.1% 

sensitivity. If the current binary model were used in application, 26.6% of samples predicted as 

positive would actually be negative. This error rate would likely be too large for utilization into a 
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branded program or quality control setting. Although overall prediction accuracy was lower with 

the 3-class model, only 5.2% of samples predicted as positive were actually negative. This level 

of error would prove to be much more appropriate in segregating beef carcasses into eating 

quality groups, irrespective of marbling score. Although carcasses with modest degrees of 

marbling and greater have less than a 10% chance of providing a negative eating experience, 

acceptability becomes increasingly more variable as marbling score decreases (Smith et al., 

2008). Therefore, a method to identify high and low performers, especially within lower quality 

grades, could add value and consistency in the way that beef is marketed. The current model 

includes beef representing a wide range of marbling scores, but future work would benefit from 

focusing purely on predicting variation in consumer acceptability of lower quality beef. 

Flavor Prediction 

The same approach to assign samples into overall sensory classes was used to assign 

samples into flavor classes using hierarchical clustering of PCA factor scores. However, for 

flavor class assignment, tenderness and juiciness ratings were excluded from the PCA model in 

order to more precisely evaluate the ability of REIMS to predict flavor differences. The flavor 

PCA explained 43.4% of variation in the first component (Figure 3.7). Slightly greater trends in 

clustering of samples by treatment were observed, particularly with the general clustering of 

Wagyu carcasses in the bottom right quadrant, which is strongly influenced by fat-like, buttery, 

and umami flavor attributes. Beef flavor ID intensity provided the largest influence on factor 

scores in component 1, with browned, roasted, fat-like, buttery, and umami having moderate 

influence on the projection of factor scores in the same direction of component 1. Sour and 

metallic had the strongest negative contribution to component 1. Within component 2, roasted 

and fat-like showed a strong negative relationship to one another. Although it is likely that there 
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is a moderate association between tenderness and flavor attributes, there is a shift in the 

contribution of the individual flavor attributes between the overall sensory and flavor PCAs. The 

determination of flavor classes (positive, neutral, and negative) by cluster analysis is presented in 

Figure 3.8. 

Similar to the overall sensory model, balanced prediction accuracy of the flavor model 

was 55.6% (Table 3.10). Projection of the linear discriminants generally separated classes, but, 

again, significant regions of overlap remained among all classes (Figure 3.9). Of the 3 classes, 

neutral samples were classified with the greatest sensitivity (66.7%). Positive prediction 

sensitivity was only 55.0%; however, no negative samples were predicted as positive. Similar to 

the overall sensory model, overall balanced prediction accuracy was low, but in a scenario to 

select top performing carcasses, the 3-class flavor model would successfully exclude all negative 

samples from a positive classification. In a similar manner as stated above, a model of this nature 

could appropriately assign carcasses to a group free of low performing flavor samples. This 

model showed greater difficulty in identifying negative samples. Negative sensitivity was only 

44.4%, with a precision of 40.0%. When sensory scores were analyzed between samples based 

on their predicted assignment into flavor classes, those predicted as positive had greater (P < 

0.05) browned, fat-like, buttery, and umami intensities and lower (P < 0.05) metallic intensities 

than those samples predicted as negative (Table 3.11). 

Again, a second flavor model was built combining neutral and negative samples, creating 

a binary response of positive and negative. The reduced model provided a balanced prediction 

accuracy of 70.3% (Table 3.12). Negative samples were predicted with 79.5% sensitivity, 

whereas, positive samples were predicted with 61.1% sensitivity. Of the samples predicted as 

positive, over 40.0% were actually negative. With this level error in predicted positive samples, 
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this model would not provide the industry with enough confidence to predict flavor in this 

manner. In the current study, REIMS presents a slight advantage in predicting an overall sensory 

classification when tenderness, juiciness, and flavor attributes are included in the model. This 

indicates that there is some level of independence between factors affecting tenderness and 

juiciness, and those affecting flavor alone. Partial justification for the observed difference in 

accuracy may be explained by the eigenvalues of the principal components. A greater amount of 

variation was explained by the first 2 components of the overall model in comparison to the 

flavor model (67.0% vs 60.6%, respectively) that was used in the cluster analysis. Regardless, 

methods used to assign classes for both models left significant portions of variation unaccounted 

for. Evaluation of other methods to assign a composite trained sensory score could prove 

beneficial for prediction accuracy. 

Tenderness Classification 

Figures 3.10 and 3.11 show the distribution of SSF and WBS designated into tender and 

tough classes, respectively. REIMS metabolomic profiles were able to predict SSF and WBS 

tenderness categories with comparable overall accuracies (75.4% and 70.2%, respectively; 

Tables 3.13 and 3.14). Slice shear force is a more accurate and simpler method of predicting 

tenderness (Wheeler et al., 2004); thus it would be expected for SSF to be more predictable. 

Tender samples were predicted with a precision of 78.3%, showing potential for REIMS to 

effectively segregate carcasses into tender groups. REIMS predicted tough samples with 83.3% 

sensitivity, but with a decreased precision (73.5%). The WBS model had lower precision in 

predicting both tender and tough samples compared to the SSF model (72.4% and 67.8%, 

respectively), making the WBS less effective in predicting beef tenderness. Furthermore, with a 

smaller relationship to sensory tenderness, the WBS model would be expected to provide further 
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error in predicting consumer tenderness (Shackelford et al., 1999). Tenderness is a highly valued 

beef attribute and studies indicate consumers’ ability to detect tenderness differences and a 

willingness to pay premiums for tender beef (Boleman et al., 1997; Miller et al., 2001; Platter et 

al., 2013). The USDA has standards in place for guaranteed tender programs based on SSF 

values (ASTM F2925-11), but it is perceived as too time consuming and destructive for industry 

application (Wheeler et al., 2002). Several instrument methods to predict tenderness have been 

evaluated that are less destructive and could be implemented at line speeds, but have yet to be 

developed for industry use (Park et al., 1998; Belk et al., 2001; Vote et al., 2003; Konda et al., 

2008). 

Of these methods, near-infrared reflectance (NIR) has produced the greatest results. Park 

et al. (1998) segregated samples into 2 WBS categories:  6 kg and  6 kg. The authors reported 

a similar overall accuracy as reported in the current study (79% vs 75%, respectively). However, 

in contrast to the current study, Park et al. (1998) had greater sensitivity in classifying tender 

samples and lesser sensitivity in classifying tough samples. Additionally, the cutoff WBS shear 

force value chosen is well above the ASTM’s determination of a tough sample (4.4 kg). 

Therefore, it is difficult to determine the ability of their model to appropriately segregate tough 

and tender samples. Price et al. (2008) also evaluated the ability of NIR in predicting beef 

tenderness using cutoff values similar to those used in the current study for SSF (tender =  16 

kg, intermediate = 16 to 25 kg, and tough =  25 kg; Price et al., 2008). The authors reported 

NIR accurately predicted 92.9% of tough samples; however, the paper makes no reference to the 

prediction accuracies of the other 2 tenderness categories. 

More recently, hyperspectral imaging has gained attention as an instrument to predict 

beef tenderness with high accuracy. Calculated as the percent of truly tender samples out of all 
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samples predicted tender, Naganathan et al. (2016) reported tenderness certification accuracy of 

87.6%. However, this accuracy metric is terribly misleading due to tenderness class imbalance. 

The model reported misclassified 41.0% of tender samples and 40% of tough samples, showing a 

severe lack of both sensitivity and specificity of the instrument in identifying tough samples 

(Konda Naganathan et al., 2016). A similar study published with collaboration from several 

authors of the Naganathan et al. (2016) paper reported an overall tenderness prediction accuracy 

of 89.8% using hyperspectral imaging (Nubiato et al., 2018). In this study, no reference of 

segregation of samples into a training and test was mentioned and it is assumed that accuracy 

measurements were calculated by cross-validation, which is generally an overestimation of 

model robustness. Additionally, no reference is made to the distribution of tough and tender 

samples. Therefore, caution needs to be taken when comparing the effectiveness of REIMS to 

hyperspectral imaging. 

Conclusion 

Eating satisfaction is critical for consumers to repeatedly purchase beef and increase 

consumer demand. Various avenues (i.e., the USDA grading system and branded beef programs) 

have been extensively developed to segregate beef that will provide consistent eating 

characteristics, so consumers feel confident in the beef they purchase. Although these programs 

have become very successful and generally meet this objective, it is not uncommon for 

consumers to have negative eating experiences, even when purchasing quality grades or brands 

they trust. Today, carcasses are graded and assigned into branded programs mainly from visual 

assessments of carcass characteristics and other indicators of animal age, background, or breed. 

However, there are numerous molecular components that influence beef eating quality that 

cannot be visually assessed or measured by a camera. Technologies like gas or liquid 
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chromatography, nuclear magnetic resonance, histology, and Raman spectroscopy allow for the 

ability to measure some of these molecular attributes; however, they require laborious sample 

preparation, long analysis times, or sometimes both. REIMS is unique to these technologies in its 

ability to provide a detailed and high-resolution metabolic profile in a matter of seconds without 

the need for sample preparation, allowing for its adaption into an on-line application. 

The current project provides an initial evaluation for the efficacy of REIMS technology 

to determine various beef carcass characteristics. This relatively new mass spectrometry method 

is the first of its kind to exhibit the ability to completely process a metabolomic fingerprint from 

sample collection to classification prediction within seconds, making it a viable consideration for 

on-line application in beef packing facilities. The current study shows REIMS can predict 

carcass type, shear force values, and general sensory characteristics with moderately high 

accuracy. Previous studies evaluating the predictive capacity of REIMS have reported nearly 

perfect accuracy in their respective classification problems (Balog et al., 2010; St John et al., 

2017; Verplanken et al., 2017). However, these studies evaluated responses with more defined 

differences than many of those used in the current study. Nevertheless, the current study showed 

REIMS to have the capability to identify Grass-fed and Wagyu carcasses with 100% accuracy. 

Classification accuracy of other beef carcass types was improved when treatments were stratified 

into groups with similar mean trained sensory attributes, suggesting an ability to more 

appropriately determine sensory differences, regardless of carcass type. Furthermore, REIMS 

identified tough versus tender samples based on SSF values with accuracies comparable, if not 

more favorable, to other beef quality prediction instrument candidates. 

The current study presented issues with overlapping samples and cases of class 

imbalance, issues that plague classification efforts across various industries and applications. 
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Future evaluation of appropriate statistical and prediction approaches to appropriately address 

these issues could improve the predictive ability of REIMS. Furthermore, annotation and 

identification of compounds of interest could provide insight into the metabolic components 

related to various beef quality attributes. Regardless, the current study shows REIMS technology 

has the ability to provide a molecular fingerprint of muscle that is useful in predicting beef 

quality characteristics in a way that can be developed for on-line application and potentially 

provide a more meaningful approach to sort carcasses and apply premiums to various products. 

The information gained from this initial evaluation will allow for more focused studies in the 

future.
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Table 3. 1. Definition and reference standards for beef descriptive sensory attributes and their 
intensities rated on a continuous line scale from 0 to 100 adapted from Adhikari et al. (2011). 

Attribute Definition Reference 
Tenderness The overall tenderness of the sample. Brisket steak to 160F = 

Strip loin steak to 160F = 60 
Tenderloin to 160F = 95 

Juiciness The amount of perceived juice that is released 
from the product during mastication. 

Carrot = 55 
Strip steak cooked to 175F = 60 
Strip Steak cooked to 135 = 75 
Watermelon = 95 

Beef Flavor ID Amount of beef flavor identity in the sample. Swanson’s Beef Broth = 35 
Beef Brisket = 80 

Browned Aromatic associated with the outside of grilled 
or broiled meat; seared but not blackened or 
burnt. 

Beef Suet (broiled) = 55 

Roasted Aromatic associated with roasted meat. 80% Lean Ground Chuck = 65 
Fat-Like The aromatics associated with cooked animal 

fat. 
Hillshire Farms lit’l Beef Smokies = 45 
Beef suet (broiled) = 80 

Buttery Sweet, dairy-like aromatic associated with 
natural butter. 

Land O’Lakes Unsalted Butter = 45   

Metallic The impression of slightly oxidized metal, such 
as iron, copper, and silver spoons. 

0.10% Potassium Chloride Solution = 10 
Dole Canned Pineapple Juice = 40 

Umami Flat, salty, somewhat brothy. The taste of 
glutamate, salts of amino acids and other 
molecules called nucleotides. 

0.035% Accent Flavor Enhancer Solution = 
50  
 

Sour The fundamental taste factor associated with 
citric acid. 

