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ABSTRACT 

 

 

MANIPULATING THE SOIL MICROBIOME TO INCREASE PLANT HEALTH AND 

PRODUCTIVITY 

 

 

Rhizosphere microbial communities offer immense benefits to plants. The 

rhizomicrobiome has the ability to help combat numerous biotic and abiotic stresses as well as 

increase plant health and productivity. In a world where the population keeps increasing at an 

alarming rate while food is scarce, new alternatives to feed the growing population need to be 

identified. The answer lies in harnessing and exploiting the beneficial interactions between plants 

and their rhizosphere microbiome to increase plant health and productivity. An understanding of 

the mechanisms that govern such interactions is essential to increase plant health and 

productivity. 

Based on this need, an analysis of the interactions between Arabidopsis thaliana and its 

rhizosphere microbial community was undertaken. Initial studies revealed that root exudates 

serve as a means of initiating, attracting, maintaining, and enhancing rhizosphere microbial 

community interactions. Furthermore, root exudation changes with development and leads to 

changes in the functional capacity and the members that make up the rhizosphere microbial 

community. These changes appear to occur so the plant can recruit specific functions necessary 

for survival.  

Once a framework outlining the importance of root exudation on plant-microbiome 

interactions was established, compounds from root exudates were added to soil, without the 

plant, and tested its impact on the soil microbiome. Studies revealed that these compounds when 



iii 

acting alone do in fact influence the soil microbiome and that distinct chemical classes have a 

direct influence on the soil microbial community. Most importantly, correlation analysis of 

microbes and the phytochemicals added to the soil revealed that phenolic compounds appear to 

predominantly modulate the soil microbial community.  

Finally, the knowledge acquired from these studies allowed development of statistical 

models that could predict the specific influence of root exudate compounds on the soil 

microbiome. Five statistical models were implemented, tested, and validated. These results 

identified models based on machine learning to be of great value in their ability to accurately 

predict the behavior of soil microbial community abundance after exposure to specific 

compounds. 

Overall, the results of this dissertation enable the ability to begin to modulate and 

manipulate the soil microbial community for increased plant health and productivity. 

  



iv 

ACKNOWLEDGEMENTS 

 

 

I would like to extend my sincerest gratitude to my adviser, Dr. Jorge Vivanco, and the 

members of my graduate committee whose support throughout this intellectual endeavor has 

been invaluable: Dr. Daniel Manter, Dr. Jan Leach, and Dr. Stephen Wallner. I am grateful to the 

National Science Foundation Alliances for Graduate Education and the Professoriate (AGEP) for 

their funding and support during my graduate career at Colorado State University. 

I would also like to thank everyone who has made my time at Colorado State University 

an exciting and incredible learning adventure which was filled with plenty of twists, turns, and 

life experiences. Special thanks to the members of the Vivanco lab for all the support, laughs, 

and constant help. Additionally, I would like to thank Dr. Dayakar Badri for his constant support 

and assistance. To Brittany Barnett and Amy Sheflin, thank you for each and every happy hour 

we spent together; it was always a welcome break and made the difficult times bearable. Viviana 

Betancourt, I want to thank you for all the help, edits, and comedic relief provided during this 

endeavor. 

Finally, to my parents, Martha and Luis Chaparro, and my brother, Kevin Chaparro, 

thank you for your unwavering support and devotion throughout my life. Your encouragement is 

what kept me focused on the finish line. To my husband, Steven Russo, thank you for keeping 

me grounded and knowing just what to say during those moments when things seemed 

insurmountable. To the entire Russo clan, thank you for everything. 

  



v 

TABLE OF CONTENTS 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ XI 

LIST OF FIGURES ..................................................................................................................... xiv 

LIST OF SUPPLEMENTAL FILES .......................................................................................... xvii 

CHAPTER 1 MANIPULATING THE SOIL MICROBIOME TO INCREASE SOIL HEALTH 

AND PLANT FERTILITY ............................................................................................................. 1 

Synopsis ...................................................................................................................................... 1 

Introduction ................................................................................................................................. 1 

The effect of plants on the soil microbiome ................................................................................ 2 

Soil properties influence microbial diversity .............................................................................. 4 

Role of soil microbes in soil health and plant productivity ......................................................... 6 

Role of the microbiome in plant health and productivity .......................................................... 10 

Management practices influence the soil microbiome .............................................................. 15 

Implications for agriculture ....................................................................................................... 16 

Conclusion ................................................................................................................................. 17 

Dissertation research objectives ................................................................................................ 18 

Dissertation overview ................................................................................................................ 19 

Figures ....................................................................................................................................... 21 

REFERENCES ............................................................................................................................. 22 

CHAPTER 2 ROOT EXUDATION OF PHYTOCHEMICALS IN ARABIDOPSIS FOLLOWS 

SPECIFIC PATTERNS THAT ARE DEVELOPMENTALLY PROGRAMMED AND 

CORRELATE WITH SOIL MICROBIAL FUNCTIONS ........................................................... 33 

Synopsis .................................................................................................................................... 33 



vi 

Introduction ............................................................................................................................... 34 

Materials and methods .............................................................................................................. 36 

Plant growth conditions and root exudate collection ............................................................ 36 

Gas chromatography and mass spectrometry (GC-MS) analyses of exudates ...................... 37 

Gene expression analyses from plant root tissue ................................................................... 38 

Soil experiment ...................................................................................................................... 39 

Extraction of microbial RNA from soil ................................................................................. 40 

Pyrosequencing and analyses ................................................................................................ 40 

Correlating rhizosphere microbial function with host plant root exudation .......................... 42 

Results ....................................................................................................................................... 43 

Arabidopsis root exudation over a developmental time course............................................. 43 

Root gene expression analyses .............................................................................................. 44 

Correlations between root exudation patterns and the functional capacity of the soil 

microbiome ............................................................................................................................ 46 

Discussion ................................................................................................................................. 48 

Tables ........................................................................................................................................ 56 

Figures ....................................................................................................................................... 62 

REFERENCES ............................................................................................................................. 67 

CHAPTER 3 RHIZOSPHERE MICROBIOME ASSEMBLAGE IS AFFECTED BY PLANT 

DEVELOPMENT ......................................................................................................................... 73 

Synopsis .................................................................................................................................... 73 

Introduction ............................................................................................................................... 74 

Materials and methods .............................................................................................................. 77 

Soil experiment ...................................................................................................................... 77 



vii 

Extraction of microbial DNA from soil................................................................................. 78 

16S rRNA sequencing analysis ............................................................................................. 79 

Metatranscriptomics analysis ................................................................................................ 80 

Root exudation....................................................................................................................... 81 

Statistical analyses ................................................................................................................. 81 

Results ....................................................................................................................................... 82 

Plant development influences the soil microbial community ................................................ 82 

Plant root exudation correlates with rhizosphere microbes through plant development....... 85 

Plant development influences the functional microbiome .................................................... 85 

Beneficial microbes are more active during late plant development .................................... 86 

Plant root exudation correlates with the functional microbiome through plant development

 ............................................................................................................................................... 87 

Discussion ................................................................................................................................. 88 

Plant developmental changes affect the rhizosphere microbial community ......................... 88 

Plant development influences the functional capacity of the rhizomicrobiome .................... 89 

Root exudates act as potential stimulants for rhizomicrobiome functions ............................ 92 

Conclusions ............................................................................................................................... 95 

Tables ........................................................................................................................................ 96 

Figures ..................................................................................................................................... 120 

REFERENCES ........................................................................................................................... 129 

CHAPTER 4 APPLICATION OF NATURAL BLENDS OF PHYTOCHEMICALS DERIVED 

FROM THE ROOT EXUDATES OF ARABIDOPSIS TO THE SOIL REVEAL THAT 

PHENOLIC-RELATED COMPOUNDS PREDOMINANTLY MODULATE THE SOIL 

MICROBIOME........................................................................................................................... 139 

Synopsis .................................................................................................................................. 139 



viii 

Introduction ............................................................................................................................. 140 

Materials and methods ............................................................................................................ 142 

Plant growth conditions and collection of root exudates..................................................... 142 

Fractionation of root exudates ............................................................................................. 143 

Gas chromatography-mass spectrometry (GC-MS) analyses of exudate fractions and data 

analyses................................................................................................................................ 143 

Supplementing exudate fractions to Arabidopsis co-adapted soil ....................................... 144 

Soil DNA extraction and pyrosequencing ........................................................................... 146 

Sequencing analysis............................................................................................................. 147 

Statistical analysis ............................................................................................................... 148 

Results ..................................................................................................................................... 148 

Composition of compounds in each fraction by GC-MS analyses ...................................... 148 

Influence of whole exudates and fractions on soil microbial composition ......................... 149 

OTUs present uniquely for a given treatment ..................................................................... 150 

Taxonomic to phenotype mapping ...................................................................................... 151 

Correlation analyses between compounds and soil microbes ............................................. 151 

Discussion ............................................................................................................................... 153 

Tables ...................................................................................................................................... 160 

Figures ..................................................................................................................................... 176 

REFERENCES ........................................................................................................................... 184 

CHAPTER 5 AN EXPERIMENTAL PIPELINE FOR THE DEVELOPMENT OF SOIL 

PREBIOTICS OF AGRICULTURAL IMPORTANCE ............................................................ 189 

Synopsis .................................................................................................................................. 189 

Introduction ............................................................................................................................. 189 



ix 

Materials and methods ............................................................................................................ 192 

Plant growth conditions and collection of root exudates..................................................... 192 

Partition of root exudates..................................................................................................... 193 

Gas chromatography-mass spectrometry (GC-MS) of the chemical libraries and data 

analyses................................................................................................................................ 193 

Adding chemical libraries to Arabidopsis co-adapted soil .................................................. 194 

Soil DNA extraction and pyrosequencing ........................................................................... 195 

Sequencing analyses ............................................................................................................ 196 

Statistical analyses ............................................................................................................... 197 

Statistical modeling ............................................................................................................. 197 

Adding libraries of compounds to Arabidopsis co-adapted soil ......................................... 198 

Soil RNA extraction ............................................................................................................ 198 

Results ..................................................................................................................................... 199 

Development of distinct chemical libraries ......................................................................... 199 

Addition of specific chemical libraries to the soil creates distinct microbial communities 200 

Modeling soil microbial community dynamics ................................................................... 202 

Artificial chemical blends added to the soil influence the soil microbiome ....................... 202 

Machine learning models outperforms linear models when predicting the dynamics of the 

soil microbial community .................................................................................................... 204 

Boosted decision tree modeling identifies potential soil probiotics .................................... 205 

Discussion ............................................................................................................................... 207 

Tables ...................................................................................................................................... 211 

Figures ..................................................................................................................................... 252 



x 

REFERENCES ........................................................................................................................... 257 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ........................................................... 263 

Conclusions ............................................................................................................................. 263 

Future directions ...................................................................................................................... 265 

REFERENCES ........................................................................................................................... 267 

 

  



xi 

LIST OF TABLES 

 

 

Table 2-1. List of the primers used in this study. RT-PCR was used to analyze the expression of 

sugar transporters, ABC transporters and genes involved in secondary metabolism. Putative M 

refers to genes involved in the putative monosaccharide transporter family. ............................... 56 

Table 2-2. Summary of the 454 pyrosequencing data for each sample. ....................................... 58 

Table 2-3. Table detailing the compounds released via root exudation by the plant as it develops. 

These were collected over a period of 3 days (7-10 days, 14-17 days, 21-24 days and 28-31 

days). Compounds were detected using GC-MS. Numbers indicate the average area under the 

curve of three replicates, numbers in parenthesis indicate the standard deviation. ...................... 59 

Table 2-4. Correlation of the compounds identified in the root exudates with the abundance or 

number of functional genes in each sample. * Correlation was statistically significant (p<0.05).

....................................................................................................................................................... 61 

Table 3-1. Observed species richness (Sobs), Shannon diversity and evenness of the OTU soil 

microbial community for each plant developmental time point. .................................................. 96 

Table 3-2. Pearson correlation analysis of the OTUs classified as Acidobacteria, Actinobacteria, 

Bacteroidetes, or Cyanobacteria with the compounds released as root exudates. The values 

indicate the number of significant (p<0.05) Pearson correlations for each phyla. ....................... 97 

Table 3-3. Pearson correlations analysis of the OTUs classified as Acidobacteria, Actinobacteria, 

Bacteroidetes or Cyanobacteria with the group of compounds released as root exudates. The 

values indicate the number of significant (p<0.05) Pearson correlations. .................................... 98 

Table 3-4. Statistically significant (t-test p<0.05) transcripts (81 total) classified under 

hierarchical KEGG orthology expressed by the rhizomicrobiome at early (seedling (seed) and 

vegetative (veg)) vs. late (bolting (bolt) and flowering) ............................................................... 99 

Table 3-5. Taxonomic assignments of the differentially expressed (81) transcripts were 

categorized based on their activity and whether the corresponding transcript were significantly (t-

test p<0.05) expressed early or late in plant development. ......................................................... 118 

Table 3-6. Pearson correlation analysis of the significantly expressed transcripts at early or late 

plant development correlated with the group of compounds released as root exudate. The values 

indicate the number of significant (p<0.05) correlations. ........................................................... 119 

Table 4-1. Calibration curve properties of four analytes measured in this study ....................... 160 

Table 4-2. Absolute concentrations (nanomoles) of four compounds present in the whole 

exudates and fractions added to the soil. The values represented are the equivalent of two plant 

exudates added to the soil per supplemental time. LOD: below the limit of detect ................... 161 



xii 

Table 4-3. List of compounds and their relative concentrations (peak areas in %) present in the 

whole exudates, water fraction, ethylacetate fraction and chloroform fraction analyzed by GC-

MS. .............................................................................................................................................. 162 

Table 4-4. Abundance (%) of different categories of compounds present in the whole exudates 

and fractions of exudates analyzed by GC-MS. The percentage of the compounds in each 

category was calculated by dividing the sum of compounds in each category with the sum of 

compounds in all categories. ....................................................................................................... 172 

Table 4-5. Total observed (Sobs) and estimated (Chao and ACE) species richness, evenness, and 

diversity (Shannon) of the soil samples supplemented with whole exudates and their fractions 

with respective controls. * indicates significantly different at p<0.05. ...................................... 173 

Table 4-6. Pearson correlation analyses of compounds identified by GC-MS with the 

pyrosequencing data classified at the phyla level. The numbers represented are significant at p 

value 0.05. + indicates positive correlation. – indicates negative correlation. ........................... 174 

Table 4-7. Pearson correlation analyses of the groups of compounds with OTUs at the genus 

level. The numbers represented are significant at p value 0.05 .................................................. 175 

Table 5-1. Summary of the nine chemical libraries obtained. Outlined below is the distribution of 

the different categories and compounds in each chemical library. Each percentage was calculated 

by dividing the sum of the normalized peak GC-MS areas for each library with the sum of the 

peak area for the compounds in each of the given chemical classes. This was done for each 

chemical library. ......................................................................................................................... 211 

Table 5-2. List of the compounds and their relative concentrations (peak area) in each of the 9 

chemical libraries analyzed by GC-MS. ..................................................................................... 212 

Table 5-3. The 12 selected compounds composing the artificial chemical blends added to the soil 

in order to validate the 5 statistical models. ................................................................................ 229 

Table 5-4. Observed species richness (Sobs), Chao1 estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) of soil microbial community controls 

(Water, Nothing, and EtOAc) after a period of 2 and 6 weeks. * indicates statistically significant 

differences between water control soil microbial communities after 2 and 6 weeks. ................ 230 

Table 5-5. The observed species richness (Sobs), Chao estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) for soil microbial communities, which have 

been exposed to a given chemical library for 2 or 6 weeks. * indicates statistically significant 

differences between water control soil microbial communities within a given week (ANOVA 

Dunnett post-hoc, p<0.05). # indicates statistically significant differences between the soil 

microbial communities after exposure to a given chemical library at 2 and 6 weeks (t-test 

Bonferroni correction, p<0.001). ................................................................................................ 231 

 



xiii 

Table 5-6. The observed species richness (Sobs), Chao estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) for soil microbial communities, which have 

been exposed to artificial chemical blends. * indicates statistically significant differences 

between water control soil microbial communities (ANOVA Dunnett post-hoc, p<0.05). ....... 232 

Table 5-7. Mean square predicted error (MSPE) of each of the 5 statistical models implemented 

for each microbial order (pcr- partial components regression, pls - partial least squares 

regression, LASSO- LASSO, random forest-random forest, and boosted - boosted decision 

trees). ........................................................................................................................................... 233 

Table 5-8. Average and standard error obtained for overall MSPE of each statistical model 

employed ..................................................................................................................................... 235 

Table 5-9. Mean square predicted error (MSPE) after boosted decision tree modeling for each of 

the artificial blends added to the soil for each microbial order. .................................................. 236 

Table 5-10. Average and standard error obtained for overall MSPE of each artificial blend 

employed after boosted decision tree modeling.......................................................................... 237 

Table 5-11. Relative importance of each compound as determined by boosted decision tree 

modeling for predicting the abundance of microbial Orders found in the soil. The relative 

contribution of each variable is scaled so that the sum of all variables combined within a 

bacterial order is 100, higher numbers indicate stronger influences on respective bacterial order 

relative abundance. ..................................................................................................................... 238 

 

  



xiv 

LIST OF FIGURES 

 

 

Figure 1-1. Schematic illustration of how soil factors influence both plant roots and soil microbes 

which in turn reshape the soil environment through a dynamic exchange of chemical responses to 

living and non-living stimuli ......................................................................................................... 21 

Figure 2-1. Soil grown Arabidopsis thaliana Col-0 at each plant developmental stage (17, 24, 31 

and 38 days). ................................................................................................................................. 62 

Figure 2-2. iPATH 2 KEGG Map exhibiting the functional genes involved in Metabolism with 

the identified root exudate compounds. Blue lines: functional genes involved in Carbohydrate 

Metabolism; Green lines: functional genes involved in Amino Acid Metabolism; Brown. ........ 63 

Figure 2-3. Multivariate analysis of the root exudates analyzed by GC-MS. (A) Cluster analysis 

(Ward method) based on the 107 compounds detected in root exudates collected at 7-10d, 14-

17d, 21-24d, and 28-31d. (B) Principal Component Analysis (PCA) of the 107 root exudate 

compounds from samples collected at 7-10d, 14-17d, 21-24d, and 28-31d. Dashed ellipses 

indicate the 95% confidence region of each time point. Red: 7-10 days; Green: 14-17 days; Blue: 

21-24 days; Aqua: 28-31 days. 1: 7-10d; 2: 14-17d; 3: 21-24d; 4: 28-31d. ................................. 64 

Figure 2-4. Arabidopsis root exudate composition across development. Identified compounds 

were grouped into chemical classes, and secretion levels were calculated based on cumulative 

peak area after normalization. ....................................................................................................... 65 

Figure 2-5. Arabidopsis root gene expression profiles. (A) sugar transporters, (B) ABC 

transporters, and (C) genes involved in secondary metabolism, as measured by semi-quantitative 

RT-PCR. Gene names are listed on the left side. The time points at which root tissues were 

collected are shown along the top. Bold and italicized text indicates genes whose expression 

profiles are most consistent with the GC-MS analysis of collected exudates. ............................. 66 

Figure 3-1. Schematic representation of Arabidopsis rhizosphere soil collection...................... 120 

Figure 3-2. iPATH2 image of the soil microbial transcripts significantly expressed during early 

(seedling and vegetative-red) or late (bolting and flowering-blue) developmental stages. ........ 121 

Figure 3-3. Multivariate analyses of the rhizosphere microbial community through plant 

development; analyzed by 454 pyrosequencing. (A) Principal Coordinate Analysis (PCoA) for 

the visualization of pairwise community dissimilarity (Bray-Curtis index) of the rhizosphere 

microbial community at each plant developmental stage (seedling, vegetative, bolting and 

flowering). 95% confidence ellipses are shown around each developmental stage. (B) Principal 

Component Analysis (PCA) of the rhizosphere microbial community at each plant 

developmental stage. 95% confidence ellipses are shown around each developmental stage. .. 122 

Figure 3-4. Relative abundance (%) of the major bacterial phyla present in the rhizosphere 

microbial community at each plant developmental stage. .......................................................... 123 



xv 

Figure 3-5. Bacterial phyla that significantly (p<0.05) change with plant development. (A) 

Acidobacteria, (B) Actinobacteria, (C) Bacteroidetes and (D) Cyanobacteria. The bars with 

different letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. 

Each point represents one repetition and graphs show mean ± SE. ............................................ 124 

Figure 3-6. Bacteria classified as Acidobacteria that significantly (p<0.05) change with plant 

development. (A) Acidobacteriaceae Candidatus_Solibacter, (B) Acidobacteriaceae uncultured, 

(C) Acidobacteriaceae unclassified and (D) Holophagaceae unclassified. The bars with different 

letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. Each point 

represents one repetition and graphs show mean ± SE. .............................................................. 125 

Figure 3-7. Bacteria classified as Actinobacteria that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Intrasporangiaceae Terrabacter, (B) 

Nocardioidaceae Nocardioides, (C) Propionibacteriaceae unclassified, (D) Pseudonocardiaceae 

Psuedonocardia, (E) Streptomycetaceae Streptomyces, (F) Streptomycetaceae unclassified, (G) 

AKIW543 unclassified and (H) Solirubrobacterales unclassified. The bars with different letters 

are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. Each point 

represents one repetition and graphs show mean ± SE. .............................................................. 126 

Figure 3-8. Bacteria classified as Bacteroidetes that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Chitinophagaceae Flavisolibacter, (B) 

Cytophagaceae Flexibacter, (C) Sphingobacteriales Cytophagaceae, (D) Saprospiraceae 

uncultured, (E) Sphingobacteriales unclassified and (F) Bacteroidetes unclassified. The bars with 

different letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. 

