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ABSTRACT 

EVENTUALITY-BASED INTERVAL SEMANTICS AND FREE LOGIC: 

WHAT IF THERE, LIKE, IS NO FUTURE, MAN? 

Future contingent propositions have famously been a source of trouble for 

philosophers and logicians committed to any variety of indeterminism on which facts 

about the future are not yet fixed. One possible answer to the problem involves 

presupposition—namely, that propositions lack truth-value when other propositions that 

they presuppose are false. This paper explores the plausibility of such an answer, 

beginning with a brief discussion of the problem of future contingent propositions and 

presupposition. From there, an in-depth discussion of Free Logic lays the groundwork of 

logical tools for the project, exploring the motivation for Free Logic’s development and examples of Free Logic semantics. Subsequently, this paper discusses the history and 

usefulness of events-based semantics in analyzing English sentences. Using the tools of 

events-based semantics and formal logic, this paper formally models this approach to 

sentences in English by defining a semantics which can capture both tense and aspect of 

such sentences and which allows for truth-valueless future contingent propositions while 

preserving logical truths like the law of excluded middle.  
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CHAPTER 1 

 1.1 Introduction 

In standard systems of logic, the principle of excluded middle (EM) states that, given any 

proposition p, either p is true or its formal negation ¬p is true–colloquially, all propositions are 

either true of false. Those philosophically committed to the view that the future is open and its 

facts are not yet fixed, then, face an interesting dilemma when confronted with propositions 

about the future. Take a (contingent) future proposition, "I will visit New York next week." If 

that proposition has truth-value now, then there seems to be no basis to think the future is 

open with respect to my visiting New York next week. If it is true, then I cannot fail to visit New 

York; if it is false, then I must fail to visit New York next week. This, then, would hold for all 

future contingent propositions. If all such propositions have truth-value now, then a complete 

description of every truth in the universe now must therefore entail a complete description of 

the universe at any point in the future. Hence, there is only one possible future, and 

determinism must be true. But suppose we hold the view that (contingent) future propositions

are, as of now, neither true nor false–that it is genuinely, metaphysically open whether or not I 

will visit New York next week. If future contingents lack truth-value, then for any  contingent 

future proposition r, r is neither true nor false. If r is neither true nor false, then, ¬r is also 

neither true nor false.1 If neither ‘r’ nor ‘¬r’ is true, then the classically valid formula ‘r v ¬r’ is 

1. One might object that if r is neither true nor false, then in particular it is not true, so

¬p would be true. To endorse this approach is to reject more features of classical logic—in this 

case, double negation. On classical models, if the formula ‘¬p’ is true, the formula ‘¬¬p’ is false, 
and if ‘¬¬p’ is false, then by double negation, ‘p' is false. 
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not true, thus EM is not valid. The following positions, then, appear to be in tension: (a) EM is 

logically valid, and (b) some propositions about the future are neither true nor false.  

1.2 Presupposition 

In his work On Referring, Peter Strawson argues against the Russellian analysis of the 

following sentence s:

s  The present king of France is bald. 

 On Bertrand Russell’s analysis, s is best analyzed as a disguised existential claim that there 

presently exists a king of France, there is exactly one king of France, and the king of France is 

bald. Translated into first order logic, the Russellian analysis of s reads as sL:  

sL ∃x(KFx ∧ ∀y(KFy→y=x)∧Bx). 

The Strawsonian analysis agrees with the Russellian analysis that s is meaningful and that 

anyone who utters s would be uttering a true statement if and only if there actually existed at 

the time of utterance exactly one king of France and that king of France was bald. But on the 

Russellian analysis, anyone who utters it when there exists no king of France would be making a 

false assertion.  

Strawson disagrees, arguing that someone who utters it need not be saying something 

true or something false. If someone were to seriously and genuinely say to you, “The king of 

France is bald,” Strawson points out that “That’s untrue” would be an unnatural and 

inappropriate response; the most natural response would be to say, “You’re confused. France is 
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a democratic republic. It has no king.” This isn’t to contradict s, but to point out that some 

other proposition that s takes for granted is false. Presupposition, then, can be understood in 

the following way: some sentence (a) presupposes some sentence (b) when, if sentence (a) is 

either true or false, then sentence (b) is true. Sentence s, then, can be said to presuppose 

sentence s2:  

s2 There presently exists a king of France. 

While definite descriptions are perhaps the most well-known species of presupposition, 

others have been established in the literature on presupposition and pragmatics. Take, for 

example, the following sentences:  

s3 Steve thought his sister was a good singer. 

s4 Joshua believed that Kate knew where he parked his car. 

Sentence s3 presupposes that Steve has a sister (or, minimally, that Steve believes he has a 

sister). Likewise, s4 presupposes that Joshua has a car (or, minimally, Joshua believes he has a 

car), and plausibly that Joshua (believes he) knows someone named Kate. s3 is true only if Steve 

believes he has a sister; s4 is true only if Joshua believes that he has a car, and that Joshua 

(believes that) knows someone named Kate. When a proposition—in this case, s, s3, or s4—

presupposes the truth of some other proposition (or propositions) which happens to be false, 

then the former propositions are said to lack truth-value. This phenomenon is called 

presuppositional failure.  
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1.3 Project Outline 

In this paper, in addition to the existence of objects like tables and chairs, I assume a 

realist view of two other types of entities. First, I take for granted a realist view towards the 

existence of time past and present, but antirealist view towards the existence of the future. I

also take for granted a realist attitude toward the ontological status of events. Given these two 

assumptions, I contend that presupposition can plausibly account for why future contingent 

propositions are truth-valueless, and, using tools from free logic, build a system of semantics 

according to which future contingents lack truth-value, but EM is still valid. In particular, I argue

that tensed propositions presuppose but do not assert the existence of the time during which 

the events asserted are said to take place, and these presuppositions fail when someone utters 

a contingent proposition about the future. My paper takes the following structure: In chapter II, 

I explain and motivate free logic, which plays a pivotal role in my semantics. In chapter III, I 

discuss the history of events-based semantics and sketch out my own system of eventuality 

semantics. In chapter IV, I formally combine events-based semantics with positive free logic to 

produce a system that (1) can express verb tense and aspect of English sentences and so 

capture the distinction between sentences that differ only in tense, (2) preserves the validity of  

EM, and (3) results in no truth-value for contingent propositions about the future.
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CHAPTER 2 

2.1 Defining and Motivating Free Logic 

Classical predicate logic (henceforth CPL) assumes both that all terms (or names) in a 

language refer to some member of the domain, and that the domain is non-empty.2 Systems of 

logic that dispense with the first assumption and sometimes the second are called free logics, 

because their terms are “free of existential assumptions” but their “quantifiers retain 

existential force.”3  

Consider an illustration of the problem of empty terms for CPL. The rule of existential 

generalization states roughly that if so-and-so has some property, then there exists something 

that has that property. More formally:  

(EG) Πα → ∃ξ Π ξ 

For instance, if it’s true that “Steve is a brewer”, then it must be true that “Something is a 

brewer” (or more elegantly in English, “Someone is a brewer”). The model-theoretic approach 

to logic captures this intuition by validating (EG)–that is, any formula matching the schema 

(EG) evaluates to true on all models of CPL. Given (EG), it’s clear CPL assumes that all names 

refer: (EG) is valid if and only if there can be no occasions in which the inference from ‘Πα’ to 

‘∃ξ Π ξ’ fails. Put another way, CPL assumes that for any name used in a formula in the place of 

‘α’, there is some member of the domain that that formula is talking about. 

