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ABSTRACT

A general methodology for modeling a groundwater system with
complex boundary conditions by using the discrete kernel approach is
developed. This methodology is applied in modeling a stream-aquifer
system where the stream-aquifer relationship is in permanent hydraulic
connection. Based on the fact that the interaction flux between
stream and aquifer, i.e., return flow, is proportional to the
difference between water levels in the river and in the aquifer, the
stream-aquifer system is modeled as a boundary-value problem with a
time-dependent third type boundary, which, in definition, is a kind of
boundary condition where a linear combination of the piezometric head
and its normal derivative is prescribed.

This stream-aquifer model includes two parts. The first part is
a discrete kernel generator, which generates drawdown discrete kernels
and return flow discrete kernels by a finite difference model for the
case of homogeneous initial conditions and homogeneous boundary
conditions of the third type. These discrete kernels are calculated
only once and saved. They are the characteristic coefficients which
represent the linear relationship between excitations and responses
for a particular physical system. The second part is a simulator,
which simulate the responses of the system due to any kind cf
activities imposed on the system, such as pumping, recharge,
irrigation, non-equilibrium of the initial conditions and variation of
river stages, in terms of the discrete kernels.

A numerical calculation procedure for the finite difference model
is developed for the generation of discrete kernels in a groundwater
system with different types of boundary conditions, such as prescribed
head boundary and third type boundary. Techniques of "moving
subsystem" and "sequential reinitialization" are further improved and
used in the generation of discrete kernels and in the simulation
procedures respectively, in order to increase the efficiency.

The computer codes have been developed for the finite difference
model and for the simulation model. They have been thoroughly tested
for accuracy, flexibility and cost. They have performed well in all
categories.

Since the relationships between excitations and aquifer responses
as well as return flow responses are explicit, the model can easily be
used to couple a stream-aquifer system with any kind of policy
evaluation or management model for simulation or mathematical
optimization. The model has been applied to a part of the South
Platte River Basin in Colorado from Denver to Greeley for the purpose
of evaluating institutional alternatives for managing that highly
interrelated stream-aquifer system from an economic standpoint while
accounting for agronomic practices and legal constraints.
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Chapter 1

INTRODUCTION

INTRODUCTION

With the development of industry, agriculture and the increase of the

population, many places in the world are facing the problem of lack of

water resources, especially those arid or semi-arid areas. One of the

critically water scarce regions is the northeastern part of China.

Studies have shown that the total amount of surface and ground waters ;s

not enough for all the demand from cities and agricultural areas. Similar

serious water resources problems both in Quantity and Quality are

threatening many big cities along the east coast of China where the

population, industries and business are highly concentrated.

Such critically increasing demand for a sufficient Quantity and

quality of water, properly distributed in time and space, has forced

engineers and planners to propose more comprehensive and complex plans for

water resources systems. Such pl an-s i ncl ude the regul at i on of natural

water supplies and the transportation of water between watersheds, river

basins, etc. One of the surface water regulation techniques is to build

dams to hold water during the wet season (also prevent flood) and to

release water during the dry periods. As needs grow and water supply

remains constant, larger and larger storages are required. In many cases

it is impossible to find proper dam sites and to obtain the large amount



The environment concerns are also often difficult
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of necessary capital.

to resolve.
An alternative management strategy is to use aquifers, the natural

. d reservoirs which contain ten or hundred times more water than
undergroun '
is held in storage in a river or in surface reservoirs. These underground

reservoirs are naturally to filtering water and regulating water to some

degree. Large amounts of water from precipitation or irrigation percolate

down into water tabl e as an input to aqui fer. The rel eases from the

aquifer are either flow to a river as return flow or flow downstream in

the aquifer. Since groundwater flow is much slower, aquifer does behave

as a reservoir to hold water a relatively long time. However, while this

kind of regulation is not following man's desire, it does show that the

aquifer has the capability to regulate water, to redistribute water and

to reuse water as long as we provide good management.

For arid or semi-arid areas, where the permanent hydraulic connection

does exist between stream and aquifer, the interaction between surface and

ground waters provides favorable conditions for development of the water

resources. An aqui fer is both a vast natural storage reservoi r and a

conveyance system, and ground water is an a1ternat ive water supply.

However, without proper management of the stream-aquifer system, those

advantages cannot be effectively exploited. The distinct characteristics

of water in river and aquifer, which bring-advantages to water resource

development planning, also create difficulties in understanding their

interaction and in simulation of this interaction. The difficulties are

also due to the fact that there are so many problems associated with the

regulation of water supplies. They are usually problems of hydrology, law,
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economics and politics and must be resolved on the basis of broader

decision making.

In the past two decades, many studies have been undertaken in the

field of conjunctive management of surface and ground waters and great

development have been achieved. However the demand for more efficient and

cost effective tools st ill exi st because the conjunct ive management

problems are always associated with a large scale physical system and a

long time horizon. In addition, the demand of constant updating of

methods still exist because of the variation of management purposes and

operation levels.

REVIEW OF LITERATURE

The conjunctive management of surface and ground waters is a subject

of great pract ica1, economi c and pol it ica1 importance in the fi e1d of

water resources. Numerous developments associated with this subject have

been obtained during last two decades. One of the major development is the

technique of the response function approach (discrete kernel approach),

which makes the distributed parameter groundwater management practically

available. Among the other developments an important branch is the

simulation technique of the interaction between stream and aquifer. In

order to focus on the literature relevant to this study, this review will

primarily cover two aspects: the stream-aquifer interaction and the

modeling of stream-aquifer system suited for conjunctive management

studies.
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stream-Aquifer Interaction

For the subject of stream-aquifer interaction, Illangasekare (1978)

and Peters (1978) have already given an extensive literature review. For

completion of this literature review a summarization is presented here for

reader's convenience.

The earl iest study on the interact i on of ri ver and aqu i fer was

developed by Theis (1941). Theis derived an analytical solution for

estimation of the flow from a stream to an aquifer caused by pumping near

the stream. The rat; 0 of f1 ux from the ri ver and the amount of water

pumped from a single well was given under the ideal condition of a

homogeneous and isotropic aquifer with an infinitely long straight and

fully penetrating river. By placing an image recharge well of equal

discharge on the opposite side of river with an equal distance, Theis

considered river as a constant head boundary.

Glover and Balmer (1954) used the relationship derived by Carslaw

(1921) between quantity pumped and aquifer drawdown to obtain an

expression for the ratio of the flux from the river and the flux from the

pump under an ideal condition similar to the condition for Theis solution.

Glover's method has been used and further developed for many extens i ve

applications.

Jenkins (1968) summarized the relations between the pumping time and

stream depletion for an idealized system, which have been derived by

several investigators (Thei s, 1941; Conover, 1954; Glover and Balmer,

1954; Glover, 1960; Theis and Conover, 1963; and Hantush, 1964, 1965). He

generated a set of dimensionless curves and tables which could be employed

to estimate the rate of stream depletion. He introduced the stream

depletion factor (sdf) which reflects the effects of the hydraulic
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t ' s of the aquifer and the distance between the pumping well andproper le
stream. In his later study (1969) this descriptor sdf was evaluated for

complex heterogeneous aquifers by using electric analog and finite

difference digital models.

In all these studies, the changes in stage in the stream were. not

taken. into consideration. Bouwer (1969) discussed the case of flow from

a trapezoidal channel, underlain, but not extending to, an impermeable

boundary. He calculated seepage by using the piezometric head difference

of the channel and water table. The results indicate that the interaction

flux between stream and aquifer is proportional to the head difference of

the channel and the water table a few riyer widths away from the channel.
:.'.

Hornberger (1970) numeri call y solved the problem of groundwater

recession and groundwater flow in response to changes in stream stage in

a simple system of a fully penetrating stream in an isotropic homogeneous

aquifer. The Boussinesq's equation in one dimension was solved using a

finite difference scheme. ·Zeta and Wiggert (1971) considered the stage

change in the stream both in space and time. The dynamic equation

descri bi ng one-dimens iona1 open channel flow and the equat i on of one

dimensional transient groundwater flow.were solved numerically for a fully

penetrating stream. Pinder and Sauer (1971) used a similar approach except

the head in the aquifer was obtained by solving a two-dimensional

transient horizontal flow equation. The differential equations of channel

flow and aquifer flow were solved simultaneously, coupled by an expression

for flow through the wetted perimeter. The coup1 ing equation was the

Darcy's law applied for flow across the thickness of wetted sediment for

a partially penetrating rectangular stream.
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These works are pioneering efforts in the simul ation of stream­

aquifer relations. The analytical solutions or numerical models are

focused on simulation of the physical characteristics of the interaction

between stream and aquifer. However, similar to many groundwater

simulation models they are design.ed topr.edict. the hydro~og.ic ~.~ha_~.ior of

the system in response to-a particular set of numerical values of the

excitation, such as pumping rates at a given well over several time

periods or fluctuation in the river stage over several time periods,

rather than provide a functional relation between the response and the

excitation.

The increasing demand for managing groundwater system or stream­

aquifer system found those groundwater simulation models are difficult to

couple explicitly with management models especially for large scale

problems with long time horizon. The necessity for simulation of stream­

aquifer system suited for management has been gradually realized.

Stream-Aquifer Simulation Suited for Management

Maddock (1972) proposed an efficient method to generate a set of

aquifer response functions under the condition that the aquifer system is

nonhomogeneous and with irregularly shaped boundaries. He obtained

drawdown of the aquifer by taking the convolution integration of input

pumping rates through this set of response functions, which he called an

"algebraic technological function".

With the introduction of response function to groundwater field, the

di stributed parameter groundwater model ing methods for management have

been developed greatly. Groundwater policy evaluation models based on

repeated simulation with response functions have been much more efficient
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than using conventional groundwater hydraulic models. In addition, the

explicit mathem~tical expression, as the system responses, have been able

used to cour>.l~ the physical system .. with .the various formulation of

management model fordifferen~ purposes.

Maddock (1974) extended this response function concept to a combined

stream-aquifer system and showed the applicability of the method to

conjuncthe use probl ems. He assumed· that the interaction between the

stream and the aquifer "to be such that the stream acts as a constant head I

boundary to the aquifer; i.e., there is sufficient flow in the stream at

all times so that withdrawal directly from the stream or losses from the

stream to the aquifer do not affect the head levels in the strt!am". He

indirectly obtained the total volume of return flow during certain time

period due to pumping by calculation of the difference between the

accumulated quantity of water removed from aquifer storage and the

accumulated quantity of water pumped from the wells.

Based on Maddock's work, Dreizin and Haimes (1977) developed a model

with multiunit aquifers and interconnected streams. The system responds

. to pumpage or recharge 1n two ways: as drawdown in the aquifer or as flow

between streams and aquifers. Correspondingly two sets of respons~

functions are calculated. This model is applied to a conjunctive

management of groundwater and surface water system wi th a network of

streams and reservoirs all interacting with one another. In this model

stream was still assumed as constant head boundary of the system, however

to determine the stream-aquifer induced flow due to pumpage from wells,

fraction functions rela~ing infiltration to pumpage are developed.

Morel-Seytoux (Morel-Seytoux. ~t al. 1973) presented a similar

procedure for stream-aquifer interaction where the response function was
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"d. rete kernel". The reason was descri bed by the paper (More1­
named 1SC

Seytoux , et al. 1980) that:

"BecaUSe the Green's function is generated at discrete points in time

and space and because the Green's function is the kernel of the

resolvent integral equation of the boundary value problem".

Morel-Seytoux and Daly (1975) presented a paper to demonstrate the

discrete kernel approach in conjunctive management of stream and aquifer.

The distinction of their work compared to Maddock's paper (Maddock, 1974)

was, instead of treating stream as a constant head boundary of aquifer,

they introduced the research result by Bouwer (1969) that return flow was

proport iona1 to the difference in the drawdowns in the stream' surface

level and in the aquifer water table a few stream widths away from the

stream. Therefore this stream-aquifer model is more reasonable, in terms

of physical sense, in the simulation of interaction between stream and

aquifer which have permanent hydraulic connection with each other. The

further study on calculation of return flow by Peter (1978) showed that

the result by this method had a reasonable agreement with the one by mass

balance approach on the South Platte River, Colorado, U.S.A.

A combi ned model of water table and ri ver stage evo1ut i on was

presented by Morel-Seytoux (1975). By an integral equation it completely

characterizes the interaction between a stream and an alluvial aquifer.

Four physical characteristics were taken into account in this model. They

were initial river drawdowns, initial aquifer drawdowns, upstream inflows

and pumping rates. Both dynamics for river and aquifer were considered.

The initial conditions for both stream and aquifer were taken into

consideration as natural redistribution. I11angasekare (1978) in his

dissertation, rederived all those influence coefficients. There are, in
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all, 35 kinds of influence coefficients for a complete model of a stream-
Of ystem The major ideas were also described very clearly in theaqul er s ·

(I llangasekare and Morel-Seytoux, 1982) that the discrete kernelpaper

ch for an isolate~ aquifer and the discrete kernel approach for anapproa ..
isolated stream are combined to derived the influence coefficients for a
combined stream-aquifer system. The isolated aquifer and the isolated
stream are coupled by using a linear relationship for the stream-aquifer

interaction.

SCOPE OF PRESENT STUDY
The pri mary purpose of th is study is to develop a st ream- aqu i fer

model for the case in which stream and aquifer are in hydraulic
connection. This model should be suited for cost-effective simulation or
formal optimization in the study of conjunctive management of surface and
ground waters.

For the purpose of conjunctive management, it has been realized that
the response function approach must be adopted in this model. The
significant meaning of generation of the response functions is not only
because they represent the physical characteristics of an aquifer or a
stream-aquifer system so that all kinds of simulation results may be
obtained efficiently by simply using convolution integration through these
response functions and any kinds of excitations. An other fundamental
significance is that these response funct;().ns represent the..._exol icit
relationship between huge i.nput and output vectors, so that the efficient
tools of mathematical structure for Qptimization can be utilized for
management of conjunctive use of surface and ground waters or coupling a
hydrologic model with any social, economical, political or legal model.
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It has been also real i zed that in the 1i terature there are two

,,' s in modeling the stream-aquifer interaction. One ~s to simply
typlCa way

th stream as a constant head boundary to an aquifer (Maddock, 1974;
treat e

, ' and Hal'mes 1977). The other is to coupl~ stream and aquifer byDrel Z1n ' ..
a l~near relationship (Morel-Seytoux, et ale 1973; Morel-Seytoux and Daly,

1975; Morel-Seytoux, 1975; Peter, 1978; Illangasekare, 1978; Illangasekare

and Morel-Seytoux, 1982). Comparing these two, the author thinks the

treatment of stream as a constant head boundary is 1im; ted i.n certain

cases. In practical problems, there are only probably very few big

rivers, such as the Mississippi River in U.S.A. or the Yangtze River in

China, which can be considered with sufficient flow at all times so that

the interaction flux between stream and aquifer is not affected by the

variation of river stage. Therefore this assumption is not suitable in

most cases where rivers are usually wide and shallow, partially

penetrating an aquifer. The second problem is, in the numerical model,

the river is simulated by constant head cells (as in a finite difference

model) (Oreizin and Haimes, 1977), the scale of which (us~ally 1 mile is

detailed en~ugh) are much larger than the real width of the river (several

hundred feet) so that this simulation is not reasonable in scales.

However wi th the assumpt ion for ri ver as constant head boundary, the

solution of the problem is not complex.

A linear relationship between diffe~ence in the drawdowns in the

stream level and in the aquifer water table is used to simulate the

stream-aquifer interaction in the work of Morel-Seytoux and his

colleagues. This relationship is based on physical characteristics in the

stream-aquifer system. However the generation of so many influence

coeffi ci ents makes._the sol ut ion .procedures of the problem not so easy.
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In this study it has been found that the linear relationship between

. and aquifer is as same as the third type boundary condition in astream
bound-value problem in mathematics. Therefore a river is treated as a

third type boundary to an aquifer. This treatment follows the physical

characteristics of the stream-aquifer interaction but makes the solution

procedures much easier. The solution is obtained directly by solving a

boundary-value problem in two steps. First, two kinds of discrete kernels

are generated. which are drawdown discrete kernels and return flow

discrete kernels. They are only qenerated once. Then in the simulation

stage. four types of external excitations to the system are considered.

They are initial river drawdownc, initial aquifer drawdowns. variation of

river stages and net withdrawals to the aquifer.

The objectives of ~his study are: (1) to develop the methodology for

solutions of a' boundary-value problem with different time-dependent

boundary conditions; (2) to develop an efficient numerical procedures; (3)

to develop a computer program; (4) to test the computer program for

accuracy and cost; (5) to apply this model to a real system, a portion of

the South Platte stream-aquifer system.

This dissertation consists of six chapters. Chapter 2 discusses

different type boundary conditions including the stream-aquifer

relationship. It also develops the general methodology for solutions for

the fundamental boundary-value problem with different boundary conditions

by discrete kernel approach, including solution for stream-aquifer system.

