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ABSTRACT 

Actual terrain near Green River, Utah, was modeled to a 
scale of 1:800. The purpose of this study was to find the effect 
of topography on wind speed and wind direction o 

Field data are included in this report and comparisons 
between model and prototype data are made. 

Throughout this study, an ambient wind velocity of 4.57 mps 
was used and a neutral flow condition was maintained in the Army 
Meteorological Wind Tunnel. 
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1. I i'lT RODUCT I ON 

The irregular topography of the earth' s surface causes a lack of 
uniformity in wind s tructure which cannot be predicted from theory. The 
1nain concern of th e work descr ibed in this report is the determi nati on 
of wind speed profiles and wind direction variations from the ground 
s urface up to 15 2.4 meters over a hilly area of 1524 me t ers in <lia e ter. 
For th is purpose , a model was built wh ich si mul ated actual t errai n near 
Gree n lli vcr, Utah. 

1be terrain mode l ed compri ses th e launching area for the Unit ed 
States Air Force - Wh ite Sands Missile Range multi-million dollar 
Athena missi l e re- entry project. The area selected i ncludes three 
launch pads and th e 150 m i nstrumented meteorological tower a t the 
Green Rive r Site. Wind veloci ty data were available from the Atmos­
pheric Sciences Office 150 m t ower . The basic operational problem is 
that of predicting airfl ow in the a tmospheric boundary l ayer in the 
vicinity of the missil e launch pads. Th e extremely uneven nature of 
the terrain at th e Green Ri ver Site presents a unique challenge to simu­
late, in a wind tunne l, t errain-induced vari ations in the wind veloc i ty 
profile of the boundary layer which can have a decided effect on miss ile 
ballistics. 

The model was so constructed that it could be rotated in the 
wind tunnel, allowing a simulated ambient wind to pas s over it from 
any direction. Four particular locations on the model were studied. 

Throughout this study, uniform air density and zero pressure 
gradient were maintained in the Army Meteorological Wind Tunnel located 
in the Fluid Dynamics and Diffusion Laboratory, Engineering Research 
Center, Colorado State University. The ambient wind speed was 4.57 mps 
and the model scale was 1:800 in both the horizontal and vertical 
directions. Information was derived from photographs and aerial maps 
of the terrain under investigation for constructing the model. A spe­
cial method for model construction was used to insure that every detail 
of the topography of the model was faithfully reproduced. The boundary ­
layer thickness of the approaching flow in the model was approximately 
scaled to the corresponding boundary-layer thicknes s for the prototype 
by placing the model at th e downstream end of the long wind tunne l test 
section. 

The region of the model fl ow most affect ed by topography was 
found to be the zone from th e mode l surface up to 5.7 cm. A large por­
tion of the wind-direction change and wi nd-speed reduction, and a high 
turbulence intensity were present in this zone. In checking the experi­
mental reproducibility over such complex surface features of the model, 
less than 3% deviation was found in both the wind-speed profile and wind­
direction variation. 

To determine the viscous forces, or Reynolds number effect on the 
model, ambient wind speeds of 4.57, 9 .15, and 18.30 mps were tested. 



2 

There was no noticeable change in the dimensionless velocity profiles 
with these variations of ambient wind speeds. 

Of the three methods, namely, tufts, wind vane, and hot-wire 
anemometer (HWA), successively employed to measure wind direction, the 
hot-wire anemometer gave the most accurate and reliable data. The 
greatest effect of model terrain on the ambient wind direction was 5.6°, 
which was sensed by the HWA and occurred at an ambient wind azimuth of 
30°. 

This report includes both field and laboratory data. However, 
only mean velocity data with no corresponding temperature data were 
available from the field so that critical comparison of model and field 
data was not possible. A constant effort to compare actual field data 
with laboratory data is necessary in order to provide an established 
basis for determining the degree of simulation for such topographic 
model studies. 
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2. MODELING TECJ~IQUE 

2.1 Atmospheric Similarity Considerations 

In order to complete atmospheric f low similarity in two syste~s 
of different length sca les, geometrical, dynamic, and thermal similarity 
must be achieved as shown in Reference 1. However, the requirement Jf 
identity of the equations of motion and energy for the two systems 
usually can be met only in an approximate sense. In this study, geo­
metrical similarity was maintained for the best approximation in mea.., 
wind speed profiles and mean wind direction variations over the specified 
topographic area. A neutral flow condition was also maintained in t he 
wind tunnel to eliminate stratification of air density and, thereby, to 
simplify the study. 

