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ABSTRACT 

A method is developed for investigating time series structure 

by using the mean run-length parameter . This method is distribution­

free. Applications to selected annual precipitation series and annual 

runoff series demonstrate the feasibility of this method. 

Analytical expressions are developed by which the probabilities 

of sequences of wet and dry years of specified lengths can be calculated 

when the basic hydrologic time series is either an independent or a 

dependent stationary series of a var iable which follows the first-

order l inear autoregressive model. 

Numerical values of probabilities of run-lengths are obtained by 

the digital computer integration of expansion equations for run-length 

probabilities of the first-order l inear autoregressive model. A set 

of tables and a set of graphs are presented to make the numerical values 

readily useable. Probabilities of run-lengths of dependent variables 

with a common distribution are also distribution free. 

The significance of this investigation, and several applications 

in the text, are based on the premise that run-lengths, as statistical 

properties of time series, represent attractive parameters in studying 

droughts and surpluses . 
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APPLICATION OF RUN-LENGTHS TO HYDROLOGIC SERIES 

by 

Jaime Sal darriaga* and Vujica Yevjevich** 

Chapter I 

DEFINITION OF PROBLE~!S INVESTIGATED 

1.1 St ationary Hydrol.ogic Ser ies . Annual 
precipitation, annual effective precipitation (pre­
cipitation minus evaporation) , and annual r iver flow 
vary from year t o year. This variation is generally 
r eferred to as the sequence of wet and dry years . 
These sequences are hydrologic time processes . For 
all practical purposes in water resources development, 
they can be assumed to be approximately stationary 
time series [1,2] . The hydrologic stationary pro­
cesses of annual river flow and annual effective pre­
cipitation arc dependent time series . This means 
that successive values are linked in some persistent 
manner, or sequences of annual river flow and annual 
effective precipitation are stationary dependent 
processes [2]. Sequences of annual precipitation are 
very near t o being stat ionary and independent st o­
chastic processes [2]. 

Hydrologic continuous time processes , such as 
ri v·er flow discharge, intensity of precipitation and 
similar variables, and hydrologic discrete t ime 
series of time i ntervals, which are fractions of the 
day or year, or multiples of the day or the month, 
usually are non-stationary. They are periodic­
stochastic processes with various weights of periodic 
and stochastic components [3,4, 5). Therefore , they 
are non-stationary processes . 

The theory and properties of run-lengths , either 
already known or developed in this paper, are appli­
cable only to stat ionar y processes of annual time 
series of various hydrologic variables . The applica­
tion of the theory of run-lengths of periodic­
stochastic processes to hydrologic complex periodic­
stochastic time series is not feasible at the present 
time f or the simple reason that this theory has not 
yet been developed in the form to be applicabl e to 
discrete hydrologic time series composed of periodic 
and stochastic components . 

1.2 Practical Significance. Sequences of 
annual values of many hydrologic variables have 
several practical connotations . The behavior of 
sev·ere and prolonged droughts, with thei r properties , 
may not be known with sufficient accuracy to allow 
the probabilistic prediction of their occurrence , 
duration and areal coverage with a suffi cient degree 
of reliability. Statistical properties of runs of 
time series may represent one of the best ways for 
an objective definition of drought [6) . This inves­
tigation of run-lengths and their application to 
series of wet and dry years is related to some sig­
nificant problems of hydrology and water resource 
development. 

Apart from determining the probabilities of 
droughts of various durations and severity at one 

poi nt ?r o~er a_region, the probability of droughts 
occurr1ng 1n adJacent regions have si2nificant 
economic impl ications . If two or more regions 
produce an important crop, or are supplying water 
to the producers of the same industrial product, 
then the conditional probabilities of droughts 
covering simultaneously these regions may be of 
importance to various plans. 

The probability of an extended period of wet 
years is similar to the problem of the probability 
of droughts. It may be important for restoration of 
biological cover in semi-arid or arid regions , or 
for the fight of prolonged pollution produced during 
dry years in soils and various water environments . 

1. 3 Two Problems Related t o the Application of 
the Theor of Run- Len ths to H drolo ic Processes. 
A run is de ined, in proba i l i t y theory, as a succes­
sion of similar events preceded and succeeded by 
different events. The number of elements in a run 
is usually referred to as its length. Therefore, 
the successions are called run-lengths . Two ~ypes 
of events must be appropriately defined , either as 
greater , or smal ler values than a given value. 

The application of the theory of run-lengths to 
hydrologic stationary processes may be viewed from 
t wo basic standpoints : 

(1) Some parameters of the run- lengths, as 
functions of another parameter, may be used for the 
investigation of stochastic hydrologic processes , 
particularly whether the series are stationary or 
not, and if so, whether they are serially independent 
or dependent . If found to be dependent , the interest 
is, what are the best mathematical model s to descr ibe 
this dependence . 

(2) To det ermine, in the most r eliable way, the 
properties of run- lengths of a hydrologic series 
whenever it is found to be stationary, independent, 
or dependent, and the mathematical model of depen­
dence is found to describe we ll the empirical 
dependence , if the series is dependent . 

Before these two standpoints are discussed in 
detai l, the two c lassical methods and the two new 
potential methods , including runs, are briefly 
reviewed in order t o better define the problems in­
vestigated in this paper . 

1. 4 ~let hods f or Invest i gati on of Hydrolog ic 
Sequences. Four methods based on specific statisti ­
cal parameters , as they change wi th other parameters, 

1. Autocorrelation analysis . Parameters 
involved are the a~tocorrelation coefficients , Pk , 
as a function of the lag k between the correlated 

*Former Ph.D. Graduate of Colorado State Universi t y , Civil Engineering Department, Fort Collins , Colorado, now 
temporary Research Associate, Civil Engineeri ng Department, Col orado Stat e University, Fort Collins, Colorado . 

**Professor of Civil Engineer i ng and Professor-in-Charge of Hydrology and Water Resources Program , Civil 
Engineering Department , Colorado State University, 
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are or may be effectively used for the investigation 
of hydrologic processes: 

values, or Pk = f(k) , with pk defined by 

f(k) 

for a discrete time series . The values 
estimated by the sample values rk . 

(1. 1) 

are 

The use of autocorrelation analysis as an inves­
tigative technique of hydrologic time series is based 
on the concept of analogy . One should know the cor­
relograms of particular processes , and then by sta­
tistical inference determine whether a computed 
correlogram of a hydrologic process is well approxi­
mated by the correlogram of a kno~<~n process . To read 
the type of process that results from a correlogram, 
the alphabet of correlograms must be known. 

2. Variance spectrum analysis . Basically this 
is the Fourier series analysis where an i nfinite num­
ber of elementary periodic components, with a con­
tinuous distribution of frequencies, is fitted to an 
observed series. The parameters involved are the 
variance densities , Vf , of various harmonics 
fitted to this series, represented against the fre­
quencies f as the parameter. The variance of a 
harmonic is equal to the half of its squared amplitude . 
This type of analysis is a representation of the pro­
cess in frequency domain, 

( l. 2) 

while the autocorrelation is a representation in time 
domain, or any other dimension on which the process 
occurs (say, the length). It might be noted that the 
variance density spectral function is the Fourier 
transform of the correlogram. The variance densities 
vf arc estimated by the sample variance densities, 
vf. 

The usc of variance spectrum analysis as an 
i nvestigative technique of hydrologic processes is 
also based on the concept of analogy. Statistical 
inference should be performed to find whether a com­
puted variance spectrum of a hydrologic process is 
well approximated by the variance spectrum of a 
known process. A reading knowledge of the alphabet 
of variance spectra should be known to advance hy­
potheses on the kind of mathematical model for the 
process investigated. 

3. Rafges. The ranges, Rn , are defined in 
terms of di ferences between maximum and minimum on 
the cumulative sums of departures of values from the 
average, or from any other value, for given subseries 
sizes , n . The expected ranges, E(Rn) , or similar 
parameters, as random variables, are related to the 
subsample size, or 

(1. 3) 

Let {xi; i•l, ... , N} be the observed sequence, and 
let x0 be a specified truncation level which in 
general represents the reference level. Then the 
sum is 

i 
s. . r (xi - xo) (1.4) 

l i=l 

for i•l, 2, ... , n The surplus is defined by 

2 

sn 
+ 

{O ,Si} for i: l J 2' • • • 1 • max n ( 1. 5) 

and the deficit by 

s n " min {O,Si} i=l,2, ... , n ( 1. 6) 

where 
from 

n represents the size of a subsample taken 
{xi} . 

The range is defined by 

R n 
s + 
n sn = max{O,Si} - min{O,Si} (1. 7) 

for i•l ,2, ... , n 

As in the case of the autocorre l ation and vari­
ance spectrum analyses, the use of the expected 
range (or of a similar parameter), as a function of 
n , may be conceived as an investigative technique 
of hydrologic series. It should be based also on 
the concept of analogy . The parameters E(Rn) are 
estimated by the sample mean ranges, ~n The com-
parison of the function Rn = f(n) with the function 
of the same parameter of a known process allows the 
advancement of hypotheses about mathematical models 
describing dependence of a stochastic process. The 
statistical inference of the goodness of fit of 
these theoretical and hypothetical models decides 
whether they should be accepted or rejected. The 
alphabet of these range functions for various types 
of processes should be known before hypotheses are 
advanced. 

4. ~· Various properties of runs, clearly 
defined, have parameters o , which may be used as 
function of another parameter B , so that o = f(B) 
is a characteristic of a process of independent or 
dependent sequences . for the purposes of this paper, 
the run is identical to the concept of run-l ength . 
Basical ly, both are the number of consecutive posi­
tive or negative departures from a specified constant 
value called here the truncation level . In this 
narrower definition of runs, positive runs are asso­
ciated with positive departures and negative runs 
with negative departures . The structure of a series 
may be analyzed by studying the properties of runs 
at different truncation l evels . Parameters of runs 
have practical meanings in hydrology , because a 
positive run can be associated with the duration of 
a wet period or with a water surplus inteTval, while 
a negative run can be associated with the duration 
of a drought, or with a water deficit interval . 

S. Comparison of four techniques: The two 
classical techniques for the investigation of time 
series are autocorrelation analysis and variance 
spectrum analysis . The way they are used in explor­
ing the internal structure of a process depends to 
some extent on the purpose of inquiry and prior 
knowledge of the generating system of the process. 
The correl ograrn tells something about the linear 
relation between the consecuti ve values of a series . 
The spectrum exhibits the extent the series is in 
step with certain fundamental rhythms, measured at 
various frequencies [7] . These two techniques offer 
no particular advantage over other parameters for the 
task of investigating the properties of various 
sequences . One fact seems clear, name ly that it is 
difficult to use the t1~0 functions pk " f(k) or 



vf ~ ~(f) , respect i vely for t hese two t echniques, 
directly in the solution of various water resources 
problems . 

Ranges and runs are tt.•o t echniques that can be 
used advantageously in water r esources problems and 
at the same time, t hey may be used to investigate 
hydrologic processes. They can be readily associated 
with concepts of storage and drought, or with concepts 
of surplus and deficit, which are of int erest to the 
solution of various water t"esources problems. This 
is one of the main r easons for investigating proper­
ties of run-length f or both objectives: the inves­
tigation of hydrologic stochastic processes, and the 
direct computation of properties of runs , from the 
information in samples of these processes . 

6 . Runs as the technique. If a truncation l evel 
is specified, the run-length associated with a nega­
tive run represents the duration of a deficit rela­
tive to this level . The probability of length of the 
deficit periods is r el evant f or t he planning, design, 
and operation of water resources systems. 

The structure of a stochastic process is reflected 
in the properties of runs that it generates at speci­
f ied truncation levels . For example, i ndependent 
variables wi'th a common distribution arc characterized 
by a mean run-length equal to two for a truncation 
level equal to the median of the distribution of 
variables. Identically distributed variables with a 
highly positive first serial correlation coefficient 
are char act erized by a mean run- length greater t han 
two at t he same level . On the other hand, identi ­
cally distributed var iables, with a highly negative 
first serial correlation coeffi cient, are character­
ized by a mean run-length smaller than two at the same 
l evel. These properties, which are investigated in 
detail i n t he fo llowing chapters, shoul d just ify t he 
use of runs not only in the making of water resources 
decisions, but also as a technique for the investiga­
tion of s eries , and more specifically for the testing 
of stationarity and of mathematical dependence model s 
of hydr ol ogic processes. 

1.5 Two Approaches to Investigations of Sto­
chastic Sequences. Regardless of which of the four 
methods of investigation of hydrologic sequences is 
used, a sequence of a parameter as a f unction of 
anot her parameter characterizes a stochast ic process, 
like the functions Pk = f(k) , vf = $(f ) , E~ = 
f(n) , or ENq c f(q) . This last case is an example 

of r uns , where ENq is the expected va lue of run­

l ength, estimated by the sample mean run- l ength Nq , 
as it changes with the probability q of all values 
of a variable not greater than the truncation level. 
These four functions, related to autocorrelation co­
effic i ents , spectral densit ies , expected r anges , and 
expected run-lengths, should have we ll -defined math­
ematical expressions for various stochastic dependence 
models, or for processes composed of the periodic and 
stochastic components. Particularly, these four 
f unct ions for t he population of a stochastic station­
ary and independent process ar e well defined. 

Two approaches for investigating time series may 
be used. The first approach consist s of the analysis 
of or i ginal data. It is here referred to as the use 
of the origi nal sample series . In t his case , anyone 
of the four above functions is computed from the 
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sampl e series, and compared with the f amily of 
corresponding population functions for various mathe­
matical dependence models. Then a model is selected, 
its parameters estimated, and the population function 
compared with the sample function in such a way that 
their differences are or are not statisticall y sig­
nificant. If t hey are significant, new models are 
selected as hypotheses, their parameters estimated, 
and the comparison repeated. The knowledge of shapes 
of above functions, pk = f(k) , vf = ~(f) , ERn 

f(n) , or EN = f(q) , for various hydrologic 
q 

mathematical dependence models i s a prerequisite, so 
that sight comparison with the sample function of 
any of the above four functions may l ead to the most 
l ikely hypotheses for the population models. 

The second approach assumes a mat hematical model 
for the dependence of a process that is composed of a 
systematic dependence component(s), and an indepen­
dent stochastic component. A residual series is 
obtained by separating the systematic dependence com­
ponent(s) from the original series. Under the hy­
pothesis that the assumed model is an adequate repre­
sentation of the process, the residual series after 
this separation should be a sequence of independent 
stochasti~ variables. The independence of t he resi ­
dual series is t hen tested. The assumed dependence 
model is accepted or rejected, depending on whether 
the independence of the residual series was accepted 
or rejected. This procedure is here referred to as 
"whitening," meaning that the residual series is 
expect ed to be a "white noise," or independent series . 

It is perhaps interesting to emphasize a basic 
difference between these two approaches. The first 
approach does not assume a model a priori for the 
process, but rather the curve of t he sampl e funct ion 
leads to the hypothesis about the structure of the 
process, so that eventually a mathematical dependence 
model can be fitted to it. The second approach may 
start a priori by assuming a dependence model for the 
process, without computing the sampl e function, and 
aft er t he model parameters are estimated, the supposed 
independent stochastic component (white noise) is 
computed and tested. Logically, the sample function 
in any of the four above methods helps advance a more 
realistic hypothesis about t he model . However, if 
previous knowledge about these models is already 
available for the similar processes in a region , t he 
hypothesis can be advanced a priori, and the whiten­
ing and testing performed in an appropriate way . 

