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Repeatable Generalized Inverse Control
Strategies for Kinematically

Redundant Manipulators
Rodney G. Roberts and Anthony A. Maciejewski

where x is an m-vector and 0 is an n-vector. One of the
popular techniques for controlling a manipulator is re­
solved motion rate control [20]which calculates the joint
velocities from the joint configuration and desired end
effector velocity. The underlying equation is the Jacobian
equation which, for the positional components, can be
found by differentiating (1) to obtain

where i is the desired end effector velocity. The chief
advantage of using the Jacobian for the motion control of
a manipulator is that the Jacobian is a linear relationship
between the joint velocities and the end effector veloci­
ties. At each point 0, I is an m X n matrix.

Kinematically redundant manipulators are robotic sys­
tems which possess more degrees of freedom than are
required for a specified task. This occurs when m < n.
This additional freedom offers obvious advantages over
conventional nonredundant manipulators including the
potential for obstacle avoidance, torque minimization, sin­
gularity avoidance, and greater dexterity [1], [3], [5], [7],
[8], [11], [14], [21]-[23]. There are an infinite number of
control strategies for redundant manipulators. One can
take advantage of this freedom by choosing a control
strategy which will optimize some particular criterion. A
popular optimal control strategy is the minimum norm
solution

Abstract-Kinematically redundant manipulators possess an
infinite number of joint angle trajectories which satisfy a given
desired end effector trajectory. The joint angle trajectories con­
sidered in this work are locally described by generalized inverses
which satisfy the Jacobian equation relating the instantaneous
joint angle velocities to the velocity of the end effector. One
typically selects a solution from this set based on the local
optimization of some desired physical property such as the
minimization of the norm of the joint angle velocities, kinetic
energy, etc. Unfortunately, this type of solution frequently does
not possess the desirable property of repeatability in the sense
that closed trajectories in the workspace are not necessarily
mapped to closed trajectories in the joint space. In this work,
the issue of generating a repeatable control strategy which
possesses the desirable physical properties of a particular gener­
alized inverse is addressed. The technique described is fully
general and only requires a knowledge of the associated null
space of the desired inverse. While an analytical representation
of the null vector is desirable, ultimately the calculations are
done numerically so that a numerical knowledge of the associ­
ated null vector is sufficient. This method first characterizes
repeatable strategies using a set of orthonormal basis functions
to describe the null space of these transformations. The optimal
repeatable inverse is then obtained by projecting the null space
of the desired generalized inverse onto each of these basis
functions. The resulting inverse is guaranteed to be the closest
repeatable inverse to the desired inverse, in an integral norm
sense, from the set of all inverses spanned by the selected basis
functions. This technique is illustrated for a planar, three de­
gree-of-freedom manipulator and a seven degree-of-freedom spa­
tial manipulator.

i = IO (2)
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I. INTRODUCTION

A robotic manipulator is described by its kinematic
quation which relates the joint configuration of the

manipulator to the position and orientation of the end
effector in the workspace. The kinematic equation f:
® ---+ rr is usually a nonlinear mapping of the manipula­
tor's joint space ® to the workspace rr where dim(®) = n
and dim(rr) = m. More specifically, this equation is given
by

where I" is the Moore-Penrose pseudoinverse of I. This
control strategy locally minimizes the joint velocities of
the manipulator subject to moving the end effector along
a specified trajectory. Equation (3) can be generalized to
include all solutions by adding terms in the null space of I
resulting in

where z is an arbitrary n-vector and (I - I"J)z repre­
sents the orthogonal projection of z onto the null space of
I. Liegeois [10] used z to optimize a criterion function
g( 0) subject to making the end effector follow a pre­
scribed trajectory by setting z = aVg(O). This null space
term has also been used for several other objectives
including those listed previously [7], [11], [14], [21].

(3)

(4)

o=ri

o=ri+(I-rJ)z
(1)x = f(O)
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This work will consider generalized inverse strategies to
solve (2) which are of the form

where G satisfies JG = I for nonsingular configurations.
The elements of G are functions of only the joint config­
uration. This strategy may be chosen to locallyminimize a
given criterion function such as a least-squares minimum
norm criterion on the joint velocities as in the case of the
pseudoinverse solution. Also popular in the robotics liter­
ature are weighted pseudoinverse solutions which locally
minimize iJ TQiJ for some positive definite weighting ma­
trix Q such as the inertia matrix [20]. Due to the addi­
tional freedom afforded to kinematically redundant ma­
nipulators, control strategies such as (5) may not be
repeatable in the sense that closed trajectories in the
work space are not necessarily mapped to closed trajecto­
ries in the joint space so that for cyclic tasks the manipu­
lator will not necessarily return to its starting configura­
tion. Klein and Huang [9] give a proof of this for the
pseudoinverse control of a three-link revolute manipula­
tor. Such control strategies fail to give mappings which
are one-to-one and onto.