0.015% Citric Acid solution = 10 
0.050% Citric Acid solutions = 25 

Bitter The fundamental taste factor associated with a 
caffeine solution. 

0.02% Caffeine Solution = 25 
 

Livery The aromatics associated with cooked organ 
meat/liver. 

Beef Liver = 50  
 

Green/Hay-Like Brown/green dusty aromatics associated with 
dry grasses, hay, dry parsley, and tea leaves. 

Dry parsley = 40 
 

Rancid The aromatics commonly associated with 
oxidized fat and oils. These aromatics may 
include cardboard, painty, varnish, and fishy. 

Wesson Vegetable Oil microwaved 3 min = 
45  
Wesson Vegetable Oil microwaved 5 min = 
60 
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Table 3. 2. Trained sensory ratings1 for beef strip steaks of varying quality treatments. 

Treatment Tenderness Juiciness 

Beef 
Flavor 

ID Browned Roasted 
Fat-
Like Buttery Metallic Umami Sour Bitter Livery 

Green/
Hay-
Like Rancid 

Wagyu2 68.3a 64.8a 41.3a 29.1a 33.5ab 14.2a 7.2a 5.1d 6.6a 3.1c 1.7 0.3d 0.8d 1.9c 

Prime 64.3bc 60.9b 40.4ab 28.0ab 34.3ab 10.1b 4.2b 6.7c 4.9b 4.2b 1.7 0.4d 1.1d 2.0bc 

Top 
Choice 

62.6b 59.3bc 40.9a 26.7bc 33.3ab 9.0c 3.7bc 6.6c 4.5bc 4.6b 1.7 0.6cd 1.1d 2.9b 

Low 
Choice 

59.2d 57.3c 39.0b 26.5cd 34.6a 7.1de 2.4de 7.7b 3.8cd 6.1a 2.0 0.6bcd 1.7bc 2.5bc 

Select 57.2d 55.0d 37.1c 25.2de 33.1b 6.2e 1.7e 8.6a 3.3d 6.9a 1.6 1.0abc 2.0ab 2.4bc 

Grass-fed3 67.8ab 58.9bc 39.0b 25.2de 34.4ab 8.0cd 3.1de 7.0bc 4.7b 4.7b 1.6 1.2a 1.3cd 1.8c 

Dark 
Cutter4 

57.9d 58.0c 35.6c 24.7e 31.6c 7.5d 2.5de 6.3c 3.8cd 4.1b 2.4 1.0ab 2.3a 4.4a 

               
P – Value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.06 < 0.01 < 0.01 < 0.01 

SEM5 1.3 0.9 0.8 0.7 0.6 0.4 0.3 0.3 0.3 0.4 0.2 0.2 0.2 0.4 
abcdeLeast square means in the same row without a common superscript differ (P < 0.05) due to treatment. 
1Attributes were scored using an unstructured line scale anchored at both ends: 0 = very tough, very dry, and not present; 100 = very tender, very juicy, and very intense 
2Wagyu strip steaks were selected from carcasses with Slightly Abundant00 - Abundant99 marbling scores. 
3Grass-fed strip steaks were selected from carcasses with Small00 - Modest99 marbling scores. 
4Dark Cutter strip steaks were selected from carcasses with Small00 - Modest99 marbling scores. 
5Standard error (largest) of the least squares means. 
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Treatment SSF WBS 
Wagyu1 16.77b 3.60d 

Prime 16.08bc 3.97cd 

Top Choice 17.48b 4.10bcd 

Low Choice 18.27b 4.54b 

Select 17.23b 4.30bc 

Grass-fed2 13.94c 3.03e 

Dark Cutter3 22.29a 5.10a 

   
P – Value < 0.001 < 0.001 

SEM4 0.89 0.20 
abcdeLeast square means in the same row without a 
common superscript differ (P < 0.05) due to treatment. 
1Wagyu strip steaks were selected from carcasses with 
Slightly Abundant00 - Abundant99 marbling scores. 
2Grass-fed strip steaks were selected from carcasses 
with Small00 - Modest99 marbling scores. 
3Dark Cutter strip steaks were selected from carcasses 
with Small00 - Modest99 marbling scores. 
4Standard error (largest) of the least squares means. 

Table 3. 3. Slice shear force (SSF) and 
Warner-Bratzler shear force (WBS) values of 
beef strip steaks cooked to 71C from various 
carcass types. 
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Table 3. 4. Prediction model outline for various beef quality attributes produced from 
metabolomic profiles of beef strip steaks collected using rapid evaporative ionization 
mass spectrometry (REIMS). 

Model1 
Classification 

Categories 
Number of PLS 

Components 
Overall Prediction 

Accuracy, % 

Balanced 
Prediction 

Accuracy, % 

Carcass Type 

Wagyu 
Prime 

Top Choice 
Low Choice 

Select 
Grass-fed 

Dark Cutter 

18 60.0 59.7 

Combined 
Carcass Type 

Wagyu 
Prime/Top Choice 
Low Choice/Select 

Grass-fed 
Dark Cutter 

13 87.5 83.8 

Overall Sensory 
(3-Class) 

 

Positive 
Neutral 

Negative 
7 59.7 56.1 

Overall Sensory 
(2-Class) 

 

Positive 
Negative 

5 80.7 75.43 

Flavor (3-Class) 
Positive 
Neutral 

Negative 
7 59.7 55.6 

Flavor (2-Class) 
Positive 
Negative 

4 73.8 70.3 

Slice Shear 
Force 

 
 

Tender 
Tough 

7 75.4 75.0 

Warner-Bratzler 
Shear Force 

Tender 
Tough 

9 70.2 70.2 

1Each model was fit using partial least squares (PLS) as a dimension reduction technique coupled with 
linear discriminant analysis (LDA) for classification. 
2Number of PLS components included as predictor variables for LDA 
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Table 3. 5. Misclassification matrix1 of various beef carcass types as predicted2 by Partial Least Squares-Linear Discriminant 
Analysis using molecular profiles of beef strip steaks collected using rapid evaporative ionization mass spectrometry.  

 Predicted Class     

Reference Class Select 
Low 

Choice 
Top 

Choice Prime 
Dark 

Cutter 
Grass-

fed Wagyu Total 
 

Sensitivity Precision 
Select 2 3 2 1 0 0 0 8  25.0% 33.3% 

Low Choice 0 2 5 0 0 1 0 8  25.0% 33.3% 
Top Choice 1 1 3 1 1 0 0 7  42.8% 25.0% 

Prime 1 0 2 4 0 1 0 8  50.0% 66.7% 
Dark Cutter 2 0 0 0 6 0 0 8  75.0% 85.7% 

Grass-fed 0 0 0 0 0 8 0 8  100.0% 80.0% 
Wagyu 0 0 0 0 0 0 8 8  100.0% 100.0% 

Total 6 6 12 6 7 10 8 55    
            
Overall Prediction Accuracy 60.0%     
Balanced Prediction Accuracy 59.6%     
1Number of samples falling into each respective classification category after prediction. 
2Models were built using 80% of the original data and tested using the remaining 20%. 
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 Predicted Class     

Reference Class 
Select/Low 

Choice 
Top 

Choice/Prime 
Dark 

Cutter 
Grass-

fed Wagyu Total  Sensitivity Precision 
Select/Low Choice 14 2 0 0 0 16  87.5% 73.6% 
Top Choice/Prime 1 15 0 0 0 16  93.7% 88.2% 

Dark Cutter 3 0 5 0 0 8  62.5% 100.0% 
Grass-fed 1 0 0 7 0 8  87.5% 100.0% 

Wagyu 0 0 0 0 8 8  100.0% 100.0% 
Total 19 17 5 7 8 56    

          
Overall Prediction Accuracy 87.5%     
Balanced Prediction Accuracy 83.7%     
1Number of samples falling into each respective classification category after prediction. 
2Models were built using 80% of the original data and tested using the remaining 20%. 

Table 3. 6. Misclassification matrix1 of various beef carcass types as predicted2 by Partial Least Squares-Linear Discriminant 
Analysis using molecular profiles of beef strip steaks collected using rapid evaporative ionization mass spectrometry.  
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Table 3. 7. Misclassification matrix1 of 3 overall sensory categories predicted2 by Partial Least 
Squares-Linear Discriminant Analysis using molecular profiles of beef strip steaks collected 
using rapid evaporative ionization mass spectrometry (REIMS). 

 Predicted Class     
Reference Class3 Positive Neutral Negative Total  Sensitivity Precision 

Positive 13 5 0 18   72.2% 68.4% 
Neutral 5 17 4 26   65.3% 56.6% 

Negative 1 8 4 13  30.7% 50.0% 
Total 19 30 8 57      

        
Overall Prediction Accuracy 59.6%  
Balanced Prediction Accuracy 56.1% 
1Number of samples falling into each respective classification category after prediction. 
2Models were built using 80% of the original data and tested using the remaining 20%. 
3Reference class assigned using hierarchical clustering of principal components of PCA data. 
Positive = cluster 1, Neutral = cluster 2, Negative = cluster 3. 
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 Predicted Sensory Class    

Attribute Positive Neutral Negative  SEM3 P – Value 

   Tenderness 69.0a 60.7b 56.7b  2.5 < 0.05 
   Juiciness 62.2a 58.6b 56.0b  2.0 0.2 
   Beef Flavor ID 40.1a 40.1a 35.0b  1.5 0.01 
   Browned 27.9 27.1 24.7  1.3 0.14 
   Roasted 32.7 33.7 32.0  1.4 0.43 
   Fat-Like 11.6a 8.4b 6.9b  1.2 < 0.01 
   Buttery 5.3a 3.4b 1.9b  0.8 < 0.01 
   Metallic 5.8 7.1 6.7  0.8 0.18 
   Umami 5.6a 4.5b 3.6b  0.6 < 0.01 
   Sour 3.4b 5.2b 6.2a  0.9 0.23 
   Bitter 1.6 1.7 1.1  0.5 0.52 
   Livery 0.4 0.6 0.8  0.3 0.55 
   Green/Hay-Like 1.1b 1.1b 3.1a  0.4 < 0.01 
   Rancid 2.0 2.5 3.4  1.0 0.48 
abLeast square means in the same row without a common superscript differ (P < 0.05) due to treatment. 
1Attributes were scored using an unstructured line scale anchored at both ends: 0 = very tough, very dry, 
and not present; 100 = very tender, very juicy, and very intense 
2Sensory classes were assigned using hierarchical clustering of principal component factor scores based 
on trained sensory ratings for tenderness, juiciness, and flavor attributes. Prediction models were fit using 
Partial Least Squares-Linear Discriminant Analysis. 
3Standard error (largest) of the least squares means. 

Table 3. 8 Trained sensory ratings1 for beef strip steaks predicted into overall sensory 
classes2 using mass spectra collected with rapid evaporative ionization mass 
spectrometry (REIMS). 
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Table 3. 9 Misclassification matrix1 of 2 overall sensory categories predicted2 by 
Partial Least Squares-Linear Discriminant Analysis using molecular profiles of beef 
strip steaks collected using rapid evaporative ionization mass spectrometry (REIMS). 

 Predicted Class     
Reference Class3 Positive Negative Total  Sensitivity Precision 

Positive 11 7 18  61.1% 73.3% 
Negative 4 35 39  89.7% 83.3% 

Total 15 42 57    
       
Overall Prediction Accuracy 80.7%     
Balanced Prediction Accuracy 75.4%     
1Number of samples falling into each respective classification category after prediction. 
2Models were built using 80% of the original data and tested using the remaining 20%. 
3Reference class assigned using hierarchical clustering of principal components of 
PCA data. Positive = cluster 1, Negative = clusters 2 and 3. 
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Table 3. 10 Misclassification matrix1 of 3 flavor categories predicted2 by Partial Least 
Squares-Linear Discriminant Analysis using molecular profiles of beef strip steaks 
collected using rapid evaporative ionization mass spectrometry (REIMS). 

 Predicted Class     
Reference Class3 Positive Neutral Negative Total   Sensitivity Precision 

Positive 10 6 2 18   55.5% 62.5% 
Neutral 6 20 4 30   66.7% 64.4% 

Negative 0 5 4 9  44.4% 40.0% 
Total 16 31 10 57       

        
Overall Prediction Accuracy 59.6%      
Balanced Prediction Accuracy 55.5%      
1Number of samples falling into each respective classification category after prediction. 
2Models were built using 80% of the original data and tested using the remaining 20%. 
3Reference class assigned using hierarchical clustering of principal components of PCA 
data. Positive = cluster 1, Neutral = cluster 2, Negative = cluster 3. 