In order t o use the methods of run- length for 
investigating hydrologic sequences, run properti es 
should be known for various mathematical dependence 
models of hydrol ogic sequences, regardless of the 
two approaches used. Therefore, the objective of 
investigation in this paper is to add knowl edge about 
the properties of run-lengths for some mathematical 
dependence models of stationary hydrologic processes. 

As an example, let the hypothesis be that {X.) 
is a first-order linear autoregressive process in 1 

the f or m 

with 
X , 

(1.8) 

~ t he expect ed value and o2 t he variance of 
ci is a s t andardized st ationary independen t 



variable (0,1), while p
1 

is the first autocorrela-

tion coefficient. The parameters, 

are estimated by sample parameters X , $2 

The "whitened" series is 

£. 
]. 

and 

(1. 9) 

Under the given hypothesis, {£i} is a sequence 

of standardized, independent random vari ables. Then 
the whitened series is tested for independence. 

1.6 Objectives for Determinating Properties of 
Run-Length . The first objective of this study is t o 
develop a method for investigating stationary inde­
pendent and dependent hydrologic time series by using 
statistical parameters of runs. Four phases must be 
involved in this investigation: 

(a) ~1athematical formulation of the 
problem; 

(b) Selection of suitable parameters for 
testing hypotheses of stationarity and time dependence; 

(c) Statistical inference for stationarity 
and time dependence models, and 

(d) Tests of application of the method to 
some selected time series . 

The second objective of this study is to develop, 
in an approximate analytical procedure, the proper­
ties of run- lengths of the stationary, first -order, 
and linear autoregressive mathematical model of time 
dependence, as defined by Equation (1.8). This 
objective has a significant, practical aspect, as 
shown by the follow ing example . 

For a river with large storage capacJ.tJ.es, what 
is the probability of a drought to occur with a dura­
tion of n or more years, if the drought is defined 
as a run of all annual inflows into reservoir of 
above capacity, which are not greater than a given 
annual runoff. In this case, it is possible to deter­
mine the truncation level of the series of annual 
runoff and from it the probability q . If the 
dependence in the series of runoff can be well approxi­
mated by the model of Equation (1.8), and ~ , o , 
and pl are esti mated from it, then the results of 

investigations in this study should answer readily 
and accurately the above classical problem. The 
available runoff series may not include even a drought 
of the duration of n/2 or of a shorter duration, so 
that the current empirical methods cannot give an 
answer to this problem. There are two reasons for 
concentration on the model of Equation (1 . 8): (1) It 
is often the most appropriate model for dependence of 
series of annual river flows, and (2) It is simple 
for an analytical treatment. 
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1 . 7 Definition of Runs . A series of the variabl e 
x is cut at many places by an arbitrary horizontal 
truncation level x , and the relation of this 
constant x to'all0 other values of x of the pro­
cess serv-es0 as a basis for the definition of runs in 
this study. Basically, there must be t wo processes 
intersecting each other in order to define runs. 
Because these two processes cross each other, the 
theory of runs is often called the crossing theory. 
The term "theory of runs" is used in the case of 
discrete series [7], and the term "crossing theory" 
in the case of conti nuous series [8] . 

One of the t wo processes must be the original 
process. The second process may be a constant x

0 
, 

the process of a random variable y , or any other 
type of deterministic, combined deterministic -
stochastic, or pure stochastic process. When this 
second process is not a constant, the development 
of properties of runs becomes compl ex . In the case 
of runs to be used in this study, the main assump­
tions are: 

1. Only discrete series are invest igated, so 
that the expression "runs" is used; 

2. The variable x may have discrete, contin­
uous, or fixed probability distribution; 

3. The second process is a constant x
0 

, or 
any constant value in the range of fluctuation of 
the variable x ; 

4. The probability P(x ~ x0 ) = q may replace 
the constant x , in order to make some properties 
of runs indepen~ent of the type of distribution of x. 

The number of values of a discrete sequence 
bet ween an upcrossing of the truncation level and 
the follo·wing downcrossing is defined as a positive 
run-length, or briefl y, for this study, the positive 
run. Similarly, a negative run-length, or the nega­
tive run, is defined as the number of values of a 
discrete series between a downcrossing and the next 
upcrossing. They are shown in the upper graph of 
Figure l. 1, and are designated by 

+ N. 
J 

for the length of the j-th positive run, and 

by N~ for the 
J 

l ength of the j-th negative run. 

The j -th total run is defined as 

Nj = N; + Nj , with j=l,2, ... , where is 

counted from the origin of a time series . 

These may be extended to definitions T; , Tj , 

and Tj , as the positive, t he negative and the 
total run of a continuous process, respectively. 
This is analogous to the definitions of runs of dis­
crete time series, as shown in the lower graph of 
Figure 1.1. 



n 
u 

Fig. 1.1 Definition of positive and negative runs 
for a given truncation level. Upper graph 
refers to a discrete series and lower 
graph to a continuous series. 

Other parameters used in literature as defini­
tions of various runs of discrete time series, 

besides N: , N~ , and N. , are: 
J J J 

1. Sum of deviations associated with positive 
runs, as the positive run-sum, or the run-surplus, 
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2. Sum of deviations associated with negative 
runs, as the negative run-sum, or the run· ciefici t, 

3. Number of positive runs for a given series 
of size N . 

4. Number of negative runs for a given series 
of size N , 

5. Number of total runs for a given series of 
size N 

For the continuous ~ime ~eries, the following 
parameters other than T. , T. , and T. are used: 

J J J 
+ 

1. Area above truncation level for T j , as 
the positive run-sum, or the run-surplus; 

2. Area below truncation level for T~ , as 
the negative run-sum, or the run-deficit; J 

3. Number of positive runs for a given series 
length, T ; 

4. Number of negative runs for a given series 
length, T ; 

s. Number of total runs for a given series 
length, T ; 

6. Time interval between successive peaks; 

7. Time interval between successive troughs. 

Al l of these runs are random variables, and are 
functions of the process (xi} and the truncation 
level x

0 
, 

Properties of runs relating to these functions 
can be directly used in many water resources problems. 
If x0 determines the level of demand, and if this 
level is not reached, a drought occurs . If a flooded 
area begins for x > x0 , and the flood damage is a 
function of the time during which x > x0 , then the 
distribution of positive run-length and/or run-sum 
determines t he character of flooding. If a given 
type of run is regionalized, or shown over an area 
with its isolines, the regional phenomena of drought, 
flood , and similar phenomena may be studied for their 
probabilities of recurrence [6). 



Chapter II 

SUMMARY AND STATUS OF KNOWLEDGE ON DISCRETE RUNS 

2.1 Introductory Statement. Two main aspects 
are reviewed, the distribution t heory of runs for 
both independent and dependent random variables, and 
the multivariate normal integral which serves as a 
base for the mathematical developments in Chapter I II. 
The summary is related only t o those properties of 
runs , which are relevant to investigations in this 
paper. 

2.2 Distr ibution Theory of the Number of Various 
Runs of Independent Random Variables. The classical 
distribution theory of runs has been mainly concerned 
wit h independent arrangements of a fixed or a random 
number of several kinds of elements . This is not 
particularly relevant for this study , but is summa­
rized for t he sake of completeness. In the case of 
two different kinds of elements, it is assumed that 
the number of e l ements of each kind are N0 and N1 , 
and that they are al l randomly dr awn without replace­
ment. This is equivalent to sampling a binomial 
popul ation, with probabilit ies of· elements, p and 
q = 1 - p , respectively . Let K~ denote the number 

of r uns of kind (o) of the l ength i , and l et K~ 
1 

denote the number of runs of kind (1) of t~e length 

i . Finally, let K0 = r K~ des ignate 'the number 
i 1 

of all runs of elements N K1 = r K~ the number 
0 i 1 

of all runs of elements Nl and K = Ko + Kl the 

total number of runs , and N No + Nl the tot al 

number of e l ements, or t he sampl e size, with 
i = 1,2 ' 0 •• 

Wishart and Hirshfeld (9) obtained and t abulat ed 
the joint probabilities of the number of r uns 

and 

N 
0 

(2 .1) 

(2 .4) 
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In Equations (2.1) t hrough (2.4) , the capi tal letters 
designate t he random variables, and the small letters 
t he values those variab l es can take. 

As t he sample size N increases to infinity, 
K is asymptotically normally distributed, with 

EK = 2npq + p2 + q2 = 2(n- l )pq + 1 (2 . 5) 

and 

var K = 4npq(l-3pq) - 2pq(3-10pq) (2 . 6) 

However , Cochran (10) gives expressions for the 
expected values of t he number of positive and nega­
tive runs as 

EK0 = p + (n-l)pq (2 0 7) 

EK1 q + (n-l)pq (2 0 8) 

and 

EN 
0 

" np , and EN1 = nq (2 0 9) 

with . N
0 

and N1 being also the random variables 
in t h1s case . 

Stevens (11) gives the distribution of the 
total number of runs, without a regard to their 
l ength, from the arrangements of two kinds of ele­
ments . He develops a x2- criterion for the test of 
significance. Wald and Wolfowitz [12) study the 
same distribution as Stevens [11], and show t hat it 
is asymptotical ly normal. The conditional distribu­
tions of K are 

(2 0 10) 

and 

(2 . 11) 

where n
0 

and n1 are values that N
0 

and N1 can 

take . These probabilit ies are i ndependent of t he 
parameter p . For n

0 
= an1 , wi th a > 0 , and 

n
0

-+ oo , Wal d and \~olfowitz [12] give t he above 

distributions of Equati on (2 . 10) as a normal asymp­
tot ic distribution wi th 



EK 

For o = 1 

z 

2n 
0 

l+o var K 

the statistic 

K-n 
0 

,r; 

4on 
0 

is a standard normal variable. 

(2. 12) 

(2. 13) 

Mood [13) derives distributions of the number 
of runs of a gi ven length for t he independent arrange­
ments of the fixed number of elements of two or more 
ki nds of the binomial and multinomial populations. 
He shows these distributions as asymptotically normal 
with an increase in the sample size . Their expected 
values arc : 

0 i EKi = p q [(n-i-l)q + 2) (2. 14) 

and 

1 i EK. q p [(n-i - l)p + 2) 
1 

(2 .15) 

The statistic 

K- EK 
X:--

/varK 

K-2npq (2. 16) 
21npq( l -3pq) 

is asymptotically normal with the mean of zero and 
the variance of unity. Comparing Equations (2 .5) and 
(2.6) with the mean 2npq , and the variance 4npq(l-
3pq) of Equation (2.16) , the mean and variance given 
by Mood [13), and the mean and variance given by 
Wishard and Hirshfeld [9] , are different. Parameters 
in Equat ion (2.16) are approximations to those of 
Equations (2.5) and (2.6). Bendat and Piersol [14) 
give tables for the conditional dis t ribution of K 
when N

0 
., N1 ., N/2 . 

2.3 Distribution Theory of Run- Lengths of 

Independent Random Var iables . Let N: and N: 
J J 

denote the positive and negative j - th run- length for 
the given truncation l evel, x0 . Also let {X} be 
the sequence of independent r andom variables of the 
common distributi on, F(x), with F(x

0
) = q, and 

l-F(x
0

) ., p , and let 

{N_} : {N: + N: } 
J J J 

be the random sequence of the total j-th run-length. 

The probability mass function of N1 
by feller [15) as 

k k pq - gp 
P(N1 = k) = q-p 

for k=2,3, . .. , with 

is given 

(2. 17) 
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1 
pq 

(2 . 18) 

The distribut ion of the number of total runs, 
k(N) , in a discrete time series of length N has 
the follo,•ing parameters 

Ek (N) = (N- l)pq for N > 1 (2 .19) 

and 

1 5 vark(N) = Npq (l-3pq - N + N pq) , for N ~ 4; (2.20) 

this distribution is asymptoticall y normal. Downer, 
Siddi qui and Yevjevich [16] studied the distrihution 
of positive and negative run- lengths for a sequence 
of independent identically distributed random vari­
ables , and applied it to the normal variabl e . They 

have shown that {N: } is also a sequence of i ndepen-
J 

dent identically distributed r andom variables with 
the probability mass f unctions 

P(N: = k) 
J 

k - 1 = qp ' 
and P(Nj k) k-1 pq (2.21) 

and their moments are 

+ : l EN: 1 EN. 
J q J p (2 . 22) 

+ ..E... N: =_g_ var N. var 
J 2 J 2 

q p 
( 2.23) 

For t he case p = q = 1/2 

+ 
PCNj 

l 
P(Nj = k) = = k) k 

2 
(2.24) 

EN: 
J 

EN: 
J 

2 (2.25) 

and 

+ N: var N. ; var ; 2 
J J 

(2 . 26) 

Llamas ( 17) studied t he case of standard, one­
parameter Gamma random variables, with the probabil­
ity distribution function 

F(x) 
X 

f 
-10 

r et-1 
Ct(et+t~Ct) 

f(et) 
-a-t /a 

e dt (2 . 27) 

For x
0 

= 0 , he obtained p = F(O) = P(a,a) , and 

q = 1- P(et,et), where P(et,et) is the i ncomplete 
Gamma function, or 

l 0. 1 
P(a,a) = r (a) f e-t t a- dt 

0 

(2. 28) 



Llamas and Siddiqui [18] studied the case of a 
sequence of a two-di mensional random process {x,y} , 
where the two variables are independent and have a 
common distribution funct ion , F(x,y) . Given the t wo 
levels, x

0 
and y

0 
, such that o < F(x

0
,y

0
) < 1 , 

the four possible events are defined as 

Both sequences are associated with the sign mi nus if 
A occurs, and wi th the sign plus if D occurs. The 
sequence of k consecutive A events followed and 
preceded by any other event is a negative r un of the 
length k . The sequence of k consecutive D 
events fol lowed and preceded by any other event, is 
a positive run of the length k , and for the initial 
run the requirement of ·~receded b~' is dropped . If 

Ac is the complement set of A , then 

Llamas and Siddiqui have shown [18) that 

with 

- k-1 
P (N. = k) = p q 

J 

1 
p 

, and 

(2.29) 

( 2. 30) 

the analogous relati ons hold f or 
sponding values of p and q . 