Accordingly, all criteria for similarity required by conservation 
of energy were satisfied for neutral atmospheric flow. However, the 
Reynolds number criteria (UL/ v) required by conservation of momentum 
(equation of motion) is not strictly satisfied. Because of the 1:800 
scale the ratio of model to prototype Reynolds numbers was about 1:800 
since the model wind speeds and fluid viscosity were essentially eq~al 
to those for the prototype. Because of the sharp topographic features 
this inequality of Reynolds numbers was not considered to be a sericus 
limitation in meeting the objectives of this study. 

2.2 Topographic Characteristics 

The terrain characteristics were mapped by drawing radial li~es 
from the center of the investigated area to the edge of an aerial mcp and 
noting the points at which these radial lines crossed elevation lin~s. 
Figure 7 shows the terrain characteristics and Fig. 6a shows the area 
which was actually modeled. The wind-tunnel testing section width 
determined the scale of the model for the particular topographic area of 
interest -- 1:800. The most significant fact to be observed from t hese 
sections is that the terrain has rather sharp changes irt slope as one 
passes across the area. From the modeling point of view this is important 
since the breaks in slope will control the local flow patterns. Th~s 
means that geometrical features, i.e., local pressure gradients, co•trol 
the flow and not the viscous forces. Accordingly, the discrepancy between 
model and prototype Reynolds numbers does not have serious consequences 
in regard to attainment of flow similarity. 
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3. MODEL CONSTRUCTION 

3.1 Filling Method 

For studies of meso-scale phenomena in the atmosphere, the area 
to be investigated is usually large. Therefore, the length scale must 
be greatly reduced. The largest possible model is always favored be­
cause of Reynolds number requirements. The final decision on the model­
ing scale to be used is always a compromise between the size of the wind 
tunnel test section and the smallest extent of the area to be studied 
which will still include the important topographic characteristics. 

From such considerations, the scale factor of the proposed model 
was decided, and the area of the aerial map to be investigated was 
photographically enlarged or reduced to fit the area of the model base. 
In the case of the study under discussion, there was no preference of 
wind direction, so a circular base was adopted for its convenience for 
rotation in the wind tunnel to vary the approaching wind direction. 
The photographically scaled map was then glued to the 1.27 cm plywood 
base. 

On the map contour lines are clearly shown. To establish these 
contours on the model, 0.0305 cm thick aluminum strips of the appro­
priate widths were mounted vertically along these contour lines. 

To fill the space between the contour line sheets, polyurethane 
duo-foam was poured into place, and parts higher than the contour line 
strips were trimmed away. 

This procedure offers several advantages: at this stage, the 
model is very light, and can withstand temperatures up to 94oc without 
deformation of the polyurethane duo-foam, and construction time up to 
this poiht is very small. This method allows most of the construction 
time to be spent on finishing the surface of the model, which is the 
important feature under investigation. 

In the next step, putty was applied to the surface of the model 
to furnish a smooth surface and match details of the terrain between 
contour lines. After the putty had dried, it was smoothed with sand~ 
paper. Final steps, such as roughening the model surface, marking out 
roads, and placing model buildings, were then taken. Photographs of the 
completed model are shown in Figs. 9 and 10. 

3.2 Placement of Model in the Wind Tunnel 

The model was 1.9 min diameter and was placed at the center 
position of the wind-tunnel floor. Because the area studied was sur­
rounded by irregularly-shaped mountains and hills, a layer of 1.27 cm 
diameter gravel was placed around the model's circumference, as shown in 
Fig. 6. This graveled region had two notable effects: it raised the 
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roughness to approximately that of the prototype, and it prevented 
separation of flow at the edge of the model. The arrangement of the 
model in the wind tunnel is shown in Fig. 6. 
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4. EXPERIMENTAL TECHNIQUES 

4.1 Mean Wind Speed Measurement 

A Prandtl tube was used to measure the mean wind velocity. 
Readout was made from a Trnas-sonic pressure meter. Because of high 
turbulence intensity at the near surface region of the model, a digital 
voltmeter was connected to the Trans-sonic pressure meter. From the 
digital voltmeter, ten sample readings were taken for averaging and for 
arriving at the mean wind speed. 

