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ABSTRACT 

 

 

 

TELOMERE LENGTH AS A BIOMARKER OF EXPOSURE TO INDOOR WOODSTOVE 

SMOKE IN RURAL HONDURAS: A FEASIBILITY FIELD STUDY 

 

 

 

Telomeres, the natural ends of linear chromosomes, are important for maintaining 

genome stability. Telomere length is an inherited trait influenced by a host of lifestyle and 

environmental factors, which have been shown to accelerate the rate of telomere shortening, and 

thus of aging. Indoor air pollution is one of the environmental factors known to influence the 

length of telomeres. It has been reported that people exposed to this kind of contamination, have 

an increased risk for pulmonary diseases, cardiovascular diseases and cancer. The accumulation 

of evidence correlating telomere length with different diseases and chronological age supports 

the use of short telomere frequency as an informative biomarker of general health status and 

aging. Epidemiological studies suggest that increased frequencies of nuclear aberrations 

(micronuclei, buds) are also correlated with exposure to air pollution.  

Here, we confirm the feasibility of conducting field studies to evaluate telomere length in 

populations exposed to indoor air pollution in rural Honduras, and begin to address the question 

of whether telomere length can be used as an informative biomarker of exposure to indoor 

woodstove smoke. Buccal mucosa basal (stem-like) cells were collected from 100 exposed 

individuals in the field (prior to intervention); samples were shipped to US (CSU) for assessment 

of average telomere length (TL) and frequency of short telomeres. Results were correlated with 

age for all participants, and with total number of nuclear aberrations in a subset (20 individuals). 

Initial analyses suggest that frequencies of short telomeres, rather than average telomere length, 
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correlate with total number of nuclear aberrations in those assumed to be the most exposed 

individuals. These preliminary findings require correlation with actual particulate matter 

exposures, as well as confirmation in a larger cohort (studies on-going) 
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INTRODUCTION 

 

 

 

Multiple environmental contaminants, e.g. air pollutants, have been associated with 

telomere shortening (Terry et al., 2008; Hou et al., 2012; Shay, 2016; Naing et al, 2017). One 

example of air pollution is smoke emission from indoor wood-burning cookstoves, used by some 

communities in developing countries. There are also studies suggesting a positive correlation 

between woodstove smoke exposure and development of age-related diseases; e.g., pulmonary 

diseases, cardiovascular diseases, and cancer (Bruce et al., 2000; Kampa et al., 2008; Clark et al., 

2010; Martin et al.,2014). These increased risks are also correlated to telomere length variation 

(Serrano et al.,2004; Bailey et al., 2006; Terry et al., 2008; Shay, 2016). 

Telomeres are the specialized terminal structures of linear chromosomes that have 

essential roles in maintaining genome stability (Figure 1). Telomeres protect the physical ends of 

chromosomes from degradation, preventing chromosomal end-to-end fusion, and from being 

recognized as DNA damage (De Lange, 2005; Bandaria et al., 2016, Blackburn, 2016). Another 

essential function of telomeres is to facilitate the complete replication of the genetic information 

contained within chromosomes. Telomeric repeats progressively erode—approximately 50 to 

200 base pairs with each cell division—in part, due to the end-replication problem; i.e., 

conventional replication machinery is not able to copy the DNA completely up to the very end of 

linear chromosomes (Lindsey et al.,1991; De Lange, 2005; Blackburn et al., 2015). Therefore, 

normal human cells with telomeres of about 10 to 12 Kb in length, can divide 50 to 60 times on 

average before undergoing cell cycle arrest. Natural telomere shortening is a slow process, 

underling how normal eukaryotic cells experience a limited replicative life. When telomeres 

become critically short, the cells enter a permanent cell cycle arrest known as senescence (Harley  
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Figure 1. Schematic representation of telomere structure. A) DNA component, which consist in repetitive G-rich 

sequences. B) Shelterin. Protein complex composed by six proteins interacting among them and with double and 

single stranded DNA. C) The interaction DNA-proteins allows the DNA fold over itself hiding the 3’overhang 

