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Abstract— This work considers the computational costs
associated with the implementation of a failure-tolerant path
planning algorithm proposed in [1]. The algorithm makes the
following assumptions: a manipulator is redundant relative
to its task, only a single joint failure occurs at any given
time, the manipulator is capable of detecting a joint failure
and immediately locks the failed joint, and the environment
is static and known. The algorithm is evaluated on a three
degree-of-freedom planar manipulator for a total of eleven
thousand different scenarios, randomly varying the robot’s
start and goal positions and the number and locations of
obstacles in the environment. Statistical data are presented
related to the computation time required by the different
steps of the algorithm as a function of the complexity of the
environment.

I. INTRODUCTION

Kinematic failure tolerance gives a robot the ability
to gracefully recover from joint failures. Such a control
strategy is most useful for robots performing tasks in
hazardous or remote environments, such as in space ex-
ploration [2], [3], underwater exploration [4], and nuclear
waste disposal [5], [6], [7]. It allows a robot to imme-
diately complete the task at hand without unnecessary
delays due to robot repair and also avoid the potentially
significant danger associated with a robot failure during
task execution amongst hazardous materials.

A worst-case failure-tolerance measure was first intro-
duced in [8] using the minimum singular value of the robot
Jacobian matrix. The nature of joint failures that have
been studied include locked-joint [9], [10], [11] and free-
swinging [12] joint failures. A real-time implementation
is given in [11]. A number of failure-tolerant control
strategies have been proposed, including adaptive control
[13], [14], [15], reflex control [16], and least squares
approaches [17]. Generally, obstacles are not considered
in most kinematic failure tolerance studies. One of the
earliest works in kinematic failure tolerance that does
consider obstacles in the workspace is [18]. However, the
method introduced extensively checks every possibility of
failure at every instance in time as the robot plans to
move from a start to a goal workspace location. In more
recent work [1], a method was introduced that guarantees
task completion for any single locked-joint failures despite
obstacles in the workspace without extensively checking
every possibility of failure at every instance in time. The
approach searches for a continuous obstacle-free mono-
tonic surface in the configuration space that guarantees
the existence of a solution.

The goal of this work is to quantify the computational
feasibility of implementing the kinematic failure tolerance
algorithm presented in [1]. We first provide a review
of this approach. This is followed by a set of simula-
tion experiments consisting of eleven thousand scenarios,
where a scenario is defined as a workspace start location,
a workspace goal location, and a set of obstacles. The
resulting data is then analyzed to determine the types of
scenarios where the implementation of a failure-tolerant
path planning strategy may be feasible.

II. DEFINITION OF TERMS

For an n degree-of-freedom (DOF) kinematically re-
dundant robot operating in an m DOF workspace, the
degree-of-redundancy (DOR) is defined as r = n − m.
The set of configurations in the configuration space (C-
space) that result in the same end-effector workspace
position/orientation x is called the pre-image of x, denoted
f−1(x). The pre-image can be written as a union of
disjoint connected sets

f−1(x) =
nm⋃

i=1

Mi (1)

where Mi is the i-th r-dimensional self-motion manifold
in the inverse kinematic pre-image such that Mi∩Mj =
∅ when i �= j, and nm is the number of self-motion
manifolds [19]. Fig. 1 shows a set of single dimensional
start and goal self-motion manifolds for a robot with
r = 1. The dark portions of the self-motion manifolds
denote configurations of the robot that are in contact with
obstacles. A continuous obstacle-free portion of the goal
self-motion manifold is denoted as γg while an obstacle-
free start configuration is denoted as θs.

For a single locked-joint failure, the resulting C-space
is an (n − 1)-dimensional hyperplane called a failure
hyperplane. For an obstacle-free start configuration θs,



Fig. 1. The configuration space for a single degree of redundancy
robot showing a start and goal self-motion manifold. All the failure
planes corresponding to an obstacle-free start configuration θs intersect
an obstacle-free portion of the goal self-motion manifold γg . The failure
cube contains an obstacle-free start configuration θs and an obstacle-
free portion of the goal self-motion manifold γg . The failure surface,
shown as a web-like network of paths, corresponding to an obstacle-free
start configuration θs is identified by generating monotonic paths within
the failure cube and connecting the obstacle-free start configuration θs

to points on the obstacle-free portion of the goal self-motion manifold
γg . Each node along the obstacle-free portion of the goal self-motion
manifold γg defines an intersection with either a failure plane or a face
of the failure cube.

a failure hyperplane Hi associated with θs is given by

Hi(θs) = {θ | θi = θsi} (2)

where θi denotes the i-th component of θ in a failure-
induced C-space, θsi is the fixed value of the locked i-th
component of start configuration θs, and i = 1, . . . , n.
An obstacle-free start configuration θs is shown with its
corresponding failure planes in Fig. 1.

