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Abstract

This paper proposes a functional dynamic factor model for the evaluation of the

impact of scalar– and curve–valued factors on the shapes of intraday price curves.

The asymptotic theory leads to practically useful confidence intervals for the factor

coefficients. The main findings pertain to the impact of the shapes of intraday oil

futures on the shapes of intraday prices of blue chip stocks.
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1 Introduction

In its simplest form, the Capital Asset Pricing Model (CAPM) is defined by the straight

line regression

rn = α + βrm,n + εn, (1.1)

where

rn = 100(lnPn − lnPn−1) ≈ 100
Pn − Pn−1

Pn−1

(1.2)

is the excess return, in percent, over a unit of time, and rm,n is the analogously defined

return on a relevant market index. The unit of time can be day, month or year, with the

classical theory initiated by Markowitz (1959), Sharpe (1964), Lintner (1965) and Black

(1972) pertaining to a static model for annual returns. The one–factor model (1.1) has

been extended to multifactor models, but there has been little research on the extension of
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the fundamental ideas of the theory of finance contained in the CAPM and factor models

to the intraday price curves.

Traditional financial models, such as CAPM, deal with point-to-point returns (using

the closing prices at day/month/year t and t− 1). This approach completely depends on

the points at which the prices are taken and totaly ignores the price curve, that is how

price moves from t−1 to t. Thus, if the price at t is equal to the price at t−1, the return is

just zero. However, the path from t− 1 to t certainly contain some information about the

evolution of the price. In statistical terminology, this means that if price data are treated

as discrete time series, important information about the smooth functional behavior of

the price generating process may be ignored. Functional Data Analysis (FDA) methods

can often extract additional information contained in the function that is not normally

available from application of traditional statistical methods. In contrast to traditional

high–frequency data analysis, FDA methods focus on low frequency components and

extract information which may be ignored by the usual time series based high frequency

methods. Because the FDA approach treats the whole curve as a single entity, there is

also no concern about correlations between repeated measurements. This represents a

change in philosophy towards the handling of time series and correlated data.

We study daily curves of intraday cumulative returns (CIDR’s) defined as follows.

Definition 1.1 Suppose Pn(tj), n = 1, . . . , N, j = 1, . . . ,m is the price of a financial

asset at time tj on day n. The functions

Rn(tj) = 100[lnPn(tj)− lnPn(t1)], j = 1, 2, . . . ,m, n = 1, . . . , N,

are called the cumulative intraday returns (CIDR’s).

The CIDR’s were introduced by Gabrys et al. (2010) as a way of transforming the price

curves to stationarity in the daily index n, Horváth et al. (2014) provide a formal test of

their stationarity. Since rn(tj) ≈ 100(Pn(tj)−Pn(t1))/P (t1), with Pn(t1) being a constant

for a given day n, the price and the CIDR curves look very similar. We work with

one minute averages, so tj+1 − tj = 1 min, and P (tj) is the average of the maximum

and minimum price within the jth minute. Our objective is to propose a regression type

model in which the impact of curve–valued factors on the CIDR’s on individual assets can

be statistically evaluated. The central question we seek to answer is whether additional

factors beyond CIDR’s on a market index are statistically significant. The CIDR’s, which

are functions (or curves), have not been studied in economic literature, and no financial

theory in the vein of Merton (1973) or Ross (1976) is available. Instead, we develop a

statistical methodology in the framework of Functional Data Analysis (FDA), with some
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hope that our research will stimulate relevant advances in financial theory. We treat the

CIDR’s as continuous curves, one curve per day. For every fixed day, these curves exhibit a

specific pattern, typically with some upward or downward trend, which may reverse during

a trading day. It is therefore natural to study the statistical behavior of the CIDR’s

within the framework of FDA which treats the curves as complete statistical objects,

rather than as collections of a large number of individual observations. In the following,

we describe only the tools of FDA we need; Horváth and Kokoszka (2012) and Hörmann

and Kokoszka (2012) contain the relevant broader background on functional time series.

Ramsay and Silverman (2005) provide a comprehensive introduction to the ideas of FDA.

All applications of FDA assume that the data can be converted to continuous curves. The

methodology presented in this paper assumes that the intraday price data are available

at a fine temporal resolution throughout the trading day. This is the case for the data

which motivate this research. Conversion of such data to smooth curves is not the focus

of this paper. Technical details are explained in Ramsay et al. (2009).

An extension of the CAPM (1.1) to CIDR’s can be defined by the functional regression

Rn(t) = β0(t) + β1Mn(t) + εn(t). (1.3)

We consider a more general factor model defined in (2.1). The statistical framework

we develop allows us to test if additional factors beyond market CIDR’s, Mn(·), are

significant. The factors can be scalars or functions. For example, would the predictions

be better if (1.3) were replaced by

Rn(t) = β0(t) + β1Mn(t) + β2Sn + β3Hn + εn(t), (1.4)

where Sn and Hn are the Fama–French factors (defined in Section 4)? For a stock of an

energy company or an airline, it is natural to consider the model

Rn(t) = β0(t) + β1Mn(t) + β2Cn(t) + εn(t), (1.5)

where Cn(t) are the CIDR’s on oil futures. Is the coefficient β2 significant for such compa-

nies? Is it significant for companies in the IT sector? The intuition we have regarding such

questions is based on daily or lower frequency returns, see e.g. Jones and Kaul (1996),

Park and Ratti (2008) and Narayan and Sharma (2011). Regression (1.5) quantifies the

dependence between between “standardized” price curves, essentially the dependence be-

tween their shapes. To obtain such insights, we develop an asymptotic theory for the

estimation of the parameters in models like (1.4) and (1.5) which allows us to develop

tests for the significance of specific regression coefficients, like β2 in (1.5). Models with
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several regression functions have not been studied in FDA literature; the focus has been

on models with a single regressor, like (1.3), but with functional regression coefficients,

that is in place of β1Mn(t),
∫
β1(t, s)Mn(s)ds has been used see e.g. Chapter 8 of Horváth

and Kokoszka (2012). Such models are difficult to estimate even if the functions Mn are

independent. For financial data, the temporal dependence would require the estimation of

a high dimensional covariance matrix, which is a difficult. The simpler model with scalar

coefficients leads to accurate asymptotic confidence intervals for scalar coefficients which

are readily interpretable. The sign of a coefficient like β2 in (1.5) also has an obvious

interpretation.