 66 

 Predicted Flavor Class    
Attribute Positive Neutral Negative  SEM3 P - Value 
   Tenderness 64.8 61.3 59.4  2.9 0.29 
   Juiciness 59.5 57.3 57.1  1.6 0.51 
   Beef Flavor ID 41.4 38.9 36.3  1.6 0.05 
   Browned 29.0a 26.8ab 24.9b  1.2 0.03 
   Roasted 34.4 34.5 33.7  1.2 0.85 
   Fat-Like 11.6a 7.4b 6.3b  1.1 < 0.01 
   Buttery 5.6a 2.4b 2.2b  0.7 < 0.01 
   Metallic 6.5b 6.9b 8.7a  0.6 0.02 
   Umami 5.8a 4.1b 3.6b  0.5 < 0.01 
   Sour 4.3 5.5 6.0  0.9 0.25 
   Bitter 1.4 1.7 2.0  0.3 0.54 
   Livery 0.6 1.0 0.5  0.3 0.32 
   Green/Hay-Like 1.0 1.8 2.1  0.5 0.09 
   Rancid 2.4 2.6 4.2  0.9 0.24 
abLeast square means in the same row without a common superscript differ (P < 0.05) due to 
treatment. 
1Attributes were scored using an unstructured line scale anchored at both ends: 0 = very 
tough, very dry, and not present; 100 = very tender, very juicy, and very intense 
2Sensory classes were assigned using hierarchical clustering of principal component factor 
scores based on trained sensory ratings for flavor attributes. Prediction models were fit using 
Partial Least Squares-Linear Discriminant Analysis. 
3Standard error (largest) of the least squares means. 

Table 3. 11 Trained sensory ratings1 for beef strip steaks predicted into flavor 
classes2 using mass spectra collected with rapid evaporative ionization mass 
spectrometry (REIMS). 
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Table 3. 12 Misclassification matrix1 of 2 flavor categories predicted2 by 
Partial Least Squares-Linear Discriminant Analysis using molecular profiles of 
beef strip steaks collected using rapid evaporative ionization mass spectrometry 
(REIMS). 

 Predicted Class     
Reference Class3 Positive Negative Total  Sensitivity Precision 

Positive 11 7 18  57.8% 61.1% 
Negative 8 31 39  81.5% 79.4% 

Total 19 38 57    
      
Overall Prediction Accuracy 73.6%    
Balanced Prediction Accuracy 70.3%    
1Number of samples falling into each respective classification category after 
prediction. 
2Models were built using 80% of the original data and tested using the 
remaining 20%. 
3Reference class assigned using hierarchical clustering of principal components 
of PCA data. Positive = cluster 1, Negative = clusters 2 and 3. 
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 Predicted Class     
Reference Class3 Tender Tough Total   Sensitivity Precision 

Tender 18 9 27   66.7% 78.3% 
Tough 5 25 30   83.3% 73.5% 
Total 23 34 57    

  
Overall Prediction Accuracy 75.4% 
Balanced Prediction Accuracy 75.0% 
1Number of samples falling into each respective classification category after 
prediction. 
2Models were built using 80% of the original data and tested using the 
remaining 20%. 
3Tender = SSF < 15.4; Tough = SSF  15.4 

Table 3. 13 Misclassification matrix1 of slice shear force (SSF) tenderness 
categories predicted2 by Partial Least Squares-Linear Discriminant Analysis 
using molecular profiles of beef strip steaks collected using rapid evaporative 

ionization mass spectrometry. 
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Table 3. 14 Misclassification matrix1 of Warner-Bratzler shear force (WBS) 
tenderness categories predicted2 by Partial Least Squares-Linear Discriminant 
Analysis using molecular profiles of beef strip steaks collected using rapid 
evaporative ionization mass spectrometry. 

 Predicted Class     
Reference Class3 Tender Tough Total   Sensitivity Precision 
Tender 21 9 30   70.0% 72.4% 
Tough 8 19 27   70.3% 67.8% 
Total 29 28 57       
      
Overall Prediction Accuracy 70.1%   
Balanced Prediction Accuracy 70.1%   
1Number of samples falling into each respective classification category after 
prediction. 
2Models were built using 80% of the original data and tested using the 
remaining 20%. 
3Tender = WSF < 3.9; Tough = WSF  3.9 
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Figure 3. 1 Sampling location for rapid evaporative ionization mass spectrometry (REIMS) of 
beef strip steaks. Five burns were taken from each sample. Relative intensities of mass spectra 
from each burn were averaged to create a single data matrix per sample. 
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Figure 3. 2 Projection of partial least squares (PLS) scores (top) and linear 
discriminant (LDA) scores (bottom) of the training model built from rapid 
evaporative ionization mass spectrometry (REIMS) mass bins to predict various beef 
carcass types. Factor scores from PLS where used as inputs for LDA. 
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Figure 3. 3 Projection of partial least squares-linear discriminant scores of the training 
model built from rapid evaporative ionization mass spectrometry (REIMS) mass bins to 
predict various beef carcass types. 
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Figure 3. 4 (top) Projection of principal component scores of trained sensory ratings for 
tenderness, juiciness, and flavor attributes. Treatment centers are represented by large 
points. (bottom) Loadings plot showing the contribution of each sensory attribute to factor 
scores. 
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Figure 3. 5 Projection of principal component scores of trained sensory ratings for 
tenderness, juiciness, and flavor attributes. Scores are colored to represent overall sensory 
categories as determined by cluster analysis. 
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Figure 3. 6 Projection of partial least squares-linear discriminant scores of the training 
model built from rapid evaporative ionization mass spectrometry (REIMS) mass bins to 
predict overall sensory class. 
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Figure 3. 7 (top) Projection of principal component scores of trained sensory ratings for 
flavor attributes. Treatment centers are represented by large points. (bottom) Loadings plot 
showing the contribution of each sensory attribute to factor scores. 
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Figure 3. 8 Projection of principal component scores of trained sensory ratings 
for tenderness, juiciness, and flavor attributes. Scores are colored to represent 
overall sensory categories as determined by cluster analysis. 
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Figure 3. 9 Projection of partial least squares-linear discriminant scores of the 
training model built from rapid evaporative ionization mass spectrometry (REIMS) 
mass bins to predict flavor class. 



 79 

Figure 3. 10 Distribution of SSF values and assignment of tenderness classifications of beef 
strip steaks. 
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Figure 3. 11 Distribution of WBS values and assignment of tenderness classifications of 
beef strip steaks. 
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CHAPTER IV 
 

 

 

REIVIEW OF LITERATURE – PART II 

Beef Eating Quality 

 Although eating quality, in a general sense, is driven by a myriad of factors, beef eating 

quality most commonly refers to the three attributes of tenderness, flavor, and juiciness. In a 

survey where consumers were asked to rank attributes that motivated their beef purchasing 

decisions, tenderness, juiciness, and flavor were ranked the highest among a list of attributes that 

included other factors such as price, product consistency, and ease of preparation (Reicks et al., 

2011). With consumer satisfaction being closely related to beef eating quality, significant 

research emphasis has been placed on understanding the intrinsic and extrinsic factors that 

influence the development of tenderness, juiciness, and flavor. The importance of eating quality 

and consumer satisfaction is clearly evident in the way that beef is merchandised in the United 

States. Most beef carcasses are merchandised using a grid-based system, taking USDA yield and 

quality grades into consideration when determining overall carcass value. The USDA beef 

grading standards define quality grade as “the characteristics of the meat which predict the eating 

quality of the lean” (USDA, 2017). Higher quality grades receiving premiums, as they are 

associated with steaks and roasts that are more tender, more flavorful, and juicier, emphasizing 

the importance placed on eating quality for the merchandising of beef products.  

In addition to understanding these attributes individually, it is important to understand 

how these attributes interact to influence consumer overall acceptability of beef products. 

Historically, tenderness has been considered the most important eating quality trait when 

determining a consumer’s overall acceptability of beef (G. Smith et al., 1987; Miller et al., 
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2001). However; if tenderness is acceptable, then flavor has the greatest relationship to overall 

acceptability (Corbin et al., 2014). Beef tenderness has greatly improved throughout the years 

and there are several muscles that rarely fall below the tenderness threshold when production 

parameters are correctly managed (Martinez et al., 2017). Yet, inconsistencies remain, and 

several muscles suffer from tenderness issues. Therefore, although flavor has become more 

influential in its contribution to consumer acceptability, tenderness continues to be of great 

interest and continues to be heavily researched. In a recent meta-analysis of factors influencing 

the overall consumer beef eating experience, it was concluded that the lack of acceptability of 

even a single eating quality trait significantly decreases the probability of a positive overall 

experience (O’Quinn et al., 2018). Thus, neither tenderness, flavor, nor juiciness can be 

disregarded when evaluating factors affecting eating quality development. 

Beef Tenderness 

Of all eating quality traits, tenderness has received the greatest research emphasis 

throughout the years (Aberle et al., 2001). Several authors have concluded that consumer ratings 

for tenderness have the strongest relationships to overall eating quality (Shackelford et al., 2001). 

Along with this relationship between tenderness and overall acceptability, consumers have 

indicated an increased willingness to pay for tender product (Boleman et al., 1997; Miller et al., 

2001; Shackelford et al., 2001). Platter et al. (2013) evaluated consumer willingness to pay for 

beef with varying marbling scores and tenderness levels in a sealed-bid auction scenario. 

Consumers were recruited to rate sensory attributes of beef strip steaks and were given $40 

compensation for their time. After each sensory session, each panelist was given the opportunity 

to participate in an auction to bid on steaks identical to those evaluated in the panel using their 

compensation money. Consumers were given a base price of $14.32/kg as an average retail price 
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as a starting point for their bids, with the ability to bid higher or lower. Consumers were able to 

detect differences in tenderness based on WBS values and, on average, decreased their bids by 

$1.02/kg for each 1 kg increase in WBS values (Platter et al., 2013). 

The development and perception of beef tenderness is influenced by numerous factors, 

both intrinsically and extrinsically. From a simplistic viewpoint, beef tenderness is affected by 

three muscle characteristics: collagen content, sarcomere length, and structure of myofibrillar 

proteins (Koohmaraie et al., 2002). However, when one begins to consider the factors 

influencing each of these three components, the true complexity of tenderness comes to light. 

Collagen content can be influenced by factors such as breed type, animal maturity, and muscle, 

among others (Purslow, 2005). Sarcomere length is also largely influenced by muscle, but is 

heavily reliant on postmortem metabolic processes and the temperature at which these pathways 

proceed (King et al., 2003; Tschirhart-Hoelscher et al., 2006). 

In addition to several of the factors previously mentioned, the structure of myofibrillar 

proteins and its relationship to beef tenderness is significantly related to the extent of postmortem 

aging (Koohmaraie and Geesink, 2006). The aforementioned characteristics relating to beef 

tenderness are dependent on the physiological make-up of the live animal and the metabolic 

processes occurring during the harvest process and the postmortem period but is in no way an 

extensive list of characteristics influencing beef tenderness. Even after the conversion of muscle 

to meat, tenderness can still be manipulated through several extrinsic preparation methods. 

Furthermore, regardless of the muscle components of beef, tenderness is significantly 

manipulated during the cooking process as a result of cooking method, cooking temperature, and 

final degree of doneness (Parrish et al., 1973; Belk et al., 1993; Yancey et al., 2011). Although 
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this is not an exhaustive list of beef tenderness determinants, it begins to show the complexity 

and multi-faceted nature of beef tenderness. 

Collagen 

Collagen is the major component of intramuscular connective tissue (IMCT; Lepetit, 

2008) and contributes to what is known as “background toughness” of beef. This term was 

originally coined because it is a source of toughness that occurs at the time of slaughter but does 

not change much during the slaughter process or the storage period. Collagen content will vary 

from muscle-to-muscle and among animals of different maturity levels (Hill, 1966; Jeremiah et 

al., 2003); however, if factors such as muscle and animal age are held constant, collagen content 

does little to explain animal-to-animal tenderness variation. Nevertheless, increased toughness 

associated with increased collagen content is reflected in price differences among various beef 

muscles seen at retail (Purslow, 2005). Collagen is found in three layers within muscle: the 

epimysium, perimysium, and endomysium (McCormick, 1994). The epimysium is the outer most 

connective tissue layer surrounding the entire muscle. Particularly in single muscle beef cuts, the 

epimysium has a lesser contribution to beef tenderness relative to the other connective tissue 

layers because it is many times removed before cooking and consumption (Purslow, 2014).  