A failure hypercube is a hypervolume in C-space that
contains an obstacle-free start configuration θs and an
obstacle-free portion of the goal self-motion manifold γg

such that all the failure hyperplanes corresponding to the
obstacle-free start configuration θs intersect an obstacle-
free portion of the goal self-motion manifold γg . A failure
hypercube associated with θs and γg has the form

V = {θ | θHl
i
≤ θi ≤ θHu

i
for i = 1, . . . , n} (3)

where Hl
i is the lower bounding hyperplane,

Hl
i = {θ | θi = θHl

i
}, (4)

and Hu
i is the upper bounding hyperplane,

Hu
i = {θ | θi = θHu

i
}, (5)
Fig. 2. A monotonic surface is defined as a surface where there are
no closed contours along the intersection with any plane parallel to its
failure planes. A monotonic surface has no local minima or maxima.

for i = 1, . . . , n. The values of θHl
i

and θHu
i

define
the location of their corresponding hyperplanes. Typically,
some of the faces of a failure hypercube will lie in the
failure hyperplanes associated with θs. The rest of the
faces of the failure hypercube are defined by the extremal
points of γg . Note that a failure hypercube is not typically
obstacle free.

A failure surface S is a continuous obstacle-free mono-
tonic surface within the failure hypercube that contains
an obstacle-free start configuration θs and is bounded by
three curves: an obstacle-free portion of the goal self-
motion manifold γg , an obstacle-free monotonic curve
lying in the first failure hyperplane that intersects γg , and
an obstacle-free monotonic curve lying in the last failure
hyperplane that intersects γg . A monotonic surface has
the property that its intersection with every plane parallel
to a failure hyperplane is a non-closed curve (see Fig. 2).
Thus a monotonic surface does not have any local internal
minima or maxima. Fig. 1 shows a web-like network of
paths that represent a failure surface S within a failure
cube. The outermost paths from θs to γg lie on their
respective failure planes.

III. GUARANTEEING A FAILURE-TOLERANT PATH

A. A Necessary Condition and a Sufficient Condition

Two conditions are derived that determine the existence
of a solution. A necessary condition is used to identify fea-
sible obstacle-free start configurations θs and a sufficient
condition is used to determine the existence of a solution
from all the feasible obstacle-free start configurations θs.

Necessary Condition.A given obstacle-free configura-
tion θs is called a feasible configuration if all the corre-
sponding failure hyperplanes associated with θs intersect
a portion of the obstacle-free goal self-motion manifold
γg , that is,

Hi(θs) ∩ γg �= ∅, for all i = 1, . . . , n (6)

where Hi is the failure hyperplane at θs corresponding to
joint i. This ensures a possibility of reaching the obstacle-
free portion of the goal self-motion manifold γg despite a
joint failure at the start configuration θs. Note that this is
equivalent to the goal position being in the fault-tolerant
workspace [10].



Sufficient Condition. Consider a given failure hyper-
cube V containing an obstacle-free start configuration
θs and an obstacle-free portion of the goal self-motion
manifold γg . If a failure surface S which is a continuous
obstacle-free monotonic surface in the failure hypercube
V exists such that the two conditions

θs ∈ S and γg ⊂ S (7)

hold, then an obstacle-free path to the goal is guaranteed
for any single locked-joint failure at any given time despite
the presence of obstacles in the workspace.

B. Algorithm

The procedure for our proposed method is enumerated
in the following.

1. Determine the start self-motion manifold Ms and
goal self-motion manifold Mg , from the given start,
xs, and goal, xg , workspace position/orientation,
respectively.

2. Identify an obstacle-free start configuration θs and an
obstacle-free portion of the goal self-motion manifold
γg .

3. Check for intersections of the failure hyperplanes
Hi(θs) with γg for i = 1, . . . , n. (Note that this
step uses the necessary condition in Section III-A).

4. Check for the existence of a failure surface S. This
is done by generating monotonic paths from θs to
points in γg and checking for intersections with
obstacles. These paths are limited to straight lines
or the set of quadratic curves that are monotonic.
Straight line connections between paths are used
to check for the continuity of obstacle-free space
between paths. (This step uses the sufficient condition
in Section III-A).

