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Introduction

The ground water conditions which must be dealt with in the
field are generally of a transient nature. This is to say that
the conditions are changing with time. A& steady state might be
established if the conditions which initiated the change were main-
tained for a sufficiently long time but more often than not the
conditions are changed before the steady state can be established,
Some examples will illustrate. A well is put down and water is
pumped from it and a condition of change is initiated, Before the
ground water conditions can reach a new stable configuration the
well is shut down and a new series of changes begins. A farmer
irrigates during the summer and his deep percolation losses build
up the ground water levels under his fields. Drains installed
under these fields flow at increasing rates during the irrigation
season, After the last irrigation, however, their flow diminishes
continually until the first irrigation of the next growing season
starts the cycle over again., An almost endless variety of such
examples could be quoted.

Efforts have been made to apnly steady state formulas to these
cases because these formulas are often simpler than those for the
transient cases but this only leads to the vexations which arise
when attempts are made to force the application of formulas to
cases to which they do not apply. It is much more satisfactory to
deal with them as transient cases even though some simplifying
assumptions must generally be made to reduce them to mathematically
tractable form. Once the solutions have been found and graphed or
tabulated applications to the actual transient condition is readily
made,

The simplifications introduced are shown explicitly in each
derivation but it may be stated here that they generally conform
to the Dupuit-Forschheimer idealization when water table condi-
tions are present. This idealization is based upon the assumption
that the surface gradient applies throughout the depth of the
saturated portion of the aquifer. It is also generally expedient
to assume that the area available for the flow of ground water is
not altered by the drawdowns produced. Some harsh criticisms have
been leveled at the formulas developed on this basis but it is
well to recognize that very many of the formulas in common use for
engineering purposes are based upon similar simplifying assumptions
but serve very well in spite of the shortcomings thus introduced.
It is recognized that formulas having such bases must be used with
judgment based upon a knowledge of their limitations. If the
formulas described herein are used with a similar exercise of judg-
ment it may be expected that they too will serve quite as well as
do the formulas of the older disciplines.

Many of the formulas described herein were developed in the
Chief Engineers office of the U.S, Bureau of Reclamation. In most
cases they are contained in informal memoranda on which the name of
the Senior author appears as one of the authors. Other names
appearing on these memoranda are Wade H., Taylor, E.D. Rainville,
illiam N. Tapp, Quentin L. Florey, William.T. Méody and E.W. Kramer.
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These developments profited from the support and encouragement of
Charles R. Maierhofer and Waldron H, Yarger. Due to the similarity
of the ground water and heat flow differential equations,solutions
for ground water transient cases can ordinarily be adapted diredtly
from developments found in the older and much better developed

field of heat flow. This was commonly the source of the formulas
described in these memos. The authors take this opportunity to
thank the Bureau of Reclamation for permission to use these develop-
ments.

.



Notation

The notation used in this text is collected here for ready

reference.
a represents the effective radius of a well (feet)
b, an outer radius (feet)
D The original saturated thickness of an aquifer (feet)
F A flow as a function of r or x
G <f13;523_> a function relating to the flow of an artesian well
a (dimensionless)

h a remaining drainable depth (feet)

an original drainable depth (feet)
Ig = (1 - BA) (See table II) (feet)
Jo a zero order Bessel Function (dimensionless)
K the permeability (ft/sec)
L the distance between parallel drains
m the thickness of a semi-permeable confining bed (Fig 6) (feet)
n an integral number (dimensionless)

g xe-u2 .
Py = _2_ % du The probability integral (Table I)
\//ﬂ Jo

P the permeability of a semi-permeable confining bed (ft/sec)
p1 & pressure expressed in equivalent feet of water. In an

aquifer it is the departure of the pressure from hydrostatic(feet)
P, a part remaining (dimensionless)
Q a flow from a well (ft3/sec)
q the flow which a well takes from a river (ft3/sec)
q1 a flow per unit length of a line source (ftz/sec)
qo the return flow from bank storage (feet)?
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r radius (feet)
t time (sec)
u a variable of integration (dimensionless)

'S the voids ratio. It is the ratio of the drainable or fillable
voids in a unit volume to the gross volume (dimensionless)

y a drawdovm  (See fig 1) (feet)

Yo a zero order Bessel Function (dimensionless)

X, ¥, 2, coordinate distances (feet)
2

( = K D the diffusion constant ( ft )
Vv sec

¥ a supplementary variable, defined where used.

Note: Although dimensions have been given in English units in the
above table all formulas in this text are given in consistent
units, They may therefore be used in any consistent unit
system without change.



Definitions

The following terms are used in this text in the sense indicated

below:

Aguifer A water bearing formation.

Ground Water

Wwater Table

Permeability

Voids Ratio

The water filling the saturated portion of a permeable
bed.

The surface of atmospheric pressure in an aquifer,
Water will stand in an observation well at the water
table,

A quantity defining the ability of an aquifer to
transmit water, It is represented in this text by

the symbol K, It is the flow through a unit area
produced by a unit gradient, The actual flow through
a unit area is equal to the product of the permeability
and the gradient,

The ratio of the drainable or fillable voids in a
unit volume to the gross volume, It is a dimension-
less quantity greater than zero and less than unity.

Bessel Function

A solution of Bessel's equation, The notation used
here conforms to that of the British Association

tables of reference., b



Chapter 1 Well Pumped at a Constant Rate.

A cross section through a well is shown in figure 1.
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Figure 1 Impermeable

Pumping of the well at the constant rate Q for the time ¢
produces a cone of depression centered at the well, At the radivs =r
the drawdown is vy,

The flow toward the well at the radius r 1is

= - - 0
F 2ﬂ'r(Dy)K_a¥ (1)
If y is small compared to D this can be written
P o= 2k r 0¥ if y << D (2)
d

Under unsteady conditions, when the flow F varies with the radius nf
water accumulates within the annulus of thickness dr at the rate

9Fr = 2Tk O (r Qy) (3)
or or or
This accumulation results in a storage of water in the annulus at

the rate
-2 fT rdr V Oy {4 )
DT
The condition of continuity, which expresses the relationship

b~twecen the flow variation across the annulus and the storage of
vater within it is:

OF drdt = -2ffrV Oy drdt
oF oF
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or

kp O (r 9y )= rV Oy (5)
8,!‘ ar 3t
If
OC= KD_ (6)
'
This expression can be put in the form
c( By + 1 By)= By (7)
2 T AT At
or

To obtain the desired solution it will be necessary to find a
solution satisfying the continuity condition (7) and meeting the
boundary and initial conditions;

When t — O y — 0 for r > O (8)
When r - 0 F - Q for t ) O
Consider the expression
0o
-u?
y = ___ 9 e du (9)
2 T KD u
i

JuKt
Where u represents a variable of integration,
To show that this expression satisfies the differential equation form

the derivatives

- pR
@X = Q e L X t (10)
ot 2 TKD 2 %
- 22
a y = -Q e ot (ll)
or 2 1] KD r
- ..
_Q_z_gz = Q 2 e LXt + Q e LOCt (12)
or 2 KD Loct 2 T XD re

A substitution of these expressions into the differential equation (7)
will show that equation (9) is a solution.
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It remains to determine whether this solution satisfies the
desired boundary conditions, If r 1is greater than zero and t
approaches zero the lower limit of the integral approaches the upper
limit and we can conclude that the initial condition is s&tisfied,

The flow across the cylinder of radius r and length D is, to
our approximation; from equations (2) and (11),

- p?

F=Q e LXt (13)

When t 1is greater than zero and r approaches zero then F
approaches Q and the second of equations (8) is satisfied,

ile conclude that equation (9) is the solution which satisfies our
requirements,

The application of this formula can be illustrated by the follow-
ing examples:

Example

Water is pumped from a well at the rate of 350 gallons per minute,
The well penetrates 170 feet of saturated thickness of an aquifer
having a permeability of ,0005 ft/sec and a void ratio of 0,20,
Compute (a) The drawdown in an observation well at a radius r =
5 feet as a function of time,
(b) The drawdown as a function of the radius after the
well has been pumped one day,

Solution

Since one cubic foot per second is equivalent to L448.8 gallons
per minute, the pumping rate of 350 gallons per minute is

250 = 0,780 cubic feet per second
L8,

0C= KD_ = (,0005)(170.) 0,425 ft?/sec
v 0,2

The computation of drawdown at the radius 5 feet is shown in the
following table:
00

2
Values of f; e"¥ du are obtained from figure (3).
u
r

Jh o<t




Table 1

Computations of drawdowns at r = 5 feet in a well for which
K = ,0005 ft/sec D =170 feet V = 0,20

Q = 0,780 ft3/sec (350 G.P.M,) 0C = 0,425 ft2/sec
JLOC = 1,342 ft2/sec r = 3,725 [sec
J40C
00
: S -u?
Time Time P 2 du y
(sec) Okt ) u
JhoKt

1 minute 60 0,480 0.5543 0,810
15 minutes 900 0.124 1.5236 2,228
30 minutes 1800 0,0877 2.,0779 3.040
1l hour 3600 0.,0620 2,4939 3.64
2 hours 7200 0.0438 2.,8405 4,10
4L  hours 14400 0,0310 3.1856 L,66
8 hours 28800 0.0219 3.5330 8¢l
1l day 86400 0.,01268 4,0799 5.97
2 days 172800 0,00896 L4264 6.47
L days 34,5600 0.00633 L.7738 6,98
15 days 1296000 000327 5;&323 794
p i month 2628000 0,00230 5.78622 8,46

_Q = O,%SO = O;gSO = 1,460
m . o .