The numerical procedures for generation of discrete kernels by a finite

difference model. and for simulation are presented in Chapter 3. 'The

accuracy and efficiency of the methodology and of the calculation

procedures are presented in Chapter 4. In Chapter 5 the application to
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a portion of the South Platte stream-aquifer system and its result are

presented. The dissertation is completed with the summary and conclusions

in the final chapter.



Chapter 2

THE FUNDAMENTAL BOUNDARY VALUE PROBLEM

The purpose of this chapter is to discuss the solution for the

fundamental boundary-value problem by t.he di.scrf!te. ... ke~ry.el....._~.e.~T~ach in

order to model a stream-aquifer system or any groundwater systems with

complex boundary conditions. This chapter includes three sections. The

first section is the background, which gives the background for the

stream-aquifer relationship, the linear system approaches and the typical

types of boundary conditions. The second section explains how to solve a

complex boundary-value problem by principle of superposition .and discrete'

kernels approach for a prescribed head boundary-value problem. The last

section explains how this methodology is applied to a stream-aquifer

system, which is conceptualized as a boundary-value problem with a third

type boundary.

BACKGROUND

In order to model a system , it is important to have a thorough

understandi ng about the phys ica1 characteri st i cs of that system. The

stream-aquifer relationship therefore is discussed before the discussion

of the solution procedures.

13



14

The stream-Aquifer Relationship-- It is now a well recogni zed fact that surface and ground waters

ct with each other. For example, consider a river in hydraul ic
intera

ctl'on with an alluvial aquifer. If the water level in the river ;s
conne
higher than in the aquifer, water will flow from the river into the

aquifer and vice versa. By definition, baseflow in the stream ;s provided

by depl~t1on of the ground water storaae.

The interactive relationship between a stream and an aquifer may

display varied characteristics under different geographic or geologic

conditions. The most common case is that of a river which partially

penetrates the aquifer and is in permanent hydraulic connection with it,

as shown in Figure 2.1. There is always water exchange between the river

and the aquifer. This is qualitatively reasonable and the real question

is: what is the physical law which governs this exchange? Bouwer (1969)

has shown that the discharge at the interface between the river and the

aquifer is proportional to the difference in the heads in the river and

in the aquifer a few streams width away from the stream (e.g. Morel­

Seytoux, 1985). Figure 2.1 illustrates this interaction schematically.

This relationship, simply an integrated form of Darcy's law, can be

expressed symbolically as:

Qr = r (h - y) (2. 1)

where Q, is the return flow between the stream and the aqu; fer. Qr is

algebraically defined as positive when the direction of the flow is from

aquifer towards river and negative otherwise, h is the water table

elevation in the aquifer, y is the stage in the river (both measured from
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a common datum), and r. the coefficient of proportionality, is the river

h) transmissivity (area per unit time) which is a function of the
(or reac

'd aquifer and geometric river cross section properties. An
f1 Ul ,

approximate expr~~si~.~. ~~~ ._~....i s obtai ned from the method of nets (e. g.

M~~el Seytoux, 1985):

T W + 2e ]
r • e L [ I + ZA

(2.2)

where L 1S the length of the reach, W~ is the wetted perimeter of the

reach (in practice Wp is essentially the width of the reach, W), A is the

distance from the center of the river to the point where h is evaluated

for use in Eq. (2.1). The theoretical and experimental work of Bouwer

(1978) (e:g. Morel-Seytoux, 1985) has shown that A should be of the order

of Sk. T is the local horizontal transmissivity and e is a mean saturated

thickness within the distance of SWp on each side of the r.iver center;

Thus approximately the expression for the river transmissivity r is:

r • (2.3.a)

Equation (2.3.a) was derived under the assumption that the aquifer is

isotrol)ic. In many situations this is not the case and the hydraul ic

conductivity in the horizontal and vertical directions are quite

different. Usuallv the hori zonta1 conduct ivi ty KH is much 1arger than

the vertical one Kv • Under such conditions the method of flow nets yields

the more general form,.l a:

TH Wp + 2er = - l [ ]
e lOWp + PHV e

(2.3.b)
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where T
tt

is h9ri~9n.t.~t_aQtdfer transmissivity {i.e. e~} andpw = Kw'Kv is

a measure of anisotropy. Eq. {2.3.b} reduces to Eq. {2.3.a} when Pw • 1

(isotropic c.ase). In addition the streambed is often clogged. Over a

thickness zet the hydraulic conductivity is Kc • In such a situation a

more general formula, again developed from the method of flow nets,

yields:

r • re

1

(2.3.c)

where in this equation r is given by Eq. (2.3.b). In the absence of a

clogged layer, ze • 0 and Eq. (2.3.c) reduces to rc • r. On the other hand

when the clogging is severe, Kc ~s very small ana rc r~duces practically

to WpLKe t which means that the entire hydraulic head drop occurs
z

acrossc the clogged layer. In the remainder of this report it is

understood that T stands for 1M and the symbol T will be used exclusively

for horizontal aquifer transmissivity.

Finally it may happen on occasions that the aquifer heads five widths

away from river center are different ~n the left bank and on the right

. bank. In this case h in Eq. (2.1) represents the average of the two

values.

Linear System Approaches

In this chapter the basic governing equation is linear (being. a

linearized form of an originally nonlinear equation) and time-invariant.

Therefore 1inear system theory is app1icab1e for the sol ut ion of the



Before the discussion of the solutions, it is necessary to
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problem.
• w the basic linear system theory.rev1e ft

principle of Superposition. For a linear system, a powerful tool·

_ the pri nci p1e of superposit ion is app1i cab1e. As descri bed by Bear

(1979), the principle of superpositions states that if ~1 • ~l{X,y,t) and

~ • ~(x,y,t) are two general solutions of a homoqeneou~ linear partial

differential equation L(~) • 0, where L ~presents a linear operator, then

their sum ~1 + p" or in general, any linear combination of #1 and P2

(2.4)

where C
1

and C2 are constants, is also a solution of L(Jl) = o. Or, in

genera;, if ~i ~ ~(x,y,t), i • 1,2, •.• ,n, are particular solutions of L(Jl)

= 0, then

(2.5)

where Ci ' s are constants., is a1so a sol ut i on of th is eQuat ion. The

constants are determi ned by requi ri ng that Jl shoul d also sat i sfy the

prescribed boundary conditions and prescribed initial conditions. The

solution ~ in EQs. (2.4) or (2.5), with coefficients determined so that

the boundary conditions and initial conditions are satisfied, is called

complete solution of the homogeneous equations.

The principle of superposition can be used to decompose a single

complex system into several or many linear homogenous simple systems, the

superposition of those solutions from simple systems is just the solution

of the complex system. The interpretation of this principle is (1) the

presence of one boundary condition does not affect the response produced
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of other boundary cond i t ions (and t of the in it i a1
bY the presence

11) d (2) there are no interacti~ns among the responses
conditions as we t an

b
the different boundary conditions. Therefore, to determine the

produced Y
. ffect of a number of boundary conditions, it is possible to

comblned e . .

h effect of each individual boundary first and then combine the
sol"e t e

1 The advantage of the decomposition into subproblems is that the
resU ts. .

t ' of each subproblem is simpler in general.solu 10n
Ouhamel'S Method. Another useful tool is the Duhamel's method. As

mentioned by Necati Ozisik (1968) that Duhamel's method relates the

solution of a boundary-value problem with time-d~Rendent boundary

conditions and/or sources to the solution of a similar problem with time~

independent boundary conditions and/or sources by means of a simple

relation. Since it is often easier to obtain the solution of the latter

problem, Duhamel's method is a useful tool for obtainina the solution of.

a problem with time-d~peJH:f.ent .bD_urld~r...Y conditio~~ ~nd/or 5:0urcp.s 'whenever

the solution of a similar problem with time-independent boundary

conditions and/or sources is available.

Green's Function Theory. Green's function theory is a powerful

theory in solution of boundary-value problem of linear system. It is used

as a ba~ic approach for this study. The basic idea of the Green's function

theory is, as stated by ~ecati Ozisik (1968):

"The solution of a boundary-value problem of heat conduction with

distributed heat sources, nonhomogeneous boundary conditions and a

prescribed initial condition can be r~~resented in the integral form

by means of a Green's .func.tJon which is the solution ofa similar

problem for zero initial condition, homogeneous bounda~y conditions,
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and an instantaneous heat source of unit strength situated at a

single location withintheregi~n.H

Discrete kernel is just the Green's function in a discrete form both

in space and in time.~A complex boundary-value problem of a linear and

, ,'nvariant system with distributed excitations can be solved in twot,me-
~tep.L In a discrete form, first, to obtain the ~olution ~f ~ similar but

homogeneous problem, which means, except a single unit excitation only

during the first unit time period, either within the area or on the

boundary, all other part of the area or boundary are with no excitations

and the initial conditions are zero. This solution i:! called discrete

ke~nel. Repeat this processes for as many times as needed, one can get all
. -

sets of discrete kernels. For the second step, us i ng the pri.o~ i.p1e o~

superposition and Duhamel's method to obtain the solution for the original

comolex .problem in terms of discrete kernels and, any combination of

different time-dependent p,<citations.

Tvoes Of Boundary Conditions

Mostly three types af boundary conditions occur naturally in ground

water problems.

When an aQuifer is in hydraulic connection with a major body of water

such as a large size lake or reservoir, the lake imposes its head on the

aquifer. The boundary condition is thus one of a prescribed head at the

interface between the lake and the aquifer. If the lake level remains

constant i.r time the prescr:w.e.d bead i-s CQ.DS1.ant.

At a boundary where the aquifer terminates as when, for example, a

permeable alluvium encounters sol id bedrock, the boundary condition at

I the interface is one of no flow. This natural boundary condition is a
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. 1 case of the more general mathematical boundary condition which
part1CU ar

a prescribed flux at the boundary. An example of a prescribed
stipulates

boundary condition is that of injection of water from high
fl ux as a

wells or through a recharge trench with very good permeability.
pressure .

When a river intersects the aquifer, as illustrated in Figure 2.1,

the boundary condition described by Eq. (2.1), is one that stipulates a

. r relationship between the flux, Qr' and the head, h, in the aquifer.llnea .
This type of boundary condition is typical in the presence of a stream and

is therefore called a "stream-aquifer" boundary condition. It is also

known_in the literature as either a boundary condition of the third tyoe

or a "rad; at ion" boundary condi t i on or a Fouri er or a Cauchy boundary

condition. Typically in ground water studies one is interested in only

a part of an aquifer. Thus the boundary for the study is not a natural

boundary but an artificial one which separates the part of the aquifer of

interest from that which is of less interest. Typically, then, the

division is artificial and at the boundary the condition cannot be one of

a prescribed head or of a pre$~r.i.b.~d._.flux. The flux at this artificial

;nterfa.ce ~~~ l_.~_~pe_nd~n_ w~a..~. h.~l?pe'!.~ .!.nt~r.~a lJ.l (i. e. in the aqui fer part

of interest) described by th~.. h.ead_.h~ in Eq. (2.1), and what happens- - . ~ .. ~ _. ,... .. . . .

externally (i .e. in the river or in the aquifer part of less interest)-----described. by the stage y in Eq. (2.1). ·.Un.de.r. su.~h.artifi~ial divisions
. ._. "'- .'.~ ..._-' .._.......- ~ --. -.. -.."- -.

the typical boundary condition will be of the .t~ird Jar Fourier, or

Cauchy, or radiation, or stream-aquifer) type.

PRESCRIBED HEAD BOUNDARY VALUE PROBLEM

To introduce the procedures for sol ution of the boundary val ue

problem in the general case, it will be convenient to start with the
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t case that of a prescri bed head over all boundari es. The
simp1es '

rn ing equation is:gove

~ ~ _ div(TVs) • q(x,y,t) (2.6)

where ~ is effective porosity, s is drawdown, T is horizontal

transmissivity and q 'is volumetric withdrawal rate per unit horizontal

area. The domain of applicability of Eq. (2.6) is a spatial domain, 0,

with a boundary domain (which can be a surface or a line or a combination)

denoted B. The boundary condition is a prescribed drawdown SB(X,y,t) on

B. Initially the drawdown in the domain is a sptltial function, Si(X,y).

Decomposition of the Problem.

The principle of superposition provides a convenient method to

construct solutions to complex problems from simple solutions to

elementary problems. The original boundary value problem, namely:

~ ~ - div(TVs) • q

subject to boundary condition:

s(x,y,t) • SB(X,y,t)

and initial condition:

s(x,y,O) • Si(X,y)

in 0

on 8

in 0

(2.7.a)

(2.7.b)

(2.7.c)

is decomposed into several subproblems. For each subprolem, there is only

one non-homogeneous term.

For the first subproblem the governing equation is:



~ ~ - div{TVs) • q
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in 0 (2.8.a)

subject to the boundary condition:

s{x,y,t) • ° on B (2.8.b)

and initial condition:

s(x,y,O) • ° in 0 (2.8.c)

The subprableDLsystem is st---ictly excited by the sink term q, only. For

this reason the subproblem will be referred to as the "pure sink" ­

excitation problem. The classical Theis solution is the simple solution

of that subproblem when there is only one well present in the system and

the rate of pumping is steady.

For the second subproblem, the governing equation is of the

homogeneous type (i.e. has no right-hand side forcing term) namely:

~ ~ - div(TVs)· 0

with boundary condition:

s(x,y,t) • SB(X,y,~)

and initial condition:

s{X,Y,O) • °

in 0

on B

in 0

(2.9.a)

(2.9.b)

(2.9.c)

This is a "pure boundary" - excitation problem (initially the system is

at rest and there are no sink terms). A typical problem of this type is

one of a lake-aquifer system initially at rest and the lake level starts

to fluctuate. One wishes to study the aquifer response to the lake level

fluctuations.

For the third subproblem the governing equation is of the homogeneous

lype again (i.e. no sink term):
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in D (2.10.a)

with boundary condition:

s(x,y,t) • 0 on B (2.10.b)

but initial condition:

s(x,y,O) • Si(X,y) ~ ° in D (2.10.c)

This is a "pure initial condition" - ~xcitation problem (or "pure

relaxation" problem). Were the aquifer initially at rest nothing would

happen. Ultimately ifno external excitations were to be imposed (pumping

wells or change in head at boundaries) the system would return to rest

(i. e. re1ax) ·

One can veri fy ..readi 1y thaJ the sum of the sol ut ions to the three

subproblems (i.e. the "pure sink"- solution, the "pure boundarylt solution

and the "pure relaxation" - solution) is a solution to the original.

complex problem.

Convolution Form of the Solution

Let kB (x,y;e,17;t) be a very special solution to the "pure boundary" ­

excitation problem, where the prescribed drawdown on the boundary is

uniformly a unit impulse in time along the boundary (a uniform unit

impulse drawdown excitation on the entire boundary). Then it is known

from linear system theory (i.e. Green's functions, Duhamel's theorem) that

for a .genera1 prescri bed drawdown on the boundary, SB, the drawdown

so1ut ion everYWhere, expressed in terms of the un it impul se boundary

response (or kernel) function is:
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(2.11)

Similarly the general solution.to a "pure sink" - excitation problem
can be expressed in terms of a special solution, the response (kernel) to
a unit impulse withdrawal excitation at the location of the sinks, in the

convolution form:

(2.12)

In Eq. (2.12) kW
(} is the unit-impulse .kerne] .of drawdown~t .

location of coordinates (x,y) due to volumetric withdrawal rate excitation
Q(r) at singular withdrawal location of coordinates (e,~).

Discrete Form of the Solution

By superposition of solutions given by Eqs. (2.11) and (2.12) and,
discretization in t.i.me and in space (Morel-Seytoux and Daly, 1975) one
obtains for drawdown at a location indexed g (which may refer to a point
or to an area, e.g. a typical cell in a finite-difference discretization)
the expression:

(2.13)

In Eq. (2.13) ss(n) is the drawdown at location indexed g at the end of
time period nf cSw&p is the drawdown discrete kernel at cell g due to
withdrawal at location indexed p (with dimension of length per discharge),
Qp(v) is the mean pumping rate at location p during time period Y, OB&b()
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is the drawdown discrete kernel at location 9 Ja point or a cell) due to

prescribed drawdown at boundary location b {which is dimensionless)~ s:(v)

is the mean prescribed drawdown at boundary site b during time period v.

P Js the number of total withdrawal sites, and NB is the total number of

boundary sites with prescribed drawdown.

Artificial Pumping Rate Equivalent to Initial Conditions

The "pure initial condition" - excitation problem is different from

the other two subproblems. There is no time-dependent external excitation

included in this subproblem. The only excitation is the prescribed

initial drawdown in the aquifer. Due to the existing head gradients in

the doma in, water tends to flow. The effect of th is flow due to the

prescribed initial head gradients can also be considered due to an

eqUivalent "pumping rate" under the homogeneous initi~l conditions. This

equivalent "pumping rate" can be called artificial pumping rate. The

relationship of this equivalence can be expressed as:

(2.14)

where qa(x,y) is the ariifici.aLpump..:ing-..nte. Since Si,S known everywhere

the values of Q~(I,Y) can be obtained by solving Eq. (2.14) •

Substraction of EQ.(2.14) from Eq.(2.10.a) yields:

(2.IS.a)
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At. as
i

is a dummy item wh i ch equals zero. The boundary
ticing that ~ a~

nO . i

1 P
rob1em for (s- s) is homogeneous wi th respect to the in it i a1

va ue
't'on because at time zero, very eVidently, S-Si. O. However it is

cond , 1

h ogeneOUS wi th respect to the boundary condit i on or the sinks.
not om
problem (2.10) is therefore deduced into Eq. (2.IS.a), Eq. (2.IS.b) and

EQ.(2.15•c) as following.