Each point represents one repetition and graphs show mean ± SE. ............................................ 127 

Figure 3-9. Bacteria classified as Cyanobacteria that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Leptolyngbya unclassified, (B) Subsection III 

unclassified and (C) Cyanobacteria unclassified. The bars with different letters are significantly 

different (ANOVA Tukey post-hoc p<0.05) from one another. Each point represents one 

repetition and graphs show mean ± SE. ...................................................................................... 128 

Figure 4-1. Picture showing the Arabidopsis plants were transferred into sterile distilled water for 

three days prior to exudate collection ......................................................................................... 176 

Figure 4-2. Principal Coordinate Analyses (PCoA) of soil microbiome sequence data at genus 

level. Whole: whole exudates; Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, Water: 

water fraction; Cont 1: nothing added in the soil; Cont 2: water control; Cont 3: ethylacetate 

control; Cont 4: chloroform control. ........................................................................................... 177 

Figure 4-3. Soil microbiome sequencing data of treatments and controls analyzed by Principal 

Component Analyses (PCA) at phyla level (A) and genus level (B). Whole: whole exudates; 

Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, Water: water fraction; Nothing: nothing 

added in the soil; Water ctrl: water control; EtoAc ctrl: ethylacetate control; CHCl3 Ctrl: 

chloroform control. ..................................................................................................................... 178 

 



xvi 

Figure 4-4. Cluster analysis of the soil microbiome sequencing data of controls and treatments by 

Ward method. Whole: whole exudates; Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, 

Water: water fraction; Nothing: nothing added in the soil; Water ctrl: water control; EtoAc ctrl: 

ethylacetate control; CHCl3 Ctrl: chloroform control ................................................................. 179 

Figure 4-5. Relative abundance (%) of the major bacterial phyla present in the treatments and 

controls revealed by pyrosequencing. ......................................................................................... 180 

Figure 4-6. Flow diagram indicating the shared and unique OTUs present in controls and 

treatments. (A) Controls and (B) Treatments. Overall, 138 OTUs were shared by controls and 11 

OTUs were shared by treatments. The number of OTUs unique to a particular control or 

treatment are represented inside the shaded box and the number of OTUs shared between the 

controls and treatments are represented in the intersections. ...................................................... 181 

Figure 4-7. Taxonomic to phenotypic mapping based on the biotic habitat. Graph illustrates the 

number of sequence reads present in the controls and treatments. (A) symbiotic bacteria and (B) 

free-living bacteria. The bars with different letters are significantly different (p value<0.05) from 

one another. ................................................................................................................................. 182 

Figure 4-8. Taxonomic to phenotypic mapping based on the metabolism of specific microbial 

groups. The graph illustrates the number of sequence reads present in the controls and 

treatments. Carbon fixation (A), nitrite reducing (B), and atrazine degradation (C) are shown. 

The bars with different letters are significantly different (p value < 0.05) from one another. ... 183 

Figure 5-1. Principle coordinates analysis (PCoA) of the weighted UniFrac values for the 

visualization of the soil microbial community after exposure to the chemical libraries analyzed 

by 454 pyrosequencing. A-After 2 weeks of exposure. B- After 6 weeks of exposure. ............. 252 

Figure 5-2. Principle coordinates analysis (PCoA) of the weighted UniFrac values for the 

visualization of the soil microbial community after exposure to artificial blends analyzed by 454 

pyrosequencing. .......................................................................................................................... 253 

Figure 5-3. Partial dependency plots for boosted decision tree analyses identifies how 

methionine, after accounting for the average effect of all other variables in the model, influences 

bacterial relative abundance of A- Acidobacteria B- Actinobacteria, C- Bacillales, D- 

Nitrospirales, E- Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. ....................... 254 

Figure 5-4. Partial dependency plots for boosted decision tree analyses identifies how 4-

hydroxybutyric acid, after accounting for the average effect of all other variables in the model, 

influences bacterial relative abundance of A- Acidobacteria B- Actinobacteria, C- Bacillales, D- 

Nitrospirales, E- Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. ....................... 255 

Figure 5-5. Partial dependency plots for boosted decision tree analyses of the identifies how 3-

hydroxy-3-methylglutaric acid, after accounting for the average effect of all other variables in the 

model, influences bacterial relative abundance of A- Acidobacteria B- Actinobacteria, C- 

Bacillales, D- Nitrospirales, E- Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. 256 

  



xvii 

LIST OF SUPPLEMENTAL FILES 

 

 

Supplementary Material 2-1. Hierarchical classification of the functional genes in each sample 

they are categorized under KEGG orthology. 

 

Supplementary Material 2-2. Pearson correlation analysis of the functional genes involved in 

Amino Acid Metabolism with root exudate compounds classified as amino acids. Values present 

significantly correlate at p<0.05. 

 

Supplementary Material 2-3. Pearson correlation analysis of the functional genes involved in 

Metabolism of Secondary Metabolites which includes the Biosynthesis of Other Secondary 

Metabolites and Metabolism of Terpenoids and Polyketides with root exudate compounds 

classified as phenolics. Values present significantly correlate at p<0.05. 

 

Supplementary Material 2-4. Pearson correlation analysis of the functional genes involved 

Carbohydrate Metabolism with root exudate compounds classified as sugars.  Values present 

significantly correlate at p<0.05. 

 

Supplementary Material 3-1. List of OTUs with the number of sequence reads for each soil 

microbial community and their taxonomic assignment present at each developmental time point. 

 

Supplementary Material 3-2. Pearson correlation analysis of the bacterial OTUs classified as 

Acidobacteria, Actinobacteria, Bacteroidetes and Cyanobacteria with compounds released as 

root exudates. Values shown are statistically significant at p<0.05.  

 

Supplementary Material 3-3. Pearson correlation analysis of the statistically significant 

transcripts (81) with compounds released as root exudates. Values shown are statistically 

significant at p<0.05.  

 

Supplementary Material 4-1. List of OTUs with abundance (number of sequence reads) and their 

taxonomic assignments present in the controls and treatments. 

 

Supplementary Material 4-2. Correlation analyses of groups of compounds (sugars, sugar 

alcohols, amino acids and phenolics) present in the whole exudates, ethylacetate fraction, 

chloroform fraction and water. 

 

Supplementary Material 4-3. Correlation analyses of groups of compounds (sugars, sugar 

alcohols, amino acids and phenolics) present in the whole exudates, ethylacetate fraction, 

chloroform fraction and water fraction with soil bacterial sequencing data at the (OTU) genus 

level. The cells representing values are significant at p value 0.05 and blank cells are non-

significant. 

 



xviii 

Supplementary Material 5-1. List of OTUs with abundance (number of sequence reads) and their 

taxonomic assignments present in the controls and treatments of Arabidopsis co-adapted soil 

after exposure to the chemical libraries for 2 or 6 weeks.  

 

Supplementary Material 5-2. List of OTUs with abundance (number of sequence reads) and their 

taxonomic assignments present in the controls and treatments of Arabidopsis co-adapted soil 

after exposure to the artificial chemical blends. 

  



 

1 

CHAPTER 1 MANIPULATING THE SOIL MICROBIOME TO INCREASE SOIL HEALTH 

AND PLANT FERTILITY1 

 

 

Synopsis 

A variety of soil factors are known to increase nutrient availability and plant productivity. 

The most influential might be the organisms comprising the soil microbial community of the 

rhizosphere, which is the soil surrounding the roots of plants where complex interactions occur 

between the roots, soil, and microorganisms. Root exudates act as substrates and signaling 

molecules for microbes creating a complex and interwoven relationship between plants and the 

microbiome. While individual microorganisms such as endophytes, symbionts, pathogens, and 

plant growth promoting rhizobacteria are increasingly featured in the literature, the larger 

community of soil microorganisms, or soil microbiome, may have more far-reaching effects. 

Each microorganism functions in coordination with the overall soil microbiome to influence 

plant health and crop productivity. Increasing evidence indicates that plants can shape the soil 

microbiome through the secretion of root exudates. The molecular communication fluctuates 

according to the plant development stage, proximity to neighboring species, management 

techniques, and many other factors. This review seeks to summarize the current knowledge on 

this topic. 

Introduction 

The relationship between plants and their surroundings is a complex one that, for 

centuries, has been the focus of much research. For much of this time, the focus was on the 

                                                 
1 Reprinted from Chaparro, JM;Sheflin, AM, Manter, DK; Vivanco, JM, Manipulating the soil 

microbiome to increase soil health and plant fertility Biol Fert Soils 2012, 48, 489-499, DOI: 

10.1007/s00374-012-0691-4. Reproduced with permission from Springer 
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plants with little focus on the beneficial plant-microbe interactions (Berg 2009). Plants and 

microbes have evolved intimate relationships that enable them to coexist (Nihorimbere et al 

2011). Many experiments have tried to answer these questions by simplifying the interactions 

that occur to an individual plant-microbe relationship, but in reality, these interactions are  much 

more complex, involve a vast array of microbes, and often produce synergistic effects (Mendes 

et al 2011). It is necessary to move away from the potentially simplistic view of individual plant-

microbe interactions and take into account all the factors that influence this complex ecosystem. 

The plant, the soil, and the soil microbes all work together to mediate and influence the various 

exchanges (see Figure 1-1) that contribute to plant health and productivity. An understanding of 

how each component manipulates and influences each other is needed. Recent advances in “-

omics” research can help us answer these questions and allow us to see how all these interactions 

relate and influence one another (Morales and Holben 2011). Here we focus on the soil 

microbiome and its impact on plant health and productivity. 

The effect of plants on the soil microbiome 

The interaction between plants and their surroundings is a dynamic process in which 

plants monitor their environment and react to changes. The root system, which was traditionally 

thought to only provide anchorage and uptake of nutrients and water, is a key element to a plant 

interacting with its surroundings (Bais et al 2006). Chemical signals emitted by soil 

microorganisms are received and recognized by plants and then addressed through the release of 

chemical compounds in the form of root exudates. Secretion of these compounds varies between 

different plant species (Rovira 1969), ecotypes (Micallef et al 2009), and even distinct roots 

within a plant (Uren 2007). The diverse compounds released by plants as root exudates create a 

unique environment in the rhizosphere and include sugars, amino acids, flavonoids, aliphatic 
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acids, proteins, and fatty acids (Badri et al 2009b). All these different compounds are able to 

attract and initiate both symbiotic and pathogenic interactions within the rhizosphere (Bais et al 

2006). Root exudate composition and concentration change according to the signals received 

from the environment and the rhizosphere, age of the plant (De-la-Pena et al 2010), soil type 

(Rovira 1969), and biotic and abiotic factors (Flores et al 1999, Tang et al 1995). For example, 

De-la-Pena et al. (2010) observed that the protein composition of the root exudates changed 

when the plant grew alone as compared to when the plant interacted with pathogens or with 

symbiotic microbes. Root exudates are used as growth substrates (Vandenkoornhuyse et al 2007) 

by soil microbes and can act as antimicrobials (Bais et al 2006, Perry et al 2007); therefore, as 

the composition and concentration of the exudates change, so do the microbes that inhabit the 

rhizosphere (Badri et al 2009a, Micallef et al 2009).  

Root exudates are released by a variety of mechanisms. Diffusion, ion channels, and 

vesicle transport are the primary mechanisms of root exudation and require little to no energy 

input (Bertin et al 2003, Neuman and Romheld 2007). Recently it has been demonstrated that 

ATP-binding cassette (ABC) transporters are also involved in root exudation (Badri et al 2008). 

Micallef et al. (2009) demonstrated that naturally occurring ecotype  accessions of Arabidopsis 

exuded a unique suite of compounds into the rhizosphere, with each genotype supporting a 

different soil bacterial community. This is a clear example of how root exudates can have a 

significant effect on the soil microbiome. Rhizodeposition, which encompasses border cells, root 

debris, and root exudates is the major sources of organic C to enter the soil (Uren 2007). It comes 

at a high C cost to the plant, with young seedlings typically releasing about 30-40% of their fixed 

C (Whipps 1990). Why would the plant use such a large percentage of its energy to produce and 

release these rhizodeposits? Perhaps it is to attract microorganisms that service the plant through 
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secreting growth promoting hormones, preventing disease, or acquiring nutrients via the 

excretions of a biochemically active root system. For example, Hamilton and Frank (2001) 

demonstrated that a grazing tolerant grass, Poa pratensis, is capable of concentrating microbes 

that facilitate the uptake of a limiting soil resource needed for growth, in this case N, in its 

rhizosphere when under herbivore attack.  White lupin, on the other hand, is able to discourage 

microbial growth by drastically decreasing the soil pH in the rhizosphere via the release of 

organic acids, lowering the competition for P acquisition (Weisskopf et al 2006). At the same 

time, white lupin prevents microbial degradation of root exudates important for P acquisition 

(Weisskopf et al 2006). The diversity and relative number of soil microbes was found to decrease 

with closer proximity to the rhizosphere of the invasive weed Centaurea maculosa and changes 

in the soil microbial community extended to neighboring native grass species (Broz et al 2007). 

The invasive weed Chromolaena odorata has been shown to accumulate high concentrations of 

native soil pathogenic fungi inhibiting the growth of the native plant species (Mangla and 

Callaway 2008). Other studies have demonstrated that similar disruptions in the microbial 

communities of native plants benefits the invasive species while diminishing the success of 

native plants (Klironomos 2002, Stinson et al 2006). The altered soil microbiome appears to be a 

significant part of the strategy for invasive weeds to increase its own resources and exploit 

weaknesses in the native plant.  

Soil properties influence microbial diversity 

The forces that shape the rhizosphere microbial community cannot be completely 

understood without a discussion of the influences of the soil environment. Soils are highly 

diverse allowing for habitation by equally diverse communities of microorganisms with as many 

as 10,000-50,000 species of microbes existing in 1 gram of soil (Schloss and Handelsman 2006). 
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Unique bacterial and fungal communities have been associated with soils of varying texture 

(Girvan et al 2003), N content (Frey et al 2004), P content (Faoro et al 2010), and soil pH (Fierer 

and Jackson 2006, Lauber et al 2008, Rousk et al 2010). Recent evidence suggests that out of all 

these factors, soil pH may have the most influence on the bacterial community in the soil (Fierer 

and Jackson 2006). Rousk et al. (2010) collected soil samples across a long-term liming 

experiment where the pH varied from 4.0-8.3 while all other factors and variables that compose 

soil variability were controlled. A strong correlation between soil pH and the diversity and 

composition of bacterial communities was seen across biomes and was a greater driver of 

bacterial community composition than dispersal limitations (Rousk et al 2010). It is hypothesized 

that the reason for this connection between pH and soil bacterial community structure has to do 

with the sensitivity of bacterial cells to pH, as bacterial taxa exhibit a relatively narrow pH 

growth tolerance (Rousk et al 2010). Other evidence refutes pH as a driver for soil microbial 

diversity, indicating that P content, altitude, and the ratio of cations in the soil (Ca2+, Mg2+, and 

Al3+) are more influential (Faoro et al 2010). Clearly, many influences converge to create the 

ultimate effect on the soil microbial community and multiple soil factors potentially exhibit 

synergistic effects. 

Although soil factors provide a strong influence on microbial communities, root exudates 

have been shown to also strongly influence the soil microbial community. Close ties between the 

composition of soil microbial communities and host plants were found (Broeckling et al 2008). 

Soil fungal communities changed composition and decreased in total biomass after planting with 

a non-native model plant or applying the non-native plant’s exudates (Broeckling et al 2008). 

Two model plant species, Arabidopsis thaliana and Medicago truncatula, were grown in their 

native soil and in the other plant’s soil, non-native. Arabidopsis plants or root exudates added 
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alone maintained the native fungal community in its native soil but not in non-native soil. In non-

native soil, some microbial species increased while others diminished. Total fungal biomass was 

also affected when treated with root exudates alone or grown with Arabidopsis plants. The same 

was observed with Medicago. These results strongly suggest that plant root exudates and, 

therefore, plants themselves are able to affect the composition and total population of soil 

microflora.  

Role of soil microbes in soil health and plant productivity 

The purpose of this review is not to cover all of the beneficial effects of soil microbes on 

plant health and the associated mechanisms of action; these have been covered adequately in 

other reviews (Babalola 2010, Cummings 2009, Esitken 2011, Lugtenberg and Kamilova 2009, 

Maheshwari 2011). Instead, the aim is to highlight some of the more recent advances made in 

this rapidly developing field and emphasize potential practical applications for sustainable and 

integrated approaches to agriculture. For example, adding beneficial microorganisms to those 

already present in the soil can maximize plant nutrient uptake (Kirankumar et al 2008), increase 

plant growth (Cummings 2009, Guiñazú et al 2009), confer resistance to abiotic stress 

(Selvakumar et al 2012), and suppress disease (De Vleesschauwer and Höfte 2009). These living 

microorganisms are dynamic and potentially self-sustaining, reducing the need for repeated 

applications, and can avoid the problem of pests and pathogens evolving resistance to the 

treatments (Lucas 2011). A possible management technique is to apply plant growth promoting 

rhizobacteria (PGPRs) as an agricultural treatment to minimize niche vacancy and effectively fill 

vacant niches. It has been shown that PGPRs colonize particularly and effectively in soils with 

low microbial biomass (Fliessbach et al 2009) so inoculations are more likely to be successful. 

Beneficial microorganisms that thrive in this environment can more quickly take up space and 
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nutrients made available for potential pathogen invaders and assist with achieving sustained 

niche occupancy (Kaymak and Maheshwari 2010). In addition to “sealing off” open ecological 

niches and increasing the soil’s resistance to pathogen invasion, PGPRs offer benefits of 

increased yields, nutrient acquisition, stress tolerance, and disease resistance to the plant host 

(Lugtenberg and Kamilova 2009). As an example of the potential of microbial inoculation, 

consider the outcome of a greenhouse study using tomato plants inoculated with PGPR and 

mycorrhizal fungi. It showed that inoculated plants that received less than 75% the full rate of 

fertilizer had yields identical to uninoculated plants that received full fertilizer treatments 

(Adesemoye et al 2009). Furthermore, an awareness of the existing soil fertility level is critical to 

realizing PGPR benefits, as a diminishing effect is seen when starting N, P, and K levels are high 

(Shaharoona et al 2008).  

Recent discoveries have shown that plants also interact with a variety of PGPRs that are 

capable of increasing photosynthetic capacity (Xie et al 2009, Zhang et al 2008b), conferring 

drought and salt tolerance (Dimkpa et al 2009, Xie et al 2009, Zhang et al 2008a, 2009a, 2010), 

increase disease suppression (Chithrashree et al 2011, Jetiyanon and Kloepper 2002, Okubara 

and Bonsall 2008), plant growth (Hayat et al 2010, Lim and Kim 2009), and improving the 

effectiveness of the plant’s own iron acquisition mechanisms (Zhang et al 2009a). These 

discoveries may offer potential for PGPR applications to improve agricultural production and 

sustainability. Currently, producers are faced with a need to reduce inputs like water and 

fertilizer applications while simultaneously increasing production. In addition, these PGPR traits 

promise considerable value in biofuel cropping considering the need to produce biofuel crops in 

areas unsuitable for agricultural production (Tilman et al 2009) where drought and salt tolerance 

may become especially important. Given the wide variety of effects and mechanisms of action, 
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it’s not surprising that a combination of PGPR treatments has been shown to be even more 

effective than one treatment alone in suppressing disease (Ahemad and Khan 2011, Berg 2009, 

Pérez-Piqueres et al 2006, Yang et al 2011). One example of combined inoculations includes the 

PGPR Pseudomonas putida added in combination with nodule-inducing Sinorhizobium meliloti 

in the legume Medicago sativa, which resulted in increased nodulation and significantly 

increased plant biomass (Guiñazú et al 2009). Another study analyzed the benefits of combining 

PGPR strains. Greenhouse studies showed that the dry weight of tomato transplants were higher 

when a combination of two PGPR strains, and 75% fertilizer was used when compared to the 

control (100% fertilizer with no PGPR inoculants) (Hernandez and Chailloux 2004). When these 

experiments were performed in the field, the treatments with PGPR, mycorrhizal fungi, and 50% 

fertilizer exhibited a greater yield than the control (100% fertilizer) (Hernandez and Chailloux 

2004). This combination of beneficial microbes also had the added effect of stimulating plant N 

and P absorption (Hernandez and Chailloux 2004). Formulations of compost with beneficial 

bacteria have also shown the ability to suppress plant pathogens (Pugliese et al 2011, Yang et al 

2011). The ability of formulations of multiple beneficial microbes to increase plant productivity 

and health hint at the potential of the entire microbiome and plants working together with 

mutually beneficial outcomes.  

In some cases, application of a microbial organism that confers benefit may not even be 

necessary. Sometimes, the same effect can be achieved by applying a microbial elicitor, which is 

a compound produced by the microorganism that causes the desired effect. For example, 

exogenous application of the Bacillus subtilis-derived elicitor, acetoin (3-hydroxy-2-butanone), 

was found to trigger induced systemic resistance (ISR) and protect plants against Pseudomonas 

syringe pv tomato pathogenesis (Rudrappa et al 2008). Similarly, adding low doses of 
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Chryseobacterium balustinum AUR9 cell wall lipopolysaccharides, another bacterial elicitor, to 

A. thaliana reproduced systemic induction (Ramos Solano et al 2008). Determining the precise 

compounds and dosages necessary for application would allow for commercial development of a 

non-living application providing the same benefits as the PGPRs themselves. Such treatments 

could avoid some of the potential complications associated with developing commercial PGPR 

applications such as low survivability due to competition and adverse environmental conditions 

(Cummings 2009). While it might be easier to come to market sooner with more consistent 

results the potential advantages of being self-sustaining and avoiding evolution of resistant 

super-organisms would probably be lost with such products. Applications of living microbes or 

their elicitors has potential use for agricultural priming, the induction of ISR (Conrath and Loon 

2009), which has been shown as an efficient way to increase pathogen resistance with little cost 

to the plant (De Vleesschauwer and Höfte 2009). An important addition to strategic management 

practices will be the development of crop species that are able to accomplish their own priming 

and ISR induction, which will reduce the use of microbial applications. Although, ideally, adding 

PGPRs as inoculants into the rhizosphere to exploit the immense benefits they provide is, 

potentially, an easy fix, there is still much inconsistency in their performance at the field scale 

(Mark et al 2006, Morrissey et al 2004). Research has begun to focus on how to cater the 

rhizosphere environment for PGPR rhizosphere colonization by means of rhizosphere 

engineering (Ryan et al 2009). By understanding which PGPR traits are essential for rhizosphere 

competence (Barret et al 2011), or by considering which indigenous soil microbial communities 

respond most favorable to inoculation (Bernard et al 2012).  
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Role of the microbiome in plant health and productivity 

While it’s tempting to focus on characterizing microorganisms and their associated 

functions on the species level, logistically, this proves difficult (Nee 2004). Soil microbes are 

capable of both directly and indirectly influencing the productivity, diversity, and composition of 

plant communities (Barea et al 2002, Fitzsimons and Miller 2010, Lau and Lennon 2011, van der 

Heijden et al 2006, van der Heijden et al 2008). As a result, some characterizations now focus on 

aspects of community structure that influence plant function. Recently, increasing soil microbial 

species richness was shown to be a predictor of plant health and productivity (Lau and Lennon 

2011, Schnitzer et al 2011, van der Heijden et al 2008, Wagg et al 2011). Plant productivity, 

diversity, and nutrient acquisition have all been shown to increase with soil fungal diversity 

(Jonsson et al 2001, Maherali and Klironomos 2007, van der Heijden et al 1998, Wagg et al 

2011); however, we are unaware of similar research using soil bacteria alone or in combination 

with soil fungi. Other studies have indicated that the reduction of microbial diversity (as 

measured by species richness) does not result in decreased soil ecosystem functions and that 

other microorganisms can carry out the same function without affecting plant productivity 

(Nannipieri et al 2003). Perhaps the key aspect determining this relationship is not taxonomic 

diversity, but rather functional diversity. In other words, it is not who is present but what they are 

doing that is more informative and revealing (Andren and Balandreau 1999, Bardgett and Shine 

1999, Nannipieri et al 2003). Advances in technology have shed light on the importance and 

need in determining microbial functional diversity along with microbial species diversity in the 

rhizosphere (Nannipieri et al 2003, 2008). For example, one study found that plant productivity 

increased only when increased fungal diversity spanned a range of functional groups, not 

taxonomic groups (Maherali and Klironomos 2007).  In support of this possibility, 
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decomposition rates have been shown to be promoted through increased microbial functional 

diversity (Balser et al 2002, Bonkowski and Roy 2005). While the soil microbial community 

exerts changing effects on the plant community, it also changes in response to host plant 

productivity and community characteristics resulting in a feedback response. For instance, Zak et 

al. (2003) demonstrated that changes in microbial community biomass, activity, and composition 

were a direct result of increased plant production. Another study linked plant community 

evenness with increased microbial biomass which in turn increased microbial functions (Lamb et 

al 2011). Therefore, it is important to determine microbial functional activity in the rhizosphere. 