A different class of functional factor models was recently proposed by Hays et al. (2012).

These models, introduced to forecast yield curves, say Xn, are of the form

Xn(t) =
K∑

k=1

γnkFk(t) + εn(t). (1.6)

In contrast to (1.4) or (1.5), the factors Fk do not depend on n and are orthonormal

functions to be estimated. The dynamics are in the coefficients γnk which are assumed to

follow Gaussian autoregressive processes (the εn are also Gaussian). Model (1.6) could be

termed a statistical factor model. It is designed for temporal forecasting, while our model

is designed for regression type prediction in which the correlation structure of factors plays

a major role. Earlier contributions to curve forecasting include Diebold and Li (2001),

Kargin and Onatski (2008), Bowsher and Meeks (2008), Shen (2009), Koopman et al.

(2010). A functional approach was also used to model intraday volatility, Müller et al.

(2011), and to test temporal predictability, Kokoszka and Reimherr (2013).

We note that it is, in principle, possible to replace the scalars β1 and β2 in (1.5) by

integral operators, e.g. β1M(t) could be replaced by
∫
β1(t, s)M(s)ds. For model (1.3),

such an extension leads to the extensively studied fully functional linear model, see e.g.

Chapter 8 of Horváth and Kokoszka (2012). In the case of model (1.3), estimation of

the kernel β1(t, s) has been extensively studied, but the results of Kokoszka and Zhang

(2012) show that, for intraday price data, the more complex model does not lead to better

predictions than a simple model which uses only a scalar coefficient.

The paper proceeds as follows. In Section 2, we propose an estimation procedure

for our model and show that the estimators are consistent and asymptotically normal

under general conditions which admit temporal dependence. Section 3 outlines how the

theory presented in Section 2 can be used to evaluate the significance of the factors. This

methodology is applied to U.S. Stocks in Section 4. The contribution of the paper and

main conclusions are summarized in Section 5, while the proofs of the results of Section 2

4
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are presented in Section 6.

2 The functional factor model and its estimation

It is convenient to write the model considered in this paper as

Rn(t) = β0(t) +

p∑

j=1

βjFnj(t) + εn(t), (2.1)

where the εn are mean zero error functions. All factors are nominally functional, but

scalar factors are allowed, by treating scalars as constant functions. In our asymptotic

setting, the interval on which all functions are defined is normalized to be the unit interval

[0, 1], so in various integrals appearing below, constant functions behave exactly as the

constants they represent. The parameters of the model are the mean function β0(·) and
the vector of the coefficients:

β = [β1, . . . , βp]
T .

Before describing the estimation in model (2.1), we introduce briefly the requisite func-

tional setting. We provide only the minimal required background; a reader interested in

a broader perspective is referred to Bosq (2000) and Horváth and Kokoszka (2012). All

functions are assumed to be random elements of the Hilbert space L2 of square integrable

functions on [0, 1] with the inner product 〈f, g〉 =
∫
f(t)g(t)dt. When no limits of inte-

gration are indicated, the integral is over the whole interval [0, 1]. Every element of L2 is

square integrable in a sense that ‖f‖2 =
∫
|f(t)|2dt < ∞. However, when X is a random

function taking values in L2, its square integrability means that E ‖X‖2 < ∞. With this

background, we can derive the estimators. Set

R̄(t) =
1

N

N∑

n=1

Rn(t), Rc
n(t) = Rn(t)− R̄(t);

F̄j(t) =
1

N

N∑

n=1

Fnj(t), F c
nj(t) = Fnj(t)− F̄j(t);

ε̄(t) =
1

N

N∑

n=1

εn(t), εcn(t) = εn(t)− ε̄(t).

Computing sample means of both sides of (2.1), we get

β0(t) = R̄(t)−
p∑

j=1

βjF̄j(t)− ε̄(t).

5

Page 5 of 23

http://mc.manuscriptcentral.com/jfec

Manuscripts submitted to Journal of Financial Econometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Inserting the above into (2.1), we obtain

Rc
n(t) =

p∑

j=1

βjF
c
nj(t) + εcn(t). (2.2)

Since

β0(t) = µR(t)−
p∑

j=1

βjµj(t),

where

µR(t) = ERn(t), µj(t) = EFnj(t),

the mean function is estimated by

β̂0(t) = R̄(t)−
p∑

j=1

β̂jF̄j(t), (2.3)

with appropriate estimators β̂j. These can be derived using the method of of moments as

follows. In light of (2.2), set

S(β) = E

∥∥∥∥∥R
c
n −

p∑

j=1

βjF
c
nj

∥∥∥∥∥

2

= E ‖Rc
n‖2 +

p∑

j=1

p∑

k=1

βjβkE
〈
F c
nj, F

c
nk

〉
− 2

p∑

j=1

βjE
〈
Rc

n, F
c
nj

〉
.

