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Introduction 

The ground water conditions which must be dealt with in the 
field are generally of a transient nature. This is to say that 
the conditions are changing with time. ~ steady state might be 
established if the conditions which initiated the change were main-
tained for a sufficiently long time but more often than not the 
conditions are changed before the steady state can be established. 
Some examples will illustrate. A well is put down and water is 
pumped from it and a condition of change is initiated. Before the 
ground water conditions can reach a new stable configuration the 
well is shut down and a new series of changes begins~ A farmer 
irrigates during the swnmer and his deep percolation losses build 
up the ground water levels under his fields. Drains installed 
under these fields flow at increasing rates during the irrigation 
season. After the last irrigation, however, their flow diminishes 
continually until the first irrigation of the next growing season 
starts the cycle over again. An almost endless variety of such 
examples could be quoted. 

Efforts have been made to apply steady state formulas to these 
cases because these formulas are often simpler than those for the 
transient cases but this only leads to the vexations which arise 
when attempts are made to force the application of formulas to 
cases to which they do not apply. It is much more satisfactory to 
deal with them as transient cases even though some simplifying 
assumptions must generally be made to reduce them to mathematically 
tractable form. Once the solutions have been found and graphed or 
tabulated applications to the actual transient condition is readily 
made. 

The simplifications introduced are shown explicitly in each 
derivation but it may be stated here that they generally conform 
to the Dupuit-Forschheimer idealization when water table condi-
tions are present. This idealization is based upon the assumption 
that the surface gradient applies throughout the depth of the 
saturated portion of the aquifer. It is also generally expedient 
to assume that the area available for the flow of ground water is 
not altered by the drawdovms produced. Some harsh criticisms have 
been leveled at the formulas developed on this basis but it is 
well to recognize that very many of the formulas in common use for 
engineering purposes are based upon similar simplifying assumptions 
but serve very well in spite of the shortcomings thus introduced. 
It is recognized that formulas having such bases must be used with 
judgment based upon a knowledge of their limitations. If the 
formulas described herein are used with a sir,•ilar exercise of judg-
ment it may be expected that they too will serve quite as well as 
do the formulas of the older disciplines. 

Many of the formulas described herein were developed in the 
Chief Engineers office of the U.S. Bureau of Reclamation. In most 
cases they are contained in informal memoranda on whi ch the name of 
the Senior author appears as one of the authors. Other names 
appearing on these memoranda are Wade H. Tayloz:1 E.D. Rainville, 
~/illiam N. Tapp, Quentin L. Florey, William. T • .M6ody and E.W. Kramer. 
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These developments profited from the support and encouragement of 
Charles R. Maierhofer and Waldron H. Yarger. Due to the similarity 
of the ground water and heat flow differential equations,solutions 
for ground water transient cases can ordinarily be adapted diredtly 
from developments found in the older and much better developed 
field of heat flow. This was commonly the source of the formulas 
described in these memos. The authors take this opportunity to 
thank the Bureau of Reclamation for permission to use these develop-
ments. 
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Notation 

The notation used in this text is collected here for ready 
reference. 

a represents the effective radius of a well 

b, an outer radius 

D The original saturated thickness of an aquifer 

F A flow as a function of r or x 

(feet) 

(feet) 

(feet) 

G ( . /.. 4 ~ t . \ a function relating to the flow of an artesian well 
J (dimensionless) 

h 

H 

a remaining drainable depth 

an original drainable depth 

IB = (1 - P(,XJ (See table II) 
J 0 a zero order Bessel Function (dimensionless) 

(feet) 

(feet) 

(feet) 

K the permeability (ft/sec) 

L the distance between parallel drains 

m the thickness of a semi-permeable confining bed (Fig 6) (feet) 

n an integral number (dimensionless) 
X 

P(x.) = 2 
e-u2 

du The probability integral (Table I) 

p 

Pl 

PA. 
Q 

q 

q1 

qo 

I '1,-
'{ I) 

the permeability of a semi-permeable confining bed (ft/sec) 

a pressure expressed in equivalent feet of water. In an 
aquifer it is the departure of the pressure from hydrostatic(feet) 

a part remaining (dimensionless) 

a flow from a well (ft3/sec) 

the flow which a well takes from a. river (ft3 /sec) 

a flow per unit length of a line source (ft2/sec) 

the return flow from bank storage (feet) 2 
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r 

t 

u 

radius 

time 

a variable of integration (dimensionless) 

(feet) 

(sec) 

V the voids ratio. It is the ratio of the drainable or fillable 
voids in a unit volume to the gross volume (dimensionless) 

y a dra'\'TdO\·m (See fig 1) 

Yo a zero order Bessel Function (dimensionless) 

x, y, z, coordinate distances 

tf = K D the diffusion constant 
V 

.r;:: a supplementary variable, defined where used. 

(feet} 

(feet) 

ft 2 ) 
sec 

Note: Although dimensions have been given in English units in the 
above table all formulas in this text are given in consistent 
units. They may therefore be used in any consistent unit 
system without change. 
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Definitions 

The following terms are used in this text in the sense indicated 
below: 

Aquifer A water bearing formation. 

Ground Water 

Water Table 

Permeability 

Voids Ratio 

The water filling the saturated portion of a permeable 
bed. 

The surface of atmospheric pressure in an aquifer. 
Water will stand in an observation well at the water 
table. 

A quantity defining the ability of an aquifer to 
transmit water. It is represented in this text by 
the symbol K. It is the flow through a unit area 
produced by a unit gradient. The actual flow through 
a unit area is equal to the product of the permeability 
and the gradient. 

The ratio of the drainable or fillable voids in a 
unit volume to the gross volume. It is a dimension-
less quantity greater than zero and less than unity. 

Bessel Function 
A solution of Bessel's equation. The notation used 
here conforms to that of' the British Association 
tables of reference. B 
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Chapter 1 Well Pumped at a Constant Rate. 

A cross section through a well is shown in figure le 
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Pumping of the well at the constant rate . Q for the time t 
produces a cone of depression centered at the well. At the radi~s 
the drawdown is Yo 

The flow toward the well at the radius r is 

F = -2 Tf r (D-y) K h (1) 
<Y r 

If y is small compared to D this can be written 

F = -2 1l' KD r _b if y <. < D ( 2 ) ar 

, . 

Under unsteady conditions, when the flow F varies with the radius r, 
water accumulates within the annulus of thickness dr at the rate 

= -2 1f KD ..l_ ar (r h) 
c.Y r 

~his accu..~ulation results in a storage of water in the annulus at 
t~e :::-ate 

( 3 ) 

-2 .,,. r dr V 2-J. ( h ) 
" Ci t 

The condition of continuity, which expresses the relationship 
b nt wcen the flow variation across the annulus and the storage of 
..,.r,"l t (;!" ·within it is: 

o) F drdt 
&r = -2 1T r V ~ drdt 

o)r 
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or 

KD ·o (r ,.ll) = rv.£.,Z 
0r dr Jt 

If 

CC= KD 
V 

This expression can be put in the form 

(\/' ( . ,A., az l + _L b) • -2..:l 
~r 2 r tY r dt 

To obtain the desired solution it will be necessary to find a 
solution satisfying the continuity condition (7) and meeting the 
boundary and initial conditions; 

When t -+ 0 

When r _. 0 

Consider the expression 

y = Q 
2 1T KD 

y -- 0 

F -. Q 

00 

S/idu 
/4e<t 

for r > 0 

for t ) 0 

'Where u represents a variable of integration. 

( 5) 

( 6) 

(7) 

(8) 

(9) 

To show that this expression satisfi es the differential 
the derivatives 

equation form 

= Q 
2 1TKD 

_Q__y = _-Q ____ _ 

ar 21TKD 

r2 
e 4 ext 

2.t 
- )t2 

e 4 '.X. t 
r 

2 r 
= Q 2 e 4CXt + Q 

2 1TKD 4 OC t 2 1T KD 

(10) 

(11) 

r2 
e 4 OC t (12) 

r2 

A substitution of these expressions into the differential equation (7) 
will show that equation (9) is a solution. 
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It remains to determine whether this solution satisfies the 
desired boundary conditions. If r is greater than zero and t 
approaches zero the lower limit of the integral approaches the upper 
limit and we can conclude that the initial condition is satisfied. 

The flow across the cylinder of radius r and length D is, to 
our approximation; from equations (2) and (11). 

r2 
F = Q e 4 ()( t ( 13 ) 

When t is greater than zero and r approaches zero then F 
approaches Q and the second of equations (8) is satisfied. 

He conclude that equation (9) is the solution which satisfies our 
requirements. 

The application of this formula can be illustrated by the follow-
ing examples: 

Example 

Water is pumped from a well at the rate of 350 gallons per minute. 
The well penetrates 170 feet of saturated thickness of an aquifer 
having a permeability of .0005 ft/sec and a void ratio of 0.20. 
Compute (a) The drawdown in an observation Nell at a radius r a 
5 feet as a function of time. 

(b) The drawdown as a function of the radius after the 
well has been pumped one day. 

