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ABSTRACT 

 

 

POLYMERIZATION CATALYSIS FOR PRECISION SYNTHESIS OF CHIRAL AND 

SUSTAINABLE POLYMERS 

 

 

 Polymerization catalysis for the precision synthesis of chiral and sustainable polymers is 

described in this dissertation. The central theme of chiral polymers has revolved around the 

employment of newly synthesized enantiomeric zirconocenium ester enolate catalysts. These 

catalysts have been utilized in the asymmetric coordination polymerization of prochiral 

functionalized vinyl monomers towards optically-active, solution stable, one-handed helical 

polymers. These enantiomeric catalysts have also been used in the successful kinetic resolution 

polymerization of a racemic methacrylamide monomer. The stereospecific polymerization of 

chiral oxazolidinone functionalized alkenes has been performed, producing highly isotactic 

polymers that assume helical or random-coil secondary conformations, dictated by the proximity 

of the chiral oxazolidinone to the main-chain of the polymer.  Investigating applications of helical 

polymers, two pseudo-enantiomeric helical poly(phenyl acetylene)s bearing chiral organocatalyst 

side-groups have been synthesized and the effects of the helix-sense and helicity on the 

enantioselectivity of these catalysts was subsequently examined.  

Towards sustainable polymers, renewable butyrolactone-based vinylidene monomers are 

of particular interest in exploring the prospects of substituting the petroleum-based methacrylate 

monomers for specialty chemicals production. The polymerization of such monomers by group 
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III and IV transition metal catalysts has been investigated resulting in the synthesis of sustainable 

polymers with controlled molecular weights. These butyrolactone-based monomers have also 

been successfully polymerized in a rapid and living fashion, using ambiphilic silicon propagating 

species. 
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CHAPTER 1 

Introduction 

This dissertation is written in a “journals-format” style that is accepted by the Graduate 

School at Colorado State University and is based on six peer-reviewed publications that have 

appeared in Journal of the American Chemical Society, Macromolecules, and Dalton 

Transactions, as well as one manuscript that has been prepared for future submission. The 

principal theme of this dissertation is to develop and utilize advanced polymerization catalyst 

systems for the precision synthesis of chiral and sustainable polymers, which is composed of two 

major sections: the synthesis and application of chiral polymers and the polymerization of 

naturally renewable monomers to sustainable polymers. The author has studied six topics in chiral 

polymers as well as the polymerization of biorenewable monomers, which are discussed in detail 

in the proceeding chapters: 

2.) Metallocene-Mediated Asymmetric Coordination Polymerization of Polar Vinyl 

Monomers to Optically Active, Stereoregular Polymers 

3.) Coordination-Addition Polymerization and Kinetic Resolution of Methacrylamides 

by Chiral Metallocene Catalysts 

4.) Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes 

5.) Helix-Sense Control and Effects on Enantioselectivity of Helical Poly(Cinchona 

Phenyl Acetylene) Organocatalysts 

6.) Coordination Polymerization of Renewable Butyrolactone-Based Vinyl Monomers 

by Lanthanide and Early Metal Catalysts 
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7.) Living Polymerization of Naturally Renewable Butyrolactone-Based Vinylidene 

Monomers by Ambiphilic Silicon Propagators 

In Chapter 2, the synthesis and application of enantiomeric zirconocenium catalysts for 

the synthesis of chiral polymers are described. These optically active, chiral catalysts were 

utilized for the asymmetric coordination polymerization of bulky N,N-diaryl acrylamides to 

solution stable, static, optically active one-handed helical polymers. An investigation on the 

necessity of the diaryl side-groups to render solution stable helical polymers was also carried out, 

which led to the fundamental study on the relationship between polymer MW of helical or non-

helical polymers and optical activity. The ability of non-helical block copolymers to be optically 

active was also discussed. 

Chapter 3 reports the first successful coordination polymerization of a methacrylamide 

monomer, 2-methacryloyl aziridine (MAz), employing chiral zirconocenium catalysts for the 

isospecific polymerization of MAz. Being a racemic monomer, enantiomeric zirconocenium 

catalysts were used in the first successful kinetic resolution polymerization of a methacrylamide 

monomer.  

Chapter 4 deals with the stereospecific polymerization of chiral oxazolidinone-

functionalized alkenes and the ability of these isotactic polymers to form helical secondary 

structures. The acryloyl monomers, N-acryloyl-(R or S)-4-phenyl-2-oxazolidinone [(R or S)-

AOZ] were successfully polymerized by chiral zirconocenium catalysts to afford isotactic 

polymers, however, through a series of experiments it was concluded that PAOZ does not form a 

helical secondary structure. Vinyl derivatives N-vinyl-(R)-4-phenyl-2-oxazolidinone (VOZ) and 

its para-hexyloxy-phenyl derivative (R)-HVOZ were not polymerizable by such metallocene 

catalysts, but a novel chiral auxiliary controlled polymerization, intitiated by various acids was 

developed, resulting in polymers with quantitative isotacticity that adopt solution stable helical 

conformations.  
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In Chapter 5, novel helical poly(phenyl acetylene)s bearing cinchona alkaloid 

organocatalyst side-groups were synthesized. These polymers showed a unique property in that 

the helix-sense could be controlled through interactions with achiral solvents, and the effect on 

the enantioselectivity of the organocatalyst side-groups by the helicity and helix-sense was 

determined. 

Both Chapters 6 and 7 explore the polymerization of the biorenewable butyrolactone 

based monomers, α-methylene-γ-butyrolactone (MBL) and γ-methyl-α-methylene-γ-

butyrolactone (MMBL). Specifically, Chapter 6 discusses the polymerization of (M)MBL 

mediated by early metal catalysts. Most notably, the polymerization of (M)MBL by decamethyl 

samarocene is rapid, efficient, living, and controlled, producing well-defined homo and 

copolymers with each other and methyl methacrylate (MMA). The catalytic production of 

polymer chains was achieved by the addition of external chain-transfer reagents. Chapter 7 

utilizes Si
+
 metalloid catalysts for the polymerization of (M)MBL in rapid and living fashion, 

using an ambiphilic silicon propagating species consisting of both the nucleophilic silyl ketene 

acetal (SKA) initiating moiety and the electrophilic silylium catalyst. 

Chapter 8 contains a brief summary of the work presented within. The majority of the 

work conducted by the author during the course of graduate studies has been included in this 

dissertation, but to maintain a level of consistency, work that has been published but not directly 

pertaining to the central theme of this dissertation have been excluded. For reference, a list of all 

the work that has resulted in a publication during the course of this dissertation can be found in 

Appendix I.  
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Chapter 2 

Metallocene-Mediated Asymmetric Coordination Polymerization of Polar Vinyl 

Monomers to Optically Active, Stereoregular Polymers 

 

Abstract 

Asymmetric coordination polymerization of 13 acrylamide and methacrylate monomers of 

four different classes has been investigated using chiral ansa-zirconocenium ester enolate catalyst 

(S,S)-(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ [(S,S)-1), EBI = C2H4(η

5
-Ind)2] and its 

enantiomer (R,R)-1. This polymerization system is built upon four advanced features of 

polymerization including living, stereospecific, coordination and asymmetric core elements, thus 

efficiently converting prochiral N,N-diaryl acrylamides at ambient temperature to optically active, 

stereoregular polymers with solution-stable, single-handed helical secondary structures. Kinetic 

studies show that the polymerization of N,N-diaryl acrylamides by 1 proceeds via a 

monometallic, coordination-conjugate addition mechanism. Investigation into polymer chain-

length effects on optical activity of the chiral polymers reveals two opposite trends, depending on 

the polymer secondary structure (i.e., helical vs. random coil conformation). Examination of the 

polymerization scope shows that the formation of optically active poly(acrylamide)s due to 

solution-stable helical conformations with an excess of one-handed helicity is dictated by the 

sterics and rigidity of the monomer repeat units; while diaryl acrylamides can readily achieve 

such conformations, unsymmetrically substituted diaryl acrylamides give the chiral polymers 

with much higher optical activity than the symmetrically substituted ones. It is also possible for 

N,N-dialkyl acrylamides to lead to chiral helical polymers. Extensive asymmetric block 
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copolymerization studies of MMA with acrylamides and other methacrylates have also been 

carried out, producing optically active, high molecular weight methacrylate-b-acrylamide block 

copolymers in which the acrylamide block can be either helical or nonhelical; in sharp contrast, 

all high molecular weight methacrylate-b-methacrylate di- or triblock copolymers produced by 

the enantiomeric catalysts 1 are optically inactive.  
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Introduction 

Optically active chiral polymers are not only fundamentally interesting, due to the rich and 

complex architecture of macromolecular chirality as compared to that of small molecules, but 

also technologically important because their unique chiral arrays give rise to a number of 

potential, and in some cases commercially implemented, applications.
1
 In the case of 

stereoregular vinyl polymers
2
 with configurational main chain chirality derived from 1-

substituted or nonsymmetric 1,2-disubstituted vinyl monomers (i.e., technologically most 

important polymers) without chiral side groups, such enantiomerically pure or enriched polymers 

cannot be optically active because the entire polymer chain (by the infinite chain model) contains 

a mirror plane (for isotactic polymers) or a glide mirror plane and translational mirror planes 

perpendicular to the chain axis (for syndiotactic polymers), and thus are achiral.
1
 Low molecular 

weight (MW) isotactic oligomers of propylene,
3
 1-butene,

4
 and other α-olefins

5
 produced by 

optically active ansa-zirconocene catalysts showed measurable optical activity, but high MW 

isotactic polypropylene (it-PP) produced by the similar enantiomeric chiral catalyst did not have a 

detectable optical activity in solution and in the melt.
6
 As a polymer chain becomes long enough 

its chain-end groups impose negligible effects on the chiroptical properties of the polymer; thus, 

an enantiomerically pure or enriched polymer of low enough MW and containing nonequivalent 

chain-end groups can be optically active, as shown by the above oligomeric α-olefin examples. 

Wulff et al. determined at which degree of polymerization (Pn) the optical activity of 

enantiomerically pure or enriched isotactic poly(methyl methacrylate), P(MMA), in a random-

coil conformation with different chain ends, is still observable ([α]
20

546 = −3.0 to −0.5 for Mn = 

3050 to 26050) as a result of elimination of the mirror plane by the chain-end groups;
7
 only at a 

very high Pn (>300) the optical activity becomes negligible, and the polymer then becomes 

cryptochiral. On the other hand, Okuda and coworkers recently employed enantiomerically pure 

nonmetallocene titanium catalysts for the asymmetric polymerization of styrene and found that Pn 

at which optically active isotactic oligomeric styrenes (([α]
23

D = ±5.9 to 1.5) became cryptochiral 
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with no measurable optical activity in solution is rather low (<45).
8
 In short, it appears that polar 

functionalized vinyl polymers such as P(MMA) develop the cryptochiral phenomenon at a 

considerably higher degree of polymerization than that for nonpolar polyolefins. 

Three major strategies that do not rely on chain-end groups or chiral auxiliaries to eliminate 

reflection elements of symmetry of stereoregular vinyl polymers have been developed for the 

synthesis of high MW, chiral polymers derived from prochiral vinyl monomers. First, chiral 

template-mediated polymerization utilizes styrene derivatives carrying optically active, 

removable mannitol template groups at the 4-position to radically copolymerize with styrene and 

subsequently convert the copolymer to an optically active polystyrene ([α]
30

365 = −0.5 to −3.5).
9
 

The optical activity was attributed to the presence of chiral diads (in this case, the diad has a 

(S,S)-configuration) separated by atactic sequences, and other optically active vinyl polymers and 

copolymers of complex configurational architectures can be prepared in a similar manner.
10

 

Second, asymmetric cyclopolymerization of 1,5-pendadiene with enantiomerically pure 

zirconocene
11

 or Salan-zirconium
12

 catalysts produces optically active poly(methylene-1,3-

cyclopentane), the optical activity of which is due to the presence of predominantly trans-

isotactic structures devoid of mirror plans of symmetry.
11

 Third, asymmetric anionic 

polymerization of functionalized vinyl monomers containing bulky side groups (e.g., 

triarylmethyl methacrylates
13

 and N,N-diaryl acrylamides
14

) with chiral organolithium initiators 

affords optically active polymers with rigid one-handed, solution-stable helical conformations 

rendered by steric repulsion of the bulky side groups of the highly isotactic polymers accessible 

through the helix-sense-selective polymerization.
15

 This strategy of using such bulky vinyl 

monomers has also been extended to asymmetric radical polymerization leading to optically 

active isotactic helical polymers.
16

 Many stereoregular vinyl polymers can have a secondary 

structure of helical conformations in the solid state (e.g., it-PP); however, they adopt on-average 

random-coil conformations in solution due to the fast solution dynamics of the polymer chain 

with low helix inversion barriers. Thus, it-PP produced by an optically active zirconocene catalyst 
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exhibits a large optical rotation in suspension, but the optical activity is lost when the polymer is 

completely dissolved or heated.
6
  Likewise, the large optical activity of helical poly(trityl 

methacrylate) almost vanishes with only a very small residual rotation when the bulky trityl 

groups are replaced with the methyl groups to give random-coil cryptochiral P(MMA).
13

  

Although the optical activity is lost, the enantiomeric nature of the polymer is maintained; thus, 

treatment of enantiomeric it-P(MMA) with achiral syndiotactic P(MMA) forms a double-stranded 

helical stereocomplex,
17

 a chiral superstructure.
18

 

We have recently developed the living, stereospecific, and coordination polymerization of 

functionalized vinyl monomers such as methacrylates utilizing the highly active racemic 

(R,R)/(S,S) ansa-zirconocenium catalyst, rac-(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ 

[rac-1; EBI = C2H4(η
5
-Ind)2], under ambient conditions.

19
 The polymers produced were highly 

isotactic (> 95% mm for P(MMA); >99% mm for P(n-butyl methacrylate), P(BMA), and had 

narrow molecular weight distributions (MWD = Mw/Mn = 1.03). The polymerization of 

methacrylates by rac-1 is enantiomorphic-site controlled, proceeding through a monometallic, 

intramolecular Michael addition mechanism via eight-membered-ring cyclic ester enolate resting 

intermediates.
20 

 The coordination polymerization of acrylamides such as N,N-dimethyl 

acrylamide (DMAA) by this highly active catalyst system also proceeds in a living, isospecific, 

site-controlled manner, producing high MW poly(N,N-dimethyl acrylamide), P(DMAA), with a 

narrow MWD of Mw/Mn = 1.07, a quantitative isotacticity of mm > 99%, and a high melting 

transition temperature of Tm >307 ºC.
21

 Most recently, we have built the fourth, asymmetric 

element into our polymerization system and successfully developed asymmetric coordination 

polymerization of N,N-diaryl acrylamides such as N,N-diphenyl acrylamide (DPAA) and N-

phenyl-N-(4-tolyl)acrylamide (PTAA) using enantiomeric catalysts (S,S)-1 and (R,R)-1 to 

produce the corresponding optically active, one-handed helical poly(N,N-diaryl acrylamide)s, 

P(DPAA) and P(PTAA), as well as their rigid rod-like block copolymers with random-coil MMA 

blocks (Chart 1).
22
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Chart 1. Synthesis of right- and left-handed rigid helical poly(N,N-diaryl acrylamide)s and their 

rigid rod-random coil block copolymers with MMA. 

 

Among the three major strategies developed for the synthesis of chiral vinyl polymers 

overviewed above, the asymmetric anionic polymerization using chiral organolithium initiators, 

pioneered by Okamoto and co-workers,
13,14

 also deals with functionalized vinyl monomers (which 

bear bulky side groups). However, such polymerization must be carried out at low temperatures 

(−78 °C or lower) to achieve an appreciable level of polymerization control as well as the 

polymer isotacticity and optical activity. Furthermore, in the chiral-initiator-controlled 

polymerization the enchaining monomer experiences varied degrees of asymmetric induction as a 

function of the growing chain length, giving rise to a large disparity in stereoregularity and 

optical activity of the polymer; even in the chiral-ligand-controlled anionic polymerization, such 

disparity still exists.
14a

 In comparison, the recently developed asymmetric coordination 

polymerization system
22

 exhibits the following three advanced features: (a) the living/controlled 

polymerization can be achieved at ambient temperature; (b) it exhibits a high degree of control in 

polymerization stereospecificity, which is much less sensitive to polymerization temperature 

because of its site-control nature; and (c) the reaction proceeds in a manner such that each 

enchaining monomer must coordinate to the chiral catalyst center before enchainment and is 

regulated by the same degree of chiral induction of the same asymmetric catalyst center, thereby 

producing chiral polymers of uniform asymmetric induction. 
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In our continuing studies of the asymmetric coordination polymerization of polar vinyl 

monomers such as acrylamides and methacrylates using enantiomeric chiral ansa-zirconocenium 

catalysts (S,S)-1 and (R,R)-1 and following our initial communication,
22

 the current contribution 

focuses on the mechanism and scope (Chart 2) of this polymerization system and presents a full 

account of our investigation into: (a) characteristics and kinetics of the polymerization of diaryl 

acrylamides; (b) effects of the chain length of helical and nonhelical poly(acrylamide)s on optical 

activity; (c) the necessity of the N,N-diaryl side groups to render solution-stable helical 

conformations; (d) strategies to  render solution solubility of rigid helical homopolymers by 

forming block copolymers with randomly coiled MMA blocks and by substitution in the aryl 

rings with a long-chain alkyl group; and (e) the ability of these enantiomeric catalysts to produce 

nonhelical, optically active block copolymers. 

Chart 2. A list of acrylamide and methacrylate monomers (grouped into four classes) 

investigated in the current asymmetric coordination polymerization study. 
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Experimental Section 

Solvents and Methods. All syntheses and manipulations of air- and moisture-sensitive 

materials were carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, a 

high-vacuum line, or in an argon or nitrogen-filled glovebox. HPLC grade organic solvents were 

sparged extensively with nitrogen during filling of the solvent reservoir and then dried by passage 

through activated alumina (for THF, Et2O, and CH2Cl2) followed by passage through Q-5-

supported copper catalyst (for toluene and hexanes) stainless steel columns. Toluene-d8 and 

benzene-d6 were degassed, dried over sodium/potassium alloy, and filtered before use, whereas 

CDCl3, CD2Cl2, and 1,2-C6H4Cl2 were degassed and dried over activated Davison 4 Å molecular 

sieves. NMR spectra were recorded on either a Varian Inova 300 (FT 300 MHz, 
1
H; 282 MHz, 

19
F) or a Varian Inova 400 spectrometer. Chemical shifts for 

1
H were referenced to internal 

solvent resonances and are reported as parts per million relative to tetramethylsilane, whereas 
19

F 

NMR spectra were referenced to external CFCl3. 

Commercial Reagents. Diethylene glycol dimethyl ether, n-BuLi (1.6 M in hexanes), 

butylated hydroxytoluene (BHT-H, 2,6-Di-tert-butyl-4-methylphenol), p-toluidine, indene, 1,2-

dibromoethane, tetrachlorozirconium, triflic acid, lithium dimethylamide, diisopropylamine, 

piperidine, triethylamine, aniline, sodium azide, 1,1,3,3-tetramethyl guanidine, (2S,4S)-

pentanediol (99% ee, [α]
20

D +39.8, c = 10, CHCl3), (2R,4R)-pentanediol (97% ee, [α]
21

D  –40.4, c = 

10, CHCl3), (CF3SO2)2O, PhBCl2, MeMgI (3.0 M in diethyl ether), 1,2-dibromobenzene, and 

CF3COOH were purchased from Sigma-Aldrich. Diphenylamine, acryloyl chloride, copper (I) 

iodide, iodobenzene, N,N-dimethyl aniline, pyrrolidine, and 2,6-dimethyl pyridine were 

purchased from Alfa Aesar. Trimethylaluminum (neat) and tri(n-octyl)aluminum (neat) were 

purchased from Strem Chemical Co. whereas isopropyl isobutyrate and N-methyl aniline were 

purchased from TCI America. The above commercial reagents were used as received, except for 

the reagents described below. Diethylene glycol dimethyl ether, indene, 1,2-dibromoethane, N,N-

dimethyl aniline, acryloyl chloride, and iodobenzene were degassed using three freeze-pump-
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thaw cycles. p-Toluidine, (CF3SO2)2O, and PhBCl2 were vacuum-distilled. 2,6-Dimethyl 

pyridine, isopropyl isobutyrate, aniline, diisopropylamine, piperidine, triethylamine, and 

pyrrolidine were degassed and dried over CaH2 overnight, followed by vacuum distillation. BHT-

H was recrystallized from hexanes prior to use. 1,4-Dioxane (Fisher Scientific) was degassed, 

dried over sodium/potassium alloy, and vacuum-distilled. Tris(pentafluorophenyl)borane 

B(C6F5)3 was obtained as a research gift from Boulder Scientific Co. and further purified by 

recrystallization from hexanes at −30 ºC. 

Monomers (a total of 13). Methyl methacrylate (MMA) and n-butyl methacrylate (BMA) 

were purchased from Sigma-Aldrich, while 2-ethylhexyl methacrylate (EHM) and N,N-dimethyl 

acrylamide (DMAA) were purchased from TCI America; the above four monomers were first 

degassed, dried over CaH2 overnight, and then vacuum transferred. Further purification of MMA 

involved titration with neat tri(n-octyl)aluminum to a yellow end point,
23

 followed by distillation 

under reduced pressure. Literature procedures were used to prepare monomers N,N-diphenyl 

acrylamide (DPAA),
24

 N-phenyl-N-(4-tolyl) acrylamide (PTAA),
14a

 and N-(4-hexylphenyl)-N-

phenyl acrylamide (HPPA).
14a

 DPAA and PTAA were purified by three recrystalizations from a 

toluene/hexanes solvent mixture, whereas HPPA was purified by silica gel chromatography 

(eluent: hexane/diethyl ether = 3/1) and dried over CaH2 overnight, followed by vacuum 

distillation. Other acrylamide monomers were prepared and purified in a similar manner. 

Specifically, N,N-diisopropyl acrylamide (DIPA), N-methyl-N-phenyl acrylamide (MPAA), N-

phenyl acrylamide (PAA), acryloyl pyrrolidine (APY), and acryloyl piperidine (APP) were 

prepared by reacting two equiv of the appropriate amine with one equiv of acryloyl chloride in 

toluene at 0 °C and warming gradually the reaction mixtures to room temperature overnight with 

vigorous stirring. N-ethyl acrylamide (EAA) was prepared by purging a solution of acryloyl 

chloride in toluene with ethylamine at 0 °C and then warming the reaction mixture to room 

temperature overnight with vigorous stirring. MPAA was purified by three recrystallizations from 

a toluene/hexanes solvent mixture, while DIPA, APY, APP, and EAA were purified by 
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distillation and drying over CaH2 overnight followed by additional vacuum distillation. PAA was 

purified by recrystallizations first from acetone and then from CH2Cl2. All purified monomers 

were stored in brown bottles kept inside a –30 C glovebox freezer. 

Noncommercial Reagents or Intermediates. The (C6F5)3B·THF adduct was prepared by 

addition of THF to a toluene solution of the borane followed by removal of the volatiles and 

drying in vacuo. Literature procedures were employed for the preparation of the following 

compounds and metallocene complexes: LiOC(O
i
Pr)=CMe2 [Li(IPIB)],

25 
 (EBI)H2 [EBI = 

C2H4(η
5
-Ind)2],

26
 rac-(EBI)Zr(NMe2)2,

27
 rac-(EBI)ZrMe2,

27
 rac-(EBI)ZrMe(OTf),

19
 rac-

(EBI)ZrMe[OC(O
i
Pr)=CMe2],

19 
rac-(EBI)Zr

+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ(1),

19
 (S,S)-

(EBI)ZrCl2,
28

 and (R,R)-(EBI)ZrCl2.
28

 

Synthesis of Enantiomeric Catalysts 1. Scheme 1 outlines the entire 11-step synthesis of 

(S,S)-1  starting from enantiopure 2,4-pentanediol to S,S-(EBI)ZrCl2,
28

 followed by subsequent 

conversions to (S,S)-(EBI)ZrMe2 using Me2Mg, to (S,S)-(EBI)ZrMe(OTf) using TMSOTf, to 

neutral methyl ester enolate precatalyst (S,S)-(EBI)ZrMe[OC(O
i
Pr)=CMe2] {(S,S)-pre-1, [α]

23
D = 

+290, c = 0.49 g/dL, CH2Cl2} using Li(IPIB), and finally to cationic ester enolate catalyst (S,S)-

(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ {(S,S)-1, [α]

23
D = −69.7, c = 0.98 g/dL, CH2Cl2} 

using (C6F5)3B·THF. The procedures for the last four steps were identical to those already 

published for the racemic diastereomers, including the methylation step
29

 and the final three 

steps.
19,30

 The synthesis of the (R,R)-enantiomer follows the identical procedures for the (S,S)-

enantiomer, leading to neutral methyl ester enolate precatalyst (R,R)-

(EBI)ZrMe[OC(O
i
Pr)=CMe2] (R,R-pre-1, [α]

23
D = –285, c = 0.49 g/dL, CH2Cl2) and lastly 

cationic ester enolate catalyst (R,R)-(EBI)Zr
+
(THF) [OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ {(R,R)-1, 

[α]
23

D = +69.8, c = 0.98 g/dL, CH2Cl2 after methide abstraction by (C6F5)3B·THF. The 

spectroscopic data for enantiomeric 1 are identical to those already reported for rac-1.
19

 It is 

worth noting that in the step of the preparation of dimethyl zirconocenes (S,S)-(EBI)ZrMe2 and 
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(R,R)-(EBI)ZrMe2, the ether-solvated magnesium salt co-products were inseparable from the 

desired dimethyl complexes by repeated recrystallization from various solvents or filtration over 

Celite; however, treatment of the crude product mixture under high vacuum (10
4
 – 10

6
 torr) at 80 

°C for 6 h, followed by dissolution of the residue in toluene, filtration, and drying of the filtrate in 

vacuo afforded the clean dimethyl complexes.    

 

Scheme 1. Outlined overall synthesis of enantiomeric catalysts (S,S)-1 and (R,R)-1. 

 

General Polymerization Procedures. Polymerizations were performed in 30-mL glass 

reactors inside the glovebox for the reactions carried out at ambient temperature (~23 °C). In a 

typical procedure for homopolymerization, predetermined amounts of B(C6F5)3·THF and the 

appropriate pre-catalyst in a 1:1 molar ratio were premixed in 5 mL of CH2Cl2 and stirred for 10 
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min to cleanly generate the corresponding cationic catalyst.
20

 A monomer was quickly added 

either as a solid or by pipette to the vigorously stirring solution, and the reaction was allowed to 

proceed for 3 h with continuous stirring. Polymerizations of DIPA and APY, which did not occur 

at ambient temperature, were carried out at 80 °C and performed in 25-mL Schlenk flasks 

equipped with stir bar and septum cap. Predetermined amounts of B(C6F5)3·THF and the 

appropriate pre-catalyst were dissolved in 5 mL 1,2-dichlorobenzene and stirred for 10 min at 

ambient before addition of monomer. Thereafter, the charged Schlenk flask was taken out of the 

glovebox and immersed in an oil bath that was pre-equilibrated at 80 °C, and the reaction proceed 

for 1 h with vigorous stirring. After the measured time interval, a 0.2 mL aliquot was taken from 

the reaction mixture via syringe and quickly quenched into a 4 mL vial containing 0.6 mL of 

undried “wet” CDCl3 stabilized by 250 ppm of BHT-H; the quenched aliquots were later analyzed 

by 
1
H NMR to obtain monomer conversion data. The polymerization was immediately quenched 

after the removal of the aliquot by addition of 5 mL 5% HCl-acidified methanol. The quenched 

mixture was precipitated into 100 mL of methanol, stirred for 1 h, filtered or centrifuged, washed 

with methanol, and dried in a vacuum oven at 50 C overnight to a constant weight. P(DMAA) 

and P(APY) were precipitated into 100 mL diethyl ether and stirred for 1 h. The product was 

obtained as a sticky solid and dried in a vacuum oven at 50 °C overnight to a constant weight; the 

polymer was redissolved in minimum methylene chloride, precipitated into a 10-fold excess of 

diethyl ether, stirred for 1 h, filtered, washed with diethyl ether, and dried in a vacuum oven at 50 

°C overnight to a constant weight. 

The amounts of the monomers employed for the polymerizations are listed as follows: 

DPAA, 4.48 mmol; PTAA, 0.85 mmol; HPAA, 0.39 mmol; MPAA, 3.10 mmol; DIPA, 3.22 

mmol; APY, 4.25 mmol; APP, 3.7 mmol; PAA, 1.36 mmol; EAA, 2.0 mmol; DMMA, 9.34 

mmol; MMA, 9.34 mmol; BMA, 9.34 mmol; and EHM, 9.34 mmol. The amount of the 

precatalyst, in combination with 1 equiv of the activator B(C6F5)3·THF, was adjusted according to 
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the [monomer]/[catalyst] ratio specified in the polymerization tables. For block 

copolymerizations of MMA with a second monomer, after in situ generation of the catalyst in the 

identical fashion as described above, 400 equiv of MMA was quickly added via pipette and 

vigorously stirred for 10 min (for a quantitative MMA conversion) before the addition of the 

second monomer. The polymerization of the second monomer proceeded for 3 h with continuous 

stirring. 

Kinetics of DPAA Polymerization. Kinetic experiments for the polymerization of DPAA 

were carried out in 30 mL reactors inside of the glove box at ambient temperature (~23 °C) using 

the similar procedure as already described above, except that, at appropriate time intervals, 0.2 

mL aliquots were withdrawn from the reaction mixture using a syringe and quickly quenched into 

1 mL septum cap sealed vials containing 0.6 mL of undried “wet” CDCl3 mixed with 250 ppm of 

BHT-H. The quenched aliquots were analyzed by 
1
H NMR to determine monomer conversions. 

Specifically, predetermined amounts of B(C6F5)3·THF and rac-1 in a 1:1 molar ratio were 

premixed in 5 mL of CH2Cl2 and stirred for 10 min before 2.24 mmol DPAA was added as a 

solid. Owing to the insolubility of P(DPAA), 0.746 mmol toluene was added to the reaction 

solution to act as an internal standard and the percent of the unreacted DPAA at a given time t, 

was determined by integration of the peaks for DPAA (6.5 ppm for one of the vinyl protons) and 

toluene (2.09 ppm for the methyl protons) according to the percent of unreacted DPAA = 

(A6.5/A2.09)  100, where A6.5 is the total integrals for the peaks centered at 6.5 ppm and A2.09 is the 

total integral for the peak centered at 2.09 ppm. Apparent rate constants (kapp) were extracted by 

linearly fitting a line to the plot of ln([DPAA]0/[DPAA]t) vs time t. The polymerization became 

heterogeneous at high monomer conversions (the conversion at which the heterogeneity becomes 

apparent depends on the initial [DPAA]/[Zr] ratio employed), which eliminated the ability to 

perform the NMR analysis of the aliquots taken at higher monomer conversions.  
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Polymer Characterizations. Gel permeation chromatography (GPC) and light scattering 

(LS) analyses of the polymers were carried out at 40 ºC and a flow rate of 1.0 mL/min, with 

CHCl3 as the eluent, on a Waters University 1500 GPC instrument coupled with a Waters RI 

detector and a Wyatt miniDAWN Treos LS detector. The GPC instrument is equipped with one 

PLgel 5 μm guard and three PLgel 5 μm mixed-C columns (Polymer Laboratories; linear range of 

molecular weight = 200–2,000,000), and calibrated with 10 P(MMA) standards. Chromatograms 

were processed with Waters Empower software (version 2002); number-average molecular 

weight (Mn) and polydispersity (Mw/Mn) of polymers were given relative to P(MMA) standards. 

Weight-average molecular weight (Mw) was obtained from the analysis of the LS data which was 

processed with Wyatt Astra Software (version 5.3.2.15), and dn/dc values were determined 

assuming 100 % mass recovery of polymers with known concentrations. The insoluble P(DPAA) 

samples produced by rac-1 were converted to the CHCl3-soluble poly(methyl acrylate) derivative 

for their GPC analysis, using literature procedures.
14a  

 

Maximum rate decomposition temperatures (Tmax) and decomposition onset temperatures 

(Tonset) of the polymers were measured by thermal gravimetric analysis (TGA) on a TGA 2950 

Thermogravimetric Analyszer, TA Instrument. Polymer samples were heated from ambient 

temperatures to 600 °C at a rate of 20 °C/min. Values for Tmax were obtained from derivative 

(wt%/°C) vs. temperature (°C) while Tonset values (initial and end temperatures) were obtained 

from wt% vs. temperature (°C) plots.  

Optical rotations were measured on an Autopol III Automatic Polarimeter at 23°C. The 

measurements were conducted on 0.2 g/dL polymer solutions, 0.49 g/dL enantiomeric precatalyst 

solutions, and 0.98 g/dL enantiomeric cationic catalyst solutions. Polymer samples were 

dissolved in CHCl3 except homopolymer P(DPAA), P(PTAA), P(MPAA), and P(APP) samples 

which were dissolved in CHCl3 with addition of a small amount of CF3COOH,
14a

 and the 

enantiomeric catalysts in CH2Cl2. Circular dichroism (CD) spectra were obtained from an Aviv 

model 202 CD spectrometer. CD analysis was conducted on polymer solutions with 
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concentrations of 0.2g/dL. Block copolymers were dissolved in THF, while homopolymers were 

dissolved in CHCl3, except P(DPAA), P(PTAA), P(MPAA), and P(APP) samples which were 

dissolved in CHCl3 with addition of a small amount of CF3COOH.  

 

Results and Discussion 

Kinetics of DPAA Polymerization.  Our previous mechanistic studies have demonstrated 

that the coordination polymerization of N,N-dialkyl acrylamide DMAA by rac-1 proceeds in a 

monometallic, site-control, coordination-conjugate addition mechanism through eight-membered-

ring cyclic amide enolate intermediates (i.e., structure A, Scheme 2).
21

 The resting state during a 

“catalytic” propagation cycle is the cyclic amide enolate A and associative displacement of the 

coordinated penultimate amide group by incoming acrylamide monomer to regenerate the active 

species is the rate-determining step, giving rise to the propagation kinetics that is first order in 

both concentrations of the monomer and the catalyst. 

 

Scheme 2. Proposed initiation and propagation steps in the polymerization of acrylamides by rac-

1. 
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To examine if the polymerization of N,N-diaryl amides follows the same scheme 

established for N,N-dialkyl amides, kinetics of the DPAA polymerization by rac-1 was 

investigated, the results of which were summarized in Figure 1. The kinetic experiments 

employed the [DPAA]0/[rac-1]0 ratios ranging from 50 to 400; however, insolubility of the 

polymer hampered the efforts to perform accurately the NMR analysis of the aliquots taken at 

high conversions for the larger [DPAA]0/[rac-1]0 ratio runs. Nevertheless, the available data 

collected clearly show that propagation is first order in [DPAA] for all the [DPAA]0/[rac-1]0 

ratios investigated in this study (Figure 1). Furthermore, a double logarithm plot (Figure 2) of the 

apparent rate constants (kapp), obtained from the slopes of the best-fit lines to the plots of 

ln([DPAA]0/[rac-1]0) vs. time, as a function of ln[rac-1]0 was fit to a straight line (R
2
 = 0.994) of 

slope 0.987.  Thus, the kinetic order with respect to [rac-1], given by the slope of ~1 (0.987), 

reveals that the propagation is also first order in catalyst concentration, indicating that the N,N-

diaryl amide polymerization catalyst 1 follows the same mechanism as that of the N,N-dialkyl 

amide polymerization shown in Scheme 2. 
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Figure 1.  Semilogarithmic plots of ln([DPAA]0/[DPAA]t) vs. time for the polymerization of 

DPAA by rac-1 in CH2Cl2 at ambient temperature (~23 ºC).  Conditions: [DPAA]0 = 0.448 M; 

[rac-1]0 = 8.95 mM (Δ), 4.47 mM (▲), 2.24 mM (□), 1.12 mM (■). 
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Figure 2.  Plot of ln(kapp) vs. ln[1] for the DPAA polymerization by rac-1 in CH2Cl2 at ambient 

temperature. 