Note that
∂S(β)

∂βj

= 2

{
p∑

k=1

βkE
〈
F c
nj, F

c
nk

〉
− E

〈
Rc

n, F
c
nj

〉
}
.

The vector β(m) minimizing S(β) thus satisfies

Rc = Fcβ
(m), β(m) = F−1

c Rc,

where

Fc =
[
E
〈
F c
nj, F

c
nk

〉
, j, k = 1, 2, . . . , p

]
(p× p),

Rc =
[
E
〈
Rc

n, F
c
nj

〉
, j = 1, 2, . . . , p

]T
(p× 1).

An β thus is

β̂ = F̂−1R̂, (2.4)

where

F̂ =

[
N−1

N∑

n=1

〈
F c
nj, F

c
nk

〉
, j, k = 1, 2, . . . , p

]
(p× p), (2.5)
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R̂ =

[
N−1

N∑

n=1

〈
Rc

n, F
c
nj

〉
, j = 1, 2, . . . , p

]T
(p× 1). (2.6)

Estimator (2.4) is essentially a least square estimator, except that we must correct for the

unknown mean function, which is estimated by the method of moments.

The remainder of this section is devoted to the consistency and the asymptotic normality

of estimators (2.4) and (2.3). Our first assumption ensures the existence of moments

required to justify the derivation above.

Assumption 2.1 The factors Fnj and the errors εn are random elements of the space

L2 which satisfy E ‖Fnj‖4 < ∞, E ‖εn‖4 < ∞, and Eεn = 0. Moreover, for each n, the

error functions εn are independent of the factors Fnj, 1 ≤ j ≤ p.

Classical multifactor models going back to the 1970’s are essentially one period models,

see e.g. Chapter 6 of Campbell et al. (1997), with the period being typically one year. In

applications for which model (2.1) was designed, for each j, Fnj is a sequence of functions,

one function per day. These are thus dynamic factors, and their temporal dependence

cannot be ignored. Very little is known about the structure of this dependence, so an

inclusive and general form of dependence must be postulated. The above discussion

motivates our next assumption.

Assumption 2.2 Suppose sequences {δn} and {ηn} consist of iid random variables tak-

ing values in measurable spaces Sδ and Sη, respectively. Assume there are measurable

functions fj and e defined on the appropriate product spaces, such that

Fnj = fj(δn, δn−1, . . .), εn = e(ηn, ηn−1, . . . ).

Assumption 2.2 implies that the factors and the errors are stationary and ergodic random

sequences taking values in L2. Ergodicity follows from the general results which states

that Bernoulli shifts, i.e. nonlinear moving averages of the form defined above, are ergodic,

see e.g. Theorem 36.4 of Billingsley (1995). Ergodicity implies that sample averages of

integrable functionals of the sequences Fnj and εj converge a.s. to their expectations. This

is needed to establish the consistency of the estimators. Assumptions similar to 2.2 have

been used extensively in recent theoretical work, as all stationary time series models in

practical use can be represented as Bernoulli shifts, see Wu (2005), Shao and Wu (2007),

Aue et al. (2009), Hörmann and Kokoszka (2010), among many other contributions. It

must be emphasized that they have been used in econometric research even earlier, and the

work of Pötscher and Prucha (1997) contributed to their popularity. The representation
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εn = e(ηn, ηn−1, . . . ) admits heteroskedastic models for the errors, like those studied in

Hörmann et al. (2013) or used in Kokoszka and Reimherr (2013).

To formulate our consistency result, we introduce the matrix

F = [E 〈Fnj − µj, Fnk − µk〉 , j, k = 1, 2, . . . , p] (p× p). (2.7)

Theorem 2.1 Suppose Assumptions 2.1 and 2.2 hold and the matrix F defined by (2.7)

is nonsingular. Then

β̂
a.s.→ β and

∫ (
β̂0(t)− β0(t)

)2
dt

a.s.→ 0.

Theorem 2.1 is proven in Section 6.

To establish the asymptotic normality, we must impose stronger moment and weak

dependence conditions. The conditions we have chosen are justified by their generality

and the fact that they have been shown to hold for all known models for temporally

dependent functions, see Hörmann and Kokoszka (2010, 2012), or Chapter 16 of Horváth

and Kokoszka (2012). Suppose H is a separable Hilbert space. Let p ≥ 1 and let Lp
H be

the space of H–valued random elements X such that

νp(X) =
(
E‖X‖p

)1/p
< ∞.

Definition 2.1 A sequence {Xn} ∈ Lp
H is called Lp–m–approximable if each Xn admits

the representation

Xn = f(un, un−1, . . .), (2.8)

where the ui are iid elements taking values in a measurable space S, and f is a measurable

function f : S∞ → H. Moreover we assume that if {u′
i} is an independent copy of {ui}

defined on the same probability space, then letting

X(m)
n = f(un, un−1, . . . , un−m+1, u

′
n−m, u

′
n−m−1, . . .) (2.9)

we have
∞∑

m=1

νp
(
Xn −X(m)

n

)
< ∞. (2.10)

The gist of Definition 2.1 is that the dependence of f in (2.8) on the innovations far

in the past decays so fast that these innovations can be replaced by their independent

copies. Such a replacement is asymptotically negligible in the sense quantified by (2.10).
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Theorem 2.2 Suppose Assumptions 2.1 and 2.2 hold, the sequences {εn} and {Fnj} are