Solution 

Since one cubic foot per second is equivalent to 448.8 gallons 
per minute, the pumping rate of 350 gallons per minute is 

= 

KD -V 

Oe780 cubic feet per second 

= ( .0005) (170.) 
0.2 

0.425 ft 2/sec 

The computation of drawdown at the radius 5 feet is shown in the 
following table: 

Values of 
00 

( e-uu2 du ( ) ) are obtained from figure 3 • 

r 

J4 oC t 

-$-



Time 

Table 1 
Computations of drawdowns at r • 
Ks .0005 ft/sec D • 170 feet 
Q = o.7go ft3/sec (350 G.P.M.) 
[4oc = 1 • .342 ft2/sec r 

/40C 

Time r 
(sec) /4 CX. t 

5 feet in a well for which 
V = 0.20 

OC = 0.425 ft2 /sec 
• 3.725 /sec-

00 

~ e:u2 
du y 

r 
,/4oct· 

1 minute 
15 minutes 
30 minutes 
1 hour 
2 hours 
4 hours g hours 
1 day 
2 days 
4 days 
15 days 
1 month 

. g 
2 1T KD 

60 Oo4go 
900 0.124 

1goo o.og77 
3600 0.0620 
7200 0.043g 

14400 0.0310 
28800 0.0219 
g6400· 0.0126g 
172goo 0.00896 
345600 0~00633 

1296000 0.00327 
262gooo Oi,00230 

01 bso {6.2832)(i, 005)(170) 

-9-
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0.5543 
1.5236 
2~0779 
2.49.39 
2.8405 
3.1856 
3. 53.30 
4.0799 
4.4264 
4. 7738 
5~43~3 5.78 22 

= Oi~go o. 34 

0~810 
2.22s 
3.040 
3.64 
4.10 
4.66 
5.17 
5.97 
6~47 
6.98 
7~94 
8.46 

• 1.460 



Table 2 

Computation of drawdowns at various distances from the well at 
the end of one day of pumping. 

K • .0005 ft/sec 

Q • 0.7$0 ft3/sec 

/ 4 OC t • 3 g4. 

radius 
feet 

r 
/4 oc t 

1 
5 
10 
25 
50 
100 
500 
1000 

• 

,I' 

.00262 
~01306 
~0261 
;0653 
;1306 
~261 

1;306 
2.61 

D • 170 feet V • 0.20 

= 0.425 ft 2/sec 

5~65 
4~05 
3~37 
2~44 
1~75 
1~088 
0~0370 
0.000072 

• 1.460 

y 

,, 

$.26 
5~92 
4.93 
3.56 
2;65 
1;59 
0.054 
0.00010 

t • 

a.tao .0005)(170) 

86400 sec 

r 

.0034 

.0170 

.0340 

.0850 
;170 
;340 

1~70 
3.40 

The drawdowns of table l have been plotted on figure ·2 to bring 
out the point that this case has no ultimate steady st ~te. Reports 
of pumping tests made for determination of aquifer properties often 
contain statements to the effect that the well was pumped to stabil-
ity before the required drawdown observations were taken. The fact 
is that the drawdowns never come to stability. So long as all of 
the water taken from the well comes from storage in the aquifer, 
stability is impossible. The nature of the drawdown pattern for 
points near the well only gives an appearance of approach to stabil-
ity. 

Since most of the water comes from storage at a distance from 
the well it is possible, however, to identify the conditions under 
which a valid determination of aquifer properties can be made by 
considering the d~awdowns as a part of a steady state flow system. 
Such a computation will always involve a centain amount of approxi-
mation but natural aquifers are generally non-uniform anyway so 
that approximations are permissible. 

The integral of formula (9) can be represented by the series 

y; - - 0.'288~08 - 100 "/.J + £ . ~4- I_ _ 
\A e 11 '2. 2\4 + ~\u, 

'1' -10- (14).,, 





In our case x  • r/ / 4 (X t  • 
Suppose two observation well~ are located at the radii r1 and r2 

respectively then the difference in drawdown at the two wells will 
be 

Yl - Y2 = Q 
2 \\ KD 

Q 
2 'Pi' KD 

00 

( e~u
2 
du 

)r2 __ _.__ 
/4 ex, t 

or (15; 

Yl :a Q 

2 ·TI KD 
+ 

/4 0: t 
r2 l l. 

2(4 OCt)-, 

Q 

211 KD 
I -0.28$60$ -loge r2 + r22 1 

J4oc t 2(4 oc t)-I 
...! 

as t grows greater the value of r grows smaller. Then after 

a certain time the term r4 and all higher power terms will 
2'4(4 ()C' t)2 

become negligibly small. Then if we carry out the subtraction 
indicated above the result will be, approximately: 

Yl -Y2 :s g [ log0 __:,L + 
(rl2 -r22) l 2 )T KD r1 2(4 oc t) 

-! 

the formula 

Yl -Y2 = Q 
log0 ( ~~  

2 1T KD 
may be recognized as a steady state formula. It can be readily 
obtained independently by integrating the relation: 

(16) 

(17} 

Q =- -KD 2 1r r gF ( 18) 
This relation expresses the requirement that the flow Q passes 
through all the cylindrical surfaces of area 2 fl. rD under the action 
of the gradient -dy/dr. It implies that the drawdovms y are 
small compared to D. A scrutiny of formula (16) will show that this 
will be a valid relationship if the numerical value of 

r 2 r 2 
2  - 1 
2<4oct) 

is small compared to log8 (..!:..2.._) 
r1 

-12-
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This is the Taylor-Rainville criterion.,:, The question as to how 
small the power term must be as compared to the logarithm term must 
be resolved by judgement of the computer when he applies the criterion 
in any given case. Generally, a study of the consistency of the 
observation well data will provide clues as to the accuracy the basic 
data will permit. 

.,, 
The transmissibility KD is obtainable from formula (17) if it 

is rewritten in the form 
r2 

KD = Q loge-z;r-
2 Tf (Yl - Y2 ) 

(20) 

If the original saturated depth D is known then the permeability K 
can be determined. 

To use the Taylor-Rainville criterion formula (19) is applied on 
a trial basis first.'Ihen a value for the transmissibility KD is 
available and the quantity Cf(, can be computed. For these purposes 
only a reasonable value for V is needed. 

More accurate values for the permeability can be obtained if the 
reduction of saturated thickness by drawdovms is accounted for. To 
do this we may write the steady state relation in the form: 

Q = - K(D - y) 21Tr ~ (21) 

or 

- 2 (D y) £L.. = Q (22) 
dr 2 11 Kr 

By integration 

(D - y)2 = Q loge r + C (23) 
2 'fl K 

Where C is a constant of integration. If we let h = (D - y) 
represent the saturated thickness and take the difference of t wo such 
expressions applying to the radii r1 and r 2 the result is: 

= (24) 

,:, See Bureau of Reclamation Technical Mem'o 
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This is known as the Theim formula. The permeability can be 
obtained from it by rewriting expression (24) in the form: 

( r2 \ 
o loge l.~i K = 

n (h2 2 - h12 ) (25) ' 

To use this formula the original saturated depth of the aquifer must 
be known. It may be noted that while this value of K is probably a 
more accurate one than is obtained from formula (20) its use in 
formula (9i may not give as good results as the value obtained from 
formula (20). This is because formula (20) has the same theoretical 
basis as formula (9). 

Use of these steady state formulas for the determination of 
aquifer properties confers some advantages because the time variable 
does not appear in them and because formula (9) is not easy to solve 
for the transmissibility KD by algebraic means. 

A value for the voids ratio V can be obtained by estimating the 
volume of sediments unwatered, from observation well data, and 
comparing this volume with the volume of water removed by the pumps. 

By using graphical methods all of the aquifer properties can be 
determined from observation well data. To do this a plot of 

versus r / /'4 ()( t is made on log paper, as 

shown in figure (3). We will refer to this plot as the master chart. 
On a sheet of the same kind of log paper plot the drawdovms y from 
the observation wells versus the parameter r/ ft . Then keeping 
the axes of the two sheets parallel adjust the plotted drawdowns to 
fit the curve of the master chart. This process is facilitated if 
one of the sheets is transparent. Select a point on the master 
chart for use as an index. To fix ideas we will assume that the 
index point is to be chosen at the intersection of the unity lines 
on the master chart. Then at this point we have 

y = 1 and r = 1 (26) 
/4tt:,t 

When the index is read on the adjusted drawdown chart we obtain the 
corresponding values of y and r / rt" • A substitution of these 
values into the above relations will permit an evaluation, first, of 
the transmissibility KD and then of the constant OC • Since 

CX. = KD/V the value of V is readily found. This graphical 
procedure provides a means for solving ·equation (9) for the aquifer 
constants when test data are available. 

A careful reader will have noted that the plot of the drawdown 
data is in terms of dimensioned quantities while the master chart is 
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plotted in terms of dimensionless ratios. The propriety of such a 
procedure may well be questioned. The explanation lies in the use 
of logarithmic scales on both axes. With such scales a shift 
represents a multiplication. This principle is used in the con-
struction of slide rules., When we fit the dimensioned plot to the 
master chart we produce the shifts which introduce the missing 
factorso These will always have the physical dimensions which were 
used in the drawdown pl0te 

We may now illustrate the use of these various methods by work-
ing out an example. For this purpose we will use the drawdovms and 
times of table 2 treating them as though they were observed data., 

When the drawdowns of table 2 have been plotted on log paper 
against the values of r / ft. provided in the last column of 
this table and these plotted points have been fitted to the curve 
of figure 3 while keeping the axes parallel it will be found that 
the index of the master chart falls on the point: 

y = 1.43 r = 1.32 r£ 
These values can now be substituted into equations (26). From the 
first of these: 

1T KD / 

lJe obtain 

KD = 

= 1.43 
(_ 0.780 ') 
\ 6. 2832 KD , 

__,_( 0-.:., 7 80 ) ( 1 ) 
(6.,2832) (1.43) 

= 1. 