(single stranded DNA) in telomere characteristic protective structure. Image modified from De Lange, 2005. 
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et al., 1990; Campisi, 2013). Accumulation of senescent cells eventually compromises the 

appropriate functioning of different tissues by disrupting cell tissue exchange, triggering aging 

and/or age related diseases (Campisi, 2013; Blasco et al.; Zhao et al., 2014). Organisms are born 

with a genetically determined telomere length (Takubo et al., 2017), as well as a defined number 

of stem cells (Watt et al., 2000; Fuchs et al., 2004; Moore et al., 2006). An increase in cellular 

turnover at the tissue level, e.g., to replace dead or damaged cells, eventually leads to exhaustion 

of stem cell niches (Watt et al.,2000; Fuchs et al., 2004; Moore et al., 2006; Zhao et al.,2014). 

 Cookstove smoke has been studied as a contributing factor that can accelerate cellular 

turnover in tissues like buccal mucosa (Martin et al. 2014), with the consequent increment of 

stem cell divisions, resulting in exacerbation of telomere shortening and premature aging of the 

exposed tissues. Together, such findings suggest a promising possibility, that of using telomeres 

length—specifically the abundance of short telomeres (Hemann et al., 2001; Vera et al., 2012)—

as an informative biomarker of deleterious health effects resulting from a wide range of lifestyle 

stresses and environmental exposures. 

Here, our intent was to evaluate the feasibility of using telomere length as a biomarker of 

indoor woodstove smoke exposure as part of an on-going study in rural Honduras. Buccal 

mucosa tissue (cheek swabs) from individuals exposed to indoor woodstove smoke were 

collected in the field for microscopic examination of basal cells (at CSU). Buccal mucosa basal 

(stem-like) cells divide to generate cellular progeny (progenitor cells) that give rise to more 

differentiated cells, which reside at the base of this stratified tissue (Figure 2). Because the basal 

cells have not experienced a high number of cell divisions, they represent a reliable biomarker 

for the rate of telomere shortening and accelerated telomere shortening resulting from 

contaminant exposure (Thomas et al., 2009). This feature of basal cell allowed us to avoid 
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potential bias, misinterpretations and/or artifacts, which could be introduced by examining more 

rapidly dividing cell populations, or shorter contaminant exposure times. 

Buccal mucosa is a protective oral tissue that reflects contaminants exposures and life 

styles factors, which has been widely used for the study of chromosome instability and DNA 

damage (Thomas et al. 2009). Thus, use of buccal mucosa allowed assessment not only of 

telomere length, but also of nuclear aberrations (micronuclei, buds), which are known to increase 

with DNA damage. Importantly for field studies, buccal mucosa also represented an easily 

accessible tissue for sampling, requiring neither invasive procedure nor causing undue stress to 

the individual. 

We performed cell-by-cell analysis using quantitative interphase Telo-FISH to assess any 

potential association of indoor woodstove smoke exposure and telomere length changes. 

Interphase telomere fluorescent in situ hybridization (Telo-FISH; Figure 3) is a high-resolution 

telomere length measurement approach that facilitates determination of average telomere length, 

as well as individual telomere length distributions and abundance of short telomeres (Meeker et 

al., 2002; Canela et al., 2007; Aubert et al., 2012; Vera et al., 2012; Montpetit et al., 2014). The 

Telo-FISH methodology uses Peptide Nucleic Acid (PNA) telomere probes, and combines 

fluorescence microscopy with digital image acquisition (Poon and Landsdorp, 2001). PNA 

probes are synthetic small oligonucleotides (15-18-mers) with high affinity for single-stranded 

DNA sequences. PNA synthetic probes were designed such that each PNA probe recognized 

three telomeric repeats (TTAGGG), and were directly labeled with fluorochromes. This strategy 

provides a directly proportional relationship between fluorescent intensity (brightness) of 

hybridized telomeric probes and length of the telomere (Vera et al., 2012).  
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Figure 2. Normal buccal mucosa tissue structure with its four typical layers. Graph extracted from Thomas 

et al.,2009. 
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DAPI 

Cy3 

MOM030 MOM074 TAB002 

Figure 3. Image capture examples for telomere length measurements. Basal cells from three different 

individuals identified as: MOM030, MOM074, and TAB002. Top panel: DAPI for nuclear stain. 