 

Polymerization of N,N-Diaryl Acrylamides. Racemic catalyst 1 was initially employed to 

examine the catalyst reactivity toward N,N-diaryl acrylamides for rendering solution-stable 

helical conformations of the corresponding highly isotactic polymers. Thus, polymerization of 50 

and 200 equiv of DPAA in CH2Cl2 at ambient temperature using rac-1 proceeds to quantitative 

monomer conversions (although the reaction started to become heterogeneous after ~5 min), 

affording P(DPAA) (runs 1 and 2, Table 1) with a high Tmax (maximum-rate-decomposition 

temperature) of 484 C in a narrow, one-step decomposition window (Figure 3). The rigid helical 

structure of highly isotactic P(DPAA)
14

 can be viewed in the space-filing model of the most 

stable conformation as a 51 helix (Figure 4); the P(DPAA) produced by the highly isospecific 

coordination catalyst rac-1 is also insoluble in common organic solvents, precluding its direct 

MW measurements by GPC. Accordingly, it was converted to the soluble poly(methyl acrylate) 

derivative by treatment with concentrated H2SO4 in MeOH at 90 C for 24 h, followed by 

methylation with CH2N2.
14

  The measured MW and MWD (Mw = 3.97  10
4
, Mw/Mn = 1.03 and 
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Mw = 1.16  10
4
, Mw/Mn = 1.13 for [DPAA]0/[rac-1]0 = 200 and 50, respectively) of the 

poly(methyl acrylate) derivative (runs 1 and 2, Table 1) demonstrate the controlled/living nature 

of the DPAA polymerization. 

 

Table 1.  Selected Results of Polymerization of N,N-Diaryl Acrylamides by 1.
a
 

run 

no. 
monomer 

[monomer] 

/[1] 

catalyst 

form 

yield
b
  

(conv) 

10
4
 Mw

c 

(g/mol) 

MWD
c
 

(Mw/Mn) 

[α]
23

D
d

 

(deg) 

1 DPAA 200 rac 97 3.97 1.03  

2 DPAA 50 rac 96 1.16 1.13 0.0 

3 DPAA 50 S,S 96   −15.5 

4 DPAA 50 R,R 96   +19.5 

5 PTAA 50 rac (100)   0.0 

6 PTAA 50 S,S (100)   −159 

7 PTAA 50 R,R (100)   +180 

8 HPPA 50 S,S (100) 19.8 1.25 +152 

9 HPPA 50 R,R (100) 18.1 1.38 −161 
a
 Carried out in 5 mL of CH2Cl2 at ambient temperature for 3 h.  

b
 Isolated polymer yield or 

monomer conversion in parenthesis, (conv), measured by 
1
H NMR.  

c
 Determined by GPC 

relative to P(MMA) standards for runs 1 and 2 which were based on the poly(methyl acrylate) 

derivatives, or by LS for runs 8 and 9. 
d
 Determined by polarimetry (c = 2 g/dL in CHCl3; DPAA 

and PTAA polymer samples were dissolved in CHCl3 with a small amount of CF3COOH, while 

HPPA polymer samples were dissolved in CHCl3 only. 

 

 

 

Figure 3.  TGA derivative plot of P(DPAA) produced by rac-1 (run 1, Table 1). 
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Figure 4.  MM2-calculated 51 helical structure of a 50-mer of isotactic P(DPAA) viewed as a 

space filling model (carbon, nitrogen, and oxygen are grey, blue, and red, respectively; H atoms 

omitted). 

 

Subsequently, we polymerized DPAA with enantiomeric catalysts (R,R)-1 and (S,S)-1, 

successfully affording optically active P(DPAA)s with excess one-handed helicity (runs 3 and 4, 

Table 1). Thus, the enantiomeric catalysts produce polymers of opposite specific rotation to one 

another: [α]
23

D −15.5 by (S,S)-1, [α]
23

D +19.5 by (R,R)-1, showing the enantiomeric nature of 

the resulting polymers and determination of the handedness of the polymer helix by the 

configuration of the enantiomeric catalyst used. Furthermore, the P(DPAA) also exhibits opposite 

optical rotation to those of the respective neutral catalyst precursors used. Although the optically 

active P(DPAA) shows the same sign of optical rotation as that of each enantiomeric cationic 

zirconocenium catalyst, the possibility of the observed optical activity could arise from the 

catalyst residue in its cationic form is eliminated by the careful removal of the catalyst residue 

during post-polymerization workup procedures (see Experimental), by circular dichroism (CD) 

analysis  that the catalyst did not exhibit any absorption peaks in the region observed for the 

polymer (vide infra), and also by control experiments that optically inactive, nonhelical, high 

MW polymers such as P(DMAA) and P(MMA) produced by either (R,R)-1 or (S,S)-1 always 

gave zero values by polarimetry, following the same post-polymerization workup procedures, 

which confirms the complete removal of the catalyst or ligand residue using our procedure. 

We also examined the possible modulation on optical activity of the polymer by 

unsymmetrical substitution of the phenyl groups of poly(N,N-diary acrylamide)s. To this end, we 

extended this asymmetric coordination polymerization system to N-phenyl-N-(4-tolyl)acrylamide 
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(PTAA).  Specifically, polymerizations of PTAA by rac-1,  (S,S)-1, and  (R,R)-1 are as effective 

as the DPAA polymerization, producing rigid helical P(PTAA) whose optical activity and screw-

sense helices are determined by the form of the catalyst employed:  [α]
23

D = 0.0, −159, and 

+180 by rac-1, (S,S)-1, and (R,R)-1, respectively (runs 5–7, Table 1). These results were further 

confirmed by their CD spectra (Figure 5) which show no, positively signed, and negatively signed 

Cotton effects in the characteristic region of a ππ
*
 transition of the phenyl ring in the P(PTAA) 

produced by rac-1, (S,S)-1, and (R,R)-1, respectively, and that the latter two are near mirror 

images of each other. Of significance here are the observed approximately 10 times higher 

specific rotation values for P(PTAA) than P(DPAA). 
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Figure 5.  CD spectra (CHCl3/CF3COOH) of P(PTAA) produced by catalysts (S,S)-1 (red), rac-1 

(green), and (R,R)-1 (blue). 

 

The stereoregular, rigid helical P(DPAA) and P(PTAA) produced are insoluble in common 

organic solvents, precluding their direct measurements of MW by GPC as well as optical activity 

by polarimetry and CD in common solvents such as CHCl3 (without addition of CF3COOH). We 

reasoned that a polymer based on N-(4-hexylphenyl)-N-phenyl acrylamide (HPPA)
14a

 would be 
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possible to overcome this issue because the long-chain alkyl group on each repeat unit of the 

resulting polymer should enhance its solubility, and furthermore, the unsymmetrically substituted 

phenyl groups on N should give rise to the polymer with a large specific rotation [e.g., P(PTAA) 

vs. P(DPAA)]. Accordingly, polymerization of 50 equiv of HPPA was performed by catalysts 

(S,S)-1 and (R,R)-1, satisfactorily leading to the optically active, one-handed helical P(HPPA) that 

is soluble directly in CHCl3 (runs 8 and 9, Table 1); polymers of higher molecular weights were 

found to be insoluble in CHCl3. The measured absolute MWs by light scattering are ~ 10 times 

higher than the calculated value strictly based on the monomer to catalyst feed ratio, likely due to 

association of the chains. Again, the enantiomeric catalysts produced P(HPPA)s of opposite 

specific rotation, but interestingly, the specific rotations of these polymers are opposite in sign to 

that of P(DPAA) or P(PTAA) produced by the same enantiomeric catalysts. It is currently unclear 

why there is alteration in sign of specific rotation, but it is important to note that these results do 

not give insight into the handedness of the helix, although it is assumed that the handedness of 

P(HPPA) is the same as that of P(DPAA) or P(PTAA) produced by the same enantiomeric 

catalysts due to the enantiomorphic site-control mechanism of the polymerization.  Indeed, the 

CD analysis of the P(HPPA) produced by rac-1, (S,S)-1, and (R,R)-1 showed no, positively, and 

negatively signed Cotton effects, respectively (Figure 6), which is the same as what was observed 

for P(PTAA) (c.f. Figure 5). As in P(PTAA), P(HPPA) with two nonequivalent aryl groups on 

amide N (i.e., unsymmetrical substitution) shows much larger specific rotations as compared to 

P(DPAA) with symmetrical substitution. 
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Figure 6.  CD spectra (CHCl3) of P(HPPA) produced by catalysts (S,S)-1 (red), rac-1 (green), 

and (R,R)-1 (blue).  

 

Block Copolymerization of N,N-Diaryl Acrylamides with MMA. The following three 

reasons prompted us to investigate the block copolymerizations of MMA with DPAA and PTAA: 

(a) use of a large MMA block to help solubilize the rigid helical acrylamide block; (b) further 

confirmation of the living/controlled nature of this polymerization system; and (c) production of 

the unique optically active, flexible random coil–rigid helical block copolymers. The block 

copolymerizations were carried out in a ratio of [MMA]/[acrylamide][1] = 400:50:1 at ambient 

temperature by starting the polymerization of MMA first, the results which were summarized in 

Table 2.   

Table 2.  Results of Block Copolymerization of MMA with N,N-Diaryl Acrylamides by 1.
a
 

run 

no. 
comonomer 

[M]/[co-M] 

/[1] 

catalyst 

form 

yield  

(%) 

10
4
 Mw

b 

(g/mol) 

MWD
b 

(Mw/Mn) 

[α]
23

D
c 

(deg) 

10 DPAA 400/50/1 rac >99 376 1.19 0.0 

11 DPAA 400/50/1 S,S >99 358 1.15 −8.5 

12 DPAA 400/50/1 R,R >99 264 1.21 +11.0 

13 PTAA 400/50/1 rac >99 103 1.08 0.0 

14 PTAA 400/50/1 S,S >99 111 1.09 −27.0 

15 PTAA 400/50/1 R,R >99 123 1.07 +32.0 
a
 Carried out in 5 mL of CH2Cl2 at ambient temperature for 10 min of MMA polymerization 

followed by 3 h of acrylamide polymerization. 
b
 Determined by LS. 

c
 Specific rotation measured 

in CHCl3.  
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Indeed, block copolymers P(MMA)400-b-P(DPAA)50 and P(MMA)400-b-P(PTAA)50 are 

soluble in CHCl3, but the measured absolute MWs by light scattering are substantially higher than 

the calculated value strictly based on the monomer-to-catalyst-feed ratio, likely due to the 

association of the polymer chains such as micelle formation. (The subscripted numbers shown in 

the block copolymer formula represent only the comonomer feed, and they do not necessarily or 

precisely reflect on copolymer composition.) Significantly, the block copolymers produced have 

narrow, unimodal MW distributions of Mw/Mn = 1.07–1.21), further confirming the 

living/controlled nature of the present polymerization system. The block copolymer composition 

is confirmed by TGA analysis (Figure 7) which showed 20 wt% for the P(DPAA) block in the 

block copolymer as compared to the calculated 18 wt% based on P(MMA)400-b-P(DPAA)50 or the 

monomer feed ratio. The optical activity of these block copolymers also hinges on the nature of 

the catalyst although, as expected, the specific rotation value of the block copolymer is much 

smaller than the respective homopolymer because of the weight fraction contribution of the large, 

optically inactive P(MMA) block; while rac-1 afforded the optically inactive copolymer (runs 10 

and 13, Table 2), (S,S)-1 and (R,R)-1 led to the copolymers of opposite optical rotation (runs 11 

and 14 vs. runs 12 and 15, Table 2). These results were further confirmed by their CD spectra 

(Figures 8 and 9) which show no, positively signed, and negatively signed Cotton effects for the 

block copolymers produced by rac-1, (S,S)-1, and (R,R)-1, respectively. 
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Figure 7. TGA derivative plot of P(MMA)400-b-P(DPAA)50 produced by (S,S)-1 (run 11 in Table 

2).  
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Figure 8.  CD spectra (THF) of P(MMA)400-b-P(DPAA)50 produced by catalysts (S,S)-1 (red), 

rac-1 (green), and (R,R)-1 (blue). 



  28  
 

-200

-150

-100

-50

0

50

100

150

200

275 300 325 350 375

Wavelength (nm)

C
D

 (
m

d
e
g

)

 

Figure 9.  CD spectra (THF) of P(MMA)400-b-P(PTAA)50 produced by catalysts (S,S)-1 (red), 

rac-1 (green), and (R,R)-1 (blue). 

 

Effects of Chain Length on Optical Activity of Helical Poly(acrylamide)s. Because of 

the cryptochiral phenomenon of stereoregular vinyl polymers, only those low MW, enantiomeric 

oligomers exhibit measurable optical activity in solution, and the optical activity of such 

oligomers increases with a decrease in MW due to chain-end group effects (vide supra). 

However, the optical activity of the rigid helical poly(N,N-diaryl acrylamide)s of the current 

study does not rely on chain-end groups to eliminate reflection elements of symmetry, but rather 

by secondary structure of stable helical conformation. Intuitively, as the chain length of such 

polymers increases and the helical structure becomes more pronounced, the optical activity 

should rise. Thus, at shorter chain lengths the helix may not be fully developed, resulting in lower 

optical activity, and chain-end group effects on the chiroptical properties of the polymer become 

more significant. To test this hypothesis, we conducted the PTAA polymerization varying the 

[PTAA]/[(R,R)-1] ratio. The insolubility of the resulting P(PTAA) in common organic solvents 

prevented its direct MW analysis; thus, interpretation of the specific rotations of these polymers 

as a function of MW (chain length) was based on the [PTAA]/[(R,R)-1] ratio employed because 
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the controlled nature of this polymerization system was confirmed by other means (vide supra). 

As depicted in Figure 10, the specific rotation of the chiral polymer solution (in CHCl3 with 

addition of a small amount of CF3COOH) indeed increases with an increase in the monomer feed 

ratio (and thus the polymer chain length). Of significance, when the [PTAA]/[(R,R)-1] ratio is 

increased from 20 to 30 there is an enormous climb in the [α]
23

D value by 113.2 °!  This large 

increase in specific rotation between these two ratios may correspond to the formation of a well-

defined helix and multiple turns in the helix for the polymers synthesized with [PTAA]/[(R,R)-1] 

> 20. In comparison, when the [PTAA]/[(R,R)-1] ratio is increased from 30 to 50, there is a much 

smaller increase in specific rotation by 32.0°. We presently do not know, however, the maximum 

specific rotation of this polymer can achieve because higher MW P(PTAA)s become insoluble in 

CHCl3/CF3COOH, precluding their solution specific rotation measurements. 
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Figure 10.  Plot of specific rotation [α]
23

D values of P(PTAA) vs. the [PTAA]/[(R,R)-1] ratio 

employed.  

 

The use of soluble low MW P(HPPA) in CHCl3 allowed establishing a direct plot between 

MW and optical activity. To this end, five P(HPPA) samples were prepared from the 
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polymerization using the [HPPA]/[(R,R)-1]) ratio = 10, 20, 30, 40, and 50 to produce the 

corresponding polymers with their absolute Mw and MWD measured by LS as well as specific 

rotations measured by polarimetry in CHCl3 being summarized in Table 3. Again, the measured 

specific rotation (absolute value) of the chiral polymer increases with an increase in the polymer 

MW (chain length), Figure 11. However, surprisingly, the lowest MW polymer sample showed a 

small, but positive, specific rotation, whereas when the MW of P(HPPA) further increased the 

specific rotation became largely negative. This observation is most likely an effect of helix 

formation in that the small MW polymer does not fully develop the solution-stable helix and thus 

optical activity arises chiefly from the chirality in the main chain and nonequivalent chain-end 

groups; with further increasing MW the helix is more defined so that specific rotation is of the 

same sign for the polymers of the same screw sense and also becomes more largely negative with 

an increase in MW (Figure 11). 

 

Table 3.  Results of Polymerization of N-(4-Hexylphenyl)-N-phenyl Acrylamide (HPPA) by 

(R,R)-1. 

run 

no. 

[HPPA] 

/[1] 

conv  

(%) 

10
4
 Mw

a 

(g/mol) 

MWD
a 

(Mw/Mn) 

[α]
23

D
b
 

(deg) 

16 10 >99 1.04 1.00 +1.5 

17 20 >99 2.16 1.01 −7.8 

18 30 >99 4.65 1.23 −11.0 

19 40 >99 7.74 1.75 −67.6 

20 50 >99 18.1 1.38 −161 
a
 Determined by LS. 

b
 Specific rotation measured in CHCl3. 
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Figure 11.  Plot of specific rotation [α]
23

D values of P(HPPA) produced by (R,R)-1 vs. Mw.  

 

Polymerization of Non-Diaryl Acrylamides. The above success in converting prochiral 

N,N-diaryl acrylamides to optically active, rigid helical polymers via asymmetric coordination 

polymerization brought forth a fundamental question of whether two aryl groups on amide N are 

of necessity in rendering solution-stable helical conformation. To answer this question, we 

investigated polymerizations of seven non-diaryl acrylamides by systematic replacement of one 

or both phenyl groups on N with H or alkyl groups of varying steric hindrance (see Chart II for 

structures), including N-aryl-N-alkyl acrylamide MPAA, N-aryl acrylamide PAA, N-alkyl 

acrylamide EAA, N,N-dialkyl acrylamides DMAA and DIPA, as well as N,N-cyclic (CH2)n 

acrylamides APY (n = 4) and APP (n = 5). Selected polymerization results were summarized in 

Table 4. 
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Table 4.  Selected Results of Polymerization of Non-Diaryl Acrylamides by (R,R)-1.
a
 

run 

no. 
M/co-M 

[M]/[co-M 

/[1] 

yield 

(conv) 

10
4
 Mw

b 

(g/mol) 

MWD
b
 

(Mw/Mn) 

[α]
23

D
c
 

(deg) 

21 MPAA 50/1 97   +0.9 

22 MPAA 30/1 (100)   +1.7 

23 MPAA 10/1 (100)   +6.6 

24 MPAA/MMA 50/400/1 (100) 21.2 1.01 +4.8 

25 DMAA 50/1 >99   +6.0 

26 DMAA 400/1 >99   0.0 

27 DMAA/MMA 400/400/1 >99   +5.5 

28 DMAA/MPAA 400/100/1 >99   +6.3 

29 DIPA/MMA 50/400/1 (100) 18.8 1.01 +2.7 

30 APP 50/1 (100)   +3.1 

31 APP/MMA 50/400/1 (100) 10.0 1.29 +6.0 
a
 Carried out in 5 mL of CH2Cl2 at ambient temperature for 10 min (for MMA and DMAA) or 3 h 

(for MPAA or APP), or in 5 mL of o-C6H4Cl2 at 80 °C for 1 h (for DIPA and APY). 
b
 Determined 

by LS. 
c
 Specific rotation measured in CHCl3 for block copolymers and DMAA homopolymers, 

or in CHCl3 with addition of a small amount of CF3COOH for MPAA and APP homopolymers. 

    

Polymerizations of these non-diaryl acrylamides were first examined using rac-1 to 

determine their reactivity toward the current catalyst system and also serve as comparative 

examples when analyzing the results by the enantiomeric catalysts. All homopolymers or block 

copolymers produced by rac-1 gave zero readings in polarimetry as expected, and these results 

were not included in Table 4. P(MPAA) produced by (R,R)-1 showed a small specific rotation of 

+0.9° (run 21, Table 4) in a [MPAA]/[(R,R)-1] ratio of 50; the polymer was almost cryptochiral 

based on the [α]
23

D values and also exhibited no Cotton effects from its CD analysis, implying 

that a helical structure was not formed. A further study of effects of the [MPAA]/[(R,R)-1] ratio 

on optical activity of the resulting polymer (runs 21–23, Table 4) confirmed the above 

conclusion. Thus, in sharp contrast to the optically active, rigid helical poly(N,N-diaryl 

acrylamide)s, a decrease in the MPAA monomer feed ratio (thus the polymer chain length) 

increases the specific rotation of the polymer (Figure 12), characteristic of the small optical 

activity due to configurational chirality relied on chain-end group effects rather than helically 

conformational chirality (vide supra). A block copolymer of 50 equiv of MPAA with 400 equiv 

of MMA (run 24, Table 4) was also prepared to enable MW analysis and examination of optical 
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activity of the copolymer. Interestingly, the enantiomeric copolymer P(MMA)400-b-P(MPAA)50 

produced by (R,R)-1 had a specific rotation of +4.8°, which is much larger than the specific 

rotation (+0.9°) of P(MPAA) synthesized using the same amount of MPAA. This observation is 

again in contrary to all prior observations made for helical N,N-diaryl acrylamide–random coil 

MMA block copolymers, further supporting the conclusion that MPAA with only one phenyl 

group on N cannot produce a polymer with solution-stable helicity. Impressively, MM2 modeling 

of P(MPAA) drew into the same conclusion (i.e., a random-coil structure, Figure 13).  
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Figure 12.  Plot of specific rotation [α]
23

D values of P(MPAA) vs. the [MPAA]/[(R,R-1)] ratio. 

 

Figure 13.  MM2-calculated random-coil structure of a 50-mer of isotactic P(MPAA) viewed as a 

wire frame model (carbon, nitrogen, and oxygen are grey, blue, and red, respectively; H atoms 

omitted). 
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Consistent with the inactivity of rac-1 towards polymerization of N-isopropyl acrylamide 

(containing acidic N–H proton) but high activity towards polymerization of DMAA,
21

 catalyst 

(R,R)-1 is unable to polymerize either PAA or EAA but rapidly polymerizes DMAA to isotactic 

P(DMAA) that exhibited a specific rotation of +6.0° in a [DMAA]/[(R,R)-1] ratio of 50 (run 25, 

Table 4). The enantiomeric P(DMAA) produced at a higher ratio of [DMAA]/[(R,R)-1] = 400 

became cryptochiral (zero optical rotation, run 26, Table 4) as expected; however, the block 

copolymer P(DMAA)400-b-P(MMA)400 is optically active with [α]
23

D = +5.5 (run 27, Table 4), 

whereas each respective homopolymer of the same composition is cryptochiral. Likewise, the 

block copolymer P(DMAA)400-b-P(MPAA)100 is optically active with [α]
23

D = +6.5 (run 28, 

Table 4), whereas each respective homopolymer of the same composition is cryptochiral. These 

findings, along with the previously observed much larger optical activity of the block copolymer 

P(MMA)400-b-P(MPAA)50 than P(MPAA)50, point to an exciting strategy for producing optically 

active, nonhelical polymers via block copolymer formation. More discussion on this subject is 

described in next segment. 

No polymerization occurred for DIPA or APY at ambient temperature; however, they were 

readily polymerized by catalyst 1 in o-dichlorobenzene at 80 °C (control runs without the catalyst 

showed no polymerization occurred at 80 °C up to 24 h). The resulting P(DIPA), with even a 

small [DIPA]/[(R,R)-1] ratio of 50 or 10, was insoluble in common solvents tested, inhibiting 

direct analysis of its optical activity. Subsequently, we synthesized the block copolymer 

P(MMA)400-b-P(DIPA)50 using (R,R)-1 that showed a specific rotation of +2.7° (run 29, Table 4); 

the enantiomeric block copolymer was further analyzed by CD and showed no Cotton effects, 

implying that, like P(MPAA) and P(DMAA), it does not form a helical structure. P(APY) 

produced by (R,R)-1 in a [APY]/[(R,R)-1] ratio of 200 is cryptochiral. However, according to 

MM2 modeling, the piperidine derivative APP would render a helical conformation (Figure 14). 

Accordingly, we polymerized APP using catalysts 1 achieving quantitative monomer 
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conversions. The enantiomeric homopolymer P(APP) and block copolymer P(MMA)400-b-

P(APP)50 exhibited small, but significant specific rotations of +3.1° and +6.0°, respectively (runs 

30 and 31, Table 4), initiating CD analysis for conformation of helical formation. Indeed, the CD 

spectra of P(APP) showed a large negative Cotton effect in the characteristic region of a nn
*
 

transition (Figure 15), thereby achieving the first chiral poly(N,N-dialkyl acrylamide) with 

solution-stable one-handed helicity. 

 

 

Figure 14.  MM2-calculated approximately 61 helical structure of a 40-mer of chiral isotactic 

P(APP) viewed as a space filling model (carbon, nitrogen, and oxygen are grey, blue, and red, 

respectively; H atoms omitted). 
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Figure 15.  CD spectra (CHCl3/CF3COOH) of P(APP) by catalysts rac-1 (green) and (R,R)-1 

(blue). 
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Polymerization of Methacrylates. Our above described findings that optical activity was 

observed with the P(MMA)-b-P(acrylamide) block copolymers, even when the acrylamide 

homopolymers do not form a helical structure, led to a hypothesis that in synthesizing block 

copolymers with methacrylates, the mirror plane that exists in homopolymers that renders them 

cryptochiral could be eliminated, giving rise to optically active, non-helical block copolymers. To 

ensure that the optical activity that could arise from the block copolymers was not influenced by 

chain-end groups, we systematically investigated the optical activity of enantiomeric P(MMA) to 

approximate the MW required to reach cryptochirality from polymers produced by our catalyst 

system (runs 32–35, Table 5).  Similarly to the observations of Wulff,
7
 the P(MMA) with Mn = 

2.56  10
4
 g/mol (Pn ~ 250) shows minimal optical activity. A further increase in MW gives the 

polymer without any optical activity. Ensuring that the second block was also long enough to 

reach cryptochirality, we polymerized n-butyl methacrylate (BMA) by (S,S)-1 to find the Mn at 

which  optical activity was not observed (run 36, Table 5).   

 

Table 5.  Results of Polymerization of Methacrylates by 1.
a
 

run 

no. 
M/co-M 

catalyst 

form 

yield 

(%) 

10
4
 Mn

b 

(g/mol) 

MWD
b
 

(Mw/Mn) 

[α]
23

D
c
 

(deg) 

32 MMA R,R >99 0.66 1.05 +5.4 

33 MMA R,R >99 1.07 1.03 +4.5 

34 MMA R,R >99 2.56 1.05 +0.9 

35 MMA R,R >99 3.01 1.05 0.0 

36 BMA S,S >99 1.99 1.04 0.0 

37 400MMA/400BMA S,S >99 16.3 1.07 0.0 

38 400MMA/100BMA S,S 89 8.93 1.04 0.0 

39 400MMA + 400BMA S,S 88 14.2 1.05 0.0 

40 400MMA/400BMA/400EHM S,S >99 22.5 1.04 0.0 
a
 Carried out in 5 mL of CH2Cl2 at ambient temperature for 10 min (MMA), 30 min (BMA), and 

1 h (EHM). 
b
 Determined by GPC relative to P(MMA) standards.  

c
 Determined by polarimetry (c 

= 2 g/dL in CHCl3). 

 

In contrast to the optically active P(MMA)-b-P(acrylamide) block copolymers, the 

P(MMA)400-b-P(BMA)400 synthesized by (S,S)-1 was, surprisingly, optically inactive (run 37, 

Table 5).  To perturb the symmetry of the block copolymer further, we polymerized 
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nonequivalent ratios of MMA and BMA by (S,S)-1, but still leading to an optically inactive 

copolymer (run 38, Table 5).  Next, we produced random copolymer P(MMA)400-co-P(BMA)400, 

and it was found also optically inactive (run 39, Table 5). Lastly, we synthesized the ABC 

triblock methacrylate copolymer of MMA, BMA, and 2-ethylhexylmethacrylate (EHM) using 

(S,S)-1; again, the well-defined triblock copolymer (Mw/Mn = 1.04) showed no optical activity 

(run 40, Table 5). The sharp contrast between the optically active methacrylate-b-acrylamide 

block copolymers and methacrylate-b-methacrylate diblock or triblock copolymers may be 

explained by the following analysis: with the methacrylate-b-methacrylate block copolymers, the 

first nonequivalent atom from the asymmetric carbon on the main chain, in comparison of the two 

different monomer repeat units, is four atoms away, while the first nonequivalent atom between 

the two different monomers within the methacrylate-b-acrylamide block copolymers is attached 

directly to the asymmetric carbon.  

                   

Conclusions 

We have investigated the kinetics and scope of the metallocene-mediated asymmetric 

coordination polymerization of acrylamide and methacrylate monomers using the enantiomeric 

catalysts (S,S)-1 and (R,R)-1 to produce optically active, stereoregular polymers of several 

different classes. Through kinetic studies it has been shown that the polymerization of N,N-diaryl 

acrylamides such as DPAA by 1 proceeds via a mechanism identical to the one already 

established for the polymerization of N,N-dialkyl acrylamides, namely a monometallic, 

coordination-conjugate addition process. In analyzing how chain length affects optical activity of 

polymers, we have shown that increasing MW will increase the optical activity of polymers 

which can form secondary structure of solution-stable helical conformations, whereas for 

random-coil polymers an increase in MW will gradually diminish the influence of chain-end 

groups on the overall chiroptical properties of the polymer, resulting in a decrease in optical 

activity to ultimately null when cryptochirality is reached. 
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The formation of optically active poly(acrylamide)s due to solution-stable helical 

conformations with an excess of one-handed helicity is dictated by the sterics and rigidity of the 

monomer repeat units. Diaryl acrylamides such as DPAA, PTAA, and HPPA are readily 

polymerized by the enantiomeric catalyst 1 to optically active helical polymers, with the 

unsymmetrically substituted monomers (PTAA and HPPA) giving the chiral polymers of much 

enhanced optical activity as compared to the one derived from symmetrically substituted DPPA. 

Introduction of the long-chain alkyl group to one the phenyl rings (i.e., HPPA) not only 

accomplishes the unsymmetrical substitution but also solves the solubility issue associated with 

rigid helical homopolymers, enabling direct MW analysis of such polymers by LS/GPC. All non-

diaryl acrylamides investigated in this study led to nonhelical polymers, except for APP which 

was identified by MM2 modeling and successfully gave rise to the first optically active, helical 

poly(N,N-dialkyl acrylamide), P(APP). 

We have also carried out extensive asymmetric block copolymerization studies of MMA 

with N,N-diaryl acrylamides to solve the solubility issue associated with helical homopolymers of 

acrylamides, to further confirm the living/controlled nature of the present polymerization system 

towards such polar monomers, and to produce the unique optically active, flexible random coil–

rigid helical stereoblock copolymers. We further discovered that all the high MW methacrylate-b-

acrylamide block copolymers produced by the enantiomeric catalysts 1 are optically active, even 

when the MW of both blocks far exceeds their cryptochiral MW and regardless of whether the 

acrylamide comonomer employed can render solution-stable helical conformation or not. On the 

other hand, all the methacrylate-b-methacrylate well-defined stereodiblock or triblock copolymers 

produced by the enantiomeric catalysts 1 are optically inactive, which is attributable to the similar 

structures of the methacrylate repeat units placing the first nonequivalent atom between the 

different methacrylate units too far away from the asymmetric carbon center.   
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Chapter 3 

Coordination-Addition Polymerization and Kinetic Resolution of Methacrylamides by 

Chiral Metallocene Catalysts  

 

Abstract 

This contribution reports the first successful coordination-addition polymerization of N,N-dialkyl 

methacrylamides and the first example of kinetic resolution of a racemic methacrylamide by 

chiral metallocene catalysts. The polymerization of methacryloyl-2-methylaziridine (MMAz) by 

rac-(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2] [MeB(C6F5)3]

−
 (1) is stereospecific and also exhibits a high 

degree of control over polymerization. This polymerization follows first-order kinetics in both 

concentrations of monomer and catalyst, consistent with a monometallic propagation mechanism. 

Substituents on the highly strained aziridine ring stabilize the aziridine moiety against thermally 

induced cross-linking through its ring-opening reaction; thus, the polymer derived from 

methacryloyl tetramethyleneaziridine (MTMAz) exhibits greatly enhanced resistance towards 

thermal cross-linking over poly(MMAz), marking 57 °C and 42 °C higher onset cross-linking and 

maximum cross-linking temperatures, respectively. Enantiomeric catalyst (S,S)-1 demonstrates 

experimentally and theoretically its ability to kinetically resolve the racemic MMAz monomer  

with  a low stereoselectivity factor s of 1.8. Polymerizability of several methacrylamide 

monomers has been investigated via a combined experimental and theoretical (DFT) study that 

examines the degree of conjugation between the vinyl and carbonyl double bonds, relative 

polymerization reactivity, and relative energy for the formation of amide-enolate intermediates. 
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Introduction 

There is increasing interest in the utilization of technologically important, single-site 

cationic group 4 metallocene catalysts,
1
 which have been extensively investigated and 

successfully employed for the (co)polymerization of nonpolar vinyl monomers (α-olefins in 

particular),
2
 for polymerizations of polar, functionalized vinyl monomers including 

methacrylates,
3–45

 acrylates,
40,46–49

 acrylamides,
50–53

 and methyl vinyl ketone.
54

 The 

polymerization of (meth)acrylates has also been studied computationally.
55–62 

Certain catalyst 

structures exhibit a high degree of control over polymerization characteristics (activity and 

efficiency; polymer molecular weight, MW; MW distribution, MWD; livingness) and 

stereochemistry (polymer tacticity and stereocontrol mechanism), enabling the ambient-

temperature synthesis of highly isotactic poly(methacrylate)s (≥ 95% mm)
8,12,35,43,44

 and 

poly(acrylamide)s (>99% mm)
50–53

 using chiral C2-ligated zirconocenium complexes as well as 

highly syndiotactic poly(methacrylate)s (≥ 94% rr)
3
 using chiral Cs-ligated zirconocenium 

complexes. An important exception here is the inability of such coordination metallocene 

catalysts to polymerize N,N-dialkyl methacrylamides such as N,N-dimethyl methacrylamide 

(DMMA),
52

 although they can polymerize acrylamides such as N,N-dimethyl acrylamide 

(DMAA) rapidly in a stereospecific and living fashion.
50–53

 

The non-polymerizability of DMMA has also been previously noted in anionic 

polymerizations by organolithium initiators,
63

 which was attributed to a twisted, non-conjugated 

monomer conformation between the vinyl and carbonyl double bonds, caused by steric repulsions 

between the α-methyl group or the vinyl proton and the N-methyl group of DMMA. As compared 

to other polymerizable conjugated monomers such as DMAA, this twisted DMMA monomer 

conformation results in a less effective π overlap between these two functional groups and thus 

leads to unstable amide enolate intermediates upon nucleophilic attack by the initiator. This 

hypothesis was supported by MNDO calculations
63

 and NMR studies;
64

 the calculations reveal an 

energy minimum for the twisted confirmation that lies ~4.0 kcal/mol below either the s-cis or s-
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trans conformation, while the 
1
H and 

13
C NMR studies show that the NMR features (chemical 

shifts and peak separations) for the vinyl protons and carbonyl carbons of the non-polymerizable 

N,N-dialkyl methacrylamides more closely resemble those of non-conjugated vinyl monomers 

than those of polymerizable, conjugated monomers. Introduction of the highly strained, three-

membered aziridine ring into the monomer structure provided a clever solution to the non-

polymerizability of N,N-dialkyl methacrylamides; Okamoto and Yuki
65

 reported in 1981 

successful anionic and radical polymerizations of N-methacryloylaziridine with BuLi or PhMgBr 

at –78 ºC and with AIBN, and most recently Ishizone and co-workers
66

 reported living anionic 

polymerization of N-methacryloyl-2-methylaziridine (MMAz) with 1,1-diphenyl-3-methylpentyl 

lithium or diphenylmethyl potassium in the presence of LiCl or Et2Zn at low temperatures (–40 

ºC to –78 ºC). 