= 0.0867 ft 2 /sec 

The original value uas , as we know, KD = (0005)(170 ) = 0.085 
Then we have recovered th e original value within about 2 percent. 
From the second of equations (26): 

r ·- _J. _.]2_ - 1 or = 1.32 
J4rx. t /4 rx 

C( = 0.434 ft 2 /sec l+ CX, = 1 . 74 the11 
The origina1 value, as 
recovered the original 

we 1' now, was 0.420 and , again, we have 
value within 2 percento 

The value of V is obtained fr om the relation 

[j._ = KD 
V 

By substitution: 

0.434 .0$67 
V 

-16-



Or 

V • 0.0867 
0.434 

0.2 

This agrees with the original value. We have now recovered all of 
the original aquifer properties by this graphical procedure. 

The reader will find that he can also use the points of table 1. 
All of the points given in these two tables will plot along a single 
line regardless of the values of radius or time used. A perfectly 
consistent set of field data should do the same thing. All of the 
observed data can therefore be used in the graphical procedure for 
finding the aquifer properties. 

These statements hold if the drawdowns are everywhere small com-
pared to the original saturated depth of the aquifer. 
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Chapter 2 'The Artcoinn Woll 

If a ~ermea~le atrata in a formation is enclosed between 
impermeable beds, and hae an outcrop which permits water to enter it, 
a condition ruy exist ae shown in figure (4). 

Pre,·, p ,ttJtion 

'~-v.~, 
\~:. ~{\:9.utcto~:___ ~... or.,~~1lc~i ___ p_ae_z_~-~~-rv-·,c ~ev_e ~- ) -----· 

~~~ :· ~ .::~>. r- ~ -.• " ~I. 
'\,~: ••• ···\ ~i... ... ~rou nr,, ""- ,-- ~ , 
y~~· · . .". \, · ..... ::-,--. _ _!:>IJ f' fr., Cf'. \ . / ~ fl 0 
'(/,, ·.:·~---' ' ,, . . ··~- . " ,' . ' 
'. . .. ', ., ~ .  . . :,,...,. . '\_ , .·  . I .-· 

... ,,?~. . .: . -::{. , ~ ~ : .. ~':'·•t w ~ ll ~ . . . ...... .... -· --· . --·:,:_ ~-~-:. :-:-:--:-·.-.. 
~-~,; . ... ,.) • ; . ........ · - ·--:--...: ' •' •· . , . ... • _.,: •  •  • I ,/, ',, ·: ,,> · . .  . ... :-:··.-·.· ... -.;-::--;----.· .  .  . : -<1.(-·r 
'0\'··:: ~1'1'P,ermeobk, · .:· : · .. ··1 · · : .  · ·. · · .. · . :1?/:<> 
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Figure 4 Artesian conditions 

If the outcrop ie above the top of the well casing, as is often 
the case, a flowing well will result. The well lowers the original 
preesure by the amount ho at its location and, as time goes on, 
the zone of lowered pressure widens. This widening is accompanied 
by a reduction in the flo,., of the well. It will be our purpose to 
determine the rates at which the influence of the well spreads and 
the flow diminishes, 

The equation o! continuity, for this case, resembles closely 
that for the pumped well. The flow F at the radius r is now 
given by an expression of the type 

and the eon~inuity equation becomes 

a F dr dt •  V  2 '\T r dr O h dt 
Tr at 

b) [yr 
-l~-

= ah 
~ 

(27) 

{2$) 



It may be noted that in this case there is no approximation ·since 
the permeable bed remains completely saturated at all times. However, 
because the water yield is obtained through a compression of the 
aquifer \instead of drainage , the values of V for these conditions 
will be much smaller than those generally found in unconfined aquifers. 

The initial and boundary conditions for a well of radius a and 
an impermeable boundary at the radius b are 

h = ho when t = 0 for a < r (b 

h = 0 when r = a for t ) 0 ••• (29} 
ra h = 0 when r = b for all values of t. 
o) r 

Stated in this way the solution applies to an aquifer of finite 
extent but it will be shown later how this solution may be extended 
to an aquifer with an infinitely remote outer boundary. 

A solution satisfying the differential equation (28) and the 
conditions (29} is 

n = 00 

h = ho L • • • • ( 30) 

n = 1 

:rhere U0 is a zero order Bessel Function of the type 

r 

(
xnr \ (31) ' 

= Jo b ) 

and 

a Uo1 ·(~} 
An = b b 

(a Uol Xn I_ (Uo(xnJ )2 - (¥) )2 J 
~ 0 

•••• (32)' 

The symbol Xn represents the roots of the equation 

Uo (xn) = o. ••• (33} 

The form of Uo insures that h = 0 i.·men r = a. 
The flow of the Hell Q is 

Q ;:a 2 Tr KDa ( d h\ @r: , r,..a 
• • • • (34) 
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This can be put in the form: 

Q = 2 1T KDh 0 (35) 

where 

n = DO 

, . \ L (xna ) OCx 2 t 
G ( J 4 (X, t) An u 1 (Xna )e- n = 0 b2 \ a t) b 

n = 1 
The G function is here expressed in terms of a parameter of the 
type used throughout this texto If it is not immediately apparent 
that the G function can properly be expressed in terms of this 
parameter the question can be clarified by making the substitution 

2m = a 
b 

then the exponents will be transformed in the following manner: 

xn2t = xn2 m2 4 ~ t 

7 a 2 

(36) 

It was stated previously that this solution applies to a well of 
radius a located at the center of a circular aquifer whose outer 
boundary is a circular impermeable barrier of radius b. The 
question will naturally arise as to how such a solution can be used 
when the aquifer is of infinite extente The answer to this question 
may be found in a specialized computation procedure which is based 
upon the behavior of expressions of the type of equation (30); If 
we were to select a ratio b/a = 10000 we would find that a very 
large number of terms would be required to calculate the h/h . values 
as a function of r for the early times. As the times increase the 
terms of significant magnitude decrease in number and the computation 
becomes much easier., Eventually the disturbance will reach the 
assumed outer boundary and drawdm,m patterns would be obtained which 
would not be appropriate for the case of an infinite outer boundary. 
We can avoid many of these difficulties by the following ruse. 
Suppose we begin Nith a choice b/a = 10. rest.rict ourselves to 
a few terms and determine the time when the first term discarded 
becomes negligible, As a representation of an infinite outer 
boundary case this solution is valid from this time until the dis-
turbance reaches the outer boundary. When this happens we discard 
this series and take another based upon b/a = 100. Again we 
take only enough terms in it to permit us to take up the computation 
where we left off before('\ VJe compute with this ratio until the 
outer boundary is again reached. We then continue 1·ri t h a solution 
baned upon b/a = 1000~ By following such a procedure we can 
progress in steps, using in each step only a few terms of the series, 
* A function equivalent to G( J40C t ) is tabulated for a wide 

a 
range of values in the paper by Jacob and Lohman. 

-20-
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and we can extend the outer boundary to any radius we choose. The 
chart of figure (5) was prepared, in part, by this method. The 
xn and An values computed for these uses can be used also in the 
expression (36)~to compute the G function. The values of the G 
function given in figure (6) were computed in this way. 

An approximate formula which agrees well with these results is 

s~ e-u2 du 
u 

r 

h = l  - j 4 (X t ••• (37) 
ho ~ 00 2 

~ 
e-U du 
u 

a 

./ 4 oc. t a 
Approximate if 

V4': t 
<0.02 

Exar.1ple: 
· A one foot diameter casing penetrates a permeable bed of 170 
feet tot~l thickness lying between upper and lower confining beds 
of shaleo The permeability of th~ permeable strata is K = 0.0007 
ft/sec and specific yield V = 000050 If the initial pressure at 
the well was equivalent to 60 feet of water at the top of the 
casing find 
{a) the pressure pattern 2 weeks after the well started to flow and 
(b) the yield of the well as a function of time. 
By use of the chart of figure (5) 
With 

ti, = ~Q = (~000~666~70) = 238 ~~ 
Table '.3 Pressure changes due to an artesian well 

a n Oo5 feet t = 1209600 seconds 
~ 

= 67800 
a2 

!. h 
,:c 

feet a 1io h 
f' r 

0.5 1.0 o.oo 0,00 
1.,0 2.0 .061 3.66 
10.0 20 .270 16.2 
1000 200 .481 28,9 
1000 2000 ,694 41,6 
10000 20000 .905 54.9 

:.:c From figure ( 5 ) 
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A check by formula (37) yields the following results: 

Table 4. 

00 5,~u' 
~~~  

~du. 
~ ~t ~ ~ (" 

~ ~~ e ~ 1)1> -- -

/4r1-t /~'r s -ul 
_:u.:d_~ 

I / 
j4fXJt j4r:f..t. 

. ; ,, 
1.to~·; On5 .,000,014,74 .000,014;74 10.836 10.836 

loO ~000~029,5 10~143 0, 9.3 5 
10 0000 95 7.8406 0,724 
100 1100295 5,5380 0,511 
1000 o,0295 3.2358 0.29a 
10000 0295 0.9763 0,0902 

This formula could be used for all later times. 

The yield of the well can be computed as follows: 

Table 5. Computation of yield of an artesian well, 

Time Time 
(seconds) 

,; 

One day 86,400 
One week 604,800 
One month 2;628,000 
Six months 15,76$,000 
One year 31,536,000 

/4 ($. rar-

14¥-
18,100 
48;000 
99'800 
244;000 
.346,000 

1 

= J3aoo 

a(/4 ex. t) 
" a2 

0.106 
0~095 
0.090 
o.os.3 
o.oso 

,,, 

• 61.6 

2 1{r KDh O = ( 6 • 2 83 2 ) ( • 0007 ) ( 170 ) { 60 )  • 44. 9 

lt 
ho 

·' 
0 0 
.065 3.9 
.276 16.5 
,489 29~3 
.702 42,1 
.9098 54.5 

(ft3~sec) 

'I 



Chapter 3. The Aquifer With A· Soni-Pcrr.100.ble Confining Boo •. ::, 

A case which occurs f r equently is illustrated i n figure (6 ) 
bel ow. In this case a permeable stratum of thickness D is over-
lain with a stratum of low permeability of thickness m. The water 
table lies above this stratum, We consider the case where a well 
is drilled into the permeable stratum and pumped at the rate Q. 