. i
S - s· • -s

s - Si • 0

on B

in 0

(2.IS.b)

(2.IS.c)

Problem (2.15) can be further decomposed into two subproblems, one as a

"pure sink" - excitation problem with the artificial pumping as the only

excitation term, and the other including the non-homogenous boundary

condition as a "pure boundary" - excitation problem. The solution for (s­

Si), and thus s, is deduced from Eqs. (2.11) and (2.12) for S-Si with a

boundary condition (_Si) and sink distribution (_Qa) or explicitly:

The di screte fQrJD of Eq. (2.16) is:

G n NB n·
s( n) = Si -! ~ rW ( 1) Qa ~ ~ rB ( 1) i"l & ~ a &7 n-V+ 7 - ~ ~ a lob n-V+ Sb

1=1 v=1 b=l v=1

(2.16)

(2.17)
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Q
• js the artificial pumping rate at location 1, and s:, prescribed

where 1

.. 1 drawdown at 1ocat ion b.
;n,tla

~plete Solytion

By superp9sition the complete solution is of the form:

p n
s.(n). I I cS~(n-v+l) Qp(v) +

p-l v-I

NB n
I I cS~b (n-v+l) s~ (v)
b=l v-I

G n NB n
I I cS~,(n-v+l) Q; - I I cS~b (n-v+l) ~
1-1 v-I b-l v-I

(2.18)

On the right hand side of this equation, the first term is the drawdown

due strictly to pumping, the second term is the incremental drawdown due

strictly to the prescribed drawdown on the boundary, and the last thr~e

terms represent the drawdown contribution strictly due to relaxation. One

can notice that if the prescribed drawdown is constant (independent of

time), s~ == s~ the second term and the 1ast term wi 11 cancel each other.

Of course Eq. (2.18) can be wri tten in the more cone i se and mean i ngfu1

form:

Sa(n) • Si
G n

cS~7(n-v+l) [Q,(v) -Q; ]+ I I (2.19)I 1-1 v-I

~ n
cS~b (n-v+l)[s~(v)-~ ]+ I

bel val
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. ation of the Discrete Kernels
Determln
-- The only unknowns ~or the general solution are the discrete

1 rW (e) &Bb(e) and 6~,(.). Each of these looks different from the
kerne s g s.P ' ..

other, but actually as long as p~ b or 1 represent the same site in a

finite difference model, they are the same or easily deduced from each

The beauty of the discrete kernels approach (a discreteQ1her.
application of Green's functions) lies essentially in this remark! No

matter what kinds of pumping pattern, what kinds of outer region drawdown

patterns or initial conditions, the discrete kernels need to be calculated

only once for only one sin~ auxiliary problem, which is time­

independent, wi th homogeneous init i a1 condi ti..ons and wi th homogeneous

boundary conditions of the proper type Ji .e. the same as for the system

of concern). This auxiliary boundary-value problem is:

in 0 (2.20.a)

s(x,y,O) • 0

s(x,y,t) • 0

in 0

on B

(2.20.b)

(2.20.c)

where Dei(e) is the Dirac delta function singular at x-€, y=TJ and t-o.

The analytical solution of this problem is the Green's function or unit­

impulse kernel function kW(x,y;~,TJ;t). Physically this Green's function

;s the drawdown response of the aquifer at (x.y.t) due to a unit impulse

of· pumping .at singular site of coordinates (€,11) at time zero ..

Due to the heterogeneous nature of the aquifer, its finite extent

and complex boundary shape, it is difficult to find ~he Gre_~n's function
" - " ..- , , .,-' ._.,._.'.

by analytical approaches. The numerical technique can be used to generate

the discrete form of Green's function -- the so-called "discrete kernel".
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. . ificance of the drawdown discrete kernel, &~p(n), is the
The physlCal s19n

drawdown of the aquifer at cell 9 at time n due to a unit
response of

° 9 at site p during the first time period. The formulation
pulse of pumpln

. 0t difference model for this auxiliary problem as well as the
of the·fl n1 e

procedures for the calculations are given in the next chapter.
numerical

s.QLUTION FOR A STREAM-AQUIFER SYSTEM'

As seen previously the boundary condition of a stream-aquifer is of

the third type (Fourier). The third type boundary condition is defined

as one for which neither the head nor the flux but a linear relationship

between them is presc.ri bed. As descri bed by Cars1aw and Jaeger (1959),

if the normal outward flux across the boundary qa is proportional t9 the

head differe~ca between the boundary and the surrounding medium, so that

it is given by

(2.2l)

where ho is the water level in the surrounding medium (which can be an

aquifer, a river or a' lake, etc.), h lei the water level right on the

aquifer side of the boundary of the flow domain (or in its close

neighborhood), and C is a constant. The quantity Ccan be called "outer"

-conductivity or "outer" conductance, and it has the dimension of

transmissivity. In the limit as C tends.. to.o, qa tends to 0 and the third

type boundary condition reduces to the no flow boundary condition. In

the limit as Ctends to G, (h - ho) tends to 0, and the third type boundary

condition reduces to the prescribed head boundary condition.

Comparing Eq. (2.1) with Eq. (2.21) shows that the stream-aquifer

relationship is of course a third type (Fourier) boundary condition,
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return flow, is a flux from aqUifer to river from both

and the river need not be at the boundary. Of course one

f the term boundar. A boundarybetter understandin

except that Or'

sides of river,

must now devel o

·te where a boundary condition is applied. It must not be
is anY 51

t d in the restricted layman sense of outer limit of a domain. The
unders 00

aquifer interaction problem can be solved by solving a two­
stream-
. 51·onal boundary value problem treating the stream as a special time-dlmen· .

dependent "boundary" of the third type.

The mutual interaction means that river stages and water levels in

the aquifer depend on each other. The river stage is ~ function of return

flow and the water level of the aquifer is also a function of return flow.

The return flow is an important link between the surface and subsurface

systems which will tend to equalize the water l~yels.

-The complete stream-aquifer model should include the dynamics of both

conveyance ~ystems (river and aquifer) and their mutual inter~ctions,

especially for a stream with limited discharge. However at the current

level of model development, the assumption is (temporarily) made that the

river exerts full control over the aqUifer. In other words river stage

is a function of time and space but independent of aquifer water level.

The river imposes a boundary condition .on the groundwater and the dynamics

. of the riv~r are not considered.

The influence of the river with a prescribed stage is described by

a third type boundary condition for the aquifer. The methodology for

solVing a boundary-value problem can be qjr~ctly used for a stream-aquifer

sYstem.

Considering an aqUifer domain with a stream passing through it (as

shown in Figure 2.2), given initial drawdowns of the ~quifer, the drawdown
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river stages are prescribed with time and the pumping rates also
of the .

. time. The special boundary conditions for the aquifer shown in
vary 1n

2 2 ~re no flow ones on the left and right sides of the aquifer.
Figure . ~

ditions on the upper and lower boundaries are not specified at this
The con

. In a finite difference model, the flow domain is divided into
po,n~.

cells and the river is divided into reaches according to cells, as shown

in Figure 2.2. The mathematical description of the problem is:

¢ } - div (TVs) • q in 0 (2.22.a)

s(x,y,O) -= Si(X,y) in 0 (2.22.b)

Or + rs • fa on stream (2.22.c)

L(s) = f(x,y,t) on external boundary(2.22.d)

where 0 is the drawdown of the river stage relative to the same high datum

as aquifer drawdown. r Js the reach transmissivity, Or is the return flow

(discharge) between aquifer and river. In Figure 2.2, the river is inside

the domain. It could be on the boundary or partially on the boundary.

L(s) = f(x,y,t) is any kind of linear boundary condition on the external

boundary of the aquifer. In order to concentrate on the solution of the

stream-aquifer problem, a discussion of the external boundary condition

is postponed until the section on the numerical procedures.
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9 .p

Aquifer (Continued)

•

• •

••

Aquifer (Continued)

o Cell, Index: 9

• Pumping, Index: p
/ Reach, Index: p

Figure 2.2 Finite Difference Grid System for Stream-Aquifer System
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'f r The discrete kernel form of the solution to this latter "pure
aQUl e •

. " xcitation problem, including the stream-aquifer interaction, is:
slnk -e

{2.26}

r W () is the _pump_in~ (withdrawal) drawdown discrete kernelwhere CI loP

(including the stream-aquifer interactioD effect).

For the second subproblem ("pure stream"·probl~m), the governing

equation is homogeneous:

; ~ - div (TVs) • 0

the initial condition is homogeneous:

s(x,y,O) • 0

in 0

in 0

(2.27.a)

(2.27.b)

the onl~ excitation is the stream stage fluctuation:

Q, + fs· fa on stream (2.27.c)

One could also treat the return flow as a sink, then the governing

equation can be written in the form:

; ~ - div(TVs) • qr

or, given the nature of qr:

~ as _div(TVs) + f's = f'a
at

(2.28)

(2.29)
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it' n
~Following the decomposition method previously described~ the stream~

hlem can be similarly decomposed into three .subproblems. Foraqui fer pro"
. t subproblem ("pure sink"-problem),the governing equation is:the fltS

, if- . div (TVs) • q in 0 (2.23.a)

the initial condition is homogeneous:

s(XtY,O) ... 0 in 0 (2.23.b)

and so is the stream boundary condition:

Qr ... rs • 0 on stream (2.Z3.c)

One tQulp treat the return flow as a sink and instead of specifying a
boundary condition along the stream, write the governing equation as:

~ as _div (TVs) • q + qfat (2.24)

(q, is return flow per unit stream horizontal plane area), or in~tead)

given the relation between return flow and drawdown, Eq. (2.24) takes the
alternative furm:

; ~~ . div (TVs) + rfs • q (2.25)

where f' is reach transmjss;vitv Dgr ynit horizontal area. On may notice
that on the left ..hand side one more item appears t that means the governing
equation has included the effect of interaction between stream and
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Equation (2.29), is the same as Eq. (2.25) by identification of the sink

as r'a. Consequently the solution for the "pure stream"-term q
excitation problem, including the stream-aquifer interaction, is:

(2.30)

where o~p() is the drawdown discrete kernel due to withdrawal at site p

(in this case a reach site). These o() are the same as in Eq. (26) except

for specific sites involved.

It remains to discuss the subproblem for the nonhomogeneous initial

conditions in aquifer drawdowns.

~ ~ - div (TVs) • ° in 0 (2.31.a)

s(x,y,O) • Si(X,y) in 0 (2.31.b)

Or + rs· ° on stream (2.31.c)

One should pay more attention to the difference between the equivalent

transformation of initial conditions with or without the presence of the

stream. If without the presence of the river, such as problem (2.10), the

only excitation of the system is the flow due to initial non-equilibrium

of the aquifer. However, with the presence of the river, the difference

between the initial aquifer drawdown and river stage drawdown (a = ° in

this subproblem) will cause additional internal excitation -- return flow,

which can be calculated by Eq.(2.31.c):
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on stream (2.32)

Therefore in a stream-aquifer problem, the initial conditions are

equiValent to two kinds of artificial discharge rates: (1) artificial

'n9 rate, and (2) artificial return flow rate. The derivation of thepumpl
solution is as following. Teat the return flow as a sink term and put it

at the left-hand side in the governing equation, so that:

; ~ - div(TVs) + r's • 0
at

subtraction of Eqs. (2.14) and (2.32) from Eq. (2.33) yields:

(2.33)

(2.34.a)

with the corresponding change in initial and boundary conditions:

Or - Q: + r (s - Si) • 0

(2.34.b)

(2.34.c)

Problem (2.34) is equivalent to problem (2.31). The initial condition and

the boundary condition are all homogeneous in problem (2.34), the only

excitation is (Q: - Qa). Therefore the solution in a discretized form will

be:
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G n

5 (n) =- ~+ I I &~7(n-v+l) { - Q; + Q~} (2.35)
J

1-1 v-I

By superposition of solutions for these three subproblems, Eqs. (2.26),

(2.30) and (2.35), the solution to the original stream-aquifer problem is:

G n

5.{n) • ~ + I I cS~7(n-v+l) (Q7(V) + rp7(v) - Q; + o-,.,l
1-1 v-I

Discrete Kernel Generation

(2.36)

The only discrete kernels that need to be generated are the

&~7 (n). For simplicity in writing the superscript Wwill be dropped.

These discrete kernels represent the drawdowns at site 9 due to a unit

pu1se of wi thdrawa1 at site '1 Ii n a fi ni te difference sol ut i on of Eq.

(2.25) with homogeneous initial and boundary conditions.

In the case of a stream-aqui fer· system, the di screte kernel s of

return flows are also of interest. It is necessary to fi nd the return

flow discrete kernel, fp,p(nJ' which, by definition, is the mean return

flow rate in reach p during ti~eperiod n due to a unit pulse of pumping

at cell p. When u{tj • 0 on the stream boundary, the return. flo.w at time

t is simply, in this special case, -rs(t). In most cases, the return flow

volume during each time period is needed. Thus the return flow discrete

kernel during time period n for reach p due toa u.,it pu]s.e of pumping at

cell pis:
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--_. -fp
M(n)
I At j

i-I

(2.37)

where At j 'is the time interval for time step i, M(n) is the total number

of time steps within the nth time period, Qr,p,p(ti ) fs the point return flow

in reach p at tim.: t j ~ue to pumping at p~ sJ(P),p(tj } is the point drawdown

at cell g, which contains reach P." at time t. due to unit pulse of pumping

at p~ and rp is the reach transmissivity of reach p.

From Eq. (2.37) one can see that the calculation of the return flow

discrete kernels follows the. in..te.g.rat~~tJo..rm.9f Q.!1.rcy's la~. The absence

of the ri ver stage drawdown is due to the fact that. the r; ver . stage

drawdown is always zero in the auxiliary problem. The calculation of ~he

return flow discrete kernels is done simultaneously with the calculation

of the drawdown discrete kernels. As it was the case for the drawdown

discrete kernels, the return flow discrete kernels need only be calculated

once.

One has to notice that there is difference between these two kinds

of discrete kernels. 1he drawdown discrete kernel is a point value at

the end of the time period, while the return flow discrete kernel Is the

return flow volume increment during the time period. For this reason,

use of Eq. (2.37) will give more accurate res.ult.s than the simpler

approximation: fAP(n} - -rp &~p~p(n}.

General Discrete Form Expression for Return Flows

By definition the mean return flow rate in reach j is:
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(2.38)

The drawdown sj(n) is deduced from Eq. (2.37) with g = j, thus, with l(j)

being the index of the cell in which reach,j is located,

QrJ(n) - rj[aj(n) - ~O>]

G n
II I 1 &"., (n-lI+l) (Q.,(II) + r.,a,,(II) - Q; + Qr'" }1- II- '

(2.39)

For the case of a unit pulse of pumping at site indexed 1 and homogeneous

conditions Eq. (2.39) reduces to:

(2.40)

In terms of the f() Eq. (2.39) can be written as:

(2.41)

The physical significance of Eq. (2.36) is that the drawdown at cell

9 at the end of time period n is a su~erposition of ~everal influences

coming from: initial drawdown at cell g, drawdown due to net withdrawal

Q.,(v) , drawdown due to river stage variation a.,(v) and drawdown due to the

non-equilibrium initial condition (Qar,,,- Q4,,).

The physical significance of Eq. (2.41) is' that the return flow at

reach j during time period n is simply equal to:

(2.41.a)
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. where g(j) represents cell 9 which contains reach j.. Since sg(j)(n) is

caused by three kinds of possible excitations, the return flow as given

by Eq. (2.41) reflects this fact.



Chapter 3

NUMERICAL PROCEDURES

The simulation of the behavior of a stream-aquifer system is secured

in two stages. First a finite difference model generates the discrete

kernels by solving an auxiliary problem with homogeneous initial

conditions and homogeneous boundary conditions. Second a simulation model

combines the discrete kernels and the relevant excitations for the problem

at hand to compute the solution.

FINITE DIFFERENCE MODEL FOR GENERATING DISCRETE KERNELS

The auxiliary problem is described by the governing equation where

U(f,n;t) is a unit pulse of volume withdrawal rate per unit horizontal

area at location (e~n):

on the outer boundary of the domain (3.I.d)

; ~ - div(TVs) • U(e,n;t)

with initial condition

s(x,y,O) = °
stream boundary condition

Qr + rs = 0

and boundary conditions

s = 0 or qD= 0

in domain 0

in domain 0

along the stream

(3.I.a)

(3.I.b)

(3.I.c)

42



43

In practical cases, the aquifer and river parameters vary in space,

and the boundary configurations are irregular. Numerical methods must be

employed to obtain approximate solutions. A fully implicit finite

difference scheme is used to solve the problem.