Three unique features about MMAz and its analogous methacrylamide monomers can be 

appreciated. First, based on our DFT calculations (vide infra), linking the two N-alkyl groups into 

a small three-membered ring alleviates the non-bonding interaction incurred to DMMA, giving 

rise to the desired planar, C=C/C=O conjugated monomer conformation for MMAz and thereby 

solving the non-polymerizability issue with N,N-dialkyl methacrylamides. Second, the pendant 

strained aziridine ring provides needed reactivity towards further polymer functionalization or 

chain cross-linking, through its ring-opening reactions, for stable polymer network structures.
66

 

Third, MMAz is a racemic monomer, which can be tested for kinetic resolution polymerization, 

with appropriate enantiomeric catalysts, potentially leading to the enantiomeric monomer with 

appreciable % ee and the optically active polymer which predominately incorporates the other 

enantiomer from the racemic monomer poor. These three reasoned unique features about MMAz 

prompted our current research using chiral metallocene catalysts, including C2-ligated ester 

enolate complex rac-(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]

−
 [1; EBI = C2H4(η

5
-

indenyl)2]
8,12,52

 and Cs-ligated alkyl complex (CGC)TiMe
+
MeB(C6F5)3

−
 [2; CGC = Me2Si(η

5
-

C5Me4)(
t
BuN)],

17,55
 as we have previously demonstrated their remarkable ability to precisely 
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control the polymerization of methacrylates and acrylamides and also to render asymmetric, 

living polymerization when enantiomeric catalysts 1 are employed.
50,51

 Accordingly, this study 

was designed to address the following four fundamental questions: (1) Can such coordination 

metallocene catalysts, which have been shown not to polymerize non-conjugated 

methacrylamides such as DMMA,
52

 polymerize conjugated methacrylamides such as MMAz? (2) 

If the answer to the polymerizability question is positive, then is the polymerization well-

controlled and can the enantiomeric catalysts effect kinetic resolution of the racemic MMAz 

monomer? (3) Can we design other conjugated methacrylamide monomers with effective vinyl 

and carbonyl π overlap and thus good polymerizability, thereby allowing for a study of the 

polymer structure–property (e.g., thermal stability) relationship? (4) What determines 

polymerizability of methacrylamides? Chart 1 summarizes the catalysts employed and the scope 

of the methacrylamide monomers investigated in this study towards addressing the above four 

fundamental questions. 

 

Chart 1. Chemical Structures of the Catalysts Employed and the Monomers Investigated in 

This Study. 
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Experimental Section 

Materials and Methods.  All syntheses and manipulations of air- and moisture-sensitive 

materials were carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, a 

high-vacuum line, or in an argon or nitrogen-filled glovebox. HPLC-grade organic solvents were 

sparged extensively with nitrogen during filling of the solvent reservoir and then dried by passage 

through activated alumina (for Et2O, THF, and CH2Cl2) followed by passage through Q-5-

supported copper catalyst (for toluene and hexanes) stainless steel columns. Benzene, Benzene-d6 

and toluene-d8 were degassed, dried over sodium/potassium alloy and vacuum-distilled or 

filtered, whereas C6D5Br, CDCl3, and CD2Cl2 were dried over activated Davison 4-Å molecular 

sieves. NMR spectra were recorded on either a Varian Inova 300 (FT 300 MHz, 
1
H; 75 MHz, 

13
C; 

282 MHz, 
19

F) or a Varian Inova 400 spectrometer. Chemical shifts for 
1
H and 

13
C spectra were 

referenced to internal solvent resonances and are reported as parts per million relative to 

tetramethylsilane, whereas 
19

F NMR spectra were referenced to external CFCl3. High resolution 

mass spectrometry  (HRMS) data were collected using Agilent 6220 Accurate Time-of-flight 

LC/MS spectrometer.  

Cyclohexene oxide, 2-methylaziridine, n-BuLi (1.6 M in hexanes), indene, 1,2-

dibromoethane, tetrachlorozirconium, triflic acid, lithium dimethylamide, diisopropylamine, 

sodium azide, sodium hydride, 1,1,3,3-tetramethyl guanidine, (2S,4S)-pentanediol (99% ee, [α]
20

D 

+39.8 (c = 10, CHCl3), (2R,4R)-pentanediol (97% ee, [α]
21

D  –40.4 (c = 10, CHCl3), (CF3SO2)2O, 

PhBCl2, MeMgI (3.0 M in diethyl ether), 1,2-dibromobenzene, and trifluoroacetic acid were 

purchased from Aldrich. Methacryloyl chloride, acryloyl chloride, triethylamine, N,N-dimethyl 

aniline, N-methylpyrrolidone, diethyl oxalate, carbazole, and 2,6-dimethyl pyridine were 

purchased from Alfa Aesar. Trimethylaluminum (neat) was purchased from Strem Chemical Co. 

and isopropyl isobutyrate was purchased from TCI America. All commercial reagents were used 

as received unless indicated as follows. Cyclohexene oxide, indene, 1,2-dibromoethane, 1,2-

dibromobenzene, N,N-dimethyl aniline, methacryloyl chloride, and acryloyl chloride were 
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degassed using three freeze-pump-thaw cycles, while 2-methylaziridine, diisopropylamine, 

diethyl oxalate, (CF3SO2)2O, and PhBCl2 were vacuum-distilled. The following reagents, 2,6-

dimethyl pyridine, triethylamine, and isopropyl isobutyrate were degassed and dried over CaH2 

overnight, followed by vacuum distillation. 1,4-Dioxane (Fisher) was degassed, dried over 

sodium/potassium alloy, and vacuum-distilled. 

Tris(pentafluorophenyl)borane, B(C6F5)3, was obtained as a research gift from Boulder 

Scientific Co. and further purified by recrystallization from hexanes at –35 ºC inside a glovebox. 

The (C6F5)3B•THF adduct was prepared by addition of THF to a toluene solution of the borane 

followed by removal of the volatiles and drying in vacuo. Literature procedures were employed 

for the preparation of the following compounds and metallocene complexes: cyclohexenime,
67

 

LiOC(O
i
Pr)=CMe2,

55
 (EBI)H2,

68
 rac-(EBI)Zr(NMe2)2,

69
 rac-(EBI)ZrMe2,

69
 rac-

(EBI)ZrMe(OTf),
12

 rac-(EBI)ZrMe[OC(O
i
Pr)=CMe2],

12
 rac-

(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]

−
 (1),

12
 (R,R)- and (S,S)-(EBI)ZrCl2,

70
 (R,R)- and 

(S,S)-(EBI)ZrMe2,
50,51

 (R,R)- and (S,S)-(EBI)ZrMe(OTf),
50,51

 (R,R)- and (S,S)-

(EBI)ZrMe[OC(O
i
Pr)=CMe2],

50,51
 (R,R)- and (S,S)-1,

50,51
 (CGC)TiMe2,

71
 and 

CGCTiMe
+
MeB(C6F5)3

−
 (2).

72
 
 

Monomer Preparations. Literature procedures were employed to prepare monomers 

methacryloyl-2-methylaziridine (MMAz),
66

 acryloyl-2-methylaziridine (AMAz),
66

 and α-

methylene-N-methylpyrrolidone (MMPy).
73

 Methacryloyl cyclohexenimine or methacryloyl 

tetramethyleneaziridine (MTMAz) was prepared by reacting cyclohexenimine with methacryloyl 

chloride in the presence of triethylamine. Specifically, a 200 mL Schlenk flask was loaded with 

cyclohexenimine (2.40 g, 24.7 mmol), triethylamine (2.49 g, 24.7 mmol), and CH2Cl2 (50 mL), 

and then capped with a septum.  The solution of the mixture was cooled to 0 °C under positive N2 

flow before the dropwise addition of methacryloyl chloride (2.58 g, 24.7 mmol) via syringe.  The 

reaction mixture was gradually warmed to room temperature, while being stirred for 15 h, after 

which the volatiles were removed in vacuo, affording a white solid.  Et2O (100 mL) was added to 
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the solid, and the resulting suspension was filtered through a medium porosity glass frit. The 

solvent of the filtrate was removed via roto-vap, and the residual monomer was purified by 

distillation, drying over CaH2 overnight, and vacuum distillation (b.p. = 52–54 °C, 1 atm) 

affording 1.66 g (40.7%) of MTMAz as a colorless oil. 
1
H NMR (CDCl3, 23 °C): δ 5.99 and 5.55 

(s, 2H, CH2=), 2.61–2.59 (m, 2H, CH), 1.97–1.78 (m, 4H, CH2), 1.90 (s, 3H, CH3), 1.49–1.36 (m, 

2H, CH2), 1.19–1.17 (m, 2H, CH2). 
13

C NMR (CDCl3, 23 °C): δ 180.9 (C=O), 139.5 (C=CH2), 

128.8 (C=CH2), 36.39 (NCHCH2), 23.65 (CHCH2CH2), 19.74 (CHCH2CH2), 18.38 (CMe). 

HRMS (APCI): m/z calcd for C10H16NO: [M + H]
+
: 166.12264; found: 166.12296.  

MCBz was prepared by reacting carbazole with methacryloyl chloride in THF in the 

presence of triethylamine. Specifically, a 500 mL Schlenk flask was loaded with carbazole (10.8 

g, 64.6 mmol), triethylamine (6.54 g, 64.60 mmol), and 200 mL THF. The solution was cooled to 

0 °C under positive N2 flow before the dropwise addition of methacryloyl chloride (6.75 g, 64.59 

mmol). The reaction mixture was gradually warmed to room temperature while being stirred for 

24 h, after which the suspension was filtered through a medium porosity glass frit, the solvent of 

the filtrate was removed via roto-vap, and the resulting product was purified by three 

recrystallizations from a toluene/hexanes solution mixture affording a white solid (1.67 g, 10.9%) 

of MCBz. 
1
H NMR (CDCl3, 23 °C): δ 8.14 (d, J = 6.3 Hz, 2H, Ar), 8.01 (d, J = 5.7 Hz, 2H, Ar), 

7.49–7.37 (m, 4H, Ar), 5.69 and 5.63 (s, 2H, CH2=), 2.26 (s, 3H, CH3). 
13

C NMR (CDCl3, 23 °C): 

δ 170.6 (C=O), 141.5 (C=CH2), 138.4 (NCCH, Ar), 125.9 (CCCH, Ar), 122.4 (C=CH2), 126.8, 

123.4, 119.7 and 115.8 (Ar), 19.24 (CMe). HRMS (APCI): m/z calcd for C16H14NO: [M + H]
+
: 

236.10699; found: 236.10699.  

General Polymerization Procedures. Polymerizations were performed in 30 mL oven-

dried glass reactors inside the glovebox. In a typical polymerization procedure at ambient 

temperature, predetermined amounts of B(C6F5)3•THF and the appropriate pre-catalyst were 

premixed in 10 mL of CH2Cl2 (for AMAz polymerizations) or 2 mL of CH2Cl2 (for MMAz and 

MTMAz polymerizations). For polymerizations with the (CGC)TiMe2 precatalyst at 60 °C, 
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(CGC)TiMe2 (7.80 mg, 23.8 μmol), B(C6F5)3  (12.2 mg, 23.8 μmol), and 2 mL of 1,2-

dichlorobenzene were added to a 25 mL Schlenk flask, which was capped with a septum. The 

flask was brought out of the box and connected to a Schlenk line and heated to 60 °C. After 10 

min, the monomer (AMAz, 3.2 mmol; MMAz, 3.2 mmol; MTMAz, 1.5 mmol) was added via 

syringe and allowed to stir for a predetermined time interval. Polymerizations were stopped by 

pouring the solutions into a 10-fold excess of Et2O and polymers were isolated by filtration or 

centrifugation, washed with Et2O, and dried in vacuo at ambient temperature.  

Kinetics of MMAz Polymerization. Kinetic experiments for the polymerization of MMAz 

were carried out in 30 mL reactors inside of the glovebox at room temperature using the similar 

procedure as already described above, except that, at appropriate time intervals, 0.1 mL aliquots 

were withdrawn from the reaction mixture using a syringe and quickly quenched into 1 mL 

septum-cap-sealed vials containing 0.6 mL of undried “wet” CDCl3 mixed with 250 ppm of BHT-

H. The quenched aliquots were analyzed by 
1
H NMR for monomer conversion. The monomer 

conversion of MMAz at time t was determined by comparing the methyl singlet centered at 1.95 

ppm of the unreacted monomer to the methyl peaks on the aziridine ring (monomer and polymer) 

and the methyl peak from the polymer main chain, which are centered at 1.30 ppm. Specifically, 

% monomer conversion was calculated by the formula (A1.30 – A1.95)/(A1.30 + A1.95)   100, where 

A1.30 is the total integral for the peaks centered at 1.30 ppm and A1.95 is the total integral for the 

peak centered at 1.95 ppm.  

Kinetic Resolution of (Meth)acryloyl-2-Methylaziridines: The kinetic resolution of 

(meth)acryloyl-2-methylaziridines was carried out in 30 mL reactors inside of the glovebox at 

ambient temperature using the similar procedure as already described above, except employing 

the enantiomeric catalyst (S,S)-1. At predetermined time intervals 0.1 mL (MMAz) or 0.2 mL 

(AMAz) aliquots were withdrawn from the polymerization reaction using a syringe and quickly 

quenched into 1 mL septum cap sealed vials containing 0.6 mL of undried “wet” CDCl3 mixed 
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with 250 ppm of BHT-H. The quenched aliquots were analyzed by 
1
H NMR for monomer 

conversion. The aliquots were then filtered through a silica column to completely remove 

polymer and catalyst residues, as confirmed by 
1
H NMR and HPLC. The solvent was removed 

via roto-vap and the % ee of the monomer was measured using an Agilent 1100 Series HPLC 

with a flow rate of 1.0 mL/min. MMAz was analyzed with a Chiracel OB-H column at 25 °C 

(80:20 hexanes:
i
PrOH, 1.0 mL/min, major enantiomer: 6.4 min, minor enantiomer: 7.8 min). 

AMAz was analyzed with a Chiracel AS-H column at 25 °C (97:3 hexanes:
i
PrOH, 1.0 mL/min, 

major enantiomer: 11.2 min, minor enantiomer 10.4 min). 

Polymer Characterizations. Gel permeation chromatography (GPC) and light scattering 

(LS) analyses of the polymers were carried out at 40 ºC and a flow rate of 1.0 mL/min, with DMF 

(for PMMAz samples produced by 1) or CHCl3 (for all other samples) as the eluent, on a Waters 

University 1500 GPC instrument and Wyatt miniDAWN Treos equipped with four 5 μm PL gel 

columns (Polymer Laboratories). LS data were processed with Wyatt Astra Software (version 

5.3.2.15) and dn/dc values were determined assuming 100% mass recovery of polymers with 

known concentrations.  

Maximum rate decomposition temperatures (Tmax) and decomposition onset temperatures 

(Tonset) of the polymers were measured by thermal gravimetric analysis (TGA) on a TGA 2950 

Thermogravimetric Analyszer, TA Instrument. Polymer samples were heated from ambient 

temperature to 600 °C at a rate of 20 °C/min. Values for Tmax were obtained from derivative 

(wt%/°C) versus temperature (°C) plots while Tonset and Tend values (initial and end temperatures) 

were obtained from wt% versus temperature (°C) plots. Glass transition temperatures (Tg) and 

cross-linking temperatures (Tc) of the polymers were measured by differential scanning 

calorimetry (DSC) on a DSC 2920, TA Instrument. 

Computational Details. The Amsterdam Density Functional (ADF) program
74

 was used to 

obtain all the results concerning the mechanism of stereoselectivity. The electronic configuration 
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of the molecular systems was described by a triple- STO basis set on Zr (ADF basis set TZV).
74a

 

Triple- STO basis sets, augmented by one polarization function, were used for main group atoms 

(ADF basis sets TZVP).
74a

 The inner shells on Zr (including 3d), C, N and O (1s), were treated 

within the frozen core approximation. Energies and geometries were evaluated using the local 

exchange-correlation potential by Vosko et al.,
75

 augmented in a self-consistent manner with 

Becke’s
76

 exchange gradient correction and Perdew’s
77

 correlation gradient correction (BP86 

functional). All geometries were localized in the gas phase. However, since methacrylamide 

polymerization is usually performed in a rather polar solvent, such as CH2Cl2, we performed 

single point energy calculations on the final geometries to take into account solvent effects. The 

ADF implementation of the conductor-like screening model (COSMO)
78

 was used. A dielectric 

constant of 8.9, and a solvent radius of 2.94 Å were used to represent CH2Cl2 as the solvent. The 

following radii, in Å, were used for the atoms: H 1.16, C 2.00, N 1.40, O 1.50 and Zr 2.40. All the 

reported energies include solvent effects. 

 

Results and Discussion 

Polymerization of Methacrylamide MMAz. We have previously reported that the 

living/controlled polymerization of N,N-dialkyl and N,N-diaryl acrylamides by catalyst 1 

proceeds via a monometallic, site-controlled, coordination-(conjugated) addition mechanism 

through eight-membered-ring amide enolate intermediates (Scheme 1).
50,52

 The resting state 

during a propagation “catalysis” cycle is the cyclic amide enolate, and associative displacement 

of the coordinated penultimate amide group by incoming acrylamide monomer to regenerate the 

catalyst–monomer complex is the rate-determining step, giving rise to the propagation kinetics 

that is first order in both concentrations of the monomer and the catalyst. We also noted that the 

methacrylamide DMMA is not polymerized by such metallocene catalysts.
52
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Scheme 1. Initiation and Propagation Steps Involved in the Polymerization of Acrylamides 

by rac-1. 

 

 

As a control to examine whether the reactive aziridine ring incorporated in the predictably 

polymerizable MMAz would remain intact under our metallocene polymerization conditions or 

not, we first investigated the polymerization of the acrylamide AMAz (which also adopts a stable 

conjugated s-cis conformation as predicted by DFT) with chiral, racemic catalyst 1 in CH2Cl2 at 

room temperature. The polymerization of 100 equiv AMAz by 1 equiv of 1 is rapid, achieving 

quantitative monomer conversion in < 1 min; it proceeds exclusively via C–C bond formation, as 

shown by the disappearance of the monomer vinyl protons, while leaving the aziridine ring intact, 

as confirmed by 
1
H NMR of the resulting polymer. The polymer obtained has a Mw of 13.1 

kg/mol (by LS detector) with a narrow MWD of 1.02 (run 1, Table 1), giving an initiator 

efficiency (I
*
) of 87%. Hence, the polymerization of AMAz is fast, efficient and controlled, and it 

involves no ring-opening of the aziridine ring under the current conditions. 

 

 

 



 54 

Table 1.  Results of Polymerization of (Meth)acrylamides by 1 at Ambient Temperature 
a
 

run no. monomer [M]/[1] 
time 

(min) 

conv
b
 

(%) 

Mw
c 

(kg/mol) 

PDI
c
 

(Mw/Mn) 

I
* d

 

(%) 

1 AMAz 100 <1 100 13.1 1.02 87 

2 MMAz 100 60 85.3 12.3 1.01 89 

3 MMAz 200 60 81.3 22.3 <1.01 92 

4 MMAz 400 60 83.9 80.9 <1.01 52 

5 MTMAz 100 60 93.9 25.1 1.02 65 
a
 Carried out in 10 mL (for AMAz) or in 2 mL (for MMAz and MTMAz) of CH2Cl2 at ambient 

temperature (~23 °C). 
b
 Monomer conversion measured by 

1
H NMR. 

c 
Determined by light 

scattering. 
d 

Initiator efficiency (I
*
) = Mn(calcd)/Mn(exptl), where Mn(calcd) = MW(M)  [M]/[1] 

 conversion% + MW of chain-end groups.         

 

Having established the inertness of the aziridine ring toward the metallocene 

polymerization conditions, we subsequently investigated the polymerization of the 

methacrylamide MMAz by 1. Gratifyingly, like the polymerization of AMAz, the polymerization 

of MMAz by 1 is effective and controlled (runs 2–4 vs. run 1, Table 1), although the latter 

polymerization is considerably slower even with a 5-fold increased concentration and did not 

achieve a high initiator efficiency at a higher [M]/[1] ratio of 400. Nonetheless, the MMAz 

polymerization by 1 exhibits a high degree of control in [M]/[1] ratios of ≤ 200, producing the 

well-defined polymer without ring-opening of the aziridine moiety within the MMAz repeat unit. 

As expected, this polymerization by the isospecific catalyst 1 yields the highly isotactic polymer, 

as shown by the 
13

C NMR spectrum of the polymer (Figure 1). 

ppm (f1)
186.0187.0188.0189.0190.0191.0192.0193.0

 
Figure 1. 

13
C NMR showing the C=O region of poly(MMAz) (run 4, Table 1) in CDCl3 at 60 °C. 
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Monitoring of the MMAz polymerization by 1 in a [M]/[1] ratio of 100 reveals a first-order 

dependence on [MMAz], a linear increase in MW with monomer conversion, and narrow MWDs 

ranging from 1.14–1.01 (Figure 2). Kinetic experiments employed the [MMAz]0/[1]0 ratios 

ranging from 100–400, showing the first-order dependence on [MMAz] for the ratios (Figure 3). 

Furthermore, a double logarithm plot (Figure 4) of the apparent rate constants (kapp), obtained 

from the slopes of the best-fit lines to the plots of ln([MMAz]0/[1]0) vs. time as a function of 

ln[1]0, was fit to a straight line (R
2
 = 0.99) with a slope of 1.12.  Thus, the kinetic order with 

respect to [1], given by the slope of ~ 1, reveals that the propagation is also first order in catalyst 

concentration, indicating that the polymerization of MMAz by catalyst 1 follows the same 

coordination-addition mechanism as that of the acrylamide polymerization shown in Scheme 1.  
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Figure 2. Plots of Mw and PDI of poly(MMAz) versus MMAz conversion in CH2Cl2 at ambient 

temperature (~23 °C): [MMAz] = 1.59 M, [rac-1] = 15.9 mM. 
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Figure 3.  Semilogarithmic plots of ln([MMAz]0/[MMAz]t) vs time for the polymerization of 

MMAz by 1 in CH2Cl2 at ambient temperature (~23 ºC).  Conditions: [MMAz]0 = 1.59 M; [1]0 = 

15.9 mM (■), 7.99 mM (□), 5.33 mM (▲), 3.99 mM (Δ). 
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Figure 4. Plot of ln(kapp) vs. ln[1] for the MMAz polymerization by 1 in CH2Cl2 at ambient 

temperature (~23 °C). 
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We also examined the MMAz polymerization using the Cs-ligated titanium alkyl complex 

2. The polymerization of 200 equiv of MMAz by 1 equiv of 2 in CH2Cl2 is sluggish at ambient 

temperature, achieving only 62.6 % monomer conversion in 27 h. The polymer produced exhibits 

a narrow MWD of 1.17 but its measured Mw of 108 kg/mol (by LS) is much larger than the 

calculated according to the monomer to catalyst feed ratio of 200. The rate of this polymerization 

is significantly enhanced when carried out at 60 °C in 1,2-dichlorobenzene, achieving similar 

conversion (64.7 %) in just 5 h. Again, the measured Mw of 104 kg/mol for the resulting polymer 

is considerably higher than the calculated, and the polymer produced at this elevated temperature 

also has a broader MWD of 1.38. The much higher MWs of these polymers afforded by 2 are 

presumably related to slow initiation by the titanium–alkyl ligand in 2, as compared to 

propagation by the titanium–amide enolate ligand, while the broader MWD of the polymer 

produced at elevated temperature may be contributed to side reactions such as non-coordination 

pathways (i.e., radical polymerization) known for acrylamide polymerization by metallocene 

alkyl complexes
53

 and partial ring-opening of the aziridine ring. The syndiotacticity of the 

poly(MMAz) cannot be accurately determined by 
13

C NMR due to the overlapping of the mr and 

rr triad peaks in the C=O region. 

 

Thermal Properties of Methacrylamide Polymers Incorporating the Aziridine Ring. 

We reasoned that substituents on the highly strained aziridine ring should sterically protect it 

against ring opening, thus making it less susceptible to thermally induced cross-linking. To this 

end, we synthesized an additional methacrylamide polymer, poly(MTMAz) with cyclic 

tetramethylene substitution, for a comparative study. The MTMAz monomer (Chart 1) was 

readily polymerized by 1 at ambient temperature in a [M]/[1] ratio of 100, achieving 94% 

monomer conversion in 1 h. The poly(MTMAz) obtained has a Mw of 25.1 kg/mol and a narrow 

MWD of 1.02 (run 5, Table 1). This polymer, together with poly(AMAz) and poly(MMAz)s 

produced by 1, was analyzed by TGA and DSC. 
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TGA results showed that the methacrylamide polymers are more resistant to thermal 

degradation than the acrylamide derivative. Specifically, poly(MMAz) and poly(MTMAz) exhibit 

Tonset (initial) at 406 °C (Tmax = 443 °C) and 391 °C (Tmax = 435 °C), respectively, while 

poly(AMAz) has a Tonset at a much lower temperature of 337 °C (Tmax = 419 °C). Interestingly, 

although all three polymers decomposed in a single decomposition process, the decomposition 

window for poly(AMAz) is much larger than either poly(MMAz) or poly(MTMAz). Thus, 

poly(AMAz) exhibits a Tend of 453 °C, while poly(MMAz) and poly(MTMAz) show Tend of 464 

°C and 446 °C, respectively. 

DSC analyses determined a higher Tg of 92.9 °C for poly(MMAz), as compared to a Tg of 

57.7 °C for poly(AMAz); no noticeable glass transition was observable for poly(MTMAz). We 

also utilized DSC (Figure 5) to monitor the temperature (Tc, c for curing or cross-linking) 

required for inducing thermal cross-linking of the polymers through ring-opening of the aziridine 

ring.
66

 The onset temperature for cross-linking of poly(AMAz) (118 °C) is lower than that of 

poly(MMAz (143 °C), but, interestingly, the temperature for maximum cross-linking of 

poly(AMAz) (206 °C) is higher than that of poly(MMAz) (189 °C), again reflecting a broad 

curing temperature window for poly(AMAz). Most significantly, poly(MTMAz) has a high onset 

Tc of 199 °C and maximum Tc of 231 °C, corresponding to the thermal enhancements of 57 and 

42 °C in Tc indices as compared to  poly(MMAz)! 
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Figure 5. DSC plots of poly(MMAz) (blue), poly(AMAz) (red), and poly(MTMAz) (green) 

acquired at a scanning rate of 10 °C/min. 

 

Kinetic Resolution of Methacrylamide MMAz. The above described success in the 

living/controlled polymerization of racemic AMAz and MMAz by the racemic catalyst 1 

provided a strong basis for our investigation into the potential capability of the enantiomeric 

metallocene catalyst to discriminate between two enantiomers of the chiral methacrylamide 

monomer. Scheme 2 outlines the strategy of using enantiomeric catalyst (S,S)-1 to preferentially 

polymerize one enantiomer from the racemic MMAz poor under ≤50% conversion, thus 

producing the chiral polymer enriched with this enantiomer while leaving the other enantiomer 

enriched in the unreacted monomer. To follow this reasoning, we first examined kinetic 

resolution of AMAz using enantiomeric (S,S)-1 at ambient temperature by taking an aliquot of the 

polymerization at a monomer conversion of 53.5%. The unreacted monomer (after complete 

removal of the polymer and the catalyst residue) was then analyzed by chiral HPLC and found to 

have a low ee of 8.8%, giving a low stereoselectivity factor, or s value,
79

 of 1.2. As this 
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polymerization is extremely rapid and complete in <1 min even in dilute conditions, a function of 

% ee vs. monomer conversion was not determined. 

 

Scheme 2. Proposed Kinetic Resolution Polymerization of Racemic MMAz by Enantiomeric 

(S,S)-1 

 

 

Next, we employed (S,S)-1 to determine its ability to kinetically resolve MMAz. With the 

slower polymerization rate of MMAz, we were able to analyze several aliquots from a single 

polymerization reaction and compare the % ee values of the unreacted monomer vs. % monomer 

conversion (Figure 6). In the case of MMAz, enantiomeric (S,S)-1 discriminates the enantiomers 

of the monomer to a greater extent than with MAz, although the kinetic resolution of MMAz is 

still inefficient (~ 1.8 s values for all aliquots analyzed). Given the stereo-differentiation rendered 

by a rather small methyl group at the remote γ position (in respect to the carbon-carbon double 

bond) of the monomer, the kinetic resolution of MMAz by the enantiomeric catalyst 1 can be 

appreciated. It is likely that a larger substituent, such as isopropyl or tert-butyl, or modified 

catalyst structures, could lead to a greatly enhanced kinetic resolution of such racemic monomers, 

which will be a subject of our continued investigation in this area. 
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Figure 6. Plot of % ee of the unreacted MMAz vs. % monomer conversion for the kinetic 

resolution of MMAz by enantiomeric catalyst (S,S)-1 at ambient temperature. 

 

Enantioselectivity in the kinetic resolution of MMAz was examined by DFT calculations. 

We first investigated enantiofacial selectivity in the polymerization of the achiral N-

methacryloylaziridine. As anticipated, DFT calculations analogous to those performed by some of 

us to rationalize the enantioselectivity in the polymerization of methyl methacrylate with C2-

symmetric metallocenes,
57

 resulted in a E
≠

Stereo of ~3.5 kcal/mol, which is in qualitative 

agreement with the highly isotactic polymer obtained from the polymerization of MMAz. The 

most favored transition state was then used to investigate the kinetic resolution of the chiral 

racemic MMAz by adding a methyl group on the aziridine ring of both the monomer and the 

growing chain. Since two chiral C atoms are generated, we considered 4 possible transition states 

corresponding to different combinations of chirality on the growing chain and on the monomer. 

These four transition states are defined as R-chain/R-MMAz if R is the configuration of both 

chiral C atoms, R-chain/S-MMAz if R and S are the configuration of the chiral C atoms on the 

chain and on the monomer, respectively, and so on. The relative stability of these four transition 

states is reported in Table 2. In all cases we considered a (S,S) coordination of the EBI ligand. 
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Table 2. Relative Energies of Four Transition States for the Polymerization of MMAz by 

(S,S)-1. 

Transition state E (kcal/mol) 

R-Chain/R-MMAz 0.0 

R-Chain/S-MMAz 0.4 

S-Chain/R-MMAz 1.1 

S-Chain/S-MMAz 0.9 

 

The numbers reported in Table 2 indicate that whatever is the configuration of the chiral C 

atom of the aziridine ring in the growing chain, there is no substantial selectivity in the selection 

between the two enantiomers of MMAz. In fact, in the case of an R-chain, addition of R-MMAz 

is favored by only 0.4 kcal/mol with respect to addition of S-MMAz, while in the case of an S-

chain, addition of S-MMAz is favored by only 0.2 kcal/mol with respect to addition of R-MMAz. 

Although the most stable transition state corresponds to addition of an R-MMAz to an R-chain, it 

is clear that the small energy differences we calculated are in qualitative agreement with the low 

kinetic resolution obtained experimentally. The structures of the four transition states, depicted in 

Figure 7, clearly show that in all cases the methyl group on the aziridine ring can be placed quite 

away from the EBI ligand as well as from other atoms of the chain and of the monomer, which 

explains the low efficiency of the kinetic resolution.  

 

Figure 7. Transition states for the kinetic resolution of MMAz by (S,S)-1. Hydrogen atoms were 

omitted for clarity. 
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Polymerizability of Methacrylamides. Within two polymerizable methacrylamides 

(MMAz and MTMAz) investigated so far, the highly strained three-membered aziridine ring built 

into the methacrylamide monomer structure is believed to render their stable planar conjugated 

monomer conformations. Natural questions are how the aziridine ring works in this function and 

can one identify other moieties function the same way. Successfully addressing these questions 

will promote rational design of polymerizable methacrylamides and thus substantially expand the 

polymerizable methacrylamide monomer family. 

An apparent design of a planar methacrylamide monomer is to covalently link the α-methyl 

to one of the methyl groups on N as in the monomer structure of MMPy (Chart 1) which was 

shown to be radically polymerizable.
73

 Another approach is to place sterically bulky, rigid 

aromatic groups on N for its conjugation with the aromatic ring rather than with the carbonyl 

group, which could prevent twisting of the C=C bond relative to the C=O bond. To this end, we 

resided the monomer MCBz (Chart 1). However, neither MMPy nor MCBz was polymerized by 

1, even with extended reaction times (24 h) or elevated temperatures (80 °C). In radical 

polymerization using AIBN as initiator, MMPy
73

 is less reactive than MMAz,
66

 which can be 

explained by the effectiveness of conjugation between the vinyl and carbonyl double bonds, 

derived from analysis of NMR spectra of monomers as shown by Kodaira et al.
64

 Specifically, as 

effective conjugation in such α,β-unsaturated amide monomers downfield-shifts the vinyl protons 

rendering the more reactive C=C double bond, comparing the vinyl proton 
1
H NMR (CDCl3) 

chemical shifts in MMPy (δ 5.81 and 5.19 ppm) vs. those in MMAz (δ 6.09 and 5.63 ppm) 

suggests poor π overlap between the vinyl and carbonyl double bonds in MMPy; this also 

explains the inactivity of catalyst 1 toward MMPy in that the C=C double has low reactivity 

reflected by the upfield-shifted vinyl protons. 

Likewise, inspection of the NMR spectra of MCBz provides insight into its non-

polymerizability by catalyst 1. First, in its 
1
H NMR, the vinyl protons have resonances at 5.69 and 

5.63 ppm in CDCl3, as in the case of the non-polymerizable DMMA (δ 5.19 and 5.03 ppm), 
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corresponding to the much higher magnetic field than the vinyl protons in the polymerizable 

MMAz. Second, if there is effective conjugation between the vinyl and carbonyl double bonds, 

then in the 
13

C NMR there shows a small Δδ between the α- and β-carbon chemical shifts. 

Accordingly, the non-polymerizable MCBz and DMMA have Δδ of 19.1 ppm and 25.4, 

respectively, while the polymerizable MTMAz, MMA and MMAz have smaller Δδ of 10.7 ppm, 

10.8 ppm and 15.3 ppm, respectively. 

To systematically rationalize the reactivity of the different acrylamides listed in Chart 1, we 

performed DFT calculations on these monomer molecules. To characterize the assumed 

geometry, we use the torsional angle , defined as the C=C–C=O torsional angle (Chart 2), and 

the torsional angle , defined as the O=C–N–XC torsional angle, where XC is the middle point 

between the two C atoms bonded to the N atom (Chart 2). According to this definition, if the C=C 

bond and the N atom are conjugated to the C=O bond, then the  and  dihedral angles should be 

close to 0° and 90°, respectively. 

 

Chart 2. Definition of the Torsional Angles  and  in N,N-Dialkyl Methacrylamides. 

 

 

According to our DFT calculations, DMAA, MMAz, AMAz, MTMAz and MMPy assume 

a substantially planar geometry based on their small  values (3.4–12.9°, Table 3), whereas 

DMMA and MCBz assume a strongly non-planar geometry, as indicated by their  value of 

131.0° and 137.7°, respectively. As described in the Introduction, DMMA is forced to assume a 

non-planar conformation at both the  and  angles because of steric repulsion between the 

methacrylic methyl and one of the N-bonded methyl groups.  
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Table 3. DFT Calculated Torsional Angles and Energies of Amide Enolate Formation. 

Monomer 
 

(deg) 


(deg) 

E 

(kcal/mol) 

DMAA 6.3 59.7 19.2 

MMAz 9.7° 66.5 18.4 

AMAz 3.4° 73.7 14.3 

MTMAz 12.9° 72.4 16.9 

MMPy 6.0° 112.9 26.8 

DMMA 131.0° 46.5 22.5 

MCBz 137.7° 2.6 10.4 

 

Moving to the  angle we found that with the exception of MCBz, which presents an  

angle close to 0°, all the monomers present  angles deviating considerably from 90° (see Table 

3), which indicates somewhat limited conjugation of the N lone pair to the C=O bond. Moreover, 

in AMAz, MMAz and MTMAz the geometric constraint of the three-membered aziridine ring 

forces an almost sp
3
 hybridization at the N atom, which results in remarkably reduced ring 

strain
80

 but imposes a pyramidal geometry at the N atom. Consequently, the lone pair of the N 

atom is in a sp
3
 atomic orbital that geometrically cannot overlap properly with  orbitals of the 

C=O bond in AMAz, MMAz and MTMAz, suppressing conjugation between the N atom and the 

C=O bond. However, in terms of monomer geometry the presence of the aziridine ring, as 

previously noted, pulls the N substituents away from the methacryclic methyl group, allowing for 

the monomers to assume a planar geometry around the  angle. The  close to 0° of MCBz, 

which indicates complete absence of conjugation between the N atom and the C=O bond, can be 

rationalized considering that the N atom participates to the extended aromatic systems of the N-

substituent.  