---- l . . J · 
_ ~ -;.' I I _ . / 1 ;, - , .: • ' , - - / '-/./.. 1.-7'//.'/ , ,/ .· ' - ' - , -· . :. // 1-- ,.;;_ //,,_. /;, . ... , ,1/.l;/-'7,((_-,1/',I-///'--// '/l ,1 I .,. " ,/ -.- .,. • 

Figure ( 7) Aquifer with a semi- permeable confining bed. 

When pumping begins the pressure in the permeable stratum is 
lowered, This has two effects. The first is to ·draw water from 
storage in the permeable bed which, in this case, behaves as an 
artesian aquifer in the sense that ~he water released from storage 
comes from a compression of the bed. The second effect is to cause 
water to seep downward through the semi-permeable confining bed. 
If the reduction of pressure at the radius r is represented by y 
then the condition of continuity is given by the differential 
equation 

(38) 

A comparison will show that this equation differs from that of the 
artesian case only by the last term which accounts ·for the do\ffiward 
seepage through the slowly permeable-confining bed. It is assumed, 
as a basis for formulating this term, that the downward flow per 
unit of horizontal area is pro~ortiona l to the reduction of ~ressure 
>:, Tfiis case has been given an e egant treatment by Jacob and antush 
i n t erms of the i ntegral w(u,r,f>) -= \ '" ( ~_(~: '/4e,)\,y 
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y and the permeability p and inver se!y proportional to the th i ck-
ness m. 

For the finite case ·where a supply maintains the ground water 
level unchanged at an outer radius b a solution is: 

ft - }(e(f) 

n -:: (>!) \---· 
\ 

I "-----· r, ~, 
where: ( ) 

J.J ~n ) 

parameter ( f.>l'I J) 
K" (x) and 

functions, of the 
respectively, 

f = r J ]i<- 0· 

K.~\\) I . ()) J 
IoC)\J _ 

2Jc(rn~) e - (1 +· ~!) ~ 
r ~" Jt (~,s b) c, + ~1\'l) 

represents the zer o order Bessel function, of the 

, of the first kind 

I o (x) represent the zero order modified Bessel 
parameter x, of the first and second kinds 

J" '=-0 0/(2~\(0) 
\= 'r} rnpi< Ii . 

VI ·=.= t (. p \ 
• 1 rn V / 

and 

(3 n are the roots of J v ( ~Y\ ) b) -=::. 0 

(39) 

(40) 

The first term in the right hand member of t he solution (39) 
represents the ultimate steady state and it \'Jill be helpful to note 
that there will always be an ultimate steady s tate when the upper 
confining permits seepage through it. In th e case of the infinitely 
remote outer boundary the steady state is r ea ched v~en all of the 
flow of the well is supplied by seepage through the slowly permeable 
confining bed. The ultimate steady state is then 

µ = I< ( f ) • • • • • • • • • • • • • (41) 

The case of the i nfinitely remote outer boundary can be treated'by 
the computat ion procedure previously used fo r the artesian case. A 
char t prepared i n this way is shown i n fi [ ure ( a ). An alternative 
arrangement is sh01m in figure ( 9 ) wh i ch I lS ttdvant ages wher e 
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aquifer properties are to be determined from test data. 

Example: 

An aquifer of 125 feet thickness having a permeability 0.00040 
ft/sec and a specific yield of .0009 is overlain by a bed of 
glacial till having a thickness of 32 feet and a permeability of 
(35)(10) -~ ft/sec. A well penetrating the full thickness of the 
aquifer is pumped at the rate of 0.25 ft /second. 

Required. 

(a) The drawdown as a function of the radius at the end of 
24 hours of pumping. 

(b} The drawdowns representing the final steady state condition 
and an estimate of the time required to establish this steady state. 

Solutions 

With 
K = .00040 ft/sec 
D = 125 ft KD • ~ .050 ft /sec 
V = 0.0009 (dimensionless) 
p "" (3 5 .o )(10) -~ ft/sec 
m .. 32, ft "" 
Q = o.250 ft - /sec 
t = 86400 s~conds (24 hours) 
Q = 0.250 = 0.795 

2 iT Im (6.2832 }{050) 

/rlr 
.. 

/ (2.19) (10) p = J2. HlO = • (1.480 )(le» 
D / f 32) ( .056) " 

( mtr j = H ~) (10) ,.. ( 1. 213 ) ( 10) 
{32 .0009) 

~ = t (iv-) = (86400)(1.213)(10) :a .1048 
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Table 6. Computed drawdowns for a well with a semi-permeable con-
fining bed. 

radius 
feet 

10.0 
50.0 

100.0 
500 

1000 
000 

10000 

,00148 
.0074 
.0148 
.074 
.148 

0,74 
1.48 

The ultimate steady state is given by 

µ. = Ko ( \) 
From tables or from figure 8 

5.73 
4,.12 
3.43 
1,83 
1.44 
0.10 o.oo 

Table 7. Ultimate steady state 

radius ) KJ~) 
feet 

1.0 .000148 8,9342 
5 .o .000740 7.3248 

10.0 ,00148 6.6316 
50.0 .00740 5.0222 

100.0 0.0148 4.3290 
500.0 .0740 2.7248 

1000.0 ,148 2,0412 
5000 .740 ,6202 

10000 1.480 .2194 

For small values of \ , approximately: 

y 
feet 

4.56 
3.28 
2,73 
1.46 
1~15 o.oso o.oo 

Ym 

7.17 
5.84 
5,02 
3.95 
3.44 
2.16 
1.62 
0,493 
0.174 

Ki~) = - (a+ log r:(~)) l 1 
+ ~ 2) • (for f <O.l)>:, 

where O = 0.57721 is Euler's constant. 
A computation for the small values of KJ~) is given below: 

* For ~ = O.l 'fhis ~xpression gives K 0 (0.1) = 2.4235. 
true value is K0 (O.l) = 2.42706 +. In this expression 
has been replaced by unity. The power series is 

(
y f' ' {~~?.. 3 ( ~\4 

KJ~) - - u + log ,.(t)) IJ~) + rv + S \~) + 

-30-
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A computation for the small values of KJ')) is given below: 

Table 8. Computation of Ko(~) for small values of ~ 
r ) i (!)~ -{ o + log li \ ) Ko(~) Compari-

feet 2 e 2.' sons 1. from 
tables 

1.0 .000148 000074 
...... Itta 

g.9342 8.9342 
5.0 .000740 00037 - -- - 7.3248 7.934S 

10.0 .0014g 00074 ----- 6.6316 6.6316 
50 .00740 0037 ----- 5.0222 5 .. 0222 

100 .0148 0074 ----- 4,3290 4.3290 
500 .0740 037 .. 0014 2.7196 2.724g 

1000 .14g 074 .0055 2.0246 2.0412 2.0434 
A glance at figure($) will show that the ultimate steady state 

will be nearly attained when l'\._= 4. Then the corresponding time 
i s 

t = ~ 
I p ~ 
lm V ; 

= 4 
- '1 (1.213)(10) 

This is equivalent to about 38 days. 

-31-
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Chapter 4. Bank Storage 

When a reservoir has been filled for some time and ·is then drawn 
down a condition such as is shown on figure 0D} exists. 

I/ 1>/171? /i //7///l/ i////.// , ')////I/////·/ //// 

Figure (10). Conditions follo"t-.ri.ng 
a reservoir drawdown. 

The flow F per unit length of bank is: 

F =-K (D-y) b ax 
If :- is small compared to D it can be neglected. 
assumed that this is doneo 
The continuity condition is: 

'd F dx d t = - V d Y. d t dx 
CYX ~ 

or, by making use of (41) 
KD d 1..y = V 

If 

CX = KD v-
This equation becomes 

a l''-y = ex. ~ -c,X -
-32-
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(42) 

(43) 

(44) 
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A solution satisfying the conditions: 

when X :a 0 y = H for t > 0 

when t = 0 y = 0 for X ) 0 
is: ~ .. 1 I 1-

J 4lvt-- V. :?_ 
y HI I e o\u. •••••• --

I I frf 
L _.J 

The integral which appears here is the "probability integral." 
It has been extensively tabulated. Values are given in table I. 
Valuea of one minus this integral are given in table II. 

The flow F at x is given by the expression 

F = H 2 KD 

J1T 
The flow F0 at x = 0 is 

= 2 HKD 

/4.ffOCf 

x1 
e 40C t 

J 40C-f: -
• • • • • 

• • • • 

(46) 

(47) 

(48) 

(49) 

The total amount of water which has flowed out of the bank up to the 
time t is obtained by integrating F0 with respect to to 
It is: 

•••• 

The use of these formulas may be illustrated by the following 
example: 

Example 

(50) 

A reservoir with a shore line of 21 miles has been filled for a 
considerable time and the res~rvoir level is then dropped 8 feeto 
If D = 2$0 feet K = 0.0001 ft/sec V = o.os 
Compute the rate of return flow and the total return after the lake 
level has been drawn do~m for one month. 

Solution: 

(X. = KD -v- = ( .0001 )(2$0) 
0.08 

One month is 2,62S,ooo seconds. 