4.2 Mean Wind Direction Measurement 

Three techniques for measuring 
successively tried during this study. 
and hot-wire anemometer) the hot-wire 
factory results, although its use was 

mean wind direction were 
Of the three (tufts, wind vane, 

anemometer gave the most satis­
very time consuming. 

One of the pressing needs for this type of wind-tunnel study is 
the development of a simple and accurate mean wind direction sensor. An 
accurate and convenient i nstrument for this purpose when low wind speeds 
are employed must emphasize some princip le not currently in use for this 
function. 

4.2.1 Tuft method - Although shifting of the mean wind direction 
could be sensed by use of wool tufts, the angle reading was neither 
obvious nor exact, as can be seen from Fig. 11. Because of the rigorous 
nature of this study, this type of wind direction measurement was 
discarded. 

4.2.2 Wind-vane method 
efforts were made to develop a 
wind direction over the model. 
used to sense the angle change 

- After the effort to use a tuft technique, 
small wind vane for the measurement of 

An ultra-low torque potentiometer was 
of the vane. 

At low wind speeds, in the vicinity of 4.57 mps, the wind vane 
motion was impeded by friction until a small buzzer was attached to the 
potentiometer on which the wind vane was mounted. With this improvement 
the accuracy of the reading depended heavily on the degree of induced 
vibration at velocities below 3.05 mps. A critical factor was found to 
be the accurate balance of the vane itself. 

Figure 12 shows the change in angle of the vane at a specific 
location over the model in an airstream with a speed of 9.15 mps. 
Although field data show direction changes in this location as great 
as 1s0 , the direction changes, as can be seen from Fig. 12, amount to 
only about 2°. Level heights for model and prototype are given under 
Definitions, p. vii. 
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This Jiscrepancy reflects t wo facts: hi gh win J vel oci t y over -: he 
model straightens the ivinJ vane anJ oversh;1Jows the t e rrain effect , a::-id 
ther e is a ma jor J ifference in winJ orient a tion influe nce be tween t he 
actual t e rrain anJ the transi t i on area in t he mode l . Tha t i s , ivinJ 
direction cha nges have a l reaJ y taken pl ace over tl1e act ua l terrain be ­
fore th e winJ reaches th e are a unJcr s tuJy, whil e in t he winJ tunne l 
these direction changes begin onl y at th e eJge of th e mo J e l. 

4.2.3 !lot-wire method - It is well known th at the rate of heat 
transfer f rom an e l ectrically heateJ wire bears a Jirec t relationship to 
its angle of yaw r e lat ive to the irect ion of airf low. Specifically3 
the heat transfe r is maximum when th e hot wire is perpendicular to th3 
direction of airflow, and it is mi ni mum wh en th e hot wi r e is para ll e l to 
the direction of airflow. 

Determination of the mean wi nd direction, th en, can be accompl ished · 
by rotating the hot-wire anemometer in a horizontal plane and plotti~ 
the output versus the angle. The minimum value on th i s curve defi nes 
the mean wind direct i on. Since the curve is symmetrical about t he 
minimum value, it should be sufficient to determine the angles of two 
positions giving the same output. The average of these two angles cor­
responds to the minimum. To permit an immediate check of the angle 
measurement, the output for only two pairs of points is taken. 

The hot-wire anemometer probe is mounted on a rotating actuatar 
geared to a potentiometer for remote angle reading. This actuator is 
mounted on the vertical positioner of the probe. Next, the output is 
"bucked out" with a stable power supply with fine control. The fluctua­
tions of this modified output due to turbulence are damped with a 
2 ,000 µf capacitor. 