Recently, there has been significant interest in this
issue of repeatability [2], [4], [12], [13], [18], [19]. An
elegant method for testing whether an inverse in the form
of (5) is repeatable for simply connected, singularity-free
subsets of the joint space was derived by Shamir and
Yomdin [19]. This method, based on Frobenius's Theorem
from differential geometry, consists of checking whether
the Lie bracket of each pair of columns of G lies in the
column space of G. This straightforward but tedious cal­
culation can be used to determine if the manipulator is
repeatable for particular regions of the joint space. It can
also be used to determine candidates for what Shamir
called "stable surfaces" which are surfaces on which the
control is repeatable for nonsingular configurations.

Research has also been done on the construction of
repeatable control strategies. Baker and Wampler have
used topological methods to show that there may be
inherent limitations on the regions of repeatability and
that any repeatable control is equivalent to an inverse
kinematic function over the specified domain [4]. Baillieul
[2] devised a strategy which is repeatable in a simply
connected, singularity-free subset of the joint space. This
method, called the extended Jacobian, minimizes a crite­
rion function of the joint variables for certain initial
conditions and will be discussed in greater detail in the
following section. Mussa-Ivaldi and Hogan [13] have also
developed a class of repeatable inverses which use
impedance control to devise strategies in the form of
weighted pseudoinverses. Clearly, if one can identify an
appropriate number of additional kinematic constraints
that correspond to the desired use of the redundancy,
augmenting the Jacobian with these equations is the
method of choice for resolving the redundancy and auto­
matically guaranteeing a repeatable solution [6], [17], [16].

(7)

(6)

(8)

(9)

(10)

Ii ~J;;'[L] ~ Gx + MzN "

In order to obtain the control in (5) one merely sets
ZN = O. The converse is also true, i.e., that every general­
ized inverse G can be found by inverting an augmented
Jacobian. In particular, this inverse is obtained by choos­
ing N so that its column space is exactly the null space of
GT

•

In this work, manipulators with a single degree of
redundancy are considered so that N is given by the
vector v,

The inverse of JN' if it exists, has the form

so that

where G is a generalized inverse of J and M is a maximal
rank matrix whose column space is exactly the null space
of J. Setting ZN = NTiJ one obtains

The remainder of this paper is organized in the follow­
ing manner: Section II describes a method for generating

.a generalized inverse G from the null space of GT
• This

method characterizes a generalized inverse by the null
space of its transpose. The relationship of this method to
repeatability is discussed. Section III develops the mathe­
matics required to define an appropriate class of augment­
ing vectors 'j/ which yield repeatable inverses. It is then
shown how to choose the augmenting vector in 'j/ which
minimizes its distance from a set of null vectors of GT

•

Section IV uses a simple example to illustrate this tech­
nique with simulation results and a comparison to other
repeatable control strategies appearing in Section V. In
Section VI, an optimal repeatable inverse is calculated for
a seven degree-of-freedom spatial manipulator in order to
illustrate the generality of the technique. Finally, conclu­
sions are presented in Section VII.

II. AUGMENTED JACOBIANS

Generalized inverses such as those given in (5) can be
generated by augmenting the Jacobian with the appropri­
ate number of additional rows and performing a matrix
inversion, provided of course that the augmented matrix is
nonsingular. Suppose that J is augmented with additional
rows represented here by the matrix NT so that

(5)iJ = Gi
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and

where the matrix on the left-hand side is defined as the
extended Jacobian, denoted I, [2]. If L, is nonsingular
then one obtains the joint velocities by simply multiplying
(14) by 1";1. Clearly, I, will be singular at kinematic
singularities of the original robot which correspond to the
singularities of I. However, I, may also become singular
when any of the additional rows added to the Jacobian are
a linear combination of the rows of I. Mathematically,
these singularities can be identified by evaluating the
equation

(16)

(17)

redundancy by adding to the kinematic equation an addi­
tional function h where v = Vh. By adding this additional
function the manipulator acts "mathematically" like a
nonredundant manipulator assuming that the rows of I
and v are linearly independent. Later a set of allowable
augmenting vectors which result in repeatable control
strategies will be defined. The elements of this set will
consist of gradient functions. It is important to note that
this technique is distinct from the extended Jacobian
technique since there may be no function g which de­
scribes the desired optimization criterion. The proposed
technique is able to handle more general optimization
criteria which are not restricted to be only functions of O.
In particular, one can consider the minimum joint velocity
norm solution obtained using the pseudoinverse, which
will be used as an illustrative example in the remainder of
this work. The same technique can be used for any other
desirable generalized inverse G by substituting the null
vectors of GT

• It can even be used for time-varying G by
including the variable time in the definition of the inner
product.