Table 2

Computation of drawdowns at various distances from the well at
the end of one day of pumping.,

K = ,0005 ft/sec D = 170 feet V = 0,20
Q = 0,780 ft3/sec = 0,425 ft?/sec t = 86400 sec
</ L o< t‘ = 3814'0
s
radius r e™2 du y r
feet Jm ) u ———-—/_?
LOCt -
;| 00262 5.65 8,26 0034
5 01306 4,05 5.92 0170
10 .0261 3237 4,93 «0340
25 «0653 2,44 3456 0850
50 «1306 1,75 2,65 «170
100 261 1,088 1259 +340
500 1.306 0,0370 0,054 1,70
1000 2,61 0,000072 0,00010 3.40

- 0,780 = 1,460
2 KD !5.233255.UUUBHI7U)

The drawdowns of table 1 have been plotted on figure 2 to bring
out the point that this case has no ultimate steady st-te, Reports
of pumping tests made for determination of aquifer properties often
contain statements to the effect that the well was pumped to stabil-
ity before the required drawdown observations were taken. The fact
is that the drawdowns never come to stability., So long as all of
the water taken from the well comes from storage in the aquifer,
stability is impossible, The nature of the drawdown pattern for
points near the well only gives an appearance of approach to stabil-
ity.

Since most of the water comes from storage at a distance from
the well it is possible, however, to identify the conditions under
which a valid determination of aquifer properties can be made by
considering the drawdowns as a part of a steady state flow system,
Such a computation will always involve a ceptain amount of approxi-
mation but natural aquifers are generally non-uniform anyway so
that approximations are permissible,

The integral of formula (9) can be represented by the series

17
~ 0288608 — 09 % + ﬁ% x 214 5%

-10- (14)”







Inour case x = r//LOCt ,
Suppose two observation wells are located at the radii r; and T

respectively then the difference in drawdown at the two wells will
be

o0 oo
2
yi1 - v2 = __0_ P Y e=? du
2 Y XD u 2 KD u
1 | etk o
Ju0Ct Jh OC t
or (5,
195 2 ]
yi1 - y2 = Q -0,288608 - 1 g, ET o+ o TG
2 T7 KD /ot 2 t) |
;> 2
Lhieg -0,288608 - log, __ T2 + IR
2K L JEox 2(k o< t) |
as t grows greater the value of r grows smaller, Then after
JEX €
a certain time the term rk and all higher power terms will
ZL(L o< £)?

become negligibly small, Then if we carry out the subtraction
indicated above the result will be, approximately:

r (l"z -rz}
: & OO N S SRR PR VR logg o od = o 1 2 (16)
2 KD ry 2(L ¢ t) |
: —
the formula

R e e i e G T SRR L (_E.%_ (17)
2 T KD )

may be recognized as a steady state formula, It can be readily
obtained independently by integrating the relation:

Q = -~KD2qr r gx_ (18)
r

This relation expresses the requirement that the flow Q passes
through all the cylindrical surfaces of area 2 i rD wunder the action
of the gradient -~ dy/dr, It implies that the drawdowns y are

small compared to D, A scrutiny of formula (16) will show that this
will be a valid relationship if the numerical value of

2 2
2" -T1 is small compared to logg (_EZ_) (19)
24 ¢ t) rl

3



This is the Taylor-Rainville criterion,* The question as to how
small the power term must be as compared to the logarithm term must

be resolved by judgement of the computer when he applies the criterion
in any given case., Generally, a study of the consistency of the
observation well data will provide clues as to the accuracy the basic
data will permit,

The transmissibility KD is obtainable from formula (17)if it
is rewritten in the form

rp
KD = Q loge TI_ (20)"
2T (y1 - y2)

If the original saturated depth D is known then the permeability K
can be determined.

To use the Taylor-Rainville criterion formula (19) is applied on
a trial basis first, Then a value for the transmissibility KD is
available and the quantity ¢ can be computed, For these purposes
only a reasonable value for V is needed.

More accurate values for the permeability can be obtained if the
reduction of saturated thickness by drawdowns is accounted for, To
do this we may write the steady state relation in the form:

Q = -KD=-y)27Tr gx_ (21)
r
or
dr 2 17 Kr

By integration

(D - y)2 = Q loge r + ¢ (23)
2 7 K
ithere C is a constant of integration, If we let h = (D - y)

represent the saturated thickness and take the difference of two such
expressions applying to the radii rj and r, the result is:

gk e =0 logy (&) (24)
K 1

% See Bureau of Reclamation Technical Memo
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This is known as the Theim formula, The permeability can be
obtained from it by rewriting expression (24) in the form:

r¥e.
K = Q loge \' T3 /
M (hz® - m32 ) (25)"

To use this formula the original saturated depth of the aquifer must
be known, It may be noted that while this value of K is probably a
more accurate one than is obtained from formula (20) its use in
formula (9, may not give as good results as the value obtained from
formula (20), This is because formula (20) has the same theoretical
basis as formula (9),

Use of these steady state formulas for the determination of
aquifer properties confers some advantages because the time variable
does not appear in them and because formula (9) is not easy to solve
for the transmissibility KD by algebraic means,

A value for the voids ratio V can be obtained by estimating the
valume of sediments unwatered, from observation well data, and
comparing this volume with the volume of water removed by the pumps,

By using graphical methods all of the aquifer properties can be
determined from observation well data. To do this a plot of

y /("' 'ﬂ? versus r /Jh Xt is made on log paper, as
'2 KD/

shown in figure (3), We will refer to this plot as the master chart,
On a sheet of the same kind of log paper plot the drawdowns y from
the observation wells versus the parameter r/ [t . Then keeping
the axes of the two sheets parallel adjust the plotted drawdowns to
fit the curve of the master chart, This process is facilitated if
one of the sheets is transparent. Select a point on the master
chart for use as an index, To fix ideas we will assume that the
index point is to be chosen at the intersection of the unity lines
on the master chart. Then at this point we have

y = 1 and r = 1 (26)
( Q ) Jeho t
2 T KD

When the index is read on the adjusted drawdown chart we obtain the
corresponding values of y and r /Yy t . A substitution of these
values into the above relations will permit an evaluation, first, of
the transmissibility XD and then of the constant O , Since

O = KD/V the value of V is readily found, This graphical
procedure provides a means for solving equation (9) for the aquifer
constants when test data are available,

A careful reader will have noted that the plot of the drawdown
data is in terms of dimensioned quantities while the master chart is

=14






plotted in terms of dimensionless ratios, The propriety of such a
procedure may well be questioned. The explanation lies in the use
of logarithmic scales on both axes, With such scales a shift
represents a multiplication. This principle is used in the con-
struction of slide rules, When we fit the dimensioned plot to the
master ¢hart we produce the shifts which introduce the missing
factors, These will always have the physical dimensions which were
used in the drawdown plot,

We may now illustrate the use of these various methods by work-
ing out an example, For this purpose we will use the drawdowns and
times of table treating them as though they were observed data,

When the drawdowns of table 2 have been plotted on log paper
against the values of r /J t provided in the last column of
this table and these plotted points have been fitted to the curve
of figure 3 while keeping the axes parallel it will be found that
the index of the master chart falls on the point:

ol TS = L,3%

SRR o
F gl
These values can now be substituted into equations (26), From the

first of these:

_L__._ = loLF3 b l.
&2 T KD \ 6.2832 KD ;
e obtain
KD = (0,780) (1) =  0,0867 ft%/sec
(6.2832) (1.43)
The original value was, as we know, KD = (0005)(170) = 0,085

~

Then we have recovered the original value within about < percent,
From the second of equations (26):

r R L e AR o' ("N e AT
V/Z—bﬁ t /L X
L Ok e R £ 1 then K = O k3L ftz/sec

The original value, as we '"now, was O,420 and, again, we have
recovered the original value within 2 percent,

The value of V is obtained from the relation

(X = _KD_
Vv

By substitution:

O34k = L0867
i

16



or

v = 0,0867 . U’

This agrees with the original value, We have now recovered all of
the original aquifer properties by this graphical procedure,

The reader will find that he can also use the points of table 1,
All of the points given in these two tables will plot along a single
line regardless of the values of radius or time used, A perfectly
consistent set of field data should do the same thing, All of the
observed data can therefore be used in the graphical procedure for
finding the aquifer properties,