2. Textbooks in classical predicate logic define the domain as a non-empty set.

3. Karel Lambert, Philosophical Applications of Free Logic. (New York: Oxford Univ. Press,

1991). 
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As a natural language, English contains names that are non-referring, names like ‘the 

putative planet Vulcan’ and ‘Harry Potter’. Furthermore, the sentence “Harry Potter is a wizard” 

seems to be an instance of the schema Πα. If so, then (EG) apparently licenses the inference 

from "Harry Potter is a wizard" to ‘There exists something that is a wizard’–an inference that 

we surely want to avoid, since Harry Potter is fictional and there are no wizards, even though 

intuitively “Harry Potter is a wizard” is true.4 Some philosophers may want to resist the claim 

that “Harry Potter is a wizard” is strictly true on the grounds that Harry Potter is fictional. But 

consider the sentence “The Greeks worshipped Zeus.” Sentences like this seem to avoid the 

fiction-based objection. We may want to agree that “The Greeks worshipped Zeus” is true 

without being committed to there existing something that the Greeks worshipped.5 Logicians 

and philosophers have proposed a variety of solutions to avoid consequences like this. One 

option involves challenging our understanding of the logical structure of terms, a la Russell and 

Quine. Another solution might be to deny that terms really are empty at all. Yet another option 

involves changes to existential assumptions and quantification. Selecting the third option, some 

logicians have proposed altering semantics and proof theory to make space for empty terms. 

Along with assuming that all terms in the language refer, CPL also assumes a non-empty 

domain. This amounts to the assumption that something exists. On its face, it's plausible that 

the truth that anything exists at all is contingent. Even if there is some deep physical or 

metaphysical reason why something must exist, it may well be a physical or metaphysical truth 

4. The ontology of fictional characters has been a robust source of controversy,

particularly in the 20th century. See Betrand Russell, “On Denoting”, Mind 14, No. 56 (1905): 

473–493. 

5. See Andrew Bacon, “Quantificational Logic and Empty Names,” Philosophers' Imprint

13, no. 4 (2013): 1-21. 
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rather than a logical one. One might reasonably want logic to be silent on philosophical 

questions of existence rather than prejudge the issue. Logics that allow for an empty domain 

are sometimes called “inclusive” or “universally free” logics. Whereas all systems of inclusive 

logic are free logics, not all free logics are inclusive. 

CPL’s prohibition of both empty domains and empty names is not an accident. To see 

this, consider how CPL might evaluate the truth of a formula matching the schema Πα. A CPL 

model is an ordered pair <D, I> where D is the domain (a non-empty set) and I is the 

interpretation function such that (1) if α is a constant, then I(α) ∈ D, and (2) if Π is an n-place 

predicate, then I(Π) is an n-place relation over D. It may further be stipulated that for every d ∈ 
D, d has a name. This already generates a problem: from (1), there is an interpretation of a 

constant α, and I(α) ∈ D. But if D = {}, then for any object d, d ∉ D, so in particular I(α) ∉ D. 

Hence, such a system results in I(α) ∈ D and I(α) ∉ D. In systems like this, given any language 

containing individual constants, the combination of empty domains with the stipulation that for 

any constant α, I(α) ∈ D results in contradiction. 

None of this is to say that free logic is the only or best solution to problems arising from 

empty names, nor that logic mustn’t presume existence. However, free logic is a serious 

development in modern logic and constitutes a plausible solution to the problems illustrated 

above. Since Karel Lambert pioneered free logic in the middle of the 20th century, three distinct 

varieties have emerged. Positive free logics are those wherein some formulas containing at 

least one non-referring term–henceforth “empty-termed formulas”–are true. For instance, in a 

positive free logic, ‘Πα’ might be truth-valueless if ‘α’ is non-referring, yet ‘α = α’ might still be 

true. Neutral free logics are those wherein all empty-termed atomic formulas are truth-
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valueless (with the possible exception of statements like ‘α exists’). Negative free logics are 

those in which all such empty-termed atomic formulas are false. 

It is important to distinguish bivalent free logics which allow for truth-valueless formulas 

from trivalent logics whose third value is “undetermined”, "middle", or some equivalent (where 

‘0’ corresponds to false, ‘1’ to true, and ‘#’ to the third value). In trivalent systems, a valuation 

function VM assigns truth-values to atomic formulas such that some formulas map to ‘0’, other 

formulas to ‘1’, and the remaining to ‘#’. In contrast, the free logic systems under discussion in 

this paper are bivalent. The valuation functions of positive and neutral systems are partial 

functions because some empty-termed atomic formulas are not mapped to a truth-value. The 

valuation functions of negative logics typically are total functions; all empty-termed atomic 

formulas are mapped to ‘0’. 

2.2 Grammar of Free Logic 

As seen above, formulas matching the schema (EG) are valid simpliciter in CPL, but not 

in free logic. The systems considered in this paper, then, are weaker than CPL because no 

formulas invalidated by CPL are validated by free logic.6 Let us turn to the grammar of free 

logic, starting with a language L, which consists of the following pieces of CPL: 

• Primitive logical operators ‘→’,’¬’, ‘=’, and ‘∀’, from which the other operators are

defined in the usual way.

• Variables ‘x’, ‘y’, ‘z’, with or without numerical subscripts.

6. Some forms of free logic constitute extensions of classical logic. See, for instance, 
Willard Van Orman Quine, Word and Object. (Cambridge: MIT Press, 1960). Such logics are not 

under consideration here. 
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• For each n > 0, n-place predicates ‘P’, ‘Q’, ‘R’, ... with or without numerical

subscripts.

• Individual constants (terms) ‘a’, ‘b’, ‘c’, with or without numerical subscripts.

 Given the operators, predicates, constants, and variables, we can now define well-formed 

formulas (WFFs): 

• If Π is an n-place predicate and α1 … αn are terms, then Πα1 … αn is a formula

• If φ is a formula, then ¬φ is a formula

• if φ and ψ are formulas, then φ → ψ is a formula

• If α and β are terms or variables, α = β is a formula

• If α is a variable and φ is a formula, then ∀αφ is a formula

• Nothing else is a formula7

2.3 Semantics for a Neutral and Negative Free Logic 

Now we look at a model theory for neutral free logic in L. NUS1 consists of an ordered 

pair <D, I>. D is a (possibly empty) set of existent objects. I is the interpretation function such 

that for every individual constant α in L, I(α) ∈ D when I(α) is defined, for every n-place 

predicate Π in L, I(Π) is a set of n-tuples of d ∈ D, and every member of D has a name. For any 

given model <D, I>, a valuation function VM assigns truth-values to formulas as follows: 

I. VM(Πα1 … αn) = true if each of I(α1), … , I(αn)  is defined and <I(α1), … , I(αn)> ∈ I(Π);

false if each of I(α1), … , I(αn) is defined and <I(α1), … , I(αn)> ∉ I(Π); undefined (i.e.

Πα1 … αn is truth-valueless) if any of I(α1), … , I(αn) is undefined.

7. Formally, the ‘→’ operator is base operator from which all other operators are
defined. Formulas containing other operators are used informally but are understood to be 

shorthand for much longer formulas containing only ‘→’. 
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II. VM(¬φ) = true if V(φ) = false, false if VM (φ) = true, and truth-valueless if VM (φ) is

truth-valueless.

III. V(φ→ψ) = true if either VM (φ) = false or VM (ψ) = true, false if VM (φ) = true and VM

(ψ) = false, and truth-valueless otherwise.

IV. VM (∀α φ) = true if for all d ∈ D, VM(β,d)(φ(β/α)) = true (where β does not appear in

φ).