Focusing on the  angle, our findings qualitatively correlate with the proposal that non-

planar acrylamides, such as DMMA and MCBz, are non-polymerizable because of poor overlap 

between the  orbitals of the vinyl C=C and carbonyl C=O bonds. The only exception here is 

represented by MMPy, which is planar but non-polymerizable by the current catalyst system. In 

order to provide further insights into this issue, we also investigated the enolate formation 
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energies that can formally be derived from the hypothetic reaction depicted in Scheme 3 in the 

case of DMMA. This reaction allows us to investigate the acrylamide to enolate conversion 

without the steric bulkiness of the (EBI)Zr ligand. The basic idea here is that the amide-enolate is 

a good model of the amide-enolate chain formed during the polymerization. 

 

Scheme 3. Hypothetic Reaction Designed to Investigate the Stability of the Amide-Enolate 

Chain  

 

The energetic values E of the reaction shown in Chart 3 are reported also in Table 3. First, 

all the E values are positive, which means that the amide-enolates are less stable than separated 

acrylamide and methane. Within this scheme, the smaller is E the easiest is enolate formation and, 

consequently, polymerization. Indeed, our calculations indicate that the polymerizable DMAA, 

MMAz, AMAz and MTMAz monomers exhibit rather smaller E values compared to the non 

polymerizable DMMA and MMPy monomers. The only exception here is represented by MCBz. 

The relative stability of the enolate intermediates can be easily rationalized considering that 

a formal C=C double bond is localized on the internal C–C bond of the monomers. The amide-

enolate from DMMA, E = 22.5 kcal/mol, is destabilized by the same steric interactions that 

impose a non-planar geometry in the monomer. The amide-enolate from MMPy, E = 26.8 

kcal/mol, is destabilized by having the C=C bond moved into the six-membered ring, which 

introduces higher ring stain. In the DMAA, AMAz, MMAz and MTMAz derived amide-enolates, 

E = 14.3–19.2 kcal/mol, the geometric constraint of the three-membered-aziridine ring, as 

discussed above, prevents the N atom to assume a sp
2
 planar geometry, so that the N atom is not 

conjugated to the C=C bond, and no steric interaction between the N substituents and other 

groups are introduced. MCBz, with a E = 10.4 kcal/mol, presents the only exception. This low E 
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value is associated with the participation of the N atom to the extended aromatic systems of the 

N-substituent. As noted above, this interaction effectively removes participation of N atom of 

MCBz to the amide bond, which reduces the energy loss in the monomer to enolate 

transformation. According to this chemical framework, MCBz should be a highly polymerizable 

monomer. However, MCBz is by far the monomer with the bulkier N group, which suggests that 

the experimental non-polymerizability of MCBz could be connected to severe steric repulsion 

between the bulky aromatic N-substituent and the metallocene skeleton. To investigate better this 

point, we investigated the transition state of the Michael addition step in the case of MCBz, see 

Figure 8.  

 

Figure 8. Transition state for the Michael addition in MCBz polymerization by 1. 

 

Visual inspection reveals several short distances between atoms of the bulky N-substituent 

of both the growing chain and the monomer with other atoms. The remarkable steric pressure in 

the transition state revealed in Figure 8 is also evident by comparison with the stable transition 

states of MMAz, (see Figure 7). Energetically, to reach the transition state for Michael addition 

from separated (EBI)Zr-(amide-enolate) and monomer, (see Scheme 4) is approximately 20 

kcal/mol more expensive for MCBz than for MMAz, which is another indication of the highly 

destabilizing steric interactions in the case of MCBz polymerization. 
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Scheme 4. Reaction Used to Estimate Steric Effects in MCBz Polymerization by 1 

 

Concluding this part, our DFT results suggest that DMAA, AMAz, MMAz and MTMAz 

are polymerizable monomers toward conjugate addition polymerization due to stability of the 

resulting amide enolate chain. As for the non-polymerizable DMMA, MMPy and MCBz 

monomers, DMMA is non-polymerizable because of steric repulsion between the N-substituents 

and the methyl group in the methacrylic position, MMPy is non-polymerizable because of ring 

strain in the amide-enolate growing chain, and MCBz is non-polymerizable because of steric 

repulsion between the large N substituent and the EBI skeleton during the Michael addition step. 

 

Conclusions 

We reported in this contribution the first successful coordination-addition polymerization 

of N,N-dialkyl methacrylamides by metallocene catalysts. The polymerizable methacrylamides 

investigated in this study are MMAz and MTMAz, both of which incorporate the highly strained 

three-membered aziridine ring. The geometric constraint of the aziridine ring forces an almost sp
3
 

hybridization at the N atom that adopts a pyramidal geometry and suppresses conjugation 

between the N atom and the C=O bond, thereby effectively pulling the N substituents away from 

the methacryclic methyl group and allowing for the monomers to assume a planar geometry with 

substantial conjugation between the vinyl and carbonyl double bonds. 

The polymerization by chiral zirconocenium catalyst 1 is highly stereospecific and exhibits 

a high degree of control over polymerization. Kinetic studies showed that the methacrylamide 

polymerization proceeds in the same manner as the acrylamide polymerization by 1, with 
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intramolecular conjugate addition within the catalyst–monomer complex being the fast step and 

associative displacement of the coordinated penultimate amide group within the eight-membered-

ring amide enolate resting intermediate by incoming monomer to regenerate the catalyst–

monomer complex being the rate-determining step.  

Excitingly, we demonstrated experimentally and theoretically the capability of 

enantiomeric catalyst 1 for kinetic resolution of the racemic MMAz monomer. The 

stereoselectivity factor (s ~ 1.8) is currently low but still appreciative, given the small methyl 

group on the aziridine ring. It is anticipated that larger substituents with more pronounced stereo-

differentiation will greatly enhance kinetic resolution of such racemic methacrylamide monomers 

by this catalyst. The research directed to this effort is underway. 

We also investigated the scope of the polymerizable methacrylamide monomers for two 

purposes. First, the substituent on the highly strained aziridine ring was explored to module 

thermally induce cross-linking process occurring through ring-opening of the aziridine ring. To 

this end, we found that poly(MTMAz) with the cyclic tetramethylene substitution greatly enhance 

resistance towards thermal cross-linking as marked by an enhancement of 57 °C in onset Tc and 

42 °C in maximum Tc over poly(MMAz) with the methyl substitution. Second, pendant moieties 

other than aziridines were explored to overcome the propensity for N,N-disubstituted 

methacrylamides to assume the twisted confirmation. Although neither of the monomers tested 

(MMPy and MCBz) derived from two different designs are polymerizable using metallocene 

catalyst 1, analysis of their 
1
H and 

13
C NMR features and comparing them with the known 

conjugated polymerizable α,β-unsaturated ester and amide monomers provided insight into their 

non-polymerizability or relative reactivity. These studies, combined with DFT calculations on the 

monomer geometry and relative energy for the formation of amide-enolate intermediates, show 

that non-polymerizable methacrylamides either do not exhibit conjugation between the C=C and 

C=O bonds (e.g., DMMA, MCBz) or have high energy for the amide enolate formation (e.g., 

MMPy). 
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Chapter 4 

Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes 

 

Abstract 

Acryloyl and vinyl monomers functionalized with the chiral oxazolidinone auxiliary have 

been successfully polymerized in a stereospecific fashion to highly isotactic, optically active 

polymers, through either the previously established isospecific coordination polymerization (for 

acryloyl monomers) or a novel isospecific cationic polymerization (for vinyl monomers). 

Specifically, conjugated chiral acryloyl oxazolidinones, N-acryloyl-(R or S)-4-phenyl-2-

oxazolidinone [(R or S)-AOZ], are readily polymerized by chiral ansa-zirconocenium 

coordination catalysts, (R,R-, S,S-, or R,R/S,S)-[C2H4(η
5
-Ind)2]Zr

+
(THF)[OC(O

i
Pr)=CMe2] 

[MeB(C6F5)3]
−
 (1), in an isospecific manner through a catalyst-site controlled mechanism, 

producing the corresponding optically active chiral polymers, (R or S)-PAOZ. Owing to the 

nature of stereocontrol dictated by the chiral catalyst site, even the coordination polymerization of 

the parent AOZ, without the chiral side group, also affords PAOZ with nearly quantitative 

isotacticity. A series of experiments have shown that the chiral polymers (R or S)-PAOZ exhibit 

no chiral amplifications, despite having stereoregularly placed stereogenic centers in the main-

chain, and the optical activity of the polymers arises solely from their chiral auxiliary, a 

consequence of adopting a random-coil secondary structure and thus having a cryptochiral chain. 

In sharp contrast, the chiral isotactic polymers derived from non-conjugated chiral vinyl 

oxazolidinones, N-vinyl-(R)-4-phenyl-2-oxazolidinone [(R)-VOZ] and its para-hexyloxy-phenyl 

derivative (R)-HVOZ (designed to solve the solubility issue of the resulting polymer), exhibit 

substantial chiral amplifications by virtue of adopting a solution-stable, one-handed helical 
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conformation. The synthesis of such helical vinyl polymers has been accomplished by the 

development of a novel isospecific cationic polymerization using Lewis and BrØnsted acids, such 

as [Ph3C][B(C6F5)4], BF3·Et2O, and [H(Et2O)2][B(C6F5)4], through a chiral auxiliary-controlled 

mechanism. Noteworthy is the combination of the near quantitative isotactic placement of the 

stereogenic centers of the polymer main-chain with the chiral side-groups located near those 

stereocenters that renders one-handed helicity of (R)-PVOZ and (R)-PHVOZ. Significantly, this 

novel cationic polymerization process, operating at ambient temperature, effectively assembles 

two elements of polymer local chirality―side-chain chirality and main-chain chirality―into 

global chirality in the form of excess one-handed helicity. Furthermore, the resulting chiral 

helical vinyl polymers exhibit considerably higher thermal decomposition temperatures and 

polymer crystallinity, in comparison to the random-coil chiral acryloyl polymers, having a 

similarly high degree of main-chain stereoregularity.  
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Introduction 

Optically active synthetic polymers are of considerable current interest.
1
 Such polymers are 

not only fundamentally intriguing (due to their rich and complex architectures derived from 

macromolecular chirality that diverges from that of small molecule chirality) but are also 

technologically important (due to their unique chiral arrays that give rise to a number of potential, 

and in some cases commercially implemented, applications such as chiral separation).
1
 We are 

particularly interested in the utilization of chiral N,O-functionalized polar vinyl polymers
2
 as 

potential chiral polymeric ligands/stabilizers for transition metal nanocluster catalysts
3
 en route to 

asymmetric catalysis.
4
 This interest stems from the observation that N,O-functionalized polar 

vinyl polymers, such as poly(vinylpyrrolidone) (PVP), are among the most common, effective 

stabilizers for transition-metal nanoclusters,
5
 and the reasoning that chiral polymers have the 

suitable length scale and binding rigidity as well as ―high chirality‖
6
 that can match the extended 

surface of the nanoclusters. However, optically active PVP is not accessible; even if 

enantiomerically pure or enriched stereoregular PVP is synthesized, such a vinyl polymer with 

configurational main-chain chirality without chiral side-groups cannot be optically active since 

the entire polymer chain (by the infinite chain model) contains a mirror plane (for isotactic 

polymers) or a glide mirror plane and translational mirror planes perpendicular to the chain axis 

(for syndiotactic polymers).
1j,l

 On the other hand, a polymer assuming a one-handed helical 

conformation is inherently chiral.
 1

 Many polymers are known to form a helical structure in the 

solid state; however, they typically adopt optically inactive, on-average random-coil 

conformations in solution due to fast solution dynamics of the polymer chain with low helix-

inversion barriers. Our MM2 modeling indicated that isotactic PVP would adopt a random-coil 

conformation, suggesting that enantiomeric chiral PVP with appreciable molecular weight (MW), 

if synthesized, would be optically inactive. In short, there exists a need for the synthesis of 

optically active, chiral PVP variants.  
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A solution to this fundamental problem is to install a chiral auxiliary into conjugated or 

non-conjugated vinyl monomers which, upon polymerization, will lead to optically active 

polymers. If such polymerization proceeds in a stereospecific manner, then the resulting 

stereoregular polymers could attain additionally helical chirality due to control of the polymer 

secondary structure. Pino and Lorenzi first demonstrated that isotactic vinyl polymers bearing 

chiral side-groups, such as poly-(S)-3-methyl-1-pentene, can exist in solution with excess one-

handed helicity and that the optical activity of such polymers increased with increasing 

isotacticity.
7
 With this concept and the goal of this work in mind, three reasons led us to 

enantiomeric (R or S)-4-phenyl-2-oxazolidinone-functionalized conjugated and non-conjugated 

vinyl monomers N-acryloyl-(R or S)-4-phenyl-2-oxazolidinone [(R or S)-AOZ] and N-vinyl-(R)-

4-phenyl-2-oxazolidinone [(R)-VOZ] (Chart 1). First, the chiral oxazolidinone group has been 

used as a chiral auxiliary in organic synthesis for over 30 years.
8
 Second, the resulting N,O-

functionalized chiral polymers, (R or S)-PAOZ and (R)-PVOZ, structurally resemble that of PVP, 

in addition to being optically active. Third, introduction of the phenyl group at 4-position of the 

oxazolidinone ring could sterically induce a solution-stable helical conformation of the isotactic 

polymer, thereby effectively assembling two elements of local chirality―side-chain chirality 

(stereocenters at 4-positions of the side chain) and main-chain chirality (stereocenters generated 

at 2-vinyl carbon positions during stereoselective polymerization)―into global chirality 

(formation of excess one-handed helicity).  Indeed, MM2 modeling of the isotactic [(R)-VOZ]30 

predicts a chiral 41 helical structure (Chart 2). 

 

Chart 1. Structures of Chiral 2-Oxazolidinone-funcationzalized Conjugated Acrylamide and 

Non-Conjugated Vinyl Monomers Employed in This Study. 
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Chart 2. Primary Structure of (R)-PVOZ (A) as well as MM2-Calculated 41 Helical Structure of  

[(R)-VOZ]30, Shown from Top (B), Side (C), and Ribbon (D) Views (carbon, nitrogen, and 

oxygen are shown in grey, blue, and red, respectively; hydrogen atoms omitted for clarity).  

 

A. B. C.

D.

 

 

Free-radical polymerization has been previously employed to polymerize conjugated vinyl 

monomers bearing chiral auxiliary groups stereoselectively.
9
 However, due to unfavorable dipole 

interactions between the oxazolidinone and acryloyl carbonyls, conjugated AOZ with a chiral 

auxiliary at the 4-position favors a rotamer which shields the auxiliary away from the reactive 

center (c.f., left rotamer of (R)-AOZ, Chart 1), providing little stereochemical control in additions 

to the C=C bond.
10

 Using a suitable Lewis acid (LA), such as Sc(OTf)3, should lock the auxiliary 

in the preferred conformation for control of stereochemistry (c.f., right rotamer of (R)-AOZ, Chart 

1), through bidentate chelation of the LA to both carbonyls of the monomer; however, such 

complexation renders the radical and monomer too electron-deficient to react efficiently for 

homopolymerizations. Nevertheless, (4S)-AOZ can be radically copolymerized with electron-rich 

isobutylene in the presence of a LA, yielding isotactic alternating copolymer with a m/r dyad ratio 

of >95:5.
10

 In the case of chiral oxazolidine acrylamides, stereocontrolled (through chiral 

auxiliary control
11

) free-radical polymerization has been achieved without LA additives, 

producing isotactic polymers with a m/r dyad ratio reaching 92:8.
12

 Interestingly, the non-

conjugated, unsubstituted VOZ undergoes rapid decomposition (devinylation) to 2-oxazolidione 

and acetaldehyde in acidic aqueous solution with pH < 4.0 so that the radical polymerization in 



  82  
 

the presence of polymethacrylic acid was successful only at pH ≥4.0.
13

 This monomer, upon free-

radical polymerization by AIBN, was reported to form water-soluble polymers with MW ranging 

from 450 to 100,000 (by microisopiestic measurements),
14

 or a water-insoluble polymer which 

decomposes at ~300 °C without melting. An attempt to polymerize this monomer by a Ziegler-

Natta coordination catalyst (TiCl3/HONH3
+
Cl

−
) led to no polymer formation, but instead the acid-

catalyzed devinylation product.
15

 Acid-catalyzed devinylation of N-vinyl heterocyclic monomers 

has also been noted elsewhere.
16

 VOZ monomers having alkyl or phenyl substituents at 5-

postions can be polymerized by AIBN in dioxane or in bulk.
17

 The polymers derived from radical 

polymerization of VOZ monomers are essentially atactic.
18

 

As can be seen from the above overview, AOZ and VOZ monomers have previously been 

successfully polymerized only by radical polymerization methods, while the polymerization of 

(4R or 4S)-VOZ monomers of our current interest has not been reported. Furthermore, chiral 

auxiliary-controlled radical polymerization has led to formation of an isotactic copolymer of (4S)-

AOZ with isobutylene, but the isotactic homopolymer of (4R or 4S)-AOZ of interest herein was 

previously unknown. Lastly, no stereoregular polymers derived from VOZ monomers have been 

reported. 

We hypothesized that the synthetic challenges identified above could be met by employing 

isospecific, enantiomeric (R,R or S,S)-ansa-metallocenium coordination catalysts that were 

recently developed for the asymmetric coordination polymerization of functionalized vinyl 

monomers such as prochiral acrylmides leading to optically active, helical vinyl polymers.
19

 Our 

reasoning is threefold: First, we have already shown that catalyst 1 polymerizes prochiral 

conjugated acrylamides with bulky substituents, such as N,N-diarylacrylamides, to highly 

isotactic, chiral polymers adopting a solution-stable, one-handed-helical conformation, where the 

handedness of the helix is dictated by the chirality of the catalyst (Chart 3).
19

 In contrast, if the 

monomer is not sufficiently sterically bulky [i.e. methyl methacrylate (MMA)], the resulting 

polymer does not form a solution-stable helix, but instead a random coil conformation; such low-
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MW enantiomeric oligomers can exhibit some optical activity arising from the devoid of mirror 

planes due to non-equivalent chain-end groups, but as the MW increases, the effects of the chain-

end groups on the chiroptical properties of the polymers diminishes so that the optical activity 

decreases to null as the polymer becomes cryptochiral.
20,21

 Second, we reasoned that the 

zirconocene ester enolate cation 1 can serve as both initiator (the enolate ligand as nucleophile) 

and LA catalyst as chelator for the two carbonyls in the AOZ monomer,
22

 thus rendering both 

high activity and high stereochemical control in AOZ polymerization (vide supra). Studies in the 

polymerization of chiral AOZ monomers by the enantiomeric catalysts 1 will determine if they 

can produce isolatable, right- and left-handed, solution-stable helical polymers bearing the same 

chiral auxiliary, trapped in a kinetically-stable state―a case of catalyst-site control. Comparative 

studies using the racemic catalyst and other catalysts with different stereochemical control will 

also reveal whether the chiral auxiliary will dictate the handedness of the helix, either through an 

initial formation of a preferred single-handed helix or through a thermodynamic mutarotation to 

the preferred helical conformation―the case of chiral auxiliary control. Third, being a class of 

electron-rich monomers, chiral VOZ could be cationically polymerized by metallocenium or 

other related cations and isospecificity rendered by the chiral auxiliary, if devinylation is 

overcome by appropriate strategies such as spontaneous polymer precipitation. As indicated in 

Chart 2, highly isotactic (R)-PVOZ will most likely adopt a solution-stable helical structure, 

thereby accomplishing our goal of synthesizing those needed optically active polymers. Herein 

we report our findings in testing each of these three hypotheses. 

 

 

 

 

 



  84  
 

Chart 3. Asymmetric Polymerization by Enantiomeric Catalysts 1 for the Synthesis of Right- and 

Left-Handed Helical Poly[N-phenyl-N-(4-tolyl)acrylamide)s and Their Block Copolymers with 

MMA. Shown on the Bottom are the CD Spectra of Homopolymers and Block Copolymers by 

(S,S)-1 (red), rac-1 (green), and (R,R)-1 (blue).
19,20
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Experimental 

Materials, Reagents, and Methods. All syntheses and manipulations of air- and moisture-

sensitive materials were carried out in flame-dried Schlenk-type glassware on a dual-manifold 

Schlenk line, a high-vacuum line, or in an argon or nitrogen-filled glovebox. HPLC-grade, non-

stabilized organic solvents were sparged extensively with nitrogen during filling of the solvent 

reservoir and then dried by passage through activated alumina (for THF, Et2O, and CH2Cl2) 

followed by passage through Q-5-supported copper catalyst (for toluene and hexanes) stainless 

steel columns. HPLC-grade DMF was degassed, dried over CaH2 overnight, followed by vacuum 

transfer. Toluene-d8 and benzene-d6 were degassed, dried over sodium/potassium alloy, and 

filtered before use, whereas CDCl3, CD2Cl2, DMSO-d6 were degassed and dried over activated 

Davison 4 Å molecular sieves. NMR spectra were recorded on a Varian Inova 300 MHz, 400 
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MHz, or 500 MHz (for polymer tacticity analysis) spectrometer. Chemical shifts for 
1
H and 

13
C 

spectra were referenced to internal solvent resonances and are reported as parts per million 

relative to tetramethylsilane, whereas 
19

F NMR spectra were referenced to external CFCl3. 

Acetaldehyde diethyl acetal, aniline, 
n
BuLi (1.6 M in hexanes), butylated hydroxytoluene 

(BHT-H, 2,6-Di-tert-butyl-4-methylphenol), camphor sulfonic acid, 1,2-dibromobenzene, 1,2-

dibromoethane, diisopropylamine, indene, lithium dimethylamide, (2S,4S)-pentanediol (99% ee, 

[α]
20

D +39.8, c = 10, CHCl3), (2R,4R)-pentanediol (97% ee, [α]
21

D  –40.4, c = 10, CHCl3), sodium 

azide, tetrachlorozirconium, 1,1,3,3-tetramethyl guanidine, and triethylamine, triflic acid, as well 

as (CF3SO2)2O, PhBCl2, MeMgI (3.0 M in diethyl ether), BF3·Et2O, 
i
Bu3Al (neat), AIBN, and 

CF3COOH, were purchased from Aldrich. MMAO (2.2 wt % Al in heptane) was purchased from 

Akzo Nobel. Acryloyl chloride and 2,6-dimethyl pyridine were purchased from Alfa Aesar. 

Trimethylaluminum (neat) was purchased from Strem Chemical Co. whereas (S)- and (R)-4-

phenyl-2- oxazolidinone, isopropyl isobutyrate, and N-methyl aniline were purchased from TCI 

America. Indene, 1,2-dibromoethane, N,N-dimethyl aniline, and acryloyl chloride were degassed 

using three freeze-pump-thaw cycles. Diisopropylamine, triethylamine, (CF3SO2)2O, and PhBCl2 

were vacuum-distilled. 2,6-Dimethyl pyridine, isopropyl isobutyrate, and aniline were degassed 

and dried over CaH2 overnight, followed by vacuum distillation. BHT-H was recrystallized from 

hexanes prior to use. 1,4-Dioxane (Fisher Scientific) was degassed, dried over sodium/potassium 

alloy, and vacuum-distilled. All other commercial reagents were used as received. 

 Borate salts [Ph3C][B(C6F5)4] and [HN(Me2)Ph][B(C6F5)4] as well as borane B(C6F5)3 

were obtained as a research gift from Boulder Scientific Co.; the borane was further purified by 

recrystallization from hexanes at –35 ºC. The (C6F5)3B·THF adduct was prepared by addition of 

THF to a toluene solution of the borane followed by removal of the volatiles and drying in vacuo. 

Literature procedures were employed for the preparation of the following compounds and 

metallocene complexes: (S)-AOZ,
23

 (R)-AOZ,
23

 AOZ,
24

 (R)-VOZ,
25

 [H(Et2O)2]
+
[B(C6F5)4]

−
,
26

 

LiOC(O
i
Pr)=CMe2,

27 
 (EBI)H2 [EBI = C2H4(η

5
-Ind)2],

28
 rac-(EBI)Zr(NMe2)2,

29
 rac-
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(EBI)ZrMe2,
29

 rac-(EBI)ZrMe(OTf),
30

 rac-(EBI)ZrMe[OC(O
i
Pr)=CMe2],

30 
rac-

(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]

−
 (rac-1),

30
 (S,S)-(EBI)ZrCl2,

31
 (R,R)-

(EBI)ZrCl2,
31

 (S,S)-(EBI)ZrMe[OC(O
i
Pr)=CMe2],

19,20
 (R,R)-(EBI)ZrMe[OC(O

i
Pr)=CMe2],

19,20
 

(S,S)-(1),
19,20

 and (R,R)-(1).
19,20

  

(R)-Methyl 2-((tert-butoxycarbonyl)amino)-2-(4-(hexyloxy)phenyl)acetate. To a flame-

dried flask with a magnetic stir bar was added (R)-methyl 2-((tert-butoxycarbonyl)amino)-2-(4-

hydroxyphenyl)acetate (19.4 g, 68.8 mmol, 1.0 equiv), anhydrous K2CO3 (23.8 g, 172 mmol, 2.5 

equiv), and anhydrous DMF (250 mL).  The mixture solution was cooled to 0 ºC, after which 1-

iodohexane (25.4 mL, 172 mmol, 2.5 equiv) was added and the reaction was allowed to stir 

overnight at room temperature. Diethyl ether (1000 mL) was added and the mixture washed with 

water (2 × 500 mL), saturated KHSO4 (500 mL), and brine (500 mL).  The solution was dried 

with MgSO4 and concentrated to give a yellow oil which was purified by silica gel 

chromatography (9:1 hexanes: EtOAc) to yield the desired product as a clear oil (14.1 g, 56%). Rf 

= 0.18 (9:1 hexanes:EtOAc). []D
21

 = –45.5 (c = 0.013 g/mL, MeOH). 
1
H NMR (400 MHz, 

CDCl3): δ 7.22 (d, J = 8.5 Hz, 2H), 6.82 (m, 2H), 5.44 (bd, J = 6.4 Hz, 1H), 5.21 (bd, J = 7.2 Hz, 

2H), 3.90 (t, J = 6.6 Hz, 2H), 3.67 (s, 3H), 1.73 (m, 2H), 1.39 (s, 9H), 1.29 (m, 5H) 0.87 (m, 3H). 

13
C NMR (100 MHz, CDCl3): δ 172.1, 159.4, 155.0, 128.9, 128.5, 115.0, 80.2, 68.2, 57.2, 52.8, 

31.7, 29.4, 28.5, 25.9, 22.8, 14.2. IR (NaCl, neat): 3440, 3380, 2955, 2933, 2872, 1747, 1717, 

1612, 1511, 1247, 1169 cm
-1

. HRMS (ESI+) calcd for C20H31NNaO5: 365.2202; found: 365.2217. 

(R)-4-(4-(Hexyloxy)phenyl)oxazolidin-2-one. To a solution of LiAlH4 (1.61 g, 42.5 mmol, 

1.1 equiv) in THF (200 mL) was added dropwise a solution of (R)-methyl 2-((tert-

butoxycarbonyl)amino)-2-(4-(hexyloxy)phenyl)acetate (14.1 g, 38.7 mmol, 1.0 equiv) in THF 

(150 mL). The reaction was stirred at room temperature until the starting material was consumed 

by TLC analysis, after which 10 % KOH was added and the reaction mixture filtered and 

concentrated to yield an off-white solid. The solid was dissolved in THF (400 mL) and cooled to 
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0 ºC, after which thionyl chloride (22.4 mL, 309 mmol, 8.0 equiv) was added dropwise and the 

solution stirred for an additional 3 h at 0 ºC then warmed to room temperature and stirred 

overnight. The reaction was concentrated to give a viscous oil that was crystallized with hexanes 

and filtered, yielding the desired product as a white amorphous solid (7.01 g, 68%).  Rf = 0.22 

(1:1 hexanes:EtOAc). []D
21

 = –12.5 (c = 0.8 g/dL, MeOH). 
1
H NMR (400 MHz, CDCl3): δ 7.20 

(m, 2H), 6.85 (m, 2H), 5.87 (bs, 1H), 4.86 (m, 1H), 4.64 (m, 1H), 4.12 (m, 1H), 3.91 (m, 2H), 

1.74 (m, 2H), 1.42 (m, 2H), 1.29 (m, 4 H), 0.87 (m, 3H). 
13

C NMR (100 MHz, CDCl3): δ 159.8, 

159.7, 131.3, 127.5, 115.3, 72.9, 68.3, 56.2, 31.7, 29.3, 25.9, 22.8, 14.2. IR (NaCl, neat): 3284, 

2932, 2860, 1756, 1613, 1514, 1246, 1032 cm
-1

. HRMS (ESI+) calcd for C15H22NO3: 263.1521; 

found: 263.1526. 

(R)-4-(4-(Hexyloxy)phenyl)-3-vinyloxazolidin-2-one (HVOZ). To a flame-dried flask 

was added palladium(II) trifluoroacetate (63 mg, 0.19 mmol, 0.05 equiv), 1,10-phenanthroline 

(34 mg, 0.19 mmol, 0.05 equiv), and n-butyl vinyl ether (4.9 mL, 37.9 mmol, 10.0 equiv).  This 

mixture was stirred for 5 min, followed by the addition of (R)-4-(4-(hexyloxy)phenyl)oxazolidin-

2-one (1.0 g, 3.79 mmol, 1.0 equiv).  The reaction was heated to 75 ºC for 12 h, filtered through 

celite, and concentrated. Purification of the crude product by silica gel chromatography gave a 

viscous oil which was crystallized with pentanes and filtered to yield the desired product as a 

white solid (1.07 g, 98%). Rf = 0.15 (9:1 hexanes:EtOAc). []D
21

 = –44.8 ° (c = 1.70 g/dL, 

CH2Cl2); m.p. (ºC): 52–53. 
1
H NMR (400 MHz, CDCl3): δ 7.14 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 

8.4 Hz, 2H), 6.77 (dd, J = 16.0, 9.3 Hz, 1H), 4.95 (dd, J = 9.0, 5.4 Hz, 1H), 4.66 (m, 1H), 4.28 (d, 

J = 9.3 Hz, 1H), 4.08 (m, 2H), 3.91 (t, J = 6.5 Hz, 2H), 1.74 (m, 2H), 1.42 (m, 2H), 1.30 (m, 4H), 

0.87 (m, 3H). 
13

C NMR (100 MHz, CDCl3): δ 159.7, 155.9, 129.8, 129.0, 127.3, 115.4, 96.0, 

71.0, 68.3, 58.0, 31.7, 29.4, 25.9, 22.8, 14.2.  IR (NaCl, neat): 2932, 2871, 1765, 1639, 1613, 

1514, 1394, 1246 cm
-1

. HRMS (ESI+) calcd for C17H24NO3: 289.1678; found 289.1679. 
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General Polymerization Procedures. Polymerizations were performed in 30-mL glass 

reactors inside the glovebox for ambient temperature (~25 ºC) runs or in 25-mL Schlenk flasks 

interfaced to a dual-manifold Schlenk line with an external temperature bath for runs at other 

temperatures. In a typical procedure for polymerizations of conjugated acryloyl oxazolidinones 

(AOZ), predetermined amounts of B(C6F5)3·THF and the appropriate metallocene ester enolate 

pre-catalyst in a 1:1 molar ratio were premixed in 5 mL of CH2Cl2 and stirred for 10 min to 

cleanly generate the corresponding cationic ester enolate catalyst.
19,20,32

 The amount of catalyst 

employed was determined by the [monomer] to [catalyst] ratio specified in the polymerization 

tables. Monomer (0.737 mmol) was quickly added as a solid to the vigorously stirring solution, 

and the polymerization was allowed to proceed for 3 h with continuous stirring. For 

polymerization of vinyl oxazolidines (VOZ), monomer (1.06 mmol) was dissolved in the solvent 

described in the polymerization tables, before addition of initiator as a solid or solution via 

syringe, and the polymerization was allowed to stir for the time specified in the polymerization 

tables. After the measured time interval, a 0.2 mL aliquot was taken from the reaction mixture via 

syringe and quickly quenched into a 4 mL vial containing 0.6 mL of undried ―wet‖ CDCl3 

stabilized by 250 ppm of BHT-H; the quenched aliquots were analyzed by 
1
H NMR to obtain 

monomer conversion data. The polymerization was immediately quenched after the removal of 

the aliquot by the addition of 5 mL 5% HCl-acidified methanol. The quenched mixture was 

precipitated into 50 mL of methanol, stirred for 1 h, filtered or centrifuged, washed with 

methanol, and dried in a vacuum oven at 50 C overnight to a constant weight. 

For polymerizations carried out at other temperatures, the catalyst (or monomer solution) 

was loaded in a 25-mL Schlenk flask equipped with a stir bar and a septum cap inside the 

glovebox. The charged Schlenk flask was taken out of the glovebox, interfaced to a dual-manifold 

Schlenk line, and immersed in a pre-equilibrated bath at desired temperature. The polymerization 

was started by adding rapidly the monomer (or catalyst solution) via gas-tight syringe under 

positive N2 pressure. The remaining procedures were the same as those ambient-temperature 
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polymerization runs. Polymerizations using Cs-ligated metallocenium catalysts for the synthesis 

of syndiotactic polymers followed the literature procedure.
33

 

Polymer Characterizations. Gel permeation chromatography (GPC) analyses of the 

polymers were carried out at 40 °C and a flow rate of 1.0 mL/min, with DMF as the eluent, on a 

Waters University 1500 GPC instrument equipped with four 5 μm PL gel columns (Polymer 

Laboratories) and calibrated using 10 PMMA standards. Chromatograms were processed with 

Waters Empower software (version 2002); number-average molecular weight (Mn) and molecular 

weight distribution (MWD = Mw/Mn) of polymers were given relative to PMMA standards. Glass 

transition temperatures (Tg) of the polymers were measured by differential scanning calorimetry 

(DSC) on a DSC 2920, TA Instrument. Polymer samples were first heated to 150 °C at 20 

°C/min, equilibrated at this temperature for 4 min, then cooled to 30 °C at 20 °C/ min, held at this 

temperature for 4 min, and reheated to 230 °C (for AOZ polymers) or 390 °C (for VOZ 

polymers)  at 10 °C/min. All Tg values were obtained from the second scan, after removing the 

thermal history from the first heating cycle. Maximum rate decomposition temperatures (Tmax) 

and decomposition onset temperatures (Tonset) of the polymers were measured by thermal 

gravimetric analysis (TGA) on a TGA 2950 thermogravimetric analyzer, TA Instrument. Polymer 

samples were heated from ambient temperatures to 600 °C at a rate of 20 °C/min. Values for Tmax 

were obtained from derivative (wt%/°C) vs temperature (°C), while Tonset values (initial and end 

temperatures) were obtained from wt% vs temperature (°C) plots.  

Optical rotations were measured on an Autopol III Automatic Polarimeter at 23°C. The 

measurements were conducted on 0.2 g/dL polymer solutions in CHCl3. Circular dichroism (CD) 

spectra were obtained from an Aviv model 202 CD spectrometer. CD analysis was conducted on 

polymer solutions with concentrations of 0.2 g/dL in CHCl3. Powder X-ray diffraction (XRD) 

analyses were performed on powder samples with a Scintag X2 Advanced Diffraction System 

using Cu Kα (λ = 1.540562 Å) radiation and a Peltier detector on the diffracted-beam side. In all 

cases measurements were performed with a step size of 0.02° with 1.2 second per step. The 
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tacticity of (R)-PAOZ and (R)-PVOZ was analyzed by 
13

C NMR in DMSO-d6 at 100 °C 

according to the procedures established for polyacrylamides
34

 and for the parent PVOZ,
18

 

respectively. NMR data of the polymers representing each of three classes of the polymers 

described in this study were listed below. 