These statements hold if the drawdowns are everywhere small com=
pared to the original saturated depth of the aquifer,

-17-



Chapter 2 'The Artesian Well

If a permeable strata in a formation is enclosed between
impermeable beds, and has an outcrop which germits water to enter it,
a condition may exist as shown in figure (4

Prec\pifation
i .
\\\\,,, Oufcrop. Orwina .ezomemc \evel bl
N t\ —--..__““ v e e e o —— v : "0 S

‘\:\ V\\ " ~_ Ground \ . ‘ |
\ -C‘\“ sucharP \ . h

v

Figure 4 Artesian conditions

If the outcrop is above the top of the well casing, as is often
the case, a flowing well will result, The well lowers the original
pressure by the amount h, at its location and, as time goes on,
the zone of lowered pressure widens, This widening is accompanied
by a reduction in the flow of the well, It will be our purpose to
determine the rates at which the influence of the well spreads and
the flow diminishes,

The eqﬁation of continuity, for this case, resembles closely
that for the pumped well, The flow F at the radius r is now
given by an expression of the type

F = XK29r D Oh (27)
or

and the continuity equation becomes
OF drdt = V2qrdr Oh dt

3T 5t
or, if
X = _le_D__ as before
<2
o°h + Oh\ = o h (28)
a(\a,.? + ar> D¢



It may be noted that in this case there is no approximation since

the permeable bed remains completely saturated at all times, However,
because the water yield is obtained through a compression of the
aquifer instead of drainage.the values of V for these conditions
will be much smaller than those generally found in unconfined aquifers,

The initial and boundary conditions for a well of radius a and
an impermeable boundary at the radius b are

h ho when t = 0 for a {r b

22 3
[}

O when r = a for t >0 vos (R}

Dh = O when r = b for all values of t,
dr
Stated in this way the solution applies to an aquifer of finite

extent but it will be shown later how this solution may be extended
to an aquifer with an infinitely remote outer boundary,

A solution satisfying the differential equation (28) and the
conditions (29) is

n = o

r ) utzt ’

h = ho An UO (Xn T) e —T R (30)
n = 1

‘There Up 1s a zero order Bessel Function of the type

£ 3ar \ Xxnr ; a ; '
o o) \ X8\ - 3o (%) ¥ rxnrs. (31)
0\ b / i JO <b / YO\ b > 0(\ b > O\b

and
a Uol (—-11-—x 2 ) .
An = b s b . ecvaece (32)
Xn ‘_ (Uo(xn))2 - (a Up* (Xna))zj
e L 19) “5
The symbol Xxp represents the roots of the equation
Uo (Xn) = 0, coe (33)
The form of Ug insures that h = 0 wvhen r = a,
The flow of the well Q is
Q = 21 KDa < 2 n\ iess 130
or
fr=a

) s



This can be put in the form:

Q = 2TKbhy G (Juo: t> (35)
where
n =00
(l 14'0( \ A (X a ) i} (X a ) xnzt ( 6)
XL Rt = n U n = 3
T N e

n=1

The G function is here expressed in terms of a parameter of the
type used throughout this text, If it is not immediately apparent
that the G function can properly be expressed in terms of this
parameter the question can be clarified by making the substitution

2Zm = a
b
then the exponents will be transformed in the following manner:
xn?t =  xp?m? Lolt
b2 a2

It was stated previously that this solution applies to a well of
radius a located at the center of a circular aquifer whose outer
boundary is a circular impermeable barrier of radius b, The
question will naturally arise as to how such a solution can be used
when the aquifer is of infinite extent, The answer to this question
may be found in a specialized computation procedure which is based
upon the behavior of expressions of the type of equation (30). If
we were to select a ratio b/a = 10000 we would find that a very
large number of terms would be required to calculate the h/h_ values
as a function of r for the early times, As the times increase the
terms of significant magnitude decrease in number and the computation
becomes much easier, Eventually the disturbance will reach the
assumed outer boundary and drawdown patterns would be obtained which
would not be appropriate for the case of an infinite outer boundary,
We can avoid many of these difficulties by the following ruse,
Suppose we begin with a choice b/a = 10, restrict ourselves to
a few terms and determine the time when the first term discarded
becomes negligible, As a representation of an infinite outer
boundary case this solution is valid from this time until the dis-
turbance reaches the outer boundary. When this happens we discard
this series and take another based upon b/a = 100, Again we
take only enough terms in it to permit us to take up the computation
where we left off before, Ve compute with this ratio until the
outer boundary is again reached, We then continue with a solution
based upon b/a = 1000. By following such a procedure we can
progress in steps, using in each step only a few terms of the series,

* A function equivalent to G(’JT?EEﬁ? ) 1s tabulated for a wide

a
range of values in the paper by Jacob and Lohman,
20~



and we can extend the outer boundary to any radius we choose, The
chart of figure (5) was prepared, in part, by this method, The

Xn and Ap values computed for these uses can be used also in the
expression (36)"to compute the G function, The values of the G
function given in figure (6) were computed in this way,

An approximate formula which agrees well with these results is

°° 2
e~Y" du
u
st e PR
h = 1 - y L"a’ t --0(37)’
ho o

a

Approximate if ——— <& 0,02
pp \/M - <
Example:
A one foot diameter casing penetrates a permeable bed of 170
feet total thickness lying between upper and lower confining beds
of shale, The permeability of theé permeable strata is K = 0,00Q7
ft/sec and specific yield V = ,0005, If the initial pressure at
the well was equivalent to 60 feet of water at the top of the
casing find

(a) the pressure pattern 2 weeks after the well started to flow and
(b) the yield of the well as a function of time,

By use of the chart of figure (5)

with
0C= KD = (,0007)(9170) = 238 ft°
v p; sec
Table 3 Pressure changes due to an artesian well
a = 0,5 feet t = 1209600 seconds L KX t = 67800
a®
'S BT
feet a R, h
f - v L]
0.5 1,0 0,00 0,00
R 2,0 .061 3.66
10,0 20 - «270 16
1000 200 481 28,9
1000 2000 694 L1.6
10000 20000 »905 54,9

% From figure (5)

o,
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A check by formula (37) yields the following results:
Table 4,

_ut
“LF ?iﬂ» g%fdu
P r qu_du S_gu Rir: < _E\l

AKE Q “ut
At Jax g % %Zd“ 0

p : 400t fAM&, jg_w
0.5  ,000,014,7} 000,0LL; 7 10, 836 10,836 1.000- 0 o
1,0 ,000 029 10,143 0,935 065 3,9
10 -000295 7.8,06 0.72i, .276 16.5
100 ,00295 5,5380 0,511 489 29,3
1000 0295 3.2358 0,298 .702 42,1
10000 0295 0,9763 0,0902 ,9098 5#.

This formula could be used for all later times,
The yield of the well can be computed as follows:
Table 5. Computation of yield of an artesian well,

S AP A

One day 86, AOO 18, 100" 0,106 L.75
One week 601, , 800 LB 000 0,095 L4426
One month 2,628,000 99800 0,090 L0k
Six months 15, 768 000 2Lh 000 0,083 3.72
One year 31, 536 000 3#6 000 0,080 3.59
L 0C = 2 8 = 3800 = 61,6
- [uEE -

2T KDhg =  (6.2832)(,0007)(170)(60) = 44,9

X%



Chapter 3, The Aquifer With A Scmi-Permcable Confining Bed.

A case which occurs frequently is illustrated in figure (6)
below, In this case a germeable stratum of thickness D 1is over=-
lain with a stratum of low permeability of thickness m., The water
table lies above this stratum, We consider the case where a well
is drilled into the permeable stratum and pumped at the rate Q,

Q
+

o o —— P i, | St = s s & g - . s * ] ) o — e
. .

SoeeE A el R or\gmal 9Y0und waTer IeveU

—— s ot o A——— ———— — . — - . i e - e—

-

-~_._""". g

. e Pk & e V s
ViRer S ,,7'/, e _7' '77/7 77 S 7'7 //7"7'777"777
S\O/V/\qu pearmeable AN [ M pearmeabihty. t,/
——‘-~-.._/ -.._.-.f(_,/.-:_./__!_.iﬁ.u -~_.~!’./ ‘ r..' .—L—/l 1‘-/ /ﬁ 4'-’: «I..‘_..‘/_s-l.l/ /. . - ‘_ 4
Permeab\\'ohj o e i

L SR | paee - g

’-I/

//. ,_///-7/

///////-//-// // —

VS SHR /\/// ST
Impermeable ~

Figure (7) Aquifer with a semi-permeable confining bed,

When pumping begins the pressure in the permeable stratum is
lowered, This has two effects., The first is to-draw water from
storage in the permeable bed which, in this case, behaves as an
artesian aquifer in the sense that the water released from storage
comes from a compression of the bed¢ The second effect is to cause
water to seep downward through the semi-permeable confining bed,

If the reduction of pressure at the radius r is represented by vy
then the condition of continuity is given by the differential
equation

Y _ KD /3%y t P
- v st A Y (38)

A comparison will show that this equation differs from that of the
artesian case only by the last term which accounts for the downward
seepage through the slowly permeable‘confining bed, It is assumed,
as a basis for formulating this term, that the downward flow per
unit of horizontal area is proportional to the reduction of pressure

*Thls case has been given an elegant treatment by Jacob and Hantush

in terms of the integral 00 “~(9A+ e .
W(wr.B) = S f'—jm_____é:”l‘*)d%

Y

WL o 5



y and the permeability p and inversely proportional to the thick-
ness m,

For the finite case where a supply maintains the ground water
level unchanged at an outer radius b a solution is:

]
b .
~
pe
i
N
'

i
)
S

Sl

o~

“—
e
|

s 1,5
00 !