V. VM (α = β) = true if I(α) and I(β) are both defined, and I(α) = I(β); false if I(α) and I(β)

are both defined, and I(α) ≠ I(β); truth-valueless if either I(α) or I(β) is undefined.

That NUS1 is a neutral logic is evident given clauses I and V, since empty-termed atomic 

formulas are truth-valueless. A negative logic (NES1) would differ from NUS1 by replacing 

clauses I, II, and V as follows: 

I'. VM(Πα1 … αn) = true if each of I(α1), … , I(αn) is defined and <I(α1), … , I(αn)> ∈ I(Π); 

and false otherwise. 

II'. VM(¬φ) = true if V(φ) = false, and false if VM (φ) = true. 

III'. VM(φ→ψ) = true if either VM (φ) = false or VM (ψ) = true, and false otherwise. 

V'. VM(α = β) = true if I(α) and I(β) are both defined, and I(α) = I(β); and false 

otherwise. 

One noteworthy consequence of NUS1 and NES1 is that identity theory is non-classical, 

since α = α is valid in neither. Furthermore, instances of NC and EM (e.g. ¬(Πα ∧ ¬Πα) and Πα v 

¬Πα), which are classically valid, are not validated in NUS1. 

To see this, consider an instance of excluded middle: ‘Pt v ¬Pt’. On a classic model, a 

valuation assigns one of two truth-values to all atomic formulas. On any model, if, for the first 
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disjunct ‘Pt’, VM (Pt) = false, then for the second disjunct ‘¬Pt’, VM (¬Pt) = true, thus for the 

whole disjunction ‘Pt v ¬Pt’, VM(Pt v ¬Pt) = true. Likewise, if VM (Pt) = true and VM (¬Pt) = false, 

then VM(Pt v ¬Pt) = true. VM(Pt v ¬Pt) = true no matter the truth-value of ‘Pt‘, so VM(Pt v ¬Pt) = 

true on every valuation. However on NUS1, excluded middle is not preserved. Given the same 

formula ‘Pt v ¬Pt’, when ‘t’ is undefined, VM (Pt) = undefined (per clause I), so likewise VM (¬Pt) 

= undefined (per clause II). Since the operator ‘v’ is defined from ‘→’ in the usual way, and both 

‘Pt’ and ‘¬Pt’ are truth-valueless, the whole formula ‘Pt v ¬Pt’ is truth-valueless, so in particular 

is not true. Thus, EM is not valid on NUS1. The same holds for NC. 

2.4 Semantics for a Positive Free Logic 

The positive semantics POS1 consists of NUS1 augmented with supervaluations. Like 

NUS1, POS1 is an ordered pair <D, I>. For any given model, VM assigns truth-values to formulas 

as follows: 

I. VM(Πα1 … αn) = true if each of I(α1), … , I(αn) is defined and <I(α1), … , I(αn)> ∈ I(Π);

false if each of I(α1), … , I(αn) is defined and <I(α1), … , I(αn)> ∉ I(Π); truth-valueless

if any of I(α1), … , I(αn) is undefined.

II. VM(¬φ) = true if V(φ) = false; false if V(φ) = true; truth-valueless if VM(φ) is truth-

valueless.

III. VM(φψ) = true if either V(φ) = false or V(ψ) = true; false if VM (φ) = true and VM (ψ)

= false; truth-valueless otherwise.

IV. VM(∀α φ) = true if for all d ∈ D, V(β,d)(φ (β/α)) = true (where β does not appear in φ).

V. VM(α = β) = true if I(α) and I(β) are both defined and I(α) = I(β); false if I(α) and I(β)

are both defined, and I(α) ≠ I(β); truth-valueless if either I(α) or I(β) is undefined.
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A supervaluation S is a set of every completion c of POS1. Each completion is a dual-

domain model <Di, Do, Ic>: Di is the (possibly empty) inner domain, which is the domain D from 

POS1; Do is the (non-empty) outer domain, which provides referents for all empty terms; and Ic 

is an interpretation function such that, for every individual constant α in L, I(α) ∈ Do, for every 

n-place predicate Π in L, I(Π) is a set of n-tuples of d ∈ Do, and every member of Do has a name. 

It can be helpful to think of the outer domain as representing the set of possible objects, and 

the inner domain the set of existing objects. Each completion c assigns referents in Do to all and 

only empty terms in the language; all referring terms retain their original referents. A 

supervaluation then assigns truth-values to each formula φ containing at least one empty term 

α: 

SI. VS(φ) = supertrue if φ is true in every c ∈ S; superfalse if φ is false in every c ∈ S, and 

truth-valueless otherwise. 

Given two formulas (1) Πα and (2) Πα v  ¬Πα, if α has no referent, then both (1) and (2) 

are truth-valueless on NUS1. But POS1 yields different results. (1) will remain truth-valueless and 

(2) will evaluate as true. This is because each completion assigns as a referent for α some d ∈ 
Do. This referent either will or will not be in the extension of Π (which is an n-place relation over 

Do in each completion). In short, an empty-termed formula is true if it would be true for every 

possible referent of the empty term, and false if it would be false for every possible referent. To 

illustrate, suppose in (1) and (2) 'Π' means 'is a quadriped and α means 'Pegasus', an empty 

name. On POS1 the completions ∈ S will disagree on the truth-values of (1): some referents will 

make (1) true, whereas some will make (1) false. But for any assigned referent, that referent 
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will either be a quadruped or not. Since the completions will agree on the truth of (2), VS((2)) = 

true.  Thus, POS1 will validate classically valid formulas invalidated by NUS1 and NES1. 

The semantics above do not represent all free logic systems, nor do I intend to endorse 

any of the foregoing systems outright. However, they should suffice to show how systems of 

free logic tend to behave, the distinction between positive, neutral, and negative free logics, 

and how supervaluations can preserve the validity of classically valid schemas like EM and NC. 
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CHAPTER 3 

3.1 History of Events-Based Semantics 

Standard first-order logic involves a domain, D, which is a set of objects–tables, chairs, 

people, dogs, etc. Predicates in a language are defined by their extensions: ‘Fido is furry,’ 

translated as ‘Furry(Fido),’ is true iff I(Fido) ∈ I(furry). Predicates, including action verbs, are 

defined as relations over sets. For instance, ‘Steve drinks coffee’ translates to ‘Drink(Steve, 

coffee)’ and is true iff <I(Steve), I(coffee)> ∈ I(Drink). This reflects much of the actual world, 

which contains people, animals, household objects, minds, and (perhaps) sets, abstract objects, 

and the like. But arguably, such things do not exclusively populate the world–there are also the 

things that such objects do: they sleep, laugh, run, drink, dance, think, argue, fight, grow, and 

play. There is reason to think the world is populated by more than just ordinary objects, but 

also by things like events such as sea battles, conversations, the breaking of glasses, etc. In 

what follows, I describe a brief history of and motivate events-based semantics and illustrate its 

usefulness. 

The development of events-based semantics in the 20th century laid the groundwork for 

breakthroughs verb semantics and the analysis of adverbial modification. The basis for this 

progress was set in the late 1960s when Donald Davidson proposed that sentences with action 

verbs expressly refer to events.8 Consider the sentences in group A: 

A. (i) Tom buttered the bread.

8. Donald Davidson, “The Individuation of Events,” in Essays in Honor of Carl G. Hempel,

ed. Nicholas Rescher (Pittsburgh, PA: University of Pittsburgh Press. 1967). See also Donald 

Davidson, “The Logical Form of Action Sentences,” in The Logic of Decision and Action 

(Pittsburgh, PA: University of Pittsburgh Press. 1967). 
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(ii) Tom buttered the bread with the knife.

(iii) Tom buttered the bread with the knife in the kitchen.