L4–m–approximable, and the matrix F defined in (2.7) is nonsingular. Then,

√
N
(
β̂0(·)− β0(·) , β̂ − β

)
d→
(
Z(·) + fT (·)F−1W ,F−1W

)
, (2.11)

where the random elements Z and W are jointly normal. The covariance matrix of W is

given by

Γ =
∞∑

h=−∞

E[ξ0ξ
T
h ] (2.12)

with

ξn = [〈εn, Fn1 − µ1〉 , . . . , 〈εn, Fnp − µp〉]T . (2.13)

The covariance function of Z is specified in Theorem 6.2. The Rp–valued function f(·) is
defined by

f(t) = [EFn1(t), EFn2(t), . . . , EFnp(t)]
T . (2.14)

Theorem 2.2 is proven in Section 6, which also contains the details of the asymptotic

distribution of the sample mean function β̂0(·). For the purpose of testing the significance

of the components of β it is enough to know the asymptotic covariance matrix of β̂, which

is given by (2.12). Finite sample implementation is discussed in Section 3.

3 Prediction and testing

A simple way of evaluating if additional regressors contribute to the explanatory power

of a regression model is to see if they reduce the mean squared error of prediction. The

functional regression model (2.1) leads to the following equation for predicting an asset’s

CIDR curve from the factors

R̂n(t) = β̂0(t) +

p∑

j=1

β̂jFnj(t).

The quality of prediction can be evaluated by the integrated mean squared error defined

as

MSEP = N−1

N∑

n=1

∫
(R̂n(t)−Rn(t))

2dt. (3.1)

Different measures could be used, but the estimators in Section 2 were defined with the

goal of minimizing the MSEP; Gneiting (2011) emphasizes that using different measures

to derive and evaluate predictions can lead to spurious findings.

9
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In Section 4, we study models similar to (1.4) and (1.5). All of them have the CIDR

on a market index, the curves Mn, as the first factor. The question we want to answer

is whether adding additional factors makes the MSEP’s smaller. We calculated relative

predictive efficiency gains (in percent) defined as

E = 100

(
MSEPM

MSEPF

− 1

)
, (3.2)

where MSEPM is the MSEP computing using only Mn, and MSEPF is the MSEP com-

puted using all factors in the model. Theoretically, the values of E must be positive, but

if the additional factors do not contribute to predictive power, they may be close to zero

and and even slightly negative due to rounding errors. Large positive values of E would

indicate that additional factors reduce the MSEP.

While the values of E give an initial idea about the importance of additional factors,

and can be computed without resorting to any asymptotic theory, they do not allow us

to attach statistical significance to the conclusions. This can be done using Theorem 2.2.

To test the null hypothesis βj = 0, we construct a 95% confidence interval for βj. If this

interval contains zero, we cannot reject the null hypothesis. According to Theorem 2.2,

β̂ is asymptotically distributed as a normal vector with the mean β and the covariance

matrix N−1F−1ΓF−1. The matrix F is estimated by F̂ given by (2.5). The estimation of

Γ given by (2.12) is more complex. The random vectors ξn in (2.13) are not observable.

They must be replaced by ξ̂n defined analogously, but with µj replaced by F̄j and εn by

ε̂n defined by

ε̂n(t) = Rn(t)− β̂0(t)−
p∑

j=1

β̂jFnj(t).

The matrix Γ is estimated as the long run covariance matrix of the sequence ξ̂n. We used

an R function lrvar (package “sandwich”) with default kernel and bandwidth values.

Denote this estimate by Γ̂. The variance of β̂j is the jth diagonal element ofN−1F̂−1Γ̂F̂−1.

The confidence interval for βj is constructed using standard normal quantiles.

4 Application to U.S. stocks

We now apply the methodology developed in the previous sections to a selection of U.S.

stocks. Our objective in this section is not to present a comprehensive analysis of all

reasonable functional dynamic factor models on a very broad collection of stocks. We

merely aim at obtaining useful insights, both regarding the finite sample performance of

the tests and the conclusions they lead to for a representative portfolio of stocks. Table 4.1
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Table 4.1 Sectors and stocks used in this study.

Sector Symbol Full Name

Energy

XOM Exxon Mobil Corporation

CVX Chevron Corporation

COP ConocoPhillips

Information MSFT Microsoft Corporation

Technology IBM IBM Corporation

ORCL Oracle Corporation

Financials

CITI Citi Bank

BAC Bank of America Corporation

JPM JPMorgan Chase Co.

Consumer Staples

KO Coca-Cola

WMT Wal-Mart Stores

PG Procter & Gamble Co.

Consumer MCD McDonald’s Corporation

Discretionary DIS The Walt Disney Corporation

CMCSA Comcast Corporation

Transportation

FDX FedEx Corporation

JBLU JetBlue Airways Corporation

UPS United Parcel Service, Inc.

lists the stocks we used. We selected two periods of time, from 09/03/2002 to 08/26/2004

and from 04/07/2005 to 04/02/2007. Each period contains 500 trading days. We removed

a few outliers due to splits and data errors.

In addition to models (1.4) and (1.5), we consider the model

Rn(t) = β0(t) + β1Mn(t) + β2Ln−1 + εn(t), (4.1)

where Ln−1 is a scalar factor equal to the previous day’s return on the asset or the index

To facilitate the presentation, we introduce the following notation:

PA model (4.1) with Ln−1 representing the asset return;

PI model (4.1) with Ln−1 representing the index return;

FF the Fama–French model (1.4);

OF model (1.5) with oil futures as the extra factor.