3 sl e (39)
e

[ TRIIeS 0 e
f=

"

-

]

where:
JV(Kh\f) represents the zero order Bessel function, of the

parameter ((bnY) , of the first kind

K. (x) and I, (x) represent the zero order modified Bessel
functions, of the parameter x, of the first and second kinds
respectively,

ot P g
F=I /KD 3= b s
o (40)

<Z

=9/ (z%%) W= i
and

ﬁn are the roots of Jo(f),‘fb) =0

The first term in the right hand member of the solution (39)
represents the ultimate steady state and it will be helpful to note
that there will always be an ultimate steady state when the upper
confining permits seepage through it, In the case of the infinitely
remote outer boundar; the steady state is reached when all of the
flow of the well is supplied by seepage through the slowly permeable
confining bed, The ultimate steady state is then

M= K{9) (41)

The case of the infinitely remote outer boundary can be treated by
the computation procedure previously used for the artesian case, A
chart prepared in this way is shown in figure (%), An alternative
arrangement is shown in figure (9) which has advantages where

w26
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aquifer properties are to be determined from test data,
Example:

An aquifer of 125 feet thickness having a permeability 0,00040
ft/sec and a specific yield of ,0009 is overlain by a bed of
glacial till having a thickness of 32 feet and a permeability of
(35)(10) " ft/sec, A well penetrating the full thickness of the
aquifer is pumped at the rate of 0,25 ft /second,

Required.

(a) The drawdown as a function of the radius at the end of
2L hours of pumping.

(b) The drawdowns representing the final steady state condition
and an estimate of the time required to establish this steady state,

Solutions

With

.00040 ft/sec 5

125 ft KD = ,050 ft° /sec
0.0009 (dimensionless)

(35,0)(10) "% ft/sec

32 ft &

0,250 ft~ /seec

86400 seconds (24 hours)
- 0,250 = 0,795

0283 50

= Jf?é,lg)(lo) = (1,480)10

;%5)(10; = (1,213)(10)
32) (.

Y\ = t (_6;3 = (86400)(1,213)(10) = L1048
m

7

e =
9 B
- g
[/ U}
W
o
(@)

-29-



Table 6, Computed drawdowns for a well with a semi-permeable con=-
fining bed.,

radius y
feet ? /A feet
10,0 00148 5473 L 456
50,0 «0074 L 12 3.28

100,0 0148 343 2,73

500 074 1,83 1,46

1000 o148 1ok Lado

000 0.74 0,10 0,080

10000 1.48 0,00 0,00

The ultimate steady state is given by
= K(§)
From tables or from figure 8

Table 7, Ultimate steady state

radius K
feet ? o(ﬁ) i
1,0 .000148 849342 Ladil
5.0 «000740 743248 5484
10,0 00148 6.6316 5,02
50,0 00740 5.0222 3495
100,0 0,0148 443290 3ol
500,0 «0740 247248 2,16
1000,0 «lhB 2.0412 1,62
5000 740 6202 04493
10000 1,480 02194 0,174
For small values of § , approximately:
Ko(g‘) = ( ’J. + lOg ? ) (—g“ . (fOI‘ ? <O.l)"
where 0 = 0,57721 is Euler's constant.
A computation for the small values of K(ﬁ) is given below:

* For © = 0,1 this expression gives K, (O,1) = 2,4235. The
true value is K, (0,1) = 2,42706 +, In this expression I‘ﬁ)
has been replaced by unity, The power series is

Q) = - (T 1°€.(%)\) I8} o+ %‘) * g( 2) 7




A computation for the small values of K(&)

Table 8, Computation of K (§)

r
feet ?
1.0 .000148
5.0 000740
10,0 00148
50 «00740
100 .0148
500 <0740
1000 0148

S A
i (2)

000074 o
00037 oo
00074  =-=-=
0037 ==---
0074 W =e-e-
037 .0014
o74 ,0055

is given below:

for small values of g

-( T+ 1ogé%>) Kig)

8.9342
743248
6.6316
540222
443290
247196
2,0246

sons
from
tables
8.9342

7.9348

6.6316

5.0222

4 ¢3290

2.72,8

A glance at figure (8) will show that the ultimate steady state
Then the corresponding time

will be nearly attained when

is

¢ = "

.

This is equivalent to about 38 days,

[

= b

(1.213)(10) °

= 3,300,000 seconds

Gompari-



Chapter 4.,

Bank Storage

When a reservoir has been filled for some time and is then drawn
down a condition such as is shown on figure (°0) exists,

_———"-'/
/ WaTOY f() ’746_/_}_-7 _
L
N C IS A T A 5
A oA

Fe ren G.!Zib'd IT Lj K .
Yods. V.

TITTIIIT T 7T T 7T 7T T T T 7T 777 77777 77777

Figure (10),

Conditions following
a reservoir drawdown,

The flow F per unit length of bank is:

F =—K (D-y)

If
assumed that this is done.

-
J

Oy

is small compared to

(42)

X

D it can be neglected, It will be

The continuity condition is:

OF

QX
or, by making use of (47)
dty =
o x*

dx dt

KD

If

o= KD

v

This equation becomes

Dy =

/O\X._

~

X

=—V

oYy
t

0 ¥ dt dx
-

v oy
at

(43)

(L4)

(45)

-32- . %



A solution satisfying the conditions:

when x = 0 y = H for ¢t » O
(46)
when t = 0 y =0 for x > O

_ ____‘E’ e’ C*U vecess (L47)

The integral which appears here is the "probability integral,"
It has been extensively tabulated, Values are given in table I,
Values of one minus this integral are given in table II,

The flow F at x 1is given by the expression

is:

r ‘_'_—1

%2
F = H 2 KD e-— 4“4, ecveose (10'8)
VANl Jaut
The flow F, at x = 0 is
Fo = MD_’ ssee (I-P9)

JETCt

The total amount of water which has flowed out of the bank up to the
time t is obtained by integrating F, with respect to t,

It is:
qo = HV \/4.?1’: ceee (50)

The use of these formulas may be illustrated by the following
example:

Example

A reservoir with a shore line of 21 miles has been filled for a
considerable time and the resérvoir level is then dropped 8 feet,
If D = 280 feet K = 0,0001 ft/sec v = 0,08
Compute the rate of return flow and the total return after the lake
level has been drawn down for one month,

Solution:

X = KD = (,0001)(280) = 0,35 ft2 /sec
V 0,08

One month is 2,628,000 seconds.,

~33=



The rate of return flow is :

F = 2 HKD = _(2)(8)(,0001)(280) = 0,448 = ,0001318
° “TATC T . ST 3166 |
per foot of
bank per
second
The total perimeter is (21)(5280) = 110,800 feet

Then the return flow is (110800)(,0001318) = 14.6 cubic feet per
second,
The total amount of return flow is:

q_ = HV /i&f_ = (8)(0,08) /(h)(O.BS)(2628000)
m ™

or

q, = (0,64)(1057) = 677 cubic feet per foot of bank., Since
the total perimeter is 110,800 feet the total return flow im the
first month is:

(110800) (677) = 74,800,000 cubic feet, Since an acre
foot is 43,560 cubic feet the total return flow in the first month
1s:

74 800 000 = 1,720 acre feet

L3 500

- -



Chapter 5. The Line 3ource or Sink

The solution described in chapter 4 applies when the drawdown
is held constant at x = 0 and the flow varies with time., The
alternative case where the flow is held constant at x = 0 and
the drawdown varies with time will now be presented, The physicel
conditions are shown in figure (11) below

% 1 around surface. 2

AR e g WaTeT Table ’7_ -
T /"‘ ]
)

D

'Perme'ab\h‘f_q _K _ L
Voids . ., V N N Y

A e A Ry A R i P

Figure (11), The line source or sink

Of the total flow q  half comes from the direction of positive
and the other half comes from the direction of negative X,

The solution required is:

X

(52)

o
2
- W
X
U == L]ﬁ I FY ceeen(51)
- 2TKD U
X
VA t
This solution satisfies the differential equation
T
“ 9 y = 82 ee oo
Q x? ot

-35-



and the conditions

when x = 0. - 2 KD 91=q! for t>0.
o% (53)

when t = 0, y = 0, for x> O,

Values of the integral may be found in table III.,of the Appendix.