(u,v)o = i: vdO

where u . v is the standard dot product and J0 dO is the
Lebesgue integral on °c e. The corresponding integral
norm

III. A CLASS OF OPTIMAL REPEATABLE

CONTROL STRATEGIES

The main idea of this work is to choose a repeatable
inverse G, whose associated null space is "close" to the
associated null space of the desired inverse Gd • This will
be done by selecting a gradient which approximates the
null space of GI on some desirable, nonsingular region °
of the joint space. In order to pursue this goal as well as
to define what is meant by "close," it will be necessary to
cast the problem in terms of the Hilbert space 2iO), the
space of Lebesgue measurable functions u:°-+ ~n which
satisfy Jollull~ dO < 00. One who is not familiar with mea­
sure theory may consider. everything to be continuous
since ultimately, due to the limitations placed on the
allowable augmenting vectors, the solutions will be contin­
uous vector functions on 0. The inner product ( .,. )0 of
this space for the two vector functions u, v is given by

will be used as a measure of the distance between vector
functions on 0. Since 2iO) is a Hilbert space it follows
that for any closed subspace Zf and any w E22(0 ) there
exists a unique u E Zf such that lIu - wllo is minimal.

While lIu - wllo gives a measure of the distance be­
tween two elements u and win 2 2(0 ), it is also necessary
to consider the measure of the distance between subsets
of 2 2(0 ). The measure of the distance between two
subsets F and G of 2iO) is defined to be dist (F, G) =

(11)

(13)

(14)

[
-: ] = [ .~. ].

Vg·nJ 0

Differentiating (13) results in

[(V(VLJ))T]0 ~ [.:. ]

where nJ is any null vector of I. If, for example, one
chooses v to be proportional to n J then Gv would be the
pseudoinverse. One can consider the relationship of a
generalized inverse and the set of its augmenting vectors
as a one-to-one correspondence between the generalized
inverses and an equivalence class on the augmenting
vectors where only the direction of the augmenting vector
is considered.

An example of an augmented Jacobian technique which
guarantees repeatability in simply-connected, singularity­
free subsets of the joint space is the extended Jacobian
method discussed earlier [2]. This method utilizes the
redundancy to optimize a criterion function g(0) along
with the primary constraint of following a specified end
effector trajectory. Suppose the manipulator starts at an
optimal configuration 0* for a given end effector position
and orientation. Baillieul proved that a necessary condi­
tion for being at a local extremum is that the gradient of
g( 0) possess no component along the null space, i.e.,

Vg(O*)'nJ(O*) =0. (12)

Combining the end effector constraint and the optimiza­
tion criteria results in the equation

nJ ' V(Vg' nJ ) = O. (15)

These types of singularities, which are typical of aug­
mented Jacobians, were noted by Baillieul for which he
coined the term "algorithmic singularities" [2].

The inversion of I; where v is a gradient will result in a
repeatable inverse [17] and likewise essentially all repeat­
able inverses are determined by gradient functions [18].
The regions of repeatability are limited to simply con­
nected, singularity-free subspaces. By augmenting the Ja­
cobian with a gradient one is resolving the manipulator's
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(20)

inf{llu - vllolu E F, u E G}. In particular, this work is
concerned with the distance between a normalized subset
of the continuous null vectors of J and a space of allow­
able augmenting vectors ~. A desirable gradient v* will
have the property that it minimizes its distance to the
subset of normalized null vectors. Clearly, for any vector
function n the element in ~ which minimizes IIv - nllo
is exactly the orthogonal projection of n onto ~.

A rigorous definition can now be made of an allowable
space of augmenting vectors which will define the repeat­
able control strategies of interest. Consider the space
'F= {Vg E..2"zCO)lg E Cl(O)}. An allowable space of aug­
menting vectors ~ is defined to be any closed linear
subspace of 'F which has an orthonormal basis {v;lj~ t- A
discussion of how to obtain such an orthonormal basis will
be given later. The property that the subspace is closed is
important since this guarantees that for any vector func­
tion u in ..2"zC0) there is an element in the subspace ~
which is closest to u. An example of such a subspace is
the span of any finite orthonormal subset of 'F. With
these restrictions on ~ the Projection Theorem guaran­
tees that the element of ~ which is closest to some
arbitrary vector function n in ..2"zC0) is given by

the form given in (19) so that it is only necessary to
consider JiY', the set of functions in JiY' which have this
form.