Market CIDR’s, Mn(t), are represented by the Standard & Poor’s 100 index. In the

Fama–French model, see Fama and French (1995) or Section 17.4 of Ruppert (2011), Sn
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Table 4.2 Asymptotic 95% confidence intervals for the regression coefficients of the extra fac-

tors of the energy sector stocks. The extension 1 or 2 following the ticker symbol refers to the

first and second 500 day long period. The arguments (1) and (2) in the FF model indicate the

two Fama–French factors. Confidence intervals that do not contain 0 are in bold.

PA PI FF(1) FF(2) OF

XOM1 (-.0429,.0440) (-.0577,.0580) (-.0019, .0019) (-.0065, .0066) (.0041, .0778)

XOM2 (-.0396, .0397) (-.1101, .1057) (-.0020, .0020) (-.0045, .0044) (.3302, .4129)

CVX1 (-.1172, .1187 ) (-.0565, .0600 ) (-.0020, .0020 ) (-.0068, .0071 ) (.0393, .1130)

CVX2 (-.0443,.0441) (-.1243, .1211) (-.0022, .0021) (-.0054, .0053) (.3551, .4468)

COP1 (-.1021, .1045 ) (-.0654, .0675) (-.0021, .0022) (-.0083, .0078) (.0389, .1417)

COP2 (-.0644, .0632) (-.1722, .1660) (-.0025, .0025) (-.0071, .0071) (.4875, .6083)

stands for the “small minus large” factor and Hn for the “high minus low” factor. The

factor Sn is the the difference in returns on a portfolio of small stocks and a portfolio of

large stocks; Hn is is the difference in returns on a portfolio of high book-to-market value

(BE/ME) stocks and a portfolio of low BE/ME stocks. The oil futures functional factor

Cn(·) in model OF is constructed using tick by tick futures prices for light sweet crude

obtained from TickData. The Chicago Mercantile Exchange provides both open outcry

(pit) and electronic (Globex) trading in oil futures, and we used both series to construct

daily time series in one minute resolution.

As explained in Section 3, the initial step of our analysis was to compute the relative

predictive efficiency gains E defined by (3.2). It turns out that for models PA, PI and

FF, they are practically nonexistent; the values are of the order 10E-4. This strongly

suggests that the additional scalar factors in these models have no additional explanatory

power. The situation is different for the OF model. CIDR’s on oil futures lead to values

of E approaching 40 for oil companies and to single digit gains for many other companies.

This leads us to conjecture that the intraday oil futures will be a significant factor, but

to verify it a rigorous statistical analysis based on the confidence intervals is needed. The

signs of the estimates of β2 will also allow us to see the direction of the impact, if it is

significant. The coefficients of the market factor are always positive and significant.

Confidence intervals for the stocks in the energy sector are displayed in Table 4.2. As

already indicated by the analysis of the MSEP’s, the additional scalar factors in models

PA, PI and FF are not significant. The CIDR’s on oil futures in model OF are significant.

for all sectors and stocks listed in Table 4.1. Based on tables for other sectors, not shown to

conserve space, we conclude that the additional factors in models PA, PI and FF are never
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Table 4.3 Summary of conclusions for the OF model for the stocks listed in Table 4.1.

Key: + (β2 > 0), − (β2 < 0), −/0 (mostly −, some 0), 0/− (mostly 0, some −).

Sector value of β2

Energy +

Information Technology −
Financial −/0

Consumer Staples −/0

Consumer Discretionary 0/−
Transportation −

statistically significant. The conclusions for model OF are summarized in Table 4.3. They

indicate that the shapes of intraday oil futures are ”positively correlated” with the shapes

of intraday price curves for large U.S. Oil companies, and are mostly negatively correlated

for the remaining companies. In the consumer discretionary sector, only the Walt Disney

Corporation is negatively correlated with oil futures. A somewhat surprising finding is the

negative correlation (in the sense studied in this paper) for the IT sector. Unlike the other

sectors, the evidence is uniform. An ex post intuition behind this finding is not clear, but

the result itself agrees with the empirical analysis of Narayan and Sharma (2011) who

established a similar dependence for daily returns, and who offer some discussion.

To validate our conclusions, we performed additional checks. The conclusions reported

in Table 4.3 do not change if the maximal lag used in the estimation of the long run

covariance matrix is increased by 50 percent. While the end points of the confidence

intervals obviously change, the inclusion of the value β2 = 0 was not affected. We also

performed a simulation study to find the empirical coverage probability. To make the

discussion more concrete, consider the Microsoft stock over the first time period. We

obtained β̂2 = −.053676, with the asymptotic confidence interval (−.0930,−.0150). We

calculated the residual functions

ε̂n(t) = Rn(t)− β̂0(t)− β̂1Mn(t)− β̂2Cn(t).

We thus have 500 curves Mn, 500 curves Cn and 500 curves ε̂n. For each set of curves, we

draw 500 curves with replacement (bootstrap), which produces 500 curves M∗
n, 500 curves

C∗
n, and 500 curves ε̂∗n. To assess the empirical size of the test, we generate bootstrap

Microsoft CIDR’s as R∗
n(t) = β̂0(t) + β̂1M

∗
n(t) + ε̂∗n(t). To assess the empirical power,

we use the DGP R∗
n(t) = β̂0(t) + β̂1M

∗
n(t) + β̂2C

∗
n(t) + ε̂∗n(t) (with β̂2 = −.053676). We

can replicate these procedures a large number of times and obtain MC empirical size and
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power. The asymptotic test has empirical size of about 7 percent and the power of about
74 percent (for β2 = −.053676). We obtained very similar results for other stocks.