Data were obtained from twelve runs corresponding to twelve 
free-stream wind directions 30° apart. For each free-stream wind direc­
tion, four specified poi~t~, lab~led T, P1 , P2 and P3 were investi­
gated, and for each spec1f1ed point, wind directions at eight vertic~l 
levels, the highest corresponding to 15 2 . 4 m above the ground level cf 
the prototype, were recorded. 
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5. EQUIPMENT 

5.1 Met eoro logical Wind Tunnel 

The meteorological wind tunnel (Ref. 8) at the Colorado State 
University Fluid Dynamics and Diffusion Laboratory employs a test sectioo 
27 m long and a nominal cross-sectional area of 4 m2 which can be adjusted 
for establishing negative and positive pressure gradients (see Table I). 
A large contraction ratio of 9:1 in conjunction with a set of four damping 
screens yields an ambient turbulence level of about 0.1 per cent. 

The tunnel can be us ed for either closed or open loop operations. 
Test-section air velocities range from Oto about 37 mps, and the ambierrt 
temperature of the air can be varied from o0 c to 85°c at medium speeds. 
In addition, the humidity of the ambient air can be controlled. In the 
test-section floor, the tunnel has a 12.2 m section which can be heated 
or cooled to permit temperature differences between the cold plate and hot 
air of 65°C and between the hot plate and cold air of more than 105°c. 

A carriage system is available which permits remote placement of 
probes. Instrumentation associated with the facility consists of a com­
plete system for sensing, analyzing, and recording turbulence and for 
determining the mean value of velocity, temperature, and concentration 
(mean values only). Performance characteristics of the Meteorological 
Wind Tunnel are listed in Table 1. 

5.2 Instruments 

The hot wire was 0.000508 cm in diameter and 0.127 cm in length 
with a resistance of 5 ohms. A Disa hot-wire probe, 55-A type, was 
used with a Uisa constant temperature anemometer. 

A 2000 µf capacitor was used for slowing the turbulence fluctuation 
output. A Hewlett 340-A digital voltmeter with a range of 0.1 mv to 
1000 v was adopted for accurate voltage readings. To stabilize the 
bucking system for wind-direction measurements, a DC power supply was 
used. An x-y plotter was also used for wind-direction measurement. 

For mean wind speed measurements a 0.317 cm diameter Prandtl tube 
and an equibar pressure meter, Trans-sonic, Inc. type 120, were used. 
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6. TESTING PROCEDURES 

6.1 Mean Wind Velocity 

To measure a fixed ambient wind velocity, the 0.318 cm diameter 
Prandtl tube was set at level 1, over one of reference points, say T, 
on the model. The output was then fed to an equibar pressure meter, 
from which the signal was transferred to a digital voltmeter. Because 
of the turbulence fluctuation, a mean velocity speed was obtained by 
averaging ten readings from the digital voltmeter. Then, by use of the 
remote actuator, the Prandtl tube was moved to level 2 for another 
reading. After readings at eight levels were recorded, the actuator was 
then moved to the next reference point, say, P1 , for eight more 
readings. 

In this way, each of the points T, P1 , P2, and P3 were investi­
gated for each fixed ambient wind direction. 

6.2 Mean Wind Direction and Ambient Wind Direction 

To determine mean wind direction, the hot-wire probe was first 
set in the free ambient stream, that is, at the mid-height of the wind 
tunnel, 0.9 meter above the tunnel floor. The hot wire was in the plane 
parallel to the tunnel floor and also parallel to the free ambient stream. 
This position allowed the hot wire to pick the minimum readout. Then, by 
rotating the hot wire along each side of a 15 degree angle, the milli­
volts versus angle calibration curve was obtained. At the minimum read­
out point from the calibration curve, the direction of ambient wind, or 
the reference direction could be obtained. Finally, the hot-wire probe 
was lowered to level eight which is over a specified point, say T, for 
the wind direction measurement over the model at that point. 

The signal of varying millivolts due to hot-wire angle change was 
translated by an x-y plotter. This was an easy way to decide if the hot 
wire was at minimum readout position, or the mean wind direction. For 
adjusting the voltage output of the hot wire, a bucking device was used 
to reduce the voltage output to a range such that the x-y plotter could 
be set at 50 mv/div scale in order to get more accurate results. 