Bottom panel: PNA probe fluorescently labeled with Cy3 fluorochrome for telomere visualization.   
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Importantly, interphase Telo-FISH also lends itself well to convenient “in field” sampling 

conditions and associated limited lab accessibility, as well as to evaluation of nuclear 

aberrations. Total nuclear aberrations are commonly used as biomarker of DNA damage in 

epidemiological studies (Thomas et al., 2009) and have been associated with exposure to 

environmental contaminants such as air pollution, specifically in buccal mucosa cells (Pastor et 

al., 2003; Thomas et al.,2009; Bolognesi et al., 2013). Therefore, in conjunction with 

determination of telomere length, total nuclear aberrations were also quantified in a subset of 

collected samples (n=20). Total nuclear aberrations (TNA) were scored in 2000 cells/individual 

and included: 1) micronuclei (MNi), small bodies formed when DNA is fragmented and not 

incorporated into the main nucleus (i.e., lagging fragments), and 2) nuclear buds (NBUDs), 

which appear as secondary nuclei near or attached to the main nucleus (Figure 4; Thomas et 

al.,2009).  

Telomere length results were correlated with age for all participants and with total 

number of nuclear aberrations in selected subset. Initial analyses suggest that frequencies of short 

telomeres, rather than average telomere length, correlate with total number of nuclear aberrations 

in those assumed to be the most exposed individuals. These preliminary findings require 

correlation with actual particulate matter exposure (Clark et al., 2010), as well as confirmation in 

a larger cohort (studies on-going). 
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Figure 4. Origin sequence of the probable different cell types present in the buccal mucosa tissue 

showing the time relation with the differentiation events. Inside the red circle are the target cells  

for this study, Basal cell/Normal basal cell for telomere length measurement and Basal cell with  

MN/NBUD for nuclear aberrations. Image modified from Thomas et al.,2009. 
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RESULTS 

 

 

 

Telomere length (TL) measurements and analysis 

As part of an on-going study in rural Honduras (Clark), telomeres length (TL) was 

measured in buccal mucosa progenitor basal cells collected from 100 participants exposed to 

indoor woodstove smoke. Average TL for each participant was established, as was the frequency 

distribution of average TL for the population (Figure 5). Although participants ranged in age 

from 25-55 years old, approximately 86% of the individuals had similar average telomere length 

(average=90; range 80-100), with only 7% having shorter telomeres, and 6% having longer 

telomeres than average. 

We then generated frequency distributions to appreciate the percentage of short telomeres 

per individual, which was more informative than average TL. For the entire cohort, a binomial 

distribution of percent short telomeres was observed (Figure 6); i.e., ~50% of the individuals had 

a high frequency of short telomeres, and ~50% had a low frequency of short telomeres, which 

did not correlate with age (e.g., young vs old).  
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Total nuclear aberration quantification 

Total nuclear aberrations (micronuclei and buds) in buccal mucosa cells (Figure 7) are 

commonly used in epidemiological studies as biomarkers of air pollution exposure, as they 

directly correlate with other biomarkers commonly used in the field, such as particulate matter, 

also known as particulate pollution (Pastor et al., 2003; Thomas et al.,2009). Quantification of 

total nuclear aberrations (TNA) in a subset of samples (n=20) from the entire cohort is presented 

as a frequency histogram (Figure 8), which illustrates a distribution of individuals with and 

without TNA, ranging from no TNA (5%) up to a maximum value of 29 TNA (5%), with a 

median value of 4.5 and a mean of 7.1. 
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Figure 7- Differentiated buccal mucosa cells, 

the image show (signaled by arrows) 

examples of nuclear bud (a) (NBUD), broken 

egg cell(b) quantified as NBUD; and (c) 

micronuclei (MNi).   
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Correlation analyses 