At x = 0 the solution becomes indeterminate but at this
point the drawdown yo can be computed from the expression
et ————— c o0 e (Sll»)
a3 V/h Mmx t
yo =
2 TW KD

The use of this formula may be illustrated by the following example:
Example

An unlined irrigation canal has a seepage loss of 1 cubic foot -
per second per mile of canal, It delivers water for six months
each year, If it overlies an aquifer with a depth D = 60 feet
a permeability of 0,000, ft/sec and a voids ratio of 0,20 estimate
the height of the ground water ridge produced by its seepage losses
at the end of the six months of operation.

Solution
o = KD = (,0004) (60) = 0,120
v (0.2)
Six months is 15,768,000 seconds.
Jhkt = [(4)(0.120)(15768000) = 2750 ft
q = -1,00 = =0,000,278 cubic feet per second-
' 5280 per foot,
q, = 0,000278 = ,001845
7T KD (6,2832) (000L ] (60)
y = -gq YALT X t = -(001845)(2750) = =-8,98 ft,
: 2 17 KD



Computation of the variation of the height of the ground water

mound with distance is shown in the following table:

Table 9, Heights of ground water mound.

e
¥ x Lo
(feet) Jm—— 02
v 4Lt
0 0 ————
100 . 0364 26,0
200 U727 12,1
500 21820 .00
1000 » 364 1.45
5000 1.820 0,0035

y
(feet)

-8. 98
-8. 50
-7091
"’6. 55
Lo 7l
~-0,06

The minus sign indicates a rise in the ground water level,



Chapter 6, Parallel Drains,

When land is to be drained for agricultural purposes a system
of parallel drains as shown in figure (12) is often used.

Ground surtace 7

Lt e Oriqinal water tabley T
I : . - o : : . : '( - :.‘ '. . . ——: * * . '. .';?“-‘--‘Ni‘\; _\‘\'\ :‘ 3 . : ) I :
| .:///,,'»h : . PR ’!* Ty 5
D ' L o AR S nt
ke ¢ . Permeability” €« - T B Dm'."'.}
I B L S
. N bR L e S e . ‘. | 2 e
TTTTTFITF TITITTTI4 500 PP T 00 FTT T5 7577 770 sy 772 705 5k
| Impermeable * :
. —— L e

Figure (12), Parallel drains

As a basis for treating this case it will be assumed that an im--
permeable bed underlies the area at a depth d below the drains,
Due to application of irrigation water or otherwise a uniform
depth H 1is saturated with water, The distance between drains is
L and the remaining saturated depth at the distance x from

one of the drains is h, The permeability is K and the drainable
voids V, The flow F per unit length of drain is

F = K (d"“h) ah esee (55)
29 X
And the condition of continuity is:

OF dxdt = V Oh dt dx
ax at

In order to avoid a non-linear expression which would cause serious
mathematical difficulties we will replace the quantity (d+h) by
an average value.

D, = (a+H) ceee (56)

Then the differential equation becomes

K D, 9%p = v Qn

t
3 %” 9
-38-



0 BTN

Yo e vere  (57)
e (R T Svss 58l
G ot

. ¢ iution which m2ets the initial and boundary conditions:

When x = 0 h = 0 for S A, o
When x = L h = 0 for  eie- Tl 0 (59)
When t = O h = H for Qe il Y,
1o
2
_ XNt
€ St (60) ©
_:- it P TR T -_—(X‘ e 80
h n il 4
| 35 et

A plot of this function is shown in figure (13), For the sake of
uniformity the time variable is put in the form V4 OCa T

kL
while the space variable is put in the form x/L. This plot
represents in a generalized form, the succession of profiles
assumed by the water table during the draining period, Because of
the dverage depth introduced to avoid a non-linear type of differ-
ential equation the solution is an approximate one and the approxi-
mation is best when H is small compared to d, However, com-
parison with a solution of the non-linear differential equation for
the case where the drains are at the impermeable bed indicates that
the choice made above for the value of D, will permit this
solution to be used without grave error even though H is not small
compared to d,

Drainage is slowest at the point midway between the drains,
The ratio of the remaining drainable depth at the center h., to
the original drainable depth H is shown on figure (13). The ratio
(h/H) 1is called the part remaining, This ratio plays an impértant
role when there is a drainage flow in more than one direction., If
there is a flow in both the direction x and 2z equation (5§¢)
is replaced by:

LR gt NGy g

a ‘\\axl 87.1/" t

- ¥

(61)

X

-39~
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If h. is a solution of

X aqh, = ahu (62)
a n t
% 4
and h 2 is a solution of
aqh x (63)
s 91" ot
Then the product h = is a solution of (61). This
relation, here called the pro&hc

t law, permits some important cases
of two dimensional flow to be solved ﬁy using one dimensional
solutions, This method will be illustrated by an example later,

The rate at which water flows into the drains is:

Fois o xp { Ohn
5 5 ( AT e {oh)
or since, by differentiation of (60)
N= 0
2T & qt
ah 4 H Bl <, THR N
- SEURE S LR Sl 7 soven o (O5]
?% L L
ne \;3:[5 ete
Then
N=0x
NMT'xat
4K D,H — LGl
B ; : / S = (66"

plot derived from this relation is also shown on figure (14),
It is useful for estimating the capacity of drains.

The use of these formulas may now be illustrated by means of
examples.

N
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Example:

An irrigated area receives 2,5 feet of water each year, of
which it is estimated that about 1 foot is lost by deep percolation.
With this amount of water loss the land is in need of drainage.

The sediments have a depth of 80 feet below the proposed level of
the drains, a permeability of ,0002 ft/sec and a drainable voids
ratio of 0,15, The ground surface is 14 feet above the drain level.
What drain spacing would be needed to keep the water table at least
5 feet below the ground surface at all times,

Solution

If all of the loss oc¢ccurred at one time the rise of the water
table would be 1,00 / 0,15 = 6,67 feet, Then if the water table
is to be kept 5 feet below the surface, at all times, the elevation
of the water table above, the level of the drains, at the point
midway between them, could be as much as:

1, - 5 -~ 6,67 = 2,33 feet,
On this basis a year would be available to drain the excess away,
Then approximately H = 6,67 + 2,33 = 9,00 feet h = 2,33
feet oo/ H) = (2,33 /9) =

0259
From the part remaining curve of figure (14) with (h / H) = 0,259
read

g ot /1L

with D = 80 + 10 = 85,

]

0,802

=
OCa = KD, = (,0002)(85.) = 0,1133
v 0,15
One year is 31,536,000 seconds
Then 4 O, t = (4)(0,1133)(31536000) = 14300000
Since
/T@Z;'é = 0,802 L = Jhx,t
ST 0,802
or
L = 3780 = L720 feet

This figure could be refined somewhat by a trial process which
would account for the fact that, when the last irrigation is made,
the previous imcrements have had some opportunity to drain away,
We will assume that there will be four irrigations applied one
month apart beginning June 1 and we will try a 5280 foot drain

=l 3



spacing, Then the increment of ground water depth due to each
irrigation would be 100 = 1,667 feet

The critical period would ;ome at the time of the last irrigation
on September 1,

One month is 2,628,000 seconds, The computation is made in the
manner indicated in the table below,

Table 10, Remaining drainable depths.

Time of Increment Time to \/l+ oC, t ‘he h
irrigation of depth Sept 1 ot k—-)
(ft) (sec) L H y
June 1 1,667 7,884,000 «358 0892 1,484
July 1 1,667 5,256,000 «R92 0,953 1,587
Aug 1 1,667 2,628,000 0207 0,995 1,658
Sept 1 1,667 0 0 1,000 1,667
Totals 6,668 6,396
The point that must now be reached in a year of drainage is
approximately 14,00 - 5-6,396 = 2,604
Then, as before, take h, = 2.604 H = 9,00 ft
(h., / H) = 0,289
From the chart of figure Jb (e’ t /L = 0,776

L = V%lxat = (h!foll}%!ﬂ%li}éOOO) = 3780 = 4870
. ol 0677

By repeated trials we could bring these figures close together, The
spacing we would ultimately find would be between 4870 and 5280 feet,
It would be close to the lower figure, The final figure for this
case is approximately 4900 feet,

In the process we have been using a small concession has been
made to obtain a more expeditious computation procedure, When com-
puting the drain spacing by use of a chart prepared for a drainable
increment of uniform depth a small error has been committed because
the part carried over from the previous year is not of uniform
depth, An exact computation could be made by superimposing drain-
able increments as they arise over a period of years., Such a com-
putation would be much more cumbersome than the one described.