Functional activity has been closely linked to organic C mineralization (Nannipieri et al 2008). 

Rhizodeposition is the major sources of organic C to enter the soil (Uren 2007). This results in 

higher enzymatic activity in the rhizosphere soil than the bulk soil, but this increase in enzymatic 

activity does not always correlate with higher microbial diversity (Nannipieri et al 2008). There 

is much debate on the actual influence of plant species on microbial diversity (de Ridder-Duine 

et al 2005, Dennis et al 2010, Garbeva et al 2004). Yet, recent studies using six publicly 

available rhizosphere microbiomes (Markowitz et al 2008) were used to analyze the functional 

content of the assembled and unassembled reads from rhizosphere and bulk soil (Barret et al 

2011). Comparing these six microbiomes demonstrated that a small percentage of the functions 

overlapped between the different rhizosphere microbial communities. This suggests that plant 

species identity is the dominant factor influencing the composition of the rhizosphere microbial 

communities, as has been previously determined (Berg and Smalla 2009, van Overbeek and van 

Elsas 2008). Although there was a common core of shared broad functions between the 

rhizosphere and bulk soil microbiomes, further analysis of the functional traits to the pathway 

level revealed that certain specific functions are more abundant in the rhizosphere than in the 
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bulk soil (Barret et al 2011). This added to the importance of these traits to rhizosphere 

competence. 

Along with increasing plant productivity, the soil microbiome also provides an important 

role in disease-suppressive soils. The ability of a soil to suppress disease is of key importance in 

measuring soil productivity (Janvier et al 2007). There are many PGPRs that aid in disease 

suppression via the release of antimicrobial or antifungal compounds that deter plant pathogens 

(Garbeva et al 2004, Weller et al 2002). For example, fluorescent psuedomonads produce the 

antibiotic 2, 4-DAPG which has been extensively studied as a protectant against soil-borne 

diseases and have been directly linked to disease suppression (Raaijmakers et al 1997, 

Raaijmakers and Weller 1998). B. subtilis also releases the antibiotics, surfactin and iturin, into 

the rhizosphere that play a major role in plant disease suppression (Kinsella et al 2009) while 

also conferring increased plant growth promotion. Many studies have focused on the disease-

suppressive ability of particular taxons or group of microbes but this ability of soils to suppress 

disease has been linked to the soil community as a whole (Garbeva et al 2004, Malajczuk 1983). 

Recently, Mendes et al. (2011) determined that the soil microbiome as a whole and not an 

individual taxon or group of soil microbes is what drives the disease-suppressive ability of the 

soil. 

To achieve healthy and productive plants, soil quality is of great importance. Soil quality 

has been defined as the “capacity of a soil to function within ecosystem boundaries to sustain 

plant-animal productivity, maintain or enhance water and air quality, and support human health 

habitation” (Karlen et al 1997). This definition has been further refined to take into account the 

dynamic nature of soil as a living system to “sustain biological productivity” (Doran and Safley 

1997). The soil microbiome can be used as an indicator of soil quality due to its sensitivity to 
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small changes in the environment resulting from environmental stresses or natural perturbations 

(Sharma et al 2010). Elevated levels in species richness and diversity produce high functional 

redundancy within the soil microbiome, allowing it to quickly recover during stress (Nannipieri 

et al 2003, Yin et al 2000). The high functional redundancy in soil microbial diversity also 

confers protection against soil-borne diseases (Brussaard et al 2007, Garbeva et al 2004, Mendes 

et al 2011, Nannipieri et al 2003). The increase in microbial diversity produces a balanced 

microbiome that does not allow for pathogens to flourish since the high microbial diversity 

present in the soil keeps the pathogen “in check” (Garbeva et al 2004, Marrone 1999, Mendes et 

al 2011, Ochiai et al 2008, Postma et al 2008, Schnitzer et al 2011, Shennan 2008). 

There are many key factors involved in soil health. Recently, community evenness has 

also been identified as an important factor in community functioning, soil health, and plant 

productivity (Crowder et al 2010, Wittebolle et al 2009).  Microbial evenness ensures that no 

individual microbial taxum is able to take over and flourish, upsetting the ecological balance 

(Elliot and Lynch 1994). Field studies using potato plants demonstrated that even biocontrol 

communities among natural enemies of the potato beetle allowed for the improved control of 

these pests. Treatments where both pathogens and predators of the pestiferous beetle were most 

evenly distributed also contained plants with the greatest biomass (Crowder et al 2010). Since 

potato tuber yield is strongly correlated with above-ground productivity, this increase in biomass 

suggests that natural enemy evenness may also increase crop yield (Crowder et al 2010, 

Donnelly et al 2001). Increased competition found in diverse and  even  microbial communities 

reduces the niche spaces available for potential invaders (Hillebrand et al 2008, Knops et al 

1999, Naeem et al 2000), and a lack of community microbial evenness has been associated with 

reduced plant productivity (Wilsey and Potvin 2000), possibly due to an empty niche effect 
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leaving some ecosystem services unfulfilled. It is suggested that when environmental 

fluctuations occur, even communities are quickly able to adapt to the new environment and 

sustain high productivity over time (Hillebrand et al 2008, Wittebolle et al 2009). These 

examples highlight the benefits of ensuring even and diverse microbial communities to produce 

healthy soil, high levels of nutrient cycling (Elliot and Lynch 1994), and to combat stress and 

disease (van Bruggen and Semenov 2000). In such an ecosystem where the synergistic 

interactions between the soil, the soil microbiome, and the plant are of great  importance, it can 

be deduced that reduced evenness has potentially negative effects since synergistic interactions 

fail when one species completely dominates the assemblage (Hillebrand et al 2008). 

The strong ability of root exudates to mediate and maintain the soil microbiome allows 

for the possibilities of exploiting this mechanism. It could be foreseen that plants (i.e., 

engineered or selected) could cultivate specific soil microbes that are needed or of importance to 

plant health. Root exudates are a complex mixture of compounds (Uren 2007). If we could tease 

out which compounds attract which microbes, we could selectively culture beneficial microbes 

such as PGPRs. Recent studies have demonstrated how specific root exudates can attract specific 

microbes. Rudrappa et al. (2008) demonstrated that root-secreted malic acid recruits B. subtilis to 

the root. This PGPR is known to be involved in plant growth promotion and plant protection 

against several plant pathogens. Chemotaxis is another means by which plants recruit PGPRs to 

the rhizosphere by means of the release of carbohydrates and amino acids (Somers et al 2004). 

Root exudates have also shown the ability to influence flagellar motility in some rhizosphere 

bacteria (de Weert et al 2002). The classic and most studied example of how plants are able to 

culture and attract beneficial microbes comes from the study of the legume M. truncatula and its 

relationship with its symbiont S. meliloti. Flavones and flavonols, released as root exudates by 
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the legume, act as the “ice-breaker” for initiating symbiosis (Zhang et al 2009b). To aid in the 

attraction of rhizobia to the legume, studies demonstrated that volatile organic compounds, 

specifically dimethyl sulfide, released by the legume are used to attract nematodes that transport 

the rhizobia to the legume for the purpose of symbiosis (Horiuchi et al 2005). This example is 

only one of the potential multitrophic interactions that can exist in the rhizosphere. Such an 

example illuminates the potential influence plants have in manipulating their environment. For 

example, Arabidopsis mutants lacking an ABC transporter produced changes in root exudation 

profiles, the ratio of phenolics to sugars changed when compared to wildtype (Badri et al 2009a). 

This change caused an overhaul of the natural microbial community. The changes in the root 

exudate chemical composition were able to culture beneficial bacterial communities enriched 

with PGPRs, N2-fixing bacteria, and bacteria that are involved in heavy metal remediation (Badri 

et al 2009a). If we can determine which chemicals are able to attract which microbes we can 

selectively culture beneficial microbes and concurrently deter pathogenic microbes from 

colonizing the root. 

Management practices influence the soil microbiome 

Farm management practices fall into two general categories, organic or conventional; 

although, specific management objectives and/or styles exist within these categories. The choice 

of farming practices may lend themselves to different processes or steps to achieve a more 

diverse and even microbiome. The USDA defines organic farming as “an ecological production 

management system that promotes and enhances biodiversity, biological cycles, and soil 

biological activity. Organic farming is based on the minimal use of off-farm inputs and on 

management practices that restore, maintain, and enhance ecological harmony” (Gold 1995). 

Whereas organic farming uses no synthetic fertilizers or added inputs to increase productivity, 
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conventional farming does just the opposite; often using synthetic, chemical fertilizers, and 

pesticides to benefit crop protection and productivity. Frequently, these treatments are aimed at 

the microbial “black box” that is the soil microbiome. For example, conventional agriculture 

may target plant pathogens through the use of pesticides/fungicides, with a potential side effect 

of reducing soil microbial community diversity and evenness (Crowder et al 2010, Krauss et al 

2011, Liu et al 2007, Sugiyama et al 2010). Whereas, organic agriculture may seek to control 

plant pathogens through competition and/or antagonism by utilizing treatments that promote a 

more diverse and even microbial community (Sugiyama et al 2010) such as the addition of 

varying types of organic matter. It is known that the structure of the soil microbiome is 

influenced by agricultural management practices (Crowder et al 2010, Liu et al 2007, Lumini et 

al 2011, Reeve et al 2010, Sugiyama et al 2010), land use (Degens et al 2000), and degrees of 

stress and disturbance (Degens et al 2001). By understanding those influences that combine to 

create more diverse and even soil microbial communities, fertility, and disease resistance can be 

inherently restored in depleted, disease-stricken soil environments.  

Implications for agriculture 

While improving crop productivity is a century-old agrarian goal, high energy prices, 

globalization and climate change are changing the landscape for seeking solutions. The problem 

is no longer simply to produce more food, but also to do so in environmentally and socially 

sustainable ways (Godfray et al 2010, von Braun 2007). As discussed above, agriculture should 

consider maximizing the coadaptation between plants and microbes in an effort to promote soil 

microbial diversity. Although, this may reduce short-term productivity, we believe that it will 

maximize long-term yields while minimizing resource use.   
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Evidence showing the importance of coadaptation of plant-microbial communities in 

plant health and productivity continues to mount (Badri and Vivanco 2009, Hierro et al 2005, 

Lambers et al 2009, van der Putten et al 2009, Wardle 2004). What implications does decoupling 

the coadapted plant-microbial relationship have on agriculture? The inability of plants to 

maintain the diversity and evenness of a microbiome that is not co-adaptive has already been 

described (Broeckling et al 2008). This loss of diversity and evenness is detrimental to 

ecosystem functioning and plant productivity. In a world where the demand for food increases by 

the second unhealthy crops with low productivity is unacceptable.  

Conclusion 

The growing human population, reduction in land and resources, and the need for more 

environmentally friendly agricultural practices have highlighted the need for sustainable farming. 

There is evidence showing the close ties between plants and their microbiome. An even and 

balanced microbiome can be the answer for obtaining healthier more productive plants. Recent 

studies have begun to hint at the importance of this relationship and have started to examine the 

system as a whole to better understand the intricacies of the plant-microbiome interaction and its 

impact on plant health and productivity. There is a complex conversation that occurs between 

soil microbes and plants, mediated by root exudates, but this conversation still needs a lot more 

translating. We realize that successful management of soil health and plant productivity is a 

combination of many factors and individuals coming together to provide optimal conditions for a 

healthy plant. PGPRs are known to increase plant productivity and health and we need to be able 

to improve the conversations between plants and those microbes. Root exudates, due to their use 

as signaling molecules and as substrates by microbes, can be the answer to manipulating this 

dialogue (Ryan et al 2009). We have seen that ABC transporters play a key role in root 
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exudation, and the compounds exuded change when they are manipulated. Future studies should 

determine what key compounds and root exudate compositions will culture these beneficial 

microbes that produce healthy more productive plants. 

Dissertation research objectives 

The importance of soil microbial communities to plant health and productivity has been 

outlined above. The goal of this research was to understand the interactions and mechanisms that 

enable not only the close associations between plants and the rhizosphere microbial community, 

but also how these interactions are controlled and modulated with the ultimate purpose of 

increasing plant health and productivity. This goal was accomplished by evaluating the following 

hypothesis, utilizing the model organism Arabidopsis thaliana: 

The qualitative and quantitative changes in root exudation enables the plant to 

culture an array of microbes that help in overcoming biotic and abiotic stress so that 

blends of root exudates can be used to alter soil microbial communities in order to 

improve and increase plant health and productivity.  

In order to comprehend and decipher the mechanisms at play in the rhizosphere we first needed 

to answer the following questions: 

1. Does root exudation change with plant development? 

2. Does root exudation influence the rhizosphere metatranscriptome? 

3. What changes occur in the rhizosphere microbiome during plant development? 

4. Are members in the rhizosphere microbiome influenced by root exudation? 

5. In the absence of the plant, do root exudates influence soil microbial communities? 

Answers to these questions provide the necessary framework to manipulate the soil microbial 

community to increase plant health and productivity. Additionally, the techniques and 
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knowledge gained in these studies could be extended to commercially important crops such as 

maize, potato, sorghum, rice, etc. 

Dissertation overview 

This dissertation includes six chapters. Chapter 1 provides the introduction and 

background information for the overall study. The fundamental results of the study are provided 

in Chapters 2 through 5. Chapter 6 provides the conclusions and recommendations for future 

work. 

Chapter 2, “Root exudation of phytochemicals in Arabidopsis follows specific patterns 

that are developmentally programmed and correlate with soil microbial functions,” examines 

root exudation through development. This chapter focuses on how identified changes in root 

exudation during development influence the rhizosphere metatranscriptome. Additionally, 

correlations between in vitro collected root exudates and the rhizosphere metatranscriptome 

suggest that root exudation may be genetically programmed. 

Chapter 3, "Rhizosphere microbiome assemblage is affected by plant development,” 

focuses on the identity of the rhizosphere microbiome during development. The chapter includes 

an analysis of whether rhizosphere microbial community structure changes with plant 

development and how this process occurs. The chapter examines how root exudation patterns 

may play a part in the establishment and maintenance of the rhizomicrobiome. Additionally, the 

potential benefits that the plant gains from culturing and attracting these microbes to the 

rhizosphere was examined. 

Chapter 4, "Application of natural blends of phytochemicals derived from the root 

exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly 

modulate the soil microbiome,” analyzes whether the compounds found in root exudation in the 
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absence of a plant directly influence the soil microbiome. Additionally, root exudates are 

fractionated in order to identify which classes of compounds readily stimulate soil microbial 

community dynamics. Outcomes from this study will provide support for the use of natural 

compounds derived from root exudates as potential soil prebiotics to modulate and help control 

the soil microbial community.  

Chapter 5, “An experimental pipeline for the development of soil prebiotics of 

agricultural importance,” utilizes the information gained in Chapters 2-4 to develop interactive 

models that could be used to forecast how specific blends of chemical compounds found in root 

exudates influence specific bacteria in the soil. Furthermore, various statistical modeling 

approaches were utilized and validated in order to identify which model can be used as a 

predictive tool to identify compounds that could reliably be used as soil prebiotics. 

Finally, Chapter 6 summarizes the overall conclusions for the study, discusses the status 

of the field, and provides recommendations for future areas of exploration. 
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Figures 

 

Figure 1-1. Schematic illustration of how soil factors influence both plant roots and soil microbes 

which in turn reshape the soil environment through a dynamic exchange of chemical responses to 

living and non-living stimuli 
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CHAPTER 2 ROOT EXUDATION OF PHYTOCHEMICALS IN ARABIDOPSIS FOLLOWS 

SPECIFIC PATTERNS THAT ARE DEVELOPMENTALLY PROGRAMMED AND 

CORRELATE WITH SOIL MICROBIAL FUNCTIONS1 

 

 

Synopsis 

Plant roots constantly secrete compounds into the soil to interact with neighboring 

organisms presumably to gain certain functional advantages at different stages of development.  

Accordingly, it has been hypothesized that the phytochemical composition present in the root 

exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown 

Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. 

Principle component analysis revealed that the composition of root exudates varied at each 

developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in 

early time points and decreased through development. In contrast, the cumulative secretion levels 

of amino acids and phenolics increased over time. The expression in roots of genes involved in 

biosynthesis and transportation of compounds represented in the root exudates were consistent 

with patterns of root exudation. Correlation analyses were performed of the in vitro root 

exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize 

these compounds at different developmental stages of Arabidopsis grown in natural soils. 

Pyrosequencing of rhizosphere mRNA revealed  strong correlations (p<0.05) between microbial 

functional  genes involved in the metabolism of carbohydrates, amino acids and secondary 

                                                 
1 Reprinted from Chaparro, JM; Badri, DV; Bakker, MG; Sugiyama, A; Manter, DK; Vivanco, 

JM, Root exudation of phytochemicals in Arabidopsis follows specific patterns that are 

developmentally programmed and correlate with soil microbial functions. PLOS One 2013, 8, 

(2), e55731, DOI: 10.1371/journal.pone.0055731. 
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metabolites with the corresponding compounds released by the roots at particular stages of  plant 

development. In summary, our results suggest that the root exudation process of phytochemicals 

follows a developmental pattern that is genetically programmed.  

Introduction 

Plants use root exudates as chemical cues to monitor and interact with their surroundings 

(De-la-Pena et al 2008, 2010). Exudate release is dependent on the needs of a plant (Badri and 

Vivanco 2009) and exudation can be modified in order to cope with stresses (Selvakumar et al 

2012, Zamioudis and Pieterse 2012). For example, to overcome nitrogen deficiency legumes 

release specific flavonols which attract and initiate symbiotic relationships with rhizobia (Zhang 

et al 2009). However, when N fertilization is supplemented the symbiotic interaction is halted 

(Omrane and Chiurazzi 2009). When Arabidopsis is attacked by the foliar pathogen 

Pseudomonas syringae pv tomato, roots release malic acid which recruits beneficial soil bacteria 

capable of triggering host defense responses against P. syringae (Rudrappa et al 2008). Zea mays 

releases 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one that chemotactically attracts the 

beneficial rhizobacterium Pseudomonas putida KT2440 (Neal et al 2012). Besides such one-to-

one interactions, multitrophic interactions also occur in the rhizosphere. For instance, Medicago 

truncatula emits dimethyl sulfide that attracts Caenorhabditis elegans, which in turn transports 

rhizobia close to the legume roots to initiate symbiosis (Horiuchi et al 2005). Evidence is 

mounting that the cross talk between plants and the soil microbes is largely orchestrated by root 

exudates, not only at the one compound-one microbe level, but at the community level. For 

instance, it has been reported that changes in root exudation due to mutation of an ABC 

transporter gene modulated the soil microbial community composition such that more beneficial 
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microbes were cultured (Badri et al 2009). Similarly, Micallef et al. (2009a) showed that soil 

microbial communities are affected by plant age and genotype. 

Rhizosphere microbial communities have shown strong ties to root exudate composition 

(Broeckling et al 2008) and changes in exudate composition result in significant modifications of 

the soil microbial community (Badri et al 2009). Root exudate composition and concentrations 

change depending upon the environment in which a plant is growing, including soil edaphic and 

biological factors (Flores et al 1999, Micallef et al 2009b, Rovira 1969, Tang et al 1995). It has 

been previously reported that root secretion of proteins changes with plant development, and 

when challenged by pathogens or symbiotic bacteria (De-la-Pena et al 2008, 2010, Flores et al 

1999, Tang et al 1995). Root secretions of some phytochemicals have also been shown to follow 

a diurnal rhythm (Badri et al 2010). However, there is no information available on how the 

composition of root secreted primary and secondary metabolites changes over the course of plant 

development, and how those changes correlate to the functioning of the rhizosphere microbiome.  

Soil microbes have been shown to have both negative and positive effects on plant 

development. For example, Agrobacterium rhizogenes influence and manipulate plant 

development for the formation of hairy roots (Ortiz-Castro et al 2009, Schmulling et al 1988). 

Similarly, soil microbes such as PGPRs can modulate plant growth through the production of 

hormones such as auxin and cytokinin or via the release of volatile organic compounds (Ortiz-

Castro et al 2009).  

The rhizomicrobiome plays an important role in disease suppression by direct antagonism 

against pathogens (Mendes et al 2011), in overcoming abiotic stress by induced systemic 

tolerance (Selvakumar et al 2012) and in overcoming biotic stress by increasing the plant’s 

innate immunity (Zamioudis and Pieterse 2012). It has also been documented that phytohormone 
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production and enhanced access to nutrients due to rhizomicrobiome activity has a positive 

correlation with plant productivity (Berg 2009) and overall plant health (Berendsen et al 2012, 

Chaparro et al 2012).  

In summary, there is a concerted understanding of the ability of root exudates to 

influence the structure of rhizosphere microbial communities. Root exudates act as substrates, 

signals and/or antimicrobials influencing the relative abundance of microbial taxa in the 

rhizosphere. However, the functional capacity of most of these organisms is unknown and our 

understanding of the correlation between root exudation and microbiome functioning remains 

limited. Here, we show how in vitro Arabidopsis root exudate composition changes over the 

course of plant development, and we correlate these patterns with the ability of the soil 

microbiome to metabolize those compounds under natural soil conditions.   