Discretization of a Stream-Aquifer System.

Figure 3.1 shows a spatial discretization of a hypothetical stream­

aquifer system into cells and reaches. A rectangular or square mesh

system (Figure 3.1 illustrates only the case of squares) is superimposed

on a hypothetical stre&m-aquifer system. To conform with computer array

conventions, an i, j coordinate \Y~tem is used, where i is the row index,

;=1,2, ..•.Na, j is the column index, j-1,2 ...• ,Nc1 (NR represents the

number of rows and Nc represents the number of columns). The width of the

cells along rows is designated as A~ Qnd the width of the cells along the

columns is designated as AYi' The size of the cells is not necessarily the

same for all the cells. The value of drawdown s or the aquifer hydraulic

properties such as T~ transmissivity, and " effective porosity,

associated with the index of each cell, in concept, represent average

values over the extent of the cell. A unit .pulse of withdrawa.L.g~~itation

corresponds to a withdrawal of a unit volume, withdrawn uniformly from a

single cell during the first time period only, and no excitations in any

other cells at any time.

The river is discretized by the finite difference cells into reaches.

Another set of indices, p • 1,2,3, ... , represents the river reach system.

Thus in a cell that contains a reach, there are two indices. For example

in Figure 3.1 cell (2,3), i.e. cell for which i=2 and j=3, contains
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No Flow Boundary

--- River

---- Aquifer Boundary

o Active Cell

o Prescribed Head Cell

~ Constant Head Celt

o No-Flow Cell

.~

•

Figure 3.1 A Discretized Hypothetical Stream-Aquifer System
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reach(2). The river stage drawdown a and the reach transmissivity r

represent average values for the reach.

For illustrative purposes all types of boundary condition cells are

included in this hypothetical system. They are classified as active

cells, prescribed heaa cell, constant head cells, no-flow c~'ls, reach

cells or third type boundary cells and active cells with (withdrawal)

excitation. Notice that Drescribed flux cells are not mentioned because

they are essentially as same as active cells with withdrawal excitation.

For thi s reason, the prescr; bed fl ux boundary cond; t i on wi 11 not be

particularly mentioned in the rest text.

Formulation of the Finite Difference Equations.

From the mass balance princjple t the sum of all flows into and

out of a cell must be-equal to the rate of change of storage within the

cell. Symbolically, if we consider a cell as a control volume, such as

cell (i,j) in Figure 3.2 t then:

AsQW -QE + QS - QN • -~]l AxAy (3.2)

where QW is the f'o~ rate into the cell from the west side, QS is the flow

rate into the cell from the south side, QN is the flow rate out of the

cell from the north side, QE is the flow rate out of the cell from the

east side, Ax .and Ay are spatial distances of the cell, At ;s the

calculation time step, As is the change to average drawdown in the cell

over the time interval At and ~ is the average effective porosity of the

cell.
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fJ.Y, +1 0
(i+l, j)

QN

OW QE
fJ.y i A E B

(i,j-I) (i,j) (i ,j+1l

QS

dy. I C
1-

(i-I,j)

x,j
'-----1--1• ---..I~·--------..·-'..I----·.JI ----..--

~X~I dXj I ~X~I

Figure 3.2 Illustration of Notations for Indices and Fluxes for a
Finite Different Cell.
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Considering cell (i,j) which is an active cell without excitation,

tho flows into or out of the cell, are appruximately given by the

expression:

QW • Qi,j-1/2 • -TiJ-1/2
(Si,j_1- si,j) AYi

(3.3.a)(Axj _1 + EXj )

2

QE • QY+l/2 • -TY+l/2
(siJ - Si,j+1) AYi

(3.3.b)
(Axj + Axj +1)

2

QS • Qi-1J2J • -Ti-1/2J
(Si-1J- siJ) AXj (3.3.c)
(AYi + Ayi-1)

2

QN • Qi +l/2J • -Ti+1/2J
(si,j - Si+l,j) AXj (3.3.d)
(AYi + Ay i+1)

2

where Ti,j_l/2' Tij+1/2 , Tj_11;j,' Ti~JnJ. are interb10ck transmissivities for each

side of ce11 (i, j) .

USifl9 a fully-implicit finite difference scheme and applying Eq.

(3.2) to cell (i,j), with the substitution of the expressions for the Q

from Eqs. (3.3.a), (3.3.b), (3.3.c) and (3.3.d) into Eq. (3.2) yields

after change in sign:
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where SV Is the average drawdown at the end of a time step (new value) and

SO is the average drawdown at the beginning of a time step (old value).

By placing all the unknowns on the left-hand sidt and the known

quantities on the right hand side, the previous equation takes the form:

where

21. ·l/2Ay.1,)- I

AX. + Ax. 1J )0

(3.4)

(3.4.a)

B.. =
IJ

c.. =
IJ

D.. =
1,)

and Ei,j =

2Ti,i+1/2AYi
AXj + AXj +1

2Ti +1/2.jAxj

AYi + AYi+1

(3.4.b)

(3.4.c)

(3.4.d)

(3.4.e)

Equation (3.4) is the final form of the finite difference equation

for an interior point. It is a fully-implicit finite difference

equation containing five unknowns: S~_1' S~j+l' s~, s~+1J and S~ol.j.
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An equation of this type is written for each active cell in the system.

The total number of unknowns is equal to the total number of equations.

In the system of equations each equation may contain as much ~s 5 unknowns

and the equations must be solved simultaneo.usly.

The coefficients A, B, C.I and 0 are functions of the interblock

transmissivities and of the size 9f the cells. They are calculated once

for all to define the system of equations.

The interblock transmissivities may be calculated in several ways.

With the harmonic averaging procedure the interblock transmissivity has

the form:

TiJ-l/2 •
2(Ti,j) (T~j.l)

Ty + TiJ·l

i • 1,2, •.••• , NR
j z 1,2, ..... ,Nc

whereas with the geometric averaging procedure the expression is:

i = 1,2, NR
j = 1,2, Nc

where NR is the total number of rows and Nc is the total number of columns

in the finite difference model.

Finite Difference Equations Applied to Different Cells.

Equations have to be written for all the active cells in the study

domain. Basically there are six types of cells used to represent various

types of boundary conditions, as shown in Figure 3.1.

An (interior) active cell is a cell in which the drawdown varies but

itlcludes no boundary. A~ cell is a cell which contains a reach.

The drawdown difference between river and aquifer causes a return flow.

ACDDstant head cell is a cell with drawdown prescribed to remain zero all
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the time. A no-flow c..eJl is an inactive cell, actually outside the

aquifer. The transmissivity of a no-flow cell is zero. An active cell

with excitation is a cell where withdrawal may potentially occur, or flux

may be prescribed. The physical nature of the excitation may be ignored.

Actually the excitation may result from withdrawal (sink), return flow,

prescribed flux. A prescribed head cell js a cell with drawdown

prescribed in time.

For noninterior cells, i.e. cells within which a boundary condition

is to be imposed, Eq. (3.4) does not apply strictly in that form.

Different finite difference equations should be properly written for

different cells.

'Reach Cells. The finite difference equation for reach cells (or

third type boundary cells) requires the presence of the return flow on the

right hand side of the finite difference form of Eq. (3.4). However,

because this return flow depends upon the unknown drawdown (Qr • rS), that

term is actually placed on the left hand side, namely:

(3.5)

In some cases if the time step ~t is not small enough, then using

average return flow during a time step, namely

on the right hand side would be better. Hence an alternative equation

for a reach cell is:
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(3.7)

Equation (3.7) is no longer a purely fully-implicit finite difference

equation, since the average return flow during the time step is expressed

via a Crank-Nicolson type scheme. If there are third type boundary cells,

beside the reach cells, in the study area, the finite difference equations

are the same as Eq. (3.7) except that the symbol =- refers to the

appropriate conductance for the boundary. Equations.(3.5) and (3.7>- are

for the reach cells where there is no ootential external excitations.

Active Cells with Excitation. In a cell that contains a sink

excitation, the finite difference equation (for the generation of the

discrete kernels) includes a unit pulse on the right-hand side, thus is

of the form:

(3.8)

+ (A + B + C + 0 + E)ijs~ • Eysij + U{n)

where U(n) is a pulse function (i.e. of value one for 0 ~ n ~ 1 and
o

zero

for n > 1) and n is the number of time periods.

Constant Head Cells. For a constant drawdown cell (at value zero)

the general interior equation, Eq. (3.4), can be used with the special

trick (Trescott, et al., 1976) of assigning a very large value to the

effective porosity, say ~ij. 1.0E+20 (to represent ~ij ~~, so that Eij ~ ~),

in order to keep s~ = o
si,j. This will cause the drawdown in the cell to
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remain unchanged. There is flow exchange with the adjacent cells but

No-Flow Cells. For a no-flow cell the general interior equation

applies but the interblock transmissivities are equal to zero in a no-flow

cell. The coefficients A,B,C,D in Eq. (3.4) will have values zero. Thus

there is no flow exchange with the surrounding cells. If on one or two

sides of a cell there is a no-flow boundary, such as cell (1,1), then some

terms are dropped automatically in Eq. (3.4). For cell (1,1) in Figure

3.1, since left and bottom sides of the cell are no flow boundaries, the

coefficients A and C would be equal to zero {T~l~ • 0, TV~l = O}.

Prescribed Head Cells. For a prescribed head cell the general

interior equation Eq.(3.4) is applied,

(3.4)

However, if cell (i,j) is the excitation cell, the drawdowns sij at both

time 0 and v remain value of 1.0 for the first time period, and zero for

all the rest time periods. And in all the other prescribed head cells

drawdown keeps zero all the time.

Determination of the Drawdown Discrete Kernels

In a finite difference model, different finite difference equations

are applied on different cells. According to the definition, the drawdown

discrete kernels, are the solutions for a system of finite difference

equations under such an excitation pattern that every time there is only

one unit pulse of pumping in one cell during the first tiwp. R~rjod and no
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pumping in any other .cells .all the time. If this unit pulse of pumping

happens at reach cell, U(n) should be added at the right-hand-side of Eq.

(3.5) or (3.7). It must be mentioned that for a prescribed head cell, the

unit pulse of excitation is a unit depth of drawdown. That means the

drawdown in that particular cell keeps one for the first time period and

zero for all rest time periods, and the drawdowns in all other prescribed

head cells keep zero all the time. Changing the excitation pattern to have

a unit pulse of pumping in another cell, another set of drawdown discrete

kernels are obtained. According to the need, a unit pulse excitation can

be imposed on any cell which might have any kind of physical activities

previously discussed (e.g. sink, reach, etc.).

There are many techniques for solving a system of 1inear--equa.tions.

Here th~ subroutine UDU, developed by Erik Thompson, professor of Civil

Engineering at CSU, is used to solve the sY.~.~em .Qf finite ·difference

equations.

Time Period and Time Step

Before the calculation of the discrete kernels, a time period must

be selected. The time periQd should be chosen according to the simulation

or optimization purpose. Usually, the time period is chosen as one week,

two weeks or one month bec;~u.s.e the ..groundwater flow in the aqu i fer is

pretty slow. The time period ~e1ected for the discrete kernels should be

the same as the desired simulation output interval.

In the solution of the finite difference equations the ;time step At.
is selected to meet specified requirements of- accuracy. Since the

excitation applied to the system is a unit pulse, the discrete kernels

within the first two time periods are much more sensitive to the time step
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than during the later periods. When the excitation is applied and

immediately after it is stopped, the system responds dramatically, whereas

after that the system responds more gradually, relaxing itself into an

equilibrium condition. For this reason, a small time step, Atmm , is used

for the first step calculation. A time step multiplying factor ~ is

chosen. The subsequent time steps are increased by the multiplying factor

~ (AtD+1- ~tD) until a maximum time step At.. is reached. This procedure

is used for the first two periods. A full period is used as the time step

for the remaining periods of calculation. The time step is defined as a

dimensionless parameter, which is always equal to a certain fraction of

one time period, such as 0.01, 0.2, .•.• To avoid confusion the symbol OT

is used to represent the time step as a fraction of one time Deriod.

Solution for Return Flow Discrete Kernels

The calculation of the return flow discrete kernels is carried out

at the same time as the calculation of the drawdown discrete kernels. In

the auxiliary problem, the river stage drawdown in each reach cell stays

zero all the time. Where there is a unit pulse of excitation in one of

the cells, the return flow in any reach is only a function of the response

drawdown in that cell which contains the reach, i.e.,

(3.9)

where p is the index of the reach. The average return flow during the

mm time step, ending at time t m and of duration Dlm, is:

(3.10)
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where [i,j](p) is the index pair of the cell that contains reach p, t m is

time relative to beginning of period expressed in units of periods.

The return flow discrete kernel during a time period or in reach p,

included in cell (i,j), is the cumulative volume of return flow during the

whole time period, symbolically:

(3.11)

where M(n) is the number of time steps within the time period n, t m is
M(n)

time at the end of time step m, t m • I DT~, QtP(tm) is the point
A-I ·

value of return flow at reach p at time t mand sl~~)(tm) is the point

value of drawdown in cell (i,j) at time t m•

The mean return flow discrete kernel during time period n in reach

p ; s:

(3.12)

Unlike the.drawdown discrete kernels &() which have to be calculated for

a11 the act ive cell s, the return flow discrete kernel s need only be

calculated for the cells that contain reaches.

Moving Subsystem

Based on the fact that the responses (aqui fer drawdown or return

flow) due to a unit pulse of excitation at one cell are significant only
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within a relatively small region around the excitation (a much larger

region for confined aquifers), the moving subsystem procedure is

introduced in the generation of the discrete kernels in the._case.of an

unconfined aquifer.

The size of the subsystem is determined by the aquifer properties and

the total number of time periods for generation. The principle is that

during the calculation horizon the responses outside of the subsystem

should be practically zero. .The size of the subsystem can be decided by

trial tests or by an approximate formula (Verdin, et al., 1981). Since

the unit pulse excitation must be located at the center of the subsystem,

the number of cells in a subsystem is always odd, such as 3 by 3 cells,

5 by 5 cells and so on. To avoid a mass balance error, the external

boundary condi t i on for the subsystell, is a no-flow boundary.

Figure 3.3 illustrates the manner in which the moving subsystem

concept works. Having chosen a 3 by 3 subsystem size, based on the

aquifer properties, if there is a unit pulse of pumping at cell (2,2) then

the subsystem covers the surrounding 9 cells as shown in Figure 3.3. If

there is another unit pulse of pumping at cell (4,3), then the subsystem

with its 9 cells will be centered at cell (4,3) •

.For each subsystem, the number I)f fi ni te di fference equations is

equal to the number of cells within the subsystem. let us consider a

system of ;nt~~est with 400 cel1s. For each set of discrete kernels (that

is for all the responses due to a unit pulse of pumping), a system of 400

finite difference equations must be solved simultaneously if a moving
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Figure 3.3. Illustration of Moving Subsystem Concept.
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subsystem is not used. On the other hand for a 3 by 3 moving subsystem,

only 9 finite difference equations need to be solved simultaneously. Only

the 9 drawdown discrete kernels which are practically non-zero

aregenerated for each time period. At the same time return flow discrete

kernels are calculated. The number of return flow discrete kernels in a

subsystem is equal to the number of reaches in it.

After _the discrete kernels in one subsystem for all the time periods

required are generated, the suhs~tem i; m~ved to the center of the next

cell. One after another, the moving subsystem has to be centered to all

the active cells with potential excitations. It is important to note that

if the initial conditions will be taken care during simulation, all the

active cells must be treated as active cells with potential withdrawal

excitations. Again let the total number of cells in the system be 400.

The discrete kernels can be generated for the ~ystem as a whole or by

using the moving sllbsystem procedure. Using the sy~tem as a whole (400)2

drawdown discrete kernels for one time period must be generated ~hj1i with

the moving subsystem procedure only 9 (400) drawdown discrete kernels need

to be generated.

The conclusion is quite clear that witb the moving subsystem, the

cost for the genp.ration of the discrete kernels is reduced tremendously,

especially for a large-scale system. However, two points must be made.

F~rst, for a confioed aquifer, since the response to an excitation is felt

almost instantaneously throughout the aquifer, it is not suitable to use

a moving subsystem except a larqe one. Second, since the moving subsystem

is only proper to generate the discrete kernels for a limited time

horizon, during long time simulations, the sequential reinitialization
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techni que must be used, together wi th the generat i on of the di screte

kernels using the moving subsystem procedure, for practical problems.

SIMULATION MODEL

Once all the discrete kernels have been generated and saved, major

investigations can be pursued by running the simulation model under a

variety of different circumstances and with various patterns and types of

excitations.