The hot wire was then lowered to each of the eight levels indicated 
by location of measurements in the field. At each level a graph was 
obt ained through use of the x-y plotter simply by rotating the hot wire 
30 degrees and putting the minimum readout at the center of the graph. 

For the purpose of avoiding the time lag of the instrument, 
discrete point plotting was used. First, two points on each side of the 
linear slope were printed. They provided a good and clear way to obtain 
the minimum readout position on the graph. It should be kept in mind 
that the counterpart points should be printed on the same level on the 
graph if an accurate result is expected. 
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After nine readouts, one for each level and one for ambient wind, 
the wind direction change over one point of the model, say T, was 
clearly obtained. According to the calibration of the actuator with no 
model in the wind tunnel, the accuracy for wind direction was± 0.5 
degrees. 
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7. EXPERIMENTAL RESULTS 

7.1 Mean Wind Speed Profiles 

The ambient wind speed was 4 .57 mps f or a ll dat a . Twelve ambient 
wind azimuths were tested over the topographic mode l. 

In general, the model t errain had influence on the wind speed 
from the model surface up to the e l evation of l eve l e ight over the four 
positions T , P1 , P2 , and P3 . All the wind speed profiles follow 
closely the 1/7tn power distribution which was based on a boundary-layer 
thickness of 0.495 mover the tower site and the equation 

~. = ( +r/7 (7 .1) 

Wind speed profiles are shown from Figs. 16 to 27. A comparison of the 
elevations of the four sites shows that P2 is the highest and T is 
the lowest, P1 and P3 are at the same elevation but separated by a 
small hill. Because of the elevation difference, P2 had the largest 
U/Ua value at level one except for a equal to goo, 120° and 300°; T 
had the lowest value in U/Ua at level one except for a equal to o0 

and 30°, P1 and P3 had U/Ua values between those for P2 and T 
The exceptions were due mainly to the local terrain features close to 
the site studied. At level one, the maximum U/Ua was 0.82 which 
happened at P2 for a equal to 240°, and the minimum U/Ua was 0.54 
at tower site for a = 270°. At level eight, the maximum U/Ua was 
0.975 at P3 for a = 180°, the minimum was 0.82 at P1 and P2 for 
a= 90°, and T1 and P1 at a = 300°. 

The influence of the upstream condition on wind speed profiles 
were compared as follows: 

(i) o0 wind azimuth: uphill condition 

Site T had a U/Ua value larger than that of P1 and P3 for 
all eight levels and also larger than that of P2 from level four up­
ward. This was because the wind passed a long valley and was toward T. 
However, P2 was at a higher elevation, and hence had a U/Ua value 
larger than that of T up to level four. 

(ii) 30°, 60° and 90° wind a zimuths : gentle uphill condition 

For 30° wind azimuth, the wind speed profiles followed closely the 
1/7th power distribution over the four sites, particularly from level five 
upward. For 60° and 90° wind a zimuth, almost the same upstream condition 
existed. T and P1 sites had the same wind speed profiles for 60° wind 
azimuth. 

(iii) 120°, 150°, 180°, 210°, and 240° wi nd azimuths: uphill condition, 
over a 60 m high cliff, then downhill condit i on 
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For 120° wind azimuth, the wind was tangent to the cliff before 
reaching sites T, P1 and P2 P3 had a flat uphill slope and had 
less influence from the cliff. P3 had larger U/Ua than T, P1 and 
P2 For 1500 wind azimuth, P1 and P2 had the same wind speed pro­
files. For 180° wind azimuth, the ambient wind direction was perpendicu­
lar to the cliff. The cliff had the larger influence on P2 and P3 
from level five upward. For 2100 and 2400 wind azimuth, P2 had the 
largest U/Ua value among T, P1 and P3 As to T, P1 and P3, 
their wind speed profiles followed 1/7th power distribution from level 
four upward. 