The pre-Davidsonian analysis of sentences in A consists of the following (ignoring tense): 

B. (i) butter(Tom, the bread)

(ii) butter(Tom, the bread, with the knife)

(iii) butter(Tom, the bread, with the knife, in the kitchen)

This analysis is problematic for a couple reasons. The first has to do with verbal arguments. In 

B(i) the verb butter takes two arguments, ‘Tom’ and ‘bread’. Each sentence in A contains the 

same verb, ‘butter,’ but their corresponding analyses in group B contain verbs of irreducibly 

different arities. An ordered n-tuple, being an ordered set with n elements, just consists of its 

members and their ordering. If verbs are to be analyzed as relations over sets, which just are 

ordered n-tuples, then verbs of irreducibly different arities must be different verbs. Thus, the 

pre-Davidsonian approach apparently entails that the sentences in A do not actually contain the 

same verb. Moreover, on this analysis, a verb like butter could take an indefinite number of 

arguments since one can always add more adverbial modifiers (Tom buttered the bread 

sleepily, with the knife, in the kitchen, in the dark, under the broken light, at midnight, …).  

Secondly, there is an entailment relation among sentences A(i), A(ii), and A(iii), but pre-

Davidsonian analysis loses this relation entirely. According to Davidson, this relation resembles 

the dropping of conjuncts by simplification: 

C. (i) p

(ii) p ∧ q

(iii) p ∧ q ∧ r
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The entailment relation among the sentences in C–namely, C(iii) ⊨ C(ii) ⊨ C(i)–strongly 

resembles the entailment relation among the sentences in A, which an adequate semantic 

analysis should capture. Hence, sentences in B should read something like the sentences in C. 

To this end, the Davidsonian analysis construes adverbial modifiers as conjuncts predicated of a 

hidden event argument rather than arguments of a verb. By predicating adverbs to events, the 

analysis can both capture the entailment relation and maintain stable verb arity. The 

Davidsonian approach captures A(i)-A(iii) as follows:

D. (i) ∃e(butter(e, Tom, the bread))

(ii) ∃e(butter(e, Tom, the bread) ∧ instr(e, the knife))

(iii) ∃e(butter(e, Tom, the bread) ∧ instr(e, the knife) ∧ in(e, the kitchen))

On this approach, adverbs and adverbial modifiers are analyzed as first-order predicates, which 

modify “not verbs but the events that certain verbs introduce.”9 There are other reasons to 

think a satisfactory semantic analysis should deal directly with events: 

E. (i) Matt visited his grandmother twice more than did his brother Mike.

(ii) Matt saw the glass hit the floor.

(iii) It happened suddenly.

In E(i), what entities are being counted? Ordinary objects will not do. There are only two

brothers, and one grandmother. In E(ii), what did Matt see? “…saw the glass hit the floor” is 

not the same as “…saw the glass … and … the glass hit the floor.” In E(iii), what does “it” refer 

to? Introducing events as real, discrete entities that can be counted and witnessed allows for a 

straightforward and parsimonious analysis of the sentences in E. The Davidsonian program has 

9. Donald Davidson. “The Individuation of Events,” 1967.
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produced substantial breakthroughs and advantages in analysis of adverbs, numerals, and the 

anaphoric pronoun “it”, and captures entailment relations among sentences that earlier 

analyses lost, all within first-order logic. The introduction of an event variable to a formal 

system also allows that system to capture sentences that make use of 0-place predicates, such 

as “It snows” with ease: ∃e(snow(e)). 

Since Davidson introduced events-based semantics, the paradigm has evolved into 

what is now coined the “Neo-Davidsonian” approach and has been developed in two distinct 

ways. The first has to do with the arity of verbs and their predicates: Davidson introduced 

events as additional hidden arguments to some, but not all, verbs, whereas Neo-Davidsonian 

semantics reduce verbal predicates to a single argument–the event–and use thematic roles to 

connect an event to its participants.10 The Davidsonian analysis F(ii) and it’s Neo-Davidsonian 

counterpart F(iii) of sentence A(i) are as follows: 

F. (i) Tom buttered the bread.

(ii) ∃e(butter(e, Tom, the bread))

(iii) ∃e(butter(e) ∧ Agent(e, Tom) ∧ Patient(e, the bread))

The list of thematic relations such as Agent (the person performing an action) and Patient (the 

object the action is performed on) is extensive, and includes location, instrument, and a host of 

other roles capturing various modifiers. 

I will favor the Davidsonian approach to analyzing events for the purposes of this paper 

for its simplicity. Unlike Davidson, I analyze all verbs as having an event argument for reasons I 

10. For motivation and defense of this move, see Terence Parsons, Events in the

Semantics of English: A Study in Subatomic Semantics (Cambridge, MA: MIT Press, 1994). For 

criticism, see Manfred Bierwisch, “The Event Structure of Cause and Become,” in Event 

Arguments: Foundations and Applications (Berlin: Mouton De Gruyter, 2005). 
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explain below. This is not to say that a Neo-Davidsonian analysis of sentences is an incorrect 

analysis–there may not be a single correct analysis. Indeed, the progressed enjoyed by the 

field in recent decades suggests that, if the field ever arrives at a consensus, it may be due to 

developments in the Neo-Davidsonian paradigm. 

3.2 Which Sentences Introduce Events? 

Events are useful for analyzing sentences like those in groups A and E, but not all 

sentences appear to introduce events. Sentences (1) and (2) illustrate the point: 

(1) Steve is bald.

(2) Steve is tired.

Both ‘bald’ and ‘tired’ are one-place predicates and would receive the same treatment 

in standard first-order logic. But they appear to differ in their candidacy for events-based 

analysis. Many 20th century commentators noticed this and sought to apply event arguments 

to broader situations, which Vendler classifies as states, activities, accomplishments, and 

achievements.11 Likewise, Jaegwon Kim suggests that, “when we talk of explaining an event, we 

are not excluding what, in a narrower sense of the term, is not an event but rather a state or a 

process.”12 Emmon Bach introduced the term “eventuality” to cover this broad notion, 

reserving “event” for its narrower use.13 I will adopt the term “eventuality” in the broader 

sense hereafter. 

11. Zeno Vendler, "Linguistics in Philosophy” Philosophy 45, no. 171 (1970):71-.

12. Jaegwon Kim, “Events and their descriptions: Some considerations,” in Essays in

Honor of Carl G. Hempel (Dordrecht: D. Reidel, 1969). 

13. Emmon Bach, “The Algebra of Events,” Linguistics and Philosophy 9, No. 1 (1986), 5-

16.
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The difference between sentences (1) and (2) is captured by what is known as the 

‘stage-level/individual-level’ distinction, which was first introduced into events-based semantics 

by Kratzer in 1995.14 Speaking very loosely, stage-level predicates (or SLPs) are those which are 

temporary or accidental (adjectives like ‘drunk’ or ‘tired,’ and verbs like ‘speak,’ ‘see,’ or ‘eat’) 

whereas individual-level predicates (or ILPs) are more permanent or essential–for example, 

adjectives like ‘tall,’ ‘intelligent,’ or kindhearted,’ and verbs like ‘know’ or ‘resemble’.  Although 

a thorough discussion of the merits, criticisms, and evidence of this distinction are outside the 

scope of this paper, its relevance is worth flagging. The ontology of events-based semantics 

assumes that events are concrete spatiotemporal entities, and hence must have some location 

and occur at some time. Kratzer argues that SLPs can be located in space and time in ways that 

ILPs cannot.  Compare sentences (3) and (4) to (5) and (6): 

(3) Steve was tired in the office yesterday.