The simulation model is based on a series of algebraic formulae. The

equation for calculation of drawdown in the aquifer was developed

previously as Eq. (2.36) which represents a linear superposition over

space and time for different excitations. The drawdown of aquifer in cell

"g)at the end of the time period n due to all kinds of excitations in an

(i,j) system is:

(3.13)

where g is an index for a particular cell, which can be characterized

alternatively by pair of indices (a, ~) representing the cell center

coordinates. In Eq. (3.13), the discrete kernels cSJ,ij(') are already

obtained from the generation model. The initial drawdown of the aquifer

s~, the pumping rate Q;j(') and the river stage O';j(') are provided as

.;nputs. The art; fi ci a1 pumpi n9 rates are cal cul ated by an ; ntegr_a~ed

finite difference form of the steady-state governing equation:
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Application of Eq. (3.13) for period 3 and beyond is not possible since

cS(3) and cS(4) are not known. However taking s8(2) as the new initial

drawdown~and in addition recalculating the artificial pumping rate Qij and

the artificial return flow rate Q~: since they depend upon the initial

conditions which are now different at time 2 than they were at time zero,

Eq. (3.13) can be reused for calculation of drawdowns for perioQ 3 and 4,
I

and so on. That means limited number of discrete kernels can be used for

unlimited number of time periods (as long as the system is time-invariant)

through sequential reinitia1ization technique.

The propagation in space can also be explained by some illustrative

examples. One may wonder how it is possible to make a simulation for a

large scale area, such as several hundreds of cells, by using the discrete

kernel s generated within a 1imited "moving subsystem" such as 3 by 3

cells. One c'an argue very reasonably that within a certain number of time

periods such as two months, the drawdowns outside of the subsystem due to

pumping at the center may practically be zero. However it is certainly not

true after 10 years! This argument is correct and it is accounted for by

the reinitia1ization technique because there is spatial propagation beyond

the boundaries of the moving subsystem.

Consider the example of the stream-aquifer system shown in Figure

3.4. During the generation procedure, all the cells in it are considered

as potential excitation cells. Using a finite difference model, 25 ~ets

of drawdown and re.turn f'_ow discrete kernels are generated for only one

time period, by moving a subsystem of 3 by 3 cells from cell (1,1) up to

cell (5,5). In the simulation, the initial aquifer and river stage

drawdowns everywhere, for this example, are assumed to be zero. The only
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excitation is a lone pumping ;n cell (4,2) for the first time period.

After that there are no excitations at all.

The responses at the end of the first time period are certainly

limited within the subsystem indicated on Figure 3.4 by the dashed line.

In the case of Figure 3.4 the s{I,J,I), drawdowns in cell of coordinates

I and J, at time period 1, are different from zero only for I ~ 3 and for

J S 3. Similarly the return flo~ Qr (p,l) in reach p during period 1 are

different from zero only for p-3 and 4. Even though pumping has stopped

after the first period, the drawdowns at the end of the first period will

cause a flow out of the 3 by 3 box. Thi sis due to the fact that

artificial pumping rate is a function of the drawdowns of the four

neighboring cells. After the first period, for example, the ~rtificia1

pumping rate in cell (2,3), which ;s outside the box, is not zero, because

one of the neighboring drawdowns, such as drawdown in cell (3,3), is no

longer zero. Thus during the second period, cell (2,3) is excited by a

Qa in that very cell and a Q& in cell (2,2), (3,2), (3,3) and (3,4).

Therefore in all the cells, except the bottom right corner cell (1,5),~

the responses, either drawdowns or return flows are different from zero

at the end of the second period.

One can see that in this way, a large scale system can_be simulated

by those discrete kernels generated within many small "moving subsystems".

Th is is the essent ia1 reason for the cost effect iveness of the whole

calculation procedures. From these two examples, one may develop

an intuitive feeling about the paropagation in time and in space for the

approach behind the name "sequential reinitialization."
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'. 0 Cell Feeling Excitation already during the First Periad

~ cen Feeling Excitation Starting in Second Period

~ Cen Not Feeli~~ Excitotion even during Second Period

Q(4,2)

rc:n~r of
Box

2

3

·4

I 1

L
J. • Cell with Unit Pulse Excitation

Figure 3.4 Illustration of the Spatial Propagation of the Zone of
Influence of a Unit Pulse Excitation Beyond the No-Flow
Boundary of the Box by Sequential Reinitialization
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Formulas for Sequential Reinitialization. The basic procedures of

sequential reinitialization is to predict drawdowns u~ing Eq. (3.13), for

as many periods as there are discrete kernels available from the

generation step. Let us say that a total of Ndiscrete kernels i.e. 6(1),

6(2), ..... ,&(N) are available. Then with Eq. (3.13) drawdowns can be

predicted at period times 1, 2, ••. , N. At time, N ,one has run out of

discrete kernels to proceed further. However, the predicted drawdowns at

time Ncan be thought of as initial drawdowns for the future times. Then

Eq. (3.13) can be used again. However since the initial conditions are

different at time Nthan they were at time zero, the artificial withdrawal

rates must be recalculated. Once done, it suffices to use Eq. (3.13) to

predict drawdowns for another stretch of N periods, etc. LetQa (Nk)
. -

refers to the value of that rate after k reinitializations have occurred.

Thus at time z~ro and during ~ firs~ ~ periods~. After the first

retnJt.ia.Liz.a.t.ion k-l.' etc... Let s,(Nk) denote the initial drawdown after

k reinitial~zations have occurred. The generalization of Eq. (3.13) for

the stretc_~ of time fro~ Nk+l to!N{k+l) is:

Na Nc n
sg(Nk+n) :I s,(Nk) + I I I &s.ij (n-v+l)

i=1 j=1 v-I

(3.17)

valid for n-l,2, •.. ,N and k·O,I,2, ..•.

Even though many di screte kernel s may be ava; 1abl e one may wi sh to

re in it i ali ze before one runs out of kernels. More correctly then, N

represents the number of periods within a "reinitialization stretch." It
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cannot .!-xc'le..d. t.h.e n~mbe.!' of available disc!~_~~ .~ernels. One could

conceive of reinitialization stretches of different sizes. In Eq. (3.17)

it would suffice to replace every product Nk QY t(k} defined as:

(3.18)

whereiN(~) 1s the number of periods within the·~~·reinitializati~n ~1retch

and t(k) is the momp-nt at which the kth .""einitialjzation occurs. The

stretch ~e.£m:e--uiniti.lljzation fi rst occurs is the zeroth stretcij. Again

s~ (Nk) represents the initial condition for the ktJI
..reinitial ization

stretch. It represents the real initial condition only for k = O.

Similarly, Qr~a (Nk) and Qija (Nk) are the artificial return flow rates and

artificial pumping rates during the kth reinitialization stretch.

Therefore all these initial conditions have to be updated at the beginning

of each new reinitialization period. Equation (3.17) shows that the

drawdowns at any period time can be computed by using previously computed

drawdowns as initial conditions and the same set of discrete kernels can

be used over and over again. Similarly the reinitialization formula for

return flows can be obtained by modifying Eq. (3.16) in the form:

(3.19)

for n=I,2, ... , Nand k=O,I,2, ....

The reinitialization formulae given by Eqs. (3.17) and (3.19) provide

a very useful tool in simulation for a large-scale and long time horizon
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.prob1em. ~irs~, with reinitialization, only a few discrete kernels need

to be generated while the total simulation horizon can be as long as

desired. The computations are very rost-effective. SeconalY~ Decause the

generation of the discrete kernels within a moving subsystem is limited

in space, it is also limited ...1n .. time. After sever~l time .p.er.io..ds, the

responses due to any ki nd of exci tation wi 11 not be confi ned wi thi n the

borders of the subsystem. The reinitialization technique is the necessary

tool to propagate respons~s Qverspace{acrossthe boundary of the moving

subsystem) and to extend the responses over time, i.e., to achieve the

natural redistribution. This effect can be seen clearly from the

examples. In most cases the moving ~ubsystem .procedure and the

reinitialization technique must be used t~iether unless the moving

subsystem is selected large enough and the simulation time horizon is not

too long.

On.e shaul d notice that whenever the movi n.9 ~Y.b_~y.sJ._~m and the

sequential reinitiali7ation are used, the discrete k.ernels......must be

generated with ·a unit pulse withdrawal excitatior for all the active

cells, one after another.

SUMMARY OF NUMERICAL PROCEDURES

I~ order to summartze the numerical procedures, several flow charts

are provided. One is the conceptual flow chart ~or the general two-step

procedure. The other twa are the procedures for the generation of the

discrete kernels and the procedures for the simulation, respectively. The

computer~rograms for generation, KERGEN~ and for simulation~ KERSIM, are

developed following the flow charts.
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Flow Chart for General Two-Step Procedure.

The flow chart for the general procedure (Figure 3.5) only reflects

one of thf' ways to conduct a conjunct ive management study, wh i ch is

evaluation by simulation. It shows that as long as the discrete kernels

are generated and saved,. -one .can-evaluate results of the policy variation

by repeated simulations in terms of those discrete kernels and the

relavent excitations.

In a stream-aquifer system, there are usually three kinds of

excitations, which miqht cause aquifer drawdowns and return flows. The

first kind of excitation is ~;rect withdrawal understood in an algebraic

sense from the aquifer, as may be caused by pumping, irrigation,

artificial recharge, precipitation, .... The algebraic summation of these

rates from differ~nt-tause~ is called the net withdrawal rate.

The second kind of excitation is the fluctuation in river stage. The

drawdowns of the river stage in different reaches will usually vary during

different time periods. If one visualizes a river reach as a long and

narrow' Npumping ditch, n then effect of a drawdown in ~iver stage is

equivalent to that of pumping. Therefore it seems logical that this

excitation of river stage variation can be converted to an equivalent one

of net withdrawal.

The third excitation is caused by the lnitial non-eq~ilibrium

conditions. If the initial drawdowns of the aquifer and the initial

drawdowns of the river are not zero everywhere relative to steady state,
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of 5drawdowns

Discrete Kernels of ~ reaam Oows
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eLL pumpiaJ.
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Figure 3.5 Conceptual Flow Chart for General Two-Step Procedure.
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even if there are no external excitations, the water table everywhere will

change. These non-zero initial drawdowns will cause evolution of

drawdowns and return flows. The influence of the non-equilibrium initial

conditions excitation types can also be viewed as that resulting from

equivalent net withdrawal rates by a proper correspondence.

Since the three kinds of excitations can be replaced by equivalent

net withdrawal excitation types, on1.Y the generation of the discrete

kernels for that type of excitation is necessary. They are generated once

and saved. During the simulation, the overall response of the system to

various kinds of excitations, reduced to one equivalent kind, is obtained

by superposition in time and in space.

Flow Chart for Discrete Kernel Generation Procedures

The flow chart for the discrete kernel generation procedure shows

the structure of the computer program KERGEN, which is developed by the

author. There are several options available in the computer program. One

option (FigUre 3.6) is that the program can be used either for a stream­

aqui fer _system or for an is&l-atedaqui fer. Another computer code opt ion

can generate the discrete kernels with the moving subsystem procedure (for

an unconfined aquifer) or not using it (e.g. for a confined aquifer).

Flow Chart for Simulation Procedures

The flow chart for simulation procedures in Figure 3.7 shows the

structure of the computer program KERSIM, which is also developed by the

author. It shows the procedures for using the ..sequentialrei-nit-i-alization

techniques for a stream-aquifer system.
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Procedures for optimization will depend on the kind of mathematical

programming selected for use and upon the type of objective function and

constraints pertinent to the problem at hand.



Set the value.

for program parameters

72

FLOW CHART SHOWING DISCRETE KERNEL GENERATION PROCEDURES

1

....-------'-------.2

3
Read .q':.'I~~r.~!!ametersand

cell Index, CALL REACiN

No 4

.... -.1 -.5

Read re~meter.and

reach Index, CALL READRH

Calculate Interblock
..--/".--

trans"."Is.!~vltYtCALL TAVG

6

9A ,No

,.... 7

Calculate coefficients for artificial- .~ ..._.. -".' ~ -,._----_ ..-
pumping rates equations and

save them on tape, CA~~~ADY

98

Figure 3.6.a Path of Information and Calculations for Program KERGEN.
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Fl.OW CHART SHOWING DISCRETE KERNEl. GENERATION PROCEDURES

(Continued)

.- .... --,9A

Set the coefficient matrix for
system of finite difference equations
for the entire system, CALL MATRX

10ANo

.--------"'---------., 11A
Ves Calculate time-dependent coefficients

of equations and solve them to get
one set of drawdown and return flow

discrete kernels, CALL SDELTA

....------------------.12A
Write drawdown and return

flow discrete kernels, CALL WRITE

r------------------.13A
Save discrete kernels on tape

for the cells of Interest

Next Cell )

Stop

Figure 3.6.b. Path of Information and Calculations for Program KERGEN.
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lOBNo

llB
Center moving sUbsystem on It

Yes

12B
Fill the SUbsystem array with

the parameter values of aquifer
and reach fram the array

for the entire system

13B
Calculate the coefficient matrix

for subsystem, CALL MATRX

14B
CalCUlate time-dependent coefficients
of equations and solve them to get the

set af drawdown and return flow discrete
kernefs for this subsystem, CALL SOELT A

15B
Write, CALL WRITE

16B
Save all kernels on tape

FLOW CHART SHOWING DISCRETE KERNEL GENERATION PROCEDURES

(Continued)

~B
I

~

Next cell )

~18B
'----------~ Sto!' )

F' 3 6 Path of Information and Calculations for Program KERGEN.1gure . .c.



75

FLOW CHART SHOWING SIMULATION PROCEDURES

Set values for program parameters .

"
Read number of total simulation 1time periods NPERIOD

"
Read Initial condition of aquifer

"
Read cell Index, discrete kernels and

artificial pumping rate coefficients

from tapes

1

2

0;:,

Figure 3.7.a. Procedures to Carry a Simulation by Program KERSIM.
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FLOW CHART SHOWING SIMULATl0N PROCEDURES

(Continued)

5
Calculate number of r.lnltlallzatlon

needed, NRI • NPERIOD/NTIME

7
Read pumping pattern tor all the time
period. within relnlll.llzetion period

8
Solution to subproblem (1) (pumping)
and subproblem (3) (Initial condition)

. CALLSUBPRO

9
Read rtver stage drawdown for all the time

periods within relnltlallzatlon period

10
Solution to subproblem (2) (reach problem)

CALL SUBPRO

11
Superpose solutions together

------'--------1
1

12Write reSUlts

.
No~ NRI-NRI. VJ

Figur:,: 3.7.b. Procedures to Carry a Simulation by Program KERSIM.



Chapter 4

ACCURACY AND EFFICIENCY OF THE METHODOLOGY

AND OF THE CALCULATION PROCEDURES

The purposes of the methodology tests were to check the correctness

of the methodology and computer codes and to demonstrate their efficiency.

The tests are based on two very simple hypothetical cases and one more

realistic hypothetical case. The computer codes KERNEL, KERGEN AND KERSIM

are developed by the author. The procedures for use of these computer

codes are described in a separate report (Zhang and Morel-Seytoux, 1989).

COMPARISON OF RESULTS WITH AN EARLIER PROCEDURE

In the early work of Morel-Seytoux (Morel-Seytoux et al., 1973;

Morel-Seytoux, 1975; Morel-Seytoux and Daly, 1975) the procedure for the

generation of the discrete kernels of drawdown and of return flows was

different than the one presented in this report. In this early procedure

the discrete kernels of drawdown were first generated without the presence

of the stream. Then in a second step the presence of the stream was

cons idered and the discrete kernels of return flow generated, and if

desired, the discrete kernels of drawdown, including the influence of the

stream, are calculated. Because the calculation procedures are different

but the results should be the same, the comparison verifies the

correctness of the new procedure presented in this research.

77
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Description of Test Case

Figure 4.1 displays the hypothetical stream-aquifer configuration and

the grid systp.m _use.d for the comparison. The cell size is uniform with

Ax = Ay • 1600 m. The aquifer transmissivity has value 50.000 nr/period.

The effective porosity has value o.~. The river passing through the area

is divided into five reaches. The river reach transmissivity is uniform

of value equal to 100.000 nr/Deriod. The number pf .periods selected for

the generation of the discrete kernels is four with the month being the

period. There is pumping in only one cell of coordinates (2,2). The

boundary condition is one of no flow along the four sides and initially

the water table is horizontal.

Comparison of the Discrete Kernels of Return Flow

The comparison is made by running two different programs KERNEL (for

the early procedure) and KERGEN (for the new procedure). Two runs are

made for two sets of time parameters, that is the initial calculation time
.._." -.. .

step Atmm, the multiplication time step factor ~ and the maximum time step

Atmu • In one run Atmm • At.. • 1 period • 1 month. The comparison for that

run is displayed in Table 4.1. The results are exactly the same. This

indicates that the two methods are strictly equivalent (which is a

theoretical result) even as numerically implemented. This comparison

indicates that the new procedure was programmed correctly for the

computer.
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Figure 4.1. Stream-Aquifer Configuration and Grid System Used in
Comparison of Two Procedures for Discrete Kernels Generation.
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Table 4.1

Comparison of Return Flow Discrete Kernels by Two Methods

(Atmm • At.. • 1 period)

Uniform Unit Pulse of Withdrawal Occurs in Cell (2,2)

a) Early Procedure (e.g. Morel-Seytoux and Daly, 1975)

Period
Reach 1 2 3 4

1 -0.00007 -0.00028 -0.00056 -0.0085

2 -0.0031 -0.00090 -0.00138 -0.0068

3 -0.00451 -0.01025 -0.01138 -0.0167

4 -0.06691 -0.10925 -0.06988 -0.0405

5 -0.00481 -0.01113 -0.01270 -0.0122

(b) New Procedure

Time = 1 Time • 2 Time • 3 Time = 4

REACH 1 -.00007 -.00028 -.00056 -.00085
REACH 2 -.00031 -.00090 -.00138 -.00168
REACH 3 -.00451 -.01025 -.01138 -.01067
REACH 4 -.06691 -.10925 -.06988 -.04605
REACH 5 -.00481 -.01113 -.01270 -.01222
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In a second run AtmiD was set at a value of 0.01, Atmu at 0.10 and ~

was equal to 1.5. Figure 4.2 displays the time response of return flow

rates due to a unit pulse of pumping in cell (2,2) for reaches 3, 4 and

5. There is very little difference between the procedures, the

differences being due to differences in numerical qrrors ·of the two

procedures.