(iv) 270° and 300° wind azimuths: flat upstream condition 

For 270° wind azimuth, the wind 
another closely for P1 , P2 and P3. 
rest. For 300° wind azimuth, T and 
dicular to the ambient wind direction, 
profiles. 

speed profiles followed one 
T had U/Ua smaller than the 
P1 were on the same line perpen­
they had the same wind speed 

(v) 330° wind azimuth: uphill condition 

T and P1 had about the same wind speed profiles. P2 had the 
largest U/Ua value. Because of the fact that the atmospheric boundary­
layer thickness varies from time to time and the flow condition is 
affected by changes such as temperature, eddy viscosity, etc., the 
experimental data can serve only as a reference for the field data. It 
is clearly understood that the exper i mental data represent steady, 
neutral flow conditions most accurately. 

7.2 Mean Wind Direction Profiles 

As for mean wind speed study, the ambient wind was 4.57 mps for 
examining the wind direction changes over the four sites T, P1, P2 and 
P3 of the model. Twelve wind azimuths were investigated. Large wind 
direction changes were shown from level one up to level four for all 
four sites. These were produced by the influence of local terrain 
features. Mild changes were observed from l evel five upward. Data are 
shown in Figs. 16 to 27. A combined wind direction variation over the 
tower site is plotted in Fig . 15. 

For o0
, 30° and 60° wind azimuth, the wind directions turned in a 

counterclockwise direction over the site. By looking into the upstream 
flow condition the approaching flow was up a gentle uphill slope from an 
elevation of about 1320 ~ to an elevation of 1350 m near the sites, but 
there was higher terrain near the sites to the west and southwest. Thus, 
the flow was forced to turn in the counterclockwise direction. The 
biggest direction change detected by the HWA was about 5.6° at the tower 
site and P1 at level one for 30° wi nd azimuth. 

For 120°, 150° and 180° wind azimuths, the flow passed over a 
steep 60 m high cliff before reaching the sites. According to wind 
directions recorded by the HWA, there was a clockwise turning tendency 
for the flow over these four sites. The flow approaching the sites was 
from a southeast direction over the cliff. For 210° and 240° wind 
azimuth, the flow was from about the soutwest direction, passing over 



13 

the high cliff anc.l then onto the sites. The flow hac.l a counterclockwise 
sense over the sites. For 90° and 330° wind a zimuths, there were 
similar wind direction changes over T, P1 anc.l P3 , but it was different 
for P2 . For 270° and 3000 wind azimuths, the flow was over a f lat 
hilly upstream condition. Th e flow direc tions were influenced more by 
local feature of the terrain than by the distant terrain, as are shown 
in Figs. 25 and 26 . 

7.3 Field Wind Speed Profiles 

Wind speed profiles averaged over 180 seconds and 300 seconds 
were recorded in the fi e ld at the tower si t e. These two profiles were 
taken on July 1 and on July 16 , 1965, r espective ly. One profile showed 
a wind velocity of 1.89 mps at l eve l one and 5.81 mps at l evel eight. 
The other profile had a 3.78 mps wind at level one and a 6.04 mps wind 
at level eight (see Figs. 28 and 28.a). According to the wind azimuth 
of the field data, a wind speed profile over the tower site of the model 
was selected and plotted on the graphs. 

In order to compare experimental and field data, wind velocity at 
level eight was chosen as the characteristic velocity for the experimen­
tal data -- the smooth ed field data curve was plotted and used as the 
dimensionless field velocity profile. Figure 28 shows a good agreement 
between model and prototype. However, the data shown in Fig. 28a are 
in poor agreement. Hence, more field data are needed to better under­
stand the nature of the field flow and to provide an explanation why good 
agreement between field and laboratory data is not good for both of the 
cases which were compared. 

7.4 Field Wind Direction Profiles 

Figure 29 shows the field wind azimuths 102° at leve l four and 
119.5° at level eight. Figure 29a shows the field wind azimuths 156° at 
level one and 183.5° at level six. 

Adopting the field wind azimuths, experimental wind direction 
profiles over the tower site of the model were plotted on the graphs. 
The field wind direction was influenced by Coriolis acceleration, but the 
experimental data had no such influence; therefore, an amount of wind 
azimuth change due to the Coriol i s was subtracted from the field data 
which was calculated as follows (see reference 7). 