5 Summary and conclusions

We have proposed a regression framework that allows us to evaluate quantitatively how 
the shapes of intraday price curves depend on the shapes of other curve–valued factors 
or on scalar factors. When applied to blue chip stocks, our methodology has shown that 
these shapes do not depend on scalar factors we considered (one number per day). In 
the hindsight, this is perhaps not surprising, as such factors can be expected to affect 
closing daily prices, not the particular intraday shape through which these closing prices 
are arrived at. (On the other hand, a priori, a positive return on the previous day, might 
to some extend determine the shape on the price curve.) In contrast, our methodology has 
revealed a significant impact of the intraday oil futures on several sectors, most notably a 
very strong positive impact on the shapes of intraday prices of U.S. oil companies. While 
this finding is not entirely surprising, it shows that even the intraday price evolution of 
the equities of these companies is much more strongly impacted by the intraday evolution 
of oil futures prices than the general market portfolio. For most other stocks, the impact 
is negative, if it is significant. Roughly speaking, a negative significant impact means 
that when oil futures prices increase during a trading day, the share prices tend to fall 
faster that the prices of a market portfolio. Our goal was to introduce a new quantitative 
framework and apply it to a relatively small selection of assets and functional factor 
models, to show it feasibility and potential. We hope that our ideas will be received 
with some interest, and our method will be applied to different asset classes and different 
functional factors.
We have advanced the theory of functional regression models in the following directions. 

Model (2.1) contains multiple regressor functions and a combination of a functional in-
tercept and scalar slope coefficients. Such models have not been considered so far; only 
models with a single regression function have been considered. A main difficulty was to 
develop an asymptotic and practically useful framework in which parameters of very dif-

ferent structure, a function and a finite dimensional vector, could be accommodated. Do 
do it, we derived a central limit theorem for dependent sequences in an abstract Hilbert 
space, Theorem 6.3. By stating our assumptions in terms of Bernoulli shifts, we were able 
to derive almost sure consistency of the estimators, Theorem 2.1, rather than the mean 
square consistency established prior to this work for models with a single regressor and 
functional coefficients. In both the asymptotic normality and consistency analysis, an im-
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portant technical point was to carefully account for the effect of centering of all functions

prior to computing the LSE of the vector parameter. This centering has a nonnegligible

asymptotic impact.

6 Proofs of the results of Section 2

We begin with three general lemmas.

Lemma 6.1 Suppose X and Y are integrable random elements in a Hilbert space H. If

X and Y are independent and EX = 0, then E 〈X, Y 〉 = 0.

Proof: This lemma essentially follows from the definition of the expectation in a

Hilbert space, see e.g. Section 1.3 of Bosq (2000). First we use the relation E 〈X, Y 〉 =
E {E[〈X, Y 〉 |Y ]} . Since the expectation commutes every linear operator, in particular

with the inner product, E[〈X, Y 〉 |Y ] = 〈E[X|Y ], Y 〉 . Since X is independent of Y and

has mean zero, E[X|Y ] = EX = 0, and the claim follows.

Lemma 6.2 Suppose {Xn} and {Yn} are Lp–m–approximable sequences in Hilbert spaces

H and K, respectively. Then, the sequence {(Xn, Yn)} is Lp–m–approximable in the prod-

uct space H ×K.

Proof: Clearly,

(Xn, Yn) = (f(un, un−1, . . .), g(vn, vn−1, . . .)) = h((un, vn), (un−1, vn−1), . . .)

has the required representation, and it follows that (Xn, Yn)
(m) = (X

(m)
n , Y

(m)
n ).

Since for a, b ≥ 0 and r > 0, (a+ b)r ≤ 2r(ar + br), for any X ∈ Lp
H and Y ∈ Lp

K ,

νp((X, Y )) = {E ‖(X, Y )‖p}1/p =
{
E
(
‖X‖2H + ‖Y ‖2K

)p/2}1/p

≤
√
2 {E ‖X‖pH + E ‖Y ‖pK}

1/p ≤
√
221/p {νp(X) + νp(Y )} .

It follows that the product analog of (2.10) holds.

Lemma 6.3 Suppose {Xn} and {Yn} are L4–m–approximable sequences a Hilbert space

H. Then {〈Xn, Yn〉} is an L2–m–approximable real valued sequence
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Proof: By the construction introduced in the proof of Lemma 6.2, we must show that

∞∑

m=1

{
E
∣∣〈Xn, Yn〉 −

〈
X(m)

n , Y (m)
n

〉∣∣2
}1/2

< ∞.

Observe that
∣∣〈Xn, Yn〉 −

〈
X(m)

n , Y (m)
n

〉∣∣2 ≤ 2
∥∥Xn −X(m)

n

∥∥2 ‖Yn‖2 + 2
∥∥Yn − Y (m)

n

∥∥2 ∥∥X(m)
n

∥∥2 .

By the Cauchy–Schwarz inequality,

E
∣∣〈Xn, Yn〉 −

〈
X(m)

n , Y (m)
n

〉∣∣2 ≤ 2
{
E
∥∥Xn −X(m)

n

∥∥4
}1/2 {

E ‖Yn‖4
}1/2

+ 2
{
E
∥∥Yn − Y (m)

n

∥∥4
}1/2 {

E
∥∥X(m)

n

∥∥4
}1/2

≤ C

[{
E
∥∥Xn −X(m)

n

∥∥4
}1/2

+
{
E
∥∥Yn − Y (m)

n

∥∥4
}1/2

]
,

where C = 2
[{

E ‖X1‖4
}1/2

+
{
E ‖Y1‖4

}1/2]
. Therefore,

{
E
∣∣〈Xn, Yn〉 −

〈
X(m)

n , Y (m)
n

〉∣∣2
}1/2

≤
√
C

[{
E
∥∥Xn −X(m)

n

∥∥4
}1/4

+
{
E
∥∥Yn − Y (m)

n

∥∥4
}1/4

]
,

and the claim follows from the assumed L4–m–approximability of the sequences {Xn} and

{Yn}.