We next sought to identify other factors influencing the observed variations of telomere 

length in the individuals of this exposed population. To evaluate possible influence of age in our 

results, we correlated average telomere length with the age of each participant (ranged 25-55 

years old; n=100). Calculated Pearsons and Spearman correlation coefficients did not find 

correlation between age and average telomere length (Figure 9). Similarly, there was no 

correlation between age and frequency of short telomeres (Figure 10), allowing us to eliminate 

age as a confounding factor in this cohort. No correlation of TL with age is consistent with 

expectations, as buccal mucosa stem-like basal cells have telomerase activity and undergo a low 

turnover rate by definition, so minimal TL shortening occurs in this cell type. Further, the age 

range under consideration (25-55 years old) has been reported as a plateau region for telomere 

shortening; i.e., no significant variation in TL has been observed (Aubert et al., 2008).  

We also evaluated the correlation between average telomere length and the percentage of 

short telomeres to confirm the relative dependence of these two parameters (Figure11). As 

expected a negative correlation was observed, thus validating our measurements. It also becomes 

obvious that individuals with same average telomere length present significant differences in 

percentage of short telomeres, a finding consistent with our previous studies (Zahran et al., 

2015). 

Lastly, we analyzed possible correlations between average telomere length or percent 

short telomeres and TNA in a subset of individuals (n=20), and found no correlation between any 

of the parameters (Figures 12 and 13). 



 16 

In summary; neither TL and age, nor TL and TNA were not correlated in any statistically 

significant way. Importantly, percent short telomeres and average TL were negatively correlated 

(as percent short telomere increases, average TL decreases) validating the methodology used. 
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Figure 11. Scatter plot showing the negative correlation between short telomere percentage and average 

telomere length. For each person, average telomere length includes all telomeres length intensities, and 

short telomere percentage consider the fraction of telomeres with low intensity combined to the rest of 

telomere length from the intensity distribution per person. 
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Figure 12. Average telomere length and total nuclear aberrations scatter plot. TNA were quantified in a 

subpopulation of participants. We found no correlation between average telomere length and TNA. 
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Figure 13. Short telomere percentage and total nuclear aberrations scatter plot showing no correlation 

between them in a total of 20 individuals (same individuals from figure 12).  
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Results interpretation  

We speculated that modeling the appearance of short telomeres or the increase in the 

frequency of cells with short telomeres due to a “catalyst” (e.g., exposure) would improve 

interpretation of these results. Since the link between external contaminants, in this case indoor 

woodstove smoke, and short telomeres is indirect, we chose the presence of total nuclear 

aberrations (TNA) in the entire buccal mucosa cell population as a direct measure of air pollution 

exposure to establish a correlation. It has been shown that high levels of exposure are necessary 

to increase TNAs (Thomas et al., 2009). Thus, we reasoned that the level of exposure (high vs 

low) to indoor woodstove smoke could be inferred based on TNAs; i.e., TNA provide a valuable 

link between woodstove smoke exposure and increased frequency of short telomeres.  

Epidemiology studies have established 0.3% as an accepted background frequency of 

TNA in non-exposed control groups (Thomas et al. 2009). Extrapolation of this normal 

frequency to our exposed cohort allowed us to establish two groups—one considered normal or 

relatively low exposure, and one more highly exposed population. A background frequency of 

0.3% correspond to 6 aberrations per 2,000 cells (equivalent to 3 per 1,000 or 0.3%). Therefore, 

one group consisted of individuals having a low number of TNA (values under 0.3%), and the 

other group consisted of individuals having a high number of TNA (values above 0.3%) (Figure 

14). It is noteworthy that this two groups were not arbitrarily formed based on any statistical 

assumption, but rather were formed based on biological assumption, as higher levels of smoke 

exposure have been shown to produce increased numbers of TNA. 

There was no correlation between average TL and either lower or higher number of TNA 

(Figures 15 and 17). For individuals presenting lower numbers of TNA, there was also no 

correlation between percent short telomeres and TNA (Figure 16). However, for individuals who 
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presented higher numbers of TNA, a positive correlation between percentage of short telomeres 

and TNA was found (Figure 18). Based on our assumption that TNAs reflect woodstove smoke 

exposure level, and although a small sample size, this positive correlation between percentage of 

short telomeres and TNA provides support for using of percentage of short telomeres—rather 

than average TL—as an informative biomarker of indoor woodstove smoke exposure in field 

studies.  