-33-

£ 
= 0.35 ft /sec 



The rate of return flow is 

F = 
0 

2 HKD 
) 4,T~t 

= { 2 ) ( 8} { , 0001 ) ( 2 80 ) 
4 : (0.35)(2628000) 

.0001318 

cubic feet 
per foot of 
bank per 
second 

The total perimeter is 
Then the return flow is 
second. 

(21)(5280) = 110 800 feet 
{110800)(.0001318~ = 14.6 cubic feet per 

The total amount of return flow is: 
qo = HV / 4 ~ -t .. . = (8) (0.08) {m-(o,3-tr)(2628000J 

or 

q = (0.64)(1057) = 677 cubic feet per foot of bank. Since 
the 0 total perimeter is 110,800 feet the total return flow in the 
first month is: 

(110800)(677) = 74,800,000 cubic feet. Since an acre 
foot is 43,560 cubic feet the total return flow in the first month 
is: 

74 800 000 = 11 720 acre feet 
43 560 
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Chapter 5. The Line ~ource or Sink 

The solution described in chapter 4 applies when the drawdown 
is held constant at x = 0 and the flow varies with time. The 
alternative case where the flow is held constant at x = 0 and 
the drawdown varies with time will now be presented. The physicel 
conditions are shown in figure (11) below 

Perme c,. b,I , t_y \Z 
Vo,ds· V -~ i --~I 

I ·; 

~ 

I 
: D 

' I ' • • • • ' • • ' • • ' • ', • • ., • 

/I// / //T777// / // /// //,, ' 7 / / /////// / / / / / ////// /// / /// / ////'7/ / / 

Figure (11). The line source or sink 

Of the total flow q , half comes from the direction of positive x 
and the other half comes from the direction of negative x. 

The solution required is: 

••••• ( 51) 

J 4{X, t 
This solution satisfies the differential equation 

= • • • • ( 52 ) 
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and the conditions 

when x = 0. 

when t = o. 

- 2 KD ..£_y = 
9X 

y = o. for 

q 
I 

for t > o. 
• • • • • • 

X ) 0. 

Values of the integral may be found in table III.,of the Appendix. 

At x = O the solution becomes indeterminate but at this 
point the drawdovm yo can be computed from the expression 

• • • • • 
Yo = 

2 n· K D 

( 53) 

(54) 

The use of this formula may be illustrated by the following example: 

Example . 

An unlined irrigation canal has a seepage loss of 1 cubic foot ·.' 
per second per mile of canal. It delivers water for six months 
each year. If it overlies an aquifer with a depth D = 60 feet . 
a permeability of 0.0004 ft/sec and a voids ratio of o.2p estimate 
the height of the ground water ridge produced by its seepage losses 
at the end of the six months of operation. 

Solution 

C( = KD = -v- ( • 0004 ) ~ 60 ) 
(0.2 

= 0.120 

Six months is 15,768 ,000 seconds, 

/ 4rx t = / ( 4) ( 0.120 H f576goc5oT = 27 so ft 

q ___ L_ __ 

2 Tl 1,0 
y _ = 

u 

= -1.00 
5280 

= -0,000,278 cubic feet per second-
per foot . 

= 06000278 = . 001845 
( 6 6 2 83 2 ) (.0004 ) ( 60 ) 

g, J 4 'ff ex t = -(001845) (2750) = 
2 ff KD 
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Computation of the variation of the height of the ground water 
mound with distance is shown in the following table: 

X 
(feet} 

0 
100 
200 
500 

1000 
5000 

Table 9. Heights of ground water mound. 

X 

0 
.0364 
.0727 
.1820 
~364 

1.820 

26.0 
12.1 
4.00 
1.45 
0~0035 

y 
(feet} 

-8.98 
-8.50 
-7.91 
-6.55 
-4.74 
-0.06 

The minus sign indicates a rise in the ground water level. 
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Chapter 6. Parallel Drains. 

When land is to be drained for agricultural purposes a system 
of parallel draine as shown .in figure (12) is often used • 

. __ :·. . : ___ :ft·-
. .. Dn,.fr1. . : . . I 

' 

Figure (12). Parallel drains 

As a basis for treating this case it will be assumed that an im- · 
permeable bed underlies the area at a depth d below the drains. 
Due to application of irrigation water or otherwise a uniform 
depth H is saturated with water. The distance between drains is 
L and the remaining saturated depth at the distance x from 
one of the drains is h. The permeability is K and the drainable 
voids v. The flow F per unit length of drain is 

F • K (d+h) d h •••• (55) ax 
And the condition of continuity is: 

a F dx dt • V CY h dt dx 
dx o)t 

In order to avoid a non-linear expression which would cause serious 
mathematical difficulties we will replace the quantity (d+h) by 
an average value. 

D~ (d + H) z 
Then the differential equation becomes 

~'2.h • V 

• • • • ( 56) 



or 

' < 
·' .... 

i ....,', 

t( -' ' a 

d '2- h. ------(X 
vi ' :::) (\/ 'L. C , ,· 

1uti on which 

When X ::0 

Wht:3n X ::: 

When t = 

h= H_! __ 
1Y 

KD01 
V 

- 0 h 
~ 

m~ets the initial and boundary 

0 h - 0 for t '-
/> 0 

L h = 0 for t > 0 
0 h = H for 0 <x 

n 

A plot of this function is shown in figure (13). 
uniformity the time variable is put in the form 

•••• 

• • • • 

conditions: 

( L 

• • • • 

For the sake of 
J4 oc"' t 

L 
while the space variable is put in the form x/L. This plot 
represents in a generalized form, the succession of profiles 

(57) 

(5g) 

(59) 

( 60) " 

assumed by the water table during the draining period. Because of 
the average depth introduced to avoid a non-linear type of differ-
ential equation the solution is an approximate one and the approxi-
mation is best when H is small compared to d. However., com-
parison with a solution of the non-linear differential equation for 
the case where the drains are at the impermeable bed indicates that 
the choice made above for the value of D :) will permit this 
solution to be·used without grave error even though H is not small 
compared to d. 

Drainage is slowest at the point midway between the drains. 
The ratio of the remaining drainable depth at the center h e. to 
the original drainable depth H is shown on figure (13). The ratio 
(h/H) is called the part remaining. This ratio plays an important 
role when there is a drainage flow in more than one direction. If 
there is a flow in both the direction x and z equation (5 f) 
is replaced by: 

= (61) 
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It h 1 is a solution or 

• 

If 

C, h. 
~t 

and h z is a solution of 

• -~t 

(62) 

( 63) 

Then the product h • h 1 h~ is a solution of (61): This 
relation! here called the product law, permits some important cases 
of two d mensional flow to be solved oy using one dimensional 
solutions. This method will be illustrated by an example later. 

The rate at which water flows into the drains is: 

• KDv (' 'a h) 
d X : 

or since, by differentiation of 

n-=- oo 

c,o) 

Then 

X • 0 

• • • • • 

A plot derived from this relation is also shovm on figure (14). 
It is useful for estimating the capacity of drains. 

The use of these formulas may now be illustrated by means of 
examples. 

(64) 

(65) 

(66' 
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Example: 

An irrigated area receives 2o5 feet of w~ter each year, of 
which it is estimated that about l foot is lost by deep percolationo 
With this amount of water loss the land is in need of drainage. 
The sediments have a depth of 80 feet below the proposed level of 
the drains, a permeability of ~0002 ft/sec and a drainable voids 
ratio of Ool5. The ground surface is 14 feet above the drain level~ 
What drain spacing would be needed to keep the water table at least 
5 feet below the ground surface at all timeso 

Solution 

If all of the loss occurred at one time the rise of the water 
table would be 1.00 / Ool5 = 6067 feete Then if the water table 
is to be kept 5 feet below the surface, at all times, the elevation 
of the water table above, the level of the drains, at the point 
midway between them, could be as much as: 

14 5 = 

On this basis a year would be available 
Then approximately H = 6067 + 2o33 
feet (h / H) = (2o33 / 9) = 
From the part remaining curve of figure 
read 

/4 ()(, t I L = 00802 

with D ::s 80 + 10 = 850 
2 

(X C\ = KD (..1 = ( n 0002 ){ 85 • ) - Ool5 V 
One year is 31,536,000 seconds 

2o33 feet. 

to drain the excess 
= 9o00 feet h 

00259 
(14 ) with ( h / H ) 

= 0.1133 

Then 4 O<.°' t 

Since 

= (4)(001133)(31536000) = 14300000 

j 4 ex t 
QI 

= L = 

L 01')802 
· or 

L = = 4720 feet 

awayo 
"' 2o33 

= 0.259 

This figure could be refined sO'mewhat by a trial process which 
would account for the fact tha~ when the last irrigation is mad$} 
the previous imcrements have had some opportunity to drain awayo 
We will assume that there will be four irrigations applied one 
month apart beginning June 1 and we will try a 5280 foot drain 
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spacing. Then the increment of ground water depth due to each 
irrigation would be 100 = 10667 feet 

(4) (do15) 
The critical period would come at the time of the last irrigation 
on September l. 

One month is 2,628,000 seconds. The· computation is made in the 
manner indicated in the table below. 

Table 10. Remaining drainable depths. 