Poly(N-acryloyl-2-oxazolidinone) (PAOZ). 
1
H NMR (DMSO-d6, 500 MHz, 100 °C) for 

PAOZ: δ 4.37 (m, CH2O, 2H), 3.87 (m, CH2N, 2H), 3.73, 3.68, 3.60 (m, CH, unresolved triads, 

1H), 1.86, 1.71, 1.67, 1.55, 1.48 (m, CH2, unresolved diads and tetrads, 2H). 
13

C NMR (DMSO-

d6, 125 MHz, 100 °C) δ 174.4 (C=O, rr + mr), 174.3 (C=O, mm), 152.7 (C=O, ring), 61.50 

(CH2O), 42.09 (CH2N), 37.24 (CH), 34.75 (CH2). 

Poly[N-acryloyl-(R)-4-phenyl-2-oxazolidinone] [(R)-PAOZ]. 
1
H NMR (DMSO-d6, 500 

MHz, 100 °C): δ 7.28 (m, Ar, 5H), 5.38 (m, CH, 1H), 4.64–4.14 (m, CH2O, 2H), 3.84, 3.76, 3.67 

(m, CH, unresolved triads, 1H), 1.88, 1.74, 1.46 (m, CH2, 2H). 
13

C NMR (DMSO-d6, 125 MHz, 

100 °C): δ 174.3 (C=O, rr + mr), 173.9 (C=O, mm), 153.0, (C=O, ring), 139.7, 129.1, 128.3, 

125.9 (Ar), 70.18 (CH2O), 57.98 (CHN), 39.04 (CH), 36.01 (CH2). 

Poly[N-vinyl-(R)-4-(4-(hexyloxy)phenyl)-2-oxazolidinone] [(R)-PHVOZ]. 
1
H NMR (500 

MHz, CDCl3, 50 °C): δ 7.62 (bs, Ar, 2H), 6.99 (bs, Ar, 2H), 4.53 (m, 1H), 4.25 (m, 1H), 4.03 (m, 

2H), 3.77 (m, 1H), 1.82 (bs, 2H), 1.49 (bs, 2H), 1.35 (bs, 5H), 0.89 (bs, 4H), 0.77 (bs, 1 H). 
13

C 

NMR (CDCl3, 125 MHz, 50 °C): δ 159.6 (C-O), 158.0 (C=O, mmmm), 132.4, 129.6, 115.2 (Ar), 

70.26 (CH2O), 68.24 (CH2O), 56.23 (CHN), 48.54 (CH), 35.64 (CH2), 31.60 (CH2), 29.36 (CH2), 

25.84 (CH2), 22.56 (CH2), 13.90 (CH3). 

 

Results and Discussion 

Stereospecific Coordination Polymerization of Chiral Acryloyl Oxazolidinones. As a 

control and test to examine the compatibility of the oxazolidinone functionality attached to the 

acryloyl monomer with the cationic metallocenium coordination catalyst, we first polymerized 
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the parent unsubstituted, prochiral acryloyl-2-oxazolidinone (AOZ) with rac-1 at ambient 

temperature. In accordance with the stereospecific coordination polymerization of N,N-

diarylacrylamides
19,20 

and N,N-dialkylacrylamides
34a,b,c

 by such metallocene catalysts, the 

polymerization of AOZ by rac-1 is rapid and produces highly stereoregular, but optically 

inactive, PAOZ with a near quantitative isotacticity (mm%) of ~ 99% as determined by 
13

C NMR 

(see Experimental). Since AOZ contains no chiral auxiliary, the observed stereochemistry must 

be attributed to the catalyst-site controlled polymerization rendered by the C2-ligated chiral 

catalyst.
2
 Next, we polymerized both (R)- and (S)-AOZ monomers using rac-1 (2 mol%) for 3 h 

at ambient temperature, achieving quantitative monomer conversions and affording the 

corresponding isotactic, optically active polymers, (R)-PAOZ and (S)-PAOZ, with MW’s = 11.1 

and 9.98 kg/mol, respectively (runs 1 and 4, Table 1). The observed MW’s are close to the 

calculated MW of 10.9 kg/mol, and therefore the polymerization shows its control over the 

resulting polymer MW. The polymers exhibit unimodal MWD’s, but they are relatively broad 

(>2.0), as compared to the typically narrow MWD’s (<1.2) observed for poly(alkyl 

methacrylate)s and poly(alkyl acrylamide)s produced by rac-1.
30,32,34b

 The formation of polymers 

with relatively broad, unimodal MWD’s are normally attributed to the slower rate of chain 

initiation than the rate of chain propagation for polymerization systems with single-site catalysts.
2
 

However, in the case of the current system, it could also be attributable to the possibility that the 

enantiomeric monomer was preferentially polymerized by one enantiomer of the racemic catalyst. 

To test this hypothesis, we investigated the ability of the (R,R)-1 enantiomer to effect the kinetic 

resolution polymerization of rac-(R/S)-AOZ, ideally polymerizing one enantiomer preferentially 

via a large stereoselectivity factor while resolving the other enantiomerically pure. The actual 

experiment showed that (R,R)-1 was unable to kinetically resolve (R/S)-AOZ, as several aliquots 

taken during the course of polymerization, when analyzed by chiral HPLC, revealed no 

enantiomeric excess of the unreacted monomer, demonstrating that each enantiomer of the 

catalyst polymerizes the enantiomeric monomers with equal efficacy. Furthermore, the specific 
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rotations of the isolated polymers are strikingly similar to their respective monomers. More 

specifically, [α]
23

D of (R)-AOZ is –159 °, while the isolated polymer has the same value (within 

experimental error) of  [α]
23

D = –158 °. Likewise, the specific rotation of (S)-AOZ is +159 °, and 

it is +182 ° for its derived polymer. Significantly, the minimal to no change in both magnitude 

and sign of specific rotations of these polymers, in comparison to their respective monomers, is 

drastically different than the chiral helical polymer examples discussed above, where helix 

formation resulted in polymers with largely different optical rotations (and sometime in signs as 

well) than their corresponding monomers. 

    

Table 1.  Selected Results of Polymerization of (R and S)-AOZ by Chiral Catalysts 1.
 a
 

run 

no. 

monomer 

form 

catalyst 

form 

conv.
 b
  

(%)  

10
3
 Mn

c 

(g/mol) 

MWD
c
 

(Mw/Mn) 

[α]
23

D
d
 

(°) 

1 (R)-AOZ rac-1 100 11.1 2.41 –158 

2 (R)-AOZ (R,R)-1 100 6.77 1.77 –160 

3 (R)-AOZ (S,S)-1 100 7.88 1.42 –154 

4 (S)-AOZ rac-1 100 9.98 2.07 +182 

5 (S)-AOZ (R,R)-1 100 7.23 1.77 +170 

6 (S)-AOZ (S,S)-1 100 8.27 1.74 +185 
a
 Carried out in 5 mL CH2Cl2 at ambient temperature (~25 °C); 2 mol% catalyst. 

b 
Conversion 

measured by 
1
H NMR. 

c
 Determined by GPC relative to PMMA standards. 

d 
0.2 g/dL, CHCl3.  

 

Efforts in explaining the above results obtained in the polymerization of (R and S)-AOZ 

monomers have led to the formulation of the following three hypotheses (possible scenarios): (1) 

the polymers produced by rac-1 form an equal mixture of right- and left-handed helical 

structures, where the helicity is determined by the chirality of the catalyst, and therefore the 

optical activity arising from the secondary structures cancel each other out; (2) one-handed chiral 

helical polymers are produced, but the helicity is dictated by the chiral side-groups of the isotactic 

polymers; or (3) the polymers produced adopt random-coil conformations, where the 

stereoregular main chain becomes cryptochiral, and therefore the optical activity is controlled by 

the chiral auxiliary. Several lines of key evidence detailed below unequivocally disproof 

hypotheses 1 and 2 and thus show that the third scenario is strongly suggested for the present 

chiral AOZ polymers. 
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First, we employed enantiomeric catalysts 1 for the polymerization of (R and S)-AOZ since 

the results will reveal if excess one-handed helicity could be formed or not. (R)-AOZ was 

polymerized efficiently by (R,R)- and (S,S)-1, affording the corresponding polymers with MW’s 

= 6.77 and 7.88 kg/mol and MWD’s = 1.77 and 1.42, respectively (runs 2 and 3, Table 1). 

Intriguingly, the specific rotations of all the polymers derived from (R)-AOZ are rather similar 

(i.e., [α]
23

D varied from a narrow range from –154 ° to –160 °), regardless of the form of the 

catalyst utilized (runs 1–3). Furthermore, all the polymers show nearly identical Cotton effects, as 

revealed by their CD spectra (Figure 1), which is in sharp contrast to the chiral helical polymers 

with one-handed helicity being dictated by the chirality of the catalyst (vide supra). Hence, since 

the polymers derived from (R)-AOZ are optically indistinguishable, these results clearly ruled out 

hypothesis (1) which assumes that each enantiomeric catalyst produces AOZ polymer kinetically 

trapped in the right- or left-handed, solution-stable helix. 
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Figure 1. CD Spectra of (R)-AOZ polymers produced by catalysts (S,S)-1 (blue), (R,R)-1 (red), 

and rac-1 (green). 
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Second, the study of the chiroptical properties of the polymers derived from (S)-AOZ using 

three different forms of catalyst 1 provides additional evidence for disproof of hypothesis 1. As in 

the case of the (R)-AOZ monomer, (S)-AOZ was quantitatively polymerized by the 

enanantiomeric catalysts to isotactic, optically active polymers with MW’s = 7.23 and 8.27 

kg/mol and MWD’s = 1.77 and 1.74, by (R,R)- and (S,S)-1, respectively (runs 5 and 6, Table 1). 

Also identical to the observations with the polymers composed of (R)-AOZ, the (S)-AOZ based 

polymers exhibited rather similar optical rotations, regardless of catalyst form employed (i.e., 

[α]
23

D = +182, +170, and +185 ° for polymers produced by rac-, (R,R)-, and (S,S)-1, respectively), 

and again nearly identical CD spectra (Figure 2). Hence, these results strongly back the above 

conclusion (point 1), based on the findings in the polymerization of (R)-AOZ, that the 

enantiomeric catalysts do not convert the enantiomeric AOZ to a kinetically trapped right- or left-

handed solution-stable helical polymer.  
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Figure 2. CD Spectra of (S)-AOZ polymers produced by catalysts (S,S)-1 (blue), (R,R)-1 (red), 

and rac-1 (green). 

 



  95  
 

Third, we ascertained the possibility of the chiral side-groups of the polymer dictating 

helicity (hypothesis 2), due to the observed large change in CD spectra for the isolated polymers, 

as compared to their respective monomers (Figure 3). Again, this possibility is inconsistent with 

the observation that there was no chiral amplification and exhibited only minimal differences in 

specific rotations of the polymers than their respective monomers, as shown by the examples 

described above. A hypothetical helix-helix stereo-mutation was also not observed for these 

polymers, as the specific rotation of the solution did not change, immediately after dissolution, 

nor after 4 days.  

 

-200

-175

-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

240 265 290 315 340 365 390 415 440

C
D

 (
m

d
e

g
)

Wavelength (nm)

(S)-POZ

(R)-POZ
(R)-AOZ

(S)-AOZ

 

Figure 3. CD Spectra of chiral AOZ monomers: (S)-AOZ (blue) and (R)-AOZ (red). 

 

Fourth, the results of our copolymerization studies provide additional evidence for disproof 

of hypothesis 2. We reasoned that if the chiral auxiliary of the AOZ monomers dictates the 

formation of a single-handed helical polymer during the course of polymerization, then we can 

reveal this phenomenon through copolymerizations, specifically, through investigating chiral 
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amplifications manifestable by the majority rules
35

 or ―sergeants and soldiers‖ effects.
36

 In both 

effects, a small chiral bias results in a chiral amplification in the entire polymer chain, leading to 

highly optically active polymers. To this end, we copolymerized nonequivalents of (R)- and (S)-

AOZ by rac-1 (since no kinetic resolution polymerization proceeded, we can employ the racemic 

catalyst directly) (runs 7–9, Table 2). The copolymers with 10, 20, and 40 % ee of (R)-AOZ 

exhibited very similar MW and MWD, but no chiral amplification was observed in their CD 

spectra. Furthermore, in examining specific rotations of these polymers, there was just an additive 

effect in optical rotation, not a chiral amplification. Specifically, the polymers with 10, 20, and 40 

% ee of (R)-AOZ had [α]
23

D = –15.9, –33.8, and –70.7 ° (from run 7 to 9), increasingly linearly 

with % ee, as was observed in vinyl polymers not forming excess one-handed helicity.
37

  

 

Table 2.  Selected Results of Copolymerization of (R)- with (S)-AOZ by rac-1.
 a 

run 

no. 

(R)-AOZ 

(mol %) 

(S)-AOZ 

(mol %) 

conv. 

(%) 

10
3
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

[α]
23

D 

(°) 

7 55 45 100 8.34 1.37 –15.9 

8 60 40 100 8.79 1.39 –33.8 

9 70 30 100 8.89 1.42 –70.7 
a
 See footnotes in Table 1 for explanations.  

 

   

To examine the ability of these chiral monomers to influence helicity through the 

―sergeants and soldiers‖ effect, we copolymerized (S)-AOZ with the structurally similar, 

prochiral acryloyl-2-oxazolidinone (AOZ). As a control, we polymerized AOZ alone with rac-1. 

The optically inactive polymer produced by rac-1 exhibited a MW of 6.03 kg/mol and a MWD of 

1.69 (run 10, Table 3). Next, we incorporated 4, 10, and 20 mol % of chiral (S)-AOZ into the 

monomer feed, quantitatively producing the corresponding optically active copolymers (runs 11–

13, Table 3). However, the specific rotation increased only linearly with incorporation of the 

chiral monomer and also no large Cotton effects were observed in the CD spectra, again 

indicating the lack of chiral amplification.  Overall, the combination of the results obtained in the 

homopolymerization of the enantiomeric monomers with the chiral amplification studies, through 

copolymerization of the mixed chiral-chiral and chiral-achiral monomer feeds, led to the 



  97  
 

conclusion that the side-groups of the repeat units are not bulky enough and too far (3 atoms) 

away from the isotactically placed stereogenic centers of the polymer backbone to sterically 

induce helicity into the polymer. Instead, random-coil secondary structures form. 

 

Table 3.  Selected Results of Copolymerization of Achiral AOZ with Chiral (S)-AOZ by rac-1.
 a
 
 

run 

no. 

(S)-AOZ 

(%) 

AOZ 

(%) 

conv. 

(%) 

10
3
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 
[α]

23
D (°) 

10 0 100 100 6.03 1.69 0.0 

11 4 96 100 7.40 1.41 +18.3 

12 10 90 100 7.87 1.43 +28.1 

13 20 80 100 8.67 1.43 +35.8 
a
 See footnotes in Table 1 for explanations. 

 

 

Fifth, disproof of hypotheses 1 and 2 by the above four sets of experiments led to the key, 

third hypothesis that remains consistent with, and thus supported by, all the data: the chiral 

isotactic AOZ polymers adopt a random-coil conformation and the optical activity is dictated by 

the chiral auxiliary. This scenario was further supported by the observation that all (R)-AOZ 

polymers with different main-chain stereoconfigurations, specifically, the isotactic polymer by 

C2-ligated metallocenium catalyst 1, the syndiotactic polymer by the Cs-ligated metallocenium 

catalysts,
33

 and the atactic polymer by the free radical initiator (AIBN), showed nearly identical 

Cotton effects in their CD spectra (Figure 4). 
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Figure 4. CD Spectra of (R)-AOZ derived polymers with different main-chain 

stereoconfigurations: isotactic polymer (blue), syndiotactic polymer (red), and atactic polymer 

(green). 

Sixth, modeling of isotactic [(R)-AOZ]30 by MM2 calculations also led to a random-coil 

chain secondary structure (Figure 5), thus providing additional support to hypothesis 3. This 

modeling result is in sharp contrast to the calculated helical structure for isotactic [(R)-VOZ]30 

(c.f., Chart 2), the discussion of which immediately follows.  

 

Figure 5. Modeled random-coil structure of [(R)-AOZ]30 shown in the space filling mode 

(carbon, nitrogen, and oxygen are shown in grey, blue, and red, respectively; hydrogen atoms 

omitted for clarity). 
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Stereospecific Cationic Polymerization of Chiral Vinyl Oxazolidinones. As the above 

studies have shown, the chiral auxiliary of the repeat units in the chiral AOZ polymers are not 

bulky enough, being three atoms away from the polymer backbone stereocenters, to sterically 

induce helicity into the polymer. Accordingly, we reasoned that if we brought the chiral side-

groups closer to the stereocenters of the polymer main-chain in polymers derived from non-

conjugated N-vinyl-4-(R)-phenyl-2-oxazolidinone [(R)-VOZ)], where the chiral auxiliary is only 

two atoms away from the main-chain stereocenters, then the side-groups could be effective in 

rendering solution-stable helical polymers. 

However, there presents two challenges in coordination polymerization of (R)-VOZ. First, 

it is a non-conjugated vinyl monomer, so it cannot be polymerized via a coordination conjugate-

addition mechanism by zirconocenium ester enolate catalysts such as 1.
2
 Second, it is a 

heteroatom (N,O)-functionalized vinyl monomer, so it cannot be polymerized (at least directly) 

via a coordination insertion mechanism by metallocenium alkyl catalysts such as rac-

(EBI)ZrMe
+
MeB(C6F5)3

−
.
2
 A potential strategy here is to use protected (coordinated) 

hetereoatom-functionalized vinyl monomers with aluminum Lewis acids, which can be readily 

removed post-polymerization.
38

 Initial attempts to polymerize (R)-VOZ with rac-(EBI)ZrMe2 

activated with 500 equiv of MAO—which we reasoned could not only abstract the methyl group 

to form the active zirconcenium catalyst species,
39

 but also protect the heteroatoms of (R)-VOZ 

from interfering with the migratory insertion polymerization process—failed to form any isolable 

polymer after 24 h of reaction. Next, we pre-complexed (R)-VOZ with 0 to 3 equiv of 
i
Bu3Al and 

subjected the complexed monomer to polymerization by rac-(EBI)ZrMe2 activated with 

equimolar B(C6F5)3 [which generates in situ the active species, rac-(EBI)ZrMe
+
MeB(C6F5)3

−
]

39
 at 

ambient temperature or 80 °C for up to 24 h. However, this also yielded no polymer products. We 

also repeated these polymerization procedures, but using [Ph3C][B(C6F5)4] as the activator. For 

the runs using 
i
Bu3Al as the complexing agent, no polymerization was observed at various 

reaction temperature and time. Surprisingly, in the absence of 
i
Bu3Al, the polymerization at 
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ambient temperature by in situ activation of rac-(EBI)ZrMe2 with equimolar [Ph3C][B(C6F5)4] 

proceeded rapidly, with the polymer immediately crashing out of solution. 

This intriguing, exciting result raised the question of what is the actual catalyst species 

responsible for the successful polymerization of (R)-VOZ? Note that zirconocenium species such 

as rac-(EBI)ZrMe
+
MeB(C6F5)3

−
 are inactive for this polymerization. However, it is known that 

activation of the metallocene dimethyl pre-catalyst with [Ph3C][B(C6F5)4] proceeds in a step-wise 

fashion: the first step is the rapid methide abstraction to form the transient µ-Me dimer, a result of 

stabilization of the initially formed metallocene cation by the other half of the neutral dimethyl 

species, instead of the anion [B(C6F5)4]
−
, due to its extremely weakly coordination nature.

40
 The 

slower proceeding step is the gradual conversion of the stable dimer to the highly unstable, 

reactive mononuclear zirconocenium species by the other half of [Ph3C][B(C6F5)4] (Scheme 1). 

Thus, the complexity of this activation process presented 4 possible species being responsible for 

the observed polymerization activity: the mononuclear zirconocenium cation, the dinuclear 

cation, the dimethyl precatalyst, and the activator [Ph3C][B(C6F5)4].   

Scheme 1. Step-wise activation of rac-(EBI)ZrMe2 by [Ph3C][B(C6F5)4].  

 

 

Control experiments subsequently ruled out the neutral precatalyst rac-(EBI)ZrMe2 and the 

mononuclear zirconocenium cation rac-(EBI)ZrMe
+
 as the active species for this polymerization. 

The independently prepared dinuclear complex
40

 from the reaction of 2 equiv of rac-(EBI)ZrMe2 
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with 1 equiv of [Ph3C][B(C6F5)4] also exhibited no polymerization activity. Lastly, we found that 

addition of a catalytic amount of [Ph3C][B(C6F5)4] to a toluene solution of (R)-VOZ resulted in 

rapid polymerization with the polymer crashing out of solution, the same phenomenon as seen in 

the polymerization by in situ activation of rac-(EBI)ZrMe2 with equimolar [Ph3C][B(C6F5)4] 

(vide supra). These results conclusively pointed to [Ph3C][B(C6F5)4]—intended as the activator 

for the metallocene precatalyst—as the actual active species responsible for the observed 

polymerization activity. Unfortunately, all isolated polymers using different {(R)-

VOZ}:{[Ph3C][B(C6F5)4]} ratios (5–50), solvents (toluene and CH2Cl2), and temperature (0 °C 

and 25 °C), are insoluble in all common organic solvents and concentrated acids tested, even at 

elevated temperatures (up to the boiling points of the solvents). The polymer yield was held 

nearly constant of ~60% for runs at {(R)-VOZ}:{[Ph3C][B(C6F5)4]} = 50 at 25 °C for 2 h in 

toluene or CH2Cl2, but the polymerization in THF was almost completely shut down (0.65 % 

yield). The [Ph3C][B(C6F5)4] initiator can be substituted by other cationic initiators such as 

BF3·Et2O. From a view point of devinylation that plaques the polymerization of the unsubstituted 

VOZ
13,15 

and other N-vinyl heterocyclic monomers
16

 using acids, it is intriguing and actually 

fortunate that instantaneous precipitation of the resulting polymer prevented such devinylation to 

a large extent, enabling us to achieve the first successful cationic polymerization of VOZ 

monomers with good polymer yields up to 80% (at 0 °C) and also the first successful synthesis of 

highly isotactic PVOZ (vide infra). 

The insolubility of the resulting non-crosslinking (R)-PVOZ in all common organic 

solvents suggests a rigid-rod-like chiral polymer adopting a one-handed helical conformation—as 

predicted by modeling (c.f., Chart 2)—a result of having a highly isotactic backbone 

stereoconfiguration generated through a novel chiral auxiliary-controlled, isospecific cationic 

polymerization mechanism. However, to provide concrete evidence for such a polymer structure, 

the insolubility associated with (R)-PVOZ must be solved to allow characterization of the 

polymer. To this end, we synthesized the para-hexyloxy substituted derivative, (R)-4-(4-
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(hexyloxy)phenyl)-3-vinyloxazolidin-2-one [(R)-HVOZ)], according to Scheme 2, and 

subsequently investigated its cationic polymerization behavior.  

Scheme 2. Outlined synthesis of (R)-HVOZ. 

56 % 68 % 98%  

Gratifyingly, (R)-HVOZ was also polymerized by [Ph3C][B(C6F5)4], and the 

polymerization remained homogeneous during the course of polymerization. The resulting 

polymers are soluble in common organic solvents, thus enabling characterizations of the 

polymers by GPC for MW and MWD, NMR for tacticity, as well as by optical rotation and CD 

for optical activity. However, the isolated polymer yield was very low (6.0%, run 14, Table 4), 

even after extended reaction time (24 h) at ambient temperature. Nonetheless, the polymer had a 

relatively narrow MWD of 1.65 and a MW of 7.63 kg/mol. Considering side reactions at ambient 

temperature often observed for cationic polymerization, we lowered the polymerization 

temperature to 0 °C (run 15) and –20 °C (run 16), but doing so did not improve the polymer yield. 

The use of BF3·Et2O as initiator enhanced the polymer yield somewhat (to ~10%, run 17) at 25 

°C, but variations in polymerization temperature (runs 18 and 19) lowered the yield. BrØnsted 

acids were also examined, including [H(Et2O)2]
+
[B(C6F5)4]

−
 (run 20) and 

[HN(Me2)Ph]
+
[B(C6F5)4]

−
, but the polymer yield was never higher than 10%.   

Table 4.  Selected Results of Cationic Polymerization of (R)-HVOZ.
 a 

run 

no. 
initiator 

temp 

(°C) 

yield 

(%) 

10
3
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

14 [Ph3C][B(C6F5)4] 25  6.0 7.63 1.65 

15 [Ph3C][B(C6F5)4] 0  2.0 7.11 1.69 

16 [Ph3C][B(C6F5)4] –20  5.8 5.20 1.81 

17 BF3·Et2O 25  9.5 6.53 1.60 

18 BF3·Et2O 0  6.9 6.68 1.79 

19 BF3·Et2O –20 6.3 5.26 1.78 

20 [H(Et2O)2][B(C6F5)4] 25  9.5 7.31 1.64 
a
 See footnotes in Table 1 for explanations.  
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Hypothesizing that devinylation may be the cause for the low polymer yield seen in the 

cationic polymerization of (R)-HVOZ, we investigated the stoichiometric reaction of (R)-HVOZ 

with [Ph3C][B(C6F5)4]. Indeed, the isolated product from the reaction was (R)-4-(4-

(hexyloxy)phenyl)oxazolidin-2-one, the devinylation product. Likewise, the polymerization 

reaction of (R)-HVOZ with a catalytic amount of [Ph3C][B(C6F5)4] led to (after quenching the 

reaction, separating the MeOH insoluble polymer fraction, and removing the solvent) isolation of 

almost exclusively the oxazolidinone. Although acid-catalyzed decomposition of N-vinyl 

heterocyclic monomers via devinylation,
13,15 

even in the solid state,
16

 is known, it was surprising 

to see the sharp contrast in the extent of the monomer decomposition between the heterogeneous 

polymerization of (R)-VOZ and the homogenous polymerization of (R)-HVOZ. A further study 

through monitoring the reaction of [Ph3C][B(C6F5)4] with 5 equiv of (R)-HVOZ revealed a 

valuable insight: isotactic polymer was formed initially, but over time the backbone methylene 

proton signals corresponding to an isotactic configuration disappeared and the proton signal for 

the oxazolidinone appeared. Hence, this experiment showed that some polymerization initially 

occurs, followed by decomposition to give oxazolidinone, thus competing with the direct 

devinylation of the monomer. This valuable insight also explains the drastic difference in polymer 

yields between the polymerizations of (R)-VOZ and (R)-HVOZ: the hexyloxy substitution in (R)-

HVOZ should have none to minimal effects on the rate of monomer devinylation, but instead it is 

the insolubility of (R)-PVOZ, upon forming and crashing out of solution, that prevents it from 

decomposition. Obviously, this mechanism of devinylation prevention does not apply to the 

soluble (R)-PHVOZ. 

On the other hand, the solubility of (R)-PHVOZ allowed us to investigate its tacticity and 

optical properties, despite the observed low polymer yield. As anticipated, analysis of the 
13

C 

NMR spectrum of (R)-PHVOZ produced by [Ph3C][B(C6F5)4] at ambient temperature clearly 

reveals its high isotacticity, as evidenced by the single mmmm pentad peak in the C=O region 

which is collaborated by the single methine and methylene backbone carbon peaks (Figure 6). 
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Outlined in Scheme 3 is the proposed chiral auxiliary-controlled isospecific cationic 

polymerization for the production of isotactic, chiral vinyl oxazolidinone-functionalized vinyl 

polymers, where the concept of stereocontrol in repeated vinyl additions is analogous to the 

stereocontrol observed in the free radical polymerization of chiral acrylamides.
10,11,12

 More 

importantly, combination of this near quantitatively isotactic placement of the stereogenic centers 

of the polymer main-chain with the chiral side-groups located near those stereocenters of the 

backbone rendered one-handed helicity for (R)-PVOZ and (R)-PHVOZ. Owing to the insolubility 

of (R)-PVOZ, its helical structure was only inferred by modeling (c.f., Chart 2). Thanks to the 

solubility of (R)-PHVOZ, the helical structure is now directly supported by the experimental 

results, including the greatly changed specific rotation, in both magnitude and sign, in going from 

the monomer (R)-HVOZ to the polymer (R)-PHVOZ (–44.8 °C to +156; run 14, Table 4), as well 

as the drastically different CD spectra between the monomer and the polymer (Figure 7). Each of 

these observables represents chiral amplifications characteristic of helical-structure formation.  

140.0145.0150.0155.0160.0 35.040.045.050.055.0

≈ ≈

49.0156.0 35.0 25.030.035.040.045.0 PPM

C=O

CH
CH2

47.0158.0 37.0  

Figure 6. Carbonyl as well as main-chain CH and CH2 regions in the 
13

C NMR (125 MHz, 

CDCl3, 50 C) of (R)-PHVOZ produced by [Ph3C][B(C6F5)4] at ambient temperature.  

m
m

m
m
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Scheme 3. Proposed chiral auxiliary-controlled isospecific cationic polymerization of (R)-

(H)VOZ. 
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Figure 7. CD Spectra of monomer (R)-HVOZ (blue) and polymer (R)-PHVOZ (red). 

 

Physical Properties of Stereoregular (R)-PAOZ and (R)-PVOZ. Polymer thermal 

transition, decomposition, and crystallinity were analyzed by DSC, TGA, and XRD, respectively, 

and comparisons were made between the rigid-rod-like helical polymer (R)-PVOZ, produced via 

isospecific cationic polymerization by [Ph3C][B(C6F5)4], and the random-coil polymer (R)-PAOZ, 

produced via isospecific coordination polymerization by catalyst 1. In the DSC trace, no Tg was 

observed for (R)-PVOZ in the conditions employed, which is not surprising for such a highly 
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isotactic and crystalline polymer.
34b,c

  On the other hand, (R)-PAOZ exhibited a high Tg of 196 

°C. In the TGA trace, (R)-PVOZ showed a very narrow, one-step decomposition window with 

high decomposition temperatures of Tinitial = 435 °C, Tend = 481 °C (Figure 8), and Tmax = 460 °C. 

In comparison, (R)-PAOZ showed in its TGA trace a relatively broader, one-step decomposition 

window, with much lower decomposition temperatures of Tinitial = 351 °C, Tend = 412 °C, and Tmax 

= 390 °C (Figure 9). 
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Figure 8. TGA plot of (R)-PVOZ produced by [Ph3C][B(C6F5)4] in CH2Cl2. 
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Figure 9. TGA derivative plots of (R)-PAOZ (red, run 3, Table 1) and (R)-PVOZ produced by 

[Ph3C][B(C6F5)4] in CH2Cl2. 

  

The XRD plots show significant differences in the crystallinity in the as-quenched 

polymers, (R)-PVOZ and (R)-PAOZ (Figure 10). Although both isotactic polymers exhibit three 

distinct scattering peaks [d spacing: 1.03 nm, 0.58 nm, and 0.38 nm for (R)-PVOZ], the sharpness 

and intensity of the scattering peaks of (R)-PVOZ is significantly greater, indicating a higher 

degree of crystallinity, as compared to (R)-PAOZ. Overall, these characterizations demonstrated 

that the chiral isotactic vinyl polymer (R)-PVOZ is considerably more thermally stable and more 

crystalline than the chiral isotactic acrylamide polymer (R)-PAOZ, characteristics attributable to 

the rigid-rod-like, helical structure of the chiral vinyl polymer.   
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Figure 10. Overlay XRD plots of (R)-PAOZ (red, run 3, Table 1) and (R)-PVOZ produced by 

[Ph3C][B(C6F5)4] in CH2Cl2. 

 

 

Conclusions 

Chiral oxazolidinone-functionalized alkenes have been successfully polymerized at 

ambient temperature in a stereospecific fashion, leading to the corresponding highly isotactic, 

optically active polymers. Depending on whether the monomer is conjugated or not, the 

polymerization proceeds through one of two mechanisms. For conjugated chiral acryloyl 

oxazolidinones, (R or S)-AOZ, isospecific coordination polymerization is brought about by chiral 

catalysts 1. in both racemic and enantiomeric forms. This polymerization is catalyst-site 

controlled, producing highly isotactic, optically active polymers (R or S)-PAOZ. Owing to the 

nature of chiral catalyst-site control, the coordination polymerization of the parent AOZ without 

the chiral side group also affords PAOZ with nearly quantitative isotacticity. Our extensive 

studies have demonstrated that these oxazolidinone-functionalized, chiral isotactic 

poly(acrylamide)s adopt a random-coil structure, thus having a cryptochiral chain and exhibiting 

no chiral amplifications; their optical activity arises solely from the chiral auxiliary. These results 
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are rationalized by the chiral side-groups in these chiral poly(acrylamide)s not being sufficiently 

bulky and located too far away from the isotactically placed stereocenters of the main chain to 

induce sterically a solution-stable helical conformation. 

In order to polymerize non-conjugated chiral vinyl oxazolidinones, we successfully 

developed a novel ambient-temperature isospecific cationic polymerization using Lewis and 

BrØnsted acids. This polymerization is chiral auxiliary-controlled and also produces highly 

isotactic, optically active polymers, (R)-PVOZ and (R)-PHVOZ. However, in sharp contrast to 

the chiral acrylamide polymers, these vinyl polymers adopt a solution-stable helical 

conformation, thereby manifesting substantial chiral amplifications. Both modeling of the 

insoluble (R)-PVOZ and experimental results obtained from the soluble (R)-PHVOZ polymer 

have yielded the same result: a chiral helical structure. Synthetically, the facile acid-catalyzed 

devinylation presented a major challenge to the homogenous, stereospecific cationic 

polymerization of (R)-HVOZ, thus severally limiting its polymer yield. Efforts are underway to 

search for more effective strategies to eliminate or largely suppress such side reactions.   

The chiral helical vinyl polymers synthesized herein are of particular interest for two key 

reasons. First, they effectively assemble two elements of polymer local chirality―side-chain 

chirality and main-chain chirality―into global chirality in the form of excess one-handed 

helicity. Second, these N,O-functionalized chiral vinyl polymers represent chiral variants of 

structurally similar PVP, the currently most widely employed effective ligand/stabilizer in 

transition-metal nanocluster chemistry. Such globally assembled helical chiral polymers already 

showed their superior physical properties such as having considerably higher thermal 

decomposition temperatures and polymer crystallinity, as compared to the random coil chiral 

acryloyl polymers having similarly high main-chain stereoregularity. Our research in utilizing 

both classes of chiral polymers synthesized herein as chiral ligands/stabilizers for transition-metal 

nanoclusters and their subsequent asymmetric catalysis is currently underway, the results of 

which will appear elsewhere in due course.               
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Chapter 5 

Helix-Sense Control and Effects on Enantioselectivity of Poly(Cinchona Phenyl Acetylene) 

Organocatalysts 

 

Abstract  

 Two pseudo-enantiomeric monomers, (4-benzoyl cinchonidine) acetylene [BCdA] and 

(4-benzoyl cinchonine) acetylene [BCnA], have been synthesized and subsequently polymerized 

by [Rh(nbd)Cl]2 (nbd = norbornadiene) to synthesize stereoregular (cis-transoidal) P(BCdA) and 

P(BCnA). These polymers exhibit excess one-handed helicity in solution, and in identical 

solvents, assume helical conformations that are of opposite-handedness as evidenced by nearly 

mirror image CD spectra. By altering the solvent in which these polymers are dissolved in, from 

chloroform to tetrahydrofuran, the handedness of these helical polymers can be switched. Bearing 

cinchonidine and cinchonine organocatalyst functionalities, an investigation on the effects of the 

helicity and helix-sense on the enantioselectivity was then conducted for the enantioselective 

addition of 2-napthalenethiol to 2-cyclohexenone. 
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Communication 

Anchoring chiral organocatalyst functionalities onto a polymer support is an effective 

means of enabling a catalyst to be easily separated from the reaction medium and recycled.
1
 

However, there are few reports that exploit the ability of the polymer to form a helical secondary 

structure to increase the enantioselectivity of these organocatalysts, and in most cases, the helical 

polymer supported catalysts usually exhibits a decrease in enantioselectivity, as compared to the 

monomeric catalyst.
2
  Thus, when poly[N-(4-ethynylbenzyl)ephedrine] was used to catalyze the 

enantioselective addition of diethylzinc to benzaldehyde, the ee was 30-49%, while the ee of the 

reaction catalyzed by the monomeric N-(4-benzyl)ephedrine was 80 %.
2c

 An exception is the 

asymmetric epoxidation of chalcone derivatives by poly(phenylacetylene)s bearing oligopeptide 

pendents, where the ee of the reaction catalyzed by these helical polymeric organocatalysts was 

as high as 38 %, but the same reaction catalyzed by the mononomeric catalysts exhibited minimal 

enantioselectvity (<2%).
3
 Despite these interesting reports, in all cases, the polymers could only 

assume one specific handedness, leaving to curiosity, the enantioselectivity of the same catalyst 

system, but supported on the opposite-handed, helical polymer. It would therefore be ideal to 

have the identical polymer supported organocatalyst in both right- and left-handed helical 

conformations, allowing for direct comparison of the effects of the helix-sense on 

enantioselectivity, a prior unaccomplished feat. 