+ 
N. f or i ts corre-

2 . 4 
Dependent 
two states 
transition 

J 

Distribution Theory of Run-Lengths of 
Random Variables. For a Markov chain with 

(0) and (1) , Cox and Miller [19], give the 
probabi lity matrix of this chain, which is 

p 
0 ~1-a al 
~ 1-~ 

(2. 31) 

They give t he distribution of t he r ecurr ence time of 
state (0), designated by N° , which is equal to t he 
run-length of state ( 1) plus unity, as 

0 k-2 
P(N =k) = aS (l-6) for k=2 , 3, ... , (2 . 32) 

and 

1 - a , for k=l (2 .33) 

The mean recurrence time of the state 0 is then 

EN° = a+e (2 . 34) s 

Simi lar relati ons hold for the recurrence time of the 
state (1), which is equal to the run-length of state (0) 
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plus unity, designated by N~ , by interchanging 
a and 13 

Heiny [20) defines the two states wi th their 
transition probabilit ies of the Markov chain as 

P (xJ. > x I x. 1 > x
0

) = r , and 
0 J-

P(xJ. < A lx. 
1 

> x
0

) = s 
- 0 J-

with r + s = 1 The following relations are valid 
for this Markov Gaussian process {x}: 

.. I k-1 2 P(N = k x1 > 0) = sr [1 + O(p )], k=1 ,2,3, ... , 

(2.35) 

wi th 

(2. 36) 

and 

(2.37) 

where O(p2) indicates an expression that becomes 
negligible for small values of p . He also found 
an approximation for the conditional joint proba­
bility mass f unction of the first j positive and 
t he f i rst j negative runs, given x1 > 0 , as 
follows: 

.. 
N~=m., 

.. .. 
N~=m1 1 x1>0) P(N .=n . , N. 1 =n. 1' ... ' Nl =nl, 

J J J J J- J-

m - 1 

= 

n
1
-l 

sr tv 1 srn2-l m2-1 nj-l 
tv ... sr 

m. 1 
tv J - [l+O(p2)] , 

where 

t = P(xJ. > X lx . l < X ) 
0 J - - 0 

and 

t + v = 1 

v 

(2. 38) 

P(xJ. < X jx. l< X ) 
- 0 J-- 0 

This t reat ment, however, has t wo disadvantages : 
(a) it is based on a conditional probability that 
x1 > 0, and (b) it is appl icable only to very small 

values of p , since the errors O(p2) may be sig­
nif icant for larger val ues of p 

2 . 5 The Multivariate Normal Integral. Gupta [21] 
presents an exhaustive bibliography on the multi normal 
integr al and related t opics, and gives a review (22] 
of these works. Onl y works that do not overl ap with 
references in [21] and [22], but are related to 
mathemat ical developments in the following chap·cers 
are reviewed here. 

The mul tinormal integral is involved in the 
t heory of runs of dependent normal variables because 
it is directly related to the prob lem of h auto­
correlated random variab l es, z1, z2, ... ,Zh . If 

these variables have a standar d multivariat e normal 
distribution, the problem to solve i s the probability 



that all h variables are simult aneously positive . 
A new sequence of random variables {X) is defined 
as follows: 

1 for z > 0 

X 

- 1 f or Z < 0 

The probability that all h variabl es are simulta­

neous ly positive is P (h+) , where the index m 
indicates that the truNcation level x

0 
of the ran-

dam process {X) is the median of t he distribution 
of {Z} For r.. EX.X . , Mcfadden [23] gi ves, 

lJ l J 
f or any h > 4 

For 

(2 . 40) 
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If Equation (2 .40) is substituted into Equat ion (2.39), 

2-h[ l + ~ L arc sinpij 
j >i ?_l 

Obvi ously, and for the univariate case , Equation 
(2.41) becomes 

2 
(2 . 42) 

For the bivariate case, the resu l t is known as 
Sheppard ' s theorem [24) of the median dichotomy; i t 
i s 

+ 1 1 
Pm(2 ) = 4 + z; arc sinp (2 . 43) 

This equation is tabulated in t he Tables of Ma the­
matical Functions of the National Bureau of Standards 
[28] for P , which varies from 0 t o 1, with incr e ­
ments of 0 .01. For the trivariate case, the follow­
ing result is given by David [26) 

+ 1 1 . 
Pm(3 ) = 8 + 4" (arcs1np12 + arcsinp13 + arcsinp23) . 

(2.44) 



Chapter III 

PROBABILITIES OF RUN- LENGTH OF THE FIRST-ORDER LINEAR 
AUTOREGRESSIVE ~10DEL OF NORMAL VARIABLES 

3 . 1 General Notations and Expressions for Pro­
babilities of Run-Length. For purposes of simplici ty, 
the following notation is adopted: 

P(Xl~xo,X2~xo•· .. ,Xk~xo,Xk+l>xo,Xk+2>xo•···• Xk+j >xo} 

-= P(k ,j+) , 

and 

with k=l,2, . .. and j =l ,2, .. . 
The probability of the firs t positive run-length 

from the beginning of a series being equal to or 
greater than j , is 

00 

P (N~ ~ j) = p (j +) + ~ P(k ,() (3 .1) 
k=l 

The probabil ity mass function of + 
Nl is 

P(N~ = j) = P(N~ ~ j) - P(N+ 
1 ~ j 

+ 1) (3.2) 

The computation of joint probabilities . P(k-,j+) 
requires the joint probability distribution of the 
variables x1 ,x2,... This j oint distribution for 

the purposes of this study is assumed multivariate 
normal. 

3 . 2 Stationary and Ergodic ~1ul tidimensional 
Gaussian Processes. An arbitrary Gaussian random 
process {xi} , or x1 ,x2, ... ,xn' where i =l,2, ... ,n 

at arbitrary or equally spaced positions in time , has 
the multivariate normal distribution in n dimensions. 
This process is completely described by the param­
eters of this distribution: the expected values 
E(xi) , i=l,2, ... ,n, and the covariance matrix, 

cov(x . , x .) as a function of i and 
1 J 

if, 
the 
are 
Ex. 

1 

A multivariate Gaussian process is stationary 
and only if, the expected value is constant and 
covariances depend only on the lag Jj -iJ , and 
independent of i For any stationary process 
is equal to ~ and cov(xi,xi+k) is equal to 

C(k). In particular, C(o) is equal to var x and 
C(k) is a constant independent of i The function 

is the autocovariance function, while 

-~ p(k) - C(o) (3 . 3) 

is the autocorrelation function . It specifies the 
GO~relation coefficient between values of the process , 
which are k intervals apart, and it is the k-th 
autocorrelation coefficient. 

Let {x} be a stat ionary Gaussian process with 
zero expected value and variance unity. Its probabil ­
ity density function is 
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f(x) (3 .4) 

The bivariate probability density function of xi 

and xJ. , with Ex. Ex. = 0 , and var x. 
l J ~ 

var x. = 1 , is 
J 

f(x . ,x.)= 
1 

exp[- -2
1 (x~-2p .. x.x.+x~)J , (3.5) 

l J 2r.~ 1 l.J 1 J J 
l.J 

where pij is the correlat ion coefficient between 

si and xj The multivariate normal probability 

density f unction of x
1
,x2 , .. . ,xn takes a more com­

p l ex form, but is analogous to Equation (3.5) and 
given by Equat ion (3 . 9). In this case , the correla­
tion matrix of random vairables x1,x2, ... ,xn is the 

n by n matrix with the elements pij representing 

the correlation coefficients between any two variables 
x. and x., i=l ,2, . . . ,n and j=l,2, . .. ,n. It is a 

l. J 
symmetrical matrix since pji = pij , and all e l ements 

of the main diagonal are one. For a stationary pro-
cess 

Pij = Pjj-iJ = pk (3.6) 

with k = Jj-i l ; therefore, all elements of any 
diagonal are i dentical. The correlation matrix of a 
stationary process is 

~-2 

7r= 

~-2 

f.:_ , 1.:-2 

If the random process {x} is second-order stationary, 
as described above , and if the expected values and 
crossproduct f uncti ons def ined by averages of indi­
vidual realizations (sampl e functions) as 

and 

1 N 
lim - ~ x. 
N..,... N i= l 1 

(3 .7) 



(3.8) 

then the process is ergodic. A second- order station­
ary and ergodic Gaussian process is also strictly 
stationary and ergodic, or higher-order stationary 
and ergodic. This means that all ensemble averaged 
statistical properties are equal to the corresponding 
time averages. Hence, the verification of self­
stationarity for a single time series justifies the 
assumption of stationarity and ergodicity. 

3.3 
Function. 
is 

Multivariate Normal Probability Density 
The normal distribution of n variables 

1 tln n Jn dF= n/ 2 exp - 2 L L a.kx.xk n dx. 
(211) IJRT j=l k=l J J j =l J 

where t he variables x1, x2, . .. ,xn ' have expect ed 

valu·es of zero and variances of unity . Also, IRI 
is the determinant of the corre l at ion matrix of these 
variables, while ajk arc the el ements of the in-

verse of the correlation matrix. The characteristic 
function of this distribution is not expressed in 
terms of the inverse of the correlation matrix, but 
in terms of the elements of the correlation matrix 
itself. This property helps in computing pr obabili­
ties of run-lengths. The characteristic function is 

~(t) .. exp (- t r r p .. t.t. l l i .. lj=llJlJj 
(3.10) 

3. 4 General Expression for Joint Probability of 
at Least k Subsequent Values Below Truncation Level, 
Followed by at Least j Subsequent Values Above 
Tr uncation Level . In order to find an expr ession for 
t he joint probabilities, P(k- ,j•), involved in 
Equation (3.1), the following assumptions are made: 

1. The hydrologic time series of annual preci­
pitation and annual runoff are second-order stationary. 
Some of these series may have , however , a smal l degr ee 
of non-stationarity, which comes from either man-made 
changes in river basins and around the pr ecipitation 
gauging stations , or f r om the i nconsistency in data 
[27] . These series should be made stationary by cor­
rections before t he theory of runs , as discussed 
here, is app lied. 

2. The process of annual values is a Gaussian 
process or approximately so. This assumpti on is 
justified from the point of view that some runs are 
distribution free, or independent of the underlying 
distributions of {Xi) . It is also just i f i ed from 

t he point of view that many non-Gaussian hydrologic 
processes can be reduced to Gaussian processes 
through appropriate transformations. This point will 
be treated in detail in Chapter IV. 

3. The stationary Gaussian processes are stan­
dardized for a simpler treatment of various problems. 

With the above three assumptions, the joint 
probabilities P(k-,j+) can be expressed as 

11 

X 
0 

f 
X 

0 00 

J f f 
X~ 

j 

dF (3 . 11) 

Substituting dF by its equivalent into Equation 
(3.9) gives 

X X 
0 0 00 

J .. . f f .. . f 
X X 
~0 

j 

{ 
1 n n J n 

• exp - 2 L L ajkx.xk n dxj 
j•l k• l J j=l 

(3.12) 

where n • j + k . Equation (3.11) is the multi­
normal integral. No explicit expression exists for 
the general solution of the multinormal i ntegral. 
Efforts are devoted to finding expressions for seve­
ral cases of this mul t inormal i ntegral i n this s tudy , 
so that specific numbers can be as signed to probabi l ­
ities in Equation (3 . 12). These probabilities wil l 
be called jo~nt probabilities t o distinguish t hem 
from the probabilities of runs. 

3. 5 Probabilities of Runs for Any Truncation 
Level. Throughout this subchapter concern is with 
the evaluation of probabilities of the type 

where q • F(x
0

) • To simplify notation, the sub­

index q is dropped, and it will be used only when 
it is necessary to refer to it . 

Probabilities P(2+) and P( l- , 1+) . In the 
univariate case, the following expression obviously 
holds .. 

(3. 13) 

where r(x
0

) is t he standard normal distribution 

function . In t he bivariate case (xi,xi +l) , 

and 

f 
21T/J-p2 X 

0 

{3 . 14) 

(3.15) 



These two probabil ities are related as 
X X 

0 0 - + : J J f J P(l , 1 ) dF dF 
-oo X 

0 

_ .. 
xo 

-J J dF=l-F(x
0

) - P(2+) 
X X 

0 0 

(3.16) 

Bivariate tables are given by the National Bureau of 
Standards [28) for +p = from 0 to .95, wit h i nter­
vals 0.05; and from 0.95 to 1, with intervals, 0.01; 
and variates in the range from 0 to 4, with intervals 
0.1, to 6 or 7 decimal places . Zelen and Severo [29] 
give charts for the bivariate norma! i ntegral with 
an error of 1 percent or less. 

Probability P(3+). For three variables, 

"' "' .. 
P(3+) = f f f dF 

X X X 
0 0 0 

The integral of this equation has been evaluated in 
terms of the tetrachoric series expansion by Kendall 
[20). It is 

I 
j,k,2 

where f(x
0

) is the standard no·rma1 probability 

density function, Hr(x) is the rth Hermite poly­

nomial defined by 

(- d
dx)r f(x) = (-D)r f (x) 

and j, k , 2 can take t he values 0, 1, 2, .. . . 
The first three Hermite polynomials are H

0
(x) =l, 

H1(x)=x and H2(x)=x2-l . 

Probabilities of the type P(( ) . The 
tetrachoric series expansion for the trivariate 
case [30] can be generalized to t he multivariate case 
by the fol lowing procedure. As discussed previously, 
the multinormal probability density function can be 
expressed in terms of elements of the inverse of the 
correlation matrix. A direct i ntegration of the mul­
tinormal p .d.f. would impl y an inversion of this 
correlation matrix, if the integral is evaluated in 
t erms of the correlation coefficients. This can be 
avoided, if the Fourier transform of the multinormal 
characteristic function is expressed in terms of the 
correlation coefficients themselves, and this expres­
sion integrated. This is a parallel procedure to the 
one followed by Kendall (30) for the trivariate case . 
By definition 

f dF 
X X 
~ 

j 

12 

.. 
J <l>(t) _.., 

(3.20) 

where 

. (3.21) 

Also, ~(t) can be rewritten as 

<l>(t) = exp[- .!. ( i t~ + 
2 i=l l 

(3.22) 

In using the exponential series expansion 

L -,- I p.kt.tk "' ( -l) r ( )r 
r=O r · k> i ~.1 1 1 

(3 . 23) 

Substituting Equation (3 . 23) i nto Equation (3.22), 

<l>(t) = exp [-} f t~] I (-l( [ i p.kt.tk]\3 . 24) 
i=l 1 r =O r. k>i>l 1 1 

where 

[ Ji>/ik\ tkr = [cpl2tl t2+. · .+plntl tn)+(p23t2t3+ 

. . . +p2 t2t + ... +p 1 nt lt )1 r n n n- , n- nj 

Substituting Equation (3 . 21) and Equation (3 . 24) i nto 
Equation (3 .20) gives 



.. .. .. .. [ ~ ] 
P(()=(2!). f dx1 .. . f dx. f ... f exp - } ) t~ 

J X X J -ao •"" 1 = 1 
0 0 

(3.26) 

By adopting the notation 

" A(p,i) , 

(3. 27) 

Equation (3.26) becomes 

.. .. 
f dx1 ... j dxj J ..• f 
X X -CD -00 

o_____s ~ 
J J 

(3 . 28) 

This is the product of j integrals, the first of 
which is 

i~ ~"" dx1_£exp[-} t~] exp(-it1x1)dt1 
0 

' (3.29) 

and the remaining j-1 integrals are similar expres ­
sions in Xi and ti . Since 

exp(- } t 2) exp(-itx) dt 
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Equation (3.29) is 

.. 
( i)r f dxH (x)f(x) (-i/H 

1
Cx ) f(x ) , 

- xo r r- o o (3.31) 

and Equation (3 . 28) becomes 

P(() fj(x
0

) ! A(o,i)H
51

_1(x
0

) .. . H
53 

__ 
1

(x
0

) 

r=O 
{ i } 

i i 
12 n-l,n 

fj(x) y ~12 1 ' ' '~n-1 n 
o 0112" .. 1 1 I r= n- ,n 

{i } 
(3. 32) 

It is important to notice at this point that the 
definition of the Hermite polynomials applies only to 
r"'0,1,2,... . For rs-1 , H_

1 
(x) is defined by 

means of Equation (3.31) as 

.. 
H_ 1(x0 )f(x

0
) • I H (x)f(x)dx c 1- F(x

0
) 

xo 0 

For I l:i , and 

Equation (3 .32) becomes 

.. 
P(j+) = fj(x) r A(p,i)a(H) 

0 
I=O 

Probabilities of the type 
definition, 

X 
0 .. 