  



 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

P
A
H
 0

26

M
O
M

 0
76

M
O
M

 0
41

M
O
M

 0
21

O
LO

 0
21

P
A
H
 0

15

M
O
M

00
3

M
O
M

 0
93

M
O
M

 0
75

O
LO

 0
26

C
A
C
 0

60

M
O
M

 0
90

M
O
M

 0
29

M
O
M

 0
51

O
LO

 0
93

M
O
M

 0
25

M
O
M

 0
78

M
O
M

 0
17

C
ER

 0
39

TA
B
 0

03

0

6

12

18

24

30

IDs

T
o

ta
l 
N

u
c

le
a

r 
A

b
e

rr
a

ti
o

n
 (
#

)

Total Nuclear Aberration

Total number of values

Number of excluded values

Number of binned values

Minimum

25% Percentile

Median

75% Percentile

Maximum

Mean

Std. Deviation

Std. Error of Mean

Lower 95% CI of mean

Upper 95% CI of mean

Total Nuclear Aberration

20

0

20

0.0

2.0

4.5

7.75

29.0

7.1

7.75208

1.73342

3.47191

10.7281

Figure 14. Histogram showing low and high number of TNAs with respect to 0.3% normal background 

level (Thomas et al. 2009). 

 

0.25

0.65

0.85

0.3

1.45

0

0.2 0.2

0.4
0.35

0.9

0.35

0.1 0.1 0.1

0.2

0.3

1.15

0.05 0.05

0

0.3

0.6

0.9

1.2

1.5

Fr
eq

u
en

cy
 o

f 
To

ta
l N

u
cl

e
ar

 A
b

e
rr

at
io

n
s 

(%
)

Individuals  (CodeName)

Total Nuclear Aberrations  (TNAs)



 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

80 90 100 110
0

2

4

6

Average telomere length (TFI)

T
o

ta
l N

u
c

le
a

r 
A

b
e

rr
a

ti
o

n
s

 (
#

) 

Average Telomere Length vs TNA

Spearman r

r

95% confidence interval

P value

P (two-tailed)

P value summary

Exact or approximate P value?

Significant? (alpha = 0.05)

Number of XY Pairs

Average TL
vs.
total aberrations

0.3713

0.2911

ns

Exact

No

10
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Figure 16. Scatter plot showing no correlation between short telomere percentage and the 10 individuals 

who present low number of TNA.  
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DISCUSSION 

 

 

 

It has previously been shown that air pollution can accelerate the rate of telomere 

shortening, (Hoxha, et al., 2009; Hou, et al., 2012; Zhang, et al., 2013). The study presented here 

represents the first evaluation of whether telomere length can be used as an informative 

biomarker of indoor woodstove smoke exposure in rural Honduras. Insights into the potential 

contribution of indoor air pollution from wood-burning stoves to telomere length shortening, and 

thus to general health status, are reported. 

Overall, we demonstrate the feasibility of such field studies, finding that the percent of 

short telomeres—rather than average telomere length—may be a potentially informative 

biomarker of individual indoor smoke exposure. Ease of collection of buccal mucosa in the field, 

as well as selection of basal (stem-like) cells under the microscope, were shown to be preferred 

for TL analyses, as age was not a confounding factor.  

Total nuclear aberrations (micronuclei and buds) are well-accepted biomarkers of DNA 

damage, commonly used to evaluate exposure to high levels of smoke; specifically, increased 

frequencies of total nuclear aberrations (TNA) in buccal mucosa cells are indicative of air 

pollution exposure (Thomas et al., 2009). Although data on woodstove smoke exposure levels 

for participants in the current study were not yet available, we utilized TNA frequencies to 

segregate a subset of 20 individuals into two groups; one with lower than background numbers 

of TNA, and one with higher. For individuals with lower numbers of TNA, there was no 

correlation between percent short telomeres and TNA (Figure 15). On the other hand, for 

individuals with higher numbers of TNA there was a positive correlation between the percent of 

short telomeres and TNA (Figure 16). Therefore, initial findings suggest that frequencies of short 
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telomeres, rather than average TL, correlate with number of TNA in those assumed to be the 

most exposed individuals. These preliminary results require correlation with actual particulate 

matter exposures, as well as confirmation in a larger cohort (studies on-going).  
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MATERIALS AND METHODS 