Perimysium is the intermediate layer of connective tissue surrounding individual muscle 

bundles and is responsible for visual differences in muscle texture, accounting for as much as 

90% of total connective tissue in muscle (McCormick, 1999). Of all connective tissue layers, it is 

the most variable from muscle-to-muscle and is believed to contribute the greatest to tenderness 

differences (Purslow, 2005). When several beef muscles were aged for 14 d, Brooks and Savell 

(2004) found perimysium thickness alone to explain 20% of variation in WBS values. Finally, 
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the endomysium is the inner most layer of connective tissue surrounding individual muscle 

fibers. 

The relationship between collagen content and beef tenderness appears to be quite 

variable and dependent on the combination of numerous factors. Previously published literature 

has been inconsistent in establishing a clear relationship between collagen content and 

tenderness, with some reporting strong relationships (Torrescano et al., 2003; Riley et al., 2005), 

while others report collagen to explain little to no variation in beef tenderness (Cross et al., 1973; 

Seideman, 1986; Campo et al., 2000; Serra et al., 2008). In the cases of the latter studies, 

relationships were only evaluated within a single muscle. Seideman et al. (1987) evaluated 

various factors influencing tenderness from beef striploins and concluded the majority of 

tenderness variation could be explained by the myofibrillar component. These results further 

supported the idea that connective tissue contributed to background toughness when parameters 

are held relatively constant, such that, connective tissue was more than likely contributing to the 

overall toughness of the samples but did not vary enough from animal to animal to explain 

tenderness variation. However, Torrescano et al. (2003) evaluated the relationship among 14 

different beef muscles and found large collagen content differences among muscles, as well as, 

strong relationships to WBS values, supporting the notion that collagen content better explains 

tenderness variation between different muscles. 

There is a common belief that as the total amount of collagen increases, beef becomes 

tougher. Although total collagen content only slightly varies within the same muscle of different 

animals, total collagen content does greatly vary from muscle-to-muscle. As mentioned above, 

other muscle components largely influence beef tenderness; thus, a high total collagen content 

does not necessarily equate to an excessively tough muscle. Because this is generally the case, it 
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has led many to develop an overly simplistic idea of the relationship between total collagen 

content and beef tenderness. For instance, Torrescano et al. (2003) found beef infraspinatus and 

pectoralis profundus muscles to have similarly high amounts of total collagen content. 

Throughout the entirety of the study, total collagen content was found to be highly correlated (r 

= 0.723) to Warner-Bratlzer shear force (WBS) values. However, infraspinatus produced an 

average WBS value that was nearly 2.5 kg lower than pectoralis profundus. This observation 

clearly indicates that other components counterbalanced the high collagen content of 

infraspinatus to result in a moderately tender muscle. There is a complicated relationship among 

factors influencing tenderness development, and whether a muscle is perceived as tough or 

tender depends on a specific combination of multiple characteristics. 

Not only does the amount of collagen influence tenderness, but the extent of cross-linking 

also has a substantial impact on beef tenderness. Without cross-links, collagen would have very 

minimal structural qualities (Bailey and Light, 1989). When a collagen fiber is thermally 

denatured, it shrinks, pulling attached muscles inward, creating tension (McCormick, 1999). The 

degree to which collagen fibers shrinks is a reflection of the thermal stability of those crosslinks 

(McCormick, 1999). In terms of thermal stability, collagen exists in heat soluble and heat 

insoluble forms, with the majority of total collagen being heat insoluble, or heat stable (Gredell 

et al., 2018). When denaturation temperatures are reached, heat soluble collagen gelatinizes, as 

opposed to shrinking, and is removed with the exudate. Because it is removed from the system, 

heat soluble collagen is believed to have a much lesser influence on tenderness development. 

Thus, as the percent of heat stable collagen increases, an increase in toughness is generally 

observed (Hill, 1966). Not only does the thermal stability of collagen increase as an animal 
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matures (Gredell et al., 2018), but the ratio of heat stable to heat soluble collagen crosslinks is 

also increased in tougher muscles (Light et al., 1985). 

Thermal Properties of Collagen 

The composition of collagen and its thermal properties play a substantial role in 

determining cooked meat texture and perceived tenderness. Thus, an ample amount of research 

emphasis has been placed on understanding the complexities of collagen thermodynamics. 

Textural characteristics of collagen are clearly altered during the cooking process. Relationships 

between collagen characteristics and raw meat texture are generally very strong; however, when 

cooked, that relationship can be completely lost (M. Christensen et al., 2011). When exposed to 

high enough temperatures, collagen will begin to denature. Collagen is unique in that, as it is 

thermally denatured, it shrinks and produces tension (Du and McCormick, 2009). Denaturation 

temperature is highly variable from species to species, and is largely dependent on the extent of 

post-transitional hydroxylation of the amino acid proline to hydroxyproline (Bailey and Light, 

1989). The addition of a hydroxyl group to proline facilitates the formation of hydrogen bonds 

between adjacent molecules, adding to the structural properties of collagen (Alexander Rich and 

Crick, 1955). Therefore, as hydroxyproline content increases, so does the thermal denaturation 

temperature of collagen (Bailey and Light, 1989). 

In meat tissues, collagen generally shrinks around 65C (Lepetit, 2008) to one-quarter of 

its length if left unrestrained (Tornberg, 2005). As the amount of heat stable crosslinks increases; 

however, so does the thermal shrinkage temperature (Smith and Judge, 1991). Due to this 

shrinkage and tension development, collagen is mainly responsible for the decrease in tenderness 

observed when meat is cooked between 65 and 75C (Davey and Gilbert, 1974). But, if the 

crosslinks are heat soluble aldimine crosslinks, collagen will dissolve and gelatinize, resulting in 
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an observed decrease in tenderness. Even when exposed to severely high temperatures, heat 

stable crosslinks will resist gelatinization, remain intact, and produce a rubber-like texture 

(Bailey and Light, 1989). For this reason, it can be argued that the total amount of heat stable 

collagen, or even the ratio of heat stable to heat insoluble collage, may be a better indication of 

collagen’s contribution to cooked meat texture. McCormick (1999) suggested that the amount of 

heat stable collagen and the total amount of collagen have an additive effect on meat toughness. 

As mentioned previously, though, there are numerous muscle components influencing tenderness 

development and the strength of the relationship between collagen and toughness appears to be 

relative to other endogenous and exogenous factors. Correlations between collagen content and 

tenderness are more prevalent when comparing various muscles (Dransfield, 1977; Ngapo et al., 

2002), but are much lower when muscle source is held constant (Cross et al., 1973; Miller et al., 

1983; Serra et al., 2008). 

Cooking Rate 

During the cooking process, toughening occurs in a bi-phasic manor, the first between 40 

and 50C and the second between 65 and 75C (Davey and Niederer, 1977). The first toughening 

phase is due to the denaturation and coagulation of myofibrillar proteins, whereas, the second 

toughening phase is due to the denaturation and shrinkage of collagen (Bailey and Light, 1989). 

A third increase in toughness has even been reported to occur upwards of 90C, associated with 

the denaturation and shrinkage of actin (Bailey and Light, 1989; Palka and Daun, 1999). At 45-

60C muscle fiber shrinkage stems from a decrease in diameter, whereas, at 60-90C, shrinkage 

primarily occurs longitudinally (Palka and Daun, 1999). When more rapid cooking methods are 

used, an increase in degree of doneness results in a tougher product. Although collagen 

gelatinizes at temperatures associated with higher degrees of doneness, it is likely that the rapid 
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cooking process does not hold collagen to temperatures above those needed for denaturation to 

allow for gelatinization. Additionally, moisture lost due to the shrinkage of collagen and 

compression of muscle fibers also adds to the toughness of meat cooked to higher degrees of 

doneness. Martens et al. (1982) reported an increase in sensory firmness with the denaturation of 

myosin and actin at 40-60C and 66-72C, respectively, and a decrease in fiber cohesivity at 

62C. Panelists then determined optimal texture preference to be in the range of 60-67C, which 

would indicate that myosin and collagen would be denatured, but myosin would remain intact. 

Vasanthi et al. (2007) found shear force and sensory tenderness to improve as both water 

bath temperature and cooking time increased from 80-100C and 30-60 min, respectively. The 

authors also measured an increase in collagen solubility, as well as, a decrease in total collagen. 

It was suggested that increase cooking time and temperature resulted in further gelatinization of 

collagen, which was released with the cooking juice (Vasanthi et al., 2007). Christensen et al. 

(2013) also determined an increase in cooking temperature and time to increase beef 

semitendinosus from young bulls and cows. Additionally, beef from cows required an extended 

cooking time to reach the same tenderness level as beef rom young bulls. Yet, even after cooking 

for 19.5 h, young bulls still had greater collagen solubility. Interestingly, heat soluble collagen 

from young bulls was affected by cooking time and not cooking temperature, whereas, heat 

soluble collagen from cows was affected by cooking temperature and not cooking time 

(Christensen et al., 2013). This likely demonstrated increased collagen thermal stability of 

mature beef due to an increase in collagen crosslinking. Additionally, activity of cathepsins B 

and L were monitored throughout the cooking process. Activity decreased with cooking 

temperature and time; however, cathepsin activity remained in beef cooked at 53C even after 

7.5 h of cooking. 
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In addition to collagen solubilization, cooking meat at low temperatures for extended 

periods of time provides tenderness improvement through continued proteolytic enzyme activity 

(Tornberg, 2005). Cathepsins are a group of enzymes capable of degrading several myofibrillar 

proteins and collagen (Beltrán et al., 1992; Nowak, 2011). Their role in postmortem proteolysis 

has been extensively researched, but the general consensus is that they do not contribute to the 

aging response because they are stored in the lysosomes and do not get released postmortem (Du 

and McCormick, 2009). However, cathepsins have been collected from cook loss and have 

shown to retain activity during cooking up to 63C (L. Christensen et al., 2011). Since cathepsins 

are clearly released during cooking, it has been suggested that the heating process disrupts the 

lysosome wall, allowing for the release of cathepsins and enzymatic action during the cooking 

process. While important to tenderness development during postmortem aging, calpain does not 

contribute to tenderness improvements seen with slow cooking rates, as it quickly loses 

functionality at 55C (Ertbjerg et al., 2012). Furthermore, L. Christensen et al. (2011) showed a 

negative relationship (r = -0.50) between cathepsin activity and shear force values. Penfield and 

Meyer (1975) did not target specific enzymes but found enzymes to be active during the heating 

of meat. Their results showed enzymatic activity was greatest between 50-60C, which was also 

where the greatest decrease in shear force values occurred (Penfield and Meyer, 1975). Knowing 

cathepsins have the ability to degrade myofibrillar proteins and collagen, are released from the 

lysosomes during cooking, and retain proteolytic activity up to 63C suggests a strong influence 

on tenderness improvement during low temperature, long time cooking treatments. 

Humidity in the Cooking Environment 

Recently, popularity of combination steam ovens have increased with both foodservice 

and in-home applications. Combination steam ovens are able to provide users the ability to cook 
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with pure steam, a combination of hot air and steam, or as a traditional convection oven. 

Manufacturers promote the use of combination ovens through increased cooking efficiencies, 

increased product yields, precise control over the cooking environment, and increased health 

claims, among others. According to recent market research, demand for combination ovens is 

expected to increase by 25% globally over the next five years (ARC, 2018). With the rise in 

popularity of meal-delivery kits, combination steam ovens are even finding their way into meal-

delivery kits by utilizing countertop combination ovens with custom cooking cycles to fit the 

needs of each individual meal. If these trends continue to rise, then understanding the influence 

of added humidity during the cooking process on meat quality and eating quality would allow for 

optimum utilization of this technology. 

Moist-heat cookery methods are recommended for the cooking of inherently tougher 

muscles. Early studies have concluded that moist-heat cookery methods aide in the degradation 

of collagen during cooking, resulting in a more tender product (Cover and Smith, 1956). 