Time of Increment Time to ;4 oca t 1 hc) h J . irrigation of depth Sept 1 ----- \H {ft) (sec) L I 

June .1 1.667 7,884,000 .358 0,892 1.484 
July 1 10667 5~256,000 ,292 0.953 1.587 
Aug 1 10667 2,62s,ooo 0207 0.995 1.658 
Sept 1 1,,667 0 0 1.000 1~667 
Totals 60668 6.396 

The point that must now be reached in a year of qrainage is 
approximately 14.00 5 ·- 60396 = 2.604 
Then, as before, take h ,:. = 2e604 H = 9o00 ft 

{h . / H) = 0,,289 

From the chart of figure /4 oc"' t / L 
L = = (4) L,1135) (31536000) 

0776 
= 3780 

Oe776 
• 4870 

By repeated trials we could bring these figures close together. The 
spacing we would ultimately find would be between 4870 and 5280 feet, 
It would be cleee to the lower !igureo The final figure for this 
ca is pproximat ly 4900 feet, 

In the process we have been using a small concession has been 
made to obtain a more expeditious computation procedureo 'When com-
puting the drain spacing by use of a chart prepared for a drainable 
increment of uniform depth a small error has been committed because 
the part carried over from the previous year is not of uniform 
deptho An exact computation could be made by superimposing drain-
able increments as they arise over a period of yearso Such a com-
putation would be much more cumbersome than the one describedo 

To illustrate the us~ of the product law ·we may assume that the 
above drains, spaced 4900 feet apart, terminate in a collecting 
drain, so that drainage can move in two directions. We will com-
pute the part remaining at a point midwaJ bet1,,een the drains and 
2640 feet away from the collecting drain. The parallel drains will 
be assumed to be much longer than the distance between them. For 
the flow toward the collectin~ drain the idealization of chapter 4 
may be considered appropriateo 
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This is: 

\ . . , 
' . 

For z = 2640 ft 

z = 
/4 1Xi)·.· 

-, 
t.. 

,· \ L. 
- ···· 

J ~i-- I 

r:-;:;-: . .' ~v . . T. 
V 'J 

- '...A.. ·- ( 
t~_:; (.) 1) 

t 

~ / 

= 

2640 mn 
31,536,000 sec 

= o.698 

From tables of the probability integral 

For the point midway betvreen drains 

= o.676 

/4 (X.J "1 t = l~gg = 0.770 and from the chart of 
L (~V2-J= figure h.: = 0.296 then h = (0.676) (0.296) ·- · -1-i H h ', ri 

= 0.200 

Then with the parallel drains only,the original 9.00 foot increment 
would be drained away to a depth of (9.00J(0.296) = 2.66 feet. 
With the eff~ct of the collecting drain included the corresponding 
depth is (9.00)(0.200) = 1.so feet. 

To estimate the drain capacity required 1-,e can use th~ flow 
curve of figure (14) • For our case, with L = 4900 ft. 

KD . H 
! ~,.. ----

1 

= ( • 0002 ¢6 8 5 ) ( 9 ) 4 o 
,., ,_ 

= .000,031,2 ft /sec 

A reference to this figure will show that the flow to the drain is 
not constant but decreases with time as the drainage progresses. 
This is the behavior we should expect but it requires the exercise 
of a little judgement in the selection of drain capacity. If we 
arbitrarily select the point ( J A. 1/. ,~r:,_--~; , __ ) =:_ C. I we read 

Fr., / ( KD ;.> = 11.25 ----
1 

a~d the flow t6 the drain from one side is, at this time, 
(.000,0312)(11 .25 ) = .000351 cubi"c"Teet per second per foot of 
d~ain. Then 1000 feet of this drain would col lect (1000)(000351) = 
0.351 second fe~t from each side, or 0.702 cubic feet per second 
from both sides. A reference to figure (14) will show that the time 

' ( l(~ -:-·r-'/ i __ ::... ~-.. • \ is very early in the draining cycle and, 
as a matter of judgement, it can be concluded that a drain of this 
capacity would be satisfactory. The worst that could happen would be 
that the drainage would be retarded slightly in the early part of the 
drainage cycle. 
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Chapter 7. The Use of Images. 

The solution of chapter 1 is appropriate when the aquifer, from 
which the well draws water, extends to an infinite distance from 
it in all directions. Such conditions are rarely met in nature and 
it is then important to know how the solution can be adapted to 
represent the conditions as they are. Many of these conditions aan 
be met by the use of images. Such uses are illustrated by the 
following cases: 

Case 1. A well near a river. 

Many irrigation wells draw water from sediments in 
a river valley. When pumping begins ·water is, at first, drawn from 
storage but as the cone of depression deepens and widens it finally 
makes contact with the river. Because the river will maintain the 
water table elevation along its bank no drawdown will occur there. 
If the stream bank is idealized as a straight line it is possible 
to account for this condition by use of an image well. Suppose we 
return to the infinitely extended aquifer and lay out upon it a 
line representing the idealized position of the river bank. At 
right angles to this line another line is drawn which passes through 
the pumped wello If a recharge well, having an inflow equal to the 
outflow of the pumped Hell, is now located on this second line on 
the opposite side of the idealized river bank line, and the same 
distance from it, the drawdown of the pumped well will be neutral-
ized, by the rise due to the recharge well 1 with the result that 
the original ground water level will be maintained along the river 
bank linea Then on the pumped well side the position ·of the water 
table will be given by the sum of these ti.,ro solutions. 

the 
for 

Such a situation leads to an ultimate steady state even though 
original solutions do not have one. A series representation 
the integral of formula (9) is: 

\:

~ - U'- ~ 2 
~ du = - 0.288607 + log f l\+ 

I). e \ ~ ; I ! '7~ 
., 5 

••• ( 67) 

!n our case r • As t grows large s grows 
/ t ,, 4 0(. . 

small and finally the terms containing powers of :E;, grow small 

Ultimately, because the flow of the recharge compared to logc/_l_\. c, ~ / 
well is negative, the algebraic sum of t he two solutions reduces to 

y = Q log 
e 

/(2x
1 - x)z + z2 (68) 

2 Tf KD .;~-i--+ z '2. 

for X < X 
\ 
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In this expression x and z represent rectangular coordinate 
distances measured from the pumped well as origin. The coordinate x 
is measured toward the river and the coordinate . z along it. The 
distance from the pumped well to the river is x 1 • In the ·region 
x <. x • , The radius from the pumped well to the point x, z is: 

I 

r = /x 2 + z '2. ( 69) 

and the radius from the recharge well to the same point is: 

r = j (2 XI 
i7 

x) - + z z • (70) 

If the water table ·was originally level the stream would now supply 
the entire flow of the well. 

Example: 

A w~ll penetrates 90 feet of saturated sediments of permeability 
K = 0.0004 ft/sec and is developed to a diameter of 3.0 feet by 
means of a gravel pack. If the well is 700 feet from a river and 
is pumped at the rate Q = 0.45 /sec compute the ultimate 
steady state drawdown along a line from the well to the nearest 
point of the river. 

Solution 

Q 
2 lr KD 

= O 45 
(6.2832)~.0004)(90) 

= 1.99 

X = 700 ft 2 X = 1400 ft z = 0 

700 
600 
500 
400 
300 
200 
100 

25 
1.5 

Table 

(2x
1 

- x) 

700 
800 
900 
1000 
1100 
1200 
1300 
1375 
1398. 5 

11. Ultimate 

/( 2x , - x) .z 
·-J X "2.. 

1.000 
1.333 
1.800 
2.500 
3.667 
6.000 

130000 
27ri5 

932 e 

steady state drawdown. 
·- -- ~ 

log / (2x, - x) 

0 
.2874 
.5878 
.9163 

1~2994 
1.7918 
2~5649 
3.3142 
6.8373 

x2 

At a point 50 feet dovmstream of the well where X = o, 
/( 2X X} 

1 + Z '2. = j I 
z z 

3.3329 
y = (1.99) (3.332 9 ) 

/1,962,500 
I 2500 v 

= 1401 = 28.02, log 
50 

= 6.63 feet. 

-47-

z 

y 
{feet) 

0 
,572 

1,17 
1.82 
2,58 
3,56 
5ti08 
6.60 

13.6 
= 50 

28.02 = 



For comparative pu~poses we will compute the drawdown along th~ 
lines z • 0 at the end of three months of pumping. Assume V = 
0,20. Since this is before the permanent steady state has been 
established it is to be expected that these drawdowns will be some-
what less than those of the ultimate steady state. 
Then with 

oc = KD = {!0004~(90! = 0.180 
v- o. o 

t = 7,884,000 seconds x, = 700 ft. 

r = X r , = (2x, x) 
j 

Table 12. 
Drawdowns computed along a line from the well to the river. 