Given that a failure surface S exists, to move from
the start position/orientation, xs, towards the goal po-
sition/orientation, xg , the manipulator configuration tra-
verses from the obstacle-free start configuration θs along
the continuous web of paths that represents the failure
surface S toward the obstacle-free portion of the goal
self-motion manifold γg . Because S is known to be
collision free, as long as the manipulator configuration
remains on the surface, the manipulator would be free
from collision and at the same time it can reach the goal
for any single locked-joint failure at any time. If no failure
surface S exists, then it is not guaranteed that the robot
can successfully complete its task for any single locked-
joint failure with the given obstacles in the environment.

The computational complexity of the proposed algo-
rithm is highly dependent on the method used for com-
puting the start and goal self-motion manifolds, and the
method used for collision detection. For a single DOR, the
computational complexity is O(mn2)+O(mnp) where p
is the number of obstacles in the workspace. The first term
Fig. 3. The workspace of a 3-DOF planar manipulator used for the
simulation experiments (all three link lengths are 100 units long). The
one thousand start locations, xs, are randomly generated within the
range [100, 200] units along the x-axis (shown as a thick bold line).
The one thousand goal workspace locations, xg , (shown as dots) are
randomly generated to be within the range [0, 200] units away from
their corresponding start location (but inside the reachable workspace).
The center of the workspace is marked with a bold cross, the workspace
boundary with a solid line, and the boundary of the goal locations with
a dashed line.

is the contribution for the computation of the self-motion
manifolds, while the second term is the contribution due
to collision detection.

IV. FEASIBILITY STUDY: 3-LINK PLANAR ROBOT

A 3-DOF planar robot with equal link lengths of 100
units was used for this feasibility study. The workspace
contained a number of circular obstacles, each of a di-
ameter of 40 units, where the number of obstacles was
varied from zero to twenty in two obstacle increments.
For each workspace with a given number of obstacles,
simulation experiments were performed for one thousand
randomly generated scenarios, where a scenario consists of
a given start workspace location, a given goal workspace
location, and the specified locations of the obstacles. In
each scenario, the locations for the corresponding num-
ber of obstacles are randomly selected from a uniform
distribution throughout the entire robot workspace. The
start workspace location xs is randomly selected from a
uniform distribution of [100, 200] along the x-axis, that
is, at a distance that corresponds to between one and two
link lengths away from the base. The goal workspace
location xg is randomly selected to be within a range
of [0, 200] units from the corresponding start workspace
location (while restricting the goal to be within the reach-
able workspace of the manipulator). Fig. 3 presents an
example of the start and goal locations generated for one
thousand scenarios. A total of eleven thousand scenarios
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Fig. 4. Several examples selected from the eleven thousand scenarios where the fault-tolerant path planning algorithm was applied to 3-DOF planar
manipulator. The subfigures denoted (a) through (e) correspond to workspaces containing from twenty to twelve obstacles, respectively. In each case, the
top scenario represents one in which the algorithm successfully identified a failure surface S, whereas the bottom scenario represents a case where such
a surface could not be found. In all cases the start configuration shown for the manipulator is one that satisfies the necessary condition for a surface to
exist.
were generated, i.e., one thousand for each workspace
containing a given number of obstacles.

Ten examples from this set of eleven thousand scenarios
are presented in Fig. 4, where the number of obstacles is
varied from twenty to twelve in two obstacle increments.
The top row of this figure illustrates cases where the fault
tolerant path planning algorithm was able to identify a
failure surface, with the bottom row showing cases where
it could not. The necessary condition for a surface to exist
was satisfied in all cases, with the manipulator configura-
tion illustrating one such feasible starting configuration.
In the following subsections, data gathered from these
eleven thousand simulation experiments will be presented
according to the order in which these steps are performed
in the algorithm described in Sec. III-B. In all cases the
algorithm was executed on a computer with dual Intel
Xeon processors running at 2.4 GHz.

A. Computation of Self-Motion Manifolds

The first step in the failure-tolerant path planning al-
gorithm is to compute the self-motion manifold(s) for
both the start and goal workspace locations. These are
computed by identifying a single configuration on each
disjoint manifold and then stepping along the manifold
(in two degree increments) by computing the null vector
of the manipulator Jacobian matrix (which corresponds
to the tangent of the self-motion manifold). The average
lengths for the sum of all manifolds corresponding to
a workspace location are given in Table I. The length
for the start manifolds are larger than those for the
goal manifold because the start workspace locations were
TABLE I

COMPUTATION OF SELF-MOTION MANIFOLDS

Ave. Std. Dev.