(4) Steve ate in the office yesterday.

(5) Steve was tall in the office yesterday.

(6) Steve loved in the office yesterday.

The modifiers ‘in the office and ‘yesterday’ contribute sensibly to sentences (3) and (4), but not 

to (5) or (6). According to Kratzer, the sensibility of the modifiers to sentences (3) and (4) as

opposed to (5) and (6) has to do with the predicates’ non-location in space, resulting in the 

presence or absence of an event argument in each sentence’s analysis. However, Kratzer’s view 

is not without its critics. Gennaro Chierchia, for instance, has proposed that all predicates 

14. See Angelika Kratzer, “Individual-Level and Stage-Level Predicates,” in The Generic

Book (Chicago, IL: University of Chicago Press, 1997). 



20 

introduce event arguments, and distinguishes between events that are tethered to a location 

and those that are not.15 

My approach more closely aligns with Chierchia’s analysis in that, on my view, any 

predicate that expresses an action, process, or state introduces an eventuality argument. It is 

relatively uncontroversial in the philosophical literature that events have vague spatial 

boundaries but crisp temporal ones. I contend that Kratzer is correct that the modifiers in 

sentences (5) and (6) do not contribute to the sentences’ meanings, but it does not follow that 

‘being tall’ and ‘loving’ do not introduce eventualities or are not located in space. ILPs like 

'being tall’ and ‘loving’ take place over long time intervals and therefore stretch across many 

locations, whereas SLPs like 'being tired' and 'eating' occur over short time intervals and are 

likely to be confined to a single location. Consider the ILP ‘is tall’ for illustration, along with the 

fact that Steve is tall. If Steve is tall, then as long as Steve is an adult in ordinary circumstances, 

Steve is always tall. Thus, Steve’s being tall and Steve’s being in the office yesterday together 

entail that Steve was tall in the office yesterday, so the addition of the modifier is redundant. 

This, it seems to me, plausibly accounts for why ‘individual-level’ predicates like ‘is tall’ are not 

sensibly modified by phrases like “yesterday”. For these reasons, my system will not observe 

Kratzer’s stage-level/individual-level distinction, instead analyzing all such predicates as 

introducing eventuality arguments. Sentences (3)-(6), then, will each be analyzed as 

introducing eventuality arguments (ignoring tense and adverbial modifiers): 

(3’) ∃e(tired(e, Steve)) 

(4’) ∃e(ate(e, Steve))  

15. Gennaro Chierchia, “Individual Level Predicates as Inherent Generics,” in The Generic

Book. See also Louise Mcnally, “Stativity and Theticity,” in Events and Grammar. 
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(5’) ∃e(tall(e, Steve)) 

(6’) ∃e(loved(e, Steve)) 

3.3 Tensed Eventuality-Based Semantics 

Now I augment the system sketched above to capture time by introducing time-

intervals, allowing the system to capture English tense and aspect. But there may be many ways 

a system could express temporal relations. Why express time with intervals rather than, say, 

instants? Instant-based temporal models are generally constituted by a set of primitive 

entities–time instants–with the binary precedence relation ‘≺’ over the set of instances. 

Interval-based models enjoy a richer ontology along with a broader stock of relations over the 

set of intervals such as the precedence, inclusion, and overlap relations. The nature of time is a 

hotly debated subject of philosophy, which is far outside the scope of this paper. I’ll just note 

that interval- and instant-based models are formally reducible to one another, and that I’ve 

opted to incorporate intervals in the present system because of the convenience it affords for 

expressing temporal relations.  

Consider the following sentences: 

3. (i) Steve is tired.

(ii) Steve was tired.

3(i) and 3(ii) attribute the same predicate to Steve but do not express the same proposition,

since the two events occur over different times. But without a way to account for this, the

system sketched above fails to capture the difference in meaning, yielding the same analysis: 

4. (i) ∃e(tired(e, Steve))

(ii) ∃e(tired(e, Steve))
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Since temporal relations are important features of English sentences, time needs to somehow

be built into the notation if the system is to capture the difference illustrated by the sentences 

group 3, where otherwise identical events differ primarily in the times when they occur.16 I

accomplish this by subscripting time intervals to the event variable. Whereas “Steve is tired” 

indicates that the time interval during which Steve is tired is the present moment, the sentence 

“Steve was tired” indicates that Steve was tired at some time in the past without indicating 

which time specifically. The expression of two potentially distinct eventualities can be captured 

with the use of variables t1 and t2 subscripted to the event variable:  

5. (i) ∃et1(tired(et1, Steve))

(ii) ∃et2(tired(et2, Steve))

Though two (potentially) distinct propositions are expressed now, it’s unclear what relation 5(i)

and 5(ii) stand toward each other. Perhaps t1 precedes t2, or vice versa, or perhaps t1 = t2 and 

5(i) and 5(ii) express the same proposition. I resolve this by introducing a temporal relation 

superscripted to the event variables. If t1 refers to the present moment (represented by the 

term ‘p’), then the relation between t1 and p can be captured with the identity relation ‘=’. If t2 

refers to a time interval prior to the present moment, then the relation between t2 and p is 

captured with the precedence relation ‘≺’. With these relations, the tense of 3(i) and 3(ii) can be 

expressed:  

6. (i) ∃et1(tired(e=p
t1, Steve))

(ii) ∃et2(tired(e≺p
t2, Steve))

16  Although it is surely possible to use apply temporal relations to events to say one 

event precedes or overlaps another, it’s not clear that this can be done when there is only
one event in question. Adding time intervals not only accomplishes both of these, but does 

so in a way that I think more accurately models how time is built into English grammar.  
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This addition of notation to the system is sufficient to capture not only simple present and past 

English tenses, but even continuous aspect. Consider the following sentences:  

7. (i) Steve is running.

(ii) Steve ran.

(iii) Steve was running.

(iv) Steve was running when Joshua jumped.

7(i)-7(iii) employ the same subject and verb–‘Steve’ and ‘run’–but differ in meaning. This 

difference has to do with the interval over which the running event takes place. 7(i) expresses 

that a running-event was occurring at the moment of utterance or writing of 7(i); 7(ii) expresses 

that a running-event took place and terminated before the utterance or writing of 7(ii); 7(iii) 

expresses a running-event that was in progress at some time prior to the moment of utterance 

or writing of 7(iii), and 7(iv) expresses that a running event was in progress when jumping event 

occurred at some time prior to the present moment. The intervals and relations of 7(i, ii, and iv) 

(I will turn to 7(iii) momentarily) are represented as follows:  

8. (i) t1 = p

(ii) t2 ≺ p

(iv) t1 ⊒ t2 ∧ t2 ≺ p

8(i) expresses that the interval denoted by t1 is the present moment. 8(ii) expresses that 

the interval denoted by t2 precedes the present moment. 8(iv) expresses that the interval 

denoted by t1 includes the interval denoted by t2, which in turn precedes the present moment. 

A few comments about 7(iii), which is past tense and continuous aspect: the past continuous is 

not used in English without reference to some other past event, either explicitly or implicitly,9 
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so “Steve was running” would not be uttered in isolation, but in the context of some other past 

event, such as “when Joshua jumped.” This is why I have omitted an analysis of 7(iii) in group 8. 

Sentence 7(iv) is a more natural sentence in English that makes use of 7(iii). The combination of 

tense and aspect in 7(iv) expresses that there was a running-event by Steve in the past, and 

there was a jumping-event by Joshua in the past, and the running-event was in progress when 

the jumping-event took place.  