For each n E.AQ the corresponding v E 'FN which is
closest to n is the orthogonal projection of n onto 'FN •

Let a be in si and let v( a) denote the orthogonal
projection of ah, onto 'FN • The problem now becomes to
minimize IlanJ - v(a)llo over the scalar functions a in
si. Since a is in si, there exist bl,' '' , bN such that

N

a = E bjvj . nJ'

j= 1

Let aj(a) be the generalized Fourier coefficient of anJ
corresponding to Vj' From (20) it follows that

N

aj(a) = (anJ,v)o = E bd (vj ' nJ)(vj' nJ) dO. (21)
j=1 n

In order to make the presentation clearer some vector
notation is introduced. Let a = [al(a),"', aN(a)y corre­
spond to the generalized Fourier coefficients defined in
(21), b = [b l,''', bN ], and let the matrix M be the Gramian
matrix defined by

Proof: See Appendix A. Thus the candidate a's are of

which is simply the orthogonal projection of n onto ~.

In practice, to perform these calculations one is forced
to consider a finite-dimensional subspace of 'F. Let this
subspace be denoted by 'FN where N is the dimension
and let {vA~ 1 be an orthonormal basis for 'FN • Now that
an appropriate subspace has been defined, one can choose
an augmenting vector from this set which minimizes its
distance from.AQ, the set of continuous null vectors which
are of unit length in the norm 11·110. Note that any such
null vector in.AQ has the form anJ where IlnJllz = 1, and
a is in JiY' = {a E C(O)lfoaZ dO = l} where C(O) repre­
sents the continuous real-valued functions on O. Thus the
problem becomes that of finding the a* in JiY' and the v
in 'FN which minimizes Ila*nJ - vll~. This minimization
will be done in three steps. First, the form of the a's
which are closest to 'FN will be derived. Then, the corre­
sponding v in 'FN for each of the candidate a's is
calculated. Finally, the minimal pair is chosen from these
candidates.

The n in.AQ which is closest to a v in 'FN is character­
ized in terms of its corresponding a by the following
proposition.

Proposition 1: Let v = r.~lCjVj be a fixed vector func­
tion in 'FN and suppose that r.~~CjVj'nJ *" O. Suppose
a* = argminaE.wllanJ - r.~lcjvjllo. Then there exists a
constant K such that

v*(n) = E (n, v)ovj
j~l

N

a* =KEcjvj·nJ.
j=l

(18)

(19)

M jj = 1(vi·nJ)(vj·nJ)dO. (22)
n

Using this notation (21) becomes

a = Mb, (23)

In order for II anJ II 0 = 1 there is a restriction on b.
Integrating the square of (20) yields

N N1a Z dO = EEl (Vj ' nJ)(vj' nJ) dO bjbj, (24)
n j= 1 j= 1 n

which is equal to one, which in vector notation becomes

bTMh = 1. (25)

Now IlanJ - v(a)lI~ = 1 - aTa. Thus, it is important to
maximize aTa subject to (25). This maximum occurs when
a and b are eigenvectors of M associated with its largest
eigenvalue. Since M is a symmetric positive semidefinite
matrix, a can be found from the singular value decompo­
sition of M. The vector a would simply be {;;;U l where
IT l is the largest singular value and ul is its corresponding
singular vector. It is this vector of generalized Fourier
coefficients which minimizes the distance to .AQ. For the
case when there are multiple maximum singular values,
any linear combination of the corresponding sin,.g!!lar vec­
tors which has been normalized to a length of VITl results
in an optimal solution. Thus, when the optimal is
nonunique the singular value decomposition of M gives a
characterization for all of the optimal solutions.

As well as providing a tool for calculating the optimal
solution for a given basis the Gramian formulation also
provides a measure that one can use to compare any
other augmenting vector. For an augmenting vector o the
Gramian matrix with respect to the normalized vector
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function v = v /lIvllo is a scalar given by

1
m' = [(ii,' v)(ii,' v) d8 = --2 [(ii,' v)(ii,' v) dt),

In IIvllo In
(26)

If v is in the span of the basis {VI"', VN} then the
Gramian matrix M defined in (22) can be directly used to
determine how close a match v is to the null space. The
vector function v has the form v = E~ICiVi for some set
of real constant scalars c1' c2 , " , CN' Representing v in
the vector form c = [c1 ••• CNY one obtains that

(27)

The closer m' is to one, the closer u is to approximating a
null vector of the desired inverse.

In order to perform the above calculations one must
determine an orthonormal basis for the allowable aug­
menting vectors. At first this may appear to be difficult
since the elements must be gradients as well as orthonor­
mal. Fortunately, there is an easy method for doing this.
Consider a simply-connected region 0 = II X 12 X ... X

In where I, = [ai' bi] with a, < b.. The standard Fourier
functions for the 8i component on the interval I, are
given by

693

)....-'O:::::"'__...1...- x

Fig. 1. Geometry of a planar three degree-of-freedom manipulator with
revolute joints and unit link lengths.

ing the gradient operation on an orthogonal basis other
than (28) will not yield an orthogonal basis of gradients.
For example, if one were to use orthogonal polynomials,
one would not necessarily obtain an orthogonal set of
gradients after differentiating.