Length of Ms (deg) 1043.95 4.97

Length of Mg (deg) 883.71 8.52

Time to compute Ms, Mg (ms) 41.90 5.88

intentionally restricted to a region of the workspace where
these manifolds are larger, and thus, the locations are more
failure tolerant [10]. (A distance of one link length from
the base is optimally failure tolerant, i.e., all joints span
their entire range of motion, while the location on the
workspace boundary is most failure intolerant, i.e., its self-
motion manifold consists of a single point.) The average
computation time over all manifolds was 41.9 ms.

B. Identifying Obstacle-Free Portions of Ms and Mg

After the start self-motion manifold Ms and goal self-
motion manifold Mg are computed, the next step is
to determine the obstacle-free portions of the manifolds.
This identifies candidate feasible start configurations θs

and continuous obstacle-free portion of the goal self-
motion manifold γg that can possibly satisfy the necessary
condition.

Fig. 5 shows the percentage of the start self-motion
manifold Ms and goal self-motion manifold Mg that
are obstacle free as a function of the number of obsta-
cles in the workspace. As expected, the percentage of
the obstacle-free self-motion manifold decreases as the
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Fig. 6. Time needed to determine the obstacle-free portion of the start
self-motion manifold Ms and the goal self-motion manifold Mg as a
function of the number of workspace obstacles.

number of workspace obstacles increases. Fig. 6 shows the
time, in milliseconds, required to determine the obstacle-
free portion of the self-motion manifolds. As expected, the
time required to determine which portions of a manifold
are obstacle free is a linear function of the number of
obstacles.

In many cases, one could avoid most of the computation
time associated with checking the entire manifold for
collisions with obstacles by performing the necessary
condition check first, and then verifying that the start
configuration and corresponding portion of the goal self-
motion manifold are collision free. (This check is the
same as determining if the goal location xg is in the
failure-tolerant workspace of the start location xs as first
considered in [10].)

C. Checking the Necessary Condition

The next step in the failure-tolerant path planning
algorithm is to apply the necessary condition to those
portions of the start and goal manifolds that are collision
free. This is done by selecting a start configuration θs from
the obstacle-free portion of the start manifold and then
checking for intersections of all failure planes with each
γg . If a γg intersects all failure planes then the necessary
condition is satisfied and this step terminates. If no γg

satisfies the intersection tests then a new θs is selected
and the tests repeated until either the necessary condition
is satisfied or all θs have been tested. Thus if this test fails
it is guaranteed that no failure-tolerant obstacle-free path
exists between the start and goal locations.

Table II presents the computational data associated with
checking the necessary condition. Note that even without
any obstacles, the necessary condition can only be satisfied
in 69% of the scenarios tested. This is essentially an
indication of the difficulty of guaranteeing that a goal
location will be in the failure-tolerant workspace of the
start configuration. This is clearly very dependent on
both the starting location and the distance between the
start location and the goal location [10]. As the number
of obstacles in the workspace increases, the percentage
of cases that satisfy the necessary condition decreases,
reaching a minimum of 25% for the case with twenty
obstacles. For those cases where a θs satisfied the neces-
sary condition, we further processed the start manifold to
see what percentage of the start manifold would be able
to satisfy the necessary condition. (This is not required
by the algorithm and the time required to perform this
computation was not included in the overall execution
time data presented.) Table II shows that this is also
a monotonically decreasing function of the number of
obstacles in the workspace. Thus, it becomes increasingly
more time consuming to identify a θs that satisfies the
necessary condition as the number of obstacles in the
workspace increases. This is illustrated by the fact that the
computation time is a monotonically increasing function
of the number of obstacles. This is true despite the fact
that there is less and less of the start manifold that is
obstacle free (see Fig. 5) because an increasingly smaller
percentage of the obstacle-free manifold is able to satisfy
the necessary condition. In contrast, the time to compute
that the necessary condition is not satisfied is relatively
independent of the number of obstacles. This at first
appears anomalous because one would expect this to be
a monotonically decreasing function due to a smaller
percentage of the start manifold needing to be checked
(because less of it is obstacle free). However, this is offset
by the fact that larger and larger manifolds are now failing
the necessary condition, thus keeping the computation
time relatively constant.

Fig. 7 shows the average length of the γg from a
(θs, γg) pair that satisfies the necessary condition. This
generally decreases as the number of obstacles increases
due to the fact that it is more difficult to have large γg

because they are required to be obstacle free. The size of a
γg that satisfies the necessary condition is correlated to the
distance between the start and goal workspace locations so



TABLE II

COMPUTATION TO CHECK THE NECESSARY CONDITION

No. of Time N.C. Time N.C. % Cases % Ms

Obs. Sat. (ms) Not Sat. (ms) N.C. Sat. N.C. Sat.