But why introduce intervals as variables subscripted to the event variable? When we 

refer to past events, we indicate that the event in question occurred at some time in the past 

without necessarily specifying (or even knowing) the exact time. This behavior is best captured 

by a variable, so that we can say the event occurred during some past interval without having to 

name the specific interval. However, introducing an interval variable subscripted to the 

eventuality variable is more than just pragmatically useful. Consider the sentence “Somebody 

ate my porridge” for illustration. When someone utters that sentence, she is asserting the 

existence of somebody, and an eating of her porridge by that somebody. But the reference to a 

past time interval during which the event occurred is quite different: the time interval is not 

asserted lexically, but instead is built in to the structure of the verb itself. Indeed, the fact that 

times are referred to grammatically rather than lexically in ordinary language is a strong 

indication that the reference to times differs importantly from references to individuals, places, 

or events.10 Whereas “Somebody ate my porridge” asserts the existence of somebody and of a 

porridge-eating event, it structurally presupposes the existence of some past time interval. 

Assertions about temporal relations enter the picture on the back of temporal adverbs (e.g. “He 

drank my beer in the morning.”) and subordinating conjunctions (e.g. “Someone had drunk my 
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beer before I woke up.”). These phrases and clauses constitute assertions about relations 

between intervals rather than the existence of any one interval. For instance, the sentence 

“Someone ate my porridge before I returned home” asserts, among other things, the existence 

of a porridge-eating event and a returning event, that the porridge-eating event and the 

returning event both precede the present moment, and that the time interval during which the 

porridge-eating event took place precedes the time interval during which the returning event 

took place.17 But notice that it does not assert the existence of the time-interval during which 

alleged porridge-eating event takes place, because it’s contradiction, “Someone did not eat my 

porridge before I returned home” does not deny the existence of the time interval.18 Notice 

also that claims regarding the relations indicated by the words “before” and “in” are still made 

lexically, whereas the existence of the time intervals in question are not among the entities 

asserted. In short, I contend that when tensed English sentences are used to make assertions 

about tables, chairs, events, and time relations, the existence of time intervals is presupposed 

in the structure of the verb and not asserted outright. 

For these reasons, subscripting the interval variable to the event variable accomplishes 

quite a lot at once: it allows us to refer to some interval without explicitly stating which interval, 

capturing the way time is referred to in ordinary language. It also allows the quantifier to range 

17. Plausibly, “Someone ate my porridge before I returned home” presupposes rather
than asserts the existence of a returning event, but merely asserts the existence of a porridge-

eating event, that the presupposed porridge-eating event precedes the present moment, and 

that the porridge-eating event that this porridge-eating event precedes the presupposed 

returning event. 

18 . It may be objected that “It’s not the case that someone ate my porridge before I 
returned home” is the strict contradiction of “Someone ate my porridge before I returned 
home.” However, no English speaker would infer that “It’s not the case that someone at my 
porridge before I returned home” denies the existence of the time interval preceding the time 

when I returned home.  
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over the interval variable secondarily, without existential force: the quantifier asserts the 

existence of an eventuality without asserting the existence of the time interval. 

The system sketched above, though adequate to capture a wide range of meaning from 

the tense and aspect of English verbs, will not exhaustively capture English tense and aspect. 

Take, for instance, the present simple sentence, “Arthur plays basketball.” Unlike the present 

continuous tense, which denotes an action taking place at the time of utterance (e.g., “Arthur is 

playing basketball”), the present simple expresses actions which are habitual or repeated. 

Notably, present-simple English sentences like “Arthur plays basketball” could be analyzed as 

meaning “Arthur is a basketball player” and therefore as candidates for analysis as first-order 

predicates (∃et(isabasketballplayer(e=p
t, Arthur)). Although there may be some English 

constructions outside the reach of the system sketched in this chapter, the foregoing gives 

reason to think that this system not only wields substantial expressive power, but may be a very 

plausible analysis of English sentences. 
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CHAPTER 4 

4.1 Free Tensed Eventuality-Based Semantics 

We begin with a language, L, consisting of the following primitive vocabulary: 

• Logical operators ‘→’,’¬’, ‘=’, and ‘∀’, from which ‘∧’, ‘∨’, and ‘↔’, and ‘ⱻ’ are defined in

the usual ways.

• Three kinds of variables:

o Eventuality variable ‘e’, ‘e1’, ‘e2’, …, ‘en’ with alphanumerical subscripts and

superscripts.19

o Interval variables ‘t’, ‘t1', ‘t2', … ,‘tn'.

o Individual variables ‘x’, ‘y’, ‘z’, with or without numerical subscripts.

• For each n > 0, n-place predicates ‘P’, ‘Q’, ‘R’, ... with or without numerical subscripts.

• Three kinds of constants:

o Eventuality constants ‘ǝ1’, ‘ǝ2’, …, ‘ǝn’.

o Individual constants ‘a’, ‘b’, ‘c’, with or without numerical subscripts.

o Interval constants ‘[p1, p2]’, ‘[p3, p4]’, … ‘[pn-1, pn]’, and ‘p'.

• Four temporal relation operators:

o The precedence relation ‘≺’.

o The antecedence relation ‘≻’.

o The inclusion relation ‘⊒’.

19. Notice that eventuality variables are augmented with numerical suffixes rather than

subscripts or superscripts. This is because subscripts and superscripts are reserved for interval 

variables and temporal relation operators. 
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o The equality relation, ‘=’.

• Parentheses, brackets, and commas.

The primitive vocabulary above can be used to form WFFs in L in the following ways: 

• If Π is an n-place predicate, ε is an eventuality constant, τ1 and τ2 are interval constants,

α1 … αn individual or eventuality constants, and # is a temporal relation operator, then

Π(ε#τ2τ1, α1, … , αn) is a formula.

• If α and β are constants of the same type, α = β is a formula.

• If ξ is an eventuality variable, ζ is an interval variable, and φ is a formula containing

eventuality constant ε and interval constant τ (where τ is subscripted to ε), then ∀ξζφ

(where ξ replaces every instance of ε in φ and ζ replaces every instance of τ in φ) is a

formula.

• If ξ is an individual variable and φ is a formula containing individual constant α, then ∀ξφ

(where ξ replaces every instance of α in φ) is a formula.

• If φ is a formula, then ¬φ is a formula.

• If φ and ψ are formulas, then φ → ψ is a formula.

• Nothing else is a formula.

Note that all atomic well-formed formulas are either of the form α = β or Π(ε#τ2τ1, α1, … , αn). Call 

the former ‘identity formulas’ and the latter ‘predicate formulas.’ Note also that all predicates 

have an arity of 1 + n, and that the grammar above disallows free variables in formulas–that is, 

every variable that appears in a formula φ is bound by a quantifier. Since every well-formed 

atomic predicate formula contains two interval constants τ1 and τ2 where τ1 is subscripted to 

the eventuality constant and τ2 is superscripted to the eventuality constant, call τ1 the 
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‘subinterval term’ and τ2 the ‘superinterval term’. It’s also worth articulating that all predicate 

formulas contain interval terms or variables. 

4.2 Positive Free Logic Semantics for L 

The semantics, S, for L will be a positive free logic augmented with supervaluations. A 

model in S is an ordered pair <D, I> consisting of a domain D and an interpretation function, I. 

D is a (possibly-empty) set containing eventualities, intervals, and objects. To define it formally, 

D =De∪Dt∪Di.  I is a function such that for every e ∈ De, there is some eventuality constant ε in 

L and I(ε) = e; for every t ∈ Dt, there is some interval constant τ in L and I(τ) = t; for every i ∈ 
Di, there is some individual constant α in L and I(α) = i; for any n-place predicate Π, I(Π) is an 

n-place relation over D. Unlike in classical models, I is a partial function (provided D is non-

empty) since for every d ∈ D, I maps some term in L to d, but it need not be that, for any term t 

in L, t is defined. 