By assuming that vertical velocity component and the horizontal 
variations of the hori zontal velocity components can be neglected, th e 
equation of motion for a viscous fluid are 

; ~ + u ; ~ + v ; ~ - 2w sin t v - - ¼ * + ¼ aaz ( µ :~) 

av 
-+ at 

av av 
U ax+ V ay + 2w sin t U = 

(7.2) 

(7.3) 
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When the wind distribution above the s urface layer is studied, the 
pressure-gradient force and Corioli s force arc taken into account. 
Assume that the pressure gradient is indepenJent of the a ltitude, that 
the isobars are parallel straight lines, and that the mot ion is hori-
zontal and steady, the motion would then be gcostrophic except for the 
influence of eddy and molecular viscosity. If µ is assumed to be constant 
and x-axis is oriented parallc l to the pres sure gradien , the equation 
of motion becomes 

-2w sin qi 
1 aP µ d2 u 

V = - --+ ---
p ax p dz 2 

(7.4) 

2w sin qi 
µ d2 v u = ---
p dz 2 

(7.5) 

The following expressions of the solutions are used to solve the 
equations of motion 

A -az sin (az b) u = V e -g 

B 
-az (az V - V = V e cos g g 

where the geostrophic wind speed 

-

V 
g 

b) 

is 

V = g 2w sin qi 
1 , a constant 

and A, B, a and b are constants. 

(7.6) 

(7.7) 

(7. 8) 

After differentiating Eqs. (7.6 and 7.7) twice and subst i tuting into 
Eqs. (7.4 and 7.5), the following relation can be obtained 

thus 

B = - A 

a= ✓ pw sin qi 
µ 

u = Av e-az sin (az - b) 
g 

v = v [1 - A e-az cos (az - b)] 
g 

constants A and b are found from the boundary conditions 

b = TI 
4 

a 
0 

(7. 9) 

(7.10) 

(7. 11) 

(7.12) 

z = z = 0 
a 

(7. 13) 



where 

and 

A2 = 2 cos 2 a 
0 

-1 
a = tan (1 + 2 Ka) 

0 

K = (z + z ) ln 
a o [

zaz

0

+ z0 ) 
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(7.14) 

(7.15) 

(7. 16) 

The solutions are 

u - - v .ficos a e-az sin (az + a - -
4
TT) 

g O 0 

V = V [1 
g 

rz cos a 
0 

-az 
e cos (az + a 

0 

TT - -) 
4 

( i . 17) 

c:- .18) 

The following data were assumed to calculate the wind directi on 
change over Green River: 

The latitude of Green River ~ = 38° 
The coefficient of surface friction K = 55.2 m 
Geostrophic wind speed= 6 mps 
Eddy viscosity= 110 gm cm- 1 sec- 1 
Air density at elevation 1220 m = 1,1 x 10-3 gm cm- 3 
The angular velocity of the earth rotation w = 7.292 x 10- 5 3ec- 1 

The roughness parameter z0 = 4 cm 
The shear of the wind is parallel to the wind itself at level 

Za = 10 m. 

It was found that the wind direction change due to the Coriolis 
force effect was 5.3° at level eight (see Fig. 29b). a 0 and eddy 
viscosity will change widely, depending on the weather situation and on 
the nature of the surface of the earth; therefore, the calculated 
correction is subject to considerable error. However, both data sho~ 
about the same tendency of curve variation from level one to level ~ight. 

7.5 Boundary-Layer Thickness over the Model Tower Site 

It was found that the boundary layer thickness at the tower site 
was 0.495 m measured from the model surface. The model was set at 330°, 
and the ambient wind velocity was 9.14 mps. Figure 30 shows the bo~-ndary­
layer profile. 

7.6 Reproducibility of the Wind Velocity Profile 

Figure 31 shows three independent runs over the tower site. The 
overall reproducibilities were well matched at levels 1, 2, 4, 7 anc 8. 
At level 2, 0.04 U/Ua was the difference between datum one and datum 
two. 
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7.7 Reynolds Number Effect on the Model 

Ambient wind speeds of 4.57, 9.15 and 18.30 mps were used and 
wind speed profiles were taken at the tower site for 'J.. equal to zero 
degree. There was found to be no change in the dimensionless velocity 
profiles. Thus, the viscous force or the Reynolds number was not a 
dominating factor for this study. 