To illustrate the use of the product law we may assume that the
above drains, spaced 4900 feet apart, terminate in a collecting
drain, so that drainage can move in two directions, 'Je will com-
pute the part remaining at a point midway between the drains and
2640 feet away from the collecting drain, The parallel drains will
be assumed to be much longer than the distance between them, For
the flow toward the collecting drain the idealization of chapter 4
may be considered appropriate, .

-



This is: 7

’ V'_:Df' ‘t
N T}
For z = 2640 ft t = 31,536,000 sec
Z = 2640 = 0,698

/40@% 3780 by
From tables of the probability integral i&%— = 0,676
For the point midway between drains

AN X a t = E?SO = (0,770 and from the chart of
bie |

figure he = 0,296 then h = <'L;\ (“ﬁ?} = (0,676)(0,296)

el
= 0,200 H

Then with the parallel drains only, the original 9,00 foot incremeént
would be drained away to a depth of (9,00)(0, 296) = 2,66 feet,
With the effect of the collecting drain included the corresponding
depth is (9,00)(0,200) = 1,80 feet,

To estimate the drain capacity required we can use theé flow
curve of figure (14) , For our case, with L = 4900 ft,

KD, H = (,0002)(85)(9) = ,000,031,2 ftZ /sec
I —— 4900

L

A reference to this figure will show that the flow to the drain is
not constant but decreases with time as the drainage progresses,
This is the behavior we should expect but it requires the exercise
of a little judgement in the selection of drain capacity., If we

arbitrarily select the point ( /4,u<;75j/’[_) =1} we read
F,/ ( XD, ) = 11,25

L
and the flow to the drain from one side is, at this time,
(,000,0312)(11,25) = L000351 cubic feet per second per foot of

draln. Then 1000 feet of this draln would collect (1000)(000351) =
0,351 second feeét from each side, or 0,702 cubic feet per second
from both sides, A reference to figure (14) will show that the time
\V Auxa.t = Dl is very early in the draining cycle and,
as a matter of Judgement, it can be concluded that a drain of this
capacity would be satisfactory. The worst that could happen would be
that the drainage would be retarded slightly in the early part of the
drainage cycle,
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Chapter 7, The Use of Images.

The solution of chapter 1 is appropriate when the aquifer, from
which the well draws water, extends to an infinite distance from
it in all directions, Such conditions are rarely met in nature and
it is then important to know how the solution can be adapted to
represent the conditions as they are, Many of these conditions aan
be met by the use of images, Such uses are illustrated by the
following cases:

Case 1, A well near a river,

Many irrigation wells draw water from sediments in
a river valley. When pumping begins water is, at first, drawn from
storage but as the cone of depression deepens and widens it finally
makes contact with the river, Because the river will maintain the
water table elevation along its bank no drawdown will occur there,
If the stream bank is idealized as a straight line it is possible
to account for this condition by use of an image well, Suppose we
raturn to the infinitely extended aquifer and lay out upon it a
line representing the idealized position of the river bank, At
right angles to this line another line is drawn which passes through
the pumped well, If a recharge well, having an inflow equal to the
outflow of the pumped well, is now located on this second line on
the opposite side of the idealized river bank line, and the same
distance from it, the drawdown of the pumped well will be neutral-
ized, by the rise due to the recharge well, with the result that
the original ground water level will be maintained along the river
bank line, Then on the pumped well side the position of the water
table will be given by the sum of these two solutions,

Such a situation leads to an ultimate steady state even though
the original solutions do not have one, A series representation
for the integral of formula (9) is:

;‘Ul . 2 §4
S du = - 0,288607 + log /1\+ == =~ —=— ,..(67)
LA *\g) 7 2T A
ik
En our case § = r o As t grows large & grows
Jaot

small and finally the terms containing powers of Z grow small

compared to logc( 1\. Ultimately, because the flow of the recharge
[\ = /

y:- 2

well is negative, the algebraic sum of the two solutions reduces to

y = Q log /(2x! -x)% o+ g2 (68)

&
2 KD - -
mi JxZ B

for x £ x‘
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In this expression x and 2z represent rectangular coordinate
distances measured from the pumped well as origin, The coordinate x
is measured toward the river and the coordinate 2z along it, The
distance from the pumped well to the river is x, , In the region

x < X, e The radius from the pumped well to the point x, 2z is:

r = /x2'+ z? (69)
and the radius from the recharge well to the same point is:
2 -
r = ‘/(2 x, = XxX) + z° (70)

If the water table was originally level the stream would now supply
the entire flow of the well,

Example:

A well penetrates 90 feet of saturated sediments of permeability
K = 0,0004 ft/sec and is developed to a diameter of 3,0 feet by
means of a gravel pack, If theé well is 700 feet from a river and
is pumped at the rate Q = 0,45 /sec compute the ultimate
steady state drawdown along a line from the well to the nearest
point of the river,

Solution
— Ogk = 1,99
2 T KD «2832)(,0004) (90
x = 700 ft 2 x = 1400 ft z = 0
Table 11, Ultimate steady state drawdown,
7
x (2x, - x) /(2x.. - x)? log /Qx. - X) y
‘ ! J T x 2 (feet)
700 700 1,000 0 0
600 800 1,333 «287L 572
500 900 1,800 .5878 1417
400 1000 24500 «9163 1,82
300 1100 3,667 1,2994 2.58
200 1200 6,000 1,7918 3456
100 1300 13,000 245649 5408
25 1375 2765 3.3142 6.60
L2 1398,5 932. 6.8373 13.6
At a point 50 feet dovnstream of the well where x = 0, 2z = 50
flax - x)' + z* = /1,962,500 = 1401 = 28,02 log 28.02 =
: /T 2500 50
o Z
343329
y = (1.99)(3.3329) = 6,63 feet,
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For comparative purposes we will compute the drawdown along the
lines 2z = 0O at the end of three months of pumping, Assume V =
0420, Since this is before the permanent steady state has been
established it is to be expected that these drawdowns will be some-
what less than those of the ultimate steady state,

Then with
X = KD = 1,0004!!90] = 0,180
v .
t = 7,88,,000 seconds x, = 700 ft,
r = Xx r = (2x; - x)
Table 12,
Drawdowns computed along a line from the well to the river,
r =—_du 1 =AU
" T % O I A A A
, It ,, ; Aot ,
700 0,294 0,99 1,97 700 0,294 0,99 -1.97 O
600 04252 1,11 2,22 800 0,336 0,86 =1.72 04,45
L0OO 0,168 1,50 2,99 1000 0,420 0,66 -1,31 1,68
300 0.125 1,80 3,59 1100 0,462 0,59 =1,17 2,42
200 0.084 2420 L,38 1200 0,504 0,51 -1,01 3,37
50 0,021 3.59 7.14 1350 0,567 0442 -0.84 64,30
l,5 0,0063 L,88 9.72 1398 0,588 0,40 -0,80 8,92

Note:
The quantity y represents the drawdown due to the real well,
The quantity 1y, represents the drawdown due to the image well,
The quantity (y + yl) represents the drawdown with the river
present,

River depletion due to pumping a well,
It can be shown, by considerations based upon the use of the two

images described, that if q represents the depletion of river flow
due to pumping a well at the rate Q the part of the flow taken

from the river is: W,
[agE
q = 1] - 2 -UT (71)
- € du
Q J

o

As t grows large this ratio approaches unity, Then, ultimately,
the well will deplete the stream by the amount 0,
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The river depletion caused by pumping the well of the above
example for three months,would be, if V = 0,2

L = KD = (0004) (90 = 0,180
v .
t = 7884000 seconds X, = 700 ft,
x4 = 700 = 0,29k = 0,29
—— 3380
Tl o & (4)(0,180)(7884000) 3
F tabl f th babil
rom tables o e probability integral —
2 éwdu = 0,3224 1 - _2 N&Yldu=067¢
o T
o o)
Then
q = 0.,6776
Q

A little over two thirds of the flow of the well will then be taken
from the river at the end of the three months pumping period,

Casc 2. A Vlell Near an Impermeable Boundary.