0 0.73 4.39 69.3 25.4

2 0.84 4.59 64.8 20.5

4 1.13 5.03 57.9 16.5

6 1.13 4.86 52.2 15.4

8 1.05 4.57 48.9 12.4

10 1.33 5.13 45.8 10.0

12 1.48 5.35 38.2 7.6

14 1.50 5.43 36.7 6.3

16 1.84 6.15 30.8 5.9

18 1.90 5.56 27.6 4.1

20 2.92 5.53 24.8 3.7
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Fig. 7. Average length of a γg that satisfies the necessary condition
and that also satisfies the sufficient condition as a function of the number
of obstacles in the workspace.

that, as expected, start and goal locations must be closer
together as more and more obstacles are added to the
workspace.

D. Computing a Failure Surface

The final step in the algorithm is to check the sufficient
condition by attempting to compute a failure surface S
that guarantees the existence of a solution to the failure-
tolerant path planning problem. Once a feasible start
configuration θs is found from the previous step, the
search for a failure surface S begins. A failure surface S
is identified by generating monotonic paths that connect a
feasible start configuration θs to points on its correspond-
ing γg that satisfies the necessary condition. (The γg curve
is discretized at a resolution of two degrees.) For each
point on γg the algorithm first attempts to use a straight-
line path. If this path is not obstacle free, then it attempts
to find a monotonic quadratic path that is obstacle free. If
no such path can be found then the algorithm discards this
(θs, γg) pair and uses the next (θs, γg) pair that satisfies
the necessary condition. If all such pairs are exhausted
TABLE III

COMPUTATION TO CHECK THE SUFFICIENT CONDITION

(ONCE THE NECESSARY CONDITION IS SATISFIED)

Ave. Std. Dev

% of times S found 84.23 2.58

% linear paths on S 99.63 0.19

Time to compute S(s) 1.16 0.23

Time to not find S(s) 1.80 0.37

Overall Percentage
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Fig. 8. Percent of total cases where the necessary condition is satisfied
and percent of total cases where the sufficient condition is satisfied, i.e.,
where a failure surface S is found.

without completing a failure surface then the algorithm
terminates with a message that is was unsuccessful.

Table III presents data on the computation of failure
surfaces. It is interesting to note that once the necessary
condition is satisfied, it is highly likely that a failure
surface will be found, i.e., this occurs 84% of the time.
In addition, this percentage is relatively independent of
the number of obstacles that are in the workspace as
illustrated in Fig. 8 (except, of course, for the case of
no obstacles). This is fortuitous, because the construction
of failure surfaces is by far the most time consuming
portion of the algorithm. (The average time to compute a
failure surface is 1.16 s, and it takes 1.80 s, on average, to
exhaust all possible candidates in cases where a surface
cannot be found.) Thus the time to evaluate surfaces is
seldom wasted, with the majority of the cases where no
solution exists being identified in a matter of milliseconds
by the necessary condition test. It is also interesting to
note that nearly all (99.6%) of the paths in failure surfaces
are linear. However, it is important to point out that even
if only one path in a failure surface is quadratic, then
that implies that that surface would not have satisfied
the sufficient condition if only straight-line paths were
allowed.

V. SUMMARY AND CONCLUSION

This paper has presented and analyzed the behavior
and computational cost of a failure-tolerant path planning
strategy originally proposed in [1]. This algorithm consists



of four steps: (1) construction of self-motion manifolds,
(2) collision detection for those manifolds, (3) testing of
a necessary condition for a solution to the problem, and
(4) determining if a sufficient condition was satisfied. The
probability of identifying a failure-tolerant path is strongly
dependent on several factors, i.e., the start workspace
position, the goal workspace position, and the number
and location of the obstacles. It was tested on 11,000
scenarios for a planar 3-DOF manipulator with all of these
factors randomly varied. Even with no obstacles, failure-
tolerant paths only existed for 69% of the cases tested.
For environments with 20 obstacles (the largest number of
obstacles tested) this number dropped to 15%. However,
one advantage of the algorithm is that for most of the
cases where a path does not exist it is identified by the rel-
atively computationally inexpensive test of the necessary
condition. In all cases, the algorithm was computationally
feasible, i.e., to determine that no possible path exists took
an average of 0.2 s, to compute a failure-tolerant surface
took an average of 1.2 s, and if the algorithm could not
determine whether a surface exists took an average of
2.0 s.
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