7.8 Reproducibility of Wind Direction Variations 

The reproduciblity of wind direction variations was first checked 
at a fixed point in the free stream (low turbulence) and proved to be 
less than 0.2° when measured by use of the hot-wire anemometer method. 
During actual measurements, the hot-wire anemometer had to be moved up 
and down with the vertical actuator. Small bumps on the rails on which 
the carriage was moving could have led to faulty angle readings. In 
order to prevent this, the probe was raised and lowered in the 
unobstructed tunnel. After measurement, the wind direction was found to 
be constantly within 0.3°. Finally, three independent runs were made 
over the tower site to check the overall reproducibility. These measure­
ments are plotted in Fig. 33. It can be seen that the discrepancies 
among the three measurements at a given point are on the average less 
than 0.3°. Only at the lowest level is there a larger deviation of 0.75° 
which may be attributed to the high degree of turbulence there. 
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8. CONCLUSIONS 

(a) The mean wind speed profiles over the model were compared 
with the l/7th power profile for all twelve wind azimuths studied in the 
model. These profiles were found to be essentially similar to the 1/7th 
power profile. 

(b) Model wind speed profiles can be used to interpret field 
wind speed profiles provided the reference wind speeds used in the 
dimensionless wind speed plots are taken at corresponding heights. 

(c) The wind directions of the field data and the model data 
have the same tendency from ground up to level five. The field wind 
direction change, after subtracting the Corioli s force effect, can be 
close to the experimental data provided more information of the field 
is recorded (see section 7.4). 

(d) The model scale 1:800 is proper for the mean wind speed study. 
For the wind direction study a larger model scale ratio is desirable; 
however, if a satisfa~tory area coverage is to be maintained, a larger 
wind tunnel would be required. 

(e) The hot-wire anemometer (HWA) method employed to measure 
wind directions over the model is better than the tufts method and the 
wind vane method. 

(f) A continuous effort to compare field and experimental wind 
data is needed to improve our understanding of model-prototype relation­
ships. 

(g) From the results of the Green River simulation experiment, 
it is apparent that the salient features of terrain-induced variations 
in airflow can be resolved. While differences are less pronounced for 
the model because of the small scale involved, the efficacy of the 
simulation approach appears to remain intact, which suggests the desir­
ability of further investigations of this nature in the controlled 
environment of a meteorological wind tunnel. 
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TABLE 1. PERFORMANCE CHARACTERISTICS OF THE METEOROLOGICAL WIND TUNNEL 

Characteristic 

1. Dimensions 

Test-section length 
Test-section area 
Contraction ratio 
Length of temperature 

controlled boundary 

2. Wind-Tunnel Drive 

Total power 
Type of drive 
Speed control: coarse 
Speed control: fine 

3. Temperatures 

Ambient air temperature 
Temp. of controlled boundary 

4. Velocities 

Mean velocity 
Boundary layers 
Turbulence level 

5. Pressures 

6. Humidity 

Meteorological Wind Tunnel 

27 m 
3.4 m2 

9.1 
12 m 

200 kw 
4-blade propeller 
Ward-Leonard DC control 
Pitch control 

s0 c to 9s0 c 
s0 c to 2os0 c 

Approx. 0 mps to 37 mps 
up to 50 cm 
About 0.1 per cent 

Adjustable gradients 

Controlled from approx. 20% to 
80% relative humidity under 
average ambient conditions 
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Fig. 2 Instruments 

Fig. 3 Hot-wire and Disa probe 
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Fig. 6 Model in the meteorological wind tunnel 
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Fig . 8 Model construction , step 1 
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Fig. 9 Model construction, step 2 
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Fig . 10 Model construction, step 3 
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Fi g. 11 Tuft method fo r wind direction measurements 
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• Field Data Averaged Over 180 Seconds, July I, 1965, Us = 6.04 mps 
o Experimental Data for 90 Degree Azimuth Direction, Us = 3.82 mps 
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Fig. 28a Mean wind speed profiles over town site in 
dimensionless form, Green River field data 

• Field Data Averaged Over 300 Seconds, July 16, 1965, Us= 3.81 mps 
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