If the sediments from which a well takes water terminate at an
impermeable boundary it will be possible for water to move along the
boundary but no flow will cross it, This condition can be repro-
duced in the idealized infinitely extended aquifer if a line is
drawn at the position of the impermeable boundary and an image well
is used, The term image stems from the relationships which would
exist if a mirror were erected on the line representing the boundary,
The image well occupies the position which the pumped well appears
to have if viewed in this mirror, The line between the pumped well
and the image well crosses the boundary line at right angles and the
pumped well and the image well are at equal distances from it, To
impose the condition of no flow across the boundary the image well,
in this case, must be a pumped well having the same flow as the real
well,

Example;

Compute the drawdown for the 1ell of the previous problem if
there is an impermeable boundary at a distance of 700 feet, We
will compute the drawdown, along a line drawn from the well to the
nearest point of the bounéary, at the end of three months of pump-
ing. As before, let x and z represent rectangular coordinates
drawn from the well, as origin, toward and along the doundary,

At the boundary x = X, o

-9~



Table 13,
Computation of drawdowns along the line 2z = O when

there is an impermeable boundary at x = x = 700ft,
r = X,
oo oo
-ut 2
et e’
_ r U EROE 1
F r Y Vo o Y )
[t Tt
700 0,294 0,99 1,97 700 0,294 0,99 1,97 3.94
600 0,252 1.11 2e28 800 0,336 0,86 1.72 3,94
500 0,210 1.30 2659 900 0,378 0,73 le45 4404
L00 0,168 1,50 2,99 1000 0,420 0,66 1,31 4,30
300 0,125 1,80 3659 1100 0,462 0,59 1.17 4.76
200 0,084 2,20 L.38 1200 0,504 0,51 1,01 5.39
50 0,021 3.59 7oll 1350 0,567 0.42 0.8, 7.98
1.5 0,00630 L,38 9.72 1398,5 0,588 0,40 0.80 1Q52
Note:
r = (2x, - x), y represents the drawdown due to the real
well and y, vrepresents the drawdown due to the image well,
(y + vy, ) represents the drawdown with the impermeable boundary
present,

Cago 3. A Well between a Stream and impermeable boundary.

It is not uncommon for the alluvial sediments of a river valley
to lie in a trench eroded in a material like shale which has a
permeability that is very small as compared to that of the alluvial
sediments, To treat this case we may assume the one boundary to be
impermeable and idealize the river and the outer boundary as
parallel straight lines. To compute the draft of the well on the
river we may use the well and image of reference 3 , Then if we
represent a pumped well by an open circle and a recharge well by a

] i | ‘ '/ i i
j* | 400 wme——— - DH 00 = --I'JJ(Y) J40Q v 1400 e | 40D
: ‘ 'kﬁ\ﬂ T % | ~7
Q @B ¥ \.; : {{/ & ®
= i
R ( :
5 \
Figure (15). ‘lell between ‘4 Stream and an imparmeable boundary,
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The first pair are those of reference 3., The draft they make
on the river can be computed by the use of formula(71), but this
pair will cause a flow across the impermeable boundary. To rectify
this the first pair is imaged in the impermeable boundary as the secand
pair. The addition of the second pair has, however, upset slightly
the condition that the drawdown is to be zero at the river bank,

To rectify this the second pair is imaged in the river bank as the
third pair. This, in turn, does a modicum of damage to the condi-
tions along the impermeable boundary. Imaging the fourth pair in
the impermeable boundary will yield a fifth pair and a sixth pair
will be obtained if the fifth pair is imaged in the river bank,
The process results in an infinite series, which, however, may be
expected to converge rapidly,

If the draft on the river due to the first pair is considered
positive the draft due to the second and third pairs, taken together,
will also be positive, The draft due to the fourth and fifth pairs,
taken together, will be positive, In all cases the draft can be
computed by use of formula (71),

Example:

Suppose we recompute the draft on the river, as obtained in a
previous example, but modified by the presence of an impermeable
boundary 1400 feet from the well., The distances are as shown in
figure 15 ,

As before
X = KD = (,0004)(90) = 0,180
v 0,2
t = 7,88,,000 seconds (3 months)
For the first pair X = 700 ft,

]

00 0,294

/(4)(0.180) (7384000)

i -

JLO t

From tables

%

/-T&—T-" 002914'
2

Z\etdu = 032283 1- LN\ e Wau = o,67757
I T

[¢]

For the inside wells of the second and third pairs
X w 3500 ft €y = (5)(0,294) = 1.470
Ju ot

5]



For the outside wells of the second and third pair

x‘ = L4900 ft At .= (7)(0.,294 = 2,058
Jbhoo t
2,058 2,058
~ut
2 N E du = 0,99630 Z \ eWiy = 00361
|- — W€ W=
m I
0 o
For the inside wells of the fourth and fifth pair
x\ = 5600 ft X, . = (8)(0,294) = 2,352
Vi X t
1.257 2852
- 1
Z \eWdu — 0.99912 L \Ne“u —  .o0088
I T
o o
For the outside wells of the fourth and fifth pair
x, = 7000 X) = (10)(0.29L) = 2.9k
/LI, X t
7.94

2 ~ut _
4 \Ne du = 0.99997 1 - 0.99997 = ,00003

[T

Then with due regard to sign the resulting value for q/Q will be:

0,67757
0,03763
0,00361
0.00088
0,00003
0,71074

o]

++1 0+ +

Then q/Q = 0,71074
And the stream depletion is:

qQ = (0,71074) (0, 45)

A comparison with the previous result will show that the impermeable
boundary causes the depletion q to approach the ultimate value Q
more rapidly.

0,320 ft [/sec

~52—



10
b |

12

13

14

References.

The Effect of a ‘Jell on the Flow of a Nearby Stream, by C.V. Theis
in Trans Amer Geophysical Union- Part 3, Pages 734-738, 1941.

The Relation between the Lowering of the Piezometric Surface and
the Rate and Duration of Discharge of a Well Using Ground ‘/ater
Storage, by C.V. Theis in Trans A.G.U.,-Vol. 16, Pages 519-524,
1935.

River Depletion Resulting from Pumping a Well Near a River, by
R.E. Glover and G.G. Balmer in Trans A.G.U.-Vol. 35-No. 3-June
1954,~- Pages L68-470.

Bessel Functions for Engineers, by N.W. McLachlan- Oxford, 1934.

British Association Mathematical Tables VI- Bessel Functions,
Part 1.-Cambridge, 1950.

Tables of the Bessel Functions Yo (x), Y1 (x), Ko (x), Ky (x),
0 £ x < 1., National Bureau of Standards. Applied Mathe-

matics Series 25-1952,

Analysis of Data from Pumping Tests in Leaky Aquifers, by
17,8. Hantush in Trans A.G,U.-Vol. 37-No. 6- Dec. 1956.

Tables of Sine, Cosine and Exponential Integrals- Volumes I and
II- National Bureau of Standards Tables MT5 and IMT6-
Superintendent of Documents, iashington, D.C., 1940.

Tables of Functions by Jahnke and Emde- Dover, 1945.
Mathematical Tables by Dwight.- Dover, 1958.

Smithsonian Mathematical Tables-Hyperbolic Functions- Smithsonian
Institution, ashington, D.C., 1931.

Heat Conduction, by L.R. Ingersocll, 0.J. Zobel and A.C. Ingersoll.

- 0°_~ 2
Appendix F Tables of the Integral € ﬁ(jf5 Page 253~
= 9F
McGraw Hill, 1948. %

A Slhort Table of I(0,1;x) by J.C. Jaeger and Martha Clarke in
Proc¢. Royal Scc. Edinburgh-Section a, Part III-Fages 229-230.,
19L2.,

(Note: / [LoCt L
G{ __é_——> e~ I(0,1:%)
Voat oo T

Flow into a ‘‘ell by electric and Membrane Analogy, by C.H. Zee,
D.F. Peterson and R.0. Bock in Transactions £.S.C.E.- Vol. 122,
Pages 1093-1957- Paper llo. 2899.

sl e



15

16

17

18

19

Etudes Theoretiques et Practiques sur le Mouvement des Eaux, by
Jules Dupuit- Paris- Second Edition, 1863.

Non Steady Radial Flow in an Infinite Leaky Aquifer, by
M.S. Hantush and C.E. Jacob in Trans Amer Geophysical Union,36-
Pages 95-100,1955

Radial Flow in a Leaky Artesian Aquifer, by C.E. Jacob in Trans-
A.G.U. 27 - Pages 198-205.-1946,

Non Steady Flow to a Well of Constant Drawdown in an Extensive
Aquifer, by C.E. Jacob and S.’. Lohman in Trans A.G.U. 33-

Bureau of Reclamation Technical Memorandum,in preparation.

(A compilation of informal Bureau memoranda anFround-wat r
subjects which have been prepared over a period of years.