Although little to no work has been conducted to specifically evaluate the influence of humidity 

on the thermal characteristics of collagen in meat, previous studies have shown that lower water 

content increases denaturation temperature and gelatinization of collagen in leather (Badea et al., 

2012). Furthermore, recent correlations have been made between an increase in collagen 

denaturation temperature and a decrease in water content in an effort to manipulate the stability 

of collagen in synthetic non-meat applications (Fratzl, 2008). Without an excess of moisture in 

the collagen fiber, it is believed the cross-links are able to form a tighter bond. The addition of 

moisture to the cooking environment has been attributed to an increase in tenderness; however 

has yet to be related to collagen solubility (Kolle et al., 2004). In contrast, other studies have 

shown the opposite; that cooking with humidity decreases tenderness (Berry et al., 1977; 



 95 

Chiavaro et al., 2009; Isleroglu et al., 2015). Due to water’s greater capacity for heat transfer, 

adding humidity to the cooking environment increases cooking rate, as well as, cooking yields 

(Isleroglu et al., 2014). Increasing cooking rate of dry-heat methods increases beef toughness 

(King et al., 2003); therefore, an increase cooking rate more than likely explains toughening of 

meat cooked in the presence of added humidity. Particularly in inherently tougher muscles; 

however, utilizing steam in the cooking environment could be beneficial if oven temperature is 

lowered to adjust for the increased cooking rate from humidity so that advantages in tenderness 

improvement from slower cooking rates can be achieved, while controlling for excess moisture 

loss. 



 96 

LITERATURE CITED 
 
 
 
Aberle, E. D., J. C. Forrest, D. E. Gerrard, and E. W. Mills. 2001. Principles of Meat Science. 
4th ed. Kendall/Hunt Publishing Company. 
 
Alexander Rich, D., and D. F. H. C. Crick. 1955. The Structure of Collagen. Nature 175:915-
916. 
 
Badea, E., G. Della Gatta, and T. Usacheva. 2012. Effects of temperature and relative humidity 
on fibrillar collagen in parchment: A micro differential scanning calorimetry (micro DSC) study.  
Polym. Degrad. Stab. 97:346–353. 
 
Bailey, A. J., and N. D. Light. 1989. Connective Tissue In Meat and Meat Products. Elsevier 
Applied Science. 
 
Belk, K. E., G. L. Luchak, and R. K. Miller. 1993. Physical Characterisitics of Beef Roasts 
Prepared with Different Foodservice Cooking Methods. J. Muscle Foods 4:119–139. 
 
Beltrán, J., M. Bonnet, and A. Ouali. 1992. Comparative action of cathepsins B and L on 
intramuscular collagen as assessed by differential scanning calorimetry. Meat Sci. 32:299–306. 
 
Berry, B. W., M. R. Wheeling, and J. A. Carpenter. 1977. Effects of muscle and cookery method 
on palatability of beef from several breeds and breed crosses. J. Food Sci. 42:1322–1324. 
 
Boleman, S. J., S. L. Boleman, R. K. Miller, J. F. Taylor, H. R. Cross, T. L. Wheeler, M. 
Koohmaraie, S. D. Shackelford, M. F. Miller, R. L. West, D. D. Johnson, and J. W. Savell. 1997. 
Consumer Evaluation of Beef of Known Categories of Tenderness. J. Anim. Sci. 75:1521–1524. 
 
Campo, M. M., P. Santolaria, C. Sañudo, J. Lepetit, J. L. Olleta, B. Panea, and P. Albertí. 2000. 
Assessment of breed type and ageing time effects on beef meat quality using two different 
texture devices. Meat Sci. 55:371–8. 
 
Chiavaro, E., M. Rinaldi, E. Vittadini, and D. Barbanti. 2009. Cooking of pork Longissimus 
dorsi at different temperature and relative humidity values: Effects on selected physico-chemical 
properties. J. Food Eng. 93:158–165. 
 
Christensen, L., P. Ertbjerg, M. D. Aaslyng, and M. Christensen. 2011. Effect of prolonged heat 
treatment from 48 °C to 63 °C on toughness, cooking loss and color of pork. Meat Sci. 88:280–5. 
 
Christensen, L., P. Ertbjerg, H. Løje, J. Risbo, F. W. J. van den Berg, and M. Christensen. 2013. 
Relationship between meat toughness and properties of connective tissue from cows and young 
bulls heat treated at low temperatures for prolonged times. Meat Sci. 93:787–95. 
 



 97 

Christensen, M., P. Ertbjerg, S. Failla, C. Sañudo, R. I. Richardson, G. R. Nute, J. L. Olleta, B. 
Panea, P. Albertí, M. Juárez, J.-F. Hocquette, and J. L. Williams. 2011. Relationship between 
collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of 
fifteen European breeds. Meat Sci. 87:61–65. 
 
Corbin, C. H., T. G. O’Quinn, A. J. Garmyn, J. F. Legako, M. R. Hunt, T. T. N. Dinh, R. J. 
Rathmann, J. C. Brooks, and M. F. Miller. 2014. Sensory evaluation of tender beef strip loin 
steaks of varying marbling levels and quality treatments. Meat Sci. 100:24–31. 
 
Cover, S., and W. H. Smith. 1956. The effect of two methods of cooking on palatability scores, 
shear force values, and collagen content of two cuts of beef. J. Food Sci. 21:312–321. 
 
Cross, H. R., Z. L. Carpenter, and G. C. Smith. 1973. Effect of Intramuscular Collagen and 
Elastin on Bovine Muscle Tenderness. J. Food Sci. 38:998–1003. 
 
Davey, C. L., and K. V. Gilbert. 1974. Temperature-dependent cooking toughness in beef. J. Sci. 
Food Agric. 25:931–938. 
 
Davey, C. L., and A. F. Niederer. 1977. Cooking tenderizing in beef. Meat Sci. 1:271–6. 
 
Dransfield, E. 1977. Intramuscular composition and texture of beef muscles. J. Sci. Food Agric. 
28:833–842. 
 
Du, M., and R. J. McCormick. 2009. Applied Muscle Biology and Meat Science. First. CRC 
Press, Boca Raton, FL. 
 
Ertbjerg, P., L. S. Christiansen, A. B. Pedersen, and L. Kristensen. 2012. The effect of 
temperature and time on activity of calpains and lysosomal enzymes and degradation of desmin 
in porcine longissimus muscle. In: 58th International Congress of Meat Science and Technology. 
p. 12–17. 
 
Fratzl, P. 2008. Collagen Structure and Mechanics. In: Springer, New York, NY. 
 
Gredell, D. A., T. G. O’Quinn, J. F. Legako, J. C. Brooks, and M. F. Miller. 2018. Palatability 
and Biochemical Factors of Beef from Mature Cattle Finished on a Concentrate Diet Prior to 
Harvest. Meat Muscle Biol. 2:111. 
 
Hill, F. 1966. The solubility of intramuscular collagen in meat animals of various ages. J. Food 
Sci. 31:161–166. 
 
Isleroglu, H., T. Kemerli, and F. Kaymak-Ertekin. 2015. Effect of steam-assisted hybrid cooking 
on textural quality characteristics, cooking loss, and free moisture content of beef. Int. J. Food 
Prop. 18:403–414. 
 



 98 

Isleroglu, H., T. Kemerli, Ö. Özdestan, A. Uren, and F. Kaymak-Ertekin. 2014. Effect of oven 
cooking method on formation of heterocyclic amines and quality characteristics of chicken 
patties: steam-assisted hybrid oven versus convection ovens. Poult. Sci. 93:2296–303. 
 
Jeremiah, L. E., M. E. R. Dugan, J. L. Aalhus, and L. L. Gibson. 2003. Assessment of the 
chemical and cooking properties of the major beef muscles and muscle groups. Meat Sci. 
65:985–992. 
 
King, D. A., M. E. Dikeman, T. L. Wheeler, C. L. Kastner, M. Koohmaraie, D. a. King, M. E. 
Dikeman, T. L. Wheeler, C. L. Kastner, and M. Koohmaraie. 2003. Chilling and cooking rate 
effects on some myofibrillar determinants of tenderness of beef. J. Anim. Sci. 81:1473–1481. 
 
Kolle, B. K., D. R. McKenna, and J. W. Savell. 2004. Methods to increase tenderness of 
individual muscles from beef rounds when cooked with dry or moist heat. Meat Sci. 68:145–54. 
 
Koohmaraie, M., and G. H. Geesink. 2006. Contribution of postmortem muscle biochemistry to 
the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 
74:34–43. 
 
Koohmaraie, M., M. P. Kent, S. D. Shackelford, E. Veiseth, and T. L. Wheeler. 2002. Meat 
tenderness and muscle growth: is there any relationship? Meat Sci. 62:345–352. 
 
Lepetit, J. 2008. Collagen contribution to meat toughness: Theoretical aspects. Meat Sci. 
80:960–7. 
 
Light, N., A. E. Champion, C. Voyle, and A. J. Bailey. 1985. The role of epimysial, perimysial 
and endomysial collagen in determining texture in six bovine muscles. Meat Sci. 13:137–149. 
 
Martinez, H. A., A. N. Arnold, J. C. Brooks, C. C. Carr, K. B. Gehring, D. B. Griffin, D. S. Hale, 
G. G. Mafi, D. D. Johnson, C. L. Lorenzen, R. J. Maddock, R. K. Miller, D. L. VanOverbeke, B. 
E. Wasser, and J. W. Savell. 2017. National Beef Tenderness Survey–2015: Palatability and 
Shear Force Assessments of Retail and Foodservice Beef. Meat Muscle Biol. 1:138–148. 
 
McCormick, R. J. 1994. The flexibility of the collagen compartment of muscle. Meat Sci. 36:79–
91. 
 
McCormick, R. J. 1999. Extracellular modifications to muscle collagen: implications for meat 
quality. Poult. Sci. 78:785–791. 
 
Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crockett, and L. C. Hoover. 2001. Consumer 
thresholds for establishing the value of beef tenderness. J. Anim. Sci. 79:3062–3068. 
 
Miller, R. K., J. D. Tatum, H. R. Cross, R. a Bowling, and R. P. Clayton. 1983. Effects of 
Carcass Maturity on Collagen Solubility and Palatability of Beef from Grain-Finished Steers. J. 
Food Sci. 48:484–486. 
 



 99 

Ngapo, T.., P. Berge, J. Culioli, E. Dransfield, S. De Smet, and E. Claeys. 2002. Perimysial 
collagen crosslinking and meat tenderness in Belgian Blue double-muscled cattle. Meat Sci. 
61:91–102. 
 
Nowak, D. 2011. Enzymes in tenderization of meat - the system of calpains and other systems - a 
review. Polish J. Food Nutr. Sci. 
 
O’Quinn, T. G., J. F. Legako, J. C. Brooks, and M. F. Miller. 2018. Evaluation of the 
contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. 
Transl. Anim. Sci. 
 
Palka, K., and H. Daun. 1999. Changes in texture, cooking losses, and myofibrillar structure of 
bovine M. semitendinosus during heating. Meat Sci. 51:237–243. 
 
Parrish, F. C., D. G. Olson, B. E. Miner, and R. E. Rust. 1973. Effect of Degree of Marbling and 
Internal Temperature of Doneness on Beef Rib Steaks. J. Anim. Sci. 37:430. 
 
Penfield, M. P., and B. H. Meyer. 1975. Changes in Tenderness and Collagen of Beef 
Semitendinosus Muscle Heated at Two Rates. J. Food Sci. 40:150–154. 
 
Platter, W. J., J. D. Tatum, K. E. Belk, S. R. Koontz, P. L. Chapman, and G. C. Smith. 2013. 
Effects of marbling and shear force on consumers’ willingness to pay for beef strip loin steaks. J. 
Anim. Sci. 83:890–899. 
 
Purslow, P. P. 2005. Intramuscular connective tissue and its role in meat quality. Meat Sci 
70:435–447. 
 
Purslow, P. P. 2014. New Developments on the Role of Intramuscular Connective Tissue in 
Meat Toughness. Annu. Rev. Food Sci. Technol. 5:133–153. 
 
Reicks, A. L., J. C. Brooks, A. J. Garmyn, L. D. Thompson, C. L. Lyford, and M. F. Miller. 
2011. Demographics and beef preferences affect consumer motivation for purchasing fresh beef 
steaks and roasts. Meat Sci. 87:403–11. 
 
Riley, D. G., D. D. Johnson, C. C. Chase, R. L. West, S. W. Coleman, T. A. Olson, and A. C. 
Hammond. 2005. Factors influencing tenderness in steaks from Brahman cattle. Meat Sci. 
70:347–56. 
 
Seideman, S. C. C. 1986. Methods of Expressing Collagen Characteristics and Their 
Relationship to Meat Tenderness and Muscle Fiber Types. J. Food Sci. 51:273–276. 
 
Serra, X., L. Guerrero, M. D. Guàrdia, M. Gil, C. Sañudo, B. Panea, M. M. Campo, J. L. Olleta, 
M. D. García-Cachán, J. Piedrafita, and M. A. Oliver. 2008. Eating quality of young bulls from 
three Spanish beef breed-production systems and its relationships with chemical and 
instrumental meat quality. Meat Sci. 79:98–104. 
 