IV. A SIMPLE EXAMPLE

In order to illustrate the technique described in the
previous section consider the simple three-link planar
manipulator shown in Fig. 1 which has links of unit
length. The Jacobian for this manipulator is given by

[
- sin 81 - sin 812 - sin (Jm

J-
cos (Jl + cos (J12 + cos (Jm

- sin (J12 - sin (Jm

cos (J12 + cos (Jm

- sin 8m ]
cos (Jm

(29)

where IIil = b, - a., Ci = (a i + b)/2 and K, = ";2/1 1;1­
The Fourier functions on 0, denoted here by Pj' are
simply permutations of the products of the Fourier func­
tions for each I, described by the set given in (28).The set
{pA'21 forms a basis for the scalar functions on O. By
taking the gradient of each Pj one can obtain a basis for a
subset of gradients. It is important to note that this basis
does not span the entire space of gradient functions.
However, the set {Vp}j'21 does form an orthogonal basis
for a proper subset of the gradients (see Appendix B),
which is crucial for the success of this technique. An
example of a set of gradients not obtained by differentiat­
ing the set {p}j '2 1 is the set of gradients represented by
the standard basis {e1, e2 , " , en} on IR n. Since this set is
orthogonal to the set {Vp}j'21' the two sets can be con­
catenated to obtain a larger orthogonal basis. Reducing
this set to N terms and normalizing each element in the
norm 11·110 results in the space 'lYN = span {v i}/': 1 where
each Vi is in the form of a normalized VPj or ej. The space
'lYN forms a closed subspace of .2"2(0) where each mem­
ber is a gradient function. Note that, in general, perform-

where 8i j = (Ji + (Jj" For a simply-connected, singularity­
free subset of the joint space the unit null vector ii J for
this manipulator can be continuously and uniquely de­
fined up to a multiple of - 1. In particular it can be
obtained by normalizing the cross product of the two rows
of the Jacobian:

(30)

where

For this example the desired optimization criterion will be
to minimize the norm of the joint angle velocities. The
exact solution for this criterion is given by the pseudoin­
verse of the Jacobian; however, it is well-known that the
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For the purposes of illustration, the following orthonor­
mal set of nine vector functions will be used

where vj = Vp/IIVpjlln. The Gramian matrix correspond­
ing to r 9 is calculated using (22) and is given below:

{K1e;,Kz cos 48;e;,Kz sin 48;e);=1,Z,3 (32)

where K1 = (2/7T)3/Z, Kz = 4/7T3/Z, and where once
again e, represents the standard basis for ~ 3

• Let r 9
denote the span of the above set. It can be easily verified
that this is an orthonormal subset of r.

The fact that r 9 is closed guarantees that there is an
element in r 9 which is closest to some nJ in AQ. Thus;
from the Projection Theorem it follows that for each
n, EAQ the unique v* E r 9 which minimizes its dis­
tance from n J is given by

pseudoinverse is not repeatable. Since the class of aug­
menting vectors associated with the pseudoinverse is char­
acterized by the null vectors of the Jacobian, the task at
hand is to find a gradient augmenting vector that most
closely matches a null vector of the Jacobian in a simply
connected, singularity-free region n = 11 X Iz X 13 where
I; = [a;, b;l with a; < b, for i = 1,2,3. The boundaries of
this region can be chosen based on the particular physical
constraints of the manipulator or the requirements of the
task being performed. For this example, n will be taken
to be [?r/4,37T/4]3. Thus, (28) becomes

({!;., ); sin4n8;, ); cos4n8;L;"1' (31)

and
S = diag (0.8956, 0.4275, 0.4275, 0.3337,

0.3206,0.2580,0.2495,0.0851,0.0025). (36)
The largest eigenvalue of M is 0.8956 with the corre­
sponding unit length eigenvector

-0.6067 T

0.5407
-0.5449

o
"I = 0.0159 (37)

0.0026
o

-0.1495
0.1412

Thus, the vector function in r 9 which has minimum
distance from AQ is given by

JOr'8::~;:L59J2 a:~~~7_ O.1495J2 ~(402) ].