 

 

 

Sample collection and processing 

Buccal mucosa is an accessible tissue for no invasive cell sample collection. The samples 

were collected “in field” from different rural communities at Honduras. The samples were taken 

from the right and left inner cheeks, using a different small headed toothbrush per cheek, by 

applying a circular motion to the area. Then, both toothbrushes were submerged in a 30ml sterile 

sample and transport tube (Biomedical Marketing Associates, Wexford, PA) containing 20 ml of 

fixative and transport medium (Fisher HealthCare™ PROTOCOL™ Saccomano Fluid, Thermo 

Fisher Scientific). This allows the sample to be pre-fixed, keeping them in good conditions up to 

one month. Then the samples were shipped from Honduras to U.S.  

Once in the lab, the fixation process is completed. First, samples were vortexed, and the 

toothbrushes extracted from the tube. Next, the we centrifuged the samples and discarded the 

supernatant, leaving about two milliliters, which allow us disaggregated the possible cell clumps 

and aggregates with a syringe and needle. Finally, the cells were pelleted, washed, re-suspended 

with 75 mM hypotonic Potassium Chloride buffer (KCl, Fisher Chemical, Fair Lawn, NJ, USA) 

at 370C for 30 minutes and then fixed with fresh prepared Carnoy solution (3:1 v/v Methanol: 

Glacial Acetic Acid; Fisher Chemical, Fair Lawn, NJ, USA, and Mallinckrodt Chemicals, 

Phillipsburg, USA, respectively). At this point, the processed samples can be stored for years or 

slides can be dropped to be used for telomere length measurement using Telo-FISH technique.  

After the fixation was completed, we dropped on clean glass microscope slides (Platinum Line™ 

Mercedes Medical, Sarasota, FL), air dried and overnight sated.  
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Figure 19. Schematic flow chart of sample collection and processing  
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Cell culture  

Human foreskin keratinocytes, immortalized hTERT-BJI (ATCC, Manassas, VA, USA), 

were cultivated in DMEM (Corning Cellgro, Manassas, VA, USA) supplemented with 10% (v/v) 

fetal bovine serum (FBS, Sigma Aldrich), as recommended by manufacturing grown, in 95% air 

and 5% CO2 incubator at 370C. This cell line was trypzinized (Trypsin-EDTA, Gibco® by Life 

Technologies, Canada), collected in 15 ml-Falcon tubes, pelleted, re-suspended, and treated with 

75 mM hypotonic buffer Potassium Chloride (KCl, Sigma Aldrich), at 370C for 30 minutes. 

 Finally, the cell suspension was fixed with fresh prepared Carnoy solution, 3:1 v/v 

Methanol: Glacial Acetic Acid, (Fisher Chemical, Fair Lawn, NJ, USA, and Mallinckrodt 

Chemicals, Phillipsburg, USA, respectively). Clean glass microscope slides (Platinum Line™ 

Mercedes Medical, Sarasota, FL) were dropped, air dried and overnight sated. This sample was 

used as control for telomere length measurement using Telo-FISH technique.  

 

Collection of Interphase and Quantitative-Fluorescence “in situ” Hybridization analysis (Q-

FISH) 

To obtain interphases cells, the collected samples were processed, and the fixed cell 

suspensions were dropped on glass microscope slides (Platinum Line™ Mercedes Medical, 

Sarasota, FL) as described in previous section. Then the slides were re-hydrated by placing them 

in a Coplin jar containing 1X PBS for 15 minutes at room temperature.  