. et':> '2. 00 

~~~ \~f r r 
~ " 

_ _L_ d~ 
Y, (11 tY,) /40C-t ... ' ¾t-. I 

I JTci;f i ·' J 4oct 
700 0.294 0.99 1.97 700 0.294 0 .99 -1.97 0 
600 0.252 1.11 2.22 800 0.336 0.86 -1.72 0.45 
500 0.210 1 .. 30 2.59 900 0.378 0.73 -1.45 1.14 
400 0.168 1.50 2.99 1000 0.420 o.66 -1~311.68 
300 0.125 1~80 3.59 1100 0.462 0.59 -1.17 2.42 
200 0.084 2.20 4.38 1200 0.504 0.51 -1.01 3.37 
100 0.042 2 .. 85 5.68 1300 0.546 0.45 -0.89 4.79 
50 0.021 3.59 7.14 1350 0.567 0.42 -0.84 6.30 
1.5 0.0063 4.88 9.72 1398 0.588 0.40 -0.80 s.92 

Note: 
-The quantity 

The quantity 
The qua!').tity 
present. 

y represents the drawdo~m due to the real well. 
y, represents the drawdown due to the image well. 
(y + y

1 
) represents the drawdown with the river 

River depletion due to pumping a  well. 

It can be sho\tm, by considerations based upon the use of the two 
images described, that if q represents the depletion of river flow 
due to pumping a 1.,rell at the rate Q the part of the flow taken 
from the river is: -~L 

~

l~rf--~-

~ = i /4-e<>Jt,l 
0 

(71) 

As t grows large this ratio approaches unity. Then, ultimately, 
the well vrill deplete the stream by the amount Q. 
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The river depletion caused by pumping the well of the above 
exampleJfor three months,would be, if V • 0.2 

r:i.., - KD = (ooo;~{9oi = o.1eo v- o. 
t .. 78$4000 seconds X 

I 

XI = ,..,00 

/4 ':iv t (4}(0.1$0)(7$84000) 

From tables of the probability integral 

2 -u.'1 = 0.3224 --- e du ~ 
o,2q4 

{fr 

Then 

q 
Q 

0 

= o.6776 

l 

... 700 ft. 

= 0.294 = 0.294 
2380 

A little over two thirds of the flow of the well will then be taken 
from the river at the end of the three months pumping period. 
Cuso 2. A ~Tell Ncn.r n.n Impermeable Boundary. 

If the sediments from which a well takes water terminate at an 
impermeable boundary it will be possible for water to move along the 
boundary but no flow will cross it. This condition can be repro-
duced in the idealized infinitely extended aquifer if a line is 
drawn at the position of the impermeable boundary and an image well 
is used. The term image stems from the relationships which would 
exist if a mirror were erected on the line representing the boundary. 
The image well occupies the position which the pumped well appears 
to have if viewed in this mirror, The line between the pumped well 
and the image well crosses the boundary line at right angles and the 
pumped Nell and the image well are at equal distances from it. To 
impose the condition of no flow across the boundary the image well, 
in this case, must be a pumped well having the same flow as the real 
well. 

Example: 

Compute the drawdown for the Hell of the previous problem if 
there is an impermeable boundary at a distance of 700 feet. ~e 
will compute the drawdownl along a line drawn from the well to the 
nearest point of the bounctary, at the end of three months of pump-
ing. As before, let x and z represent rectangular coordinates 
drawn from the well, as or:i,gin, toward and along the doundary. 
At the boundary x = x

1 
e 
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Table 13. 
when Computation of drawdowns along the line z = 0 

there is an impermeable boundary at x = x 
I 

= 700ft. 
r = x. 

c,O 00 
- u1.. \e;~ e 

r U-- r;' r. Y, c~-... y) ( ---- _[_ J 4((-t / 4t/v t /4rJ.;~ J 40Ct 
700 0.294 0.99 1.97 700 0.294 Oo99 1~97 3.94 
600 0.252 1.11 2c-22 800 0.336 o.86 1.72 3.94 
500 0.210 lo30 2o59 900 0.378 0.73 1,.45 4,04 
400 0.168 1.50 2.99 1000 0.420 o.66 1.31 4.30 
300 0.125 loBO 3.59 1100 0.462 0.59 1.17 4.76 
200 0.084 2~20 4.38 1200 0.504 0.51 1.01 5.39 
100 0.042 2 0 85 5.68 1300 0.546 0.45 0.89 6.57 

50 0.021 3.59 7.14 1350 0.,567 0.42 o.84 7.98 
1.5 0.00630 4o ,38 9.72 1398.5 0.588 0.40 a.so m52 

!!.Qll: 

r = (2x, - x), y represents the drawdown due to the real 
well and ~ represents the drawdown due to the image well. 
{y + y, ) represents the drawdown with the impermeable boundary 
present. 

On.co ,3. A Well botwoen a Stream and impenneable boundary. 

It is not uncommon for the alluvial sediments of a river valley 
to lie in a trench eroded in a material like shale which has a 
permeability that is very small as compared to that of the alluvial 
sediments. To treat this case we may assume the one boundary to be 
impermeable and idec?.lize the river and the outer boundary as 
parallel straight lines. To compute the draft of t h~ well on the 
river we may use the well and image of reference 3 • Then if we 
represent a pumped Nell by an open circle and a recharge Hell by a 

\ \ 
1,· 14ou1 .,.._..__I - · - ~ is oo, . -- . - 1·, ~~7()(/T 

I ., !c,<j 1,_. \ 
0 11b ;' ' '/~ . ) .-·~ 

I 
'1 . 

,, >\ 

\, i/, 
,/ \i, 

I I 
l 4() 0 .. ,.:~ 

. . I 
v ,~ 
t ' 

~; 
Figure (15). dell between f ' t stream and an imp·~rmeab l e boundar)' o 
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The first pair are those of reference 3. The draft they make 
on the river can be computed by the use of formula(71), but this 
pair will cause .a flow across the impermeable boundary. To rectify 
this the first pair is imaged in the impermeable boundary as the seccnd 
pairo The addition of the se~ond pair has, however, upset slightly 
the condition that the drawdown is to be zero at the river bank. 
To rectify this the second pair is imaged in the river bank as the 
third pair. This, in turn, does a modicum of damage to the condi-
tions along the impermeable boundary. Imaging the fourth pair in 
the impermeable boundary will yield a fifth pair and a sixth pair 
will be obtained if the fifth pair is imaged in the river bank. 
The process results in an infinite series, which, however, may be 
expected to converge rapidlyo 

If the draft on the river due to the first pair is considered 
positive the draft due to the second and third pairs, taken together, 
will also be positive~ The draft due to the fourth and fifth pairs, 
taken together, will be positive., In all cases the draft can be 
computed by use of formula (7l) o 

Example: 

Suppose we recompute the draft on the river, as obtained in a 
previous example, but modified by t he presence of an impenneable 
boundary 1400 feet from the wello The distances are as shown in 
figure 15 o 
As before 

= KD = 
v- ( ., 0004 ) ( 90 ) 

Oo2 
= 0.180 

t = 7,884,000 seconds (3 months) 

700 ft11 For the first pair 

From 

., 

.. ~ I 

/ 4 oc t 

tables 'X-, 

1. -u" 

' 

j4r;..i--

Jrr' ~ "'"' 

X = 

700 = 
/ ( 4 ) ( o o 1 so ) ( 1 sa4000 r 

0. 32243 1-

For the inside wells of the second and third pairs 

0.294 

o.67757 

X = 3500 ft X = (5)(002 94) = 1.470 
/4 ~ t 
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For the outside wells of the second and third pair 

X 
I 

= 4900 ft (7)(0.294 ~ 2.05g 

2.05g 
0.99630 I- .00361 

For the inside wells of the fourth and fifth pair 

= 5600 ft = (8)(00294) = 2.352 
/ 4 OC t 

\

1 .:"57 
1. -Lt 1. _( Rf";· e "'4- = 0.99912 

0 

.00088 

For the outside wel l s of the fourth and fifth pair 

x, = 7000 x, = (10) (0.294) :a 2.94 
J4 ex t 

~ ,g4 2 u'l. 
6- d L-l :=. 0.99997 1 - 0.99997 = .00003 

Rf 
0 

Then with due regard to sign the resulting value for q/Q will be: 

+ Oa67757 

Then q/Q = 0.71074 
And the stream depletion is: 

q = (O. 71074) (O o45) 

+ Oa03763 
- 0.00361 
- 0.00088 
+ 0.00003 
+ 0.71074 