Cinchona alkaloids are well-established, highly enantioselective organocatalysts.
4
 

Furthermore, it has been shown that when chiral cinchona alkaloids, such as quinidine, are 

interacted with the dynamic helical polymer, poly((4-carboxyphenyl)acetylene), excess one-

handed helicity is induced in the polymer.
5
 Inspired by these two observations, we hypothesized 

that in synthesizing a poly(cinchona phenyl acetylene), we would not only produce a polymer that 

possesses an efficient organocatalyst functionality, but also exhibits excess one-handed helicity, 

allowing for investigation into the effects of helix-sense on the enantioselectivity of this polymer 

supported catalyst. 



117 
 

Communicated herein is the synthesis of two novel pseudo-enantiomeric helical 

poly(cinchona phenyl acetylene)s and the employment of these polymers as asymmetric 

organocatalysts. Excitingly, we discovered the ability to readily control the helix-sense of these 

polymers, providing an unprecedented opportunity for the investigation on the effects of the 

helix-sense of the polymer on the enantioselectivity of these catalysts (Chart 1).   

 

Chart 1. Helix-sense inversion of P(BCdA) and its Effects of Enantioselectivity. 

 

Specifically, two diastereomeric monomers, (4-benzoyl cinchonidine) acetylene [BCdA] 

and (4-benzoylcinchonine) acetylene [BCnA], have been prepared and subsequently polymerized 

by [Rh(nbd)Cl]2 (nbd = norbornadiene) to synthesize stereoregular (cis-transoidal) P(BCdA) and 

P(BCnA) (Scheme 1).
6
 These polymers exhibit intense circular dichroism (CD) in the absorption 

region of the conjugated polyene backbone, providing evidence that they are assuming helical 

conformations with excess one-handed helicity.
7
 In identical solvents, the CD of P(BCdA) and 

P(BCnA) are nearly mirror images of one another, showing that the polymers are assuming 

helical conformations of opposite handedness. Interestingly, there is a large change in the 

absorption spectra and CD pattern when changing the solvent from CHCl3 to THF (Figure 1). 

Specifically, when switching from CHCl3 to THF, there is a slight blue shift in the absorbance 

max (λmax) of the two 
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Figure 1. (a) CD of P(BCdA) in CHCl3 (blue); (b) CD of P(BCdA) in THF (red); (c) CD of 

P(BCnA) in CHCl3 (green); (d) absorption spectra of P(BCdA) in CHCl3 (red); and, (e) absorption 

spectra of P(BCdA) in THF. Measured at room temperature (c = 0.1 mg/mL). 

       

 chromophores, accompanied with a visible color change, from orange to yellow, of the polymer 

solutions. Furthermore, in the CD pattern of P(BCdA) in CHCl3 and THF, there is an inversion in 

sign of the Cotton effects as well as a change in absolute intensities of these Cotton effects. These 

results strongly suggest that that helix-sense of P(BCdA) is inverted in CHCl3 and THF and that 

the pitch is altered.
8
 These phenomena are also observed for P(BCnA). Although the helix-sense 

can be inverted in selected solvents, the polymers are very stable in solution, up to 6 days, and 

when exposed to heat or small chiral guest molecules.
6
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Table 1. Results of the Enantioselective Conjugate Addition of 2-Napthalenethiol to 2-

Cyclohexen-1-one.
a
  

run 

no. 
  Catalyst 

     

solvent 

time 

(hrs) 

conv 

(%) 

ee
b
  

(%) 

1 BCdA CHCl3 40 88.8 8 

2 BCdA THF 40 >99 2 

3 P(BCdA) CHCl3 96 92.4 36 

4 P(BCdA) THF 96 97.1 2 

5 P(BCnA) CHCl3 90 >99 -30 

6 P(BCnA) THF 90 >99 -14 

7
d BCdA CHCl3 15 98.9 10 

8
d P(BCdA) CHCl3 36 100 22 

9
d,e P(BCdA) CHCl3 36 100 16 

 a
Carried out with 1 mol% catalyst in 1 mL of the specified solvent at 0 °C. 

b
Determined by 

1
H 

NMR analysis. 
c
Determined by HPLC analysis. 

d
Run at room temperature. 

e
Catalyst compressed 

for 1 hr at 400 kg/cm
2
.
 

 

 

With the ability to readily control the helix-sense of these polymers, we were provided an 

exciting opportunity to explore the effects of the helix-sense on the enantioselectivity of these 

catalysts. To this end, we have investigated the ability of these polymers to catalyze the 

enantioselective conjugate addition of 2-napthalenethiol to 2-cyclohexen-1-one
9
 at 0 °C and the 

effects of the helix-sense on enantioselectivity, the results of which are summarized in Table 1. 

As a control, and to reveal possible solvent effects, we utilized the monomer, BCdA, as the 

catalyst for this reaction. BCdA proved to be a poor asymmetric catalyst for this reaction, 

however, there was a small solvent effect observed, so that in CHCl3 and THF the product is 

synthesized in 8 and 2 % ee, respectively (runs 1 and 2, Table 1). We next employed P(BCdA) as 

the catalyst for this reaction. Gratifyingly, in CHCl3 the helix-sense increases the 

enantioselectivity and the (S)-enantiomer was synthesized in 36 % ee, while in THF the helix-

sense is non-influential and the product is formed with 2 % ee, thus clearly showing a large 

influence on the enantioselectivity by the helix-sense (runs 3 and 4, Table 1). Similarly, when 

using the pseudo-enantiomeric polymer, P(BCnA), in CHCl3, the (R)-enantiomer is produced in 

30 % ee, and in THF, 14 % ee (runs 5 and 6, Table 1). 
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Figure 2. CD of P(BCdA) at (a) 0 °C (blue); (b) room temperature; and, (c) after compression for 

1 hr, at room temperature (green) (c = 0.1 mg/mL; CHCl3).  

 

We next investigated the ability to perturb the helicity of P(BCdA) and its effects on the 

enantioselectivity of the catalyst. Thus, we performed the reaction at room temperature and using 

a polymer catalyst after it had been compressed, both of which decrease the intensities observed 

in the Cotton effects, as compared to the CD acquired at 0 °C (Figure 2). As a control, we first ran 

the reaction with the monomer BCdA, to eliminate possible temperature effects on the 

enantioselectivity. At room temperature, BCdA catalyzes the reaction to 10 % ee, while at 0 °C, 8 

% ee, showing that the reaction catalyzed by this catalyst functionality is not very sensitive to 

temperature, from 0 °C to room temperature (runs 7 and 1, Table 1). However, when comparing 

the reaction catalyzed by P(BCdA) at 0 °C and room temperature, there is a decrease in ee from 

36 to 22 % (runs 8 and 3, Table 1). Furthermore, when utilizing the compressed polymer as the 

catalyst (which shows an even further decrease in the intensities in the CD) the ee is reduced even 

further to 16 % (run 9, Table 1). Thus, in comparing the reaction catalyzed by a polymer with the 

same helix-sense, there is a clear correlation in decreasing ee with decreasing magnitudes in the 

CD. 
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In summary, we have reported the synthesis of two novel, pseudo-enantiomeric, 

poly(cinchona phenyl acetylene)s that exhibit excess one-handed helicity, and have the unique 

capability for helix-sense inversion, allowing for an unprecedented investigation into the effects 

of the helix-sense of the polymer backbone on the enantioselectivity of an organocatalyzed 

reaction. Modifications and derivatives of these polymers should further increase the 

enantioselectivity of these catalysts, and will be the focus of our future work. 

 

Experimental Section 

Materials and Methods 

 The NMR spectra were measured using a Varian AS500 spectrometer (Varian, Palo Alto, 

CA) operating at 500 MHz for 
1
H and 125 MHz for 

13
C using TMS as the internal standard. The 

absorption and CD spectra were obtained in a 0.1 cm quartz cell using a JASCO V570 

spectrophotometer and a JASCO J820 spectropolarimeter, respectively. The optical rotations 

were measured in a 5 cm quartz cell on a JASCO P-1030 polarimeter.  SEC measurements were 

performed with a JASCO PU-980 liquid chromatograph equipped with a UV-vis detector 

(JASCO UV-1570, 280 nm) using Tosoh TSKgel α-3000 (30 cm) and α—5000 (30 cm) SEC 

columns in series. DMF containing 10 mmol LiCl was used as the eluent at a flow rate of 0.5 

mL/min. The molecular weight calibration curve was obtained with polystyrene standards 

(Tosoh). HPLC analysis was conducted on a JASCO PU-2080 Plus liquid chromatograph with 

Multi UV-vis (JASCO MD-2010 Plus) and polarimetric (JASCO OR-2090 Plus, Hg-Xe without 

filter) detectors at room temperature, using a Chirolpak AS-H column. A 50:50 

hexanes:isopropanol solvent mixture was used as the eluent at a flow rate of 1.0 mL/min. The 

electron spray ionization mass spectra (ESI-MS) were recorded on a JEOL JMS-T100CS 

spectrometer (Akishima, Japan). Lasar Raman spectra were taken on a JASCO RMP-200 

spectrophotometer. Melting points were measured on a Yanakao melting point apparatus and are 

uncorrected. 
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 All starting materials and dehydrated solvents were purchased from Aldrich, Wako Pure 

Chemical Industries (Osaka, Japan), and Tokyo Kasei Kogyo (TCI) (Tokyo, Japan) and were 

used as recieved, except for Et3N, which was dried over CaH2 overnight, followed by vacuum 

distillation. (4-carboxyphenyl)acetylene was prepared by a literature procedure.
5  

 

Polymer Synthesis 

1. Synthesis of poly((4-benzoyl cinchonidine)acetylene). 

 

Scheme 1. Synthesis of poly((4-benzoyl cinchonidine)acetylene). 

 

 Poly((4-benzoyl cinchonidine)acetylene) [P(BCdA)] was synthesized in a three-step 

procedure, as outlined in Scheme 1. A 50 mL flask was charged with (4-carboxyphenyl)acetylene 

(1.50 g, 10.26 mmol) and a stir bar and equipped with a 3-way stop-cock. The flask was pulled 

under dynamic vacuum for 1 hr. Thionyl chloride was sparged with N2 and 30.0 mL (41.13 

mmol, 40eq) was added to the flask under positive N2 flow via syringe. The flask was heated to 

40 °C and stirred for 4 hrs. The flask was allowed to cool to room temperature and the excess 

thionyl chloride was removed via vacuum and dried extensively. It was assumed that this reaction 

afforded 100 % (4-benzoylchloride)acetylene, and this crude product was used as is in the next 

step. 

[Rh(nbd)Cl]2

Et3N Et3N

(100 %)

55.6 %

83.3 %
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 Cinchonidine (1.00 g, 3.39 mmol, 1 eq) and a stir bar were loaded into a 200 mL flask 

that was equipped with a 3-way stop-cock. The flask was pulled under dynamic vacuum for 1 hr 

before 50 mL of dry THF and Et3N (2.37 mL, 17.00 mmol, 5 eq) were added under positive N2 

flow via syringe. The solution was cooled to 0 °C. (4-benzoylchloride)acetylene (0.838 g, 5.9 

mmol, 1.5 eq) was dissolved in 20 mL of dry THF and added dropwise to the cinchonidine 

solution with vigorous stirring. The solution was allowed to warm to room temperature and 

stirred overnight. The suspension was filtered and the volatiles were removed from the filtrate 

affording a pale yellow solid that was purified by silica-gel chromatograpy (CHCl3, acetone). 

Final purification of the product was performed by recrystallization form a CH2Cl2/hexanes 

solvent mixture, affording 798 mg (55.6 %) of (4-benzoylcinchonidine)acetylene as a white 

crystalline solid. 
1
H NMR (CDCl3, 23 °C): δ 8.81 (d, J = 4.5 Hz, 1H, Ar), 8.24 (d, J = 8.5 Hz, 1H, 

Ar), 8.07 (d, J = 8.5 Hz, 1H, Ar), 7.97 (d, J = 8, 2H, Ar), 7.67-7.64 (m, 1H, Ar), 7.57-7.54 (m, 

1H, Ar), 7.51 (d, J = 8.5, 2H, Ar), 7.38 (d, J = 4.5, 1H, Ar), 6.73 (d, J = 6.5, 1H, CHO), 5.58-5.74 

(m, 1H, CH=), 4.97-4.93 (m, 2H, CH2=), 3.46-3.41 (m, 1H), 3.18 (s, 1H, CH≡), 3.16-3.10 (m, 

1H), 3.04-2.99 (m, 1H), 2.65-2.56 (m, 2H), 2.24 (bs, 1H), 1.91-1.83 (m, 2H), 1.73-1.67 (m, 1H), 

1.65-1.61 (m, 1H), 1.54-1.49 (m, 1H). 
13

C NMR (CDCl3, 23 °C): δ 164.8, 149.9, 148.6, 145.1, 

141.5, 132.3, 130.5, 129.6, 129.5, 129.3, 127.4, 127.0, 125.9, 123.2, 114.7, 82.6, 80.5, 74.8, 59.8, 

56.6, 42.5, 39.6, 37.8, 27.8, 27.6, 24.3. [α]
25

D= 92.8 ° (c = 2 mg/mL, DMF). m/z calcd for 

C28H26N2O2: [M + H]+: 423.2073; found: 423.2062. 

 400 mg (0.947 mmol) of (4-benzoylcinchonidine)acetylene was added to a 30 mL reactor 

equipped with stir bar and 3-way stop-cock. The flask was pulled under dynamic vacuum for 1hr 

before 4.0 mL of dry DMF and 132 µL (0.947 mmol) of dry Et3N were added via syringe under 

positive N2 flow. 4.4 mg of [Rh(nbd)Cl]2 (9.47 µmol) was dissolved in 1.0 mL of dry DMF and 

added to the acetylene solution via syringe with vigorous shaking. The solution immediately 

turned a dark yellow color and was placed in a 30 °C oil bath for 18 hrs. After 18 hrs the solution 

was poured into 50 mL of Et2O affording a bright yellow precipitate that was isolated by 
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centrifugation. The yellow solid was was 3 times with Et2O and dried extensively under vacuum 

to afford 333 mg (83.3 %) of poly(benzoylcinchonidine)acetylene. The molecular weight (Mn) 

and molecular weight distribution (Mw/Mn) were estimated to be 92.0 x 10
3
 and 2.40, respectively, 

as determined by SEC analysis, as described above. ([α]
25

D= +1189 °; 2 mg/mL, CHCl3; [α]
25

D= -

193 °; 2 mg/mL, DMF). The stereoregularity of P(BCdA) was investigated by 
1
H NMR and 

Raman spectroscopies. However, the 
1
H NMR spectrum was inconclusive due to broadening of 

the main chain protons. The Raman spectrum of P(BCdA) gave useful information and showed 

intense peaks at 1557, 1345, and 897 cm
-1

, which can be assigned to the C=C, C-C, and C-H bond 

vibration in cis polyacetylenes (Figure 1). After compressing this polymer sample for 1 hr at 400 

kg/cm2, the Raman spectrum was reacquired, showing a disappearance in the peaks, and 

confirming a lack of a cis-transoidal conformation (Figure 2). 

 

Figure 3. Raman spectrum of P(BCdA) showing a highly cis-transoidal conformation. 
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Figure 4. Raman spectrum of P(BCdA) after being compressed for 1 hr at 400 kg/cm

2
 confirming 

a lack of a cis-transoidal conformation. 

 

2. Synthesis of poly((4-benzoyl cinchonine)acetylene). 

 

Scheme 2. Synthesis of poly((4-benzoyl cinchoninine)acetylene). 

 

 Poly((4-benzoyl cinchonidine)acetylene) [P(BCnA)] was synthesized in a three-step 

procedure, as outlined in Scheme 2.  Cinchoninine (1.00 g, 3.39 mmol, 1 eq) and a stir bar were 

loaded into a 200 mL flask that was equipped with a 3-way stop-cock. The flask was pulled under 

11
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dynamic vacuum for 1 hr before 50 mL of dry THF and Et3N (2.37 mL, 17.00 mmol, 5 eq) were 

added under positive N2 flow via syringe. The solution was cooled to 0 °C. (4-

benzoylchloride)acetylene (0.838 g, 5.9 mmol, 1.5 eq) was dissolved in 20 mL of Dry THF and 

added dropwise to the cinchoninine solution with vigorous stirring. The solution was allowed to 

warm to room temperature and stirred overnight. The suspension was filtered and the volatiles 

were removed from the filtrate affording a pale yellow solid that was purified by silica-gel 

chromatograpy (CHCl3, acetone). Final purification of the product was performed by 

recrystallization form a CH2Cl2/hexanes solvent mixture, affording 298 mg (20.8 %) of (4-

benzoylcinchoninine)acetylene as a white crystalline solid. 
 1
H NMR (CDCl3, 23 °C): δ 8.79 (d, J 

= 4.5, 1H, Ar), 8.23 (d, J = 8.5, 1H, Ar), 8.06 (d, J = 8, 1H, Ar), 7.97 (d, J = 8.5, 2H, Ar), 7.67-

7.64 (m, 1H, Ar), 7.57-7.54 (m, 1H, Ar), 7.49 (d, J = 8, 2H, Ar), 7.38 (d, J = 4.5, 1H, Ar), 6.73 (d, 

J = 7.5, 1H, CHO), 5.98-5.01 (m, 1H, CH=), 5.06-4.99 (m, 2H, CH2=), 3.40-3.35 (m, 1H), 3.18 

(s, 1H, CH≡), 2.93-2.84 (m, 2H), 2.77-2.73 (m, 1H), 2.68-2.62 (m, 1H), 2.24-2.19 (m, 1H), 1.91-

1.87 (m, 1H), 1.79 (bs, 1H), 1.59-1.54 (m, 1H), 1.52-1.49 (m, 2H).
 13

C NMR (CDCl3, 23 °C): δ 

164.8, 149.9, 148.5, 145.3, 139.9, 132.1, 130.4, 129.6, 129.2, 127.3, 126.9, 125.9, 123.2, 118.4, 

114.9, 82.6, 80.5, 74.4, 59.8, 49.7, 49.0, 39.4, 27.6, 27.5, 26.2, 23.8. [α]
25

D= -92.8 ° (c =2 mg/mL, 

DMF). m/z calcd for C28H26N2O2: [M + H]+: 423.2073; found: 423.2064. 

 200 mg (0.475 mmol) of (4-benzoylcinchoninine)acetylene was added to a 30 mL reactor 

equipped with stir bar and 3-way stop-cock. The flask was pulled under dynamic vacuum for 1hr 

before 4.0 mL of dry DMF and 65.9 µL (0.475 mmol) of dry Et3N were added via syringe under 

positive N2 flow. 2.2 mg of [Rh(nbd)Cl]2 (9.47 µmol) was dissolved in 1.0 mL of dry DMF and 

added to the acetylene solution via syringe with vigorous shaking. The solution immediately 

turned a dark yellow color and was placed in a 30 °C oil bath for 18 hrs. After 18 hrs the solution 

was poured into 50 mL of Et2O affording a bright yellow precipitate that was isolated by 

centrifugation. The yellow solid was was 3 times with Et2O and dried extensively under vacuum 

to afford 174 mg (86.8 %) of poly(benzoylcinchoninine)acetylene. The molecular weight (Mn) 
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and molecular weight distribution (Mw/Mn) were estimated to be 141 x 10
3
 and 2.71, respectively, 

as determined by SEC analysis, as described above. ([α]
25

D= -1147 °; 1 mg/mL, CHCl3; [α]
25

D= 

+50.8 °; 0.5 mg/mL, DMF). The stereoregularity of P(BCnA) was investigated by 
1
H NMR and 

Raman spectroscopies. However, the 
1
H NMR spectrum was inconclusive due to broadening of 

the main chain protons. The Raman spectrum of P(BCdA) gave useful information and showed 

intense peaks at 1563, 1345, and 897 cm
-1

, which can be assigned to the C=C, C-C, and C-H bond 

vibration in cis polyacetylenes (Figure 3). 

 

Figure 5. Raman spectrum of P(BCnA) showing a highly cis-transoidal conformation. 
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Figure 6. CD of BCdA (blue) and BCnA (red) measured at room temperature (c = 0.1 mg/mL; 

CHCl3). 

Table 2: Optical Rotations of Benzyl Cinchona Acetylene Monomers and Polymers 

Sample [α]
25

D in CHCl3 (°) [α]
25

D in DMF (°) 

BCdA N.D. 92.8 

P(BCdA) +1189 -193 

BCnA N.D. -92.8 

P(BCnA) -1147 +50.8 

 

Stabilitiy of the Helical Conformation of P(BCdA) 

 To investigate the thermal stability of the helical secondary structure of P(BCdA), 

solutions in CHCl3 (Figure 1) and THF (Figure 2) were heated from 0 °C to 45 °C, and the CD 

was monitored every 15 °C. The solution was equilibrated at each temperature for 5 min before 

the CD was acquired. As expected, in both solvents there is a decrease in intensity in the CD with 

increasing temperature, but importantly, there is not a switch in sign of the Cotton effects. More 

so, when the polymer solutions are cooled back to room temperature, the intensities in the CD 

return to their original values, showing the thermal stability of the helical structure of P(BCdA) in 
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both CHCl3 and THF. Additionally, after 6 days in solution at room temperature, the CD 

remained unchanged. The effect on the CD of P(BCdA) after the addition of (+)- or (-)-camphor 

sulfonic acid was investigated (Figure 7). To a 1 mL solution with concentration of 1 mg/mL of 

P(BCdA) in CHCl3 was added 10 µL of 0.059 M (+)- or (-)-camphor sulfonic acid. This solution 

was then immediately analyzed by CD. After 1 day, the solution containing 1 eq of (+)-camphor 

sulfonic acid was re-examined, and the CD remained unchanged.  

 

Figure 7. Variable temperature CD of P(BCdA) (c = 0.25 mg/mL; CHCl3). 
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Figure 8. Variable temperature CD of P(BCdA) (c = 0.25 mg/mL; THF). 

 
Figure 9. Variable temperature CD of P(BCnA); (a) initial CD at 25 °C; (b) CD at 55 °C; (c) CD 

after heat treatment, at 25 °C (c = 0.50 mg/mL; CHCl3). 
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Figure 10. CD of P(BCdA) after addition of (+)- and (-)-camphor sulfonic acid (c ~ 0.25 mg/mL; 

CHCl3). 

Enantioselective Conjugate Addition of 2-Napthalenethiol to 2-Cyclohexen-1-one 

 

Scheme 3. Enantioselective Conjugate Addition of 2-Napthalenethiol to 2-Cyclohexen-1-one. 

 

 A modified literature procedure was implemented for the synthesis of 3-(β-

Napthylthio)cyclohexanone.
9
 In a glass-reactor, 2-napthalenethiol (74.9 mg, 0.468 mmol, 2 eq) 

and specific catalyst (1 mol %) were dissolved in 1 mL of either THF or CHCl3. To this solution 

was added 2-cyclohexen-1-one (22.7  µL, 0.234 mmol, 1 eq) via syringe. This reactor was sealed, 

and placed in a temperature-controlled bath, at the temperatures specified in the tables. After the 

pre-determined time reaction time was completed, the solution was directly passed through a 

short plug of silica, which was washed with ~3 mL of Et2O. The volatiles were removed via 
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vacuum and the % conversion was determined by 
1
H NMR analysis and % ee was determined by 

HPLC analysis. 
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Chapter 6 

Coordination Polymerization of Renewable Butyrolactone-Based Vinyl Monomers by 

Lanthanide and Early Metal Catalysts  

 

Abstract  

 This contribution reports the first study of coordination-addition polymerization of 

renewable butyrolactone-based vinyl monomers, MBL (α-methylene-γ-butyrolactone) and 

MMBL (γ-methyl-α-methylene-γ-butyrolactone), using neutral lanthanocene(II), non-

lanthanocene(III), and cationic group 4 metallocene catalysts. The samarocene(II) catalyst, 

Cp
*
2Sm(THF)2, promotes a rapid, efficient, and controlled polymerization of MBL and MMBL in 

DMF at ambient temperature, exhibiting a high TOF of 3000 h
-1

, typically near quantitative 

initiator efficiency, and the ability to control the polymer MW. The resulting atactic PMBL and 

PMMBL have high Tg’s of 194 ºC and 227 ºC. Owing to the living/controlled characteristics of 

this polymerization, well-defined random and block copolymers of MBL with MMA and MMBL 

can be readily synthesized. Results of the kinetic and polymerization studies indicate that the true 

active species is the trivalent samarocene centers attached to the single growing polymer chain, 

derived presumably from a redox-then-radical-coupling process. In comparison, the 

polymerizations by non-lanthanocene(III) silylamides, Ln[N(SiMe3)2]3 (Ln = La, Nd, Sm, Er), 

and by cationic group 4 metallocene and half-metallocene catalysts incorporating C2 and Cs 

symmetric ligands are much slower and less effective. Catalytic polymerization of MBL by 

Cp
*
2Sm(THF)2 has also been realized in the presence of an enolizable organo acid as a suitable 

chain transfer agent. 
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Introduction 

 

Coordination polymerization of polar vinyl monomers such as (meth)acrylates and 

(meth)acrylamides by single-site metal catalysts has attracted increasing interest due to its 

precision in the catalyst-based stereochemical and architectural control as well as its ability to 

produce new classes of polymeric materials unattainable by other means of polymerization.
1
 In 

this context, remarkable successes have been achieved in metal-catalyzed coordination-addition 

polymerizations of polar vinyl monomers by early metal and main-group
2
 as well as lanthanide

3
 

catalysts, which show a dazzling display of a variety of stereomicrostructures they can generate, 

in addition to their high activity and high degree of control over polymerization characteristics. 

Especially, methyl methacrylate (MMA) has been most widely investigated; mechanistic studies 

of the MMA polymerization catalyzed by various types of group 4 cationic metallocene 

complexes, including those supported by C2,
4,5

 C2v,
6,7,8,9,10

 C1,
11,12,13

 CGC (constrained geometry 

catalyst),
14, 15,16,17

 and Cs
18

 ligated catalysts, as well as isoelectronic neutral lanthanide complexes, 

including lanthanocene(III)
 19,20

  and lanthanocene(II)
21,22

 catalysts, have revealed important 

insights into polymerization kinetics, fundamental steps (initiation, propagation, and 

termination/side reactions), and stereocontrol events. Theoretical/computational 

investigations
23,24,25,26,27,28

 provide a synergistic understanding of such polymerization reactions, 

especially aspects of stereocontrol mechanisms
14,18,23,25 

in the MMA polymerization by chiral 

ansa-zirconocenium complexes. Certain catalyst structures exhibit a high degree of control over 

polymerization characteristics (activity and efficiency; polymer molecular weight, MW; MW 

distribution, MWD; livingness) and stereochemistry (polymer tacticity and stereocontrol 

mechanism), enabling the ambient-temperature synthesis of highly isotactic poly(methacrylate)s 

(≥95% mm)
4,29,30,31

 and poly[(meth)acrylamide]s (>99% mm)
32,33,34,35,36 

using chiral C2-ligated 

zirconocenium complexes as well as highly syndiotactic poly(methacrylate)s (≥ 94% rr)
18,37

 using 

chiral Cs-ligated zirconocenium complexes.  
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Sustainability-related research in polymer synthesis has gained increasing attention and 

recently been directed at examining the possibility of replacing petroleum-based raw materials by 

naturally occurring, renewable feedstocks for the production of polymeric materials in large 

commodity and specialty chemicals markets.
38,39,40

 In this context, renewable butyrolactone-based 

vinyl monomers MBL (α-methylene-γ-butyrolactone) and MMBL (γ-methyl-α-methylene-γ-

butyrolactone) are of particular interest. MBL, or tulipalin A, is a natural material found in tulips 

and the MBL ring is an integral building block of many (~10% known) natural products,
41

 while 

its methyl derivative MMBL can be prepared via a 2-step process from the biomass-derived 

levulinic acid.
42,43

 From a structural point of view, MBL can be described as the cyclic analog of 

MMA (Chart 1); however, MBL exhibits greater reactivity in free radical polymerization
44

 than 

typical methacrylate monomers, such as MMA, due to the presence of the nearly planar five-

membered lactone ring which provides maximum resonance stabilization for the active radical 

species, as well as the presence of the higher energy exocyclic carbon-carbon double bond 

(relative to the vinyl group of MMA), as a result of the ring strain and the fixed s-cis 

conformation
45

 (Chart 1). From a materials property point of view, PMBL, the polymer resulting 

from radical polymerization, has a considerably higher Tg (glass-transition temperature) of 195 ºC 

than a typical Tg of 105 ºC of atactic PMMA and exhibits excellent solvent resistance (as 

evidenced by its insolubility in common organic solvents such as CHCl3 and THF),
46

 attributable 

to the conformational rigidity of the chain incorporating the butyrolactone ring. Added benefits to 

the materials properties (e.g., optical properties and resistance to solvent, heat, and scratch) of the 

copolymers and blends have also been manifested by incorporating MBL units.
47,48,49

 The 

sustainability and the advantageous structural features of MBL as well as the superior materials 

properties of PMBL prompted DuPont scientists to explore the prospects of using MBL to 

displace the petroleum-based methacrylate monomers for specialty chemicals production.
50

 MBL 

has already been successfully polymerized by various radical polymerization 

mechanisms,
44,45,46,51,52,53,54

 by group-transfer polymerization,
55

 and by anionic polymerization;
46

 it 
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has been copolymerized with various co-monomers
44

 such as MMA,
56

 styrene,
53,57

 

methoxystyrene,
58

 and vinyl thiophenes.
59

 MMBL has also been polymerized by free-radical 

emulsion polymerization
60,61

 as well as by radical, anionic, and group-transfer polymerization 

methods.
62

 

 

Chart 1. Renewable butyrolactone-based vinyl monomers vs MMA. 

 

 

 

In view of the above outlined benefits of MBL and MMBL and their derived polymers as 

well as the remarkable successes already achieved by single-site lanthanide and early metal 

catalysts in coordination polymerization of acrylic monomers, it was surprising that, to the best of 

our knowledge, there were no reports on the utilization of such catalysts for coordination 

polymerization of the renewable butyrolactone-based vinyl monomers MBL and MMBL. 

Accordingly, this contribution reports the first such study using neutral lanthanocene(II), non-

lanthanocene(III), and cationic group 4 metallocene catalysts (Chart 2): Cp
*
2Sm(THF)2 (1, Cp

*
 = 

η
5
-C5Me5),

63
 [Cp

*
2Sm(THF)2]

+
[BPh4]

−
,
64

 Ln[N(SiMe3)2]3 (Ln = La, Nd, Sm, Er),
65

 

Cp2ZrMe[OC(OR)=CMe2]
10,66

/Cp2ZrMe
+
MeB(C6F5)3

−
,
67

 {(CGC)Ti(THF)[OC(O
i
Pr)=CMe2]}

+ 

MeB(C6F5)3
−
  [2, CGC = Me2Si(

5
-(Me4C5)(

t
BuN)],

16
 and {[(p-Et3SiPh)2C(Cp)(2,7-

t
Bu2-

Flu)]Zr[OC(O
i
Pr)=CMeCH2C(Me2)C(O

i
Pr)=O]}

+
[B(C6F5)4]

−
 (3).

18
 Most notably, our results 

show that: (a) samarocene 1 promotes the highly active, effective and controlled polymerization 

of (M)MBL in DMF at room temperature (RT) as well as the catalytic polymerization in the 

presence of an enolizable organo acid; (b) the resulting atactic PMBL and PMMBL have high 

Tg’s of 194 ºC and 227 ºC, respectively, and the Tg and onset decomposition temperatures of the 
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atactic PMMBL are ~120 °C and 40 °C higher than those of atactic PMMA having comparable 

MW; (c) results of the kinetic and polymerization studies indicate that the true active species is 

the trivalent samarocene centers attached to the single growing polymer chain; and (d) the non-

lanthanocene silylamides and cationic group 4 catalysts are less active and effective in such 

polymerizations.    

 

Chart 2. Neutral lanthanide and cationic group 4 catalysts employed in this study. 

 

 

Experimental 

Materials and methods 

All syntheses and manipulations of air- and moisture-sensitive materials were carried out in 

flamed Schlenk-type glassware on a dual-manifold Schlenk line, a high-vacuum line, or in an 

argon or nitrogen-filled glovebox. HPLC-grade organic solvents were sparged extensively with 

nitrogen during filling of the solvent reservoir and then dried by passage through activated 

alumina (for Et2O, THF, and CH2Cl2) followed by passage through Q-5-supported copper catalyst 

(for toluene and hexanes) stainless steel columns. HPLC-grade DMF was degassed, dried over 

CaH2 overnight, followed by vacuum transfer (not by distillation).  Benzene, Benzene-d6 and 

toluene-d8 were degassed, dried over sodium/potassium alloy and vacuum-distilled or filtered, 

whereas C6D5Br, CDCl3, and CD2Cl2 were dried over activated Davison 4-Å molecular sieves. 

NMR spectra were recorded on either a Varian Inova 300 (FT 300 MHz, 
1
H; 75 MHz, 

13
C; 282 

MHz, 
19

F) or a Varian Inova 400 spectrometer. Chemical shifts for 
1
H and 

13
C spectra were 
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referenced to internal solvent resonances and are reported as parts per million relative to 

tetramethylsilane, whereas 
19

F NMR spectra were referenced to external CFCl3.  

Isopropyl isobutyrate, 1,2,3,4,5-pentamethylcyclopentadiene, α-methylene-γ-butyrolactone 

(MBL) and γ-methyl- α-methylene-γ-butyrolactone (MMBL) were purchased from TCI America. 

Indene, methyl methacrylate (MMA), methyl isobutyrate (MIB), 3-methyl-2-butanone (MBO), 

dimethyl malonate (DMM), butylated hydroxytoluene (BHT-H, 2,6-di-tert-butyl-4-

methylphenol), potassium bis(trimethlsilyl)amide (0.5 M in toluene), n-BuLi (1.6 M in hexanes), 

1,2-dibromoethane, tetrachlorozirconium, triflic acid, samarium iodide (0.1 M in THF), and 

lithium dimethylamide were purchased from Aldrich. Trimethylaluminum (neat) was purchased 

from Strem Chemical Company. Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was 

purchased from Alfa Aesar and redistilled under nitrogen atmosphere prior to use. Indene, and 

1,2-dibromoethane were degassed using three freeze-pump-thaw cycles. Isopropyl isobutyrate, 

1,2,3,4,5-pentamethylcyclopentadiene, MIB, MBO, DMM, MBL, MMBL, and MMA were 

degassed and dried over CaH2 overnight, followed by vacuum distillation. MMA was further 

purified by titration with neat tri(n-octyl)aluminum (Strem Chemical) to a yellow end point,
68

 and 

vacuum distillation. BHT-H was recrystallized from hexanes prior to use. All other reagents were 

used as received. 

Tris(pentafluorophenyl)borane, B(C6F5)3, was obtained as a research gift from Boulder 

Scientific Co. and further purified by recrystallization from hexanes at –35 ºC inside a glovebox. 