The following lemma is needed in the proofs of Theorems 2.1 and 2.2.

Lemma 6.4 If Assumptions 2.1 and 2.2 hold, then F̂
a.s.→ F, where the matrices F̂ and F

are defined, respectively, by (2.5) and (2.7).

Proof: Consider the matrix

F̃ =

[
N−1

N∑

n=1

〈Fnj − µj, Fnk − µk〉 , j, k = 1, 2, . . . , p

]
(p× p).

By the joint ergodicity of the Fnj, F̃
a.s.→ F. Using the decomposition

〈
Fnj − F̄j, Fnk − F̄k

〉

=
〈
Fnj − µj + (µj − F̄j), Fnk − µk + (µk − F̄k)

〉

= 〈Fnj − µj, Fnk − µk〉
+
〈
Fnj − µj, µk − F̄k

〉

+
〈
µj − F̄j, Fnk − µk

〉

+
〈
µj − F̄j, µk − F̄k

〉
,
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we see that

F̂ (j, k)− F̃ (j, k) =
〈
µj − F̄j, µk − F̄k

〉 a.s.→ 0.

Proof of Theorem 2.1: Recall that Rc
n =

∑p
k=1 βkF

c
nk + εcn, with εcn appearing in

(2.2). Taking the inner product with F c
nj and averaging over n, we obtain

1

N

N∑

n=1

〈
Rc

n, F
c
nj

〉
=

p∑

k=1

{
1

N

N∑

n=1

〈
F c
nj, F

c
nk

〉
}
βk +

1

N

N∑

n=1

〈εcn, F c
nk〉 . (6.1)

In matrix notation, the above relation becomes R̂ = F̂β + εc, with the vectors and

matrices defined via (6.1). Consequently,

F̂(β̂ − β) = εc, (6.2)

with the kth component of εc given by

1

N

N∑

n=1

〈εcn, F c
nk〉 =

1

N

N∑

n=1

{〈εn, F c
nk〉 − 〈ε̄, F c

nk〉} (6.3)

=

{
1

N

N∑

n=1

〈εn, Fnk〉
}

−
〈
ε̄, F̄k

〉

In light of Lemma 6.4 and the assumed invertibility of F, it remains to show that εc
a.s.→ 0.

This follows from the assumption Eεn = 0 and the ergodicity of the sequence {(εn, Fnk)}.
The claim β̂

a.s.→ β has thus been established.

To show that
∥∥∥β̂0 − β0

∥∥∥→ 0 a.s., observe that

β̂0(t)− β0(t) =

p∑

j=1

(
βj − β̂j

)
F̄j(t) + ε̄(t) (6.4)

and so ∥∥∥β̂0 − β0

∥∥∥ ≤
p∑

j=1

|β̂j − βj|
∥∥F̄j

∥∥+ ‖ε̄‖ .

Since the sequences {Fjn} and {εn} are ergodic with finite expectations in L2, we have

F̄j
a.s.→ EFj1 and ε̄

a.s.→ Eε1 = 0. Since the norm is a continuous function on L2, we conclude

that
∥∥F̄j

∥∥ a.s.→ ‖EFj1‖ and ‖ε̄‖ a.s.→ 0. We established that |β̂j − βj| a.s.→ 0, so it follows that∥∥∥β̂0 − β0

∥∥∥ a.s.→ 0.

For ease of reference, we now state two limit theorems for L2–m–approximable vectors

and functions, respectively. The following result was established in Aue et al. (2009).
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Theorem 6.1 Suppose {ξn} is a d–dimensional L2–m–approximable mean zero sequence.

Then the matrix valued sequence

Γ =
∞∑

h=−∞

E[ξ0ξ
T
h ]

converges absolutely, and

N−1/2

N∑

n=1

ξn
d→ W, (6.5)

where W is a mean zero normal random vector with the covariance matrix Γ.

An analog of Theorem 6.1 for sequences of functions was established by Horváth et al.

(2013).

Theorem 6.2 Suppose {εn} is an L2–m–approximable sequence of mean zero functions

in L2([0, 1]). Then the infinite sum

γ(t, s) =
∞∑

h=−∞

E[ε0(t)εh(s)]

converges in L2([0, 1]× [0, 1]) (hence γ(·, ·) is square integrable). Moreover

N−1/2

N∑

n=1

εn
d→ Z, (6.6)

where Z is a mean zero Gaussian element of L2([0, 1]) with the covariance function

E[Z(t)Z(s)] = γ(t, s).

None of the above theorems is exactly suited to our setting because the model param-

eters take values in the Hilbert space H = L2 ×Rp with the norm

〈x, x∗〉 =
∫

g(t)g∗(t)dt+

p∑

j=1

bjb
∗
j ,

where

x = (g(·), b1, . . . bp), x∗ = (g∗(·), b∗1, . . . b∗p).

We therefore need a more abstract version of these theorems.
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Theorem 6.3 Suppose {Xn} is an L2–m–approximable sequence of mean zero random

elements in a separable Hilbert space H. Then the series

Γ =
∞∑

h=−∞

E [〈Xh, ·〉X0] (6.7)

converges in the operator norm and

N−1/2

N∑

n=1

Xn
d→ G,

where G is a mean zero Gaussian element of H with the covariance operator Γ given by

(6.7).