= 00320 ft /sec 

A comparison wi t h the previous result will show that the impermeable 
boundary caus es the depletion q to ap proach t he ultimate value Q 
more rapidly ,. 
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x 
Table I. Prob~bility Intcgra~: P(x): ,i;,:- 4o(,t 2 e -..u ct~ 

-:,::_/ j l~ ry_t p ( }:) x// 4()( t 
' 

P (x) P (x) 

--- - ---·------------------------- - · -
0.0000 
0.0005 
0.0010 
0.0020 
0.0030 
0.0040 
0.0050 
0.0060 
o. 0 1)70 
0.0080 
0.0090 
OoOJ.00 

0.0200 
0,0300 
0.0400 
0.0500 
0.0600 
0.0700 
0.0800 
0 .0900 
O,, J.000 

0,1100 
0.1200 
0. 1300 
0. :'..400 
001500 
0.1600 
O,. l 700 
0. :.soo 
0~ ~- 900 
0,20()0 

0 2100 
•J.220,J 
0, :2300 
0 . 2L1.00 
J . 25oc 
Oo 2600 
0~ 2700 
0.2 800 
O" 29CO 
Oo ::9GJ .. . , 

0.31 
o. 32 

Sou:·c e : 

0.00000 
0.00056 
0.00113 
0.00226 
0.00339 
0.00451 
0.00564 
0.00677 
0.00790 
0.00903 
0~ 01016 
0.01128 

0.02 256 
0.03 384 
0.04511 
0.05637 
0.06762 
0.07836 
0.0<)008 
0 .10128 
O.l l '.246 

O"J.2362 
0.13476 
0 .14 587 
0.15695 
0.16800 
0,17901 
O. l d999 
0.20094 
0021134 
0,22270 

0 .23352 
0,24430 
•) , 25 502 
0 ,265 70 
0 ,~7633 
0. ?. :3690 
J .?. ) 742 
o.:or~8 
0. 3l u23 
0 , 32863 
0 , 33 :V"Jl 
O. 349 13 

0.,33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 

0.41 
0.42 
0 .43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 

0.51 
0.52 
o. 53 
0.54 
0 .55 
0 .56 
0.57 
0.58 
0.59 
0.60 
0.60 
0 . 61 
0.62 
0.63 
0 .64 
0, 65 
0.66 
o . 67 
0 . 68 
0.69 
0.70 

0 . 71 
0 .72 
0.73 
0 .74 
0.75 

0.35928 
o. 36936 
o. 37938 
o. 38933 
0. 39921 
0.40901 
0041874 
0.42839 

0.43797 
0.44747 
0.45689 
0.46623 
0.47548 
0.48466 
0.49375 
0.50275 
0.51167 
0.52050 

0.52924 
0.53790 
o. 54646 
0.55494 
0 .5633 2 
0.57162 
o. 57982 
0 .5 8972 
0.59594 
0.60386 
o.603S6 
0.6116s 
0.61941 
0.62705 
o.63459 
0.64203 
o.64938\ 
o. 65663 :i 
0. 663 78 
o.67084 
o.67780 

0. 68467 
0.69143 
0 . 69810 
0.70468 
0.71116 

0.76 
0.77 
0.78 
0.79 o. 80 

0.81 
0.82 
o. 83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 

0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0. 97 
0.98 
0.99 
1.00 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

/ 

0.71754 o. 72382 
0.73001 
0.73610 
0.74210 

0.74800 
o. 75381 
0.75952 
0.76514 
0.77067 
0.77610 
0.78144 
0.78669 
0.79184 
0.79691 
0.80188 
0.80677 
0.81156 
0.81627 
0.82089 
0.82542 
0.82987 
0.83423 
0.:13851 
0.84270 
o. gS021 
0.91031 
0.93401 
0.95229 
0.96611 
0 . 97635 
o. 91379 
0.98909 
0.99279 
0.9°532 

2.1 0.99702 
2.2 0.99814 
2.3 0.99386 
2.4 0.99931 
2.5 0 , 90959 
2. 6 o , g9976 
2.7 0. 99987 
2. 8 0 .90092 
2.9 0 . 99996 
3, 0 0.99998 

... 11. "<XJ 1. 00000 
Na. u .,)na l Bu reau of Standards, Tables of* Proba bility Func tions, 
Vol. l , "sfL'3 , U.S. Government Printing Offi ce, 1941. 

-55-



Table II. One Minus The ProbQbility Integral: Ia = (1.0 - P (x)) 

x/j 4 cx.t 
0.0000 
0.0005 
0.001 
0.002 
0.003 
0.004 
0,005 
0.006 
0 .007 
o. om~ 
0,009 
0.01 

0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0,08 
0.09 
0.10 

0~11 
0. 12 
0.13 
0 .14 
0 .15 
0.16 
0.17 
0.18 
0 .19 
0 .20 

0.21 
0.22 
0.23 
0 .24 
0.25 
o. 26 
0.27 
0.28 
0 . 29 
o. 30 
o. 31 
O. J2 
0 .33 

1.00000 
0. 99944 
0.9S'S87 
0.99774 
0.99661 
0.99549 
0.99436 
0.99323 
0.99210 
0.99097 
0. 9S984 
0.98872 

O. 977~-4 
0.96616 
0.95489 
0.94363 
0.93238 
0.92114 
0.90992 
0.89872 
o.8'3754 

o.87638 
0.86524 
0.15413 
o. ,14305 
0.83200 
0. 82099 
0.81001 
0.79906 
0.78816 
0.7773 0 

0.76643 
0.75570 
0 .74498 
0.73430 
0.72367 
0.71310 
0 .70258 
0.69~12 
0 . 68172 
0 . 67137 
0 . 66109 
0.65087 
0 . 6Li072 

x/ /4CXt 

o. 34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 

0.41 
0.42 
0.43 
0.44 
0,45 
0.46 
0.47 
0.48 
0.49 
0.50 

0.51 
0.52 
o. 53 
0.54 
0.55 o. 56 
o. 57 
0.58 
0.59 
0.60 

0.61 
0.62 
0.63 
o.64 
o.65 
o.66 
0.67 
o .68 
0.69 
0.70 

0.71 
0.72 
0.73 
0 .74 
0 .75 
0 .76 
0.77 

/ 
0.63064 
0.62062 
0. 61067 
0.60079 
0. 59099 
0.58126 
0.57161 
0.56202 
0.55253 
0.54311 
o. 53377 
0.52452 
0.51534 
0.50625 
0.49725 
0.48833 
0.47950 

0.47076 
0.46210 
0~45354 
0.44506 
0043668 
0.42838 
0.42018 
0 . 41208 
0.40406 
0.39614 

0.38832 
o. 38059 
0.37295 
0.36541 
0.35797 
0.35062 
0.34337 
0,33622 
0 .32916 
0.3 2220 

0.31533 
0.30857 
0 . 30190 
0 . 29532 
0.2 8884 
0.28246 
0. 27618 

x/} 40:t 

0. 78 
0.79 
0.80 

0.81 
0.82 
o. 83 
0.84 
0.85 
0.86 
o.87 
0.38 
0.89 
0.90 

0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
L9 
2.0 
2.1 
2. 2 
2.3 
2.4 
2.5 
2.6 
2.7 
, , -< -.. () 

2 . 9 
3 . 0 

),' 

6.26999 
0.26390 
0.25790 
0.25200 
0.24619 
0.24048 
0.23486 
0.22933 
0.22390 
0.21856 
0.21331 
0.20816 
0.20309 

0.19:12 
0.19323 
0~18844 
0.18373 
0.17911 
0.17458 
0.17Cl3 
0.16577 
0.16149 
0.15730 

0 .11979 
0.08969 
0.06599 
0,04771 
0.03389 
0.02364 
0.01621 
0.01091 
0.00721 
0.00467 
0 .00298 
0.00186 
0.00114 
0.00069 
0.00041 
0.00024 
0.00013 
0.00008 
0.00004 
0.00002 

Computed fr om ;la tional Bureau of Sta ndards, Tabl E: s of Probability 
Funct ions, Vol . I , MTS , U. S . Government Printin~ Office, 194] .. 

-56-



- 00 "Z. 

= Jn-l _e~; ~u 
~ , ' A N" t --------==---_a..~-------- ~""'""""----

Table III. Line Source Integral: 

x//4<X. t Ix x/}4CX t Ix x//4rx t Ix ii' --=---=-=:-=-::..~------ ---- ---------0. 0000 ,:f-• 0,34 2.6628 0.78 0.38848-· 
0.0005 3541.8 0.35 2,5306 0.79 0.37294 
0.001 1769.3 0.36 2.4065 0.80 0.35804 
0.002 883.07 0.37 2.2901 
0.003 587.68 0.38 2.1805 0.81 0.34373 
0.004 439.98 0.39 2.0774 0.82 0.33000 
0.005 351.36 0.40 1.9802 0.83 0.31681 
0,006 292.28 0,84 0.30415 
0.007 250 .08 0,41 1.8885 o.85 0.29199 
0.008 211.43 0. 42 1. 1018 0.86 0.2803 2 
0.009 193.81 0.43 1.7199 0.87 0 .26911 
0.01 174.12 0.44 1. 6424 0.88 0.25834 

0.45 1.56s9 o.89 0.24800 
0.02 85 .516 0.46 1.4993 0. 90 0.23807 
0.03 55,993 0.47 1.4333 
0.04 41. 241 0.48 1.3706 0.91 0.22853 
0.05 32.396 0.49 1.3110 0.92 0.21936 
0.06 26.506 0.50 1.2544 0.93 0.21056 
0.07 22.3 03 0. 94 0.20210 
0.08 19.156 0.51 1. 2005 0. 95 0.193 97 
0.09 16.71 2 0.5 2 1.1493 0.96 0.18616 
0.10 14.760 0.53 1.1004 0,97 0.17866 

0.54 1.053 9 0 . 98 0.17146 
0.11 13.166 0.55 1. 0096 0 . 99 0.16453 
0.1 2 11. $41 0.56 0.96728 1.00 0 .15788 
0.13 10.722 0.57 0 . 92692 
0.14 9.7661 0 . 58 o . s t340 1.1 0.10414 
0.15 3. 9397 0.59 0 . 85162 1.2 0.06820 
0.16 8. 2186 0.60 o. s1647 1.3 0 .04426 
0.17 7. 584 5 1.4 0.02843 
0.18 7. 0227 0 . 61 0 . 78289 1.5 0.01806 
0.19 6 . 5219 0 . 62 0 . 75078 1.6 0. 01133 
0.20 6 . 0728 0 .63 0 . 72008 1.7 0.00702 

o.64 0 . 69070 1.8 0. 00429 
0. 21 5. 6682 o . 65 0 . 66260 1. 9 0 . 002 59 
0.2 2 5,301 3 o . 66 0 . 63570 2. 0 0 .00154 
0.23 4. 9688 o . 67 0.60994 
0. 24 4 . 6650 o.68 0 . 51527 2. 1 0.00090 
0. 25 4 . 3868 o . 69 0 . 56164 2. 2 0 . 00052 
0.26 4.1 313 0.70 C. 53900 2. 3 0. 00029 
0. 27 3 , j9 59 2. 4 0 . 00016 
0.28 3 . 6715 0 . 71 0 . 51730 2. 5 0 . 00009 
0.29 3 . L,772 0 . 72 0 . 49651 2. 6 0. 00005 
0 .30 3 . 2~0 5 0 . 73 0 . 4765 7 2. 7 0 . 00003 

0 . 74 0 . 45745 2. S 0 .00001 
0.31 3. 1168 0. 75 0 . 43912 2. 9 0. 00001 
0.32 2. 9550 0 . 76 0. 42153 3. 0 0. 00000 
0 . 3 3 2 . ·;01.0 C. 77 0 . 40466 

Computed fr om Nat i ona l Bureau of Sta nd9 r ds , Tables of Probability 
Funct ions, Vo l. I, MTS , U. S. Government Printing Cf fi ce, 1941. 
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