The (C6F5)3B•THF adduct was prepared by addition of THF to a toluene solution of the borane 

followed by removal of the volatiles and drying in vacuo. Literature procedures were employed 

for the preparation of the following compounds and metallocene complexes: K(C5Me5),
69

 

LiOC(O
i
Pr)=CMe2,

14
 Cp2ZrMe[OC(OR)=CMe2],

10,66
 Cp2ZrMe

+
MeB(C6F5)3

−
,
67

 {[(p-

Et3SiPh)2C(Cp)(2,7-
t
Bu2-Flu)]Zr[OC(O

i
Pr)=CMeCH2C(Me2)C(O

i
Pr)=O]}

+
[B(C6F5)4]

−
 (3),

18
 

CGCTiMe
+
MeB(C6F5)3

−
,
70

 {(CGC)Ti(THF)[OC(O
i
Pr)=CMe2]}

+
MeB(C6F5)3

−
 (2),

16
 

Cp
*
2Sm(THF)2 (1),

63
 [Cp

*
2Sm(THF)2]

+
[BPh4]

−
,
64

 and Ln[N(SiMe3)2]3 (Ln = La, Nd, Sm, Er).
65
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General polymerization procedures 

Polymerizations were performed in 30 mL oven-dried glass reactors inside the glovebox. In a 

typical polymerization procedure at ambient temperature (~25 ºC), predetermined amounts of the 

appropriate catalyst or pre-catalyst combinations were premixed in 5 mL of CH2Cl2 for group 4 

catalysts
4,5,18

 or in 3 mL DMF for lanthanide catalysts before addition of MBL (400 mg; 4.07 

mmol) or MMBL (457 mg; 4.07 mmol). Polymerizations were quenched at the time specified in 

the tables with 5 mL of 5 % HCl in methanol, and the polymer was precipitated into 50 mL of 

methanol and collected by filtration and centrifugation, before being washed extensively with 

methanol to remove any catalyst residue or unreacted monomer. Polymers were then dried at 50 

°C overnight in a vacuum oven. Conversion data was performed by adding toluene (289 µL; 2.72 

mmol), as an external standard, to the reaction solution. At specified times 0.2 mL aliquots were 

withdrawn from the solution and quenched into septum sealed vials containing 0.7 mL of undried 

“wet” CHCl3.
4,18

 Percent conversion was then calculated by comparing the integration of the vinyl 

protons of the unreacted monomer to the methyl protons of toluene.  

Polymer characterizations 

Gel permeation chromatography (GPC) analyses of the polymers were carried out at 40 ºC and a 

flow rate of 1.0 mL/min, with DMF as the eluent, on a Waters University 1500 GPC instrument 

equipped with four 5 μm PL gel columns (Polymer Laboratories). Tacticities of PMBL
44,55

 and 

PMMBL
62

 were measured by 
13

C NMR. Decomposition onset temperatures (Tonset) of the 

polymers were measured by thermal gravimetric analysis (TGA) on a TGA 2950 

Thermogravimetric Analyszer, TA Instrument. Polymer samples were heated from ambient 

temperature to 600 °C at a rate of 20 °C/min. Values for T10% and  Tonset (initial and end 

temperatures) were obtained from wt% versus temperature (°C) plots. Glass transition 

temperatures (Tg) of the polymers were measured by differential scanning calorimetry (DSC) on a 

DSC 2920, TA Instrument. Polymer samples were first heated to 250 °C at 20 °C/min, 
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equilibrated at this temperature for 4 min, then cooled to 25 °C at 20 °C/ min, held at this 

temperature for 4 min, and reheated to 300 °C at 10 °C/min. All Tg values were obtained from the 

second scan.  

 

Results and Discussion 

Polymerization of (M)MBL by cationic group 4 metallocenes 

Coordination-addition polymerization of acrylic monomers by cationic group 4 metallocenium 

catalysts is typically carried out in hydrocarbons such as toluene and polar non-coordinating 

solvents such as CH2Cl2, whereas polar coordinating solvents such as THF and DMF usually shut 

down the polymerization.
1
 Owing to the insolubility of PMBL in toluene or CH2Cl2, 

polymerization of MBL by group 4 catalysts in such solvents proceeds in a heterogeneous 

fashion, thereby negatively impacting the catalyst activity and control over the polymerization.  

For instance, polymerization of 400 equiv of MBL in CH2Cl2 at RT by the two-component 

catalyst system, Cp2ZrMe[OC(OEt)=CMe2] as initiator and Cp2ZrMe
+
MeB(C6F5)3

− 
as catalyst, 

following the MMA polymerization protocol,
10

 afforded PMBL (which crashed out of the 

solution) in only 20% yield after 3 h; as anticipated, the same polymerization carried out in DMF 

yielded no isolable polymer products. 

 As in the polymerization of MBL by the C2v-ligated catalyst, the insolubility of PMBL in 

CH2Cl2 produced by the Cs-ligated zirconocene catalyst 3, which has been shown to be a highly 

active and syndiospecific polymerization catalyst for MMA polymerization,
18

 resulted in only a 

modest isolated polymer yield of 40 %. Nevertheless, this polymerization is free of any ring-

opening of the butyrolactone ring, as confirmed by NMR of the polymer, and the resulting PMBL 

also exhibits a unimodal, relatively narrow MWD of 1.37 (run 1, Table 1). The polymerization is 

efficient with a high initiator efficiency of I
*
 = 90%, but it is not stereospecific, producing only a 

syndio-biased polymer with rr = 50.8 % (23.1% mr), presumably due to the significantly reduced 
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sterics of the monomer by bonding the methoxy methyl and the α-methyl group in MMA to form 

the five-membered butyrolactone ring in MBL. On the other hand, the polymerization of MMBL 

proceeds in a homogenous fashion due to the solubility of PMMBL in CH2Cl2, thereby rendering 

a quantitative monomer conversion in 5 h at RT. The resulting PMMBL exhibits a Mn of 2.98 

10
4
 with a [MMBL]/[Zr] ratio of 200, giving an I

*
 of 76%; it also exhibits a unimodal, relatively 

narrow MWD of 1.33 (run 2) and a low syndiotacticity of 51.1% rr (39.7% mr). 

 

Table1.  Selected results of (M)MBL polymerization by group 4 metallocenes
 a
 

run 

no. 
monomer catalyst 

time 

(h) 

[monomer] 

/[catalyst] 

conv.
 b
 

(yield) 

10
4
 Mn

c 

(g/mol) 

MWD
c
 

(Mw/Mn) 

I
* d

 

(%) 

1 MBL 3 5 200 (40) 0.89 1.37 90 

2 MMBL 3 5 200 100 2.98 1.33 76 

3 MBL 2 24 200 100 60.2, 4.52 1.03, 1.32 3.3, 44 

4 MMBL 2 24 200 100 23.2, 0.53 1.64, 1.14 9.7, 425 
a
 Carried out in 5 mL CH2Cl2 at RT (~ 25 °C).  

b 
Conversion, measured by 

1
H NMR, or in 

parenthesis, isolated yield. 
c
Determined by GPC relative to PMMA standards. 

d
Initiator efficiency 

(I
*
) = Mn(calcd)/Mn(exptl), where Mn(calcd) = MW(monomer)  [monomer]/[catalyst]  

conversion% + MW of chain-end groups. 

 

The (CGC)Ti ester enolate catalyst 2 and the related alkyl derivative 

CGCTiMe
+
MeB(C6F5)3

−
 have been shown to be efficient, living,

16
 and robust (up to 100 °C)

15
 

catalyst for MMA polymerization. Both polymerizations of MBL and MMBL by 2 afforded 

quantitative monomer conversions, but the resulting polymers exhibit bimodal MWDs (runs 3 

and 4), with the higher MW fraction being 15% for PMBL and 18% for PMMBL. The 

polymerization by the alkyl catalyst behaves similarly, and it is currently unclear why the 

(CGC)Ti catalyst gives bimodal PMBL and PMMBL; the polymerization in the presence of 5 

equiv of the potent radical trap, galvinoxyl, still afforded a similarly bimodal MWD, thus 

eliminating the possibility of a secondary radical mechanism contributing to the bimodal MWD.   
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Polymerization of (M)MBL by lanthanocene(II) Cp
*

2Sm(THF)2 (1) 

In coordination polymerization of polar vinyl monomers, lanthanocene catalysts differ from group 

4 metallocene catalysts in two most notable aspects:
1
 first, group 4 catalysts are active for 

polymerization as cationic species, whereas group 3 catalysts are active in their neutral form 

(isoelectronic to cationic group 4 metals). To illustrate this point, we tested MBL polymerization 

by the cationic Sm(III) species [Cp
*
2Sm(THF)2]

+
[BPh4]

−
 and found no activity, which also 

confirms that such cations do not ring-open the butyrolactone ring. On the other hand, the same 

polymerization by the neutral Sm(II) Cp
*
2Sm(THF)2 is highly active (Table 2).  Second, unlike 

the polymerization by cationic group 4 catalysts, which is inactive in polar coordinating solvents, 

such as THF and DMF, such polar solvents can, however, be used for the MMA polymerization 

by lanthanocene catalysts without noticeably altering the polymerization results including PMMA 

syndiotacticity, Mn, and MWD.
19

 Uniquely, the coordination polymerization system by neutral 

lanthanocenes involves no counteranions, and as such the influence of solvent is limited to the 

effect on the polymerization rates as donor solvent molecules may compete with polar monomer 

molecules for coordination to the highly electrophilic metal center. Hence, the ability of 

lanthanocene catalysts to perform the MBL polymerization in DMF is significant because the 

solubility of the resulting high-MW PMBL renders a homogeneous process, allowing for the 

polymerization to achieve high conversions and to better control polymer characteristics. To 

demonstrate this point, we tested MBL polymerization by 1 in toluene; although 90% of the 50 

equiv of MBL was quickly (10 min) converted to PMBL, the polymerization immediately 

becomes heterogeneous, due to the insolubility of the resulting polymer in toluene, and the 

isolated polymer exhibits a bimodal MWD with the higher MW fraction being ~40% (run 5, 

Table 2). On the other hand, the polymerization of 100 equiv of MBL in DMF remained 

homogeneous throughout the course of polymerization, achieving a quantitative monomer 

conversion in 10 min; no ring-opening of the butyrolactone ring was observed, and the resulting 

polymer exhibits a unimodal, relatively narrow MWD of 1.39 (run 6, Table 2). 
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Table 2.  Selected results of polymerization of MBL by samarocene(II) 1 
a
 

run 

no. 

monomer 

(solvent) 

[monomer] 

/[1] 

conv
 

(yield) 

10
4
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

I* (%) 

(unimetallic) 

I* (%)
 

(bimetallic) 

5 MBL (toluene) 50 (89.7) 15.6 

0.95 

1.53 

1.19 

 

46 

 

92 

6 MBL (DMF) 100 100 1.71 1.39 57 114 

7 MBL (DMF) 200 100 4.09 1.59 48 96 

8 MBL (DMF) 300 100 5.98 1.29 49 98 

9 MBL (DMF) 400 100 8.59 1.37 46 92 
a
 Carried out at RT (~ 25 °C) for 10 min. See the footnotes under Table 1 for other explanations. 

 

Another interesting aspect of the MBL polymerization by samarocene(II) catalyst 1 is the 

calculated initiator efficiency I* values. For example, the polymerization of 200 equiv of MBL 

achieved the quantitative monomer conversion in 10 min, but the measured Mn (4.09 10
4
) of the 

atactic PMBL (49.3% mr and 29.5% rr) was approximately twice what was calculated based on 

the monomer to metal center ratio and a unimetallic mechanism, giving rise to a low I* of 48% 

(run 7, Table 2). On the other hand, the calculated I* was 96% with a bimetallic model (i.e., two 

Sm centers producing a single polymer chain). The polymerizations in other monomer-to-1 ratios 

(100–400, runs 6–9, Table 2) showed the same characteristics. Similar observations were 

previously made in the polymerization of MMA by the divalent lanthanocenes Cp
*
2Ln(THF)2 (Ln 

= Yb, Sm), as first reported by Yasuda and co-workers: despite the polymerization being living, 

the calculated I* based on a unimetallic mechanism was less than 40 %.
19

 It was later shown by 

Boffa and Novak
22

 that the MMA polymerization by the divalent samarocene proceeds through a 

redox-then-radical-coupling process, with the true active species being a trivalent samarocene 

center. This process was proposed to involve a one-electron transfer from samarium(II) to MMA, 

affording samarium(III) cation and an MMA radical anion, which combine to form a samarium 

enolate radical; two radicals then combine in head-to-tail fashion, affording a bimetallic 

diinitiator that is the active species in the living polymerization of MMA.
22

 Hence, two samarium 

metal centers produce one polymer chain, and the MW is double what is expected based off of the 

monomer to metal center ratio. On the basis of this analysis and the literature precedence for the 
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MMA polymerization, a chain initiation and propagation mechanism for the MBL polymerization 

can be similarly outlined in Scheme 1. 

 

Scheme 1. Proposed chain initiation and propagation in the MBL polymerization by 

Cp
*
2Sm(THF)2 

  

The control of the polymerization over polymer MW was demonstrated by a linear increase 

in Mn with increasing the [MBL]/[1] feed ratio from 100 to 400 (Fig. 1). The polymerization of 

MMBL by 1 was as successful as that of MBL (runs 10–13, Table 3). Kinetic profiling of the 

MMBL polymerization at a given [monomer]:[1] ratio yielded essentially the same apparent rate 

to that of the MBL polymerization, with TOF = 3000 h
-1

 (run 13). Likewise, the control over MW 

of the resulting PMMBL was shown by a linear increase in MW with increasing the [MMBL]:[1] 

ratio. However, the glass transition temperature (Tg) of the atactic PMMBL produced (49.2% mr, 

33.1% rr, Mn = 5.48 10
4
, run 11, Table 3) is 227 °C, which is considerably higher than the Tg of 

PMBL (194 °C) having a similar Mn of 5.98 10
4
 (Fig. 2). Furthermore, PMMBL exhibits greatly 

enhanced thermal properties. Specifically, the temperature of 10 % weight loss (T10%) of PMBL is 

350 °C, while for PMMBL T10% was 15 °C higher at 365 °C (Fig. 3). Accordingly, the initial (Tini) 

and end (Tend) onset temperatures of PMMBL (Tini = 356 °C, Tend = 441 °C) are 12 °C and 25 °C 

higher than those of PMBL (Tini = 344 °C, Tend = 406 °C). Even more dramatically, the Tg and 

onset decomposition temperatures of the PMMBL are ~120 °C and 40 °C higher than the Tg (105 



 146 

°C) and onset decomposition temperatures (Tini = 340 °C, Tend = 399 °C) of the atactic PMMA 

with comparable MW.    
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Fig. 1 Plot of Mn of PMBL as a function of the [MBL] to [1] ratio (all achieving 100% 

conversion).  

 

Table 3.  Selected results of MMBL polymerization and (M)MBL copolymerization by 1 
a
 

run 

no. 
monomer 

[monomer] 

/[1] 

conv
 

(yield) 

10
4
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

10 MMBL 100 100 1.73 1.19 

11 MMBL 300 100 5.48 1.86 

12 MMBL 400 100 6.06 1.59 

13 MMBL 500 100 6.95 1.69 

14 MMA: MBL 200:200 100 5.91 1.41 

15 MMA + MBL 200 +200 100 5.75 1.61 

16 MBL: MMBL 100:100 100 3.29 1.60 

17 MBL + MMBL 100 +100 100 3.31 1.36 
a
 Carried out in DMF at RT (~ 25 °C) for 10 min. See the footnotes under Table 1 for other 

explanations. 
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Fig. 2  DSC plots of PMBL (blue, Mn = 5.98 10
4
, run 8, Table 2), PMMBL (red, Mn = 5.48 10

4
, 

run 11, Table 3), and PMBL-b-PMMBL (green, Mn = 3.31 10
4
, run 17, Table 3).  
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Fig. 3 TGA plots of PMBL (blue, Mn = 5.98 10
4
, run 8, Table 2) and PMMBL (red, Mn = 5.48 

10
4
, run 11, Table 3).   

 

Studies of the polymerization kinetics revealed that this polymerization follows zero-order 

kinetics in [MMBL] for all the [MMBL]/[1] ratios investigated (Fig. 4). The double logarithmic 

plot of the apparent rate constants (kapp), obtained from the slopes of the best-fit lines to the plots 

of [M]t/[M]0 vs time, as a function of ln[1] was fit to a straight line (R
2
 = 0.954) with slope = 2.02 
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(Fig. 5). Thus, the kinetic order with respect to [1], given by the slope of ~2, shows that the 

polymerization is second-order in catalyst concentration, as a result of two samarium species 

working in tandem to produce one polymer chain, consistent with the mechanism depicted in 

Scheme 1. A zero-order dependence on monomer concentration in this polymerization suggests 

that the rate determining step is the intramolecular conjugate Michael addition of the coordinated 

monomer into the polymer chain (i.e., the C–C bond forming step), whereas the monomer 

coordination through the displacement of the coordinated penultimate polymer chain end by the 

incoming monomer is relatively fast, resembling the MMA polymerization by the (CGC)Ti 

catalyst.
14
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Fig. 4 Zero-order kinetic plots of the polymerization of MMBL by 1 in DMF at RT (~ 25 °C). 

Conditions: [MMBL] = 1.36 M; [1] = 4.54 (■), 3.42 (♦), 2.71 (▲), and 2.27 (●) mM.  
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slope = 2.02 
R² = 0.954
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Fig. 5 Plot of ln(kapp) vs ln[1] for the polymerization of MMBL by 1 in DMF at ambient 

temperature.  

 

 

Samarocene catalyst 1 has also been employed for successful copolymerization of MBL 

with MMA and with MMBL. Thus, both statistical (run 14, Table 3) and block (run 15, Table 3) 

copolymerizations of MBL (200 equiv) with MMA (200 equiv) in 10 min afforded quantitative 

yields of the isolated, defined random copolymer, PMMA-ran-PMBL, and block copolymer, 

PMMA-b-PMBL, showing a unimodal MWD of 1.41 and 1.61, respectively. Similarly, defined 

random copolymer PMBL-ran-PMMBL and block copolymer PMBL-b-PMMBL, with a 

unimodal MWD of 1.60 and 1.36, respectively, can be readily produced by statistical (run 16, 

Table 3) and block (run 17, Table 3) copolymerizations of MBL and MMBL. The block 

copolymer PMBL-b-PMMBL shows two Tg’s at 192 and 218  C on DSC traces (Fig. 2), 

corresponding to the Tg of the microphase separated PMBL and PMMBL domains, respectively. 
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Polymerization of MBL by non-lanthanocene(III) Ln[N(SiMe3)2]3 (Ln = Sm, La, Nd, Er) 

There has been growing interest in developing non-metallocene lanthanide catalysts for the 

polymerization of functionalized vinyl monomers.
1
 Most non-lanthanocene catalysts utilize bulky 

ligands to simulate the electronics, sterics, and symmetry of Cp-based ligands, but they generally 

exhibit lower polymerization activity and degree of polymerization control. Thus, homoleptic 

lanthanum silylamide La[N(SiMe3)2]3 affords atactic PMMA at ambient temperatures in toluene, 

with a broad MWD of 3.01.
71

 Since it has been shown that the activity of MBL is greater than that 

of MMA, we investigated the polymerization of MBL by such trivalent non-metallocene 

lanthanide catalysts. Utilizing a series of lanthanide silylamides, Ln[N(SiMe3)2]3 (Ln = La, Nd, 

Sm, Er) having different ionic radii, we sought to compare effects on the polymerization of MBL 

of not only ligand substitution [as compared to Cp
*
2Sm(THF)2], but also the metal center in these 

complexes, the results of which are summarized in Table 4. 

 

Table 4. Results of MBL polymerization by Ln[N(SiMe3)2]3 
a
 

run 

no. 

Ln [MBL] 

/[Ln] 

Time 

(h) 

conv
b 

(yield) 

10
4
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

I
*
 

(%) 

18 La 400 21 (82.5) 1.77 2.16 183 

19 Nd 400 21 (62.5) 2.39 1.98 103 

20 Sm 400 21 (82.5) 2.23 1.90 145 

21 Er 400 21 (87.1) 1.87 1.51 183 

22 Er 500 48 87.1 1.96 1.28 200 

23 Er 600 48 49.9 1.64 1.44 179 
a
 Carried out in DMF at RT (~ 25 °C) for 10 min. See the footnotes under Table 1 for other 

explanations. 

 

 

The activity of these non-metallocene lanthanide complexes for the polymerization of MBL 

was much lower than that of the metallocene catalyst Cp
*
2Sm(THF)2, requiring a long reaction 

time of 21 h to achieve >80% (La, Sm, Er) or only > 60 % (Nd) monomer conversions (runs 18–

21, Table 4); this is compared to the 10-min reaction time for quantitative MBL conversion by 

Cp
*
2Sm(THF)2 (TOF = 2,400 h

-1
), which is >130 times faster. There was no clear activity trend 

relative to the ionic radius of the Ln(III) center, although the smallest Er ion in this series gave 
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the highest isolated polymer yield, and it also afforded PMBL with the narrowest MWD of 1.51 

(run 21); the PMBL produced is atactic with 45.3% mr (34.1% rr). Intriguingly, the least active 

Nd catalyst gave an I* ~ 100% (run 19), suggesting that only one silylamide ligand per metal 

participated in chain initiation, whereas the most active Er catalyst gave an I* ~ 183% (run 21), 

indicating that approximately two silylamide ligands per Er are involved in chain initiation. This 

near 200% I* trend is held when the MBL feed is increased to 500 equiv (200%, run 22) and 600 

equiv (179%, run 23) per metal. In this context, the La catalyst (183%, run 18) behaves similarly 

to the Er catalyst, while the Sm catalyst (145%, run 20) is somewhere between the Er and Nd 

catalysts. 

 

Catalytic polymerization of MBL by Cp
*

2Sm(THF)2 in the presence of organo acids 

To render catalytic production of polymer chains in the coordination-addition polymerization 

catalyzed by metal complexes, a suitable chain-transfer agent (CTA) added externally must 

effectively cleave the growing polymer chain from the active center, and the resulting new 

species containing part of the CTA moiety (typically in its deprotonated form) must efficiently 

reinitiate the polymerization.
1
 It has been shown that organic acids such as alkyl thiols and 

enolizable ketones are effective CTA’s to transform the living MMA polymerization by 

Cp
*
2SmMe(THF) into a chain transfer polymerization for the catalytic production of PMMA, 

although the effectiveness for the catalytic polymer production by this system is limited (TON = 

5) even with a [CTA]/[Sm] ratio as high as 29.
72

 As our current work studies a different monomer 

(MBL) and uses a different catalyst (divalent samarocene 1), we first screened three different 

organo acids, 3-methyl-2-butanone (MBO), methyl isobutyrate (MIB), and dimethyl malonate 

(DMM), for their relative effectiveness as a CTA in promoting the catalytic polymerization of 

MBL by Cp
*
2Sm(THF)2, the results of which are summarized in Table 5. 

 

 

 



 152 

Table 5. Results of chain transfer polymerizations of MBL catalyzed by 1 
a
 

run 

no. 
CTA 

[MBL]/ 

[CTA]/[1] 

conv 

(yield) 

10
3
 Mn

 

(g/mol) 

MWD 

(Mw/Mn) 

I* % 

(bimetallic) 

24 MBO 500/20/1 100 9.34 1.57 1060 

25 MIB 500/20/1 100 28.6 1.81 350 

26 DMM 500/20/1 0    

27 none 400/0/1 100 85.9 1.37 92 

28 MBO 400/10/1 (97.5) 9.22 1.54 845 

29 MBO 400/30/1 (92.5) 7.27 1.41 1020 

30 MBO 400/50/1 (87.5) 6.58 1.40 1020 
a
 Carried out in DMF at RT for 15 h. MBO = 3-methyl-2-butanone, MIB = methyl isobutyrate 

(MIB), DMM = dimethyl malonate (DMM). See the footnotes under Table 1 for other 

explanations. 

 

It can be seen from the table, under identical conditions ([MBL]/[CTA]/[1] = 500/20/1), the 

ketone MBO is most effective as judged by its I* of 1060% (run 24), equating to approximately 

10 polymer chains produced per bimetallic catalyst (i.e., TON ~ 10). The ester MIB is much less 

effective, giving an I* of 350% (run 25), while the α-diester DMM completely halts the 

polymerization (run 26), similar to the zirconocenium-catalyzed MMA polymerization in the 

presence of DMM.
73

 Concentrating on MBO and fixing the [MBL]/[catalyst] ratio as 400, we 

gradually increased the [CTA]/[catalyst] ratio from 0 to 10 to 30 and to 50, in efforts to examine 

to what extent MBO can be effective as a CTA. In the absence of MBO, the I* based on the 

bimetallic mechanism (vide supra) was calculated to be 92% (run 27, Table 5, see also run 9 in 

Table 2). Addition of 10 equiv of MBO brought I* up to 845% (run 28), effectively promoting 

catalytic polymerization of MBL with a TON of ~8.5. Increasing the MBO amount by threefold 

(30 equiv) only moderately enhanced the I* to 1020% (TON ~10, run 29), and in fact, a further 

increase of MBO to 50 equiv resulted in no additional enhancement over I* (run 30); in the latter 

case, although the MW was lowered as it should, the polymer yield also dropped, giving rise to 

no net change in the I* value. Overall, the catalytic MBL polymerization by 1 can be effected by 

addition of MBO as a suitable CTA. Scheme 2 outlines the reaction sequence, based on what has 

been proposed for the chain transfer polymerization of MMA by the samarocene(III) catalyst,
1,72
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except that in this case two Sm centers carry a single polymer chain as a result of the redox-then-

radical-coupling chain-initiation process (vide supra). 

 

Scheme 2. Chain transfer polymerization of MBL catalyzed by Cp
*
2Sm(THF)2 (the same events 

at the other Sm center omitted for clarity). 

 

Conclusions 

The samarocene(II) complex, Cp
*
2Sm(THF)2, catalyzes rapid, efficient, and controlled 

coordination polymerization of renewable butyrolactone-based vinyl monomers MBL and 

MMBL in DMF at RT, as demonstrated by its high TOF of up to 3000 h
-1

, typically near 

quantitative initiator efficiency, and ability to control the polymer MW with the monomer-to-

catalyst ratio or monomer conversion. The resulting atactic PMBL (Mn = 5.98 10
4
, Mw/Mn = 

1.29) and PMMBL (Mn = 5.48 10
4
, Mw/Mn = 1.86) exhibit high Tg’s of 194 ºC and 227 ºC, 

respectively, and PMMBL also shows greatly enhanced thermal properties. More remarkably, the 

Tg and onset decomposition temperatures of the PMMBL are ~120 °C and 40 °C higher than the 

Tg and onset decomposition temperatures of the atactic PMMA with comparable MW. Thanks to 

the living/controlled characteristics of this polymerization, defined random and block copolymers 

of MBL with MMA and MMBL can be readily synthesized through statistical and sequential 

block copolymerization procedures. 
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Kinetic studies revealed that the polymerization by Cp
*
2Sm(THF)2 is zero-order in 

[MMBL] and second-order in [catalyst], as a result of two samarium centers working in tandem 

to produce one polymer chain. This result, coupled with the polymerization initiator efficiency 

result which also pointed to the bimetallic nature of the propagation, conforms to the proposed 

MMA polymerization mechanism by the same divalent catalyst involving a redox-then-radical-

coupling initiation process, with the true active species being the two trivalent samarocene centers 

attached to the single growing polymer chain.  

The MBL polymerization by non-lanthanocene(III) silylamides, Ln[N(SiMe3)2]3 (Ln = La, 

Nd, Sm, Er), are much slower (>130 times) than the polymerization by Cp
*
2Sm(THF)2. The 

polymerization by these lanthanide silylamides is also ill-controlled and can involve more than 

one silyamide ligand in chain initiation. The polymerization of MBL and MMBL by cationic 

group 4 metallocene and half-metallocene catalysts incorporating C2 and Cs symmetric ligands 

investigated in this study is also slower and less effective than the divalent samarocene catalyst; 

as such catalysts are limited to the polymerization in hydrocarbon or non-coordinating polar 

media, polymerization of MBL is a heterogeneous process. 

  Importantly, catalytic polymerization of MBL by Cp
*
2Sm(THF)2 has been realized in the 

presence of a suitable chain transfer agent. Thus, addition of 20 equiv of the enolizable organo 

acid, 3-methyl-2-butanone, to the MBL (500 equiv) polymerization catalyzed by Cp
*
2Sm(THF)2 

brought about the production of approximately10 polymer chains per dimeric propagating 

species. 
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Chapter 7 

Living Polymerization of Naturally Renewable Butyrolactone-Based Vinylidene Monomers 

by Ambiphilic Silicon Propagators 

 

Abstract 

  Naturally renewable butyrolactone-based vinylidene monomers, α-methylene-γ-

butyrolactone (MBL) and γ-methyl-α-methylene-γ-butyrolactone (MMBL), have been 

successfully polymerized in a rapid and living fashion, using ambiphilic silicon propagating 

species consisting of both the nucleophilic silyl ketene acetal (SKA) initiating moiety and the 

electrophilic silylium catalyst. Uniquely, the R3Si
+
 catalyst is derived directly from the SKA 

initiator upon in situ oxidative activation with a catalytic amount of the trityl borate activator. 

Investigations into effects of SKA (thus the resulting R3Si
+
 catalyst) and activator (thus the 

resulting counteranion) structures have revealed that the Me2C=C(OMe)OSi
i
Bu3/Ph3CB(C6F5)4 

combination is the most active and controlled system for (M)MBL polymerizations. Thus, under 

ambient conditions and with a low catalyst loading (0.05 mol% relative to monomer), this 

polymerization system rapidly (within 10 minutes) and completely converts MMBL to PMMBL 

with controlled low to high (Mn = 5.43 × 10
5
 g/mol) MW’s and narrow MW distributions (1.01–

1.06). Well-defined block copolymers of MBL and MMBL with MMA as well as block and 

statistical copolymers of MBL with MMBL have also been readily synthesized. Atactic 

homopolymers, PMBL and PMMBL, produced herein exhibit high glass transition temperatures 

(Tg’s) of 194°C and 225 °C, respectively, representing Tg enhancements of ~90 °C (for PMBL) 

and ~120 °C (for PMMBL) over the Tg of the typical atactic PMMA. The critical MW of 

PMMBL has been estimated to be ~47 kg/mol. 
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Introduction 

 

As petroleum resources continue to be depleted, polymer chemists face the challenge of 

gradually replacing existing petroleum-based polymeric materials with those derived from 

naturally occurring, renewable resources in a technologically and economically competitive 

fashion.
1,2,3,4,5

 In this context, renewable butyrolactone-based vinylidene monomers, such as MBL 

(α-methylene-γ-butyrolactone) and MMBL (γ-methyl-α-methylene-γ-butyrolactone), are of 

particular interest in exploring the prospects of substituting the petroleum-based methacrylate 

monomers for specialty chemicals production.
6
 MBL, or tulipalin A, is a natural substance found 

in tulips and the MBL ring is an integral building block of many (~10% known) natural products,
7
 

while its γ-methyl derivative MMBL can be readily prepared via a 2-step process from the 

biomass-derived levulinic acid.
8,9

 Structurally, MBL can be described as the cyclic analog of 

MMA (methyl methacrylate), Chart 1; however, it exhibits greater reactivity in free radical 

polymerization
10

 than typical methacrylate monomers such as MMA, due to the presence of both 

the nearly planar five-membered lactone ring, which provides a high degree of resonance 

stabilization for the active radical species, and the higher energy exocyclic C=C double bond, as a 

result of the ring strain and the fixed s-cis conformation.
11

 The cyclic ring in MBL also imparts 

significant enhancements in the materials properties of the resulting PMBL (Chart 1), as 

compared to PMMA, thanks to the conformational rigidity of the polymer chain through 

incorporation of the butyrolactone moiety. Thus, the Tg (glass-transition temperature) of PMBL 

produced by the radical polymerization is 195 °C,
12

 which is about 90 °C higher than that of 

atactic PMMA. Additionally, PMBL has increased optical properties as well as resistance to 

solvent (as evidenced by its insolubility in common organic solvents such as CHCl3 and THF), 

heat, and scratch.
13,14,15

 Some of these materials property enhancements have also been observed 

for PMMBL.
16
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Chart 1. Renewable butyrolactone-based vinylidene monomers (M)MBL and polymers 

P(M)MBL vs MMA and PMMA. 

 

 

Several types of polymerization processes have been employed to polymerize MBL to low 

to high MW (molecular weight) polymers, including various radical polymerization 

mechanisms,
10,11,12,17,18,19,20

 group-transfer polymerization,
21

 anionic polymerization,
12

 and 

coordination polymerization by metallocene complexes.
16

 MBL has been copolymerized with 

various co-monomers
10

 such as MMA,
22

 styrene,
19,23

 methoxystyrene,
24

 and vinyl thiophenes.
25

 

While the polymerization of MMBL has been studied to a much lesser extent, it has also been 

polymerized by free-radical emulsion polymerization
26,27

 as well as by radical, anionic, and 

group-transfer polymerization methods which required long reaction times (2 to 44 h), often at 

low temperatures, achieving low to high, but never complete conversions, with unknown 

polymerization and polymer MW characteristics.
28

 Most recently, we found that the coordination 

polymerization of MBL and MMBL in DMF by the divalent decamethylsamarocene catalyst is 

fast (with TOF, turn over frequency, > 3,000 h
-1

), efficient (with I*, initiator efficiency, 

approaching 100 %), and controlled, leading to PMBL and PMMBL with relatively narrow 

MWD’s (molecular weight distributions) as well as their well-defined block copolymers with 

MMA or with each other.
16

 The resulting atactic PMBL and PMMBL have high Tg’s of 194 ºC 

and 227 ºC, respectively. 
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Metal catalysts/initiators have been extensively utilized to effect stereochemically or 

architecturally controlled coordination polymerization of polar vinyl and vinylidene monomers 

such as (meth)acrylates and (meth)acrylamides under ambient conditions.
29

 We recently 

developed a highly active, efficient, and living/controlled (meth)acrylate polymerization system 

catalyzed by metalloid silylium ions, R3Si
+
, at room temperature.

30
 The highly active, ambiphilic 

propagating species contains both the nucleophilic SKA (silyl ketene acetal) moiety and the 

electrophilic silylium ion (or silyl cation) sites, Scheme 1. This propagator is generated by a 

unique “monomer-less” initiation involving oxidative activation of 
R
SKA (trialkylsilyl methyl 

dimethylketene acetal) by a catalytic amount of TTPB [trityl tetrakis(pentafluorophenyl)borate, 

Ph3CB(C6F5)4], leading to the R3Si
+
-activated MMA derived from vinylogous hydride abstraction 

of 
R
SKA with Ph3C

+
 (i.e., the monomer is generated from the initiator), followed by subsequent 

Michael addition of 
R
SKA to the activated MMA (or silylated MMA), Scheme 1. A propagation 

“catalysis” cycle consists of a fast step of recapturing the silylium catalyst from the ester group of 

the growing polymer chain by the incoming MMA, followed by a r.d.s. of the C–C bond coupling 

via intermolecular Michael addition of the polymeric SKA to the silylated MMA (see the 

propagation manifold, Scheme 1). This novel polymerization system can produce high molecular 

weight (Mn > 10
5
 g/mol) and well-defined (Mw/Mn = 1.04–1.12) homo and copolymers with a 

high silylium catalyst TOF (up to 1,500 h
-1

 for methacrylates) to an exceptionally high TOF (up 

to 120,000 h
-1

 for acrylates) 25 °C.
31

 Recently, strong BrØnsted acid trifluoromethanesulfonimide 

(HNTf2) was also utilized to activate SKA leading to living polymerization of MMA, through the 

same silylium-catalyzed propagation process.
32

 Intriguingly, earlier fast “group transfer 

polymerization” systems using SKA as initiator and additionally employing different 

combinations of a Lewis acid and a Me3Si-containg reagent, such as Me3SiOTf/B(C6F5)3,
33

 

Me3SiI/HgI2,
34

 or Me3SiI/RAl(OAr)2,
35

 may also involve the silylium-catalyzed process as 

demonstrated in the SKA/TTPB system.
30,31

 Considering the high activity and living nature, as 

well as potentially a broad implication of the silylium-catalyzed polymerization process for 
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(meth)acrylates, we reasoned that the SKA/TTPB system could be an excellent system for the 

polymerization of renewable monomers (M)MBL because the reactivity of (M)MBL lies 

somewhere between methacrylates and acrylates. Accordingly, the central objective of this study 

was to examine the characteristics of (M)MBL polymerizations using the unique ambiphilic 

silicon propagator derived from the activation of SKA with TTPB.   