Comparison of the piscrete Kernels of Drawdowns

The same aquifer configuration (see Figure 4.1) is used with the same

aquifer and stream parameter values. In one run the time parameters are

Atmm • Atma • 1 period • 1 month. The results are shown in Table 4.2. The

results are identical, again as they theoretically sho_uld be. .This

comparison provides further assurance that the new procedure

implementation on the computer is correct.

In a second run the time parameters were: Atmm • 0.01, Atmg = 0.10

and ~ (AFAC in computer code) • 1.5. Figure 4.3 shows the results for

cells (1,2), (2,2) and (3,2). Figure 4.3 also shows the drawdown response

due to a unit pulse of pumping without the presence of the stream, denoted

the isolated aquifer discrete kernels. Again there are no differences

between the two methods. The drawdowns when the river is present are less

than when it is not, the river providing a partial replacement for the

water taken out of aqUifer storage by pumping.
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Figure 4.2. Evolution of Return Flow Rates in Three Reaches due to a
Unit Pulse of Pumping in Cell (2,2) of Stream-Aquifer System
Shown in Figure 4.1.
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Table 4.2.

Comparison of Drawdown Discrete Kernels by Two Methods

(At.. • At.. • I period)

(a) Early Procedure

Period Time • I

Ja I J. 2 J. 3 J. 4 J= S

1= 1 .1691SE-07 •I0346E-06 .14731E-07 .14772E-08 .16061E-09
1= 2 .103S8E-06 .13381E-OS .9010SE-07 .61429E.. 08 .48866E-09
I- 3 .163ISE-07 .96112E-07 .I4182E-07 .lS477E.. 08 .16637E-09

Period Time = 2

J. 1 J. 2 J. 3 J. 4 J::a S

1= 1 .3857E-07 .14928E-06 .31660E-07 .40S89E-08 .S7768E-09
1= 2 .14971E-06 .84677E-06 .11499E-06 .I1913E-07 .13673E-08
1= 3 .36211E-07 .1264SE-06 .29534E-07 .43733E-08 .60818E-09

Period Time • 3

J. 1 J. 2 J. 3 J= 4 J. 5

1= 1 .S9316E-07 .16S01E-06 .45990E-07 .70578E-08 .12596E-08
1= 2 . 16S98E-06 .55087E-06 .11264E-06 .lS750E-07 .24439E-08
1= 3 .54268E-07 .I2746E-06 .41S67E-07 .78132E-08 . 13468E-08

Period Time :II 4

J. 1 J. 2 J. 3 J- 4 J= S

1= 1 .76826E-07 .16564E-06 .56437E-07 .99434E-08 .2IS8IE-08
1= 2 .I673IE-06 .37013E-06 .10070E-06 .17785E-07 .35733E-08
1= 3 .68628E-07 .11699E-06 .49443E-07 .11297E-07 .23417E-08
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(bl New Procedure

Location of Pumping is: 1·2 J • 2

Period Time • 1

J. 1 J. 2 J. 3 J= 4 J= 5

1= 1 .16915E-07 .10346E-06 .14731E-07 .14772E-08 .16061E-09
1= 2 .10358E-06 .13381E-05 .90105E-07 .61429E-08 .48866E-09
1= 3 .16315E-07 .96112E-07 .14182E-07 .15477E-08 .16637E-09

Period Time • 2

J. 1 J. 2 J. 3 J= 4 J= 5

1= 1 .38578E-07 . 14928E-06 .31660E-07 .40589E-08 .57768E-09
1= 2 .14971E-06 .84677E-06 .11499E-06 .11913E-07 .13673E-08
1= 3 .36211E-07 .12645E-06 .29534E-07 .43733E-08 .60818E-09

Period Time • 3

J= 1 J. 2 J. 3 J. 4 J= 5

1= 1 .59316E-07 .16501E-06 .45990E-07 .70579E-08 . 12596E-08
1= 2 . 16598E-06 .55087E-06 .11264E-06 .15750E-07 .24439E-08
1= 3 .54268E-07 . 12746E-06 .41567E-07 .78132E-08 . 13468E-08

Period Time = 4

J. 1 J. 2 J. 3 J. 4 J. 5

1= 1 .76826E-07 .16564E-06 .56437E-07 .99434E-08 .21581E-08
1= 2 .16731E-06 .37012E-06 .10070E-06 .17785E-07 .35733E-08
1= 3 .68628E-07 .11699E-06 .49443E-07 .11297E-07 .23417E-08
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Conclusion of Comparisons

The new procedure has been implemented correctly as it yields the

same results as for the early procedure. The new procedure is simpler

as it requires only one step: generation of discrete kernels by a finite

difference procedure. In the early procedure, followinq the first step,

which generates drawdown discrete kernels as if the aquifer was isolated,

two systems of linear equations must be solved to obtain the discrete

kernels of return flows and then of drawdowns in the presence of the

stream. The new procedure is also more cost effective as shown by the

comparison given in Table 4.3.

Table 4.3

Generation Cost of Discrete Kernels

Time Parameter Early Procedure New Procedure

~tmm = ~tmu • month,

~tmm = 0.01, Atmu • 0.10

0.589 cp sec. 0.251 cp sec.

1.188 cp sec. 0.358 cp sec.

Also the new procedure requires somewhat less storage.
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ACCURAC" AND EFFICIENCY OF THE REINITIALIZATION TECHNIQUE

For a given stream-aquifer system, the results of two procedures to

predict return flows are compared. In one case the reinitialization

~echnique and the moving subsystem procedures are not used, whereas in

the second case they both are.

Description of Stream-Aquifer System for Accuracy Test

Figure 4.4 provides the description of the geometry of the stream­

aquifer system as well as the grid system and the boundary conditions,

used for th:s test. The aquifer is homogeneous with a transmissivity

val ue of 50, coo or/month and effective poros i ty val ue of 0.20 .. There

are seven riv~r reaches and one pumping site in the system. The reach

transmissivity in each reach is the same, of value 100,000 or/month. The

aquifer and r;'er drawdowns are initially all zero.

Descri pt i on of Two 0; st i net Procedures. The procedure wi thout

reinitia1ization simply generates the drawdown and return flow discrete

kernels for 9 periods (9 months) due to a unit pulse of .pumping at cell

(3,3) for the entire s.ystem by program KERGEN, selecting the option "no

moving subsystem." The .proc:_edur! with reinitialization r~.Qu.tres two

steps. In a first step the drawdown and return flow discrete kerneJs are

generated only for one time period within a 3 by 3 ~oving subsystem by

program KERGEN, se~ecting the option "with moving subsystem." In an

a1ternat i ve fi rst step, the discrete kernel s are generated for three

periods.

The mov; ng subs~!stem center moves from one cell to another for a11

the active cells. Ev~ry time, when the subsystem is centered in an
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active cell, a ~et of discrete kernels will be generated for 9 cells ior

one or tnree time 4>eriods. In total 33 ..iets of drawdown and return flow

discrete kernels are generated for the fuilJre need of reinitialization in

the simulation stage. In the second s-t-ef·, simulation is performed by

program KERSIM, with zero init;al _drawdowns everywhere and for a unit

volume of pumping only at cell (3,3) during the first time period. The

procedure with reinitialization was run twice. In one run,

rei ni t i ali zat ion occurs after every 3 t ill1e peri ods. In another run

reinitialization is performed every time period.

CQmparisQn Qf the Results. Since the bQundary cQnditiQns and initial

conditions are exactly the same, the results by the different prQcedures

shQuld also be the same. The return flows in reaches 3, 4 and 5, for 9

time periods are shown in Figure 4.5. Clearly the results are very clQse.

Actually it is nQt known for sure which Qf the 3 results is the mQst

accurate one. Since none of the solutions are analytical, all are subject

to various errors (rounding, truncation, etc.)

Description of Efficiency Test

A small area of the South Pl atte Ri ver basi n is chosen for thi s

efficiency test. (The area is small but all the data are from the real

case). The purpQse of the study is to demonstrate the steps invQlved in

applying the model tQ a real stream-aquifer system, to show the efficiency

Qf using the reinitializatiQn technique and to analyze the results. The

emphasis in the study is Qn the calculations of the return flows due tQ

the net withdrawals and the natural nQn-equilibrium conditions over one

irrigation season.
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The area of concern extends from the Henderson gaging station to the

city of Brighton along the South Platte River. The geographical features

and aquifer properties of this area are shown in Figures 4.6, 4.7, and 4.8

which are copied from the U.S. Geological Survey maps compiled by Donald

R. Albin and R. Theodore Hurr (1972) (transmissivity) , and Paul A.

Schneider, Jr. (1972) (saturated thickness and water table altitude).

Delineation and Discretjzation of the Stream-Aquifer System.

The delineation and discretization of the stream-aquifer system are

shown in Figure 4.9. The location of the river reach and boundary of the

aquifer are copied from USGS maps. A grid size of one mile by one mile

is selected. The overall rectangular domain shape is required by program

KERGEN and as a result some inactive cells are included in the study area.

The cells outside of the real aquifer boundary, cross-hatched, are treated

as no-flow cells. The reac~es are numbered from 1 to 8 from upstream to

downstream. The rest of the reaches are ignored (i.e. are tn no hydrau1ic

connection with the aquifer). The boundaries on the east and west sides

are basically along the natural aquifer boundaries. The boundaries at the

upstream and downstream ends are artificial boundaries. For simplicity,

they are treated as constant head boundaries. The number of total grids

is 9 (number of rows) time 7 (number of columns) • 63, and the number of

total active cells is 32.

Aquifer Transmissivity - An average va1up. ~f aQuifer transmissivity

read from Figure 4.6 is assigned to each cell. For a no-flow cell, the

transmissivity is zero. The values are shown in Figure 4.10. The values

in gallon per day per foot units were converted to square meters per 15
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days (1000 gallons per day per foot is equal to 186.3 square meters per

15 days).

Aquifer Effective Porosity - The value of aquifer effective porosity

of the South Platte River basin was taken to be 0.17 as determined by

other studies (Restrepo, 1987).

River Reach Transmissivity - The river transmissivity for each reach

is expressed as a function of aquifer and river parameters according to

Eq. (2.3.a) repeated here for convenience:

r =- T L (Wp + 2e
e e + IOWp

(2.3.a)

where T is the transmissivity of the aquifer underlying the reach. The

estimation of T flere is the average transmissivity along the reach from

the map, which is different from the average transmissivity of the cell.

In Eq. (2.3.a) e 1s the average saturated thickness of the aquifer along

the reach, L is the length of the reach, and the Wp is the wetted

perimeter, practically the width of the reach. The length and -width of

each reach are approximately estimated from areal photographs (TOUPS

Corporation, taken in October 1977). The saturated thickness, e, is

obtained from Figure 4.7. The values of the reach transmissivity (mr/15

days) calculated by Eq. (2.3.a) as well as the relevant parameters are

given in Table 4.4.
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Table 4.4

River Reach Transmissivity and Other Parameters

Reach
Par8ln8ter 1 2 3 4 5 6 7 8

Saturated
Thickness 7.6 9.1 6.1 6.1 3.0 9.1 7.6 6.1

e
em)

AquIfer
16,767 22,356 20,493 18,630 9,315 20,493Transmissivity 20,493 18,630

T
(mI115 dey)

w,dth of
Reach. 57.9 45.7 48.8 42.7 42.7 48.8 54.9 64.0

Wp
eM)

Length of
Reach 2,092 1,609 1,770 2,011 644 1,931 n4 1,207
l

eM)

Reach
Transmissivity 575,071 541,934 733,m 178,779 226,357 586,187 245,785 434,614

r
(vl115 days)
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Time Parameters. According to the user, return flows at every half

month interval are desired. The length of the period is 15 days and there

are 9 time periods within the irrigation season (about four and half

months). In order to have good accuracy, the initial time step Atmm is

selected as 0.01 period and the maximum time step for the first two time

periods is set to 0.1 period. The time multiplier factor is 1.5.

Selection of Subsystem Size. By com~arison of the results using a (3

by 3), a (5 by 5) or a (7 by 7) subsystem~ it is found that to generate

the discrete kernels for only 3 periods, a (3 by 3) subsystem is adequate;

and to generate the discrete kernels fer 9 time p.eriods, a (5 by 5)

subsystem is fine. For the purpose of comparisons, three procedures are

used with different sizes of subsystems.

Initial Conditions. The initial wate' table drawdowns of the study

area are estimated from Figur~ 4.8. which depicts the water table contour

lines for the study area in March 1968. The average initial aquifer

drawdowns for all the cells are shown in Table 4.5. The values are

relative values compared to the elevation of 5000 ft, above the sea level

selected as datum. For the no-flow cells, all the values are entered as

zero and are not needed.

River Stage Drawdowns. River stage drawdcwns do vary with time and

space. In this hypothetical case, for simplicity, river stage drawdowns

for all 9 time periods are assumed to be stead\J. The values are shown in

Table 4.6, relative to the 5000 feet datum above sea level.

Pumping Pattern. In this hypothetical caSf;·, a net uniform withdrawal

;s assumed nonzero only at cell (4,4), which ;s pumping location 14, and

only during the first time period at a rate er:u';ll to 10 million m3/15

days.
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Table 4.. 5

Initial Water Table Drawdowns

(in meters)

J
I 1 2 3 4 5 6 7

1 -9.14 -6.10 -7.62 -13.72 -19.81 0 0
2 -3.05 -1.52 -3.05 -9.14 -18.29 -19.81 0
3 0 -1.52 0.0 -3.05 -9.14 -18.29 0
4 0 1.52 4.57 3.05 0.0 -7.62 -9.14
5 0 0 7.62 7.62 6.10 0.0 -6.10
6 0 0 10.67 12.80 10.67 6.10 0
7 0 0 0 15.24 15.24 12.19 0
8 0 0 0 18.28 18.28 16.76 0
9 0 0 a 21.34 20.42 19.81 0

Table 4.6

River Stage Drawdowns

(in meters)

Reach 1 2 3 4 5 6 7 8

a(m) -.91 .61 5.18 8.23 11.28 13.41 15.85 15.85
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Procedure without Reinitialization. The discrete kernels are

generated within a (7 by 7) moving subsystem for 9 time periods for all

active cells by program KERGEN. Since a (7 by 7) subsystem is almost big

enough to cover the entire study area, it is assumed that the results are

equivalent to one without the use of moving subsystems. The return flows

for 9 periods are calculated by simulation program KERSIM accounting for

the initial water table drawdowns, the river stage drawdowns and pumping

from cell (4,4).

Procedure with Reinitialization Everv 3 Periods. The discrete kernels

are generated within a (3 by 3) moving subsystem for 3 time periods for

all active cells by program KERGEN. Then simulation is performed by

program KERSIM with reinitialization every 3 time periods.

Procedure with Reinitialization Every Period. In this case it

suffices to generate the discrete kernels for one period of time.

Comparison of the Results. Comparison of the results of simulated

return flows due to the initial non-equilibrium conditions, river stage

drawdowns and net uniform withdrawal in cell (4,4), by the three different

calculation procedures, is displayed in Figures 4.11 and 4.12. Return

flows for 6 reaches over 9 time periods are plotted. The results by the

three procedures are very close.

Compari son of the computer time spent for the three cal cul at ion

procedures are listed in Table 4.7. There are quite large differences

between the procedures using reinitialization and without using

reinitialization. This is only a hypothetical case with an area around

32 square miles. For a real study area covering hundreds, even thousands
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Table 4.7

Comparison of Computer Time for Three Procedures

No Reinitialization Reinitialization
Reinitialization every 3 periods every period

Generation 28.516 cp sec. 2.969 cp sec. 2.133 cp sec.
Simulation 8.462 cp sec. 2.666 cp sec. 2.667 cp sec.

Total 36.978 cp sec. 5.635 cp sec. 4.800 cp sec.

of square miles, the computer time saved by the use of a moving subsystem

for the generat i on and by the use of the sequent ia1 rei ni ti ali zat; on

technique will be tremendous.

From this comparison the conclusion can be drawn that the

reinitialization technique is a very cost-effective method with very good

accuracy for large scale stream-aquifer problems with long time horizon.