 100 

Shackelford, S. D., T. L. Wheeler, M. K. Meade, J. O. Reagan, B. L. Byrnes, and M. 
Koohmaraie. 2001. Consumer impressions of Tender Select beef. J. Anim. Sci. 79:2605. 
 
Smith, G., J. Savell, H. Cross, Z. Carpenter, C. Murphey, G. Davis, H. Abraham, F. Parrish Jr, 
and B. Berry. 1987. Relationship of USDA Quality Grades To Palatability of Cooked Beef. J. 
Food Qual. 10:269–286. 
 
Smith, S. H., and M. D. Judge. 1991. Relationship between pyridinoline concentration and 
thermal stability of bovine intramuscular collagen. J. Anim. Sci. 69:1989–1993. 
 
Tornberg, E. 2005. Effects of heat on meat proteins - Implications on structure and quality of 
meat products. Meat Sci. 70:493–508. 
 
Torrescano, G., A. Sánchez-Escalante, B. Giménez, P. Roncalés, and J. A. Beltrán. 2003. Shear 
values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. 
Meat Sci. 64:85–91. 
 
Tschirhart-Hoelscher, T. E., B. E. Baird, D. A. King, D. R. McKenna, and J. W. Savell. 2006. 
Physical, chemical, and histological characteristics of 18 lamb muscles. Meat Sci. 73:48–54. 
 
Vasanthi, C., V. Venkataramanujam, and K. Dushyanthan. 2007. Effect of cooking temperature 
and time on the physico-chemical, histological and sensory properties of female carabeef 
(buffalo) meat. Meat Sci. 76:274–80. 
 
Yancey, J. W. S., M. D. Wharton, and J. K. Apple. 2011. Cookery method and end-point 
temperature can affect the Warner-Bratzler shear force, cooking loss, and internal cooked color 
of beef longissimus steaks. Meat Sci. 88:1–7. 



 101 

CHAPTER V 
 
 
 

UNDERSTANDING THE IMPACT OF OVEN TEMPERATURE AND RELATIVE 

HUMIDITY ON THE BEEF COOKING PROCESS 

 

Introduction 

Tenderness is one of the most important attributes when determining consumer 

acceptability of beef (O’Quinn et al., 2012), which was shown to be influenced by cooking 

method (Yancey et al., 2011). Therefore, it is critical to establish cooking parameters that 

maximize eating quality, without sacrificing efficiency and practicality of the cooking process. In 

previous tenderness studies, researchers have accredited the addition of humidity to the cooking 

environment as a way to improve the process of tenderization (Kolle et al., 2004; Bowers et al., 

2012). Moisture has shown to be useful in the breakdown of protein and specifically the 

solubilization of collagen, which is especially beneficial in the cooking of tougher muscles 

(Cover and Smith, 1956). Collagen shrinks and denatures around 65C, contributing to the 

toughening of meat during cooking; however, if held above 70C for extended periods, 

denatured collagen will begin to gelatinize and increase tenderness (Purslow, 2005, Bailer and 

Light, 1989). For this reason, rate of cooking has also shown to play a significant role in the 

tenderness of cooked beef. Therefore, the objective of this study was to evaluate the influence of 

relative humidity and oven temperature on external and internal color appearance, protein 

denaturation, collagen content, shear force values, and sensory attributes of beef strip steaks 

cooked using varying oven temperatures and relative humidity levels. 
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Materials and Methods 

Sample Collection, Fabrication, and Treatment Designation 

 The study was designed as a 2  3 factorial utilizing 2 oven temperatures (80°C and 

204°C) and 3 levels of relative humidity [zero (ZH), mid (MH), and high (HH)] for a total of 6 

individual cooking treatments. In order to maximize humidity level at each oven temperature, 

different percentages of relative humidity were utilized at each oven temperature because a 

relative humidity of 100% was unobtainable at 204C. At 80C, relative humidity of 0%, 50%, 

and 100% were utilized for ZH, MH, and HH treatments, respectively. Whereas, at 204C, 

relative humidity of 0%, 35%, and 70% were utilized for ZH, MH, and HH treatments, 

respectively. Therefore, the addition of humidity was relative to the maximal achievable 

humidity level at each oven temperature. Paired steaks representing each factor combination 

(randomized within each strip loin) served as the experimental unit. Thirty USDA Low Choice 

beef strip loins were randomly selected from a commercial beef harvest facility for inclusion in 

this study. Following collection, all strip loins were transported under refrigeration (2C) to the 

Colorado State University Meat Laboratory and stored (2C) until being fabricated into twelve 

2.54 cm steaks. Two adjoining paired steaks (N = 180) were randomly assigned to 1 of 6 

treatments methods, so each treatment was represented within each strip loin. The first paired 

steak was identified as a “shear force” steak, while the second steak was identified as a “sensory” 

steak. All steaks were vacuum packaged (Clarity Vacuum Pouches #75001839, Koch Supplies, 

Kansas City, MO), aged for 14 d post mortem at 2C, then frozen (-20C) until analysis. 

Cooking Procedures 

 The treatment combinations outlined above were achieved by setting oven temperature 

(dry bulb temperature) and relative humidity levels (percent moisture) in a commercial 
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combination oven (Model SCC WE 61 E; Rational, Landsberg am Lech, Germany). Before 

cooking, frozen steaks were tempered at 2C for 16-24 h. Steaks were first cross-marked on a 

315°C open-hearth char broiler (2 minutes per side), then cooked on a perforated pan at the 

prescribed oven conditions to an internal temperature of 71C. Internal steak temperature was 

monitored throughout the entire oven cooking process using a built in probe placed in the center 

of a representative steak and final peak temperature was recorded for each steak once removed 

from the oven (Splash-Proof Super-Fast® Thermapen®, ThermoWorks, Lindon, UT). 

External and Internal Steak Appearance and Slice Shear Force Measurements 

Steaks designated for shear force were cooked per their respective treatments and 

subjected to slice shear force (SSF) procedures. Before cooking, each steak was individually 

weighed to calculate cook loss. Steaks were cooked in batches during 4 individual cooking 

cycles per treatment. For each cooking cycle, the time required for the entire batch to reach the 

target temperature was recorded. Upon removal from the oven, each cooked steak was weighed 

in order to calculate the percent cook loss. Immediately following cooking and before shear force 

determinations, the external and internal appearance of steaks was evaluated. A colorimeter 

equipped with a 6 mm measurement port, calibrated at an illuminant of D65 and operated at a 10° 

standard observer angle (Hunter Associates Laboratory, Reston, VA) was used to collect L* a* 

b* measurements on the exterior and interior of each steak immediately after cooking. Three 

measurements of L* a* b* were obtained from separate locations within or on the outer surface 

of the steak to gather an average for each sample. Exterior measurements were taken between 

char marks created by grill marking the steaks and interior measurements were taken from the 

most interior portion of the steak cross section at a point 5 cm from the lateral end of the steak. 

Subjective measurements for degree of doneness, internal, and external steak appearance was 
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also recorded by 2 trained individuals at the aforementioned locations. Visual degree of doneness 

was evaluated and recorded using a 5-point scale (1 = rare, 2 = medium rare, 3 = medium, 4 = 

medium well, and 5 = well done) in reference to published photographic standards (AMSA, 

2012). Internal steak appearance was recorded using an 8-point scale (1 = purple, 2 = red, 3 = 

reddish-pink, 4 = pink, 5 = pinkish-grey, 6 = light brown, 7 = medium brown, and 8 = dark 

brown). External steak measurements were recorded using an 8-point scale (1 = light grey, 2 = 

grey, 3 = greyish-brown, 4 = light brown, 5 = brown, 6 = dark brown, 7 = brownish-black, 8 = 

black). 

Slice shear force measurements were obtained from every steak using procedures 

described by Lorenzen et al. (2010). Within 5 min of recording peak internal temperature, a 1 cm 

 5 cm slice was removed from the steak parallel to the muscle fibers from the lateral end and 

sheared perpendicular to the muscle fibers, using a universal testing machine (Instron Corp., 

Canton, MA) equipped with a flat, blunt-end blade (crosshead speed: 500 mm/min, load 

capacity: 100 kg), resulting in a single SSF measurement for each steak. All remaining portions 

from shear force analysis were saved and frozen (-20C) for collagen analysis. 

Trained Sensory Analysis 

Due to limited oven capacity to accommodate 6 cooking treatments, all sensory steaks 

were cooked in advanced and reheated on the day of analysis. Steaks were cooked following the 

same cooking protocol as mentioned above. Immediately following cooking, each steak was 

placed in a vacuum bag, chilled in an ice water bath for 5-15 min, vacuum packaged, and stored 

at 2-4C for 16-48 h prior to analysis. To ensure steaks were not becoming excessively oxidized 

and warmed over during the storage and reheating process, panelists were trained to evaluate 

oxidized flavor notes to assess during sensory evaluation. On the day of sensory analysis, steaks 
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were reheated in a circulating water bath set at 57.5C for 30 minutes. Once removed from the 

water bath, steaks were trimmed of all external fat and connective tissue, sized into 1 cm cubes, 

and served to trained panelists. All panelists were trained to evaluated initial tenderness, 

sustained tenderness, overall tenderness, juiciness, beefy/brothy, browned/grilled, buttery/fat, 

burnt, bloody/metallic, livery, and oxidized flavors adapted from Adhikari et al. (2011). Each 

panelist (n = 7-8 per session) received 2-3 cubes and evaluated each sample for the 

aforementioned sensory characteristics using a 10 cm structured line scale verbally anchored at 

both ends (0 = very tough, very dry, not present; 10 = very tender, very juicy, very intense). Two 

samples per treatment were served each panel for a total of 12 samples per panel. Two panels 

were conducted per day: one in the morning and one in the afternoon. Panelists were provided 

with unsalted saltine crackers, apple juice, and water to cleanse their palate between each 

sample. All remaining cubes were vacuum packaged and stored at -20C for protein denaturation 

analysis. 

Protein Denaturation 

 Denaturation of major skeletal muscle proteins (myosin, sarcoplasmic proteins/collagen, 

and actin) was evaluated by differential scanning calorimetry (DSC; TA Instruments DSC Q20, 

Albuquerque, NM). When analyzed via DSC, meat samples produce 3 very distinct denaturation 

peaks based on denaturation temperature for the aforementioned protein groups, allowing for 

differentiation in protein groups when analyzing results (Findlay et al., 1986). Denaturation was 

assessed from remaining cooked sample used for trained sensory analysis. Five strip loins were 

randomly selected to be analyzed for protein denaturation, with each of the 6 cooking treatments 

being evaluated per strip loin. An aliquot of 4-10 mg was extracted from the center most portion 

of each cooked cube and sealed in a DSC pan. An empty pan was used as a reference. The 
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sample and reference pans were heated from 25C to 100C at a heating rate of 5C/minute. The 

peak temperature and denaturation enthalpy (H) were determined from the DSC curve that was 

obtained from each run. Each sample was extracted and analyzed separately in triplicate. The 

weight of each sample was used to calculate the change in energy (measured in Joules; J) per g 

of sample required to denature remaining intact protein. A greater H (J/g) is indicative of a 

greater amount of intact (undenatured) protein remaining in the sample after the cooking process. 

Collagen 

 Retained samples from the shear force analyses were composited for determination of 

total collagen content. Five (n = 5), 6 steak composites from each treatment were homogenized 

in liquid nitrogen for collagen analysis. Homogenates were prepared and hydroxyproline content 

was determined according to the method described by Switzer (1991) using a spectrophotometer. 

Collagen content was calculated by multiplying the hydroxyproline content by a factor of 7.52 

(Cross et al., 1973). 

Statistical Analysis 

Data were analyzed using the procedures of SAS (Version 9.4; SAS Inst. Inc., Cary, NC). 

The experiment was designed as a 2 × 3 factorial with oven temperature and added humidity as 

the fixed effects. Main effect and interaction comparisons were tested for significance using 

PROC GLIMMIX with α = 0.05 and the denominator degree of freedom was calculated by the 

Kenward-Roger method. For trained sensory analysis, the scores of each panelist were averaged, 

resulting in one value per sample and panel number was included in the model as a random 

variable. Peak cooking temperature of each steak was initially included as a covariate in each 

model but was removed from final models due to a lack of significance. 
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Results and Discussion 

Cooking Rate and Cook Loss 

 The time required to cook beef strip steaks to 71C for each of the 6 treatments is 

presented in Table 1. At 80°C, MH and HH decreased cooking time by 93.25 and 107.75 min, 

respectively, compared to steaks cooked with ZH. Cooking times were shorter when relative 

humidity was added at 204°C; however, it was to a much lower extent. At 204°C, MH and HH 

decreased cooking time by 3.75 and 7.00 min, respectively, compared to steaks cooked with ZH. 