P(l-,j+) = f I I dF 
X X 
L.._-P 

j 

IDCIO 00 00 GO 

- + P(l,j). 

= J I .. . J dF- f ... I dF = P(j.)-P((j+l)+] 
X X 

0 0 ..........._., 
j 

(3 . 33) 

By 

(3.34) 

The probabilit ies P(j+) and P((j+l)+) can be 
evaluated by Equation (3.33). 



Probabil ities of the t ype 
similar procedure , 

X 
0 

X 
0 "" 

f f · · · f dF 
- 00 X X 

,______,____. ~0 

k j 

X X 
0 0 "' 

- + p (k 1 j ) • 

(21!) k+j 
f f f · · · J $(t)exp(- i t'X) 

- 00 X X 
'--.....---' ~0 

k j 

By a 

Using the expansion of the mul tinormal characteristic 
function given by Equation (3 . 24) , 

X 
00 0 

1 L (-l)r LA( P, i) f dx1 (2n)k+j r =O -"' 

"' ( 1 j +k ) f dxk+l' . . f dxk+J' exp - - I t~ exp(it' X) 
X X 

2 i =l 
0 0 

(3. 36) 

This is the product of k integrals of the type 

and integrals of the type 

Taking into account Equation (3.30), the product of 
k int egr a l s i s 

X 
0 

(-i)r f dxHr(x)f(x) 

and t he product of integr als is 

(-i) r J dxHr(x)f(x) - ar(x
0

) 

xo 
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1. ~s Equation (3.36) becomes 

P(k- , ( ) = I A(p ,i)a~ (x ) .. . a~ (x )as (x ) 
I=O 1 ° k 

0 k+ 1 ° 

(3 . 37) 

The sequences ( a: (x
0

)} and {ac(x
0

) } can be 

expressed in f unctions of Hermite.polynomials as 
a0 (x0 ) = l - F(x

0
) and ar(x

0
) =Hr - l (x

0
) f (x

0
) , f or 

c c r gl ,2, .. . ; and a
0

(x
0
) =F(x

0
) and ar (x

0
) =-Hr_

1
Cx

0
) 

f(x
0

) , for r =l,2, ... . In Equation ( 3 . 37), 

I=l:i 

then 

For 

Let us define 

c c c 
CXS (X ) .. . aS (X) TI (u) 

l 0 k 0 

as (x ) .. . as (x ) 1T (a) 
k+l 0 k+j 0 

I = 0 I 

L A(p,i)1Tc(a)rr(a) 
1=0 

A(p ,i) = 1 

(a (x ))j 
0 0 

(3. 38) 

k . 
F (X ) [ 1-F(x ))1 + L A(p,i)nc(a) n(a) 

0 0 
1=1,2, .. . 

(3 . 39) 

Equation (3 . 40) is an i nfini t e seri es . However , i n 
practice it is only necessary to include a finite 
number of terms of this series t o compute numeri cal 

values of P(k- ,j +) . A truncation of this seri es 

after I=2 implies that terms containing pi or 

higher powers of p 1 are neglect ed . For values of 

p 1 less than 0 . 30 , the error int roduced by this 

t r uncat ion is negligible . However for values of p 
1 

great er t han or equal t o 0 . 40 , t his t runcati on may 
i ntroduce a significant error . In this case i t is 
necessary to include more terms in Equation (3.40), 
and truncate the series at a higher value of I . 



For values of p equal to or greater than 0.50, the 
truncation of this series after 1=3 implies that 

terms containing p~ or higher powers of pl are 

neglected. The error introduced in this case may be 
negligible . In other words, the higher p 1 the 

larger power m of p1 should be included. 

+ Distribution of N1 . This distribution 

can be obtained for any truncation level, provided 
the expressions are avai l able for the joint proba-

bilities P{k- ,j+), so that 

P{N~ ~ j) = P(() + L P(k- ,/) 
k=l 

(3 .40) 

Probabilities P{j+), P(l-,j+), and P(k- ,j+) for 
k=2,3, .. . may be evaluated by Equations (3. 32), (3.34), 
and (3.39), respectively. Equation (3.40) combined 
with Equation (3 . 2) gives the probability mass f unc-

t ion of 

Distribution of Nl. By definition 

P(N~ ~ j ) (3 .41) 

where 

P(j (3.42) 

and 

+ -P(k , j ) =P{x1>x , ... , xk>x ,xk 1<x , ... , xk .<x} 
0 0 + 0 ' + J 0 

(3 . 43) 

Consider 

where c x
0 

and p are defined by P = F(x~) = l -F(x
0

) 

"' 1- q Because of t he symmetry of the normal distri-
bution, 

+ -
p (k • j ) 

q 

The distribution of N~ is 

P(N~ ~ j) 

(3.44) 

{3 . 45) 
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+ - + - .f. 
and probabilities Pp(j ) , Pp( l ,j ) , and Pp(k , j) 

for k=2,3, ... may be also evaluated by Equations 
(3 . 32) , (3.34) , and {3 . 39), respectively . 

The pr obability mass function of N~ is then 

P(Ni = j) = P(N~ ~ j) - P(N~ ~ j+l) (3 . 46) 

J oint dist ribution of 

By definition 

(3. 4 7) 

The result expressed in Equations (3.37), (3 .38), 
and (3 . 39) can be extended to joint probabilities 
involved in Equation (3.47) . In t his case 

c 

' llsj l +i l+l .. ,(lsj l +il+j2 asjl+i l+ j2+i2 

· a 
sj l•il+j2•i2+1 

( 3 . 48) 

A completely anal ogous result is obtained for 

P(ii, j ;, 
- • + 

1 -) of .+ and i2' J 2 ' If the places Jl 
.+ are interchanged in Equation (3. 48)' the resul t J2 
does not vary because al l possible permut ations of 
{i} arc considered . This implies that the marginal 

distribution of N~ 
also holds for Ni 

+ and N2 are identical. This 

and N; 
+ Distributions of Nk and N~. The approach 

in the previous subsection also applies to the se­

quence {N~ ; i=l, ... ,kl; the result is a sequence 
l 

of identical ly distributed random variab l es , with 
distribution function of Equation (3 . 40). The same 

is true for the sequence {N~ ; i= l , ... ,k}. It is 

a l so a sequence of i dentically distributed r andom 
variables with distribution function of Equation 
(3. 45). For a more detai l ed analysis of this chapter 
and particularly for a special treat ment of the case 
of a truncation level of the median, the readeT is 
referred to Saldarriaga [6] . 



Chapter IV 

RUNS OF STATIONARY DEPENDENT GAUSSIAN PROCESSES 

4.1 First-Order Linear Autoregressive Process . 
The usual linear regression prediction models, namely 
the moving averages and the autoregressive models, 
can be shown to be Gaussian processes when the inde­
pendent component is normally distributed. Among 
these models, the first-order linear autoregressive 
processes of normal variables are considered only, 
because of its broad application in hydrology, and 
its simplicity . 

Suppose that the process {~i} is defined by 
the recurrence relation 

( 4. 1) 

for Eti• O and Dti• var t 1=1 . It can be solved 

formally by successive substitutions , and be rewritten 
as .. 

pj x . . L £ . 
l. j=O l. -j 

(4 . 2) 

Then for Ex. 
l. 

: 0 

Ox. 1 
= var X. 

2 l. l. 1-p 
(4. 3) 

where I o I < 1 is required for the process to be 
stationary. It is a well known result that 

k 
( 4.4) pk = p 

It is apparent from Equation (4.2) that the first-

EN+ = L 
j s l 

p (N+ ~ j) (4. 7) 

By definition, the second moment of N+ is 

E(N+) 2 L j2P(N+ j) (4.8) 
j=l 

Substituting Equation (4 .5) into Equation (4.8) gives 

E(N+) 2 = L (2j-l) P(N+ ~ j) 
j=l 

In general, the r-th moment of X is 

.. 

(4 .9) 

L jrP(N+=j) • 
j=l 

L [/-(j-1/]P(N+~ j).(4.10) 
j • l 

Equations (4 .5) to (4.10) analogously apply to N-. 

+ -4.3 Properties of Total Run-Length, N=N +N . 
Statistical properties of this parameter are rather 

complex because N+ and N are not independent in 
autoregressive models, and their bivariate distribu­
tion is unknown. The only property of N that can 
be calculated on the basis of a univariate distribu-

tion of N+ and N- is the mean, 

EN = EN+ + EN ( 4. 11) 

order linear autoregressive model is a moving average This equation can be written also in the form 
scheme of an infinite extent, with monot onically de-

creasing weights, p , 0 2 , 0 3 , ... 
{ci ) are normal variables, {x1 l 

Therefore, if 
as a linear com-

bination of {E. . } is also a sequence of normal 
l. -J 

variables and is a Gaussian process. 

4.2 Probability Mass Function, and Moments of 

Run-Lengths N+ and N- . The following relation 

holds between the probability mass P(N+aj) of a 

given run-length N+=j , and the probability distri­

bution functions P(N+~) of run-lengths N+ 

(4 . 5) 

By definition , the first moment of N+ is .. 
EN+ L jP(N.=j) (4 .6) 

j=l 

Substituting Equation (4.5) into Equation (4.6) gives 
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(4 .12) 

where q F(x
0

) • Because 

( 4 . 13) 

due to t he symmetry of normal distributions, 

4.4 General Procedure for Evaluating Properties 
of Runs. Statistical properties of run-lengths of 
stationary Gaussian processes can be evaluated for 
any truncation level, x

0 
, 'by using the relations 

obtained in this chapter and in Chapter 11!. The 
general procedure of this evaluation can be made in 
four steps. Equation numbers to be used for various 
expressions in these four steps are given in Table 
4.1. These steps are: 



1. St arting at an arbitrary time, probabi lities 

P(j+) for at least the first values of X 
being above the t runcation level specified by q , 
are first computed. For these probabilities, nothing 
is specified about the values of X preceding or 
following the occurrence of these j values . They 
may be either above or below the truncation level; 

P(j+) are not probabilities of runs but are needed 
for their computation . 

2. Starting at an arbitrary time, probabilities 

P(k- , j+) for the first k values of X , being 
belo.,.., and the j subsequent values of X being above 
the truncation level specified by q , are next com­
puted. For these probabilities, nothing is specified 
about the values of X preceding or following the 
occurrence of these k+ j values. They are not prob­
abilities of runs but they are necessary for the com­
putation of these probabilities or runs. 

3. The probability distribution and the proba­
bility mass function of the run-length are calculated 
by using probabilities obtained in the two previous 
steps. 

4 . Moments of run- lengths may then be calculated, 
when needed, by using the computed probability dis ­
tribution . It might be noted that the probabilities 

P(() (l.nd P(k- ,/) also have practical meaning by 
themselves, besides being used for the computations 

of probabilities of runs. In fact, P(j+) is asso­
ciated with the probability that starting at an .arbi­
trary year at l east the f irst j years are wet . 

Similarly, P(k-,j+) is associated with the proba­
bi l ity that starting at an arbitrary year t he first 
k years are dry and are followed by at l east j wet 
years. This analogous ly applies to P(j-) and 
P(k+,j -). 

TABLE 4 .1 

EQUATIONS fOR THE EVALUATION OF PROPERTIES OF RUNS 

Step Expression Equation 

P(l +) (3. 13) 

P(2+) (3.14) 

P(()' > 3 (3.33) 

2 
- + P(l ,j ) (3. 34) 

P(k-,() (3.39) 

3 P(N+ ?_ j) (3.40) 
P(N+ = j) (3 . 2) 

4 EN 
+ 

(4 . 7) 
E(N+) 2 (4 .9) 
E(N+) r ( 4 . 10) 
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4.5 Probabilities of the Non-Normal Case. Let 
F1(y) be the distribution function of a non-normal 

variable Y , while F
2

(x) for the variable X is 

normal. In this case, probabilities of multivariate 
events are 

- + P (k ,j ;y ) =P (Y1~ , ... ,Yk~ ,Yk 1>y , . .. ,Yk .>y) r o o o + o +J o 

( 4.15) 

and 

- + PX(k ,j ;x )=P(X1<x , ... ,Xk<x ,xk 1>x , ... ,Xk .>x) , 
0 - 0 - 0 + 0 +J 0 

( 4 .16) 

respectively, for F1(y) and F2(x) . For strictly 

increasing distribution functions, F1(y) and 

F2(x) I it is always possible to find such unique 

values Yo and X 
0 

that satisfy 

F 1 (yo) = F2(xo) = q ( 4 .17) 

If the probabilities of multivariate events are equal, 
with Equation (4 . 17) satisfied, then 

( 4 .18) 

Equation (4.18) implies that the joint probabili­
ties are dependent only on the probability level q 
for given x

0 
and y

0 
and not on the underlying 

distribution . 