Materials and methods 

Plant growth conditions and root exudate collection 

Arabidopsis wild type (Col-0) plants were grown and root exudates were collected by 

using an established protocol as previously described (Badri et al 2008, 2009, 2010, 2012, 

Biedrzycki et al 2010, De-la-Pena et al 2008, 2010, Micallef et al 2009b), with a few 

modifications. Arabidopsis wild type (Col-0) seeds were surface-sterilized with Clorox® for one 

minute followed by four rinses in sterile distilled water and plated on Murashige and Skoog 

medium (MS) (Murashige and Skoog 1962), supplemented with 3% sucrose and 0.9% bactoagar 

in Petri plates. Petri plates were incubated in a growth chamber (Percival Scientific) at 25°C for 

seven days, with a photoperiod of 16 h light/8 h dark. To collect root exudates at different 

developmental time points, seven-day-old seedlings were transferred to Magenta® boxes each 

containing 10 ml of liquid MS (MS basal salts supplemented with 1% sucrose), incubated on an 
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orbital shaker at 90 rpm and illuminated under cool white fluorescent light (45 µmol m-2 s-1) with 

a photoperiod of 16 h light/8 h dark at 25°C±2. Prior to exudate collection (7, 14, 21, or 28 days), 

plants were gently washed with sterile water to remove the surface-adhering exudates and 

transferred to new Magenta boxes containing 10 ml of sterile water. Growth medium plus 

dissolved exudates were collected at approximately the same time on the third day, after three 

days of continuous secretion for each time point (7-10, 14-17, 21-24, and 28-31 days). Each 

growth stage of the plant was as follows: the 10 day plants consisted of the two leaf growth 

stage, the 17 day plants were at the 5 leaf rosette stage, the 24 day plants reached the bolting 

stage and the 31 day plants reached the flowering stage as described by Boyes et al. (Boyes et al 

2001), representative pictures of each growth stage can be found in De-la-Pena et al. (De-la-Pena 

et al 2010). Each time point consisted of three replicates and each replicate consisted of a total 

volume of 180 ml of exudate-containing medium, from 18 individually-grown Arabidopsis 

plants. The collected root exudates were filtered using nylon filters of pore size 0.45 µm 

(Millipore, MA) to remove root sheathing and root-border-like cells. After filtration, the 

exudates were freeze-dried (Labconco, MO) and stored at -20°C for further analyses. Plant root 

tissues were collected from each replicate of all time points, frozen with liquid nitrogen and 

stored at -80°C for gene expression analyses. Sterile techniques were used throughout the 

experiment and there was no evidence of contamination in the media. 

Gas chromatography and mass spectrometry (GC-MS) analyses of exudates 

Freeze dried root exudates were dissolved in 5 ml of 80% methanol and the supernatant 

was collected into new glass tubes after centrifugation at 8000 rpm for 15 minutes at room 

temperature. The supernatants were dried under nitrogen gas and shipped to the Genome Center 

Core Services at the University of California, Davis for GC-MS analyses. Briefly, the dried 



 

38 

supernatants were derivatized as described by Sana et al. (Sana et al 2010).  All samples were 

spiked with a mixture of fatty acid methyl esters of C8, C9, C10, C12, C14, C16, C18, C20, C22, 

C24, C26, C28 and C30 linear chain length which served as an internal retention index (Fiehn et 

al 2008, Sana et al 2010). An Agilent 6890 gas chromatograph (Santa Clara, CA) containing a 30 

m long, 0.25 mm i.d. rtx5Sil-MS column with an additional 10 m integrated guard column was 

used to run the samples. The Agilent 6890 was controlled by the Leco ChromaTOF software 

version 2.32 (St. Joseph, MI).  Resulting text files were exported to a data server with absolute 

spectra intensities and further processed by a filtering algorithm implemented in the 

metabolomics BinBase database (Fiehn et al 2005). Quantification was reported as peak height 

using the unique ion as default. Metabolites were unambiguously assigned by the BinBase 

identifier numbers using retention index and mass spectrum as the two most important 

identification criteria. Additional confidence criteria were used by giving mass spectral metadata, 

using the combination of unique ions, apex ions, peak purity, and signal/noise ratios. All 

database entries in BinBase were matched against the Fiehn mass spectral library 

(http://fiehnlab.ucdavis.edu/Metabolite-Library). Data normalization was performed as described 

in Fiehn et al. (2008), using total metabolite content. The resulting data underwent a log 

transformation and was subjected to multivariate analyses and significant feature identification 

using MetaboAnalyst, a web-based metabolomics data processing tool 

(http://www.metaboanalyst.ca) (Xia et al 2009). 

Gene expression analyses from plant root tissue  

Total RNA was isolated from frozen root tissues (see above) using TriReagent (Sigma, 

MO), and was quantified with a Nanodrop ND-1000 Spectrophotometer (Thermo, DE). RNA 

integrity was checked on a formamide denaturing agarose gel. Two µg of purified total RNA 
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were reverse-transcribed using Superscript III RT and a poly (T) primer (Invitrogen, CA) at 42°C 

for one hour according to the manufacturer’s instructions. The reaction product was diluted to a 

concentration of 50 ng µl-1 and 1 µl was used for each PCR reaction. The PCR reaction mix (20 

µl) contained 0.4 µmoles of each gene-specific primer, 200 µmoles of dNTPs, 1 X reaction 

buffer and one unit of Taq DNA polymerase (Takara, Japan). PCR included 30 cycles of 94°C 

for 30 s, 56°C for 30 s and 72°C for 2 min in a GeneAmp 2700 thermal cycler (Applied 

Biosystems, CA). Actin primers were used as a control to determine the uniformity of the 

concentration of cDNA. The gene-specific primers used for RT-PCR assays are listed in Table 

2-1. 

Soil experiment 

Soil with a history of exposure to Arabidopsis was collected in July 2011 from the 

Michigan Extension Station, Benton Harbor, MI (N42° 05’ 34’’, W86° 21’ 19’’ W, elevation 

630 feet). The top 5-10 cm of soil was collected from under three patches of Arabidopsis 

thaliana that have been growing naturally in a fallow field for more than 8 years. All the 

necessary permits were obtained for the described soil. Broeckling et al. (2008) described the soil 

in detail although from a different collection event. Soil from the same site although collected at 

other time points was used in previous experiments by Badri et al. (2009) and Broeckling et al. 

(Broeckling et al 2008). The soil was transported to the laboratory in air tight coolers and stored 

in a cold room (4°C) until further use. At the time of use, the soil was dried at room temperature, 

homogenized by hand, and cleaned of plant debris. Pots (2 x 6 x 6-cm) were lined with 

Whatmann 3MM filter paper to avoid soil loss. The pots were placed in a growth chamber at 

25°C with a photoperiod of 16 h light/8 h dark. Six replicate pots were maintained for each of the 

four developmental time points. Pots without plants served as a bulk soil control that could be 
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contrasted with rhizosphere communities under the influence of the host plant. Arabidopsis seeds 

were surface-sterilized and grown on MS plates as described above (see plant material and 

growth conditions). One seven day old seedling was transplanted to each of the six pots. Plants 

were grown until they were: 17 days, 24 days, 31 days or 38 days old, bulk soil was collected 

along with the 38 day old sample (Figure 2-1). 

Extraction of microbial RNA from soil 

For each of the 5 time points (17, 24, 31, 38 days and bulk soil) 6 replicate pots were 

maintained, rhizosphere soil was collected by obtaining the soil attached to the roots of the plant 

and bulk soil was collected from the center of the pot. Soil samples were transferred to 2.0 ml 

tubes, immediately frozen in liquid nitrogen and stored at -80°C until processing. A total of 6 

rhizosphere soil samples were collected for each time point (17, 24, 31, 38 days and bulk soil; 30 

samples total). Total RNA was extracted from each soil sample using the PowerSoil® total RNA 

isolation kit (MoBio, CA), with slight modifications to the manufacturer’s instructions. The 

modifications were as follows: after solution SR2 was added to the bead tube, the solution was 

vortexed at maximum speed for 30 minutes instead of 5 minutes. After the phenol: chloroform: 

isoamyl alcohol was added to the bead tube, the bead tube was shaken at 200 rpm for 30 minutes 

instead of being vortexed at high speed for 10 minutes. RNA integrity was checked on a 

formamide denaturing agarose gel. Microbial RNA was quantified using a Nanodrop ND-1000 

spectrophotometer. All RNA samples that had an A260:A280 ratio between 1.7 and 2.0 were 

processed for metatranscriptomics.  

Pyrosequencing and analyses 

Total RNA collected from the 6 pots per time point were pooled and 15μg of total RNA 

from each time point and bulk soil were sent to the W.M. Keck Center for Comparative and 
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Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-

Champaign, where steps from mRNA isolation to pyrosequencing were performed. Briefly, for 

each of the time points, which consisted of 6 pooled replicates, ribosomal RNA was removed 

from 5μg of total RNA using the Ribozero rRNA removal Meta-bacteria kit (Epicentre 

Biotechnologies, WI). The mRNA was converted to cDNA by using barcoded random hexamer 

primers and nebulized with the nebulization kit supplied with the GS Titanium library 

preparation kit (454 Life Sciences, CT).  Each sample (17, 24, 31, 38 days, and bulk soil) was 

given a unique 10 bp sequence barcode and the cDNA libraries of each sample were normalized 

by using the Trimmer Direct kit (Evrogen, Russia) following the manufacturer’s instructions and 

as previously described (Lambert et al 2010). cDNA normalization equalizes the number of gene 

copies in the library which allows for the discovery of new genes that are transcribed at low 

levels (Shcheglov et al 2007). The normalized barcoded cDNA libraries were pooled in 

equimolar concentrations based on average fragment length and concentration. The pooled 

libraries were quantified using a Qubit fluorometer (Invitrogen, CA) and average fragment sizes 

were determined by analyzing 1 μl of each sample on a Bioanalyzer (Agilent, CA) using a DNA 

7500 chip. The pooled library was diluted to 1x106 molecules μl-1. Emulsion-based clonal 

amplification and sequencing on the 454 Genome Sequencer FLX+ system was performed 

according to the manufacturer’s instructions (454 Life Sciences, CT). 454 pyrosequencing was 

performed on 1/8 of a PicoTiter-Plate (454 Life Sciences, CT). Signal processing and base 

calling were performed using the bundled 454 Data Analysis Software v2.6. 454 sequencing 

yielded a total of approximately 166,250 sequence reads. MG-RAST (Meyer et al 2008) and 

Mothur (Schloss et al 2009) were used for quality screening and sequence processing for each of 

the 5 samples. Sequences were screened on the following criteria: sequences derived from A. 
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thaliana were removed using the Bowtie algorithm (Langmead et al 2009). Sequences were 

dereplicated and filtered by length to remove sequences that differed by more than two standard 

deviations from the mean length. Sequences were dropped if they contained five or more 

ambiguous bases, or appeared to be ribosomal RNA. To equalize sampling effort across time 

points, a random subset of 14,740 high-quality sequence reads were selected for each time point. 

A summary of the 454 pyrosequencing data for each sample is found in Table 2-1. Sequence 

reads were assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al 

2004) subsystem categories using the MG-RAST web-server pipeline. A minimum percent 

identity cutoff of 70% between our sequences and the sBLAT database and an E-value cutoff of 

10-5 was used for further quality control (Supplementary Material 2-1). 

 Correlating rhizosphere microbial function with host plant root exudation 

Correlation analyses (SAS ver. 9.3; SAS Institute, NC) were performed with the 

transformed data of the 17, 24, and 31 day metabolomics data with that of the corresponding 

metatranscriptomics data as follows: the average of the transformed GC-MS identified 

compounds were correlated with the overall functional genes identified by Level 2 KEGG 

orthology as being involved in Carbohydrate Metabolism, Metabolism of Amino Acids, and 

Metabolism of Secondary Metabolites (which includes the KEGG level 2 categories of 

Biosynthesis of Other Secondary Metabolites and Metabolism of Terpenoids and Polyketides) 

with the compounds categorized as sugars, amino acids, and phenolics. We further performed a 

more in depth correlation of the individual compounds from our metabolomics data through 

development with the corresponding functional genes at the KEGG functional level. The 

interactive pathways explorer (iPath2) (Yamada et al 2011) was used to map the functional genes 

involved in Metabolism, specifically Carbohydrate Metabolism, Amino Acid Metabolism, 
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Biosynthesis of Other Secondary Metabolites, and Metabolism of Terpenoids and Polyketides 

along with the root exudate compounds categorized as amino acids, phenolics, and sugars 

(Figure 2-2). 

Results 

Arabidopsis root exudation over a developmental time course 

The primary and secondary metabolites present in the root exudation profiles of in vitro 

grown wildtype Col-0 Arabidopsis through a developmental time series were analyzed by GC-

MS. After normalization, 107 compounds were detected. Among these, 57 compounds were 

identified (Table 2-3) based on the mass spectral library database developed by the Fiehn 

laboratory (University of California, Davis), which includes sugars, sugar alcohols, amino acids, 

organic acids, fatty acids, phenolics, etc. Hierarchical analysis using a Ward clustering algorithm 

and Pearson’s correlation as a similarity measure revealed that the root exudate profile at each 

time point clustered separately and that the early (7-10 days and 14-17 days) and later (21-24 

days and 28-31 days) developmental time points formed two distinct groups (Figure 2-3A). 

Principle component analysis (PCA) also showed that the root exudate profiles of early and later 

developmental time points clustered separately from each other (Figure 2-3B). Most of the 

variability in the data could be accounted for by component 1 (97.2%), while component 2 

accounted for 2% of the variability in the data. The identified compounds contributing most to 

component 1 in the PCA were glycerol, ethanolamine, fructose, glucose, glycine, alanine, and 

tagatose. The identified compounds contributing most to component 2 were oxoproline, -

Aminobutyric acid (GABA), urea, isoleucine, galactose, and tagatose. These data clearly indicate 

that the quantitative composition of Arabidopsis root exudates varies at each developmental 

stage. 
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We broadly categorized the 55 identified compounds into four groups: sugars, sugar 

alcohols, phenolics, and amino acids. In total, we identified nine sugars, seven sugar alcohols, 

twelve amino acids, and twenty-seven phenolic compounds (Table 2-3). The compounds 

categorized as phenolics consisted of compounds belonging to organic acids, carboxylic acids, 

fatty acids, and phenolics. For each group of compounds, cumulative secretion levels where 

calculated in order to identify potential patterns found throughout development. These 

cumulative secretion levels did indeed follow a trend depending upon the developmental stage of 

the plant. For instance, the secretion levels of sugars and sugar alcohols were higher at early 

developmental time points and gradually lowered at later developmental time points of the plant 

(Figure 2-4). On the contrary, the cumulative secretion levels of amino acids and phenolics were 

low during the early developmental time points, but rose at later developmental time points of 

the plant (Figure 2-4). 

Root gene expression analyses 

To validate the observed trends in root exudation over developmental time, we examined 

the gene expression of sugar transporters, ABC transporters and genes involved in secondary 

metabolite biosynthesis in the root tissues of 10, 17, 24, and 31 day old plants by semi-

quantitative RT-PCR. In total, gene expression patterns were analyzed for 43 genes, including 

twenty-two sugar transporters (Figure 2-5A), six ABC transporters (Figure 2-5B) and fifteen 

secondary metabolite biosynthesis genes (Figure 2-5C). The expression of 22 sugar transporter 

genes varied with development. Among those, the expression levels of eight sugar transporters 

(AtSUC3, AtINT2, AtINT3, AtpGlcT, and four genes belonging to the putative monosaccharide 

transporter family) were higher in early plant development and gradually decreased at later 

developmental stages (Figure 2-5A). This result is in agreement with our GC-MS data showing 
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more sugars secreted at early stages of plant development. The expression of six sugar 

transporters (AtSUC5, AtPLT4, AtSTP10, AtSUC9 and two genes belonging to the putative 

monosaccharide transporter family) was not detectable in our RT-PCR analyses and the 

expression of five sugar transporters (AtSUC1, AtSTP7 and three genes belonging to the putative 

monosaccharide transporter family) was constant throughout the time points. The remaining 

three sugar transporters (AtSUC2, AtSUC4 and AtINT1) showed an increase in gene expression 

until 24 days and then decreased at 31 days. 

Among the six ABC transporters (AtPDR2, AtPDR4, AtPDR6, AtPDR7, AtPDR8, and 

AtPDR9) that were analyzed, none showed a definite pattern of gene expression with respect to 

the developmental stages of the plant. For the most part the ABC transporter genes showed 

consistent expression over time (AtPDR2, AtPDR6, ATPDR7, and AtPDR9), with the exception 

of AtPDR4 which showed high gene expression at 10 days but expression decreasing to 

undetectable levels by 31 days. AtPDR8 was equally expressed at 17 days and 24 days, but was 

not detected at the other time points (Figure 2-5B).  

We also analyzed the expression of fifteen genes involved in secondary metabolite 

biosynthesis such as the phenylpropanoid pathway (Figure 2-5C). Several of these genes were 

only expressed or were more highly expressed at later stages of plant development. These 

included PAL1 and PAL2 (phenylalanine ammonia-lyase), C4H (cinnamate-4-hydroxylase), 

4CL1 and 4CL2 (4-coumarate-CoA ligase), and CYP79B2 (involved in converting tryptophan to 

indole-3-acetaldoxomine, a precursor of indole glucosinolates and indole-3-acetic acid) (Figure 

2-5C). However, the expression of the remaining nine genes (PAL3, 4CL3, FS1, FS2, FS3, F3H, 

CYP79B3 and CYP71B15) tested was not detectable in our RT-PCR analysis.  
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Correlations between root exudation patterns and the functional capacity of the soil 

microbiome 

Measuring the patterns of root exudation identified in this study on plants growing in 

natural soils is problematic due to technical sensitivity limitations and confounding factors such 

as the release and modification of compounds by other organisms in the soil. Therefore, we 

correlated the in vitro root exudation patterns with the functional capacity of the rhizosphere 

microbiome to metabolize these compounds at different developmental stages of Arabidopsis 

grown in natural soils.  

We performed a metatranscriptomic analysis to correlate rhizosphere microbial functions 

with root exudation patterns corresponding to different stages of plant development. A total of 

14,740 sequences for each time point (Table 2-2) were uploaded to the Metagenomics-RAST 

(MG-RAST) server (Meyer et al 2008) and annotated to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) hierarchical classification within MG-RAST to assign a putative function to 

each sequence (KEGG hierarchical annotations for each sample is provided in Supplementary 

Material 2-1). KEGG divides the functional genes obtained into a four level hierarchy with the 

first level consisting of five categories: metabolism, genetic information processing, 

environmental information processing, cellular processes, and human diseases (Supplementary 

Material 2-1) (Kanehisa et al 2004). In our data, metabolism accounted for over 50% of the 

functional genes in each sample (Supplementary Material 2-1). Since the metabolic activity of 

the soil microbes is presumable directly tied to their utilization of the root exudate compounds 

identified via GC-MS we focused on the metabolic activity of the soil microbes.   

We performed Pearson correlation and Spearman rank correlation analyses between the 

group of exudate components and the abundance and number of related microbial functional 
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genes assigned to specific KEGG metabolic functions at the different time points. Indeed, we 

observed that the exudation of phenolics by the plant through development was significantly 

(p<0.05) positively correlated with both the abundance and number of expressed microbial genes 

involved in secondary metabolism (r = 0.98 and 0.95, respectively; Table 2-4). Similarly, there 

was a positive correlation between the amino acids released as root exudates and the number of 

expressed microbial genes involved in Amino Acid Metabolism at each time point (= 1.00; 

Table 2-4). Correlations between overall Carbohydrate Metabolism performed by the soil 

functional microbiome and the sugars released as root exudates were not statistically significant 

(Table 2-4).  

Correlation analyses were also performed between specific compounds present in the root 

exudates and the functional genes involved in their metabolism. For example, beta-alanine 

positively correlated to the functional gene adenylosuccinate synthase [EC:6.3.4.4] which is 

involved in the alanine, aspartate, and glutamate metabolism pathway (Supplementary Material 

2-2).  Likewise, glycine positively correlated with sarcosine oxidase, subunit alpha [EC:1.5.3.1] 

and sarcosine oxidase, subunit beta [EC:1.5.3.1] functional genes involved in the glycine, serine, 

and threonine metabolism pathway (Supplementary Material 2-2). On the other hand, 41 

functional genes involved in Amino Acid Metabolism negatively correlated with asparagine. 

Some functional genes that negatively correlate with asparagine were: shikimate dehydrogenase 

[EC:1.1.1.25], hydroxypyruvate reductase [EC:1.1.1.81], or anthranilate 

phosphoribosyltransferase [EC:2.4.2.18] (Supplementary Material 2-2). Similarly, the functional 

gene farnesyl diphosphate synthase [EC:2.5.1.1 2.5.1.10] involved in the terpenoid backbone 

biosynthesis pathway positively correlated with six compounds categorized as phenolics (4-

hydroxybutyric acid, capric acid, lauric acid, palmitic acid, propane-1,3-diol, and stearic acid; 
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(Supplementary Material 2-3)). We observed that the sugars arabinose, fructose, and sucrose 

positively correlated with 27 functional genes involved in carbohydrate metabolism such as 

chitin synthase [EC:2.4.1.16]; glucan endo-1,3-beta-D-glucosidase [EC:3.2.1.39]; glucan 1,3-

beta-glucosidase [EC:3.2.1.58]; or rhamnulose-1-phosphate aldolase [EC:4.1.2.19] 

(Supplementary Material 2-4). 

The iPATH 2 KEGG map (Figure 2-2) visually illustrates that the compounds released as 

root exudates could be utilized by the soil microbial functional genes. For example, we identified 

sucrose in the plant root exudates (Table 2-3). Sucrose can be used by two of the identified 

microbial functional genes alpha-glucosidase [EC:3.2.1.20] and beta-fructofuranosidase 

[EC:3.2.1.26] for the production of glucose and fructose. Similarly, galactose is used by the 

functional gene galactokinase [EC:2.7.1.6] to make alpha-D-galactose-1-phosphate. Beta-alanine 

is used to make 3-oxoproponoate and L-Glutamate by beta-alanine--pyruvate transaminase 

[EC:2.6.1.18]. 

Discussion 

Soil microbial communities are able to utilize and are impacted by root exudates in a 

variety of ways. For example, Bacillus subtilis, Rhizobium leguminosarum, or Agrobacterium 

tumefaciens C58C1 are just a few examples of soil bacterial species that utilize and exhibit 

chemotaxis towards a wide variety of sugars (Bowra and Dilworth 1981, Loake et al 1988, Ordal 

et al 1979). Rhizobia use specific flavonoids for initiating symbiosis (Zhang et al 2009). 