Chapter 5

APPLICATION TO A PORTION OF THE SOUTH PLATTE

STREAM-AQUIFER SYSTEM

For the particul ar interest on the conjunctive administration of water

resources for the South Platte River, this stream-aquifer model has been

applied to a portion of the South Platte River to estimate return flows

in space and in time. The application includes two parts. The first part

consists of the generation of the return flow discrete kernels. These

discrete kernels characterize the stream and aquifer physical properties.

The second part consists of a simulation of the return flows in terms of

these discrete kernels.

PROBLEM STATEMENT

The South Pl atte flows are sustained by upstream, tri butary and

aquifer return flows from the alluvial aquifer. The significance of the

return flows had already been recognized by the end of the 19th century

(Carpenter, 1869; Carpenter, 1916; Parshall, 1922). The historic records

show that roughly one thi rd of the streamflow comes from the aqui fer.

Aqui fer return flow is thus an important resource in the Bas; n and a

significant component for the water management in this area. Though it

is not possible to measure return flows directly, it is possible to

estimate them fairly accurately from the properties (transmissivities) and

from the state (river stages, water table elevations) of the system.

105
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The South Platte River partially penetrates a long and narrow alluvial

aquifer as it flows from a southwest point to a northeast corner as shown

in Figure 4.8. There is permanent hydraulic connection between the river

and the aqui fer, i. e., there always exi sts a saturated flow exchange

between these two water bodies. Most of the time, the aquifer water table

elevation is higher than that of the river free surface and consequently

water flows from the aquifer laterally into the river. This flow is

called aquifer return flow or, simply, return flow. Sometimes, such as

during the flood season, the river level is higher than that of the water

table and river water seeps into the aquifer. This flow is called seepage

flow and it is a negative return flow. From Figure 4.8, one can see that

return flow varies along the river course. In other words return flow

varies in space and in time.

It is that variation of the return flows in time and space and its

complex relationship with groundwater withdrawals and river flow

fluctuations, that makes the administration of water rights for the South

Platte particularly difficult. Given the character of Colorado's water

law, the "priority" system (first in time, first in right), to allocate

the water properly the State Engineer must anticipate the influence of

current and past pumpage on current and future return flows and therefore

river flows at all surface diversion points.

Figure 5.1 illustrates schematically the need for that estimation of

return flows along the river course. There exists downstream a senior

irrigation water right diversion whereas a junior diversion is located in

the upstream reach of the river. Often during a drought period, the small

river flow can only satisfy the downstream senior right. The junior right
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Figure 5.1. Illustration of Necessity to Estimate Return Flow in Space and
in Time.
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farmers, without a surface water supply, must draw from the groundwater

reservoir to irrigate their crops. That action is reasonable. It is in

periods of shortage that one draws upon one's reserves. However, legally,

these irrigators cannot do so without evidence that their pumpage will not

damage the downstream senior right during the irrigation season.

Alternately, the junior right holders must have an "augmentation plan"

that will deliver, when needed, volume compensation for the damage to

streamflow resulting from the pumpage. Of course the parties involved

cannot agree to a plan if the extent and location of the damage cannot be

estimated realistically in space and in time.

OBJECTIVES OF STUDY

Probl ems simi 1ar to the one just descri bed have been invest igated over

many years starting with a first rather simple operational model for the

description of the 3-way stream-aquifer-well interaction (Morel-Seytoux

et al. 1973) and culminating with a very sophisticated and realistic model

(Morel-Seytoux and Restrepo, 1986) describing the numerous interactions

between hydrology, hydraulic structures (reservoirs, canals, wells)

agriculture, irrigation, law, administration, institutions and economics,

not to mention politics! Different problems need different methods of

solution and it would be foolish to use a complex and therefore rather

cumbersome tool to solve a rather simple problem. The purpose of this

study was to describe well the stream-aquifer interaction and how it is

influenced by both groundwater withdrawal (in a net sense) and river stage

fluctuations, and does so in a manner that permits its coupling with

management investigations in an easy and cost-effective manner. The key

to the successful completion of this task is the development of simple
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algebrai~ relations between the return flows in various reaches and the

net withdrawals from groundwater throughout the system.

DESCRIPTION OF THE STUpy AREA

The study area is a part of the South Platte River Basin between the

Henderson Gaging Station (near Denver) and the Gaging Station near Kersey

(close to Greeley). It is shown in Figure 5.2. The total length of the

river in the study area is about 55 miles or 88 km. There are three

tributaries that flow into the South Platte River in this area. They are

the St. Vrain Creek, the Big Thompson and the Cache La Poudre Rivers.

There are 19 diversion ditches, five of which are believed to be inactive.

Afinite difference grid system is imposed on the study area, as shown

in Figure 5.2. The size of the cell is one mile by one mile (i.e. 1600

m by 1600 m) following the USGS map. With the uniform cell size, the

~otal rectangular area is 42 cells in length and 23 cells in width. Among

the (42)(23) • 966 cells, only 289 cells are active interior cells, which

cover the aquifer, and 27 cells are constant head cells, which are at the

interface of the study area and the rest of the aquifer outside the study

area. The shaded cells are no-flow cells which actually are not

considered in the calculations. The South Platte River in this area is

discretized by the finite difference grid into 57 reaches. The

tributaries are not considered in the interaction betwee~ stream and

aquifer. Only the amounts of tributary inflows are accounted in the mass

balance. The boundary conditions for the 'overall rectangular area are no­

flow boundaries. The boundary conditions along the natural aquifer
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boundary are no-flow boundaries. Constant uniform heads are imposed as

boundary conditions at the interface between a tributary alluvial aquifer

and the main South Platte alluvial aquifer as well as at the upper and

lower end of the main aquifer in the study area.

For agricultural management, a reasonable time period is 15 days. In

one irrigation season there are 8 or 9 time periods. The metric system

is used throughout the calculations. The delineation of the study area

is based on the map developed in the course of a more comprehensive stJdy

(Restrepo, 1987).

GENERATION OF THE RETURN FLOW DISCRETE KERNELS

The drawdown discrete kernels, the return flow discrete kernels CinG

the coefficients needed in the equations for the determination of the

artificial pumping rates, "required in the simulation, are calculated and

saved by program KERGEN. It is based on the following preparation.

Aquifer and Stream Physical Parameters.

The average aquifer transmissiVity for each cell is estimated froin

USGS maps (Albin and Hurr, 1972). The effective porosity is chosen as

0.17 based on previous experience (Restrepo, 1987). The river reach

transmissivity is calculated according to Eq. (2.3.a). The sources of

data are either from USGS maps or from TOUPS areal photographs.

Determination of the Size of Subsystem.

Within the capability of the program, the discrete kernels can be

generated by using subsystems with different sizes or for the whole study

area. A test was designed to check which option is more reasonable. For
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later economic analysis the discrete kernels for 8 or 9 time periods were

required. The generation of the discrete kernels for 9 time periods was

tested in four different ways, using the whole system or using (3 by 3),

(5 by 5) or (7 by 7) subsystems. Comparisons for accuracy and efficiency

in computer time are listed in Table 5.1.

The comparison suggests that a 5 by 5 subsystem is a good option with

sufficient accuracy and requiring less computer time. The discrete

kernels for both drawdowns and return flows were generated for the whole

study a~ea using a moving subsystem of size (5 by 5). The computer time

spent on the CYBER 180 was 101.974 cp seconds. Trying to see how much

time was saved by this selection, a run with generation of discrete

kernel~ for the whole area without using a subsystem was carried out. The

computer time on the CYBER 180 for one set of discrete kernels was about

140 seconds. For completion of the total generation for all the potential

excitation cells (289 of them) the computer time would be (140)(289) =

40,460 cp seconds. The difference is really tremendous.

Analysis of the Characteristics of the Return Flow Discrete Kernels

As ment ioned before, return flow di screte kernels represent the

physical characteristics of a stream-aquifer system, they are functions

of aqJifer properties and river geometric properties. Similar to the unit

hydrcgraph in surface hydrology, which represents the direct runoff

response to a unit pulse of effective rainfall for a lumped catchment, the

retu~n flow discrete kernel is the stream response to a unit excitation

of pumping in the aquifer. More than one unit hydrograph is required

howEver, because the ground water problem is a distributed one. The set
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Table 5.1

Comparison of the Accuracy and Computer Time in Generating
Return flow Discrete Kernels by Different Options

for South Platte Study Area

Option Number

Accuracy
(the biggest
difference in
results compared
to Option (1)
(percentage)

Computer Time
(cp second)

(1)
Whole
System

0.0%

33.982

(2)
7 by 7

Subsystem

O.OOl~

28.516

(3)
5 by 5

Subsystem

0.039%

11.472

(4)
3 by 3

Subsystem

0.150%

3.953

of return flow discrete kernels (as many unit hydrographs as there are

combinations of reaches and pumping sites) also gives the spatial

distribution of the response of return flow to a unit excitation. This

temporal and spatial distribution is a set of return flow discrete kernels

due to a unit pulse excitation. For illustration three sets of return

flow di screte kernels are selected from the resul ts of the generat ion

phase of the study. The first set of return flow discrete kernels is due

to a unit pulse of pumping at pumping site 13 (see Figure 5.3). Pumping

cell 13 contains reach 3. Table 5.2 shows that the greatest part of the

seepage flow (93%) occurs in reach 3 for nine time periods. It also shows

that for these six reaches most of the seepage flow (88%) occurs during

the fi rst two peri ods. The total amount of return flow duri ng the

irrigation season (9 periods) is about 97% of the withdrawn volume from
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Table 5.2

Return Flow Discrete Kernels due to Pumping at Site 13

(in tt3/15-day)

TIME 1 TIME 2 TIME 3 TIME 4 TIME 5 TIME 6 TIME 1 TIME 8 TIME 9 TOTAL

REACH 1 0 ·0.00001 -0.00002 -0.00003 -0.00003 -0.00004 -0.00004 -0.00004 -0.00004
REACH 2 -0.0041 -0.00977 -0.00449 -0.00115 -0.00036 -0.00019 -0.00015 -0.00015 -0.00015
REACH 3 -0.49704 -0.35868 -0.06886 -0.00615 -0.00109 -0_00062 -0.00054 -0.00049 -0.00044 -0.93391
REACH 4 -0.00503 -0.00913 -0.00322 -0.00034 -0.00009 -0.00008 -0.00008 -0.00008 -0.00008
REACH 5 0 -0.00002 -0.00002 -0.00001 -0.00001 -0.00001 0 0 0
REACH 6 0 -0.00001 -0.00004 -0.00005 -0.00007 -0.00007 -0.00008 -0.00008 -0.00008

TOTAL -0.50677 -0.37762 -0.07665 -0.00773 -0.00165 -0.00101 -0.00089 -0.00084 -0.00079

RATIO 8.42* b.32* b.zi' b.ii' 97i*

*Rat io of reach seepage during time interval l2 pedods in this case except for last period) over total
volune puI1:)ed during the pulse (equal to 1 (M /15-day) bY definition). The values are negative because
of the algebraic convention that real seepage is negative return flow.

the pumping cell. Figures 5.4 and 5.5 all show that the return flow is

very much concentrated both in time and in space. In the jargon

associated with the unit hydrograph theory (Morel-Seytoux, 1986), one can

say that the memory time and the distance memory are both short.

The second set of return flow discrete kernels is due to pumping at

cell 14, which is next to the cell which contains the reach of index 3,

in an average sense, 1600 meters away from the river (see Figure 5.6).

The temporal and spatial distribution of return flow (see Table 5.3 and

Figure 5.7) are quite different from the one due to pumping at site 13.
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The cumulative volume of return flow for all six reaches within 9 time

periods (the whole irrigation season) is only 24.2% of the volume pumped

during the unit pulse. It means that the return flow due to pumping at

site 14 will last more than 4 times 4.5 month, i.e., one and a half year,

because after the" peak duri ng time peri od 3 return flow is decreas ing

gradually. Figure 5.7 also shows that the spatial distribution among

reaches is not as concentrated as in the previous case with pumping at

site 13. As time increases, the proportion of the contributions to return

flow by the other reaches increases s1ight1Y wh i1e the proport ion for

reach 3 is decreasing. In the language of unit hydrograph theory, the

return flow unit hydrograph has a large memory time and a lengthy distance

memory.

Table 5.3

Return Flow Discrete Kernels due to Pumping at Site 14

(in tt3/15-day)

TIME 1 TIME 2 TUE 3 TIME 4 TIME 5 TIME 6 TIME 7 TIME 8 TIME 9 TOTAL

REACH 1 .00000 .00000 .00000 -.00001 -.00001 -.00002 -.00003 -.00004 ·.00004
REACH 2 -.00016 - .00113 -.00231 -.00317 _-.00365 -.00394 -.00411 ·.00420 -.00423
REACH 3 -.00821 -.02678 -.02m ·.02454 -.02156 -.01899 -.01619 ·.01490 - .01327 -.17282
REACH 4 -.00011 ·.00108 -.00206 -.00270 -.00299 -.00316 -.00325 -.00329 - .00327
REACH"S .00000 .00000 -.00001 -.00002 -.00003 -.00004 -.00004 -.00004 -.00005
REACH 6 -.00009 - .00071 -.00168 -.00248 -.00296 -.00328 -.00350 -.00363 -.00370

TOTAL ••00869 -.02970 -.03378 -.03292 -.03120 -.02943 -.02772 -.02610 - .02174

RAub 3.W &.7ii 6.1V 5.4V 2.2i* 24.22'

·Ratio of volume of reach seepage during time interval ~2 periods in this case except for period 9)
over total volume pumped during the pulse (equal to 1 (M '1S-day) by definition)
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Athird representative set of return flow discrete kernels is one due

to pumping in cellIS t which is two cells awaYt or on the average, 3200

meters away from the river, as shown in Figure 5.8. From the statistics

in Table 5.4, the total return flow within the whole irrigation season is

only 4.1%. Figure 5.9 shows that the magnitude of the return flows for

all five reaches are all increasing with time even though the rate of

increase is decreasing. The spatial distribution is not much concentrated

in reach 3 as in the previous two cases. These phenomena show that the

influence of the pumping a few miles away from the river is really small

but gradually increasing and lasting for a very long time.

Table 5.4

Return Flow Discrete Kernels due to Pumping at Site 15

(in M3115-day)

TIME 1 TIME 2 TIME 3 TIME 4 TIME 5 TIME 6 TIME 7 TIME 8 TIME 9 TOTAL

REACH 2 .00000 -.00004 -.00018 -.00038 -.00058 -.00077 -.00096 - .00113 -.00129
REACH 3 -.00011 -_00084 - .00191 -.00276 -.00324 -.00357 -.00379 -.00393 -.00400 -.02415
REACH 4 .00000 -.00004 -.00019 -.00037 -.00054 -.00070 -.00085 -.00099 -.00'"
REACH 5 .00000' .00000 .00000 .00000 -.00001 -.00001 -.00001 -.00002 -.00002
REACH 6 .00000 -.00005 -.00025 -.00054 -.00084 -.00114 -.00143 -.00170 -.00196

TOTAL -.00011 -.00097 -.00253 -.00405 -.00521 -.00619 -.00704 -.00777 -.00838

RATlO 0.12 0.62 1.12 1.52 0.8i 4.12

·Ratio of volume of reach seepage during time interval ~2 periods in this ease except for period 9)
over total volune purpd during the pulse. (equal to 1 (M I1S-day) by defini tion).
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Through the above analysis of the characteristics of return flow

discrete kernels, one can find that the prediction of return flows at

required time and required reach is available. In other words, the

unmeasurable return flow can be predicted by this model.

SIMULATION OF RETURN FLOWS

In order to evaluate the impacts due to changes in political,

economical or agronomica1 policies, a short time simulation for four and

half months and five long time simulations for ten years have been

conducted on the South Pl atte Ri ver Bas in. The emphas is was on the

evaluation of return flows under different conditions.

In the South P1 atte Ri ver, the causes of return flows can be

classified as three: the initial drawdowns of the water table, the river

stage drawdowns, and the net uniform withdrawal from the aquifer, which

;s an algebraic sunnnation of irrigation water, pumping water,

evapotranspiration, seepage from canals, artificial recharge,

precipitation, etc. Symbolically, the return flow in reach p during time

n can be expressed as:

Qr,p(n) - - rp Sis(p) + r, up (n)

NR Nc n
+ I .I I fp,ij (n-II+1) [Qij(V) + riPij (v) + Q&r,ij- Q&ij ]

i =1 J-1 v-I

(5.1)

Before running the simulation model KERSIM, these three kinds of

excitations were examined based on historical records.
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Initial Water Table Drawdowns in the Aquifer

The historical data for water table drawdowns in the South Platte

River Basin is available for March 1968. For this reason the simulation

horizon for the short time runs was chosen from May to September of 1968,

and the long time simulation horizon went from January 1968 to December

1977. The water table contours in March 1968 (Schneider, Jr., 1972) are

used as the initial water table conditions for the simulation. The

elevation of 5000 feet (1524m) is chosen as the high datum. The water

table elevation is converted to drawdowns by comparing the elevation and

the datum. The average drawdowns of the water table for all the cells

range from -21.3 mto 136.6 m, from upstream to downstream. The initial

water table drawdowns show the direction of the ground water flow.