Evaluating various beef roasts, Jeremiah and Gibson (2003) produced similar results showing 

very noticeable decreases in cooking time when added moisture was included in the cooking 

process. Water has a much greater specific heat capacity than air, thus, adding moisture to the 

cooking environment significantly increased the efficiency of heat transfer from the environment 

to the steak to decrease cooking time. These results agree with previous studies reporting an 

increase in cooking rate when humidity is added to the cooking environment (Laakkonen et al., 

1970; Vittadini et al., 2005). Additionally, cooking times for 80°C-HH and 204°C-ZH steaks 

were essentially equal (17.53 vs 17.00 min, respectively), which allowed for the inadvertent 

comparison of the two treatments to assess the influence of humidity when cooking rate is kept 

similar. Percent cook loss was influenced by an oven temperature  relative humidity interaction 

(Table 2). Steaks cooked at 80C-ZH showed the greatest (P < 0.01) loss of moisture during 

cooking of all treatments. Relative humidity had no (P > 0.05) impact on cook loss when steaks 

were cooked at 204°C; nevertheless, cook loss at 204°C was still greater (P < 0.01) than both 

80°C-MH and 80°C-HH. These results agree with those found by Belk et al. (1993) who showed 

that increasing oven temperature, adding humidity, and ultimately increasing cooking rate 

resulted in a decrease in cooking yields. King et al. (2003) concluded rapid cooking rates cause 
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excessive myofibrillar shortening, resulting in decreased cooking yields. Therefore, increased 

cooking yield by addition of humidity may only be achievable if a slower cooking rate is 

maintained by a lower oven temperature. 

Cooked Steak Color 

 Instrumental and visual assessment of external and internal color of cooked strip steaks 

are presented in Table 2. All color measurements were affected by an interaction of the main 

effects. For both oven temperatures, external L* values increased (P < 0.01) with increasing 

relative humidity levels, which is indicative of a lighter surface color. Additionally, 80°C-ZH 

steaks had the darkest external color (P < 0.01) of all treatments as determined by L* values. 

When steaks were cooked at 204°C, a* values, which are indicative of a redder color, decreased 

(P < 0.01) as relative humidity increased. However, when cooked at 80°C, a* values were the 

lowest (P < 0.01) when humidity was absent from the cooking environment. Similarly, Isleroglu 

et al. (2014) reported higher L* and lower a* values from chicken breasts cooked using a steam-

assisted hybrid oven. Visual assessment of external color produced similar results as 

instrumental color values. Trained panelists found 80°C-ZH steaks had the darkest external color 

(P < 0.01) of all treatments. At 80C, external surface color became lighter (P < 0.01) as relative 

humidity increased. Similarly, external color of 204°C-ZH steaks were darker (P < 0.01) than 

both 204°C-MH and 204°C-HH steaks; however, no visual color differences (P > 0.05) were 

found between 204°C-MH and 204°C-HH samples. These results indicate that added moisture 

inhibited surface browning during cooking. 

 Internal L* values were greatest (P < 0.01) from 80°C-ZH steaks compared to all other 

treatments. No additional differences (P > 0.05) in internal L* values were observed among any 

other treatments. Steaks cooked at 80C-ZH produced the lowest (P < 0.01) a* values of all 
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treatments. Based on instrumental color values, 80°C-ZH steaks had the appearance of being the 

most well done, regardless of all treatments being cooked to the same internal temperature 

(71C). This is also reflected in trained panelist ratings for doneness and internal color. Steaks 

cooked at 80C-ZH appeared to be the most (P < 0.01) well done, as well as, the brownest (P < 

0.01) internally of all treatments. No other treatment (P > 0.05) differed in the visual assessment 

of doneness and appeared to be cooked to a medium degree of doneness. Assessing subjective 

and objective measurements for both external and internal cooked surfaces, it is evident that 

cooking parameters had a significant influence on the appearance of cooked steaks. 

Protein Denaturation 

 Table 3 shows the change in enthalpy (H; J/g) and peak temperatures required to 

denature remaining intact myosin, sarcoplasmic proteins and collagen, and actin. Previously 

published literature has determined that denaturation temperatures for myosin, sarcoplasmic 

proteins and collagen, and actin are 55.5C, 66.8C, and 80.9C, respectively (Findlay et al., 

1986). In the current study, similar denaturation temperatures were recorded for myosin 

(56.6C), sarcoplasmic proteins and collagen (65.4C), and actin (80.5C). Because denaturation 

samples were extracted from the inner-most portion of steak cross-sections and each steak was 

cooked to the sample end-point temperature, it is speculated that an increase in protein 

denaturation would indicate a slower transfer of heat from the surface to the interior, facilitating 

prolonged exposure to denaturation temperatures. 

Differences in H for each protein appear to be related to cooking rate and exposure time 

to heat, which was influenced by relative humidity level. No differences (P = 0.86) in H were 

observed for myosin, regardless of relative humidity. The low H for myosin indicates that 

nearly all myosin was denatured during the initial cooking process and would not be expected to 
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contribute to tenderness differences. Myosin shrinks upon denaturation and is responsible for the 

initial toughening phase of meat during cooking (McCormick, 1999). Most sarcoplasmic proteins 

and collagen were denatured during cooking with ZH and MH; however, greater (P = 0.02) 

amounts remained intact in steaks cooked with HH. Thus, it seems that the reduction in cooking 

time of HH steaks did not allow for adequate exposure of sarcoplasmic proteins and collagen to 

the required denaturation temperature to completely alter the protein structure. 

Unlike myofibrillar proteins, sarcoplasmic proteins expand rather than shrink upon 

heating, as well as, forming aggregates and gelatinizing during cooking (Baldwin, 2012). 

Furthermore, many of these proteins are enzymes, which have shown to have a tenderizing effect 

when cooked for long periods of time at low temperatures (Tornberg, 2005). Although denatured 

enzymes would lose functionality, the current data suggest a slower transfer of heat and the 

potential for an increased window of opportunity for enzyme activity at lower temperatures, 

particularly in the more interior portions of the steak. 

Collagen begins to denature and shrink between 64-68C, which results in toughening of 

meat (McCormick, 1999); however, as meat continues to be held at temperatures greater than 

70C, collagen begins to solubilize and an increase in tenderness is observed (Bailey and Light, 

1989). The H of sarcoplasmic proteins and collagen follows trained sensory tenderness ratings. 

Lower H was determined for sarcoplasmic proteins and collagen at ZH and MH, while SSF and 

sensory tenderness ratings were more favorable at these same humidity levels. Therefore, the 

differences in the effects of heat on sarcoplasmic proteins and collagen may have played a role in 

the tenderization of these treatments. Additionally, greater (P = 0.02) amounts of actin remained 

intact in steaks cooked using MH and HH when compared to steaks cooked using ZH; however, 
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based off H values, substantial amounts of actin remained intact in all relative humidity levels 

after the cooking process. 

The substantial increase in cooking time of steaks cooked with ZH facilitated an 

increased exposure of proteins to the higher temperatures required to denature actin. Previously, 

Bertram et al. (2006) showed that H of all 3 proteins gradually decreased as final internal 

temperature increased until peaks were practically devoid when samples were cooked to 75C. 

Although the current study did not evaluate different internal temperatures, cooking procedures 

from both studies facilitated differences in heat transfer which appeared to have comparable 

effects on protein denaturation. Differential scanning calorimetry has been widely used to 

evaluate thermal properties of meat proteins; however, a definitive relationship between DSC 

thermograms and meat tenderness has yet to be established. 

Collagen 

 Concentrations of total collagen content remaining in cooked steaks are shown in Table 

4. It has been suggested that any collagen gelatinized during cooking would be released with the 

cook loss (Palka, 1999), thus it was assumed that any changes in collagen solubility would be 

observed by measuring total collagen remaining in cooked steaks. Steaks cooked with ZH, 

regardless of oven temperature, had greater (P < 0.01) concentrations of collagen than MH and 

HH steaks. Total collagen content did not have much of an effect on sensory tenderness, since 

ZH steaks had the greatest concentrations of collagen, but were some of the most tender steaks. 

Also, the greater collagen content of ZH steaks may have been partially related to the greater 

cook loss seen in 80°C-ZH steaks, resulting in a more concentrated collagen content. Although 

many studies have found significant relationships between total collagen and tenderness (Riley et 

al., 2005), others have been inconsistent in attempting to fully understand and establish the 
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relationship between connective tissue and meat tenderness (Reagan et al., 1976; Seideman et al., 

1987). Furthermore, tenderness of strip steaks is affected less by collagen content and more by 

proteolysis (Koohmaraie and Geesink, 2006), so any differences in total collagen content may 

have had a smaller influence on perceived tenderness. Although collagen content was greatest in 

ZH treatments, this may not have reflected the heat-induced structural changes in collagen that 

may have occurred due to an extended cooking time and exposure to temperatures greater than 

70C. Differences in sensory tenderness due to oven temperature were not explained by protein 

denaturation results alone, suggesting that changes in the structure of collagen may have very 

well contributed to differences in tenderness. Consequently, there could be benefit in using 

techniques to more specifically evaluate the heat-induced structural changes in collagen due to 

varying oven temperatures, relative humidity levels, and cooking rates in future studies. 

Shear Force 

 Slice shear force values were affected by relative humidity (Table 4). Regardless of oven 

temperature, steaks cooked with HH produced greater (P = 0.02) SSF values than steaks cooked 

with both ZH and MH. Berry et al. (1977) did not find shear force differences between oven 

roasted and braised beef semimembranosus but did observe lower sensory tenderness ratings for 

braised samples. Tenderness decreases as cooking rate increases (Cross et al., 1976). In the 

present study, the increase in SSF values are believed to be the result of an increased cooking 

rate by the addition of high levels of humidity in the cooking environment. However, the 

utilization of moderate levels of humidity facilitated a more rapid cooking rate without 

negatively affecting shear force values. 
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Trained Sensory 

 Tenderness ratings were influenced by both oven temperature and relative humidity 

(Table 5). Trained panelists rated steaks cooked at 80°C greater (P < 0.01) than those cooked at 

204°C for initial tenderness, sustained tenderness, and overall tenderness. Previous literature has 

shown that reducing oven temperature and cooking rate results in a more tender beef product 

(King et al., 2003; Christensen et al., 2011). Additionally, steaks cooked with ZH and MH were 

rated greater (P < 0.01) than those cooked with HH for initial tenderness, sustained tenderness, 

and overall tenderness. Again, decreased tenderness appeared to be related to cooking rate. 

Unlike the current findings, many previous studies have reported increases in tenderness as a 

result of moist-heat cookery when compared to dry-heat cookery; however, many of these 

studies used moist-heat methods with a slower cooking rate (Kolle et al., 2004) than dry-heat 

methods used. Therefore, it can be difficult to determine if differences were due to added 

moisture or cooking rate. In agreement with the current results, however, Berry et al. (1977) 

found semimembranosus steaks cooked using dry-heat to be more tender than those cooked with 

moist-heat. 

 Trained sensory ratings for juiciness were affected by an interaction of the main effects 

(Table 5). When steaks were cooked at 204°C, relative humidity had no influence (P > 0.05) on 

juiciness. However, when steaks were cooked at 80°C, steaks cooked with MH were rated juicier 

(P < 0.01) than both HH and ZH, respectively. Furthermore, 80°C-ZH steaks were rated as the 

least juicy (P < 0.01) of all treatments and 80°C-MH steaks the juiciest (P < 0.01). As expected, 

juiciness scores followed cook loss percentages. Previous studies have shown that moist-heat 

cookery yields a juicier product due to a decrease in evaporative moisture loss (Bowers et al., 

2012).  
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 Beefy/brothy, buttery/fat, and bloody/metallic flavor intensities were influenced by an 

oven temperature  relative humidity interaction (Table 5). When cooked at 204°C, relative 

humidity had no influence (P > 0.05) on ratings for beefy/brothy intensity; but, when steaks were 

cooked at 80°C, ZH produced the most intense (P < 0.01) beefy/brothy flavors. Furthermore, 

80°C-ZH samples had the greatest beefy/brothy intensity (P < 0.01) of all treatments. Cooking 

steaks with ZH also produced the least intense (P = 0.04) bloody/metallic flavors, regardless of 

oven temperature. Adding relative humidity increased (P = 0.04) bloody/metallic intensity for 

both oven temperatures; however, 80°C-MH and 80°C-HH steaks had a more intense (P = 0.04) 

bloody/metallic flavor than both 204°C-MH and 204°C-HH steaks. Cooking with HH decreased 

(P = 0.01) buttery/fat intensity at 204°C; but, similar trends were not seen at 80°C. Steaks 

cooked at 80C-MH produced a more intense (P = 0.01) buttery/fat flavor than 80°C-ZH steaks, 

with 80°C-MH steaks performing similarly (P > 0.05) to both relative humidity levels. 