Agrobacterium is chemotactically attracted to certain phenolics, such as acetosyringone (Shaw 

1991), while Pseudomonas putida is able to catabolize flavonoids, such as naringen, p-

hydroxybenzoic acid, and quercetin for use as nutritional sources (Pillai and Swarup 2002). 

Similarly, many gram positive bacteria use amino acids or modified peptides as signal molecules 
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(Ryan and Dow 2008). Here we present evidence that root exudation of primary and secondary 

metabolites by Arabidopsis changes with plant development and follow specific trends. For 

instance, the quantity of amino acids and secondary metabolites (phenolics) released from the 

roots increased over developmental time. On the other hand, sugars were released in the greatest 

abundance early in the plant’s life cycle. These patterns were corroborated by root gene 

expression analyses, which showed higher expression of the majority of sugar transporter genes 

tested in the early stages of plant development. Similarly, higher expressions of the genes 

involved in the phenylpropanoid pathway were seen in later stages of plant development. Sugars 

serve as ready sources of energy for microbial growth (Behera and Wagner 1974), and secondary 

metabolites, such as those categorized as phenolics in this study, may function as antimicrobials 

and signaling molecules in the rhizosphere (de Weert et al 2002, Rudrappa et al 2008, 

Steinkellner et al 2007, Zhang et al 2009). 

Plant secondary metabolites’ are known defense signals (Bennett and Wallsgrove 1994) 

that play important roles in disease resistance (Li et al 2009, Nicholson and Hammerschmidt 

1992), in adapting to the changing environment and overcoming stress (Edreva et al 2008). Their 

increased release at later stages in the plants life cycle is in agreement with De-la-Pena et al. 

(2010), where defense related proteins showed enhanced secretion during flowering time. The 

observed increase in the exudation of phenolics at later developmental stages was mirrored by a 

corresponding increase in microbial functions related to the metabolism of secondary metabolites 

(Table 2-4). Microbes can quickly evolve a variety of mechanisms to detoxify and overcome the 

effects of potentially harmful chemicals either by chemically modifying the toxin, metabolizing 

the toxin, or by extruding the toxin from their cells. For instance, studies analyzing the effect of 

the toxic compound toluene on the soil bacterial metaproteome have shown an increase in ABC 
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transporter activity after toluene amendment, presumably due to export of the toxic substance out 

of the bacterial cell (Volkers et al 2009, Williams et al 2010). Likewise, we observed that as the 

host plant aged, there was an increase in the expression of ABC transporters and genes involved 

in membrane transport among soil microbes peaking at 24 days when phenolics are at their most 

abundant secretion time point (data not shown). 

Rates of sugars’ root exudation decreased with plant development and this trend did not 

correlate with the overall functional genes categorized under Carbohydrate Metabolism. This can 

be due to the fact that many pathways and cycles utilizing sugars such as glycolysis and the citric 

acid cycle are synergistically regulated by both sugars and amino acids (Blencke et al 2003). 

Although the correlation of the overall group of compounds categorized as sugars present in the 

root exudates did not correspond with the whole Carbohydrate Metabolism functional genes, we 

did see individual sugar compounds positively correlating with particular functional genes 

involved in Carbohydrate Metabolism (Supplementary Material 2-4). For example sucrose, 

arabinose, and fructose positively correlated with 27 functional genes involved in carbohydrate 

metabolism (Supplementary Material 2-4). These results are indicative of the microbial 

community actively utilizing these specific compounds released by the plant. Studies have 

shown that Sinorhizobium meliloti carries genes necessary for the catabolism of arabinose 

(Poysti et al 2007). Fructose and alanine have also been shown to produce a positive metabolic 

priming effect on soil microbes that is manifested in the increased degradation and 

mineralization of more complex soil organic matter when compared to simple sugars (Hamer and 

Marschner 2005). The priming effect is thought to be due to the ability of these easily available 

substrates, i.e. fructose and alanine, to activate microbial metabolism and increase enzyme 

production (Kuzyakov 2002). The enhanced enzyme production presumably increases the 
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metabolic capability of the soil microbiome, which in turn benefits the plant as various limiting 

nutrients can be made available. 

Rates of amino acid exudation increased with plant development, and this trend was 

mirrored by an increase in the number and abundance of expressed functional genes related to 

the metabolism of Amino Acids (Table 2-4). We observed significant correlations between 

specific amino acids and functional genes involved in Amino Acid Metabolism (Supplementary 

Material 2-2). Amino acid availability is necessary for bacterial root colonization. For example, 

Pseudomonas fluorescens Pf0-1 shows chemotactic response towards tomato roots due to L-

amino acids found in its root exudates (Oku et al 2012). Similarly, Pseudomonas fluorescens 

strain WCS365 colonizes the tomato root in the presence of amino acids such as: aspartic acid, 

glutamic acid, isoleucine, leucine, and lysine (Simons et al 1997). Our studies identified the 

release of the amino acid isoleucine (Table 2-3), which has been shown to be one of the major 

amino acid components required for the colonization of Pseudomonas fluorescens on tomato 

roots (Simons et al 1997). Interestingly, amino acid exudation of rice increased upon the plants 

exposure to Cyanobacterium sp. (Sb26) and Rhizobium sp. (Sb16) (Naher et al 2008) presumably 

due to certain microbial products that are able to trigger amino acid exudation (Phillips et al 

2004). Because we collected exudates in an axenic system, this suggests that the amino acid 

concentration released by the plant in a more natural setting (i.e. when the plant is interacting 

with its biotic environment, in this case a soil microbial community) may be even higher than we 

observed here.  

Ample evidence demonstrates that plant root exudates mediate the selection of specific 

rhizosphere microbes. However, there is no information available on how plants and their root 

exudates influence the rhizosphere microbiome functioning over the course of plant 



 

52 

development. In this study, we suggest that plant root exudates have associations with 

rhizosphere microbial functions, and that these interactions are dependent upon the plant 

developmental stage. These observed trends of in vitro collected root exudates and their 

correlation with rhizosphere microbial functions might hint that the qualitative changes in root 

exudation observed through plant development are genetically regulated and independent of the 

microbial community. On the other hand, quantitative changes in root exudates might be 

attributed to the microbial community. In other words, the soil microbial community is able to 

modify plant root exudation but not control it. For example, the increased exudation of secondary 

metabolites and amino acids through plant development might be indicative of innate defensive 

priming by the plant. Studies analyzing the metabolite profiles of potatoes after pathogen 

inoculation showed that 42 metabolites (consisting of sugars, amino acids, organic acids, and 

fatty acids) significantly increased or decreased (Abu-Nada et al 2007). Similar to our exudation 

profiling over a developmental time course, metabolite profiling by Abu-Nada et al. (2007) 

revealed that pathogen inoculation lead to an up-regulation of amino acids and a down-regulation 

of sugars. Although our exudation profiles were obtained axenically, we observed the release of 

compounds that are released as defensive and priming strategies against pathogens or as 

attractors for beneficial microbes. This may mean that as plants develop and start to set seed, 

they begin to adopt a more defensive strategy. Incidentally, it was previously reported that 

defense related proteins are secreted by roots in higher concentrations at flowering time (De-la-

Pena et al 2010).  

Root exuded metabolites can also have a dual role with respect to their effect on 

microbes. For example, GABA that in our studies increased following a developmental pattern 

has been shown to reduce Agrobacterium tumefaciens virulence by quenching quorum-sensing 
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(Chevrot et al 2006); while the beneficial bacteria Pseudomonas putida is able to use GABA as 

its sole nutrient source (Ramos-Gonzalez et al 2005). In contrast, proline nullifies GABAs ability 

to quench quorum-sensing (Haudecoeur et al 2009). While proline catabolism by the symbiont 

Rhizobium meliloti aids in its ability to colonize the root and establish symbiosis (Jimenez-Zurdo 

et al 1997). In our study, GABA and oxoproline (which is very similar in structure to proline) 

increase following plant development (Table 2-3). Experimentally these two signals have been 

shown to work in opposing fashion with respect to plant Agrobacterium infection (Chevrot et al 

2006, Haudecoeur et al 2009) yet understanding the interplay of these signals in a complex 

environment like the rhizosphere still needs to be explored.  

In connection to these patterns in root exudation, our rhizosphere metatranscriptomics 

data showed that fewer functional genes were uniquely expressed at early plant developmental 

time points compared with later developmental stages (Table 2-2). Thus, it is possible that: 1) 

high sugar levels exuded in early plant developmental stages may attract a wide range of 

microbes expressing a limited number of genes (which are similar across taxa) involved in the 

utilization of sugars as general substrates, and 2) high levels of phenolics exuded in later plant 

developmental stages might induce the expression of genes belonging to more specialized 

pathways, where these compounds are used as specific substrates or signaling molecules in ways 

that vary across taxa. This hypothesis implies that the plant attracts a wide range of microbes in 

the early stages of development when compared to later developmental stages by secreting 

sugars which are readily available for metabolism. As the plant develops, it begins to select 

among rhizosphere inhabitants by releasing phenolics and amino acids. The increase in the 

number of uniquely expressed microbial functional genes at later plant developmental stages 

may be indicative of a community-wide microbial response to shifting exudation toward more 
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recalcitrant or inhibitory compounds. Thus, only those microbes that have evolved means of 

detoxifying or utilizing these compounds will thrive. A detailed analysis of the rhizosphere 

microbes associated with Arabidopsis plants at different stages of development may provide a 

means of answering some of these questions. Micallef et al. (2009a) used denaturing gel gradient 

electrophoresis to demonstrate that rhizospheric microbial communities change with plant 

development. Further studies identifying the taxonomic microbial community of the rhizosphere 

would allow us to identify how specific microbial taxa are influenced by root exudation. 

In nature, root exudation is affected by a myriad of factors. Here we analyzed the 

compounds released as root exudates in a controlled environment and correlated them with the 

functions present in the rhizosphere. Although we did see correlations between the identified 

compounds in the in vitro studies and the functions carried out in the rhizosphere in vivo, 

additional work is needed to clarify the impacts of root exudation changing not only with plant 

development, but also in response to the specific microbiomes present at each developmental 

stage. It is important to note that in our rhizosphere soil community analysis we have not 

excluded the contributions of components such as proteins and polysaccharides that contribute to 

root exudation. Our exudate profiling was not exhaustive, and other root exudate constituents, 

such as proteins and polysaccharides, might also contribute to the changes observed in the 

functional microbiome at different stages of plant development.  

Rhizosphere driven selection of microbial functions has the potential to improve the 

development and health of plants in a sustainable manner. A deeper understanding of soil 

microbial functions over plant development can help devise better strategies for disease 

resistance and thus improving plant and soil health. However, further mechanistic studies are 
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required to identify specific microbial candidates that perform certain microbial functions of 

benefit to the plant, and to uncover pathways for inter-species signaling in the rhizosphere. 
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Tables 

Table 2-1. List of the primers used in this study. RT-PCR was used to analyze the expression of sugar transporters, ABC transporters 

and genes involved in secondary metabolism. Putative M refers to genes involved in the putative monosaccharide transporter family. 

 

 AGI Code Forward Reverse 

AtSUC1 At1g71880 GGAGTCCAATCTGGTGCAAT GAATCCTCCCATGGTCGTTG 

AtSUC2 At1g22710 AACTTCATCCTCGCCATTTG GCTTTGAAGGCAGGAGCATC 

AtSUC3 At2g02860 TGGGGATCCAACAGGAGATA CCGGTGGACTTGAAAGAACTC 

AtSUC4 At1g09960 TATGGGTGCACTTGGTTTGA GAGAGGGATGGGCTTCTGAAT 

AtSUC5 At1g71890 AATCGATTGGTCGGAAAATG ATAGCCCCTGACATGGCTGG 

Putative M At1g08920 GTGCGTTGCAAGTTGTGACT CACCGGTAGAGGCCAATAGA 

Putative M At4g04760 AATCGGATGGTTCGCTATTG CGGTCATCGATGTCTTGTTG 

AtINT1 At2g43330 TTGGTCGGTTTAGGAGTTGG GGCAGCAACAATGAGAGACA 

AtINT2 At1g30220 GGGCATGTTGGATCTCTGAT CATCGATCTTCGTTCAAGCA 

AtINT3 At2g35740 TGGTGATGGTGATTGCTCAT TATCCTCGTCAGCCGTCTCT 

AtPLT4 At2g20780 CGTGAGCTTCTTAGCCCATC GCACGTGACACAGAGAGGAA 

Putative M At1g79820 CCAAATTGTCGGAGTTGCTT ATAACCCAGTGAACGGCAAG 

AtSTP7 At4g02050 TGAATGCTGGAGCTGTGAAC TGGCATGCAAATAGCCATAA 

AtSTP10 At3g19940 CGAGAGAGGCAAAAATGAGG TGTCCCGCTGGTCTAATTTC 

AtpGlcT At5g16150 CTCTGGCCAAGGTTCTTCTG CTCTGATTCGGGATGCAAAT 

Putative M At2g48020 GGGGCTCTAACCACACTGAA TTCTTCCGGCTCTGTCAACT 

Putative M At3g20460 GTTGAAATCGCTCCCAAAAA ACGCTTGTCACAGACTGCAC 

Putative M At1g67300 CTGCTGCACTACTCGCTCTG CGCCGAAAAATGTGGTAAGT 

Putative M At1g05030 GAATCACGAGTGGTGCTCAA GAGCCAAAGCTGGCATAGAC 

Putative M At1g19450 GAGATCGCTCCACAGACCAT GAGTAGAAGCCGACGACCTG 

Putative M At5g17010 CCCAACCTATTCCGTTCTGA GCTTTCAAGCACTTCCCTTG 

AtSUC9 At5g06170 AGCCGTTGGTTTCTTCGTTG TCTTACTAATCACTCCAATAACAAGG 

AtPDR2 At4g15230 TGGCAAGAGATGAAGTGTCAGGGAAAG CTACAGCAGGATCTGGAATGATTTCTTGG 

AtPDR4 At2g26910 CACGATTCATCAGCCTAGCA ACATTGTGGTTTGGGGTGAT 

AtPDR6 At2g36380 AGATGTTGACGTCACGAATCTTGCT GTTGCCCTGCGTGAAAAGAATTG 
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 AGI Code Forward Reverse 

AtPDR7 At1g15210 GGACATACACGCTTCCCACT AAGCACACTTGTTCCCAACC 

AtPDR8 At1g59870 AGAGCAGCGGCTATTGTGATGA TGGCGTAGACGATGAGTGAGAT 

AtPDR9 At3g53480 TGAGGAGAGGTATAACAGGAGGTC GAGAGATTCAAAGAACGAGAGAGG 

PAL1 At2g37040 GATTCTCGAAGCAATTACCAGTTT GAGGAGAAGTACGAAGAGCGTAAC 

PAL2 At3g53260 GTCAGAGTCAACACTCTTCTCCAA TTACTTCAATTTGAGGACCTAGCC 

PAL3 At5g04230 TACAACAACGGGTTACCCTCTAAT GTTTTCCTTGAGATATAGCCCTGA 

C4H At2g30490 TCCTATCCTTAGACCATTCCTCAG CTCAGACGAAGAGTCTCCTTAACC 

4CL1 At1g51680 AGCTCGATAAGAGTGGTGAAATCT CATCTTCTGATAACTCCGAATCCT 

4CL2 At3g21240 TCGTTAGGGTTTGCTAAAGAGC AAACACAACCTGTTTTGACACG 

4CL3 At1g65060 CTGATCACTACCGATGAACCAA CACCGGAAAGAACGAATCTAAC 

FS1 At1g49390 GCCATCGATCTCAGTCTTCTCT TGGACATGGAGGAAAGAAGTT 

FS2 At5g63580 GGACCGAGAATCTTTTTCACAG AGAGGAGGGAATGTAGTGGACA 

FS3 At5g63590 CTGATACTGCGGTTGCTACAAG CGTCGATCCATTGGTTATCTTT 

F3H At5g07990 TCCCTTAAAGGAACTGATCTTGAC GAATCTCTCGGGTTTAAATGCTAA 

CYP79B2 At4g39950 CAGAAGATCCTCTCTAACGGCTAC CGATTTGAGTTCTCTTTCCTTCTC 

CYP79B3 At2g22330 CTACACGACAATAGAGCTGAGGAA ACCGTAACGGCTAAGTAAAACTTG 

CYP79A2 At5g05260 GAGATTCTGAAGAAGCAAGACTCC GATGGGTTAAAACCGTAAACAAAG 

CYP71B15 At3g26830 GAGGAAGTGCTAAAGATCAACGAT ATTCTTCAATCTCCTGTTCTGACC 

β-Actin  CAACTGGGACGAYATGGAGA GAGTCATCTTCTCTCTGTTGGCC 
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Table 2-2. Summary of the 454 pyrosequencing data for each sample. 

 

  
17d 24d 31d 38d 

Bulk 

Soil 

Total Number of Sequences uploaded to MG-RAST 14740 14740 14740 14740 14740 

Mean Sequence Length 380 425 415 437 412 

Predicted proteins with known function 7571 8632 7650 8699 8679 

Predicted protein with unknown function 6194 5702 6114 5490 5959 

Predicted Protein Features 14707 15904 15442 15829 15908 

Identified Protein Features 7795 9093 8219 9245 9013 

Identified Functional Categories to the M5NR protein datbasea 6858 8231 7165 8265 8154 

Predicted KEGG Orthologyb 4449 4255 4573 4750 4047 

Unique Features in KEGG hierarchical classification 1694 1533 1489 1797 1366 

Reads attributed to the unique feature of KEGG hierarchical classificationc 2142 1611 1647 1916 1420 

KEGG functions expressed in each sample after hierarchical classification 528 516 553 560 439 

Unique KEGG functions for each time point 139 114 145 145 98 

Reads attributed to unique KEGG functions for each time point 225 234 256 259 204 

 
a M5NR protein database consists of NCBI’s nr, KEGG database, EGGnogs, and SEED database 
b Report abundances using the KEGG protein database that include all functional labels 
c Report abundances using the KEGG protein database that supports hierarchical relationships between functions  
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Table 2-3. Table detailing the compounds released via root exudation by the plant as it develops. These were collected over a period of 

3 days (7-10 days, 14-17 days, 21-24 days and 28-31 days). Compounds were detected using GC-MS. Numbers indicate the average 

area under the curve of three replicates, numbers in parenthesis indicate the standard deviation. 

 

Compound Category 7-10 days 14-17 days 21- 24 days 28-31 days 

1-deoxyerythritol Sugar Alcohol 1933.06 (260.45) 2735.5 (55.06) 11315.12 (1060.15) 3756.53 (90.38) 

2-hydroxyvaleric acid Phenolics 12057.96 (1049.56) 20930.5 (1357.67) 17989.5 (1910.57) 3681.93 (285.01) 

3-hydroxybutanoic acid  Phenolics 26410.08 (7734.05) 10492.2 (2004.28) 2061.1 (162.69) 741.57 (5.28) 

3-hydroxypropionic acid Phenolics 9308.5 (905.44) 12501.3 (615.95) 22432.5 (476.55) 7714.9 (131.67) 

4-hydroxybutyric acid Phenolics 3118.83 (269.45) 3986.32 (115.35) 2332.9 (118.05) 905.57 (39.05) 

alanine Amino Acid 20380.66 (2154.44) 28883.25 (790.75) 125416 (11632.23) 257026.66 (8756.43) 

arabinose Sugar 4701.83 (683.13) 7430.8 (362.88) 3108.75 (312.58) 1560.53 (399.06) 

arabitol Sugar Alcohol 1252.54 (224.23) 1437.37 (114.38) 2638.05 (88.27) 1462.06 (48.26) 

asparagine minor Amino Acid 121.44 (26.6) 169.53 (38.16) 420.9 (34.18) 2687.23 (167.65) 

benzoic acid Phenolics 4851.96 (815.49) 6592.47 (301.82) 8785.3 (656.46) 6487.73 (708.56) 

beta-alanine Amino Acid 414.7 (75.56) 624.61 (44.88) 5441.97 (201.44) 5191 (352.57) 

butyrolactam  Phenolics 9875.53 (1089.79) 10804.55 (615.98) 172080 (16103.72) 31995.33 (6279.88) 

capric acid Phenolics 8792.66 (1241.18) 9859.3 (457.12) 4583.37 (199.49) 1131.68 (195.91) 

cyclohexylamine Amino Acid 93297 (34137.08) 147046.75 (20157.1) 18729.75 (1323.14) 12392.66 (351.85) 

erythritol Sugar Alcohol 1000.66 (297.79) 1453.52 (55.92) 4323.15 (573.73) 2200.46 (107.52) 

ethanolamine Amino Acid 21175.93 (3919.15) 57607.25 (1869.85) 502022.5 (24338.64) 558026.66 (48001.73) 

fructose  Sugar 266676.66 (13868.22) 214670 (2743.66) 67314.25 (9310.25) 12778.7 (1344.15) 

fucose  + rhamnose  Sugar 2614.9 (304.29) 9507.2 (794.75) 28415 (836.67) 7621.9 (331.57) 

fumaric acid Phenolics 282.23 (40.36) 319.67 (17.99) 4451.87 (820.7) 27146.33 (699.84) 

γ-aminobutyric acid  Phenolics 68.8 (30.13) 754.51 (178.34) 63043.5 (6834.63) 287210 (29177.79) 

galactose Sugar 291386.66 (28268.19) 95830.25 (8682.93) 1939.85 (126.17) 745.21 (46.18) 

glucose  Sugar 436110 (37741.68) 256895 (4910.03) 42315.75 (6521.47) 10486.56 (695.25) 

glucose-1-phosphate Sugar 784.83 (255.06) 857.51 (55.14) 2419.57 (55.19) 1199.7 (78.98) 

glyceric acid Phenolics 440.53 (20.64) 546.65 (142.85) 10077.07 (785.22) 9175.9 (637.01) 

glycerol Sugar Alcohol 274263.33 (62052.43) 389172.5 (39583.93) 103075.25 (7835.79) 38103.66 (620.74) 

glycine Amino Acid 60957.33 (15722.64) 64056.25 (2459.06) 127173 (8954.69) 120923.33 (5529.88) 

glycolic acid Phenolics 6675.4 (1728.38) 20901.25 (258.8) 2019.06 (737.81) 941.32 (266.5) 

hydroxylamine Amino Acid 3858.49 (983.25) 7684.4 (1160.47) 1927.55 (129.2) 1990.01 (970.9) 

inositol myo- Sugar Alcohol 2875.86 (619.56) 2402.42 (124.1) 17899.55 (2618.37) 8787.4 (725.12) 

isoleucine Amino Acid 342.89 (135.93) 1084.05 (210.45) 26118.75 (1584.97) 58209 (2707.19) 

lactic acid Phenolics 23300.73 (5238.51) 73611 (7104.4) 45983.25 (6544.83) 3574.86 (192.65) 
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Compound Category 7-10 days 14-17 days 21- 24 days 28-31 days 

lauric acid Phenolics 12790.33 (460.52) 12362 (801.36) 6192.55 (328.03) 1550.8 (146.13) 

levoglucosan Phenolics 1869.33 (316.03) 2016.9 (79.29) 3851.27 (89.15) 521.8 (29.34) 