As an example, consider the case of {y} log­
normally distributed with 

( 4. 19) 

By definit ion of the log-normal distribution the 
following relation holds, 

( 4. 20) 

The probability P (k-,j+) can be expressed in 
terms as Y 

=P(~nY1<~nx , . . . • ~nYk<~nx .~nYk 1<~nx , .. . ,tnYk .<~nx \ 
- 0 - 0 + - 0 +]- o' 

=P(X1<tnx , . . . ,Xk<inx ,Xk 1<£nx , . . . ,Xk .<inx) 
- 0 - 0 + - 0 +J- 0 

This last expression is P (k- ,() , so that 
q 

( 4. 21) 

It follows that all properties of run-lengths depend 
only on q 



4.6 Properties of Runs of the First-Order , 
Autoregressive Linear Process. Positive Runs . Pro­
perties of run- l engths of the f irst-order linear 
autoregr essive model are computed on a digital com,­
puter by using the appropriate equations of Table 4.1. 
Five values of the probability truncation l evel 
q = F(x

0
) , and five values of p wer e used, as 

shown by Tables 4.2 and 4.3. For each possibl e com­
bination of q and p , the probabilities P(j +) 

and P(k-,j+) were first calculat ed for j=l,2, ... , 
10 and k=l,2, .. . ,10 . Theoret ical ly, probabili ties 

- + 
of runs are given by an infinite series of P(k ,j ) , 
as shown by Equation (3 . 40). Actually these terms 
become very smal l for suffi ciently large values of 
k and only a finite number of terms need t o be con­
sidered. Tables of computed probabilities and 
parameters of runs of the first-order linear auto­
regressive process are given in Appendix A; they are : 

P(k- ,j+) , P(N+ > j), and P(N+ = j), with k=l,2, ... , 
10 and j:ol, 2,-:-.. ,10. The parameters of distribu-

tions are EN+ , var N+ . Figures 4 . 1 and 4. 2 give 
these probability distributions of positive run­
lengths of the f i rst -order linear autoregressive pro­
cess for values of p , varying from 0 t o 0.50, with 
increment s of 0 .10, and for values of q , from 0 . 30 
to 0 . 70, with increments of 0.10 . In t hese figures, 
points are used for computed probabilities of dis­
tributions of discrete (integer) random events, while 
curves are used for t he visualization of these dis ­
tributions. Tab l es 4.2 and 4.3 summari~e the results 
for the first two moments of N+ • 

TABLE 4 . 2 

EXPECTED VALUF.S OF N+ OF THE FIRST-ORDER 
LINEA1 AUTOREGRESSIVE PROCESS 

~~ 
.3 
.4 
.5 
.6 
. 7 

~~ 
.3 
.4 
.5 
.6 
. 7 

0 .1 . 2 .3 .4 

3.33 3. 45 3.65 3.87 4. 29 
2.50 2.66 2.84 3 .05 3.32 
2 .00 2 .14 2. 29 2 . 47 2.66 
1.67 1. 78 1.90 2. 05 2. 20 
1. 43 1. 51 1.61 1.72 1. 86 

Ti\Bl,E 4. 3 

VARIANCE OF N+ OF THE FIRST-ORDER 
LINEAR AUTOREGRESSIVE PROCESS 

0 .1 • 2 .3 . 4 

7 . 77 7. 77 8 .74 9 .83 12.78 
3 .75 4 . 32 5.10 5 .98 7 . 34 
2.00 2.42 2 .94 3 .53 4 . 24 
1.11 1.38 1. 71 2.08 2.50 
0 . 61 0.79 0 . 99 1. 22 1.47 

.5 

4.69 
3.60 
2.88 
2.33 
2.00 

.5 

15.46 
8.66 
4.98 
2. 94 
1.72 
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Negative Runs. Properties of negati ve runs are 

found by means of the equation P (k+ ,j -) =P (k- ,/). 
- + q - p + 

It then follows EN (q) =EN (p), var N (q)=var N (p), 

and , i n general , E(N- (q)]r = E[N+(p) ] r . 

has 

EN~ 

Total Runs . The process of the total r un-length 

been defined as {N.} ={N: + N:} . Then EN. = 
J J J J 

+ EN: 
J 

three 
J 

is its expected value . Figure 4.3 shows 

dif f erent sets of curves : 

EN. plotted against q for p 
J 

0 . 5 with increments of 0 .1. 
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Fig . 4.1 Pr obability distributions of posit ive run­
l engths of the f i rst-order linear auto­
regressive process for q = 0.3 

4. 7 Propert ies of runs of the f irst- order l inear 
autoregressive Gaussian process obtained by the data 
generation method . Probabilities of run- lengths are 
given by an infini t e series as shown by Equation (3.40). 
At t he same time, each term contained in this series 
is give·n by an expansion of t he tetrachoric series 
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which is also an infinite series . Both of these 
ser ies are convergent. However, the rate of conver­
gence of the series used for calculating P(j +) and 

P(k-,j+) , given by Equation (3 .33) and Equation 
(3 . 39) respectively, varies with q , p , k , and j 
The rate of convergent~ of the series given by Equa­
t ion (3.40) varies also with q , p , and j . In 
other words, the problem of the rate of convergence 
of each of these two series is a complex mathematical 
problem in itself, and to the writer's knowledge, to 
dat e, it has never been solved. 

In order to assess the accuracy of the computed 
probabilities of run- l engths, obtained in this study 
by using the truncated series, the data generation 
method (Monte Carlo method) i s used to experimentally 
compute t he properties of r un-lengths, and to compare 
them wi th the probabilities obtained from the trun­
cated series . The procedure is the fol l owing . 

(a) Normal random number s were generated 
following the fi rst-order autoregressive model: 
xi = pxi-l + ti , where ti are standard normal 

random numbers and p is given the values 0, 0 . 1, 
0.2, 0 . 3, 0. 4, and 0.5. 

(b) The probability truncation level , q , 
was given the values 0.3, 0 .4 , 0 . 5 , 0.6 , and 0 . 7, 
with corresponding x

0 
values equal to -0.544002, 

-0.252933, 0 , 0.252933, and 0 . 524002, respectively. 

(c) First a value of p was selected , then 
for each value of q , xi ' s are generated until 

30,000 positive run-lengths were obtained. Absolute 
frequencies are calculated for the runs having run­
lengths 1, 2, 3, .. . , and the probability mass of 
each run-length is estimated by computing the rela­
tive frequency as the absolute frequency divided by 
the sample size of 30 ,000 . 

(d) Then another value of p is selected, and 
step (c) is repeated until all values of p are used . 

A comparison of the probabilit y mass of run­
length, obtained from the truncated series, as an 
ana lytical approximation of the data generat ion 
method and probabilit ies obtained by the analyt ical 
approximation from t he truncated series are shown 
in Figure 4.3. 
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Chapter V 

APPLICATION OF RUN-LENGTHS TO INVESTIGATION OF SERIES 

5.1 Introduction. The hydrologist is concerned 
with two basic types of variables, namely serially inde­
pendent and serially dependent variables. He is inter­
ested in first testing whether they are stationary or 
not. If they are stationary, further tests arc used to 
determine the goodness of fit of various mathematical 
models of serial dependence. The mathematical model 
is a representation of the process. It reflects sta­
tistical characteristics of the sequence in terms of 
parameters related to the physical properties of the 
system. 

Before discussing the application of run-lengths 
to the investigation of series, the application of 
autocorrelation coefficients and the variance densities 
to the investigation of series is briefly reviewed. 
This shows an analogy, and points to the necessity of 
carrying out various tests. 

In the case of investigation of series by auto­
correlation, the parameters involved are the serial 
correlation coefficients, rk, as estimates of popula~ 

coefficients, pk . A comparison of the computed sample 

correlogram rk a f(k) is made with correlograms of 

theoretical models, or with the expected correlograms, 
provided these models are good after the model parame­
ters are estimated. This comparison allows making in­
ference about the mathematical structure of this 
dependence. For an independent series

2
of size N, 

Erk = -1/(N-k), var rk = (N-k-1)/(N-k) , and the con-

fidence limits at 95\ probability level for the distri­
bution of r 1 are given by (r1) 1 2 • -1/N ~ 1.96 

[(N 3- SN2+6)/N2 (N2-l)]~. For r~, N is replaced by 

N-k+l, or by similar expressions [2). Figure 5.1 shows 
the expected correlogram and the 95% tol erance limits 
of an independent series with N • 30. 

In order to test the structure of an observed 
series, the null hypothesis, that the observed time 
series is an independent sequence, is used. If the 
value of rk fall within the 95% tolerance interval, 

this hypothesis is accepted. Or if 5% of k values of rk 

are outside the limits, but 95% are inside, the hypothe­
sis is accepted; otherwise it is rejected. 

In the case of investigation of series by spectral 
analysis, the parameters involved are the spectral 
densities vf = ~(f), with the frequencies f. These vf 

values are estimates of population spectral densities, 
vf. Again a comparison of the observed variance den-

sity spectrum with spectra of theoretical models permits 
an inference about the matheamtical structure of de­
pendence in a series. For a discrete series with equal 
intervals 6t, in the case of time series, the maximum 
frequency is fmax = l/26t, and for finite series of 

size N the minimum frequency is fmin = l /N6t, which is 

usually extended to f = o. The spectrum has the prop­
erty that the area under the variance density graph 
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represents the total variance of the variable. The 
expected spectrum of an independent stochastic series 
is a straight horizontal line between fmin and fmax' 

or between o and l/26t. The distribution of tho variance 
density for independent variables is approximated by 
a x2-distribution with the number of degrees of freedom 
given by v a 2N/m - ~ , where m is the number of 
serial correlation coefficients used in computing the 
variance densities. For N = 30, m = 4, and 6t • 1, 
the number of degrees of freedom is v = 7. The maximum 
frequency is 0.50, assuming fmin = 0. The mean variance 

density is vf • 2a2 Then vvf f ja2 is a x2 random max v 
variable. The 95% tolerance limits are 

2 
x0.025 < 

vvf fmax 
2 

1.0 

0.5 

a 
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Fig. 5.1 Expected correlogram of an independent series, 
of the sample size N = 30, with tolerance 
limits at the 95\ level. 

For v - 7 x2 1.69, and x
0
2 _

975 
= 16.0 , the 95% - ' 0.0.25 

confidence limits are 0.483o2 < vf < 4.57la2. Figure 

5. 2 shows the expected values and the 95% tolerance 
limits for vf' for independent variables. 

5.2 Using Runs for Investigation of Series . In 
the use of investigation of series by using runs. the 
basic parameter selected here is the run-length, 
selected for the following reasons: 
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Fig. 5. 2 The expected values and the 95\ tolerance 
limits, of variance densities in. a spectrum 
of an independent series with the sampl e size 
N = 30. 

(a) If a given series is cut at many truncation 
levels, and for each level the sequences of positive 
and negative run-length are obtained, theoretically it 
is possible to reproduce the original time series, at 
least at a finite number of points, by using these 
sequences. The larger the number of levels selected, 
the larger the number of points of the original time 
series that can be reproduced. If all sequences of 
positive and negative runs at all possible truncation 
levels are known, the whole original time series can be 
reproduced. 

(b) Properties of run-lengths based on a proba­
bility truncation level are distribution-free, both for 
independent variables and linearly dependent processes. 
This is an important property, because the results ob­
tained for Gaussian processes can also be applied to 
other types of stationary processes. 

(c) The physical significance of positive and 
negative run-lengths is obvious in hydrology. They can 
imrnedia~ely be associated with periods or durations of 
deficit and surplus, or with duration of droughts and 
floods. 

(d) A parallel technique to autocorrelation 
analysis and analysis by the variance density spectrum 
can be developed for run-lengths to investigate hydro­
logic series . 

(e) A comparison of properties of observed run­
lengths with the corresponding properties of run-lengths 
of population theoretical models is similar to other 
techniques of investigation. The mean positive run­
length~+, the mean negative run-length~-. and the 
mean total run-length N, are attractive parameters for 
this comparison. Because ~ contains information of 
both N-and N+, this parameter~ is used i n this study 
as a basic parameter for investigating hydrologic time 
series by runs. The parameter N+ is also used as the 
alternative . 

The technique by runs as developed in this study 
compares the statistic N as a function of q of ob­

q 
served time series with the expected value E(N ) of the 

q 
total run-length of theoretical models, or the statistic 
N~ is compared with its expected value E(N~). 
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5.3 Proper ties of Run-Length for Sequence of 
Independent Identically Distributed Random Variables. 
Let Xn be a sequence of independent random variables 

with a common distribution, and N. be the associated 
J 

process of the total run, then N. is a renewal process J , 
~d a: such, it is also a sequence of independent 
1dent1cally distributed, random variables. 

For a given q, 

(5 .1) 

then by the central limit theorem for large k, Nk is 

asymptotically normally distributed with 

EN (5. 2) 

(5. 3) 

Substituting Equations (2.22) and (2 . 23) into Equations 
(5 . 2) and (5.3) gives , for a given q and p = 1-q, 

1 
pq 

~ 
... 2 2 .. p q 

(5 . 4) 

(5 .5) 

This result holds when k is a fixed number. In the 
case the series length n a being a fixed value, the 
number k of total runs in the interval (o,n) is a 
random variable, k(n), and the mean Nk(n) is 

Nl + ••• + Nk(n) 
Frk (n) • k (n) 

Feller (15) shows that the ratio k(n)/n is asymptoti­
cal ly normal with the mean equal to the mean recur­
rence time of the complet ion of a total run. It con­
verges in probability to a positive-valued random 
variable. In vir tue of the central limit theorem 
for the sum of a random number of independent random 
variables (31], the result obtained for N also holds 

- k 
for Nk(n). 

Table 5.1 gives values of the mean and variance 
of N+, N-, and N, respectively, for a range of values 
of q between 0.10 and 0.90. Figure 5.3 shows a 
graph of EN+, EN-, and EN versus q for the independent 
case. It is apparent from this graph that t hese 
functions are symmetrical about the line q • 0 .5. 

. 5.4 Run-Length Test for Stationary Independent 
Var~ables. Properties of "k derived in the previous 

subchapter allows the construction of a test. The null 
hypothesis is that {Xn} is a sequence of independent, 

identically distributed, variables, either for the 
original or "whitened!' series . Then Nk is approximately 



TABLE 5 .1 

PROPERTIES OF RUN-LENGTHS FOR INDEPENDENT IDENTICALLY 
DISTRIBUTED VARIABLES 

N+ N- N 
q Mean Variance Mean Variance ~lean Variance 

0.1 10.00 90.00 1.11 .12 ll.ll 90 .12 

0.2 5 . 00 20.00 l. 25 . 31 6 . 25 20.31 

0.3 3.33 7.78 1.43 .61 4. 77 8.39 

0. 4 2. 50 3. 75 1.67 1.11 4.17 4.86 

0.5 2. 00 2.00 2.00 2.00 4.00 4 .00 

15.0'~----------------------------------~ 

£ 10.0 
01 
c:: 
Q) 

-l 
I 
c:: 
:l 
cr 

5 5.0 
Q) 

~ 

+ 
EN = I /p EN = I /q 

0 0.2 0.4 0.6 1.0 
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Fig. 5.3 Mean run-length for independent variables, 
with a common distribution) versus q. 

normally distributed for large k with the mean and 
the variance given by Equations (5.4) and (5.5) . At 
the 1-a t olerance l evel, the region of acceptance of 
the hypothesis is, f or a two-sided test, 

or 

1 
pq 

t a/2 3 3 ' 1 t r:./2 (p3+kq3)~ 
pq <9-) 'S !. R'k pq + pq 

Now, for a median as the truncation l evel, or for 
p = q = 0. 50, 

EN 4 

var N 4, and var Nk = I 
The 95% t olerance limits , with a =.OS and t a/2 
1. 96 , are 

(S. 6) 

(5. 7) 

(S .8) 

(5 .9) 
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4 _ 3.92 < Nk ~ 4 + 3.92 
lk - lk 

(5 .10) 

If Nk falls outsi de the limits of Equation (5. 10) the 

hypothesis is rejected. The test is illustrated by 
Figure 5.4 for the case of the tolerance l evel 1-a 
~ 1.95 and the truncation level being the median , 
q = 0.50. 