-0.5449 + 0.0026v2 cos (483 ) - 0.1412v2 sin (483 )

(38)
V. SIMULATION RESULTS

In order to compare the performance of the repeatable
inverse obtained using the technique described above with
that of the desired nonrepeatable inverse (in this case, the
pseudoinverse) a number of simulations were performed.
A representative end effector trajectory for the planar
manipulator used in the example above is given in Fig. 2.
This trajectory was selected so that the starting point is at
the image of the center of the desired operating range n
and so that it is far from any singularities. The initial
configuration for all simulations is taken as 8(0) = [7T/2
7T/2 7T/2jT which is, once again, the center of the desired

(33)
9

V* = E <nJ,V)nVj
j=l

0.4275 -0.2557 0.2579 0.0000 -0.0124 0.0160 0.0000 0.0200 -0.0141
-0.2557 0.2844 -0.2813 0.0000 -0.0073 -0.0040 0.0000 -0.0753 0.0773

0.2579 -0.2813 0.2881 0.0000 -0.0158 -0.0211 0.0000 0.0791 -0.0733
0.0000 0.0000 0.0000 0.4275 0.0000 0.0000 0.0000 0.0000 0.0000

M= -0.0124 -0.0073 -0.0158 OOסס.0 0.2849 -0.0210 0.0000 0.0263 0.0107 . (34)
0.0160 -0.0040 -0.0211 0.0000 -0.0210 0.2915 0.0000 0.0093 0.0258
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4275 0.0000 0.0000
0.0200 -0.0753 0.0791 0.0000 0.0263 0.0093 0.0000 0,2839 0.0287

-0.0141 0.0773 -0.0733 0.0000 0.0107 0.0258 0.0000 0.0287 0.2847

Since M is symmetric it can be decomposed in the form USUT where U is a unitary matrix and S is a diagonal matrix.
For this case

-0.6067 0.0000 0.0000 0.0723 -0.2126 -0.4311 -0.0112 0.6288 0.0076
0.5407 0.0000 0.0000 0.0061 -0.0601 -0.0900 0.0603 0.4485 -0.7008

-0.5449 0.0000 0.0000 -0.0429 0.0624 0.0868 0.0710 -0.4304 -0.7067
0.0000 0.9998 0.0220 OOסס.0 0.0000 0.0000 0.0000 0.0000 0.0000

U= 0.0159 0.0000 0.0000 0.2368 0.6577 -0.3065 -0.6425 -0.0102 -0.0646 (35)

0.0026 0.0000 0.0000 0.4532 -0.6007 0.2961 -0.5813 -0.0592 -0.0684
OOסס.0 -0.0220 0.9998 OOסס.0 0.0000 0.0000 0.0000 0.0000 0.0000

-0.1495 0.0000 0.0000 0.5425 0.3777 0.5873 0.2957 0.3288 0.0173
0.1412 0.0000 0.0000 0.6612 -0.1058 -0.5215 0.3912 -0.3263 0.0156
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1.0

0.8

1.2~ -,,-....::- ---,

Fig. 2. The initial manipulator configuration and the desired end ef­
fector trajectory used in the simulations.

(39)
[

- 0.6367]
v = 0.5434.

-0.5472

pseudoinverse. It is also not surpnsmg that the joint
velocity norm for the repeatable inverse is in some cases
smaller than that of the pseudoinverse solution since the
pseudoinverse is only a local optimum and the manipula­
tor configurations resulting from the two controls are
different. One can quantitatively assess the performance
difference between the two solutions over the entire set of
possible end effector trajectories and initial conditions by
examining m' which provides a measure of the accuracy
to which the desired null vector is matched. By evaluating
(27) using the coefficients from (38) one obtains m' =
0.8956 which is of course identical to U I of M. Since an
exact match of the desired null vector is by definition
given by m' = lone can justifiably argue that the de­
signed repeatable inverse is a good approximation to the
desired pseudoinverse. Unfortunately, it is typically not
possible to analytically determine the maximum value of
m' for the set of all repeatable inverses so that one should
perform the optimization over various different orthonor­
mal bases in order to determine if the resulting perfor­
mance difference is due to the inherent penalty of requir­
ing repeatability.

In order to further illustrate some of the properties of
the repeatable inverses obtained using the technique
shown above, Fig. 4 presents a plot of the norm of the
difference between the joint velocity obtained by using a
repeatable inverse as opposed to the pseudoinverse. Three
different repeatable inverses resulting from three differ­
ent augmenting vectors are compared where each is eval­
uated from the configuration that would result from using
pseudoinverse control. The first augmenting vector is that
given by (38) which is the optimal when using the basis
given by 'r9• The second augmenting vector is given by
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Fig. 3. A comparison of the norm of the joint angle velocityrequired to
follow the trajectory given in Fig. 2 using the pseudoinverse and the
optimal repeatable inverse obtained when using the basis given by r g•