The proof of Theorem 6.3 parallels that of Theorem 6.2, so we establish only the existence

of the long run variance operator Γ whose form is an essential ingredient of the proof of

Theorem 2.2.

Proof of the convergence in (6.7): Under assumptions of Theorem 6.3, for every

positive integer T ,

Γ(T ) =
∑

|h|≤T

E[〈Xh, ·〉X0]

is a bounded linear operator acting on H, i.e. Γ(T ) ∈ L(H). Recall that for every

L ∈ L(H), its operator norm can be computed as

‖L‖L = sup {| 〈Lx, y〉 |, ‖x‖ = 1, ‖y‖ = 1} .

Therefore, for T1 < T2,

‖Γ(T2)− Γ(T1)‖L = sup
‖x‖=1

sup
‖y‖=1

|〈(Γ(T2)− Γ(T1)) x, y〉|

≤ sup
‖x‖=1

sup
‖y‖=1

∑

T1<|h|≤T2

|E[〈Xh, x〉 〈X0, y〉]| .

Since

E[〈Xh, x〉 〈X0, y〉] = E
[〈

X
(h)
h , x

〉
〈X0, y〉

]
+ E

[〈
Xh −X

(h)
h , x

〉
〈X0, y〉

]

and E
[〈

X
(h)
h , x

〉
〈X0, y〉

]
= 0, by (2.8) and (2.9), we see that

E[〈Xh, x〉 〈X0, y〉] = E
[〈

Xh −X
(h)
h , x

〉
〈X0, y〉

]
.
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Notice further that

∣∣∣E
[〈

Xh −X
(h)
h , x

〉
〈X0, y〉

]∣∣∣ ≤
{
E
〈
Xh −X

(h)
h , x

〉2}1/2

E
{
〈X0, y〉2

}1/2

≤
{
E
∥∥∥Xh −X

(h)
h

∥∥∥
2
}1/2 {

E ‖X0‖2
}1/2 ‖x‖ ‖y‖ .

Combining the above, we see that

‖Γ(T2)− Γ(T1)‖L ≤
{
E ‖X0‖2

}1/2
ν2

(
Xh −X

(h)
h

)
.

By (2.10), the operators Γ(T ) form a Cauchy sequence in L(H), so series (6.7) converges

in the norm of L(H).

Proof of Theorem 2.2: By Lemma 6.3 and Lemma 6.1, vectors (2.13) form an L2–

m–approximable sequence with Eξn = 0. By Lemma 6.2, the sequence {(εn(·), ξn)} is

L2–m–approximable in the Hilbert space H = L2 × Rp. By Theorem 6.3, we conclude

that

N−1/2

N∑

n=1

(εn(·), ξn)
d→ (Z(·),W), (6.8)

where the random elements W and Z are normal and have covariances specified in The-

orems 6.1 and 6.2.

We first focus on the asymptotic distribution of
√
Nεc, where the kth components of

the vector εc is given by (6.3). Observe that kth components of
√
Nεc is

N−1/2

N∑

n=1

〈εcn, F c
nk〉 = N−1/2

N∑

n=1

〈εn, Fnk〉 −
√
N
〈
ε̄, F̄k

〉

= N−1/2

N∑

n=1

〈εn, Fnk − µk〉 −N−1/2

N∑

n=1

〈
εn, F̄k − µk

〉
.

Since
∥∥F̄k − µk

∥∥ = oP (1), the second term is asymptotically negligible, and so
√
Nεc

has the same asymptotic distribution as the N−1/2
∑N

n=1 ξn, with the vectors ξn given

by (2.13). Consequently, by (6.2) and Lemma 6.4,
√
N(β̂ − β) has the same asymptotic

distribution as F−1
{
N−1/2

∑N
n=1 ξn

}
.

Next, note that by (6.4),

√
N(β̂0(·)− β0(·)) = N−1/2

N∑

n=1

εn(·) + f̄T (·)
√
N(β̂ − β),
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where f̄(t) = [F̄1(t), F̄2(t), . . . , F̄p(t)]
T . By ergodicity, f̄

a.s.→ f , where f is defined by (2.14).

It follows that the left–hand side of (2.11) has the same asymptotic distribution as

N−1/2

N∑

n=1

εn(·) + fT (·)F−1

{
N−1/2

N∑

n=1

ξn

}
, F−1

{
N−1/2

N∑

n=1

ξn

})
.

Relation (2.11) thus follows from (6.8).
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Aue, A., Hörmann, S., Horváth, L. and Reimherr, M. (2009). Break detection in the covariance

structure of multivariate time series models. The Annals of Statistics, 37, 4046–4087. 

Billingsley, P. (1995). Probability and Measure, 3rd edn. Wiley, New York.

Black, F. (1972). Capital market equilibrium with restricted borrowing. Journal of Business,
45, 444–454.

Bosq, D. (2000). Linear Processes in Function Spaces. Springer.

Bowsher, C. G. and Meeks, R. (2008). The dynamics of economic functions: Modeling and 
forecasting the yield curve. Journal of the American Statistical Association, 103, 1419–1437.

Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. (1997). The Econometrics of Financial
Markets. Princeton University Press, New Jersey.

Diebold, F. and Li, C. (2001). Forecasting the term structure of government bond yields. Journal

of Econometrics, 130, 337–364.

Fama, E. F. and French, K. R. (1995). Size and book–to–market factors in earnings and returns.

Journal of Finance, 50, 131–155.
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Hörmann, S. and Kokoszka, P. (2012). Functional time series. In Time Series (eds C. R. Rao
and T. Subba Rao), Handbook of Statistics, volume 30. Elsevier.
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