For a truncation l evel q ~ 1/2, the tolerance 
limi ts are different than those given in Figure 5 .4, 
as shown in Figure 5 .5. For any value of q , the 
r ight-sided run-length test, for the 95\ tolerance 
limit, is 

(5 .11) 

Region of Acceptance of Null Hypothesis 

1· I 

3.92/IK 3.92/IK 

Fig. 5.4 Two-sided run-length t est for the truncation 
level of the median, q = 0.50, for i ndependent 
variables. 
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The left-sided run-length test, for the 95% tolerance 
limit, is 

1 
-+ 
pq 

(5.12) 

Figure 5.6 shows a graph with EN and the 95% 
tolerance limits of N(q) for 0.2 ~ q ~0 . 8 and 
k = 10, 15, 20 , 25 , 30, 35. The q values are given 
as abscissas, and the N(q) are given a.s ordinates 
in the upper graph. The k values are given by the 
ordinates downwards versus q in the lower graph. 
The upper graph shows a family of curves. The central 
curve is EN(q) = 1/pq . The upper and lower sets of 
curves are the 95% tolerance limits of N(q). This 
is a convenient plotting graph that can be used readi l y 
for the analysis of t ime series by the mean total run­
length N(q) = f(q) . The sample function N(q) is 
calculated from the observed time series and plotted 
i n the upper graph. The sample function of k is 
plotted i n the l ower graph. Finally, by using the 
upper and lower families of curves of the upper graph 
and the k values of the lower graph, the upper and 
lower 95% tolerance limits of N(q) are drawn i n the 
upper graph . If the whole sample function is confined 
inside the tolerance region, the analyzed series is 
considered as not being significantly different from 
an i ndependent series at the 95% l evel . 

5.5 Two-Levels Run-Length Test for Stationary 
Independent Variables . An alternative s tatist ic to 

N(q) is also considered in this study, and is defined 
as 

(5 . 13) 

For 
k+ + k 

k * = ;.;_....,2~- (5 .14) 

rewriting Equation (5.13) in the form 

- l[k+ _+ k--- ] N*(q) = 2 F N (q) + k* N (p) (5 . 15) 

and taking into account Equation (2.22) and Equation 
(4.13), the expected value of Equation (5 .13) becomes 

l [k+_+ k-- ] 1 EN*(q) = 2 FEN (q) + k* EW(p) = q (5.16) 

Figure 5.3 shows EN*(q) as a function of q for 
independent variables. The random variables Ni(q) 

and N~(p) are independent f or q ~ 0 . 5 . Further-
J 

more, it is assumed here that they are a l so indepen-
dent for 0.2 ~ q ~ 0.5 . Equation (5.17) gives 

var N* (q) 

However, 

+ 
var N'+ (q) var N ~g) ___E_ 

k+ k+q2 
(5 . 18) 

and 

var N- (p) var N- 1E~ ___E_ 

k k-q2 
(5 .19) 

since {N+} and {N-} are sequences of independent 
variables with variances given by Equation (2.23) . 
Substituting Equation (5 . 20) and Equation (5.21) into 
Equation (5.19) gives 
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var N* (q) 

Final ly, taki ng into account Equation (5 . 16) , 

var N*(q) = ___..E_ 
2k*q2 

(5.20) 

(5 .21) 

Since the central l imit theorem applies under rather 
broad conditions, it is evident that it al so applies 
in the case of Equation (5.17), so that N*(q) is 
approximately normally distributed for large values 
of k* For a two- sided test, the 1-~ tolerance 
region for independent variables is 

~ (1- t 012 ~)~N* ~~ (1 + t 012 ~) · 

(S . 22) 

Figure 5. 7 shows a practical graph that can be used 
readily for the analysis of time ser ies by using 
N*(p) , with p = 1 - q . This graph is constructed 
and used in a manner similar t o the gr~h of Fig. 5.6 . 
The di fference is that the statistic N*(q) is used 
instead of N(q) . 

The parameter N*(p) is used inst ead of N~(q) 
only with the purpose of having the curve N(p) =f(p) 
increasing from the left t o the right, instead of 
from the right t o the l eft which would be the case 
for N* (q) = f(q) . 
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Chapter VI 

E~~PLES OF INVESTIGATION OF STATIONARY HYDROLOGI C SERIES BY RUN-LENGTHS 

6 . 1 Introduction. There is a two-fold 
application of runs to stationary hydrolog~c series. 
First, runs are used to investigate the structure of 
a series by testing whether or not a particular series 
is a sequence of independent random variables with a 
common distribution. If this is not the case, then 
the linear autoregressive models are assumed, the in­
dependent component in the original series is computed 
by using these models, and tests are performed to 
determine whether this component is a sequence of 
independent variables with a common distribution . 

Three approaches are used for the investigation 
in this test: 

1. Only the median truncation with q = 0.50 
and the corresponding value N(0.50) are used. This 
case is analogous to using only the first serial 
correlation coefficient, r 1 , in the autocorrelatiqn 

investigation of whether a series is independent or 
dependent . 

2. The total run parameter, N(q) 
for various values of q , and a curve 
is obtained. 

.Lis used, 
N (q) =f(q) 

3. 
of p . 
to have 

The parameter N* (p) is used as a funct ion 
N*(p) is used instead of N*(q) in order 

an increasing function as p increases. 

Examples are given for each of these three 
approaches for investigating hydrologic series by 
run-lengths, using the supposed stationary time series 
of annual precipitation and annual river flow . 

The second application of runs to stati onary 
hydrologic series is for the prediction of durations 
of periods of surpluses and deficits for a variable . 
Once the structure of the series is known, i. e. , 
whether it is stochastically independent or dependent 
of the first-order, or the second-order linear auto­
regressive models , or similar models, the derived 
properties of runs are used to make probability 
statements about durations of periods of surpluses 
and deficits. The truncation level in each case is 
specified by the probability q . 

Chapter VI is concerned with f irst application, 
the investigation of series . Chapter VII treats the 
second application, the prediction of duration of 
surpluses and deficits (run-lengths) of stationary 
hydrologic series. 

6.2 Application to Investigation of Annual 
Precipitation Seri es . Computed values of annual 
precipitation have random errors, systematic errors 
(inconsistency), and nonhomogeneity . Inconsistency 
is caused primarily by changes in instruments, methods 
of measurements, and so forth. Inconsistency comes 
mainly from two sources : moving a precipitation 
station a substantial distance, and changes in the 
environment around a station, such as growth of trees, 
building of houses, or any other major environmental 
change which affects the flow pattern of air around 
the station . Nonhomogeneity comes mainly from cloud 
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seeding operations. Precipitation data must be 
considered, therefore, as often having relatively 
large random errors and inconsistency in their 
annual series [2, 27] . 

The presence of inconsistency and/or non­
homogeneity in an observed series i mplies that it 
does not come from a sequence of variables with a 
common distribution. When applying the run-length 
t est to an observed precipitation series wi th incon­
sistency and/or nonhomogeneity in data, this null 
hypothesis may be rejected, though the series without 
these factors present may show the acceptance of a 
null hypothesis. 

The presence of inconsistency and/or non­
homogeneity in data is reflected in the run-length 
test when N is greater than the expected value, 
EN = 4, for q = 0.5, and may be outside the 95% 
tolerance limits of the distribution of N . It is 
therefore necessary to first remove inconsistency 
and/or nonhomogeneity in data . 

On the other hand, if no significant inconsis­
tency and/or nonhornogeneity are present in the data, 
and the observed time series is stochastically 
independent, the null hypothesis is accepted in 
applying the run-length test. In this case N is 
inside the region of acceptance of the null hypothe­
sis at a given level. 

6.3 Examples of Investigation of Annual 
Precipitation Series by the Mean Run-Length of the 
Median. To sho"'' the method of run-lengths for the 
investigation of whether annual precipitation series 
are independent, identical ly distributed variabl es 
(null hypothesis) or not, five series are selected 
from around the United States. The appli cation of 
run-length is developed on the assumption that the 
number of total runs is large . As a consequence, 
the observed series should be long enough to satisfy 
this assumption. For this reason, long precipitation 
series were selected . 

The five annual precipitation series are: 

1. Chico Experimental Station, California, for 
the period 1871-1965, N = 95; 

2. Ord, Nebraska, 1896-1965, N = 70; 

3. Natural Bridge N.M., Arizona, 1890-1960, 
N 71; 

4. Antioch F. Mills, California, 1879-1965, 
N 87 years, and 

5. Ravenna, Nebraska, 1878-1965, N = 88 years. 

Table 6 . ] gives the sequence j = 1, 2, . . . of 
runs, with run-lengths of Nj and Nk for these 

five series and for q 0.50. The incompl ete first 
and last runs are included. They introduce a small 
bias, but their effects may be neglected for series 
with N > 70 . 



TABLE 6.1 RUNS OF FIVE ANNUAL PRECIPITATION SERIES 

Chico Ord Natural Bridge Antioch F. Mills Ravenna 
Station Station Station Station Station 

+ + 
j N~ 

J 
N. 

J 
N. N~ 

+ N. 
J J J 

1 1 1 2 2 1 
2 1 1 4 1 5 
3 3 2 2 1 1 
4 9 1 1 4 8 
5 2 5 1 1 2 
6 2 1 1 4 2 
7 2 1 5 1 2 
8 1 4 1 2 2 
9 1 1 2 4 2 

10 3 4 1 6 3 
11 3 1 1 1 1 
12 1 1 1 1 2 
13 3 2 6 1 2 
14 7 4 1 3 1 
15 l 6 1 2 
16 2 1 1 1 
17 1 3 1 2 
18 1 2 
19 1 2 
20 1 1 
21 1 2 
22 
23 
24 

r 47 46 32 37 34 

Table 6.2 gives the fol lowing parameters of these 

N'+, N-, N = N'+ + N- , and the two tolerance limi ts on 
t he 95\ level about N These limits are computed by 

2t 
N 2 a EN + ~ 

1, - II< 

where EN = 4 f or q = 0.50 
cal ly distributed variables , 
confidence probabi lity level, 

(6 . 1) 

of independent, identi­
~/2 is the one-tail 
t~12 is the normal 

standard variate for the given ~/2 , and k is the 
largest number j of run-lengths in Table 6.1, or 
k = jmax . Using the 95% tolerance level and the 

two-sided test, o/2 • 0.025 , then t~12 = 1.96. 

N~ 
J 

N: 
J 

N~ 
J 

N: 
J 

+ N. 
J 

14 1 1 1 1 
1 1 3 1 3 
1 6 4 1 5 
1 1 1 1 2 
2 1 2 3 2 
2 1 1 1 1 
3 1 2 1 6 
3 2 1 1 1 
2 1 1 4 1 
2 1 1 1 1 
1 3 2 2 3 
1 1 1 2 1 
1 2 2 2 1 
1 2 3 1 1 

1 3 1 1 
3 4 1 1 
3 1 2 1 
2 1 1 1 
1 2 4 1 
3 1 3 1 
2 1 2 1 
2 1 1 1 
1 1 5 6 
2 1 

35 44 41 42 43 

In the above case, the tolerance limits are 

Nl 2 • 4 .00 + 3.92 
' - II< 

(6. 2) 

Table 6.2 shows that all five computed N-values of 
the precipitation series are confined within the 
tolerance limits N1 and N2 . 

For a stronger test, with a = 80% level , and 
t a/2 = 1.28, all computed N-values of five stations 

except Natural Bridge, which has a nonhomogeneous 
series, are still within these new limits, as shown 
in the last two columns of Table 6.2 . 

TABLE 6 .2 PROPERTIES OF RUN-LENGTHS OF THE FIVE ANNUAL PRECIPITATION SERIES 

a = 95\ a = 80% 

Station if> N'- N k N1 (95%) N'2 (95\) N'1 (80%) N' (80~•) 
2 

Chico 2.190 2. 238 4 . 428 21 4.858 3 .142 4.560 3 . 44'0 

Ord 1.882 2 . 176 4 . 058 16 4.980 3.020 4.640 3 .360 
Natural 

Bridge 2.429 2 . 500 4 .929 14 5.050 2.950 4.685 3. 315 
Antioch 

F. Mills 1. 833 1. 708 3. 541 24 4.800 3.200 <\. 522 3. 478 

Ravenna 1 . 826 1. 870 3.696 23 4 . 820 3. 180 4.535 3. 465 
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It can be concluded that four out of the five 
annual precipitation series are independent variables, 
as it relates to the use of total run-length param­
eter, N , for the median truncation level with 
q = 0 . 50, as the invest igation parameter. 

6.4 Application to Investigation of Annual 
River Flows Series . River flow essentially integrates 
the precipitation received over large areas, but it 
also includes the effects of evaporation and storage 
as other important physical factors. The water carry­
over from year to year, and especially the change in 
this carryover from one year to another, usually 
introduces time dependence into the sequence of annual 
flows . 

To investigate the annual flow series either the 
original or the whitened series is used. By applying 
the same procedure to the original annual river flow 
series, as for the annual precipitation series, the 
hypothesis that the series is independent is accepted 
or rejected . If the hypothesis is rejected, the 
dependence models are assumed and the series is 
whitened. Then the same procedure used for the annual 
precipitation series is applied t o the whitened series 
of annual river flow . If the hypothesis of the 
whitened series being independent is accepted, the 
postulated dependence model is al so accepted. Equa­
tions (6.1) and (6.2) are used for these investiga­
tions and tests just as they are used for the annual 
precipitation series. 

6.5 Examples of Investigation of Annual River 
Flows Series by the Mean Run-Length of t he ~1edian . 
Investigations and tests are limited to long series 
for the same reason they are limited in the case of 
annual precipitation series of annual river f l ows with 
long records [1} were selected as examples. They are: 

1. The Mississippi River at Saint Louis, Missouri 
1862-1957, N = 96; 

2. The St. Lawrence River at Ogdensburg, New 
York, 1861-1957, N = 97; 

3 . 
1957, 

The Mississippi River at Keokuk, Io"•a, 1879-
N = 79; 

4 . The Gota River at Sjotorp, Vanersburg, Sweden, 
1808-1957, N = 150, and 

5 . 
1957, N 

The Rhine River at Basle, Switzerland, 1808-
150 . 

Table 6.3 shows the results of this investiga­
tion. The analysis of five original series of annual 
river flows shows that only the Rhine River at Basle, 
Switzerland is an independent time series, or rather 
the null hypothesis is accepted for the 95% tolerance 
l evel. The whitened series are obtained by the hypoth­
esis of t he first-order, linear, autoregressive model 
of dependence, or 

Ei = xi - r l xi-1 (6 . 3) 
where xi and xi- l are elements of a standardized 

series of annual river flows and r 1 is the first 

serial correlation coefficient, also given in 
Table 6.3 . 

Table 6.3 shows the results of the analysis of 
whitened series of the first four rjvers by using 
the mean run-length of the median, or Equations (6.1) 
and (6.2). Al l four whitened series are shown to be 
independent series, or the null hypothesis for the 
whitened series is accepted for the 95% tolerance 
lev.el. This finding means also that the hypothesis 
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of the first-order linear autoregressive model des­
cribing well the series dependence is accepted for 
all four rivers . 

6.6 Examples of Investigation of Annual 
Precipitation Series by the Relation of Mean Run­
Length to Values of q . In the case of using any 
value of q as the truncation leve l, the 1-o 
tolerance limits for a two-sided test are given by 

(6.4) 

By using the 95% tolerance level, 0 . 05 , 
t 012 = t 0 .025 = 1.96 , the limits are 

N' = _!_ [1 + ~ Cp3+q3)~] 
1,2 pq - lk (6. 5) 

Table 6.4 gives values of 1/pq and (p3+q 3)~ for 
values of q ranging between 0.20 and 0 . 80 with the 
increment of 0.05. Table 6.5 gives t he tolerance 
limits of N at the 95% level. 