N-acetyl-D-hexosamine Phenolics 169.08 (90.71) 70.91 (29.34) 1896.42 (145.72) 1122.67 (123.55) 

N-acetyl-D-mannosamine  Phenolics 220.73 (37.44) 489.11 (16.85) 5020 (357.59) 1980.56 (86.99) 

oxoproline Amino Acid 80.04 (17.55) 83.39 (34.88) 4896.02 (656.58) 331346.66 (67685.3) 

palmitic acid Phenolics 780.29 (31.94) 1068.28 (50.66) 641.72 (24.09) 199.69 (13.35) 

pelargonic acid Phenolics 19089.13 (3845.42) 21068.25 (1136.18) 8041.9 (610.54) 7801.7 (1545.58) 

propane-1,3-diol  Phenolics 57358 (4163.92) 54362.75 (1825.69) 23968.75 (1078.21) 5671.4 (1075.56) 

putrescine Phenolics 9849.96 (1357.04) 8452.6 (2118.03) 3959.92 (156.26) 36865.66 (2999.73) 

ribose Sugar 287.19 (50.08) 2347.92 (272.29) 34444.25 (3057.63) 6991.33 (622.33) 

serine Amino Acid 7103.1 (1333.6) 22407.25 (1428.11) 99913.75 (3031.47) 61061.33 (3118.76) 

shikimic acid Phenolics 80701 (20108.85) 8955.52 (2721.09) 5485.27 (927.12) 1563.33 (468.42) 

stearic acid Phenolics 30803.33 (4158.47) 14150.6 (1359.91) 5694.55 (282.42) 1157.82 (86.15) 

succinic acid Phenolics 193.23 (28.36) 380.06 (46.95) 1215.59 (186.23) 5041.23 (395.21) 

sucrose Sugar 28497.63 (6433.51) 13086.02 (1755.13) 1982.77 (153.69) 205.75 (31.07) 

tagatose  Sugar 515.14 (24.41) 868.72 (68.69) 54.51 (13.34) 15.98 (5.96) 

threitol  Sugar Alcohol 217.08 (83.28) 1640.09 (130.4) 6245.45 (337.02) 1582.93 (45.25) 

threonic acid Phenolics 64.3 (12.65) 136.89 (17.58) 2410.9 (189.88) 3450 (188.38) 

threonine Amino Acid 1441.9 (361.03) 1719.07 (73.8) 2524.92 (229.55) 14676.66 (914.86) 

tocopherol alpha Phenolics 19102 (3951.27) 9558.47 (704.01) 2505.55 (159.38) 448.38 (87.43) 

uracil Phenolics 666.59 (181.86) 1212.99 (139.24) 1422.87 (84.62) 4530.8 (477.83) 

urea Phenolics 516.65 (101.66) 8072.19 (1675.14) 316592.5 (24815.98) 305800 (17260.82) 

valine Amino Acid 8361.83 (1076.37) 16381.5 (575.52) 90746.75 (3294.57) 122726.66 (3983.52) 

xylitol  Sugar Alcohol 99.05 (39.74) 118.06 (23.84) 3719.12 (329.48) 2011.8 (78.4) 
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Table 2-4. Correlation of the compounds identified in the root exudates with the abundance or 

number of functional genes in each sample. * Correlation was statistically significant (p<0.05). 

 

 
Corresponding functional genes 

in each sample 

Abundance of corresponding 

functional genes in each 

sample 

 Pearson Spearman Pearson Spearman 

Amino Acids 0.86 1.00* 0.63 0.80 

Sugars -0.55 -0.40 -0.24 0.20 

Phenolics 0.95* 0.80 0.98* 0.80 
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Figures 

 

Figure 2-1. Soil grown Arabidopsis thaliana Col-0 at each plant developmental stage (17, 24, 31 

and 38 days). 
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Figure 2-2. iPATH 2 KEGG Map exhibiting the functional genes involved in Metabolism with the identified root exudate compounds. 

Blue lines: functional genes involved in Carbohydrate Metabolism; Green lines: functional genes involved in Amino Acid Metabolism; 

Brown.
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Figure 2-3. Multivariate analysis of the root exudates analyzed by GC-MS. (A) Cluster analysis (Ward method) based on the 107 

compounds detected in root exudates collected at 7-10d, 14-17d, 21-24d, and 28-31d. (B) Principal Component Analysis (PCA) of the 

107 root exudate compounds from samples collected at 7-10d, 14-17d, 21-24d, and 28-31d. Dashed ellipses indicate the 95% confidence 

region of each time point. Red: 7-10 days; Green: 14-17 days; Blue: 21-24 days; Aqua: 28-31 days. 1: 7-10d; 2: 14-17d; 3: 21-24d; 4: 

28-31d. 
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Figure 2-4. Arabidopsis root exudate composition across development. Identified compounds were 

grouped into chemical classes, and secretion levels were calculated based on cumulative peak area 

after normalization. 
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Figure 2-5. Arabidopsis root gene expression profiles. (A) sugar transporters, (B) ABC 

transporters, and (C) genes involved in secondary metabolism, as measured by semi-quantitative 

RT-PCR. Gene names are listed on the left side. The time points at which root tissues were 

collected are shown along the top. Bold and italicized text indicates genes whose expression 

profiles are most consistent with the GC-MS analysis of collected exudates. 
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CHAPTER 3 RHIZOSPHERE MICROBIOME ASSEMBLAGE IS AFFECTED BY PLANT 

DEVELOPMENT1 

 

 

Synopsis 

There is a concerted understanding of the ability of root exudates to influence the 

structure of rhizosphere microbial communities. However, our knowledge of the connection 

between plant development, root exudation, and microbiome assemblage is limited. Here, we 

analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at 

four time points corresponding to distinct stages of plant development: seedling, vegetative, 

bolting, and flowering. Overall, there were no significant differences in bacterial community 

structure, but we observed that the microbial community at the seedling stage was distinct from 

the other developmental time points. At a closer level, phylum such as Acidobacteria, 

Actinobacteria, Bacteroidetes, Cyanobacteria, and specific genera within those phyla followed 

distinct patterns associated with plant development and root exudation. These results suggested 

that the plant can select a subset of microbes at different stages of development, presumably for 

specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome 

revealed that 81 unique transcripts were significantly (p<0.05) expressed at different stages of 

plant development. For instance, genes involved in streptomycin synthesis were significantly 

induced at bolting and flowering stages, presumably for disease suppression. We surmise that 

plants secrete blends of compounds and specific phytochemicals in the root exudates that are 

                                                 
1 Reprinted in part from Chaparro, JM; Badri, DV; Vivanco, JM, Rhizosphere microbiome 

assemblage is affected by plant development. The ISME J 2014, 8, 790-803, DOI: 

10.1038/ismej.2013.196. 
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differentially produced at distinct stages of development to help orchestrate rhizosphere 

microbiome assemblage. 

Introduction 

Plants such as bean, maize, soybean, cowpea, cabbage, cotton, and Arabidopsis exhibit 

age-related resistance (ARR) (Develey-Riviere and Galiana 2007).  For example, susceptibility 

to Puccinia sorghi (common rust) in maize is manifested in younger plants but as the plants 

mature, the level of disease resistance augments (Abedon and Tracy 1996). In Arabidopsis, 

transitions from the vegetative to the floral phase correlates with resistance to Pseudomonas 

syringae (Kus et al 2002, Rusterucci et al 2005). While ARR at the molecular level has been 

studied with respect to leaf pathogens, little discussion has focused on root defense strategies and 

their role in ARR. However, there are some indirect correlations; for example, cotton (Zaki et al 

1998) or bean (Nicoli et al 2012) plants are more susceptible to root disease (Rhizoctonia solani 

or Fusarium root rot, respectively) at the seedling stage. Recent studies have shown that root 

secretion of defense-related proteins is enhanced during flowering time (De-la-Pena et al 2010) 

suggesting an involvement of plant roots in ARR. Similarly, Chaparro et al. (2013) have shown 

that Arabidopsis roots release more phenolic related compounds at later stages of life which 

might be correlated to defense strategies against pathogens as secondary metabolites are involved 

in plant immunity against bacterial and fungal pathogens (An and Mou 2011, Bednarek 2012, 

Clay et al 2009, Millet et al 2010, Rogers et al 1996). Thus, there is a need to understand the 

influence of plant development on microbial associations that might occur naturally in the 

rhizosphere related to defense but also to other vital plant necessities such as nutrient acquisition.   

Under natural conditions, plants tend to require higher quantities of N at later stages of 

development (Kelly et al 1995, Malagoli et al 2004, Nazoa et al 2003, Rossato et al 2001) but 
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exactly how this N is obtained under natural conditions is unknown. The classically studied 

symbiotic relationship between rhizobia and legumes has shown that symbiosis occurs only 

when the plant is under N-limiting conditions (Davidson and Robson 1986, Eaglesham 1989, 

Zahran 1999). Similarly, the secretion of flavones and flavonols that initiate rhizobia-legume 

symbiosis is enhanced under N-limiting conditions (Coronado et al 1995, Zhang et al 2009). This 

combined information suggests that the plant may have some control over the identity and 

functionality of the rhizosphere microbiome.  

Studies have shown that rhizospheric fungal and bacterial communities of a wide range 

of plants (i.e., Arabidopsis, Medicago, maize, pea, wheat, and sugar beet) change according to a 

plant developmental gradient (Baudoin et al 2002, Houlden et al 2008, Micallef et al 2009a, 

Mougel et al 2006). In these studies the microbial communities were assessed through automated 

ribosomal intergenic spacer analysis or denaturing gradient gel electrophoresis techniques that 

produce a fingerprint of the community structure but not of its members’ identity. While these 

studies demonstrated that plant microbial communities change in response to plant development 

they were not able to distinguish how or which microbes contribute to the changes observed. For 

example, Micallef et al. (2009a) through denaturing gradient gel electrophoresis analysis 

observed that Arabidopsis rhizosphere microbial communities varied with plant development and 

observed that microbial communities in early plant development were more distinct to the bulk 

soil and that this difference decreased with plant age. Similarly, an assessment of the potato 

rhizosphere demonstrated that young potato plants showed cultivar-dependent rhizosphere 

microbial communities but these differences in the microbiomes disappeared as the plants aged 

(Inceoglu et al 2011). Soybean rhizosphere microbial communities were also influenced by plant 

development; early reproductive growth stages of the soybean plant produced more complex 
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microbial communities than late stage soybean plants (Xu et al 2009). An assessment of the 

microbial community structure through plant development focusing on the members that make 

up the community is warranted. Incidentally, the recent characterization of the Arabidopsis 

thaliana core microbiome provides a tool to decipher the influence of the plant on the 

rhizosphere microbiome at different stages of development (Bulgarelli et al 2012, Lundberg et al 

2012).  

Evidence demonstrating the close ties root exudates have on the microbial composition of 

the rhizosphere is mounting (Badri et al 2008, 2013a, Broeckling et al 2008, Chaparro et al 2012,  

2013, Micallef et al 2009b), whereby many chemicals present in root exudates act as substrates, 

chemotactic, or signaling molecules to orchestrate changes in microbial composition (Badri and 

Vivanco 2009, Badri et al 2013a, Bais et al 2006, de Weert et al 2002, Horiuchi et al 2005, Jain 

and Nainawatee 2002, Neal et al 2012, Shaw 1991). Recently, it was reported that the 

composition of Arabidopsis root exudates change following a plant developmental gradient 

(Chaparro et al 2013). Cumulative secretion levels of sugars and sugar alcohols were higher in 

early time points and decreased through plant growth. In contrast, the cumulative secretion levels 

of amino acids and phenolics increased over time. Accordingly, it was hypothesized that 

seedlings of roots release sugars as substrates for a wide diversity of microbes at early stages of 

development but as the plant ages it releases specific substrates and potentially antimicrobial 

compounds in an effort to select for particular microbial inhabitants of the rhizosphere (Badri et 

al 2013a, Chaparro et al 2013). This potential selection of microbes in the rhizosphere as the 

plant ages might be associated with the ability of beneficial microbes to suppress pathogenic 

ones (Mendes et al 2011), trigger induced systemic tolerance to overcome abiotic stress 

(Selvakumar et al 2012), increase the plant’s innate immunity (Zamioudis and Pieterse 2012), 
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help in mineral nutrition (Bolan 1991, van der Heijden et al 2008), and in overall plant health 

(Berendsen et al 2012, Chaparro et al 2012). Here, we tested this hypothesis by analyzing the 

rhizosphere microbial composition of Arabidopsis by 454 pyrosequencing at four distinct 

physiological stages of development: seedling (four-five leaf stage), vegetative (rosette), bolting, 

and flowering. We did not include samples past the flowering stage because previous studies 

have determined that rhizosphere microbial communities converge past the flowering stage 

(Lundberg et al 2012, Micallef et al 2009a). Further, a metatranscriptomics analysis of the 

rhizomicrobiome was also conducted to ascertain a relationship between plant growth and 

microbiome functioning. 

Materials and methods 

Soil experiment 

Soil where Arabidopsis thaliana genotype (Pna-10) (Li et al 2010) has naturally grown 

for more than 8 years was collected in July 2011 from the Michigan Extension Station, Benton 

Harbor, MI (42° 05’ 34’’ N, 86° 21’ 19’’ W, elevation 630 feet). The soil is described in detail in 

Broeckling et al. (2008); soil from the same site was used in previous studies (Badri et al 2009, 

2013a, Broeckling et al 2008). Arabidopsis thaliana seeds were surface-sterilized with Clorox 

for one minute and subsequently rinsed four times with sterile distilled water. Sterile seeds were 

placed on Murashige and Skoog (MS) media (Murashige and Skoog 1962) supplemented with 

0.9% bactoagar and 3% sucrose Petri plates. Seeds were incubated in a growth chamber with 

photoperiod 16 h light/8 h night at 25°C for seven days. The Arabidopsis seven-day-old 

seedlings did not introduce any microbes to the system as they were surface sterilized with 

bleach and no bacterial growth was observed on the MS agar plates even after 7 days of growth. 

Six replicate pots were maintained for each of the four developmental time points, and one 7-
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day-old seedling was transplanted to each pot. Individual plants were grown until the following 

stages were reached: seedling (17 days), vegetative (24 days), bolting (31 days), or flowering (38 

days); see Chaparro et al. (2013).  

Extraction of microbial DNA from soil 

In our study we used the classical definition of the rhizosphere which consist of three 

zones: the endorhizosphere (root tissue area), the rhizoplane (root surface with epidermis), and 

the ectorhizosphere (soil directly surrounding the root), and we did not distinguish between these 

zones (Badri and Vivanco 2009, Brimecombe et al 2007, Lynch 1990, Morgan et al 2005). 

Rhizosphere soils (or ‘soil’ thereafter) for each of the time point’s six biological replicates (24 

samples; 4 time points) were collected by gently removing the plants from the pots and obtaining 

the soil attached to the roots (Figure 3-1) and stored at -80°C for future use. It is worth noting 

that the removal of the rhizosphere soil was done in such a manner to prevent mechanical root 

shearing. However, our rhizosphere soil (as per the classical definition) consists of the 

rhizosphere and the roots present in that soil (Figure 3-1). Once the total RNA was extracted 

from the soil using the PowerSoil total RNA isolation kit (see (Chaparro et al 2013)), total DNA 

was subsequently extracted using the RNA PowerSoil DNA Elution Accessory Kit (Mo Bio)  

according to the manufacturer’s instructions. The isolated DNA was quantified using a Nanodrop  

ND-1000 spectrophotometer (Thermo, Waltham, MA, USA). The bacterial hypervariable 

regions V1-V3 of the 16S rRNA gene were PCR-amplified using individually bar-coded forward 

primers 27F, 5’-AGAGTTTGATYMTGGCTCAG-3’ and reverse primer 533R, 5’-

TTACCGCGGCTGCTGGC-3’. PCR was performed using Taq DNA polymerase (Takara, 

Mountain View, CA, USA) as previously described (Badri et al 2013a). Briefly, DNA samples 

were diluted to a concentration of 5 ng µl-1 and one microliter was used per PCR reaction. The 
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reaction mix (20 µl) contained 0.4 µmoles of each gene-specific primer, 200 µmoles of dNTPs, 1 

X reaction buffer, and one unit of Taq DNA polymerase (Takara). PCR included 39 cycles of 94 

°C for 30 s, 56 °C for 30 s, and 72 °C for 1 minute in thermal cycler (GeneAmp PCR system 

2700; Applied Biosystems, Grand Island, NY, USA). After PCR amplification of the 24 soil 

DNA samples (6 reps per time point), repetitions were pooled in groups leaving three biological 

replicates per time point (12 samples). Amplicon products were gel purified using Wizard SV gel 

(Promega, Madison, WI, USA) and PCR clean-up system followed by Agencourt AMPure XP 

purification kit (Beckman Coulter, Brea, CA, USA). The concentration of DNA in each sample 

was determined using the Nanodrop ND-1000 spectrophotometer (Thermo). Approximately 

equal amounts of the 12 purified amplicon products (3 replicates per time point) were pooled and 

subjected to unidirectional pyrosequencing in 1/8 of a pico titer-plate at the W.M. Keck Center 

for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of 

Illinois at Urbana-Champaign on a Roche/454 Genome Sequencer GS-FLX+ instrument (Roche, 

Branford, CT, USA). Similarly, isolated total RNA (15μg per sample) was sent to the same 

facility. Briefly, mRNA isolation using the Ribozero rRNA removal Meta-bacterial kit 

(Epicentre Biotechnologies, Madison, WI, USA) was performed; using individually barcoded 

random hexamer primers the isolated mRNA was converted to cDNA. cDNA library 

normalization was performed using the Trimmer Direct kit (Evrogen, Moscow, Russia), the 

samples were pooled in equimolar concentrations and pyrosequencing was performed on 1/8 of a 

pico titer-plate (see (Chaparro et al 2013)). 

16S rRNA sequencing analysis 

Sequence reads were processed using Mothur v. 1.25.1 (Schloss et al 2009) as previously 

described (Badri et al 2013a). Sampling effort was equalized to the depth of the smallest sample 



 

80 

(2769 reads) and operational taxonomic units (OTUs) were defined at ≥ 97% sequence identity, 

using the average neighbor algorithm. Reads were classified within Mothur using the naïve 

Baysian classifier (Wang et al 2007). Final taxonomic assignment was based on the consensus 

identification for each OTU (see Supplementary Material 3-1). Sequences were also assigned to 

phylotypes using the phylotype command in Mothur. A multivariate data analysis of the OTUs 

was performed using METAGENassist (Arndt et al 2012), followed by normalization based on 

interquantile range (IQR) (Hackstadt and Hess 2009) and log2-transformation. IQR 

normalization allows one to increase statistical power by removing sequences that do not fall 

within the middle 50% of observations and thus reducing the number of statistical tests one has 

to perform. Principal component analysis (PCA) and significant features were identified for all 

treatments using METAGENassist (Arndt et al 2012). The Vegan package (Oksanen et al 2012) 

for R was used for community dissimilarity calculations (Bray-Curtis index) and principal 

coordinate analysis (PCoA). 

Metatranscriptomics analysis 

Sequence reads were processed using the Metagenomics-RAST (MG-RAST) server 

(Meyer et al 2008) and Mothur (Schloss et al 2009) (see (Chaparro et al 2013)). Briefly, 454 

pyrosequencing of the isolated mRNA produced 166250 sequence reads for seedling, vegetative, 

bolting, flowering, and bulk soil samples (see (Chaparro et al 2013)). Host-specific species 

sequences (Arabidopsis thaliana) were removed using the DNA level matching Bowtie 

algorithm (Langmead et al 2009) within MG-RAST. Artificially replicated sequences were 

removed (Gomez-Alvarez et al 2009). Sequences were also removed if their length differed by 

more than two standard deviations from the mean length. Additionally, sequences identified via 

MG-RAST as ribosomal RNAs were removed using Mothur. Once the ribosomal RNAs were 
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removed (6473 rRNA sequences total) from each of the samples they were normalized to 14740 

high-quality sequence reads per time point (Chaparro et al 2013). Sequence reads were assigned 

to the Kyoto Encyclopedia of Genes and Genomes (KEGG) protein database (Kanehisa et al 

2004, Kanehisa et al 2008). Further quality control consisted of selecting sequences with a 

minimum percent identity cutoff of 70% and an E-value cutoff of 10-5.  

Root exudation 

Root exudate data was obtained from Chaparro et al. (2013) from in vitro grown 

Arabidopsis plants that were grown to the designated plant developmental time points (seedling, 

vegetative, bolting, and flowering). Briefly, 7-day old seedlings (see above for seedling growth) 

were transferred to Magenta boxes containing 10 ml of MS media supplemented with 1% 

sucrose. Plants were grown until they were 7, 14, 21, or 28 days and were subsequently 

transferred to new Magenta boxes containing 10 ml of sterilized Millipore water. Root exudation 

was collected after 3 days of constant secretion (10, 17, 24, or 31 days) where solutions were 

filtered using nylon filters (0.45 μm; Millipore, MA, USA). Root exudates were freeze-dried, 

dissolved in 5 ml of 80% methanol, dried under N gas and sent to the Genome Center Core 

Services at the University of California, Davis for GC-MS analysis on an Agilent 6890 gas 

chromatograph (see (Chaparro et al 2013)). 

Statistical analyses 

All statistical analyses were done using SAS (ver. 9.3; SAS Institute). The PROC 

MIXED function was used to implement a two-way ANOVA analysis with a Tukey post-hoc 

adjustment to determine pairwise differences between the microbial communities at each plant 

developmental time point. To ensure that the data followed the assumptions of normality, 

sequences were log2 transformed. To identify if developmentally dependent root exudation 
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influenced the soil microbial community, Pearson correlation analysis was performed with the 

compounds released as root exudates (identified in Chaparro et al. (2013)) and the corresponding 

phylogenetic data. To ensure that the data abided by the assumptions of normality, the 

sequencing data was log2 transformed and the metabolomics data was log transformed. To 

determine how the functional microbiome changes with plant growth pairwise comparisons 

between log2 transformed and subsequently standardized early (seedling and vegetative) and late 

(bolting and flowering) metatranscriptomics data (see (Chaparro et al 2013)) were done using a 

two-sample t-test. Additionally, Pearson correlation analysis was performed with the log 

transformed root exudate compounds and the transformed and standardized functional genes that 

significantly changed (81 transcripts; 413 reads) with plant growth to determine if 

developmentally-dependent root exudation mediates the functions carried out by the rhizosphere 

microbiome. The interactive pathways explorer 2 (iPATH2) (Yamada et al 2011) was used to 

map the functional transcripts that were differentially expressed between early and late plant 

development (Figure 3-2). 