.-



F I 0
v Lt

. ) - e
Table I. Probability Integral: P(x)= F— C”“Zdu
O
s/ \/l;o(t P (x) x// (Xt P (x) x/j Lt P (x)
0.0000 0.00000 0,33 Q, 35928 0,76 0. 7175h
0.0005 0.00056 0.34 0.36936 0477 0.72382
0.0010 0.00113 0.35 0.37938 0.78 0.73001
0.0020 0.00226 0.36 0.38933 0.79 0.73610
0.0030 0.00339 0.37 0.39921 0.80 0.74210
0.00L0 0.00451 0.38 0.40901
0.0050 0.00564 0.39 0.41874 0.81 0.74800
0.0060 0.00677 0.40 0.42839 0.82 0.75381
0.0170 0.00790 0.83 0.75952
0.0080 0.00903 O.41 0.43797 0.3L 0.76514
0.0090 0.01016 0.42 O L4747 0.85 0.77067
0,000 0.01128 Q.43 0.45689 0.86 0.77610
O.4L 0.46623 0.87 0.781LL
0.0200 0.02256 0.45 0.47548 0.88 0.78669
0.0300 0.0338L 0.46 0.48466 0.89 0.79184
0.0400 0.04511 0.47 0.49375 0.90 0.79691
0.C500 0.05637 0.48 0.50275
0.0600 C.06762 0.49 0.51167 0,91 0.80188
0.G7G0 0.07886 0.50 0.52050 0.92 0.80677
0.0800 0.09008 0.93 0.81156
0.0900 0.10128 0.51 0.52924 0.94 0.81627
0.2000 0.11246 0,52 0.53790 0.95 0.82089
0.53 0.5L6L6 0.96 0.82542
C,L1100 0.12362 0.54 0.55L94 0.97 82987
0,1200 0.13476 0.55 0.56332 0.98 0.83423
0.13.300 0.14587 0.56 0.57162 0.99 0.73851
0.2400 0.15695 0.57 0,57982 1.0 0.84270
30,1500 0.16800 0.58 0.538972
0.1600 0.17901 0.59 0.59594 Lad 0.88021
0.1700 0.13999 0.60 0.60386 N 0.91031
0.2.800 0,20094 0.60 0.60386 1.3 0.93401
(0.2900 0.21134 0.61 0.61168 l.4 0.95229
0.2000 0.22270 0.62 0.61941 1ad 0.96611
0.63 0.62705 1.6 0.97635
0 21C0 G.23352 0.64 0.63L459 1.7 0.93379
0.22090 0.24L30 0.65 0.64203 1.8 0.98909
0.2300 J,25502 0.66 0 64938i 1.9 0.99279
0.2400 0.26570 0.67 0.65663 2.0 0.90532
J.250C 0.27633 0.68 0.66378
0,26C0 0.23690 0.69 0.67084 2l 0.99702
Q0.2700 Q.27742 0.70 0.67780 2:2 0.99814
0.2800 0.20748 2.3 0.99886
0.29C0 0.310528 0.71 0.68L67 2.4 0.99931
0.20G9 0.223063 Q.72 0.69143 2.5 0.99959
B 0.73 0.69810 2.6 0.99976
0.31 0.33391 0.74 0.70468 2.7 0.99987
0.3%2 0.34913 0.75 0.71116 2,8 Q,99992
! 29 0.99996
N 3 0 0.99998
& 0 1.00000
Sou~ce: NWational Bureau of Standards, Tables of#Probability Functions,
Vol.l, MT3, U.S. Government Printing Office, 19L1.
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Table II. One Minus The Probability Integral: Iz = (1.0 - P (x))
x//bxt 1B x/ JLOKt Ig x//LOCE Ig
4 5 Vv
0.0000 — 1.00000 0.34 0.6300% 0.78 0.26999
0.0005 0.99944 0.35 0.62062 0.79 0.26390
0.001 0.99887 0.36 0.61067 0.80 0.25790
0.002 0.99774 0.37 0.60079
0.003 0.99661 0.38 0.59099 0.81 0.25200
0.00L 0.99549 0.39 0.58126 0.82 0.24619
0.005 0.99436 0.40 0.57161 0.83 0.240L8
0.006 0.99323 0.8L 0.23486
0.007 0.99210 0.41 0.56202 0.85 0.22933
0.008 0.99097 0.42 0.55253 0.86 0.22390
0.009 0.9898L 0.43 0.54311 0.87 0.21856
0.01 0.98872 0.4 0.53377 0.38 0.21331
0.45 0.52L52 0.89 0.20816
0.02 0.977LL 0.46 0.51534 0.90 0.20309
0.03 0.96616 0.47 0.50625
0.0L 0.95489 0.,8 0.49725 0.91 0.19712
0.05 0.94363 0.49 0.48833 0.92 0.19323
0.06 0.93238 0.50 0.47950 0.93 0.138L1
0.07 0.92114 0.94 0.18373
0.08 0.90992 0.51 0.47076 0.95 0.17911
0.09 0.89872 0.52 0.46210 0.96 0,17458
0.10 0.83754 0.53 0445354 0.97 0.17C13
0.54 0.44506 0.98 0.16577
0.11 0.87638 0.55 0.43668 0.99 0.16149
0.12 0.8652L 0.56 0.42838 1.00 0.15730
0.13 0.985413 0.57 0.42018
0.1L4 0.34305 0.58 0.41208 1.1 0.11979
0.15 0.83200 0.59 0. 40406 1.2 0.08969
0.16 0. 32099 0.60 0.3961L 1.3 0.06599
0.17 0.81001 1.4 0.04771
0.18 0.79906 0.61 0.38832 1.5 0,03389
0.19 0.78816 0.62 0.38059 1.6 0.02364
0.20 0.77730 0.63 0.37295 1.7 0.01621
0.6l 0.36541 1.8 0.01091
0.21 0.76643 0.65 0.35797 1.9 0.00721
0.22 0.75570 0.66 0.35062 2,0 0.00L67
0.23 0.7LL98 0.67 0.34337
0.2L 0.73430 0.68 0.33622 2,1 0.00298
0.25 0.72367 0.69 0.32916 2.2 0.00186
0.26 0.71310 0.70 0.32220 2.3 0.00114
0.27 0.70258 2 ok 0.00069
0.28 0.69212 0. 71 0.31533 Z.5 0.00041
0.2 0.68172 0.72 0.30857 2.6 0.00024
0.30 0.67137 0.73 0.30190 2.7 0.00013
0.74 0.29532 2.8 0.00008
0.31 0.66109 0.75 0.23884 2.9 0.0000L
0.32 0.65087 0.76 0.28246 3.0 0.00002
0.33 0.6L072 0.77 0.27618

Computed from !lational Bureau of Standards, Tables of Probability
Functions, Vol, I, MT8, U.S. Government Printin; Cffice, 1941.
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Table III., Line Source Integral: e JTT A% du
- -~
A - v R y 4 t
x/{EXt Iy x/JLoct i xNbt Ix
0.0000 oo 0.34 2.6628 0.78 0.388.48
0.0005 3541.8 0,35 2.5306 0.79 0.37294
0,001 1769.3 0.36 2.4065 0.80 0.35804
0.002 883.07 0.37 2.2901
0.003 587.68 0.38 2.1805 0.81 0.34373
0.004 4L39.98 0.39 2.0774 0.82 0.33000
0.005 351.36 0.40 1.9802 0.83 0.31681
0.006 292,28 0.84 0.30415
0.007 250,08 O0.41 1.8885 0.85 0.29199
0.008 213,43 0.42 1.3018 0.86 0.23032
0.009 193.81 0.43 1.7199 0.87 0.26911
0.01 174412 O.L4 1.642L 0.88 0.25834
0.45 1.5689 0.89 0.24800
0.02 85.516 0.46 1.4993 0.90 0.23807
0.03 55.993 O.47 1.4333
0.04 L1.241 0.48 1.3706 0.91 0.22853
0.05 32.396 0.49 1.3110 0,92 0.21936
0.06 26.506 0.50 1.2544 0.93 0.21056
0.07 22,303 0.94 0.20210
0.08 19.156 0.51 1.2005 0.95 0.19397
0.09 16,712 0.52 1.1493 0.96 0.13616
0.10 14,760 0.53 1.1004 0.97 0.17866
0.54 1.0539 0.98 0.17146
0.11 13.166 0.55 1.0096 0.99 0.16453
el 11.841 0.56 0.96728 1.00 0.15788
Oedl 10722 0457 0.92692
O.1L 9.7661 0.58 0.81'8L0 ded 0.10414
0.15 3.9397 0.59 0.85162 lad 0.06820
0.16 8.2186 0.60 0.816L7 150 0.04426
0.17 7.58L5 1o 0.02843
0.18 T«0227 0.61 0.78289 1.5 0.01806
0.19 6.5219 0.62 0.75078 1.6 0,01133
0.20 6.0728 0.63 0.72008 Lsd 0.00702
0.64 0.69070 1.8 0.00429
0.21 5.6682 0.65 0.66260 1.9 0.00259
0,22 5.301%3 0.66 0.63570 2.0 0.00154
023 L.9658 0.67 0.6099L
0.24 L.6650 0.68 0.5%527 vl 0.00090
0.25 L.3808 0.69 0.50164 sl 0,00052
0.26 L.1313 0.70 C.53900 243 0.00029
0.27 3.3959 2l 0.00016
0.28 3.6735 €PN 0.51730 Re 5 0,00009
0.29 3l {2 0.72 0.L9651 240 0,00005
0.30 3.2205 0.73 0.47657 st 0.00003
Ou7h OuL574L5 2ed 0,00001
0.31 3.1168 0.75 043912 29 0.00001
0.32 2.+9550 0.76 0.42153 3.0 0.00000
0.33 2 e 0.0 Rw ik f 0.40L66

Computed from Hationzl Bureau of Standards, Tables of Probability
Functions, Vecl.I, MT8, U.S. Government Printing (filice, 1941.