The mean and the 95% tolerance limits of N are 
shown in Fig. 6.1 and 6 . 2 for values of k s 10 , 15, 
20, 25, 30, and 35, and q - 0.20 to q • 0 .80 wi th in­
crement of 0.05. Th~ examples of annual precipitation 
series are analyzed by computing N(q) for_values of 
q = 0.3, 0.4, 0.5,10.6, 0.7, and plotting N(q) against 
q, as shown in Figure 6.1. For e!ch q and the corres­
ponding k, the~olerance limits , N1 2 are computed 
and plotted on the same graph .. ' ' 

If the analyzed series is a sequence of independent, 
identically distributed variables, the sample func­
tion N(q) should be inside the tolerance region. 
As can be seen from Figure 6.1 , four out of the five 
series of the above examp!'es have N(q) inside the 
tolerance region, but one series has only a point 
of N(q) outside the tolerance region. This particu­
lar series is a nonhomogeneous precipitation series . 

6.7 Examples of Investigation of Annual Runoff 
Series by the Relation of Mean Run-Length to Values 
~· The same procedure used for the precipitation 
ser1es is appl ied ·to investigating the examples of 
the original series of annual runoff. The results 
are given in Figure 6.3 and 6.4 . . ~tis apparent from 
this figur e that .at least three out of the five series 
are not independent, i dentically distributed random 
variables, since their N(q) are not completely 
inside the tolerance region. The Mississippi River 
at St. Louis seems to be a case of weak serial depen­
dence and/or of some nonstationarity, since its 
N(q) is so close to the upper tolerance limit. 
Finally, the annual runoff of the Rhine River is 
accepted as a sequence of independent, identically 
distributed variables. This result agrees with the 
autocorrelation analysis made on this series in a 
previous study [2] . 

For the four other series where the hypothesis 
that the series are independent, identically dis­
tributed variables is rejected, the first-order 
autoregressive model is assumed, and consequently 
the series are whitened. Then, the same procedure 
is used with both the whitened and the original 
series. The results are shown in Figure 6.5 . The 
first-order autoregressive model for annual series 
is accepted for these four series . 
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Investigation of time series independence by the mean total run-length, N(q), as a function of 
the probability, q, of the truncation level, for four annual precipitation series: (I) Chico 
Experimental Station, California; (II) Ord, Nebraska; (III) Antioch F. Mills, California, and 
(IV) Ravenna, Nebraska; and for each st~tion : (1) the expected mean total run-length of inde­
pendent series EN(q) = 1/q(l-q); (2) the observed N(q) ~ f(q); (3) the 957. tolerance limits 
for given k as function of q, and (4) the number of total run-lengths, k . 
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TABLE 6.3 PROPERTIES OF RUN-LENGTHS OF THE FIVE ANNUAL RIVER FLOW SERIES 

Original Series, x. 
l. 

Whitened Series, xi-rlxi-1 

Station N+ N- N k N1 (95\) N2(95\) r1 N+ w N k N"1 (95%) N"2 (95\ ) 

l. Mississippi River 2 .389 2.500 4.889 18 4. 775 

2 . St . Lawrence 3. 583 3.917 7 . 500 12 4.950 
River 

~- Mississippi River 2 . 500 2 . 857 5 . 357 14 4.878 

~- Gota River 2.704 2. 778 5. 482 27 4.634 

~- Rhine River 2.027 2 .027 4 .054 37 4.540 

TABLE 6 . 4 . Values of 1/pq and (p3 + q3) 1/2 

p 1 (p3+q3)~ 
q pq 

.20 .80 6.25 . 7211 

.25 .75 5 . 33 .6614 

.30 .70 4.76 .6083 

.35 .65 4 .40 . 5635 

.40 .60 4.17 .5292 

.45 . 55 4.04 . 5074 

.so .so 4.00 . 5000 

.55 .45 4.04 . 5074 

.60 . 40 4.17 .5292 

.65 . 35 4.40 . 5635 

.70 . 30 4.76 .6083 

.75 . 25 5.33 .6614 

.80 . 20 6 . 25 . 7211 

Fig. 6. 2. Invest igation of time independence by the 
mean total run-length , N(q), as a function of q, for 
the non- homogeneous annual precipitation series at 
Natural Bridge , N.M., Arizona ; (1) the expected mean 
Eotal run-length EN(q) • 1/q(l- q); (2) the observed 
N(q) s f{q) ; (3) the 95% tolerance limits for given k 
and (4) the number of total run-lengths , k. 
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3.225 

3. 050 

3 . 122 

3.365 

3.450 

0 . 301 l. 783 2.130 3.913 23 4.816 

. 707 2 .045 2. 136 4.181 22 4.835 

0 . 407 1. 714 l. 619 3.333 21 4 . 854 

0.445 2.202 2.212 4.054 33 4 .682 

--- --- --- --- -- ---

TABLE 6 .5 TOLERANCE LIMITS OF N 
AT THE 95% LEVEL 

~ 0.20 0.25 0.30 0 . 35 0.40 0.45 

10 9.04 7.51 6.55 5.91 5.54 5 . 32 
3.46 3.15 2.97 2.89 2.80 2. 76 

15 8.53 7.11 6.21 5.66 5.29 5.08 
3.97 3.55 3.31 3.14 3.05 3.00 

20 8.22 {i.88 6.02 5.48 5.14 4.95 
4.28 3.78 3.50 3.32 3 . 20 3.13 

25 8 . 05 6.71 5.88 5.38 5 . 04 4.85 
4.45 3 . 95 3. 64 3.42 3.30 3. 23 

30 7.85 6.58 5.78 5.29 4. 96 4. 78 
4 . 65 4.08 3.74 3. 51 3.38 3. 30 

35 7.75 6 . 50 5. 72 5.22 4.91 4. 72 
4.75 4.16 3.80 3.58 3. 43 3. 36 

3 .184 

3 . 165 

3.146 . 
I 

3.317 
I ---

0.50 

5 . 24 
2.76 

5. (}2 
2.98 

4 . 87 
3.13 

4.78 
3 . 22 

4. 71 
3.29 

4 .66 
3.34 

10 

Fig. 6. 3. Investigation of time independence by the 
mean total run-length , N(q), as a f unction of q , for 
the annual r unoff series of the Rhine River at Sasle, 
Switzerland: (1) the expected mean total run-length, 
EN(q) • 1/q(l-q); (2) the observed N(q) • f(q); (3) 
the 95% tolerance limits for given k, and (4) t he num­
ber of total run-lengths, k . 
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Investigation of independence of whitened series, under the assumption of the first-order 
autoregressive process as a t ime dependence model, by using the mean total run-length , N(q), 
as a function of the probability, q, of the truneation level, for four annual runoff series: 
(XI) Mississippi River at St. Louis, Missouri; (Xli) St. Lawrence River at Ogdensburg, New 
York; (XIII) Mississippi River at Keokuk, Iowa, and (XIV) Gota River at Sjotorp, Vauersburg; 
and for each station: (1) the expected mean total run-length of independent series, EN(q) 
• 1/q(l-q); (2) the observed N(q) • f(q) of whitened series; {3) the 95% tolerance limits 
for given k as function q , and (4) the number of total run-lengths, k of whitened series . 
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Fig. 6. 6. Invest igation of time series independence by the mean run-l ength , N(q), as a function of the prob­
ability , q, of the truncation level, for four annual precipitation series : (XV) Chico Experimental 
Station, Californi a; (XVI) Ord , Nebraska; (XVII) Antioch F. Mills, California and (XVIII) Ravenna, 
Nebraska; and for each station : (1) the expect ed mean run-l en%th, EN*(q) - 1/q; (2) the observed 
N*(q) • f(q ); (3) the 95% tolerance limits for given k* = (k+ + K- )/2. 

36 



6.8 Examples of Investigation of Annual 
Precipitation and Runoff Series by N*(p) for Values 
~ . The 1-a tolerance region for independent 
identically distributed variables is given by Equa­
t ion (5.22). Using the 95% tolerance level, a= 
0.05, t a/2 = t 0 _025 1.96 , the tolerance limits 
are 

(6.6) 

Tab l e 6.6 gives the mean and the tolerance l imits of 
N* at the 95% level. 

The sampl~ of precipitation series was analyzed 
by computing N*(p) for values of q = 0.3, 0.4, 
0.5, 0.6, 0 . 7 and plotting N*(p) against p as 
shown in Fi gures 6. 6 and 6. 7. The resul~s ·are shown 
in these figures. 

In a similar manner the sample of · the original 
runoff series was analyzed. The results are shown in 
Figures 6.8 and 6.9. r1na11y, the whitened runoffseries 
using a first-order autoregressive model were also 
analyzed in a simi l ar manner. The resu1 t .s are shown 
in Figure 6.6. From these figures 1t is apparent that 
all precipit ation ser1es are accepted as independent 
time ~~ries,whereas all runoff series except Rhine 
Kiver are accepted as first-order autoreRressive pro 
cesses . 
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Fig. 6. 7 •. Invest!gation of time independence by the 
mean run-length, N*(q), as a function of q, for the 
non-homogeneous annual precipitation 3eries at (XIX) 
Natural Bridse, N. M. , Arizona: (l) the expected mean 
run-length EN*(q) • 1/q; (2) the observed N*(q) ~ f(q); 
(3) the 95% tolerance limits for given k* as function 
of q, and (4) k* • (k+ + k-)/2 
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TABLE 6.6 MEfu~ AND 95% TOLERANCE LIMITS OF N* 

k* 10 15 

p EN* --- ---

0.20 2.500 2.696 2 .660 
--- 2.304 2 . 340 

0.25 2 .666 2.885 2 .845 
--- 2.447 2 . 487 

0.30 2.858 3.098 3.054 
--- 2.618 2.662 

0.35 3 . 076 3.335 3.288 
--- 2.817 2 . 864 

0 . 40 3.334 3.611 3.560 
--- 3.057 3.108 

0.45 3.636 " 3 .930 3 . 876 
--- 3.342 3.396 

0.50 4.000 4.310 4 . 253 
--- 3 .690 3.747 

0.55 4.444 4.769 4.614 
--- 4 . 119 4.274 

0.60 5.000 5.340 5.277 
--- 4.660 4. 723 

0.65 5.714 6.067 6.003 
--- 5.361 5.425 

0. 70 6.667 7.034 6.966 
--- 6 . 300 6 . 368 

0.75 8.000 8 . 380 8 . 310 
--- 7.620 7.690 

0.80 10.000 10 . 392 10.320 
--- 9.608 9.680 

1.o N. 

20 25 

--- ---

2.639 2. 624 
2.361 2 .376 

2.821 2 . 805 
2.511 2 . 527 

3.028 3.010 
2.688 2 . 706 

3.259 3.240 
2.893 2.912 

3.513 3.509 
3.155 3.159 

3. 844 3.822 
3.428 3.450 

4 . 219 4 . 196 
3.781 3.804 

4. 674 4.650 
4.214 4 . 238 

5.240 5 .215 
4 . 760 4.785 

5 .964 5.938 
5.464 5.490 

6.926 6.899 
6.408 6.435 

8.268 8.240 
7. 722 7.760 

10.277 10 . 248 
9. 723 9 . 752 

4 

30 

---

2.613 
2.387 

2.793 
2.539 

2.997 
2. 719 

3.226 
2.926 

3.494 
3.174 

3. 806 
3.466 

4.179 
3 .821 

4. 632 
4 . 256 

5.196 
4 . 804 

5.918 
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6.879 
6. 455 

8.219 
7.781 

10 . 226 
9. 774 
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2 . 783 
2.549 

2.986 
2.730 

3.215 
2 .937 

3.482 
3.186 
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4. 818 
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6.863 
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8.203 
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Fig. 6.8. Investigation of time independence by the 
mean run-length. N*(q), as a function of q, for the 
annual run-off series of (XX) Rhine River at Basle, 
Switzerland: (1) the expected mean run-length, 
EN*(q) • 1/q; (2) the observed N*(q) • f (q); (3) the 
95% tolerance limits for given k* as funct ion of q, 
and (4) k* • (k+ + k-)/2 
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Fig . 6. 9 . Investigation of time series independence by the mean run-length , N*(q), as a 
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(XXIV) Gota River at Sjotorp, Vanersburg ; and for each station : (1) the expected 
mean run-length of independent series EN*(a) = 1/q; (2) the observed N*(q) = f (q): 
(3) the 95% tolerance limits for given k* as a function of q , and(4) k* • (k+ + k-)/2 
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Fig. 6.10. Investigation of independence of whitened series, under the assumption of t he 
firs t-order auto:*~ressive process as a time dependence model, by using the 
mean run-length N (q), as a function of the probability, q, of the truncation 
level, for four annual runoff series: (XXV) Mississippi River at St . . Louis, 
Missouri; (XXVI) St . Lawrence River at Ogdensburg , New York; (XxVII) . Mississippi 
River at Keokuk, Iowa, and (XXVIII) Gota River at Sjotorp, Vanersburg; and for 
each s tation: (1) the expected mean run-length of independent series , 
EN*(q) = 1/q; (2) t he observerl N*(q); (3) the 95% tolerance limits for given 
k as function of q, and (4) k* ~ (k+ + k-)/2 
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Chapter VII 

EXANPLES OF COMPUTATION OF PROBABILITIES OF RUN- LENGTHS 

7.1 Introduction . Present empirical techniques 
for determining probabilities of drought or low-flow 
durati ons , or probabilities of water surplus dura­
tions, for a well defined drought or water surplus 
level use sample data to derive the necessary i nfor­
mation. The empirical procedure is as follows . 
Drought or surplus level is first defined; then a 
series of t he hydrol ogic variable is plotted, with 
this l evel as t he truncation level. Next, all dura­
tions as run- lengths equal to or greater t han the 
truncation level are counted, and the relative fre­
quency of run-lengths that are greater than the 
critical duration are computed. These frequencies 
are estimates of probabilities. Alternatively, the 
longest drought or water surplus duration is selected 
as the design drought or the design surplus. It is 
often difficult in practice to assign meaningful 
probabilities to a drought or a surplus because of 
large sampling fluctuations of these rel ative fre­
quencies. Much confusion is often unavoidable in 
assigning probabilities to results empirically 
obtained. 

It is not surprising then that the est imat es of 
probabilities of historical droughts in some river 
basins or regions sometimes vary from 1:100 (one in 
a hundred years) to 1:3,000 (one i n t hree thousand 
years) by di fferent empirical approaches . 

The method of using the run- length properties 
of the independent or of the f irst-order linear 
autoregressive series helps solve these important 
practical problems and also helps to avoid some con­
fusion . Two aspects of these probabilities current ly 
are of interest, probabilities of a given duration 
(say, probability of a 5-year drought), and proba­
bi l i ties of al l events equal to or greater than a 
given duration (say, probabi l ity of al l droughts of 
3-years or more). The purpose of t he t echniques 
studied and developed in t his paper are designed to 
solve these types of problems. In this study, how­
ever, only two cases are analytical ly approached: 
independent s t ationary time series , and dependent 
stationary time series of the first-order l inear 
autoregressive model. For more complex models, such 
as the second-order , third-order, or higher-order 
linear autoregressive mode l s , or for models with 
periodicity present in some paramet ers of a t ime 
series , t he Monte Carl o simulat ion technique seems 
best suited at present as the alternative to t he 
analytical met hod. 