River Stage Drawdowns.

River stage data is not directly available and for this reason daily

discharges at Henderson Gagi ng Station and Kersey Gag i ng Stat i on were

converted into river stages by the analytical rating curve used in SAMSON

(More1-Seytoux, Restrepo, et al, 1985). The Henderson Gaging Station

(1968) and Kersey Gaging Station datums are 5005.12 feet (1525.56m) and

4575.77 feet (1394.69m) respectively according to the USGS Water Resources

Data for Colorado. The average river stages for each 15 days are

calculated for the two gaging stations and interpolated linearly for the

55 reaches in between. The river bed elevations for all the reaches were

obtained from the SAMSON data file. The average river stages were added

to the reach bed elevations then river water surface elevations were

obtained. By comparison with the datum, the average river stage drawdowns

are obtained for all the reaches for 240 time periods. The range of the
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river stage drawdowns along the river is from about -2.4 m to 128 m. The

river stage drawdown almost ~tays constant over time.

Net Uniform Withdrawal Rates

The net un i form wi thdrawa1 rate for each cell is the algebra i c

summation of all the positive and negative inputs to the cell. Here

basically three kinds of input to each cell are considered: pumping

water, farm irrigation seepage and canal seepage. The net withdrawal rate

patterns in space and in time were provided by Jim Booker (private

communication) based on considerations of agricultural requirements and

based on availability of water from surface water diversions according to

water rights. The proper percentage of the amount of water for

evapotranspiration, seepage in the fields and seepage from canals are all

considered. The deficit in surface water to meet crop requirements is

made up by pumping groundwater. The net withdrawal rates over irrigation

season are varied with time and space. Ayear is roughly divided tnto 3

seasons. Every season includes 8 time periods (15 days is one time

, peri od) . After the current i rri gati on season and before the next

irrigation season, the net withdrawal rates are assumed to be zero for all

the cells. For the long time simulation, the net withdrawal rate pattern

is repeated every year for 10 years.

Short Time Simulation of Return Flows due to Natural Conditions

In an economic, agronomic and legal context while investigating water

management strategies, the only controllable variable on the right-hand

side of Eq. (3.16) is the net uniform withdrawal, Qq(v), which is to vary
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accord ing to the water management strategy. The return flow can be

expressed by two terms:

(5.2)

where the first term on the right-hand side is the return flow due to the

net uniform withdrawals. The second term Cp(n) is the return flow due to

the initial conditions and the river stage drawdown fluctuations. Given

the assumption that the river stage is not affected by the aquifer, Cp{n)

is independent of the water management strategy. This study util izes

historical data and therefore Cp(n) can be calculated prior to the

investigation of the management problem.

Given the initial conditions, the river stage drawdowns and the net

uniform withdrawal everywhere being zero, the simulation model KERSIM ;s

run to calculate the return flows for 9 periods. The return flow variable

Cp(n), for p·l,2 •••• ,57 and n-l,2 .•.. 9, are obtained. The results show

that return flow due to natural conditions is decreasing with time and

tends to a steady state. This is a reasonable result. Due to the large

dimension of the arrays, KERSIM was run on the Cyber 205. The computer

time spent is 21.775 seconds on CYBER 205. The drawdowns of the aquifer

at each time period are also calculated and saved. Otherwise the computer

time would be much less.

River Mass Balance and Analvsis

The available historic data include upstream inflows at

Henderson Gaging Station, downstream outflows at Kersey Gaging Station,

tributary flows at St. Vrain, Big Thompson and Cache La Poudre Gaging
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Stations, and diversion flows at 19 diversion locations (S of them are

always zero). These data were obtained from the SAMSON project data

files. The only unknown for the river balance is the return flow because

there is no measurement for it. The total historic return flow for the

whole river section within the study area can be calculated as:

3 19
QrT(n) - I (n) + I Tri(n) - I Oren) - O(n)

· i-I r-l
(5.3)

where I{n) is upstream inflow, O(n) is downstream outflow, Trj(n) is

tributary flow for tributary i, i=I,2,3, Oren) is diversion flow for

diversion r, r·l,2, .... ,19, and Q~T(n) is the total historic return flow

over the entire river section.

In order to check if the simulated return flow due to natural

conditions, Cp(n), n-l .•.. ,9; p.l ..... ,57, is reasonable, the historic
\ 57

return flows Q~T(n) and the simulated return flows I Cp(n) are
pal

compared. The river mass balance results and the comparison are shown

in Table 5.5.

From the comparison several conclusions can be drawn. The simulated

return flow due to the natural conditions is decreasing with time and

tends toward a steady state. Except for the fi rst time peri ad, the

simulated return flow is equal to or less than historical return flow.

This is reasonable because the return flows due to irrigation, which is

a very important input to the aquifer, during the growing season have not

been included.

The big difference between historic return flow and simulated return

flow for the first time period may be due to several reasons. The
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historic return flow during the first period is much less than the one

during other periods because irrigation has just started. The simulated

return flow during the first time period is much larger than during other

periods because the estimated initial condition brings larger unstable

factors at the beginning of the simulation.

The mass balance in Table 5.5 also shows that the historic return flow

is of the same order of magnitude as the upstream inflow. This tells that

the lateral inflow is as important as upstream inflow for the South Platte

River.

Tllble 5.5

liver ..... Bal-.:e
(in tt3,

HlstorlCUpstre.... S111Ulated
PERla> Inflow St. Vrain Thcapon Poudr. OUtflow Diversion Return Flow Return Flow

1 •13569E+08 .34717E+07 .lolz7E+07 •31995E+06 .40466E+o7 .Z2465E+08 .80780E+07 .Z5Z76e+08
2 •13933E+08 •4489SE+07 .16710£+07 •15585E+07 •12500E+08 •21964E+08 •12812E+08 •13175E+08
3 •13561E+08 •68504E+07 •25885E+07 •66498E+07 .23419£+08 .25166E+08 •18935E+08 .91375E+07
4 .21579E+08 •71783E+07 .36161E+07 .60675E+07 •17814E+08 •35284E+08 •14657E+08 .m16E+07
5 .18102E+08 •66278E+07 •13872E+07 .12013E+07 •66987E+07 .36710E+08 •16090E+08 .70540E+07
6 •14354E+08 .61311E+07 .16882£+07 .10031E+07 .61165E+08 .34712E+08 .17652E+08 •66732E+07
7 •22315E+08 •84064E+07 •18545E+07 •13114E+07 •13138E+08 .35071E+08 •14322E+08 .64221E+07
8 •15213E+08 •62804E+07 •74376E+06 .11156E+07 •13238E+08 •29304E+08 •19189E+08 •62373E+07
9 •12573E+08 •69899E+07 •27891 E+07 •12893E+07 •12397E+08 •27290E+08 •16046E+08 .60901E+07

Sensitivity Analysis in Simulation of Return Flows

To study the sensitivity of return flow to errors in the initial water

table conditions and river stage drawdown conditions, two runs were made.

The first run is made by increasing the aquifer initial drawdowns

everywhere by 1.0 meter, and the second run is made by reducing the river

stage drawdowns in every reach by 1.0 meter. The return flows for both
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case.s are all reduced. The results are tabulated in Table 5.6. The

results for two cases are almost the same. This is because the effects

of increasing aquifer drawdowns and of reducing river stage drawdowns are

the same. Both of them are reducing the ralative head differences in the

aquifer and in the river. However, the change in aquifer drawdowns is for

227 cell s whi le the change in river stage drawdowns is only for 57

reaches. This fact implies that the inaccuracy'in the input data in river

stage drawdown in one reach obviously will bring more error in result than

the one in aquifer drawdown in one cell. From this point of view, the

return flow is more sensitive to the input data of river stage drawdowns

than aquifer initail conditions.
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Table 5.6

Sensitivity Analysis for Return Flows in u(

Increasing Percentage Reducing Percentage
Aquifer as compared River as compared

Time Normal Orawdown by with normal Stage Orawdown with normal
Period Condition 1.0 meter comdition by 1.0 meter condition

1 •25276E+08 •99346E+07 39% .99272E+07 39%
2 . 13175E+08 •69783E+07 53% .• 69646E+07 53%
3 •91375E+07 •58862E+07 61% •58706E+07 60%
4 .77216E+07 .54336E+07 70% •54175E+07 70%
5 .70540E+07 •51947E+07 73% .51783E+07 73%
6 .66732E+07 .50494E+07 76% .50328E+07 75%
7 .64221E+07 .49499E+07 81% .49331E+07 81%
8 .62373E+07 .48748E+07 78% .48579E+07 78%
9 .60901E+07 .48135E+07 79% .47965E+07 79%
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Long Time Simulation of Return Flows with Different Management Scenarios

The model KERSIM was run for five long time simulations, each of

which is for 10 years, with five different scenarios with different

economic, legal and agronomic considerations. Different from the short

time simulation, the sequential reinitia1ization technique was used after

every 8 time periods up to 240 time periods. The computer time spent on

the CYBER 205 for each la-year simulation is about 200 seconds.

For the basic case simulation, because the simulated diversion flows

during the 1968 irrigation season are relatively close to the historical

ones as shown in Figure 5.10, the historical and simulated return flows

are very close. Figure 5.11 illustrates this fact.

The seasonal total return flow for the whole study area for ten years

for this basic case is shown in Figure 5.12. The total return flows for

3 seasons every year are quite different. As expected, during the irriga-

_ tion seasons~ say season 2,5,8 ... , etc., the return flow volume reaches

its maximum of the year. After the irrigation seasons, say season 3, 6,

9 .... , etc., the amount of return flow drops to a medium value, because

there is no irrigation but the influence of irrigation is still felt. For

the beginning season of each year, say seasons 4, 7, 10, .... , etc., the

amount of return flow is minimum, because by then the remaining influence

of the previ ous i rr; gat ion season is very small. The seasonal total
-

return flow behaves cyclically, much like a sinusoidal curve with period

of one year as shown in Figure 5.12.
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The seasonal return flow also displays a slight decreasing trend over

several years. It seems to level off to a quasi steady-state level. The

reason for the decrease at the beginning is probably due to a somewhat

erroneous estim~tion of the initial conditions. The quasi steady-state

agrees with the fact that the aquifer water table elevation of the South

Platte Basin remains roughly at the same level over the years, as

demonstrated by studies carried out by the Climatic Center of CSU. The

yearly regular replenishment of the aquifer from irrigation is of course

the reason.

The other four simulations were performed for the purpose of

evaluation of different management strategies. The analysis of these

results is conducted by Jim Booker and Professor Robert A. Young from the

Agricultural and Natural Resources Economics Department of Colorado State

University. One of them was conducted to evaluate the merit of improved

on-farm irrigation efficiency. The traditional irrigation method is ditch

siphon, which needs more surface water diversion and causes more seepage.

Therefore, it is a method with low efficiency. In order to increase the

farm irrigation efficiency, sprinklers were assumed to be used. It needs

less surface diversion and causes less seepage. However, after 10 years

of simulation, there is about a 35% reduction in return flow from the use

of sprinklers. Obviously, this reduction in return flow is due to the

reduction in the deep percolation. of excess irrigation water to the

aquifer. This means that the high irrigation efficiency on individual

farms causes the lower efficiency of using water for the study area.



Chapter 6

SUMMARY AND CONCLUSIONS

This study has developed a general. methodology for model ing a

groundwater system under complex boundary conditions by using the discrete

kernel approach. For the particular purpose, this study has applied this

method in modeling a stream-aquifer system.

SUMMARY

The aim of modeling a stream-aquifer system is to find out the

explicit relationship between input and output of the system in order to

conjunctively manage surface and ground waters. The methodology used here

is based on the assumption that (1) the groundwater system behaves like

a linear system, and the fact that (2) the relationship between the return

flow (f1 ux between stream and aqui fer) and the head d.i fference between

stream and aquifer is linear, a consequence of Darcy's law. Therefore

1inear system theory has been used throughout the work. The stream..

aquifer behavior is described mathematically as a two-dimensional boundary

value problem with the presence of the stream introducing a special time­

dependent boundary condition of the third type. In particular the

principle of superposition, Green's function theory and Duhamel's theorem

are used. A finite difference model is used for the numerical generation

of the so-called "discrete kernels".
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Two kinds of discrete kernels are generated by a finite difference

model. One is the aquifer drawdown discrete kernel, which is the response

of the aquifer water level at each cell due to a unit pulse of withdrawal

excitation. The other is the return flow discrete kernel, which is the

response of return flow at each reach due to a unit pulse of withdrawal

excitation. These discrete kernels are calculated only once and saved.

They are characteristic coefficients which represent the linear

relationship between excitations and responses for a particular stream­

aquifer system. Simulation or formal mathematical programming

optimization for that stream-aquifer system can be easily and cost­

effectively implemented for any kind of excitation with any amount of

water, at any time and any location.

For cost effectiveness purpose, the technique of sequential

reinitialization is used in the model so that the discrete kernels need

only be generated within a small "moving" subsystem for a few time

periods, which is specially beneficial for a large scale stream-aquifer

system to be studied over a long-time horizon.

The accuracy and efficiency of the methodology and computer codes are

tested by several illustrative or hypothetical cases. It has been shown

that this model is efficient and convenient to simulate the behavior of

a stream-aquifer system.

For the specific case of the South Platte River basin, 289 finite

difference cells with size of 1 mile by 1 mile are delineated in the area

of interest. Of these there are 57 cells which include river reaches.

The time period is chosen as 15 days. Thus there are eight time periods

within one irrigation season. A "moving" subsystem of 5 by 5 cells is

selected because beyond that range the response due to an excitation at
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the center of the subsystem is practically negligible. In total 289 times

8 sets of drawdown discrete kernels are generated, each set including 25

drawdown discrete kernels. (57 times 8) sets of return flow discrete

kernels are genera~ed simultaneously, each set having no more than 9 non­

zero values (depending on the number of reaches included in the

subsystem). For such a large scale system with 8 time periods

calculation, only 101.974 cp seconds was spent on the eyber 180/840. With

these coefficients saved, the return flows and drawdowns of the aquifer

are simulated under natural non-equilibrium conditions for a single

irrigation season. The long time (10 years) simulations have also been

conducted under different scenarios to evaluate the consequences of

changes in political, economical, agronomica1 and legal policies.

CONCLUSIONS

This section concludes this dissertation in three aspects: the

contribution of this study, the applicability and potential uses of this

model and recommendations for further study.

Contributions of This Study

It has been realized that the interaction between stream and aquifer,

in the case of permanent hydrau1 ic connection, follows the integrated

Darcy's law by the previous studies . .In previous studies the discrete

kernels of drawdowns due to a withdrawal excitation were generated as if

the stream did not exist, and in a second step, by superposition, were

corrected to refl ect the presence of the stream. In thi s study, th is

stream-aqUifer interaction is simulated directly as a time-dependent third

tyoe boundary to an aquifer. Therefore, the solution can be ·directly
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obtained by solution of a boundary-value problem with a boundary of the

third type. It makes the concepts clear and straightforward, and the

calculation much simpler because the generation of the influence

coefficients for .drawdowns and for return flows is carried out more

effectively in one step.

The discrete kernel approach has been applied in many previous studies

of groundwater system or stream-aqui fer system. However the boundary

conditions in the studies are usually 1imited in simple and time­

independent cases, such as no-flow boundary and constant head boundary.

This study develops the methodology to apply the discrete kernel approach

in groundwater modeling with complex and time-dependent boundary

conditions.

As a powerful assistance, the sequential reinitialization technique

has been used in a variety of studies. This study further derives the

sequential reinitialization formulas for a stream-aquifer system in a

rigorous way instead of only for simple boundary conditions.

Apolicabilities And Potential Uses of the Model

This model has a variety of options so it could be used in many

different cases. It is particularly suited for modeling a stream-aquifer

system where the relationship between stream and aquifer is a permanent

hydraulic connection. It is also suited for modeling a groundwater system

which is only a part of a large aquifer and the responses of the system

does not only depend on the excitations inside the area of interest but

also depend on the excitations outside the area of interest. In this case

the boundary condition is of the third type. The advantage of this model

is the capability to generate the explicit discrete kernels for return
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flows or boundary flux. Therefore the influence of the interaction between

different water bodies can be directly involved in management.

The results have shown that this stream-aquifer model is really a

convenient and cost-effective tool for the evaluation of regional policy

variations in a stream-aquifer system. Since this model can detail return

flow distributions in space and in time, it can also be used in a regional

water resources planning for determination of optimal strategies, such as

pumping pattern or artificial groundwater recharge pattern by mathematical

optimization. For example, this model has great potential for studies of

direct estimation of reductions in return flows in space and in time due

to any pattern of withdrawals. The model is potentially a great tool for

realistic adjudication and administration of conjunctive water use with

full respect for the current water laws.

Recommendation for Further Study

For the current objectives of study, this model does not consider the

dynamics in the river and the influence of the aquifer on the river. For

further study-, these components should be better involved in a more

complete stream-aquifer model especially for operation purposes.
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