Now we turn to consider Dt, the set of time intervals. An interval is an ordered pair [p1, 

p2] such that p1, p2 ∈ R (the line of real numbers) and p1 ≤ p2. Dt = {[p1, p2]: p1 ≤ p2 ∧ p2 ≤ 0}. 

Informally, the set of time intervals is every pair of real number such that the second number is 

neither less than the first nor greater than zero, with zero represented by the constant ‘p’ 

(shorthand for the ordered pair [0,0]) which refers to the present moment. Elements of Dt allow 

for definitions of the temporal relations above. Given any intervals [p1, p2] and [p3, p4], the 

relations are defined as follows: 

i. [p1, p2] ≺ [p3, p4] iff p2 < p3.
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ii. [p1, p2] ≻ [p3, p4] iff p1 > p4.20

iii. [p1, p2] ⊒ [p3, p4] iff p1 ≤ p3 and p4 ≤ p2.

iv. [p1, p2] = [p3, p4] iff p1 = p3 and p2 = p4.

Given a predicate formula φ of the form Π(ε#τ2τ1, α1, …, αn), the ‘temporal relation’ of φ is ‘τ1 # 

τ2‘. The temporal relation of a predicate formula φ is ‘satisfied’ iff the relation # obtains 

between τ1 and τ2 as defined above. 

A few bits of notation before defining truth in a model. If ξ is a variable, and β is a 

constant occurring in formula φ, then φ(β/ξ) is the result of substituting ξ for every occurrence 

of β in φ. An ‘assignment’, where, in a given model M, some d ∈ D is temporarily assigned as 

the referent of a constant β, is denoted by the notation VM(β,d). For any given model M, the 

valuation function VM assigns truth-values to WFFs as follows: 

I. VM(Π(ε#τ2τ1, α1, …, αn)) = true if I(ε) ∈ De, I(τ1) ∈ Dt, I(α1), … , I(αn) ∈ Di, <I(ε), I(τ1), I(α1),

… I(αn)> ∈ I(Π), and the temporal relation τ1 # τ2 obtains; false if I(τ1) ∈ Dt, I(α1), … ,

I(αn) ∈ Di, and <I(ε), I(τ1), I(α1), … I(αn)> ∉ I(Π) or the temporal relation τ1 # τ2 does not 

obtain; truth-valueless if I(τ1) ∉ Dt or I(α1), … , I(αn) ∉ Di.

II. VM(∀ξφ) = true, when ξ is in individual variable, if for all i ∈ Di , VM(β,i)(φ(β/ξ)) = true

(where β does not appear in φ); false otherwise.

III. VM(∀ξζφ) = true, when ξ is an eventuality variable, ζ is an interval variable, ε is an 

eventuality constant, and τ is an interval constant, if for all e ∈ De and for all t ∈ Dt, 

VM(ε,e)(τ,t)(φ(ε/ξ, τ/ζ)) = true (where ε and τ do not appear in φ); truth-valueless if the

20. Of course, the antecedence relation could be defined in terms of the precedence

relation. But the addition of the antecedence relation allows for a simpler system of semantics 

that more straightforwardly captures certain tense relations in English, which I illustrate later. 
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temporal relation between τ and its superinterval is not satisfied for any t ∈ Dt; and false 

otherwise. 

IV. VM(¬φ) = true if V (φ) = false; false if V (φ) = true; truth-valueless if VM(φ) is truth-

valueless.

V. VM(φ→ψ) = true if either V (φ) = false or V (ψ) = true; false if VM(φ) = true and VM(ψ) =

false; truth-valueless otherwise.

VI. VM(α = β) = true if I(α) ∈ D, I (β) ∈ D, and I (α) = I (β); false if I (α) ∈ D, I (β) ∈ D, and

I(α) ≠ I(β); truth-valueless if I(α) ∉ D or I(β) ∉ D.

As defined above, S is a neutral free logic because formulas with nonreferring terms do not 

evaluate to a truth-value, per clauses I and VI. However, the system becomes a positive free 

logic when augmented with supervaluations, in such a way that classical tautologies remain 

true. A supervaluation S is a set of every completion c of P. Each completion c is an ordered 

triplet, <D+, D -, Ic>, where the outer domain D+ is a (non-empty) set which contains 

eventualities, times, and objects, and provides referents for all empty constants. The inner 

domain D - is the original domain D.  Formally, D -
 = D -

e∪D -
t∪D -

i, D
 += D+

e∪ D+
t∪ D+

i, D -⊆ D+, 

and for every d ∈ D+, d has a name.21  Intuitively, the inner domain can be thought of as 

containing existents and the outer domain as containing possibilia. D+
e is the set of all possible 

eventualities (the writing of How Hamlet Stole Christmas, the third presidential inauguration of 

Barack Obama, etc); D+
i is the set of all possible individuals (the Lochness Monster, Santa Claus, 

21. It is common practice in dual-domain logics to stipulate that the inner and outer

domains are disjoint. I have opted to make the inner domain a subset of the outer domain to 

preserve the intuition that anything that is actual is possible, given the outer domain contains 

all possibilia. 
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etc.); D+
t is the set of all intervals. Formally, D+

t = {[p1, p2]: p1, p2 ∈ R ∧ p1 ≤ p2}. Ic assigns 

objects from D+ as referents for all and only terms in L without referents in D -. Completions 

interpret predicates as relations over D+. Referents and truth-values are assigned in the 

following ways: 

i

VII. For every truth-valueless atomic predicate formula φ, each c assigns some e ∈ D+
e to 

each empty eventuality constant in φ; some t ∈ D+
t as a referent for each empty interval 

constant in φ; some i ∈ D+
i for each empty individual constant in φ.

VIII. Vc(Π(ε#τ2τ1, α1, …, αn)) = true if <Ic(ε), Ic (τ), Ic (α1), … Ic (αn)> ∈ I(Π) and the temporal 

relation τ1 # τ2 obtains; false otherwise.

IX. Vc(∀ξφ) = true, when ξ is in individual variable, if for all i ∈ D+ , VM(β,i)(φ(β/ξ)) = true

(where β does not appear in φ); false otherwise.

X. Vc(∀ξζφ) = true, when ξ is an eventuality variable, ζ is an interval variable, ε is an 

eventuality constant, and τ is an interval constant, if for all e ∈ D+
e and for all t ∈ D+

t, D+ 

(ε,e)(τ,t)(φ(ε/ξ, τ/ζ)) = true (where ε and τ do not appear in φ); and false otherwise.

XI. Vc(¬φ) = true if V(φ) = false; false if V(φ) = true.

XII. Vc(α = β) = true if I(α) = I(β); false if I(α) ≠ I(β).

XIII. Vc(φ→ψ) = true if either V(φ) = false or V(ψ) = true; false if Vc (φ) = true and Vc (ψ) = 

false.

XIV. VS(φ) = supertrue if φ is true in every c ∈ S; superfalse if φ is false in every c ∈ S; truth-

valueless otherwise.

The addition of supervaluations renders S a positive semantics in which all and only classical 

tautologies and contradictions about the future have truth-value. Thus, S preserves 
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excluded middle and non-contradiction. Take, for instance, the propositions A and B 

and their corresponding analyses as predicate formulas in S:

A) Arthur will see Ruth.

B) Arthur will not see Ruth.