7 . 2 Det erminat i on of Run- Length Probabilities 
of St at i onary and Independent Series . The annual 
seri es of precipi tation and runoff of the following 
four gauging stations , found to be i ndependent time 
series in Chapter VI , are used as examples for det er­
mining probabilities of run- l engths equal to or 
greater than a given length, for a given truncation 
level and its probabil ity , q : 
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A. Precipitation Stations 

1. Ord, Nebraska 

2. Ravenna, Nebraska 

3. Antioch F. ~li lls , California 

B. Runoff Station 

1. The Rhine River at Basle, Switzerland . 

The probabi l ities of run- lengths being not less than 
a given value j are obtained as follows from Equa­
tion (2 . 21), 

P(N+ = k) 

Hence, 

k-1 
qp 

j-1 
P(N+=k) 1 - I 

k=l 

1 - (1 -pj - 1 ~ 
q 1-p 

j -1 k- 1 1 - I qp 
k=l 

j-1 p (7 . 1) 

By using Equation (7 .1) for probabilities of 
run- lengths of independent series , which are functions 
of q , or p = 1 - q , comparison is made between 
the relative frequencies of r un- l engths, empirically 
determined, and t he probabilities of the same r un­
lengths, analytically determined. 

Figures 7. 1 t hrough 7.4 gi ve these comparisons 
for the three annual precipitation series and th·e 
annual runoff series of t he Rhine River, and for the 
run- lengths Nj , with the following j values : 

2, 3, 4, 5 , 6 , 7, 8, 9 , and 10, and in each case for 
f ive values of q , 0 . 3, 0 . 4, 0.5, 0.6, and 0. 7. 

As expected, probabilities of r un-lengt hs 
P(N ~ j) determined analytically by Equat i on (7.1) 
depart from the relative frequencies empirical ly 
determined from samp l e data . These deviations i n­
crease both with an increase of j and an increase 
of absolute departure of q values from q = 0.50. 
The unreliability of t hese relative frequencies of 
run- lengths N ~ j empiri cally determined for 
extremes of q and for l arge values of j is the 
primary reason for the cont roversy between t he 
vari ous empirical methods of estimat ing probabilities 
of droughts or water surp luses of given durations 
for t he prescribed levels of droughts or surpluses . 
These high sampling errors, associ ated with empirical 
methods current ly used in practice, justify using 
the analytical method for computing probabilities 
P(N ~ j) ins t ead of using various empirical methods . 
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Fig. 7.1 Estimated probabilities by sampl e relative 
frequencies (dashed l ines) of positive 
run-lengths, P(N+ ~ j ; q) , and negative 
run-lengths, P(N- ~ j ; q) , for the 
annual precipitation series at Ord, 
Nebraska (1896-1965) as compared with 
expected probabilities (solid lines) of 
positive and negative run-lengths of 
independent series for five truncation 
values: q = 0.3, 0.4, 0 .5, 0.6, and 0 . 7 . 
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Fig. 7.2 Estimated probabilities by sample relative 
frequencies (dashed lines) of positive 
run-lengths, P(N+ ~ j ; q) , and negative 
run- lengths , P(N- > j ; q) , f or the 
annual precipitation series at Ravenna, 
Nebraska (1878-1965) as compared with 
expected probabilities (solid lines) of 
positive and negat ive run-lengths of 
i ndependent series for five truncation 
values: q = 0.3, 0. 4, 0 .5, 0.6, and 0.7. 
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Fig. 7.3 Estimat ed probabilities by sample relative 
frequencies (dashed lines) of positive 
run- lengths, P(N+ > j ; q) , and negative 
run-lengths, P(N- ~ j ; q) , for the 
annual precipitation series at Antioch F. 
Mills, California (1879-1965) as compared 
with expected probabilities (solid lines) 
of positive and negative run-lengths of 
independent series for five truncation 
values: q • 0.3, 0.4, 0.5, 0 .6, and 0.7. 
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Fig. 7. 4 Estimated probabilities by sample rel ative 
frequencies (dashed lines) of positive 
run-lengths, P(N+ ~ j ; q) , and negative 
run-lengths, P(N- > j ; q) , for the 
annual runoff series of the Rhine River 
(1808-1957) as compared with expected 
probabilities (solid lines) of positive 
and negative run-lengths of independent 
series for five truncation values: 
q = 0.3, 0.4, 0.5, 0.6, and 0.7 . 



Because of large sampling fluctuati ons in 
series of limited size, either a drought of more 
than 3-4 years may not have been experienced in a 
period of 50-60 years, or a drought of nine years 
may have occurred, though no drought of 4-8 year 
duration was recorded. Many similar sampling biases 
are unavoidable in using current empirical methods 
in estimating probabilities of run-lengths. 

7.3 Determination of Run-Length Probabilities 
of Stationary Dependent Series. The annual runoff 
series of the following three rivers, which are 
known to be dependent time series, are used as 
examples for determining probabilities of run-lengths 
equal to or greater than a given length, for a given 
truncation level and its probability, q : 

5. The Gota River at Sjotorp, Vanersburg, 
Sweden , with r 1 = 0.463 , where r 1 is 

the est imate of the first autocorrelation 
coefficient pl . 

6. The Ashley Creek near Vernal, Utah, with 
r 1 s 0.274 , and 

7. The Trinity River at Lewiston, California, 
with r 1 ~ 0 . 180. 

Probabili ties of run-lengths being equal to or 
greater than a given value j are obtained by using 

45 

the values P(N+ ~ j) of the Appendix, for values 
of p1 = 0.1, 0.2, 0.3, 0.4, and 0.5. A l inear 

interpolation is used for the r
1 

values, which 

are between the P1 values of the Appendix. These 

probabilities and the relative frequenci es of run­
lengths empirical l y determined are compared. 
Similarly, as in the case of independent series, 
probabilities of run-lengths P(N ~ j) of dependent 
series depart from the r elative frequencies empiri­
cal l y determined from the sample data. The Trinity 
River is analyzed i n two ways: ( 1) by using the 
first serial sample correlation coefficient r

1 
and 

the first-order autoregressive model for annual flows, 
and (2) by using ri = r 1 - r 1(P) , where r 1(P) is 

the first basin. This is done to remove the s ampl ing 
fluctuation of r 1 (P) i ncluded in r

1 
of runoff, 

because E(r1) for precipitation series should be 

close to zero. For the area of the Trinity River 
Basin, r 1 (P) has been calculated in a previous 

study [2) as r 1 (P) = 0.10 , so that the corrected 

value ri = 0.08. Figures 7.5 through 7 .8 show the 

results and comparisons of relative f requencies and 
expected probabilities for the corresponding cases. 
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Fig. 7 . 5 Estimated probabi l ities by sample re lative 
frequencies (dashed lines) of positive 
run-lengths , P(N+ ~ j ; q) , and negative 
run-lengths , P(W ~ j ; q) , f or t he 
annual runoff series of the Gota River 
{1808-1957) as compared with expected 
probabilities (solid lines) of positive 
and negative run-lengths of a first -order 
autoregressive process with p 1 = r 1 • 
0 . 450 . 
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Fig. 7.6 Estimated probabilities by sample r el ative 
frequencies (dashed lines) of positive 
run- l engths, P(N+ ~ j ; q) , and negat ive 
run- l engths, P(W ~ j ; q) , for the 
annual runoff series of Ashley Creek (1914-
1957) as compared with expected probabili ­
ties (solid lines) of positive and negative 
run-lengths of a first-order autoregressive 
process with pl = r 1 = 0 . 274. 
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Fig . 7.7 Estimated probabilities by sample relative 
frequencies (dashed lines) of positive 
run-lengths, P(N+ ~ j ; q) , and negative 
run-lengths, P (W ~ j ; q) , for the 
annual runoff series of Trinity River 
(1911-1956) as compared with expected 
probabilities (solid lines) of positive 
and negative of a first-order auto­
regressive process with (l) P1 = r 1 = 
0.180 , and (2) pl = ri = 0.080. 



Chapter VIIl 

CONCLUSIONS 

A methodology is developed in t his study for using the mean run-length as the parameter 

for investigating hydrologic series . The basic statistical parameters used are the mean total 

run-length and the mean positive or negative run-length, as they change with the probability 

of the truncation level of a series. This study leads to the following conclusions: 

(1) The method is effectively used to investigate whether or not a time series of 

annual precipitation a.t a point is a sequence of stochastical ly independent variables with 

a common distribution . 

(2) The method is al so effectively used to investigate whether or not a time series of 

annual river flows is independent or first-order linear autoregressive dependence model. 

(3) The method does not depend on the underlying distribution of the variables that are 

being investigated. 

(4) Autoregressive linear models, widely used in hydrology, usually are referred to as 

stationary Gaussian processes, if their independent stochastic component is norma.lly distributed. 

Properties of runs of these models are rel evant for t he invest igations of multiannual periods 

of surplus and deficit, and for the study of hydrologic droughts. 

(5) An analytical approximation is developed for probabilities of a sequence of a given 

length of wet and dry years, when hydrologic time series are stationary, either independent, 

or first-order linear autoregressive process, and the truncation level is specified. Numerical 

values of these probabilities are obtained on a digital computer for the range of p1 , the 

first autocorrelation coefficient between 0 and 0.50 , with i ncrements of 0.10, and the r ange of 

the probabi l ity of truncation level, q , between 0.30 and 0.70 with increments of 0. 10, all 

for the first - order l inear autoregressive model. These probabilities can be readily used for 

probability statements about the multiannual periods of water surplus or deficit, with respect 

to a specified truncation level that defines the surplus or the deficit. 

(6) Probabilities of run-lengths of linearly dependent variables, with a common distri­

bution, do not depend on the underlying, univariate distribution of the variable. They depend 

only on t he probabili ty q of the truncation level and the series dependence model . 

(7) Examples of the investigation of stationary ser ies by the run-length technique and 

examples of the computation of probabilities of lengths of surplus or deficit periods show the 

relevance of run theory for various applications in hydrologic and water resources investigations. 
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APPENDIX 

This appendix gives the properties of run-lengths of the first-

order linear autoregressive model for five values of the first auto-

correlation coefficient, p1, 0 .1, 0.2, 0 . 3, 0.4 , 0.5, and for five 

values of the probability, q = F(x0), of the truncation level, x
0

, 

or q equal 0.3, 0.4, 0.5, 0.6, and 0.7 . The first column gives 

these parameters: + + q = F(x0), EN (q), and var N (q); the second 

column gives the discrete value j of the run-length; the third column 

are probabilities, P(j+), of at l east j consecutive values being 

above the truncation level, and subsequent ten columns give probab-

ilities of at least k consecutive values being below the truncation 

level, x0 , followed by at least j consecutive values being above the 

truncation level, fork= 1,2, ... , 10, and j = 1,2, .. . , 10. Finally, 

the last two columns give probabilities of run-lengths being greater 

than or equal to j, or being exactly equal to j, respectively . By 

using the values given in the subsequent five tab l es, it is feasible 

to make probability statements about durations of droughts of a river 

basin, with annual runoff series following the first-order linear auto-

regressive process, of p1 estimated by the sample r
1

, and by finding 

P(N+ ~j) values for a selected q in this appendix. 
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Key Words: Hydrology , Time Series , Theory of Runs, Run-Lengths, 
Stochastic Processes in Hydrology, Droughts, Precipitation, Run-Off 

A method is developed for investigating time series structure by 
us ing the mean run-length parameter. This method is distribution­
free . Applications to selected annual precipitation series and 
annual runoff series demonstrate the feasibility of this method. 
Analytical expressions are developed by which the probabilities of 
sequences of wet and dry years of specified lengths can be calculated 
when the basic hydrologic time series is either an independent or 
a dependent stationary series of a var iable which follows the first ­
order linear autoregressive model. Numerical values of probabilities 
of run-lengths are obtained by the digital computer integration of 
expansion equations for run-length probabilities of the first-order 
linear autoregressive model. A set of tables and a set of graphs 
are presented to make the numerical values readily useabl e. Probabil­
ities of run- l engt hs of dependent variables with a common distribution 
are also distr ibution free . The significance of thi s i nvestigation , 
and several applications i n the text, are based on the premise that 
run-lengths, as statis tical properties of time series, represent 
attractive parameters in studying droughts and surpluses . 
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A method is developed for investiga·ting t ime series structure by 
using the mean run-length parameter. TI1is method is distribution­
free. Applications to selected annual precipitation series a~d 
annual runoff seri es demonstrate the feasibility of this method. 
Analytical expressions are developed by which the probabilities of 
sequences of wet and dry years of specified lengths can be calculated 
when the basic hydrologic time series is either an independent or 
a dependent stationary series of a variable which f ollows the first­
order linear autoregressive model. Numerical values of probabilities 
of run-lengths are obtained by the digital computer integration of 
expansion equations fpr run- l ength probabilities of the first-order 
linear autoregressive model. A set of tables and a set of graphs 
are presented to make the numerical values readily useable. Probabi l­
ities of run-lengths of dependent variables 1d th a common distribution 
are also distribut ion free. TI1e significance of this investigation , 
and several applications in the t ext, are based on t he premise that 
run-lengths, as statistical proper ties of time series, r epresent 
attractive parameters in studying droughts and surpluses. 
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A method i s developed for i nvestigating time series structure by 
using the mean run-length parameter . This method is dist ribution­
free. Applications to selected annual precipitation series and 
annual runoff series demonstrate t he feasibility of this method. 
Analytical expressions are developed by which the probabilities of 
sequences of wet and dry years of specified lengths can be calculated 
when the basic hydrologic time series is either an independent or 
a dependent stationary series of a variable which follows the first­
order linear autoregressive model . Numerical values of probabilities 
of run-lengths ar e obtained by the digit al computer integration of 
expansion equations for run- l ength probabilities of the first-order 
linear autoregressive model . A set of tables and a set of graphs 
are presented to make the numerical values readily useabl e. Probabil ­
ities of run-lengths of dependent variables with a common distribution 
are also distribution free . The significance of this investi gation , 
and several applications in the text, are based on the premise that 
r un- lengths, as statistical properties of time series, represent 
attractive parameters in studying droughts and surpluses. 
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A method is developed for investigating time series structure by 
using the mean run-length parameter. This method is distribution­
free . Appl ications to selected annual precipitation series and 
annual runoff series demonstrate the feasibility of this method. 
Analytical expressions are developed by which the probabilities of 
sequences of wet and dry years of specified lengths can be calculated 
when the basic hydrologic time series is either an i ndependent or 
a dependent stationary series of a variable which follows the first­
order linear autoregressive model . Numerical values of probabilities 
of run-lengths are obtained by the digital computer integration of 
expansion equations f or run-length probabilities of the first-order 
linear autoregressive model . A set of tables and a set of graphs 
are presented to make the numerical values readily useable. Probabil­
ities of run-lengths of dependent variables with a common distribution 
are also distribution free . · The significance of this investigation , 
and several applications in t he text , are based on the premise that 
run-lengths, as statistical properties of time series , represent 
attractive parameters in studying droughts and surpluses. 