Results 

Plant development influences the soil microbial community 

We analyzed the influence of plant development on the rhizosphere microbial community 

by 454 pyrosequencing and obtained 55921 high quality 16S rRNA sequence reads. After 

equalizing sampling effort, 33228 reads were retained for analysis. These reads clustered into 

7452 OTUs at 3% distance sequence dissimilarity (Supplementary Material 3-1). We visualized 

the Bray-Curtis distances between samples using PCoA to determine how dissimilar the soil 

microbial communities were at each plant developmental time point. The rhizospheric microbial 

community of seedling was statistically (p<0.05) distinct from that of all other time points 
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(vegetative, bolting, and flowering; Figure 3-3A). On the other hand, the rhizosphere microbial 

community established at vegetative, bolting, and flowering were similar to each other (Figure 

3-3A). We used PCA to identify the factors that influence the soil microbial community at each 

time point (Figure 3-3B). The first two principle components explain 90.6% of the variability in 

the data. Principle component 1 explains 86.4% of the data while principle component 2 explains 

4.2% of the data. These data clearly show that the soil microbial community found at seedling 

was distinct from bolting and flowering. However, we observed that the soil microbial 

community corresponding to the vegetative stage overlapped with the microbial communities 

established at seedling and with those at bolting and flowering. This suggests that there is a 

transition state of the microbial community between seedling and bolting/flowering (Figure 

3-3B). 

We also determined the total OTU richness, evenness, and diversity of the sequencing 

data for each time point (seedling, vegetative, bolting, and flowering; Table 3-1). Although there 

were no statistically significant differences between the time points with respect to overall 

community characteristics, we observed that vegetative had the largest community richness, 

diversity, and evenness when compared to the other developmental stages, whereas seedling had 

the lowest diversity and evenness (Table 3-1). This suggests that while the structure of the 

overall soil microbial community does not change, specific microbes may be changing through 

development. 

After aligning the OTUs with the SILVA database we classified the soil microbial 

community into phylotypes consisting of 21 phyla and unclassified (Figure 3-4). ANOVA 

analysis with a Tukey post-hoc test identified significant differences between the developmental 

time points and four phyla (Acidobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria). 
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All other phyla did not significantly change with development. For example, the abundance of 

Acidobacteria significantly increased (p<0.05) from seedling to vegetative where it reached its 

peak and then significantly decreased at bolting and flowering to levels similar to those at 

seedling (Figure 3-5A). Similarly, the abundance of Actinobacteria was at its highest at the early 

time points (seedling and vegetative) but then significantly decreased at the later time points 

bolting and flowering; Figure 3-5B). On the other hand, the abundance of Bacteroidetes 

increased with plant growth reaching its highest abundance at flowering (Figure 3-5C). Likewise, 

we observed an increase in the abundance of Cyanobacteria from early time points (seedling and 

vegetative) to the later time points (bolting and flowering; Figure 3-5D). These data indicates 

that while the soil microbial community as a whole did not dramatically change, specific-soil 

microbial phyla were influenced by plant development. 

We further analyzed the soil microbial community at the genus level to determine which 

genera where influencing the changes observed through development within the phyla 

Acidobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria. We observed that four genera 

belonging to Acidobacteria increased in abundance from seedling to vegetative when they 

reached their peak abundance and then decreased at bolting reaching levels similar to that of 

seedling during flowering (Figure 3-6A-D). Eight genera belonging to Actinobacteria 

significantly changed according to plant development (Figure 3-7A-H). For example, 

Streptomyces increased in abundance from seedling to vegetative when the highest abundance 

was reached and then significantly decreased at bolting stage to levels below those observed at 

seedling and remaining at these levels throughout flowering (Figure 3-7E). On the other hand, 

six genera belonging to the Bacteroidetes phylum significantly increased with plant aging 

(Figure 3-8A-F). In general, bacteria classified as Cyanobacteria were significantly more 
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abundant at bolting than at seedling and vegetative and then decreased in abundance at flowering 

(Figure 3-9A-C). 

Plant root exudation correlates with rhizosphere microbes through plant development 

To determine how developmentally dependent root exudate changes may influence the 

soil microbiome, Pearson correlation analysis was performed between the compounds released as 

root exudates (data from (Chaparro et al 2013)) and the rhizosphere bacteria that significantly 

changed through the life span of the plant (Supplementary Material 3-2). We observed that 

Cyanobacteria significantly (p<0.05) correlated with the most root exudate compounds (373 

correlations; Table 3-2) while Bacteroidetes correlated with the least (24 correlations). To 

determine whether a specific class of root exudate compounds were involved in soil microbial 

community dynamics root exudates from Chaparro et al. (2013) were categorized as amino acids, 

phenolics, sugars, or sugar alcohols. Phenolic compounds significantly correlated with the soil 

microbial community of Acidobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria (412 

significant correlations; Table 3-3) followed by amino acids (151), sugars (137) and sugar 

alcohols (77).  

Plant development influences the functional microbiome 

To determine the functional genes that were differentially expressed at early (seedling 

and vegetative) compared to late plant development (bolting and flowering) two-sample t-tests 

on log2 transformed and standardized data were performed on the metatranscriptomics data from 

Chaparro et al. (2013). A total of 81 unique transcripts out of 1240 assigned to the KEGG 

database were significantly (p<0.05) differentially expressed with plant age (Table 3-4). iPATH2 

(Yamada et al 2011) was used to map at what time point (early or late) these 81 functional 

transcripts were more abundant (Figure 3-2). Of those transcripts, 32 were more abundant during 



 

86 

seedling and vegetative stages, while 49 were more numerous during plant bolting and 

flowering. The majority of the transcripts that were differently expressed between early and late 

development are involved in metabolism and genetic information processing. Two transcripts are 

involved in toluene degradation (succinate dehydrogenase iron-sulfur protein) and a transcript 

involved in nitrotoluene degradation (hydrogenase large subunit) were significantly (p<0.05) 

more abundant early in plant development. On the other hand, a transcript involved in bacterial 

chemotaxis (two-component system, chemotaxis family, response regulator) and one involved in 

streptomycin biosynthesis (dTDP-glucose 4,6-dehydratase) were significantly more abundant in 

late developmental stages. Among five transcripts involved in nitrogen metabolism, three and 

two were significantly expressed at early or late plant developmental stages, respectively. For 

example, the transcript formamidase, carbonic anhydrase and nitric-oxide reductase NorQ 

protein were highly expressed during plant seedling and vegetative stages. Conversely, the 

transcripts nitrite reductase (NAD(P)H) large subunit and periplasmic nitrate reductase NapA 

were more abundant during plant bolting and flowering. 

Beneficial microbes are more active during late plant development 

The 81 transcripts that were significantly expressed through development were aligned to 

the BLAT database (Kent 2002) within MG-RAST (Meyer et al 2008) to determine which 

microbes were carrying out the expressed functions (Table 3-4). These transcripts were attributed 

to bacteria such as Bradyrhizobia, Streptomyces, Azoarcus or Pseudomonas syringae. 

Accordingly, we categorized these microbes into seven groups depending on their potential 

activity towards the plant (i.e. symbiotic N fixation, free N fixation, antagonists, PGPRs, 

pathogens, xenobiotic/metal detoxifiers or unclassified; Table 3-5). We observed that many of 

these transcripts aligned to symbiotic N fixers, free N fixers or pathogens (14, 17, or 12 
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transcripts respectively; Table 3-5), such as Nitrobacter, Rhodospirillum, Nitrosospira, 

Mesorhizobium, Cyanobacteria, AzorhizobiumI, or Dickeya dadantii. Interestingly, most of the 

transcripts that aligned to pathogens were significantly expressed early during development (8 

genes) while transcripts that aligned to microbes involved in plant growth promotion or N 

fixation were more abundant late (23 genes; Table 3-5). For example, the transcripts involved in 

bacterial chemotaxis (two-component system, chemotaxis family, response regulator) were 

significantly more abundant at late time points and aligned to the nitrogen fixing PGPR 

Methylobacterium extorquens (Ivanova et al 2001, Lidstrom and Chistoserdova 2002, Sy et al 

2001). On the other hand, the transcript involved in amoebiasis (Ras-related protein Rab-7A) 

was significantly more abundant at early time points, and it aligned with the pathogen 

Moniliophthora perniciosa. Additionally, microbes that are antagonistic and produce fungicides 

or bactericides such as Streptosporangium, Streptomyces avermitilis, and Sorangium cellulosum 

were transcriptionally active late (Table 3-4 and Table 3-5) (Burg et al 1979, Pradella et al 2002).  

Plant root exudation correlates with the functional microbiome through plant development 

To determine whether root exudation potentially mediates the functions carried out by the 

rhizosphere microbiome, we correlated the 81 unique and significant transcripts with the 

compounds released as root exudates (from (Chaparro et al 2013); see Supplementary Material 

3-3). Similar to the 16S rRNA analysis, phenolic compounds appear to mediate the expression of 

the transcripts (449 significant correlations; Table 3-6). Additionally, dTDP-glucose 4,6-

dehydratase positively correlated with the sugar alcohol myo-Inositol. The transcript two-

component system, chemotaxis family, response regulator positively correlated with glycine and 

xylitol. 
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Discussion 

Plant developmental changes affect the rhizosphere microbial community 

Analysis of the overall bacterial rhizosphere community through plant development 

revealed that the community did not significantly change with respect to richness, diversity, and 

evenness (Table 3-1) but Bray-Curtis community dissimilarity analysis revealed that the 

microbial community at seedling was significantly different from the other developmental stages 

(vegetative, bolting, and flowering; Figure 3-3A). These results are in agreement with previous 

reports as the Arabidopsis rhizosphere microbial communities after the bolting stage were not 

distinct (Lundberg et al 2012, Micallef et al 2009a). A more detailed look at the assembled 

rhizosphere microbial communities through plant development revealed that a core microbiome 

established and this constituted bacteria comprising Actinobacteria, Bacteroidetes, and 

Proteobacteria, as was previously observed (Bulgarelli et al 2012, Lundberg et al 2012). In 

addition, the present study demonstrated that Chloroflexi, Firmicutes, Gemmatimonadetes, 

Nitrospirae, Planctomycetes, and Verrucomicrobia were also consistently present throughout 

plant development (Figure 3-4). Additionally, Acidobacteria (Figure 3-5A) and Cyanobacteria 

(Figure 3-5D) also comprised the core rhizosphere microbiome but these phyla along with 

Bacteroidetes (Figure 3-5C) and Actinobacteria (Figure 3-5B) significantly changed with plant 

development suggesting that the plant can select a subset of microbes at different stages of 

growth. Acidobacteria is one of the most abundant bacterial phyla found in terrestrial ecosystems 

(Barns et al 1999) and they have an important role in the carbon cycle due to their ability to 

degrade complex plant derived polysaccharides such as cellulose and lignin (Ward et al 2009). 

Unfortunately, the specific role they play in the soil ecosystem and their role in the rhizosphere 

(apart from being metabolically active (Lee et al 2008)) is relatively unknown. Actinobacteria, 
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on the other hand, has recently been associated with disease suppressive soils (Mendes et al 

2011). Streptomyces species, which were significantly more abundant in the vegetative stage of 

Arabidopsis (Figure 3-7E), are able to increase root nodulation efficiency and promote plant 

growth of the legume Pisum sativum (Tokala et al 2002) while simultaneously triggering plant 

defense in Arabidopsis or apple trees (Cohen et al 2005, Conn et al 2008, Lin et al 2012). On the 

other hand, Bacteroidetes’ role in the rhizosphere has not yet been elucidated but it has been 

reported that they are important contributors to nutrient turnover in the soil (Yousuf et al 2012). 

Bacterial species belonging to Bacteroidetes contain genes involved in denitrification indicating 

a possible involvement in N cycling (Van Spanning et al 2005). Cyanobacteria have been shown 

to colonize plant roots (Gantar et al 1991, Lundberg et al 2012), promote plant growth (Prasanna 

et al 2009), and are an important plant source for inorganic N due to their ability to fix N 

(Franche et al 2009).  

Plant development influences the functional capacity of the rhizomicrobiome 

Metatranscriptomics analyses of mRNA have only recently been used as a means to study 

microbial communities at a functional level in distinct environments such as the human gut 

(Gosalbes et al 2011), the mouse gut (Xiong et al 2012), and oceans (Baker et al 2013, Poretsky 

et al 2009). In soils, functional microarrays or GeoChip that target specific microbial functions 

have been successfully used to determine the metabolic potential of the microbial communities 

(Bai et al 2013, He et al 2007, He et al 2011, Zhang et al 2013). A drawback of the GeoChip is 

the fact that novel functions and transcripts cannot be identified, and one is biased to the probes 

present in the chip (Dugat-Bony et al 2012). Recently, metatranscriptomics in soil has been 

attempted on the rRNA to identify the active members of the microbial community in the 

rhizosphere of various crop species (Turner et al 2013); Urich et al. (2008) described the 
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isolation and sequencing of mRNA from a sandy lawn as a means of describing the microbial 

transcriptome in the soil. The rhizosphere microbiome plays an essential role in plant health and 

productivity and it is often referred as the plant’s second genome (Berendsen et al 2012, 

Chaparro et al 2012). Accordingly, our metatranscriptomics data permitted a glimpse at the 

genes that the microbiome was expressing as a whole at each stage of plant development. More 

transcripts were significantly expressed at late plant developmental time points (Table 3-4) and 

this may be indicative of the soil microbial community selecting specific functions throughout 

plant development. For example, dTDP-glucose 4,6-dehydratase involved in streptomycin 

biosynthesis is more abundant during plant bolting and flowering. Streptomycin is an antibiotic 

mainly produced by Streptomyces and it is antagonistic against gram-positive and -negative 

bacteria and has been shown to enhance plant defenses and trigger systemic resistance (Conn et 

al 2008, Lin et al 2012, Schatz et al 2005). Additionally, we observe that dTDP-glucose-4,6-

dehydratase positively correlates with the root exudate compound myo-Inositol which increases 

streptomycin biosynthesis (Heding 1964, Majumdar and Kutzner 1962). Interestingly, we did not 

find transcripts that are attributed to plant pathogens at late stages of plant development which is 

consistent with the increased production of streptomycin and in accordance with ARR. 

Furthermore, we determined that Sorangium cellulosum which produce bacteriocides and 

fungicides (Pradella et al 2002) was also present in late stages of plant development.  

The rhizosphere microbiome can also supply the plant with essential nutrients such as 

nitrogen. Nitrogen is essential for plant growth (Burns 1996, Rossato et al 2001) and it is usually 

deficient in soils (Novoa and Loomis 1981).  Thus, in natural environments (as compared to 

agricultural systems) the plant depends on N fixing and nitrifying bacteria for their N supply. It 

should be noted that in our study the plants grew in natural soil without external fertilization. In 
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accordance, we observed that throughout plant development functional genes involved in 

nitrogen metabolism were transcriptionally active (Table 3-5). Additionally, functions carried out 

by bacteria involved in N assimilation were prevalent (Table 3-4 and Table 3-5). This may be 

indicative of modulation of the microbiome to express specific functions throughout plant 

growth, that is, differentially express transcripts from beneficial bacteria. For example, 

transcripts more abundant in early time points align to bacteria involved in providing the plant 

with N such as Nitrobacter, Rhodospirillum, Nitrosospira, Mesorhizobium, or Azorhizobium. 

Similarly, during bolting and flowering, functional genes expressed in the rhizosphere align to 

PGPRs such as Bacillus licheniformis (Gutiérrez-Mañero et al 2001) or Burkholderia ambifaria 

(Chiarini et al 2006), free N-fixers such as Cyanothece sp. (Junier et al 2009), as well as 

symbiotic N-fixing bacteria (Bradyrhizobium) (Stacey et al 1995), or Herbaspirillum which is 

involved in endophytic N fixation (Elbeltagy et al 2001, Franche et al 2009). It should be noted 

that in addition to fixing N through legume symbiosis, Bradyrhizobium promotes plant growth of 

non-leguminous plants (Antoun et al 1998). The functional microbiome also expressed genes 

that aligned to the free N-fixing Cyanobacteria (Table 3-4). These wide changes in the soil 

bacterial community hint at the soil microbiome shifting and changing according to the needs of 

the plant and that the rhizosphere functional microbiome can express specific functions at precise 

stages of plant growth. 

Interestingly, we determined that the expression of a functional gene is altered through 

plant development even when the bacterium performing the function does not change in 

abundance. For example, Bradyrhizobia classified as Proteobacteria does not significantly 

change with plant growth (Figure 3-4) yet transcripts expressed by Bradyrhizobia such as 

imidazolonepropionase, phenol 2-monooxygenase, or glutaminase are more abundant in later 
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stages of plant development (Table 3-4). Alternatively, while Actinobacteria, and more 

specifically Streptomyces, were more abundant during the vegetative stage (Figure 3-6B, Figure 

3-7E) we observed that genes involved in synthesis of the antibiotic streptomycin were higher 

during plant bolting and flowering (Table 3-4). This indicates that root exudates are presumably 

able to modulate the expression of specific functional genes without altering the bacterial 

taxonomic composition of the rhizosphere. 

Root exudates act as potential stimulants for rhizomicrobiome functions 

While microbial colonization of the rhizosphere has shown an array of benefits to the 

plant, the exact mechanism by which the plant is able to attract these microbes varies. One such 

mechanism used is bacterial chemotaxis towards root exudate compounds. Interestingly, we see 

that the two-component system, chemotaxis family, response regulator involved in bacterial 

chemotaxis is significantly expressed late in plant development and its expression positively 

correlates with the root exudates glycine and xylitol (Supplementary Material 3-3). Interestingly, 

PGPRs and endophytic bacteria show chemotaxis towards glycine (de Weert et al 2002, 

Gaworzewska and Carlile 1982, Gupta Sood 2003), while the non-symbiotic nitrogen-fixing 

bacteria Azotobacter vinelandii shows chemotactic behavior towards xylitol (Haneline et al 

1991). This provides an additional mechanism for the plants ability to manipulate and orchestrate 

the rhizosphere microbiome. While the results presented are only correlative they do highlight 

the importance of root exudation in rhizosphere plant-microbiome interactions and provide 

strong evidence to warrant further investigation that would conclusively determine how specific 

components of the root exudates in the absence of the plant could influence the rhizosphere 

metatranscriptome. Incidentally, a recent study depicting the microbial communities established 

from the addition of root exudate blends to the soil demonstrated that different blends produced 
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changes in the microbial community. For example, soil supplemented with ethyl acetate- or 

water-extracted root exudates generated microbial communities that presumably had the ability 

to metabolize the pesticide atrazine (Badri et al 2013a). Similar experiments that add specific 

compounds (sugars or oxalic acids) to the soil have also shown dramatic shifts in the 

composition of the microbial community (Eilers et al 2010, Shi et al 2011). 

The general root exudation patterns reported in Chaparro et al. (2013) do not seem to 

correlate with general microbiome characteristics as initially hypothesized (i.e. increased root 

exudation of sugars at early plant development would result in enhanced richness of the 

rhizosphere microbial community at these early time points). This could be due to the fact that 

root exudates were collected in vitro while rhizosphere microbial communities were analyzed in 

vivo; in other words, the root secretion patterns could be different under soil conditions. 

Accordingly, it has been reported that under in vitro conditions plants grown alone or co-cultured 

with a microorganism show different patterns of proteins present in the root exudates (De-la-

Pena et al 2008). However, Chaparro et al. (2013) showed evidence that root exudation through 

development is genetically programmed since there were strong correlations between in vitro 

root exudation patterns and the ability of the soil microbiome to utilize these compounds in vivo. 

During plant vegetative stage (transition state; Figure 3-3B) we identified the largest OTU 

richness, diversity, and evenness in the rhizosphere (Table 3-1).  This rhizospheric microbial 

transition state corresponds with a root exudation transition state where the highest diversity of 

phytochemicals (sugars, sugar alcohols, phenolics, and amino acids) was observed (Chaparro et 

al 2013). Therefore, it appears that sugars present in the root exudates do not necessarily function 

as general substrates for soil microbes as is widely reported in the literature (Behera and Wagner 

1974, Eilers et al 2010, Fierer et al 2007, Jaeger et al 1999), whereby compounds such as 
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phenolics or amino acids more readily influence soil rhizosphere microbial communities as well 

as modulate their transcription (Table 3-3 and Table 3-6). Recently, Badri et al. (2013a) reported 

that fractions of root exudates containing phenolic and phenolic-related compounds when 

applied to the soil (in the absence of the plant) significantly modulated the soil microbiome. In 

addition, analysis of the rhizosphere microbial community of an Arabidopsis mutant that secretes 

more phenolic compounds than sugars showed that it cultured more beneficial microbes such as 

PGPRs and those involved in N-fixation such as Bradyrhizobia and Cyanobacteria when 

compared to wild type (Badri et al 2009). Interestingly, the reduction of phenolic exudates by 

inhibition of phenylalanine ammonia-lyase gene expression in transgenic rice influenced the 

rhizospheric microbial community, with eight phyla decreasing in abundance in transgenic rice 

when compared to wild type plants (Fang et al 2013). Further studies pinpointing which phenolic 

compounds are involved in coordinating these microbial interactions are needed.  

The data presented here implies and alludes to the fact that the plant through root 

exudation may be selecting microbes for different functions; however, we would be remiss not to 

point out other potential mechanisms that may be playing a role. For example, the changes 

observed in the rhizosphere microbial community could be due to microbial community 

succession with respect to microbial competition. Unfortunately, presently there is little research 

regarding microbial succession and stability in soils (Fierer et al 2010). Recently, it was shown 

that microbial succession is similar to that of previously described plant and animal succession 

with respect to species-time relationships (Shade et al 2013) but what this could mean in the 

rhizosphere is unclear. There is still much to be explored with respect to plant-microbiome 

interactions to better understand and decipher the complex patterns and associations that arise in 

this unique ecological niche.  