AS) ⱻet(see(e≻p
t, Arthur, Ruth)) 

BS) ¬ⱻet(see(e≻p
t, Arthur, Ruth)) 

The non-existence of the future is captured by Dt in that 0 (the present moment) is the greatest 

pn ∈ Dt. A is truth-valueless in S because there is no interval t ∈ Dt such t ≻ p.22 B, the negation 

of A, is truth-valueless for the same reason. However, the disjunction of A and B, a classical 

tautology, retains its validity in S. 

C) Either Arthur will see Ruth or Arthur will not see Ruth.

CS) ⱻet(see(e≻p
t, Arthur, Ruth)) ∨ ¬ⱻet(see(e≻p

t, Arthur, Ruth))

In AS and BS, the atomic formulas over which the quantifiers range must contain empty terms. 

In each case, the atomic formulas are well-formed predicate formulas and therefore contain 

some interval constant. Since there is no interval t ∈ Dt such that t ≻p, whatever constant which 

is replaced by the variable ‘t’ must be empty. Therefore, per clause VII, some t ∈ D+
t is assigned 

as a referent for constant replaced by ‘t’. For the predicate ‘see’ (which is now interpreted as a 

22 This is why I define the antedence relation distinct from the precedence relation. In 

languages like English, the eventuality being talked about is primary, and its time is defined in 

relation to another time. The sentence “Shakespeare wrote Hamlet” is about Shakespeare’s 
writing of Hamlet, and the interval during which Shakespeare’s writing of Hamlet takes place 

precedes the present moment. Likewise, the sentence “Arthur will see Ruth” is about Arthur’s 
seeing Ruth, and the interval during which Arthur’s seeing of Ruth takes place antecedes the 

present moment. I prioritize keeping the relations and notation in this system uniform in order 

to preserve the ‘about-ness’ of sentences in English in formulas of the system. 
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relation over D+), either t is a member of some ordered tuple ∈see, or not. Thus CS evaluates to 

true in every completion, and therefore is supertrue in S. The same result holds for any 

proposition analyzed as an identity formula in S. The proposition “Arthur worshiped Thor” is 

truth-valueless in S since I(Thor) ∉ Di, but “Thor is identical to Thor,” which is analyzed as an 

identity formula Thor = Thor, remains valid since for any possible referent i ∈ D+
i for the empty 

term “Thor”, i = i. Hence, identity theory is classical in S.

As defined above, S is adequate to capture the meaning of a variety of English 

sentences. The simple past sentence “Arthur saw Ruth” asserts a seeing-event of Ruth by 

Arthur, which took place over some interval that terminated in the past. This can be captured 

by the following analysis: 

ⱻet(see(e≺p
t, Arthur, Ruth))  

Now consider a more complicated English sentence which makes use of the past continuous, 

“Arthur was running when Ruth jumped.” The system yields the following analysis: 

ⱻetⱻe1t1((run(e⊒t1
t , Arthur)) ∧ (jump(e1

≺p
t1, Ruth))) 

The past continuous tense denotes a past action that was in progress when another past action 

occurred. This is adequately captured by the inclusion relation. Moreover, the way S analyzes 

the sentence “Arthur was running when Ruth jumped” not only captures the truth-conditions 

of the sentence and its temporal relations, but it does so in a manner that is faithful to how the 

sentences are expressed in English. The past continuous is used in the context of other past 

events. Likewise, in the analysis of “Arthur was running when Ruth jumped,” both quantifiers 

range over both atomic formulas, capturing the context-dependent nature of past continuous 

sentences in English. 
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The system is also adequate to express the perfect tenses in English, like the sentence 

“Arthur had run when Ruth jumped,” which makes use of the past perfect simple and simple 

past tense: 

ⱻetⱻe1t1((run(e≺t1t, Arthur)) ∧ (jump(e1
≺p

t1, Ruth))) 

The past perfect simple tense in English denotes a past action that took place and terminated 

before another past action took place, all of which can be captured by the precedence relation. 

The system can also be augmented to preserve the entailment relation among 

propositions discussed in chapter 3 using thematic relations. For instance, “Tom buttered the 

bread” could be analyzed as “ⱻet(butter(e≺p
t, Tom, bread))”, and “Tom buttered the bread with 

a knife” analyzed as ⱻet(butter(e≺p
t, Tom, bread) ∧ instrument(e≺p

t, Tom, knife)). Thus, the 

system preserves the entailment relation which partially motived the development of events-

based semantics. 
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CHAPTER 5 

5.1 Conclusion

At this point in my paper, I have argued that the combination of realism about the past 

and present and antirealism about the future, a tensed events-based analysis of natural 

language, and a view about presupposition can lend itself as a solution to the problem of future 

contingent propositions. Since English language sentences are tensed, if the existence of time 

intervals is presupposed rather than asserted (a rather plausible view) in English sentences, 

then an analysis that captures that presupposition can yield a system in which future 

propositions are meaningful but lack truth-value. In chapter 4, I formally defined the system by 

combining Davidsonian events-based semantics, free logic, and interval logic. In addition to 

yielding truth-valueless future propositions, the system preserves the classical validity of EM 

and NC. It is also independently motivated because it can capture meaning built into English 

tense and aspect, allowing for more expressive power than standard first-order logic. 

I close with some caveats and qualifications. S represents all sentences of English as one 

of two kinds of formulas, predicate formulas or identity formulas. This point demands more 

attention. All predicate formulas are tensed, but, as the system has been defined, identity 

formulas are not. Which sentences of English are best translated as predicate formulas and 

which are best translated as identity formulas will demand more clarity. Take, for instance, the 

sentence “Samuel Clemens was Mark Twain.” This sentence seems to express a straightforward 

identity relation. The sentence is also tensed, but identity formulas in S are not tensed. As it 

stands, the system cannot capture the difference between “Samuel Clemens is Mark Twain”



and “Samuel Clemens was Mark Twain.” 

Why, then, distinguish between identity and predicate formulas at all? After all, don't all 

sentences of English involve tense? Most sentences in English express events that occur at 

certain times. But the correct analysis for sentences that express mathematical truths—say,

“Four squared is sixteen”—is not quite so obvious, and such sentences could constitute 

exceptions. In English, sentences like this are always expressed in the present simple. The 

simple past or simple future future (“Four squared was sixteen” or “Four squared will be 

sixteen”) wouldn’t be uttered in isolation, and the continuous aspect (“Four squared is equaling 

sixteen”) isn’t even sensible. Identity formulas are naturally suited to express logical and 

mathematical truths. The language could be expanded to include numbers, so that these truths 

can be expressed alongside predicate formulas. The challenge, then, would be to distinguish 

between the expression of mathematical truths like “Four squared is sixteen” and “Samuel 

Clemens is Mark Twain”, since both express identity but tense can be sensibly changed only in 

the latter.  

It’s also worth noting again that the system formalizes the commitment to the positive 

ontological status of three types of entities: times, individuals, and events. The motivation for 

realism about events comes from their usefulness for making sense of much of natural 

language, a case which was made by Davidson and thinkers that followed him. At the beginning 

of this paper, I explicitly took for granted a realist view of the past and the present. Since first-

order logic presupposes the existence of individuals, the combination of these three views 

results in a commitment to the existence of three distinct types of entities. Readers might ask 

what a semantics like S implies or assumes with respect to A- and B-theories of time. I do not 

intend to comment on the truth or evidence for either of these theories. S is intended largely to 
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explicate sentences of the English language—positing the existence of time intervals 

(whatever time is) as entities offers utility in analyzing natural sentences of English. In closing, I

want to suggest that a system that takes these types seriously, including time intervals, 

possessive useful, substantial expressive power, offers a plausible analysis of English sentences 

that preserves logical relations important to any system of logic, and remains friendly to 

indeterminism in its treatment of future contingent propositions.  
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