Scheme 1. Living/Controlled (meth)acrylate Polymerization Catalyzed by R3Si
+
 
30,31

 

 

 

Experimental Section 

Materials and methods. All syntheses and manipulations of air- and moisture-sensitive 

materials were carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, a 

high-vacuum line, or in an argon or nitrogen-filled glovebox. HPLC-grade organic solvents were 

sparged extensively with nitrogen during filling of the solvent reservoir and then dried by passage 

through activated alumina (for Et2O, THF, and CH2Cl2) followed by passage through Q-5-

supported copper catalyst (for toluene and hexanes) stainless steel columns. HPLC-grade DMF 

was degassed, dried over CaH2 overnight, followed by vacuum transfer (not by distillation).  

NMR solvents CDCl3 and DMSO-d6 were dried over activated Davison 4-Å molecular sieves, 

and NMR spectra were recorded on a Varian Inova 300 (FT 300 MHz, 
1
H; 75 MHz, 

13
C), a 

Varian Inova 400 MHz, or an Inova 500 MHz spectrometer. Chemical shifts for 
1
H and 

13
C 

spectra were referenced to internal solvent resonances and are reported as parts per million 

relative to tetramethylsilane.  
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 Monomers α-methylene-γ-butyrolactone (MBL) and γ-methyl-α-methylene-γ-

butyrolactone (MMBL) were purchased from TCI America, while methyl methacrylate (MMA), 

dimethylketene methyl trimethylsilyl acetal (
Me

SKA), chlorotriisobutylsilane, diisopropylamine, 

and methyl isobutyrate were purchased from Aldrich. These chemicals were degassed, dried over 

CaH2 overnight, followed by vacuum distillation, while MMA was further purified by titration 

with neat tri(n-octyl)aluminum (Strem Chemical) to a yellow end point,
36

 followed by vacuum 

distillation. Butylated hydroxytoluene (BHT-H, 2,6-di-tert-butyl-4-methylphenol) was purchased 

from Aldrich and was recrystallized from hexanes prior to use. Activator Ph3CB(C6F5)4 (TTPB)
37

 

was obtained as a research gift from Boulder Scientific Co. and used as received. Modified 

literature procedures were employed to prepare the following compounds: dimethylketene methyl 

triisobutylsilyl acetal Me2C=C(OMe)OSi(
i
Bu)3 (

iBu
SKA),

31
 H(Et2O)2B(C6F5)4,

38
 and trityl 

[tris(tetrachlorobenzenediolato) phosphate(V)] [Ph3C][rac-TRISPHAT].
39

 

General polymerization procedures. Polymerizations were performed in 30 mL oven-

dried glass reactors inside the glovebox at ambient temperature (~25 ºC). In a typical 

polymerization procedure (which is the same as established for MMA polymerization
30,31

), 

predetermined amounts of the appropriate SKA initiator and MBL (0.500 mL; 6.07 mmol) or 

MMBL (0.648 mL; 6.07 mmol) were premixed in a flask with 4 mL of CH2Cl2, and with 

vigorous stirring, TTPB (1.00 mL, 3.03 mM in CH2Cl2, 3.03 μmol) was added to start the 

polymerization. Polymerizations were quenched at the time specified in the tables with 5 mL of 5 

% HCl in methanol, and the polymer was precipitated into 50 mL of methanol and collected by 

filtration and centrifugation, before being washed extensively with methanol to remove any 

catalyst residue or unreacted monomer. Polymers were then dried at 50 °C overnight in a vacuum 

oven to a constant weight. 
1
H NMR (DMSO-d6, 300 MHz, 100 °C) for PMBL: δ 4.34 (b.s, 2H, 

OCH2), 2.24-1.99 (m, 4H, CH2, CH2). 
13

C NMR (DMSO-d6, 125 MHz, 100 °C) for PMBL: δ 179 

(C=O), 64.36 (OCH2), 44.22, 43.90, 43.74 (quaternary carbon, rr, mr, mm), 41.89–40.58 (main-

chain CH2, unresolved tetrads), 30.47 (β-CH2). 
1
H NMR (DMSO-d6, 300 MHz, 100 °C) for 
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PMMBL: δ 4.64 (b.s, 1H, CH), 2.31 (b.s, 2H, CH2), 1.99 (b.s, 2H, CH2), 1.39 (b.s, 3H, CH3). 
13

C 

NMR (DMSO-d6, 125 MHz, 100 °C) for PMMBL: δ 178 (C=O), 72.65 (OCH), 46.48, 46.15, 

45.80 (quaternary carbon, rr, mr, mm), 43.05 (β-CH2), 40.53, 39.19, 37.69 (main-chain CH2, rr, 

mr, mm), 19.46 (CH3). DEPT experiments were used to remove the DMSO signals in the 
13

C 

NMR experiments. 

Conversion data was performed by adding toluene (289 µL; 2.72 mmol), as an external 

standard, to the reaction mixture. At specified times 0.2 mL aliquots were withdrawn from the 

solution and quenched into septum sealed vials containing 0.7 mL of undried “wet” CHCl3. 

Percent conversion was then calculated by comparing the integration of the vinyl protons of the 

unreacted monomer to the methyl protons of toluene. 

Polymer characterizations. Gel permeation chromatography (GPC) and Light Scattering 

(LS) analyses of the polymers were carried out at 40 ºC and a flow rate of 1.0 mL/min, with DMF 

as the eluent, on a Waters University 1500 GPC instrument coupled with a Waters RI detector 

and a Wyatt miniDAWN Treos LS detector equipped with four 5 μm PL gel columns (Polymer 

Laboratories). Chromatograms were processed with Waters Empower software (version 2002); 

number-average molecular weight (Mn) and polydispersity (Mw/Mn) of polymers were given 

relative to PMMA standards. Weight-average molecular weight (Mw) was obtained from the 

analysis of the LS data which was processed with Wyatt Astra Software (version 5.3.2.15), and 

dn/dc values were determined assuming 100 % mass recovery of polymers with known 

concentrations. Tacticities of PMBL
10,21

 and PMMBL
28

 were measured by 
13

C NMR in DMSO-d6 

at 100 °C. Decomposition onset temperatures (Tonset) of the polymers were measured by thermal 

gravimetric analysis (TGA) on a TGA 2950 Thermogravimetric Analyszer, TA Instrument. 

Polymer samples were heated from ambient temperature to 600 °C at a rate of 20 °C/min. Values 

for T10% and Tonset (initial and end temperatures) were obtained from wt% versus temperature (°C) 

plots. Glass transition temperatures (Tg) of the polymers were measured by differential scanning 
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calorimetry (DSC) on a DSC 2920, TA Instrument. Polymer samples were first heated to 150 °C 

at 20 °C/min, equilibrated at this temperature for 4 min, then cooled to 30 °C at 20 °C/ min, held 

at this temperature for 4 min, and reheated to 300 °C at 10 °C/min. All Tg values were obtained 

from the second scan, after removing the thermal history. 

 

Results and Discussion 

Homopolymerization Characteristics. Table 1 summarizes the selected results of 

polymerizations of MBL and MMBL by the SKA/TTPB (0.05 mol% relative to monomer) 

system (where M = monomer, MBL or MMBL, and I = initiator 
Me

SKA or 
iBu

SKA). Given the 

unique initiation mechanism by which the SKA/TTPB system operates (c.f. Scheme 1), a 

polymerization with an x[M]0/y[SKA]0/z[TTPB]0 ratio will have the total equivalency of the 

propagating SKA = y – 2z + z = y – z, thereby giving a [M]/[I] ratio of x/(y – z).
30

 Thus, a MBL 

polymerization with 
Me

SKA being the initiator and [MBL] = 1.10 M, [
Me

SKA] = 11.6 mM and 

[TTPB] = 0.551 mM (i.e., 400:4.2:0.2) gives the calculated [M]/[I] ratio of 100. This 

polymerization in CH2Cl2 became heterogeneous instantaneously upon addition of the TTPB 

activator (due to the insolubility of PMBL in CH2Cl2) and afforded a low isolated polymer yield 

of only 31.6% in 10 min of reaction (run 1, Table 1). Under the same conditions, but utilizing 

iBu
SKA, a quantitative polymer yield was achieved (run 2), despite the heterogeneous 

polymerization. However, increasing the MBL to 
iBu

SKA feed ratios to 200 and 400 significantly 

reduced the polymer yields to modest 57.1% (run 3) and low 12.5% (run 4). Furthermore, the 

heterogeneity of the MBL polymerization in CH2Cl2 resulted in bimodal MWD’s of the polymers 

(runs 1–4), with the high MW fraction comprising of approximately 10–15% of the polymer 

sample. Nevertheless, the polymerization by the SKA + TTPB system is free of any ring-opening 

of the butyrolactone ring, and the PMBL produced by 
iBu

SKA is essentially atactic, with a triad 

distribution of 39.3% rr, 37.3% mr, 23.4% mm (run 3). Polar, donor solvents such as DMF (in 
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which PMBL is soluble) deactivate the silylium catalyst through adduct formation, thus shutting 

down the polymerization.  

Table 1. Selected Results of Polymerization of (M)MBL by SKA + TTPB
 a
  

run 

no. 
   M      I [M]/[I] 

time 

(min) 

conv
b
 

(yield) 

MW
c 

(kg/mol) 

MWD
c
 

(Mw/Mn) 

1 MBL 
Me

SKA 100 10 (31.6) 129, 25.6 1.13, 1.31 

2 MBL 
iBu

SKA
 

100 10 (>99) 427, 12.2 1.46, 1.21 

3 MBL 
iBu

SKA
 

200 10 (57.1) 169, 18.9 1.57, 1.08 

4 MBL 
iBu

SKA 400 10 (12.5) 374, 19.9 1.24, 1.04 

5 MMBL 
Me

SKA 200 10 64.2 50.3 1.22 

6 MMBL 
iBu

SKA 100 10 100 18.8 1.06 

7 MMBL 
iBu

SKA 200 10 100 31.0 1.02 

8 MMBL 
iBu

SKA 400 15 100 93.2 1.03 

9 MMBL 
iBu

SKA 600 30 100 176 1.01 

10 MMBL 
iBu

SKA 800 120 100 548 1.01 
a 

Carried out in 5 mL CH2Cl2 at ambient temperature (~25 °C). 
b 

Conversion, measured by 
1
H 

NMR, or in parenthesis, isolated yield. 
c 
Determined by Light Scattering. 

 

Similarly to MBL, the polymerization of MMBL is more rapid when utilizing 
iBu

SKA as 

the initiator (thus the 
i
Bu3Si

+
 catalyst), as compared to 

Me
SKA (thus the Me3Si

+
 catalyst). 

Specifically, when MMBL in a [M]/[I] ratio of 200 was polymerized by 
Me

SKA + TTPB and 

iBu
SKA + TTPB, after 10 min, 64.2% and 100% monomer conversion was observed, respectively 

(runs 5 and 7). Not only is the polymerization of MMBL by 
iBu

SKA more rapid (TOF up to 

12,000 h
-1

) than that by 
Me

SKA (TOF = 7,680 h
-1

), it is also more efficient and controlled as 

shown by the following two levels of evidence. First, the MW (determined by LS) of the polymer 

produced by 
Me

SKA was 50.3 kg/mol (Mn = 41.2 kg/mol), while the polymer produced by 
iBu

SKA 

had a MW of 31.0 kg/mol (Mn = 30.4 kg/mol), giving initiator efficiencies (I
*
) of 34.9% and 73.8 

%, respectively. Second, the MWD of the polymer produced by 
Me

SKA was relatively broad 

(1.22), but the polymer by 
iBu

SKA has an extremely narrow MWD of 1.02. Also noteworthy is the 

high activity of the MMBL polymerization of this system that achieves a complete monomer 

conversion in 10 min at ambient temperature, as compared to the MMBL polymerization by 

conventional mechanisms, including radical, anionic, and group-transfer polymerization methods, 

which required 2 h to 44 h, often at low temperatures, achieving low to high, but never complete 
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conversions.
28

 The PMMBL produced by 
iBu

SKA and TTPB is syndio-biased atactic, with a triad 

distribution of 45.8% rr, 39.9% mr, 14.3% mm (run 8). 

Monitoring the polymerization in a [MMBL]/[I] of 600 (run 9) reveals living characteristics 

of the polymerization by 
iBu

SKA + TTPB, in that there is a linear increase in MW with increasing 

monomer conversion, while MWD remains nearly constant during the course of polymerization 

(Figures 1 and 2). This polymerization was further examined over the [MMBL]/[I] ratios from 

200 to 800 (runs 7–10, Table 1). In all cases, the polymerization follows zero-order dependence 

on monomer concentration (Figure 3), thus proceeding through the same mechanism that has 

been established previously for the polymerization of MMA (c.f. Scheme 1).
30,31

 Specifically, the 

r.d.s. of a propagation “catalysis” cycle is the C–C bond coupling via Michael addition of the 

polymeric SKA to the silylated monomer, while recapturing the silylium catalyst coordinated to 

the growing polymer chain by the incoming monomer is relatively fast, thereby giving rise to the 

zero-order dependence on monomer concentration. Quantitative monomer conversions can be 

achieved for all runs, and the resulting polymers exhibit narrow MWD’s (≤ 1.03) but the MW’s 

for the high [M]/[I] ratio runs are much higher than the calculated, typically a consequence of 

sacrificial consumption of the highly active catalysts like silylium ions as a scavenger (the effect 

of which is especially magnified at low catalyst loadings under high [M]/[I] ratios). Remarkable, 

a high MW PMMBL with a Mw of 548 kg/mol and an extremely narrow MWD of 1.01 (Mn = 543 

kg/mol) was produced with a [M]:[I] ratio of only 800:1. 
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Figure 1. Plot of Mn (obtained by GPC against PMMA standard) and PDI of PMMBL vs 

monomer conversion for the polymerization of MMBL by 
iBu

SKA + TTPB (run 9, Table 1). 

 

 

 
 

Figure 2. Overlay of GPC traces of aliquots taken during the polymerization plotted in Figure 1. 

Mn (kg/mol) and PDI (Mw/Mn) for traces from right (low MW) to left (high MW) are: 17.6, 1.06; 

27.2, 1.06; 53.9, 1.07; 79.4, 1.07; 103, 1.09; and 127, 1.09. 
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Figure 3. Zero-order kinetic plots of [M]t/[M]0 vs time for the polymerization of MMBL by 

iBu
SKA + TTPB in CH2Cl2 at ambient temperature (~25 °C). Conditions: [MMBL] = 1.074 M; 

[TTPB] = 0.537 mM; [
iBu

SKA] = 5.91 mM (■), 3.22 mM (●), 2.33 mM (▲), 1.88 mM (♦). 

 

Effects of Initiator and Activator. Focusing on the homogeneous polymerization of 

MMBL in CH2Cl2, we further investigated the effects of the SKA initiator 

(Me2C=C(OMe)OSiR3, thus the effect of the structure of the resulting R3Si
+
 catalyst) and the 

activator (thus the effects of the initiation process and the structure of the resulting 

counteranions). We have previously shown that there is a remarkable selectivity of SKA on 

monomer structure for the polymerization of (meth)acrylates by SKA + TTPB.
31

 Specifically, the 

Me3Si
+
 catalyst derived from 

Me
SKA bearing a small silyl group is highly active and efficient for 

the polymerization of MMA, but inefficient for the polymerization of the sterically less 

demanding n-butyl acrylate (
n
BA). In contrast, the 

i
Bu3Si

+
 catalyst derived from 

iBu
SKA bearing 

the bulky silyl group exhibits low activity in the polymerization of MMA, but exceptional 

activity, efficiency, and control for the polymerization of 
n
BA.

31
 In the context of (M)MBL, in 

forming the cyclic butyrolactone ring, they can be considered to be sterically smaller than MMA. 
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Indeed, our initial results discussed above demonstrated that the polymerization of MMBL by 

i
Bu3Si

+
 is more rapid, efficient, and controlled than that by Me3Si

+
. 

Table 2 compiles more complete data to illustrate the effects of initiator and activator 

structures. Using TTPB (0.05 mol% relative to monomer) as activator in a fixed [MMBL]:[SKA] 

ratio of 200:1, the polymerizations using 
Me

SKA and 
iBu

SKA gave apparent rate constants 

(derived from the zero-order plot of [M]t/[M]0 vs time) of 0.114 mol/L·min
-1

 (run 11, Table 2) 

and 0.295 mol/L·min
-1

 (run 14, Table 2), respectively, thus indicating a 2.6-fold activity 

enhancement by 
i
Bu3Si

+
 over Me3Si

+
.  When replacing TTPB with the BrØnsted acid activator 

H(Et2O)2B(C6F5)4, coupled with either 
Me

SKA or 
iBu

SKA, the apparent rate constant was reduced 

by either 22% (run 12) or 38% (run 15), accordingly. Lastly, when substituting TTPB with 

[Ph3C][rac-TRISPHAT] containing the racemic, hexacoordinate bulky chiral phosphate anion, 

the rate of the polymerization was increased by 63% (run 13 vs run 11) when coupled with 

Me
SKA, but decreased by 25% (run 16 vs run 14) when coupled with 

iBu
SKA. These results 

suggest the importance of the cation–anion steric interplay (ion-pairing) on polymerization 

activity, where the bulky TRISPHAT anion enhances the activity of the small Me3Si
+
 cation 

while decreasing the activity of the large 
i
Bu3Si

+
 cation, as compared with the pairing [B(C6F5)4]

−
 

counteranion. On the other hand, the racemic chiral phosphate anion did not noticeably impact the 

tacticity (45.7% rr, 43.0% mr, 11.3% mm) of the resulting polymer (run 16, Table 2). Regardless 

of the activators (thus counteranions) utilized, polymerizations employing 
Me

SKA never achieved 

quantitative monomer conversion, even with extended reaction times (up to 24 h), while all runs 

with 
iBu

SKA achieved quantitative monomer conversion within 10 min. Overall, these results 

show that the reactivity of MMBL lies between MMA and 
n
BA, but the selectivity of MMBL for 

the silylium R3Si
+
 catalyst structure is much like that of 

n
BA examined previously.

31
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Table 2.  Results of Polymerization of MMBL with Varied Initiator and Activators.
 a 

run 

no. 
   M    I activator 

time 

(min) 

conv
b
  

(%) 

   MW
c 

(kg/mol) 

MWD
c
 

(Mw/Mn) 

kapp
d
 

(mol/L·min
-1

) 

11 MMBL 
Me

SKA TTPB 10 64.2 50.3 1.22 0.114 

12 MMBL 
Me

SKA HB(C6F5)4 10 71.2 40.2 1.27 0.089 

13 MMBL 
Me

SKA
 

TRISPHAT 10 81.2 48.7 1.32 0.186 

14 MMBL 
iBu

SKA TTPB 10 100 31.0 1.02 0.295 

15 MMBL 
iBu

SKA HB(C6F5)4 10 100 40.0 1.07 0.182 

16 MMBL 
iBu

SKA TRISPHAT 10 100 36.2 1.01 0.222 
a 

Carried out in 5 mL CH2Cl2 at ambient temperature in a fixed [MMBL]:[SKA] ratio of 200:1. 
b 

Conversion, measured by 
1
H NMR.  

c
 Determined by Light Scattering. 

d 
Determined from the 

slope of the best-fit line from the zero-order kinetic plots. 

 

 

Copolymerization Characteristics. The copolymerization studies outlined in Scheme 2 

were aimed at further testing the living nature of the MMBL polymerization by the 
iBu

SKA + 

TTPB system and also exploring the synthesis of unimodal polymers comprised of MBL. While 

the synthesis of the well-defined PMBL was not achieved by the current system through the 

homopolymerization approach (due to the insolubility of PMBL in the polymerization medium, 

vide supra), we found that copolymerization of MMA (300 equiv, which was polymerized first) 

with equimolar MBL successfully afforded the CH2Cl2-soluble, well-defined block copolymer 

with a very narrow MWD of 1.01 (run 17, Table 3). The measured Mn of 67.7 kg/mol is 

compared with the calculated Mn of 48.2 kg/mol, thus giving a good I* of 72 %. The block 

copolymerization of MMA with MMBL proceeded in a similar manner, also affording the well-

defined diblock copolymer with a narrow MWD of 1.03 and a good I*of 78% (run 18, Table 3). 

Not surprisingly, switching the order in which the monomers were added for both cases (i.e., 

polymerizing (M)MBL prior to MMA) resulted in the formation of only homopolymers 

P(M)MBL; this observation mirrors what has been observed in the block copolymerization of 

MMA (which must be polymerized first) and 
n
BA (the more reactive monomer).

30
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Scheme 2. Copolymerization of (M)MBL with MMA and with each other 

 

 

Table 3.  Results of Copolymerizations of MBL, MMBL, and MMA by 
i
Bu3Si

+
 
 a 

run 

no. 

M1+M2 (block) 

M1/M2 (random) 

[M1]:[M2]:

[I] 

time 

(h) 

Yield 

(%) 

    MW
b 

(kg/mol) 

MWD
b
 

(Mw/Mn) 

17 MMA+MBL 300:300:1 1:3 80.8 68.4 1.01 

18 MMA+MMBL 300:300:1 1:3 80.7 68.1 1.03 

19 MMBL+MBL 300:300:1 0.17:1 93.6 117 1.02 

20 MMBL/MBL 300:300:1 1.17 91.3 123 1.01 
a 
Carried out in 5 mL CH2Cl2 at ambient temperature. 

b 
Determined by Light Scattering. 

  

 

We also examined block and statistical copolymerizations of MBL and MMBL by 
iBu

SKA 

+ TTPB in CH2Cl2 at ambient temperature. By polymerizing MMBL first in the block 

copolymerization or polymerizing MMBL and MBL simultaneously in the statistical 

copolymerization, well-defined diblock copolymer PMMBL-b-PMBL (Mw = 117 kg/mol, MWD 

= 1.02, run 19, Table 3) and statistical copolymer PMMBL-co-PMBL (Mw = 123 kg/mol, MWD 

= 1.01, run 20, Table 3) were successfully synthesized. Overall, the copolymerization approach 

not only confirmed the living nature of the MMBL polymerization catalyzed by 
i
Bu3Si

+
, it also 

solved the insolubility and bimodality issue of PMBL thus successfully leading to the well-

defined MBL-containing copolymers. 

 

Thermal Properties of Polymers. We reported earlier that the atactic PMBL (Mn = 5.98 

10
4
) and atactic PMMBL (Mn = 5.48 10

4
) produced by the decamethylsamarocene catalyst 

show narrow, one-step decomposition windows, with the initial (Tini) and end (Tend) onset 

temperatures of PMMBL (Tini = 356 °C, Tend = 441 °C) being 12 °C and 25 °C higher than those 

of PMBL (Tini = 344 °C, Tend = 406 °C), both of which are higher than the onset decomposition 
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temperatures (Tini = 340 °C, Tend = 399 °C) of the atactic PMMA with comparable MW.
16

 Even 

more dramatically, the Tg’s of the resulting atactic PMBL and PMMBL are 194 ºC and 227 ºC, 

respectively, which are ~90 °C and ~120 °C higher than the Tg (105 °C) of the typical atactic 

PMMA with comparable MW.
16

 Consistent with these findings, the DSC analysis showed that the 

atactic PMBL (run 3, Table 1) and PMMBL (run 9, Table 1) produced by the current SKA + 

TTPB system also exhibit high Tg’s of 194 and 225 °C, respectively (Figure 4). As anticipated, 

the block copolymer PMMBL-b-PMBL displays two Tg’s of 212 °C and 197 °C, corresponding to 

the PMMBL and PMBL blocks, respectively, while the statistical copolymer PMMBL-co-PMBL 

shows only one Tg at 213 °C (Figure 4). 

 

Figure 4. DSC of a) PMBL (run 3, Table 1); b) PMMBL (run 9, Table 1);  c) PMMBL-b-PMBL 

(run 19, Table 3); and, d) PMMBL-co-PMBL (run 20, Table 3).  

 

 With a series of MMBL homopolymers having a wide range of MW’s on hand, we also 

investigated the effect of Mn on the Tg of PMMBL (Figure 5). Specifically, PMMBLs with Mn = 

2.64, 8.99, 17.8, 30.4, 92.3, and 543 kg/mol exhibited Tg = 210, 212, 214, 216, 220, and 225 °C, 

respectively. These results suggest that the critical MW of PMMBL (estimated off of leveling of 

Tg values) is rather high, over 40 (~47) kg/mol.  
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Figure 5. Plot of Tg vs Mn of atactic PMMBL.  

 

Conclusions 

Utilizing the recently developed unique polymerization system that employs the SKA + 

TTPB combination for in situ generation of the highly active ambiphilic propagating species 

containing both the nucleophilic SKA initiating moiety and the electrophilic silylium catalyst, this 

study has thoroughly investigated the characteristics of the polymerization of two naturally 

renewable butyrolactone-based vinylidene monomers, MBL and MMBL. Key findings of this 

study are summarized as follows. 

First, while the polymerization of MBL in CH2Cl2 at ambient temperature is heterogeneous 

and achieves typically low yields of polymers that also exhibit bimodal MWD’s, introduction of 

the γ-methyl group to the γ-butyrolactone ring (i.e., MMBL) enables a homogeneous reaction 

through completion in 10 min even with a low catalyst loading of 0.05 mol% (relative to 

monomer) and, more importantly, a rapid (up to 12,000 h
-1

 TOF) and living polymerization, 

thereby producing polymers with controlled low to high (Mn = 5.43 × 10
5
 kg/mol) MW and 

narrow MWD’s (1.01–1.06). Besides the high degree of control, the activity of the MMBL 
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polymerization by the current system is outstanding, typically achieving a complete monomer 

conversion within minutes of reaction at ambient temperature, as compared to the MMBL 

polymerization by conventional mechanisms, including radical, anionic, and group-transfer 

polymerization methods, which required many hours, often at low temperatures, achieving low to 

high, but never complete conversions. 

Second, through investigations into effects of SKA (thus the resulting R3Si
+
 catalyst) and 

activator (thus the resulting counteranion) structures, we have found that the 

Me2C=C(OMe)OSi
i
Bu3/Ph3CB(C6F5)4 combination is the most active and controlled system for 

(M)MBL polymerizations. The resulting large 
i
Bu3Si

+
 cation (relative to the smaller Me3Si

+
 

cation), when paired with the weakly coordinating anion [B(C6F5)4]
−
, exhibits exceptional activity 

and control toward polymerization of sterically less demanding monomers such as (M)MBL (and 

acrylates). These results further highlight the importance of the cation–anion pairing in catalysis 

and of the good match between the catalyst and monomer structures in polymerization. 

Third, the living nature of the current polymerization system catalyzed by 
i
Bu3Si

+
 has been 

further confirmed by the synthesis of well-defined block copolymers of MBL and MMBL with 

MMA as well as block and statistical copolymers of MBL with MMBL. All copolymers produced 

herein exhibit unimodal and narrow MWD’s of ≤1.03. As anticipated, the block copolymer 

PMMBL-b-PMBL displays two Tg’s corresponding to the PMBL and PMMBL blocks, while the 

statistical copolymer PMMBL-co-PMBL shows only one Tg. 

Fourth, the current system produces essentially atactic polymers exhibiting high Tg’s of 

194°C (PMBL) and 225 °C (PMMBL). These values represent Tg enhancements of ~90 °C (for 

PMBL) and ~120 °C (for PMMBL) over the Tg (105 °C) of the typical atactic PMMA. Also 

interestingly, the presence of the cyclic butyrolactone moiety in PMMBL considerably increases 

its estimated critical MW (~47 kg/mol) over that of PMMA (~28 kg/mol). 
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Chapter 8 

Summary 

This work investigated polymerization catalysis for the synthesis of technologically 

important chiral and sustainable polymers. Chiral polymers are not only fundamentally 

interesting, due to the rich and complex architecture of macromolecular chirality as compared to 

that of small molecules, but also technologically important because their unique chiral arrays give 

rise to a number of potential, and in some cases commercially implemented, applications. As 

petroleum resources continue to be depleted, polymer chemists face the challenge of gradually 

replacing existing petroleum-based polymeric materials with those derived from naturally 

occurring, renewable resources in a technologically and economically competitive fashion.  

Chiral zirconocenium catalysts, (S,S)-(EBI)Zr
+
(THF)[OC(O

i
Pr)=CMe2][MeB(C6F5)3]ˉ 

[(S,S)-1, EBI = C2H4(η
5
-Ind)2] and its enantiomer (R,R)-1, have been synthesized and employed 

in the asymmetric coordination polymerization of prochiral N,N-diaryl acrylamides to optically 

active, stereoregular polymers with solution-stable, single-handed helical secondary structures 

(Chart 1). The optical activity of the resulting poly(N,N-diaryl acrylamide)s is dictated by the 

chirality of the catalyst, such that rac-1 produces optically inactive polymers, while (S,S)- and 

(R,R)-1 produce polymers that have opposite optical rotations and nearly mirror image CD 

spectra.  
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Chart 1. Synthesis of Right- and Left-Handed Rigid Helical Poly(N,N-Diaryl Acrylamide)s. 

 

Kinetic studies show that the polymerization of N,N-diaryl acrylamides by 1 proceeds via 

a monometallic, coordination-conjugate addition mechanism. Investigation into polymer chain-

length effects on optical activity of the chiral polymers reveals two opposite trends, depending on 

the polymer secondary structure (i.e., helical vs. random coil conformation). For helical polymers, 

as the chain-length increases, the optical activity increases as the helix becomes better defined. In 

contrast, for random-coil polymers, the optical activity quickly diminishes with an increase in 

chain-length. We have also examined the necessity of the diaryl side-groups to render a solution 

stable helix, and synthesized the first solution stable helical poly(N,N-dialkyl arylamide), 

poly(acryloyl piperidine). 

These enantiomeric zirconocenium catalysts were utilized in the first successful 

metallocene-mediated coordination-addition polymerization of N,N-dialkyl methacrylamides, 

such as methacryloyl-2-methyl aziridine (MMAz). The polymerization of MMAz by 1, is 

stereospecific, and provides a high degree of control of the polymerization, resulting in highly 

isotactic polymers with predicted molecular weights (MW’s) and narrow molecular weight 

distributions (MWD’s). The enantiomeric catalyst, (S,S)-1, demonstrated the ability to perform 

the kinetic resolution polymerization of MMAz, although the stereoselectivity was low, s = 1.8 

(Scheme 1).  

R,R-1,  [a]23
D = +69.8  

S,S-1,  [a]23
D = -69.7  

[a]23
D = -159  

[a]23
D = +180  
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Scheme 1. Proposed kinetic resolution polymerization of MMAz by (S,S)-1. 

 

Interested in synthesizing chiral N,O-functionalized polar vinyl polymers as potential 

polymeric ligands/stabilizers for transition metal nanocluster catalysts, en route to asymmetric 

catalysis, we have explored the polymerization of acryloyl and vinyl substituted, chiral 

oxazolidinones. The polymerization of the acryloyl functionalized monomer, N-acryloyl-(R or S)-

4-phenyl-2-oxazolidinone, by the enantiomeric zirconocenium catalysts is stereospecific, 

however, the chiral side-group is not sterically bulky enough and too far removed from the 

polymer main-chain to result in a solution stable helical conformation, and optical activity of the 

resulting isotactic polymers is solely due to the chirality of the side-group. The vinyl 

functionalized monomer, N-vinyl-(R)-4-phenyl-2-oxazolidinone [(R)-VOZ], was not 

polymerizable by similar metallocene catalysts, but we discovered a novel, chiral auxiliary 

controlled cationic polymerization, initiated by Lewis and BrØnsted acids, producing highly 

isotactic polymers (Scheme 2). In the case of (R)-PVOZ, the chiral side-group is brought closer to 

the polymer backbone, and it exhibits substantial chiral amplifications by virtue of adopting a 

solution-stable, one-handed helical conformation. 

Scheme 2. Proposed chiral auxiliary-controlled isospecific cationic polymerization of (R)-VOZ. 
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Towards utilizing helical polymers, two pseudo-enantiomeric poly(phenyl acetylene)s 

bearing cinchona alkaloid organocatalyst side-groups have been synthesized. These polymers not 

only assume excess one-handed helicity, but the handedness of these polymers can be controlled 

by interactions with different solvents. Thus, by changing the solvent, the same chiral 

organocatalyst can be supported on either a right- or left-handed helical polymer (Chart 2). The 

effects of helicity and helix-sense on the enantioselectivity of these supported organocatalysts 

was examined in the conjugate addition of 2-napthalenethiol to 2-cyclohexen-1-one. It was shown 

that one helix-sense increased the enantioselectivity of the organocatalyst (as compared to its 

monomeric form), while the other helix-sense was non-influential on the enantioselectivity of the 

organocatalyst. 

Chart 2. Helix-Sense Control of Poly(Cinchona Phenyl Acetylene) and its Effect on 

Enantioselectivity. 

 

Renewable butyrolactone-based vinylidene monomers, such as MBL (α-methylene-γ-

butyrolactone) and MMBL (γ-methyl-α-methylene-γ-butyrolactone), are of particular interest in 

exploring the prospects of substituting the petroleum-based methacrylate monomers for specialty 

chemicals production. The polymerization of such monomers by group 3 and 4 transition metal 

catalysts has been investigated. Unlike the poor results obtained with group 4 catalysts, the 

polymerization of MBL by group 3 catalysts, especially  Cp
*
2Sm(THF)2, is rapid, efficient, and 

controlled under ambient conditions, exhibiting a high TOF of 3000 h
-1

, typically near 



186 
 

quantitative initiator efficiency, and the ability to control the polymer MW, while achieving 

quantitative monomer conversion. The polymerization of MMBL is as effective as that of MBL, 

and the resulting atactic PMBL and PMMBL have high Tg’s of 194 ºC and 227 ºC, respectively; 

when compared to atactic PMMA having comparable MW, the Tg and onset decomposition 

temperatures of the PMMBL produced are substantially higher (by ~120 °C and 40 °C, 

respectively). Results of the kinetic and polymerization studies indicate that the true active 

species is the trivalent samarocene centers attached to the single growing polymer chain, derived 

presumably from a redox-then-radical-coupling process. Catalytic polymerization of MBL by 

Cp
*
2Sm(THF)2 has also been realized in the presence of an enolizable organo acid as a suitable 

chain transfer agent (Scheme 3). When 3-methyl-2-butanone (MBO) is used as the chain transfer 

reagent, the initiator effiency reached 1060%, giving a turn over number of ~10. 

Scheme 3. Chain transfer polymerization of MBL catalyzed by Cp
*
2Sm(THF)2.
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MBL and MMBL have also been polymerized in a rapid and living fashion, using an 

ambiphilic silicon propagating species consisting of both the nucleophilic silyl ketene acetal 

(SKA) initiating moiety and the electrophilic silylium catalyst. Due to the insolubility of the 

resulting PMBL in non-coordinating solvents, the polymers exhibit bimodal MWD’s and 

incomplete monomer conversion at high monomer to catalyst feed ratios. The polymerization of 

MMBL remains homogenous throughout the course of polymerization, and under ambient 

conditions and with a low catalyst loading (0.05 mol% relative to monomer), this polymerization 

system rapidly (within 10 minutes) and completely converts MMBL to PMMBL with controlled 

low to high (Mn = 5.43 × 10
5
 g/mol) MW’s and narrow MWD’s (1.01–1.06).  Demonstrating the 

living nature of this polymerization system, and to overcome the insolubility of PMBL, well-

defined block copolymers of MBL with MMA as well as block and statistical copolymers of 

MBL with MMBL have been synthesized (Chart 3). 

Chart 3. Copolymerization of MBL and MMBL with MMA and With Each Other 

 

. 
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