Q-FISH staining was performed following current lab protocol. To visualize telomeres, 

we use PNA Cy3-labeled telomeric probes (TTAGGG3, Biosynthesis, Lewisville, TX) prepared 

by diluting 5 μl of probe in 36 μl of formamide (Sigma Aldrich), 12 μl of 0.05 M TRIS buffer, 

2.5 μl of 0.1 M KCl (Sigma Aldrich), and 0.6 μl of 0.1 M Magnesium Chloride (MgCl, Sigma  
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Aldrich). Probe mix (50 μl) was applied to each slide, which was then cover-slipped and 

denatured at 75°C (5 min). Slides were incubated at 37°C for 2 h, then washed in a series of 

43.5°C washes for 2.5 min each; washes twice in: 50% formamide in 2X sodium citrate (SSC); 

then twice in: 2X SSC; and finally, 2 washes of: 2X SSC + 0.1% NP40. Slides were 

counterstained for nuclei visualization with 50 μl of DAPI (4’,6-diamidino-2-phenylindole; 

Prolong Gold Anti-fade, Invitrogen, Carlsbad, CA), cover-slipped (Platinum Line ® Cover glass 

22x40 #1). Slides were processed in sets of five, four samples plus one control, to limit 

variability between sample runs. 
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Figure 20. Graphic example of slide preparation to be used in Interphase Telo-FISH. Picture modification 

from original at http://www.creative-bioarray.com/protocol/fluorescence-in-situ-hybridization-fish-

Protocol.htm 
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Imaging  

The images were acquired with a Zeiss Axio Imager Z2 microscope (Carl Zeiss, 

Thornwood, NY, USA) equipped with a Coolsnap ES camera (Photometrics, Tucson, AZ, USA) 

and running Metamorph software (Molecular Devices, Sunnyvale, CA, USA). The imaging was 

performed by random manual selection of 50 interphases from each sample slide, using 100X 

magnification and immersion oil objective. We took 26 individual stack images with 0.2 um 

steps size down and up from the better focal plane. The images were captured in two different 

channels—DAPI and Cy3—and stored for later analysis. 

Prior to every sample imaging, images of 0.2 μm orange fluorescent beads (540/560, 

Molecular Probes) slides using Cy3 wavelength were captured stored. These images were used to 

verify the saturation levels, exposure time and to calibrate the system intensity. In addition, we 

took images of our biological control slides, prepared by dropping hTERT-BJI cell line (ATCC, 

Manassas, VA, USA) and identically prepared as sample slides. All the measurements were 

based on area and fluorescent intensity. 

 

Images processing  

The analysis of telomere fluorescence intensities was made with free downloaded 

software called TELOMETER, an ImageJ plugin. Telomere signals from target cells were 

analyzed using customizing settings for this specific cell type. A telomere frequency distribution 

histogram was generated based on the telomere fluorescent intensities for each sample. 
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Total nuclear aberration quantification  

To perform the quantification of total nuclear aberrations, we used an aliquot of single 

cell suspension of 20 samples from the total (n=100). We dropped 20 μl onto clean glass 

microscope slides (Platinum Line™ Mercedes Medical, Sarasota, FL) and checked their quality 

before the staining. We quantify total nuclear aberration of 2000 cells per sample slide. The 

slides preparation was made by placing them for 1 minute in a Coplin jar with 50% Ethanol 

(Fisher Chemical, Fair Lawn, NJ, USA) and then transferred to a Coplin jar with 20% Ethanol (1 

minute). Then, washed for 2 minutes with MilliQ water and 30 minutes of incubation in 5M 

Chloridric Acid (Mallinckrodt Chemicals, Phillipsburg, NJ, USA). Finally, rinsed under running 

tap water and placed them for 60 minutes in a Coplin jar with Schiff’s reagent (Sigma Aldrich), 

at room temperature, protected from light. The slides were washed under running tap water 

followed by a quick rinse in MilliQ water. We counter stain the slides with 0.2% p/v Light Green 

for 15-20 seconds, rinse and let them dry. These slides can be stored at 40C for later examination, 

and nuclear aberrations (MNi + NBUDs) quantification. 
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Figure 21. Buccal mucosa cell population. Example of the different cells types (Feulgen stain, fluorescent 

microscopy visualization) found in the analyzed samples. Image modified from Thomas et al.,2009. 
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