 Both browned/grilled and burnt flavor intensities were affected (P < 0.01) by relative 

humidity. Zero humidity steaks produced the most (P < 0.01) and HH steaks the least (P < 0.01) 

intense ratings for browned/grilled flavors. Browned/grilled flavors are associated with Maillard 

reaction products that occur on the surface of cooked meat (Mottram, 1998) and these reactions 

are inhibited in moist cooking environments (Kerth and Miller, 2015). It is evident in the current 

study, by evaluating external color and sensory scores, that increasing moisture to the cooking 

environment inhibited the non-enzymatic browning process. This conclusion is further supported 

by Isleroglu, et al. (2014) who measured a decrease in the production of Maillard reaction 

products after adding humidity to the cooking environment of chicken. 

No differences (P > 0.05) were observed among burnt, livery, or oxidized off-flavors 

(Table 5). Ratings for livery and oxidized intensity were low in some samples but were not 
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present in most samples evaluated by panelists. These low intensity ratings would not be 

expected to play a role in the flavor perception of consumers. In the current study, intensity 

ratings for livery and oxidized were collected to ensure that these off-flavors were not introduced 

during the reheating of steaks in the water bath. Oxidation can occur during the storage and 

reheating of cooked meat, which is commonly referred to as “warmed over flavor” (Mottram, 

1998); however, vacuum packaging steaks immediately after cooking and reheating in the 

absence of oxygen prevented oxidation and the development of warmed over flavor in sensory 

steaks. 

 Although it was not the objective of the treatment design, 80°C-HH (100% humidity) and 

204°C-ZH (dry-heat) treatments had comparable cooking rates (17.53 versus 17.00 min, 

respectively). This allowed for the evaluation of the effects of adding 100% humidity to the 

cooking environment on sensory development when cooking rates were similar. Neither initial, 

sustained, nor overall tenderness differed between dry-heat and 100% humidity cooking; 

however, cooking with 100% humidity produced juicier (P < 0.01) steaks. Greater flavor 

intensities were recorded for dry-heat cooking, as panelists rated steaks cooked using dry-heat 

more (P < 0.01) intense for beefy/brothy, browned/grilled, and buttery/fat flavors; and less (P < 

0.01) for bloody/metallic. Although juiciness was more favorable for 100% humidity cooking, 

dry-heat cooking produced more favorable flavors. While consumer sensory and acceptability 

was not evaluated in the current study, recent consumer studies have found flavor to be the most 

influential eating quality trait when determining consumer overall acceptability of beef (O’Quinn 

et al., 2012; Hunt et al., 2014; Legako et al., 2016), particularly when tenderness is acceptable. 

Therefore, it is suggested that the advantages in the flavor of dry-heat cooked steaks would be 

more desirable to consumers over steaks cooked in the presence of 100% humidity, when 
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cooking rate is kept similar. Based on these observations, future work emphasizing the influence 

of added humidity on sensory development would provide further insight into possible factors 

affecting these variables. 

Conclusions 

 Adding humidity to the cooking environment was expected to improve tenderness of beef 

strip steaks; however, the current findings show humidity had a negative effect on tenderness 

development. It appears that tenderness was affected more by cooking rate, which was altered by 

both oven temperature or humidity level. Adding humidity increased the cooking rate of strip 

steaks at both oven temperatures, but this difference was substantially more evident at 80C.  A 

slower cooking rate is believed to be responsible for a more tender product because of an 

increased exposure time to heat, better facilitating the thermal breakdown of proteins and likely 

the solubilization of collagen. Adding moderate levels of humidity to the cooking environment 

improved the efficiency of the cooking process without affecting tenderness attributes. Cooking 

at 80C with no humidity produced a tender product; however, it was exceptionally dry and 

produced more roast-like flavors that may not be desirable when consuming a steak product. At 

80C, the addition of 50% humidity allowed for a drastic decrease in cooking time without 

sacrificing tenderness and juiciness; however, it hindered the development of browned/grilled 

flavors. At 204C, the addition of 35% humidity decreased cooking time while only minimally 

affecting browned/grilled flavor development. Further work is warranted to understand how the 

observed differences in tenderness and flavor attributes would influence consumer acceptability.
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 Cook Time (min) Cook Loss (%) 
80C   
   Zero Humidity 125.29a 33.03a 

   Mid Humidity 32.03b 21.37c 

   High Humidity 17.53c 21.91c 

   
204C   
   Zero Humidity 17.00c 24.56b 

   Mid Humidity 13.53c 24.41b 

   High Humidity 10.60c 24.64b 

   
SEM1 2.48 0.71 
P – Value < 0.01 < 0.01 
a-cMeans in the same column lacking a common superscript 
differ (P < 0.05) 
1Standard error (largest) of the least squares mean 

Table 5. 1Interaction means for the length of time required 
to cook beef strip steaks to 71C and cook loss using two 
oven temperatures and three levels of humidity. 
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 80C  204C  P – Value 

Color 
Measurement 

Zero 
Humidity 

Mid 
Humidity 

High 
Humidity  

Zero 
Humidity 

Mid 
Humidity 

High 
Humidity SEM1 

Oven 
Temp 

Relative 
Humidity 

OT  
RH 

External Color            
   L* 24.30d 36.83b 41.90a  33.13c 37.30b 41.66a 0.85 < 0.01 < 0.01 < 0.01 
   a* 9.38e 13.04cd 11.85d  16.89a 15.14b 13.18c 0.47 < 0.01 < 0.01 < 0.01 
   b* 9.81c 18.96b 18.18b  24.12a 22.79a 20.19b 0.80 0.43 < 0.01 < 0.01 

Internal Color            
   L* 54.69a 49.01b 49.37b  48.52b 49.08b 48.86b 0.64 < 0.01 < 0.01 < 0.01 
   a* 11.80c 18.65ab 16.18b  18.66ab 17.36ab 19.77a 1.31 < 0.01 0.04 < 0.01 
   b* 16.59c 18.89a 17.14bc  18.73a 17.74b 16.67c 0.34 0.54 < 0.01 < 0.01 
Visual 
Assessment 

           

   Doneness2 4.81a 3.26b 3.33b  3.27b 3.18b 3.28b 0.09 < 0.01 < 0.01 < 0.01 
   External Color3 7.13a 5.11bc 4.68d  5.41b 4.90cd 4.60d 0.11 < 0.01 < 0.01 < 0.01 
   Internal Color4 6.78a 5.05c 5.50b  5.27bc 5.46b 5.45b 0.09 < 0.01 < 0.01 < 0.01 
a-d Means in the same row lacking a common superscript differ (P < 0.05) 
1Standard error (largest) of the least squares means 
2Doneness: 1 = rare, 2 = medium rare, 3 = medium, 4 = medium well, 5 = well done 
3External Color: 1 = light grey, 2 = grey, 3 = greyish-brown, 4 = light brown, 5 = brown, 6 = dark brown, 7 = brownish-black, 8 = black 
4Internal Color: 1 = purple, 2 = red, 3 = reddish-pink, 4 = pink, 5 = pinkish-grey, 6 = light brown, 7 = medium brown, and 8 = dark brown 

Table 5. 2 External and internal color (CIE L*, a*, and b*) and trained personnel (n = 2) visual assessment of doneness, external 
color, and internal color of beef strip steaks cooked to 71C using two oven temperatures and three levels of humidity. 
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Table 5. 3 Change in enthalpy1 required to denature remaining 
intact myosin, sarcoplasmic protein, and actin of beef strip steaks 
cooked to 71C using three levels of humidity. 

Relative Humidity 
Level 

Myosin 
(J/g) 

Sarcoplasmic 
Protein and 

Collagen (J/g) Actin (J/g) 
Zero Humidity 0.047 0.034b 0.307a 
Mid Humidity 0.034 0.035b 0.734b 
High Humidity 0.027 0.121a 0.646b 
    
Peak Denaturation 
Temperature (C) 

56.661 65.410 80.518 

    
SEM2 0.038 0.024 0.161 
P - Value 0.866 0.020 0.023 
a-bMeans in the same column lacking a common superscript differ (P < 0.05) 
1Change in enthalpy presented as change in Joules (J) per g required to 
denature remaining intact protein 
2Standard error (largest) of the least squares means 
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Table 5. 4 Slice shear force (SSF) values, total collagen 
content (dry matter basis), and trained sensory ratings1 for 
overall tenderness of beef strip steaks cooked to 71C using 
two oven temperatures and three levels of humidity. 

 SSF (kg) 
Collagen 
(mg/g) 

Overall 
Tenderness 

Oven Temperature    
   80C 16.00 15.98 6.50a 

   204C 16.78 13.65 6.09b 

SEM1 0.53 0.92 0.08 
P - Value 0.30 0.08 < 0.01 
    
Added Humidity    
   Zero Humidity 15.70m 19.36m 6.47m 

   Mid Humidity 15.59m 12.66n 6.42m 

   High Humidity 17.88n 12.44n 6.01n 

SEM2 0.65 1.59 0.14 
P - Value 0.02 < 0.01 < 0.01 
    
OT  RH P – Value 0.85 0.18 0.81 
a-bMeans in the same column lacking a common superscript differ (P < 
0.05) due to oven temperature 
m-nMeans in the same column lacking a common superscript differ (P < 
0.05) due to added humidity 
1Attributes were scored using a 10 cm structured line scale: 0 = very tough; 
10 = very tender 
2Standard error (largest) of the least squares means 
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 80C  204C  P – Value 

Trait 
Zero 

Humidity 
Mid 

Humidity 
High 

Humidity  
Zero 

Humidity 
Mid 

Humidity 
High 

Humidity SEM2 
Oven 
Temp 

Added 
Humidity 

OT  
RH 

Initial 
Tenderness 

6.86am 6.82am 6.41an  6.39bm 6.47bm 6.14bn 0.13 < 0.01 < 0.01 0.70 

Sustained 
Tenderness 

6.53am 6.38am 5.92an  5.56bm 6.00bm 5.56bn 0.14 < 0.01 < 0.01 0.73 

Overall 
Tenderness 

6.72am 6.62am 6.17an  6.21bm 6.22bm 5.84bn 0.14 < 0.01 < 0.01 0.81 

Juiciness 4.18z 6.10w 5.72x  5.36y 5.28y 5.23y 0.12 0.63 < 0.01 < 0.01 
Beefy/Brothy 5.63w 5.07xy 4.97y  5.26x 5.15xy 5.08xy 0.15 0.38 < 0.01 0.01 
Browned/Grilled 4.79m 4.24n 4.10o  4.73m 4.61n 4.28o 0.20 0.09 < 0.01 0.19 
Buttery/Fat 2.22y 2.56wx 2.33xy  2.74w 2.63w 2.23y 0.11 0.05 0.01 0.01 
Burnt 0.65 0.50 0.64  0.66 0.39 0.67 0.14 0.84 0.15 0.82 
Bloody/Metallic 1.10y 1.90w 1.66wx  1.09y 1.34y 1.37xy 0.11 < 0.01 < 0.01 0.04 
Livery 0.07 0.02 0.03  0.01 0.02 0.07 0.01 0.73 0.32 0.08 
Oxidized 0.06 0.05 0.02  0.05 0.11 0.11 0.03 0.10 0.80 0.41 
a-bLeast square means in the same row without a common superscript differ (P < 0.05) due to oven temperature 
m-oLeast square means in the same row without a common superscript differ (P < 0.05) due to added humidity 
w-zLeast square means in the same row without a common superscript differ (P < 0.05) due to an over temperature  realtive humidity interaction 
1Attributes were scored using a 10 cm structured line scale: 0 = very tough, very dry, and not present; 10 = very tender, very juicy, and very intense 
2Standard error of the least squares means 

Table 5. 5 Trained sensory ratings1 for beef strip steaks cooked to 71C using two oven temperatures and three levels of 
humidity. 
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