operating range n. Fig. 3 presents a comparison of the
norm of the joint angle velocity required for the end
effector to traverse the trajectory shown in Fig. 2 for both
the pseudoinverse and the repeatable inverse obtained by
using the augmenting vector given by (38). Note that the
norm of the joint angle velocity for the pseudoinverse is
not the same at the start and at the end of the trajectory,
illustrating that it is indeed not repeatable. By comparing
the difference between the norms of the repeatable solu­
tion and the pseudoinverse solution one can qualitatively
claim that the designed repeatable solution is a reason­
able approximation to the desired performance of the

c D

which is the optimal when using the smaller orthogonal
basis 'r3 which is composed of only the three standard
basis vectors {el' ez, e3}.Note that to calculate the optimal
augmenting vector for this basis one must redo the matrix
decomposition on the upper left-hand three by three
partition of M given in (34) since the optimal coefficients
for these terms will in general be different from those
obtained when using additional terms. It is also instructive
to notice that the optimal augmenting vector given by (39)
is very close to the vector that would be obtained by
evaluating the desired null vector given by (30) at the
center of the region of interest n. The third augmenting
vector used in the comparison is given by

(40)

which is selected on the basis of its simplicity as well as
the fact that it effectively results in an isotropic two
degree-of-freedom manipulator configuration at the cen-
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Fig. 4. A comparison of the norm of the difference between a repeat­
able inverse and the pseudoinverse for three different augmenting
vectors. All controls are calculated locally from the configuration that
results from using the pseudoinverse.

ter of n. By comparing the performance of these three
repeatable inverses, it is clear that both of the inverses
that are calculated using the technique illustrated here
perform significantly better than the inverse resulting
from the rather unsophisticated choice of the augmenting
vector given by (40). The performance of the optimal
solutions using the bases 'r3 and 'r9 are comparable
with neither being obviouslysuperior. A quantitative com­
parison of their performance is obtained by noting that
the value of m' for the 'r3 inverse is 0.8674 which is
marginally worse than the 0.8956 value obtained for the
'r9 inverse as would be expected. Both of these values
are far superior to the value of m' = 0.2844 for the
inverse using the simple augmenting vector given by (40).
Thus, even when dealing with a very small number of
functions in the orthonormal basis, one can still obtain a

VI. A SPATIAL SEVEN DEGREE-OF-FREEDOM EXAMPLE

In order to illustrate the generality of the technique
presented here, this section discusses the calculation of an
optimal repeatable inverse for a fully general spatial ma­
nipulator. The manipulator under consideration is the
seven degree-of-freedom manipulator discussed in [15]
which is of a typical anthropomorphic design with a three
degree-of-freedom shoulder, a one degree-of-freedom el­
bow, and a three degree-of-freedom wrist. While the
calculations are more computationally expensive in this
case as opposed to the planar case, the procedure is
identical. In particular, one first selects a region of inter­
est n in the joint space over which the repeatable inverse
is to approximate the desired inverse.'Since this manipula­
tor has seven degrees-of-freedom the region of interest is
given by n = II X 12 X ... X 17 where for the purpose of
illustration the intervals are selected as Is = [- 7T/4, 7T/4]
with all other intervals I, = [7T/4, 37T/4].

The next step is the selection of a finite set of N
orthogonal basis functions which will be used to approxi­
mate the null vector of the desired inverse. As pointed out
in Section III an orthogonal basis for the continuous
real-valued functions can be obtained as the product of
the Fourier functions given in (28). Performing the gradi­
ent operation and normalizing with respect to 1I·lIn yields
an orthonormal basis for a subset of gradients. By prop­
erly scaling the elements of the standard basis {eI , e2 , " ' ,

en}one can add additional elements to make a larger basis
of orthonormal gradients. The number of basis functions
N that one selects depends on the desired accuracy and
the amount of computational expense that one can afford.

. In practice, the terms from the standard basis tend to be
the most significant since they correspond to the "DC"
terms of the generalized Fourier series. Thus, for this
example the orthogonal basis for the allowable set of
augmenting vectors will be chosen as the standard basis
for 1R7 so that N = 7.

After a finite set of orthonormal gradient functions has
been chosen one must now calculate the N by N Gramian
matrix M as given by (22). Each element of M is deter­
mined by an n-dimensional integration over the region n.
This calculation requires the null vector of the Jacobian
which for this example is given by [15]
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(41)

very good approximation of the null vector of the desired where the link lengths g and h will be taken to be 1
inverse. meter. It is important to point out that while such an
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analytical expression for the null vector is desirable, it is
not required. One can always numerically determine the
null vector for a given configuration when calculating (22).
For this example these computations resulted in

697

shown that the optimal coefficients for these basis func­
tions can be easily determined by calculating the singular
vector associated with the maximum singular value of the
Gramian matrix. Examples were presented which illus-

0.0515 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.1861 0.1845 0.0000 -0.1728 0.0000 0.2046
0.0000 0.1845 0.2391 0.0000 -0.2165 0.0000 0.2049

M= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (42)
0.0000 -0.1728 -0.2165 0.0000 0.2501 0.0000 -0.1903
0.0000 0.0000 0.0000 0.0000 0.0000 0.0417 0.0000
0.0000 0.2046 0.2049 0.0000 -0.1903 0.0000 0.2316

desired inverse can be quite good, even when using a
small number of basis functions.

APPENDIX A

Proposition 1: Let v = E;: 1CiVi be a fixed vector func­
tion in 'YN and suppose that E;:1CjVj' nJ =1= o. Let a* =
argmin a E g'lI anJ - E;:1civill~. Then there exists a con­
stant K such that

Note that the fourth row and column of M are identically
zero due to the fact that the null vector for this manipula­
tor never has any component of the fourth joint. Identify­
ing such properties of the null vector can allow one to
immediately discount certain basis functions, such as e4 in
this case, since they will not appear in the optimal aug­
menting vector.

Once the symmetric matrix M has been calculated, its
singular value decomposition M = USU T is used to find
the optimal coefficients for the basis of augmenting vec­
tors. The singular value decomposition of (42) is given by

N

a* = KL CiVi ·nJ •

i=l

(Al)

0.000 0.000 1.000
-0.458 0.439 0.000
-0.520 -0.218 0.000

U= 0.000 0.000 0.000
0.511 0.696 0.000
0.000 0.000 0.000

-0.509 0.525 0.000

and

0.000
0.000
0.000
0.000
0.000

-1.000
0.000

0.000
-0.176

0.826
0.000
0.504
0.000

-0.179

0.000
-0.753
-0.004

0.000
-0.023

0.000
0.658

0.000
0.000
0.000
1.000
0.000
0.000
0.000

(43)

S = diag (0.8154,0.0653, 0.0515,0.0417,

0.0232,0.0029,0.00(0). (44)

The optimal augmenting vector is simply a normalized
version of the singular vector associated with the largest
singular value of M. Thus, the optimal repeatable inverse
would be obtained by using

JO.8154 [0 -0.458 -0.520 0 0.511 0 -0.509] (45)

as the augmenting row of the Jacobian. Note that once
again the vector given by (45) is very close to what one
obtains from evaluating (4l) at the center of n. Further
evidence that the resulting repeatable inverse represents a
good approximation of the desired performance of the
pseudoinverse over the entire range of n is given by
noting that m' = 0.8154.

VII. CONCLUSION

The contribution of this work is a technique for gener­
ating a repeatable generalized inverse which is close to
some arbitrary generalized inverse that possesses desir­
able properties. This technique relies on using orthonor­
mal basis functions to describe a set of possible gradient
functions. While this is in general a formidable task, it
was shown that for this particular application, simple
trigonometric functions are an ideal choice. It was also

Proof: The function a * solves the following prob­
lem:

Minimize 111 anJ - .I:. CiVil12 dO (A2)
n 1=1 2

Subject to 1a 2 ae = 1. (A3)
n

The Euler-Lagrange equation must be satisfied in order
for a minimum to occur. This equation is given by

which becomes

N

2a - 2 LCiVi ·nJ + 2Aa = O. (AS)
i=1
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(l + A)a = L CiUi' li J •

i=1

Since r.~ 1CiUi . Iij *- 0, one obtains

1 N
a = --- L CiUi' li J •

1 + A i=1

By setting K = (1/1 + A), the lemma is proved. Note that
K can be calculated from the fact that a is of unit length
in the norm 11·110. •

Al'PENDIXB

Proposition 2: {VpjIlVpjllolJ=, 1 is an orthonormal set.
Proof: In order to prove the proposition it suffices to

show that any two distinct elements of the set are orthog­
onal. Let j *- k so that Pj *- Pk' Both have the form of the
product of trigonometric functions

Pj = Rlm,(Ol)RzmPJz)'" Rnm.(On)

Pk = Tlp,(Ol)TzP2(OZ)'" Tnp.(On)

where R in and T;n are Fourier functions on Ii of the form
(28). The gradients are

where R:m, and T;'p, represent the derivative with respect
to e, of Rim, and T;p" respectively. The inner product of
VPj and VPk is

f VPj . VPk dO = f t («;n R lm,) (T(p,n TIP,) dO
fl fli= 1 1*1 1*1

t f R:m,T;~, dOin f Rlmllp, dOl'
i=1 Ii 1*1 I[

(B5)

Since Pj *- Pk there is an i such that Rim, *- T;Pi Then
Rim, and T;Pi are orthogonal and since both are of the
form (28), R: m, and T;'Pi are also orthogonal. It thus
follows that
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