 

95 

Much like the plant can influence the rhizosphere microbiome the rhizosphere 

microbiome can also influence the plant. For example, fungal communities have been shown to 

influence root exudation rates which can in turn influence the rhizosphere microbiome (Meier et 

al 2013). Similarly, Lau and Lennon (2011) demonstrated that microbial community structure 

affects natural plant trait selections. Additionally, it has been established that distinct microbial 

communities influence plants’ ability to tolerate abiotic stress such as drought (Zolla et al 2013) 

and even affect leaf metabolome and subsequent insect feeding (Badri et al 2013b). These 

examples highlight the multifaceted nature of the interactions in the rhizosphere microbiome. 

Conclusions 

The conclusions of this study could be summarized as follows: (1) the plant maintains a 

core rhizosphere microbiome; (2) this core microbiome is likely to express different functions at 

different stages of plant development; (3) the plant can enhance the expression of a subset of 

microbial functions at specific times that the core microbiome is not currently expressing; (4) the 

plant can select a subset of microbes at different stages of development presumably for specific 

functions that the core microbiome can’t express (i.e. N fixation, antibiosis against pathogens, 

etc.); and (5) the plant secretes blends of compounds and specific phytochemicals in the root 

exudates that are differentially produced at distinct stages of plant growth to help orchestrate the 

activities described in 1, 2, 3, and 4. Overall, these concepts suggest that plants and the 

rhizomicrobiome are in constant communication through the exchange of signals. Experiments 

targeting some of these ideas are essential to conclusively determine the interactive 

functionalities that occur in the rhizosphere between crops and their microbiome. 
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Tables 

Table 3-1. Observed species richness (Sobs), Shannon diversity and evenness of the OTU soil 

microbial community for each plant developmental time point. 

 

 Richness Shannon 

  Sobs Evenness Diversity 

Seedling 1107.33 0.8009 5.6136 

Vegetative 1262.67 0.8638 6.1675 

Bolting 1114.00 0.8192 5.7484 

Flowering 1040.33 0.8245 5.7278 
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Table 3-2. Pearson correlation analysis of the OTUs classified as Acidobacteria, Actinobacteria, 

Bacteroidetes, or Cyanobacteria with the compounds released as root exudates. The values indicate 

the number of significant (p<0.05) Pearson correlations for each phyla. 

 

Phylum 
Number of positive 

correlations 

Number of negative 

correlations 

Total number of 

correlations 

Acidobacteria 156 75 231 

Actinobacteria 103 46 149 

Bacteroidetes 8 16 24 

Cyanobacteria 130 243 373 
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Table 3-3. Pearson correlations analysis of the OTUs classified as Acidobacteria, Actinobacteria, Bacteroidetes or Cyanobacteria with 

the group of compounds released as root exudates. The values indicate the number of significant (p<0.05) Pearson correlations. 

 

Phylum 
Amino Acids Phenolics Sugars Sugar Alcohols 

Positively Negatively Positively Negatively Positively Negatively Positively Negatively 

Acidobacteria 35 12 60 38 24 18 37 7 

Actinobacteria 3 21 58 25 24 0 18 0 

Bacteroidetes 2 0 4 10 1 5 1 1 

Cyanobacteria 67 11 60 157 0 65 3 10 

Total Correlations 151 412 137 77 
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Table 3-4. Statistically significant (t-test p<0.05) transcripts (81 total) classified under hierarchical KEGG orthology expressed by the 

rhizomicrobiome at early (seedling (seed) and vegetative (veg)) vs. late (bolting (bolt) and flowering) 

 

Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Cellular 

Processes 

Cell 

Growth 

and Death 

04112 Cell 

cycle - 

Caulobacte

r 

[PATH:ko0

4112] 

modification 

methylase 

[EC:2.1.1.72] 

K13581 2 2 0 0 Early 

Anaeromyxob

acter 

dehalogenans 

(strain 2CP-C) 

Cellular 

Processes 

Cell 

Motility 

02030 

Bacterial 

chemotaxis 

[PATH:ko0

2030] 

two-

component 

system, 

chemotaxis 

family, 

response 

regulator 

K03413 0 0 3 2 Late 

Methylobacter

ium 

extorquens 

DSM 13060 

Environmen

tal 

Information 

Processing 

Membrane 

Transport 

02010 

ABC 

transporters 

[PATH:ko0

2010] 

D-

methionine 

transport 

system ATP-

binding 

protein 

K02071 0 0 1 1 Late 

Anabaena 

variabilis 

ATCC 29413 

Environmen

tal 

Information 

Processing 

Membrane 

Transport 

02010 

ABC 

transporters 

[PATH:ko0

2010] 

D-xylose 

transport 

system 

permease 

protein 

K10544 0 0 2 2 Late 

Rhizobium 

loti (strain 

MAFF303099

) 

(Mesorhizobiu

m loti) 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=882800
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=882800
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=882800
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=882800
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Environmen

tal 

Information 

Processing 

Membrane 

Transport 

02010 

ABC 

transporters 

[PATH:ko0

2010] 

iron(III) 

transport 

system ATP-

binding 

protein 

[EC:3.6.3.30] 

K02010 0 0 2 4 Late 

Azorhizobium 

caulinodans 

(strain ATCC 

43989 / DSM 

5975 / ORS 

571) 

Environmen

tal 

Information 

Processing 

Membrane 

Transport 

02010 

ABC 

transporters 

[PATH:ko0

2010] 

iron(III) 

transport 

system 

substrate-

binding 

protein 

K02012 2 2 0 0 Early 

Nitrosospira 

multiformis 

(strain ATCC 

25196 / 

NCIMB 

11849) 

Environmen

tal 

Information 

Processing 

Membrane 

Transport 

03070 

Bacterial 

secretion 

system 

[PATH:ko0

3070] 

general 

secretion 

pathway 

protein E 

K02454 0 0 4 3 Late 

Saccharophag

us degradans 

(strain 2-40 / 

ATCC 43961 / 

DSM 17024) 

Environmen

tal 

Information 

Processing 

Signal 

Transducti

on 

02020 

Two-

component 

system 

[PATH:ko0

2020] 

beta-

lactamase 

[EC:3.5.2.6] 

K01467 2 2 0 0 Early 
Azoarcus sp. 

(strain BH72) 

Environmen

tal 

Information 

Processing 

Signal 

Transducti

on 

04070 

Phosphatid

ylinositol 

signaling 

system 

myo-inositol-

1(or 4)-

monophosph

atase 

[EC:3.1.3.25] 

K01092 2 2 0 0 Early 

Mycobacteriu

m smegmatis 

(strain ATCC 

700084 / 

mc(2)155) 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

4070] 

Genetic 

Information 

Processing 

Folding, 

Sorting and 

Degradatio

n 

03018 

RNA 

degradation 

[PATH:ko0

3018] 

ribonuclease 

R [EC:3.1.-.-

] 

K12573 1 1 6 7 Late 
Chelativorans 

sp. BNC1 

Genetic 

Information 

Processing 

Replication 

and Repair 

03410 Base 

excision 

repair 

[PATH:ko0

3410] 

endonuclease 

III 

[EC:4.2.99.1

8] 

K10773 1 2 0 0 Early 

Synechococcu

s sp. (strain 

JA-3-3Ab) 

(Cyanobacteri

a bacterium 

Yellowstone 

A-Prime) 

Genetic 

Information 

Processing 

Replication 

and Repair 

03440 

Homologo

us 

recombinat

ion 

[PATH:ko0

3440] 

exodeoxyrib

onuclease V 

alpha subunit 

[EC:3.1.11.5] 

K03581 1 2 0 0 Early 

Gluconacetob

acter 

diazotrophicus 

(strain ATCC 

49037 / DSM 

5601 / PAl5) 

Genetic 

Information 

Processing 

Replication 

and Repair 

03440 

Homologo

us 

recombinat

ion 

[PATH:ko0

3440] 

recombinatio

n protein 

RecA 

K03553 5 5 3 3 Early 

Thermomonos

pora curvata 

(strain ATCC 

19995 / DSM 

43183 / JCM 

3096 / 

NCIMB 

10081) 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

large subunit 

ribosomal 

protein L10e 

K02866 0 0 1 1 Late 

Candida 

albicans 

SC5314 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

large subunit 

ribosomal 

protein L22 

K02890 0 0 2 1 Late 

Gemmatimona

s aurantiaca 

(strain T-27 / 

DSM 14586 / 

JCM 11422 / 

NBRC 

100505) 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

large subunit 

ribosomal 

protein L24 

K02895 0 0 4 3 Late 

Polaromonas 

naphthalenivo

rans (strain 

CJ2) 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

large subunit 

ribosomal 

protein L26e 

K02898 0 0 1 1 Late 

Schizosacchar

omyces 

pombe 972h- 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

large subunit 

ribosomal 

protein L30e 

K02908 1 1 0 0 Early 

Trypanosoma 

brucei 

TREU927 

Genetic 

Information 

Processing 

Translation 

03010 

Ribosome 

[PATH:ko0

3010] 

small subunit 

ribosomal 

protein 

S15Ae 

K02957 1 1 0 0 Early 

Paramecium 

tetraurelia d4-

2 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Human 

Diseases 

Infectious 

Diseases 

05111 

Vibrio 

cholerae 

pathogenic 

cycle 

[PATH:ko0

5111] 

RNA 

polymerase 

sigma factor 

for flagellar 

operon FliA 

K02405 0 0 1 2 Late 

Herbaspirillu

m seropedicae 

SmR1 

Human 

Diseases 

Infectious 

Diseases 

05146 

Amoebiasis 

[PATH:ko0

5146] 

Ras-related 

protein Rab-

7A 

K07897 1 1 0 0 Early 

Moniliophthor

a perniciosa 

FA553 

Metabolism 

Amino 

Acid 

Metabolis

m 

00250 

Alanine, 

aspartate 

and 

glutamate 

metabolism 

[PATH:ko0

0250] 

glutamate 

synthase 

(NADPH/N

ADH) large 

chain 

[EC:1.4.1.13 

K00265 6 6 11 10 Late 

Streptosporan

gium roseum 

(strain ATCC 

12428 / DSM 

43021 / JCM 

3005 / NI 

9100) 

Metabolism 

Amino 

Acid 

Metabolis

m 

00260 

Glycine, 

serine and 

threonine 

metabolism 

[PATH:ko0

0260] 

5-

aminolevulin

ate synthase 

[EC:2.3.1.37] 

K00643 0 0 1 1 Late 

Nitrobacter 

winogradskyi 

Nb-255 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Metabolism 

Amino 

Acid 

Metabolis

m 

00260 

Glycine, 

serine and 

threonine 

metabolism 

[PATH:ko0

0260] 

choline 

dehydrogena

se 

[EC:1.1.99.1] 

K00108 0 0 2 3 Late 

Burkholderia 

ambifaria 

(strain ATCC 

BAA-244 / 

AMMD) 

(Burkholderia 

cepacia (strain 

AMMD)) 

Metabolism 

Amino 

Acid 

Metabolis

m 

00260 

Glycine, 

serine and 

threonine 

metabolism 

[PATH:ko0

0260] 

threonine 3-

dehydrogena

se 

[EC:1.1.1.10

3] 

K00060 0 0 1 1 Late 
Arthrobacter 

aurescens TC1 

Metabolism 

Amino 

Acid 

Metabolis

m 

00280 

Valine, 

leucine and 

isoleucine 

degradation 

[PATH:ko0

0280] 

dihydrolipoa

mide 

dehydrogena

se 

[EC:1.8.1.4] 

K00382 12 5 0 0 Early 

Solibacter 

usitatus (strain 

Ellin6076) 

Metabolism 

Amino 

Acid 

Metabolis

m 

00290 

Valine, 

leucine and 

isoleucine 

biosynthesi

s 

leucine 

dehydrogena

se 

[EC:1.4.1.9] 

K00263 0 0 1 1 Late 
Rhodocista 

centenaria SW 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0290] 

Metabolism 

Amino 

Acid 

Metabolis

m 

00300 

Lysine 

biosynthesi

s 

[PATH:ko0

0300] 

aspartate-

semialdehyd

e 

dehydrogena

se 

[EC:1.2.1.11] 

K00133 0 0 2 1 Late 

Thiomonas 

intermedia 

(strain K12) 

(Thiobacillus 

intermedius) 

Metabolism 

Amino 

Acid 

Metabolis

m 

00330 

Arginine 

and proline 

metabolism 

[PATH:ko0

0330] 

acetylglutam

ate/acetylami

noadipate 

kinase 

[EC:2.7.2.8 

K00930 1 2 0 0 Early 

Nitrobacter 

winogradskyi 

(strain Nb-255 

/ ATCC 

25391) 

Metabolism 

Amino 

Acid 

Metabolis

m 

00340 

Histidine 

metabolism 

[PATH:ko0

0340] 

cyclase 

[EC:4.1.3.-] 
K02500 0 0 1 1 Late 

Magnetospirill

um 

magneticum 

AMB-1 

Metabolism 

Amino 

Acid 

Metabolis

m 

00340 

Histidine 

metabolism 

[PATH:ko0

0340] 

imidazolonep

ropionase 

[EC:3.5.2.7] 

K01468 0 0 1 1 Late 
Bradyrhizobiu

m sp. ORS278 

Metabolism 

Amino 

Acid 

Metabolis

m 

00360 

Phenylalani

ne 

metabolism 

ferredoxin 

subunit of 

phenylpropio

nate 

dioxygenase 

K05710 0 0 1 1 Late 

Pseudomonas 

syringae pv. 

phaseolicola 

1448A 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0360] 

Metabolism 

Biosynthes

is of Other 

Secondary 

Metabolite

s 

00521 

Streptomyc

in 

biosynthesi

s 

[PATH:ko0

0521] 

dTDP-

glucose 4,6-

dehydratase 

[EC:4.2.1.46] 

K01710 0 0 7 8 Late 

Cyanothece 

sp. (strain 

PCC 7425 / 

ATCC 29141) 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00040 

Pentose 

and 

glucuronate 

interconver

sions 

[PATH:ko0

0040] 

xylulokinase 

[EC:2.7.1.17] 
K00854 0 0 1 1 Late 

Acidobacteriu

m capsulatum 

ATCC 51196 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00500 

Starch and 

sucrose 

metabolism 

[PATH:ko0

0500] 

maltose 

alpha-D-

glucosyltrans

ferase 

[EC:5.4.99.1

6] 

K05343 0 0 2 1 Late 

Acidobacteriu

m capsulatum 

(strain ATCC 

51196 / DSM 

11244 / JCM 

7670) 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00500 

Starch and 

sucrose 

metabolism 

[PATH:ko0

0500] 

sucrose 

phosphorylas

e 

[EC:2.4.1.7] 

K00690 0 0 1 1 Late 

Polaromonas 

naphthalenivo

rans CJ2 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00520 

Amino 

sugar and 

nucleotide 

sugar 

metabolism 

[PATH:ko0

0520] 

CDP-

paratose 2-

epimerase 

[EC:5.1.3.10] 

K12454 1 1 0 0 Early 

Mesorhizobiu

m ciceri bv 

biserrulae 

WSM1271 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00620 

Pyruvate 

metabolism 

[PATH:ko0

0620] 

L-lactate 

dehydrogena

se 

(cytochrome) 

[EC:1.1.2.3] 

K00101 0 0 2 1 Late 

Laccaria 

bicolor (strain 

S238N-H82 / 

ATCC MYA-

4686) 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00620 

Pyruvate 

metabolism 

[PATH:ko0

0620] 

pyruvate 

carboxylase 

[EC:6.4.1.1] 

K01958 0 0 1 2 Late 

Bacillus 

licheniformis 

DSM 13 

Goettingen 

Metabolism 

Carbohydr

ate 

Metabolis

m 

00630 

Glyoxylate 

and 

dicarboxyla

te 

metabolism 

[PATH:ko0

0630] 

oxalyl-CoA 

decarboxylas

e 

[EC:4.1.1.8] 

K01577 1 1 0 0 Early 

Methylobacter

ium 

extorquens 

PA1 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Metabolism 

Energy 

Metabolis

m 

00190 

Oxidative 

phosphoryl

ation 

[PATH:ko0

0190] 

NADH 

dehydrogena

se I subunit 

G 

[EC:1.6.5.3] 

K00336 3 3 0 0 Early 

Legionella 

pneumophila 

subsp. 

pneumophila 

(strain 

Philadelphia 1 

/ ATCC 33152 

/ DSM 7513) 

Metabolism 

Energy 

Metabolis

m 

00190 

Oxidative 

phosphoryl

ation 

[PATH:ko0

0190] 

NADH 

dehydrogena

se I subunit J 

[EC:1.6.5.3] 

K00339 4 2 0 0 Early 

Roseiflexus 

castenholzii 

(strain DSM 

13941 / 

HLO8) 

Metabolism 

Energy 

Metabolis

m 

00195 

Photosynth

esis 

[PATH:ko0

0195] 

apocytochro

me f 
K02634 0 0 2 1 Late 

cyanobacteriu

m UCYN-A 

Metabolism 

Energy 

Metabolis

m 

00195 

Photosynth

esis 

[PATH:ko0

0195] 

photosystem 

I subunit IX 
K02697 0 0 1 1 Late 

Trichodesmiu

m erythraeum 

IMS101 

Metabolism 

Energy 

Metabolis

m 

00195 

Photosynth

esis 

[PATH:ko0

0195] 

photosystem 

I subunit XI 
K02699 0 0 2 1 Late 

Synechococcu

s sp. (strain 

ATCC 27264 / 

PCC 7002 / 

PR-6) 



 

109 

Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

(Agmenellum 

quadruplicatu

m) 

Metabolism 

Energy 

Metabolis

m 

00195 

Photosynth

esis 

[PATH:ko0

0195] 

photosystem 

II 

cytochrome 

b559 subunit 

beta 

K02708 0 0 1 1 Late 

Anabaena 

variabilis 

ATCC 29413 

Metabolism 

Energy 

Metabolis

m 

00195 

Photosynth

esis 

[PATH:ko0

0195] 

photosystem 

II PsbL 

protein 

K02713 0 0 1 1 Late 

Prochlorococc

us sp. 

WH8102 

Metabolism 

Energy 

Metabolis

m 

00196 

Photosynth

esis - 

antenna 

proteins 

[PATH:ko0

0196] 

phycocyanob

ilin lyase 

alpha subunit 

[EC:4.-.-.-] 

K02288 0 0 2 1 Late 

Cyanothece 

sp. (strain 

PCC 7425 / 

ATCC 29141) 

Metabolism 

Energy 

Metabolis

m 

00680 

Methane 

metabolism 

[PATH:ko0

0680] 

6-

phosphofruct

okinase 

[EC:2.7.1.11] 

K00850 2 3 0 0 Early 

Gallionella 

capsiferriform

ans (strain ES-

2) (Gallionella 

ferruginea 

capsiferriform

ans (strain ES-

2)) 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Metabolism 

Energy 

Metabolis

m 

00710 

Carbon 

fixation in 

photosynth

etic 

organisms 

[PATH:ko0

0710] 

triosephosph

ate isomerase 

(TIM) 

[EC:5.3.1.1] 

K01803 7 3 0 0 Early 

Clostridium 

botulinum 

(strain Alaska 

E43 / Type 

E3) 

Metabolism 

Energy 

Metabolis

m 

00720 

Carbon 

fixation in 

autotrophic 

prokaryotes 

[PATH:ko0

0720] 

2-

oxoglutarate 

ferredoxin 

oxidoreducta

se subunit 

alpha 

K00174 0 0 3 2 Late 

Thermomonos

pora curvata 

(strain ATCC 

19995 / DSM 

43183 / JCM 

3096 / 

NCIMB 

10081) 

Metabolism 

Energy 

Metabolis

m 

00910 

Nitrogen 

metabolism 

[PATH:ko0

0910] 

carbonic 

anhydrase 

[EC:4.2.1.1] 

K01673 4 3 0 0 Early 

Rhodococcus 

sp. (strain 

RHA1) 

Metabolism 

Energy 

Metabolis

m 

00910 

Nitrogen 

metabolism 

[PATH:ko0

0910] 

formamidase 

[EC:3.5.1.49] 
K01455 1 1 0 0 Early 

Brachybacteri

um faecium 6-

10, DSM 4810 

Metabolism 

Energy 

Metabolis

m 

00910 

Nitrogen 

metabolism 

nitric-oxide 

reductase 
K04748 2 1 0 0 Early 

Nitrosomonas 

europaea 

ATCC 19718 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0910] 

NorQ protein 

[EC:1.7.99.7] 

Metabolism 

Energy 

Metabolis

m 

00910 

Nitrogen 

metabolism 

[PATH:ko0

0910] 

nitrite 

reductase 

(NAD(P)H) 

large subunit 

[EC:1.7.1.4] 

K00362 0 0 3 3 Late 

Dickeya 

dadantii 

(strain 

Ech586) 

Metabolism 

Energy 

Metabolis

m 

00910 

Nitrogen 

metabolism 

[PATH:ko0

0910] 

periplasmic 

nitrate 

reductase 

NapA 

[EC:1.7.99.4] 

K02567 0 0 2 1 Late 

Rhodobacter 

sphaeroides 

(strain ATCC 

17025 / ATH 

2.4.3) 

Metabolism 

Lipid 

Metabolis

m 

00564 

Glyceropho

spholipid 

metabolism 

[PATH:ko0

0564] 

CDP-

diacylglycero

l--glycerol-3-

phosphate 

K00995 1 1 0 0 Early 

Parvibaculum 

lavamentivora

ns DS-1 

Metabolism 

Lipid 

Metabolis

m 

00564 

Glyceropho

spholipid 

metabolism 

[PATH:ko0

0564] 

glycerol-3-

phosphate 

dehydrogena

se 

(NAD(P)+) 

[EC:1.1.1.94] 

K00057 2 3 0 0 Early 

Nitrobacter 

winogradskyi 

(strain Nb-255 

/ ATCC 

25391) 

Metabolism 

Lipid 

Metabolis

m 

00564 

Glyceropho

spholipid 

metabolism 

glycerophosp

horyl diester 

phosphodiest

erase 

[EC:3.1.4.46] 

K01126 1 2 0 0 Early 

Parabacteroide

s distasonis 

(strain ATCC 

8503 / DSM 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0564] 

20701 / NCTC 

11152) 

Metabolism 

Lipid 

Metabolis

m 

00600 

Sphingolipi

d 

metabolism 

[PATH:ko0

0600] 

arylsulfatase 

[EC:3.1.6.1] 
K01130 1 0 6 8 Late 

Thalassiosira 

pseudonana 

(Marine 

diatom) 

(Cyclotella 

nana) 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00130 

Ubiquinone 

and other 

terpenoid-

quinone 

biosynthesi

s 

[PATH:ko0

0130] 

4-

hydroxyphen

ylpyruvate 

dioxygenase 

[EC:1.13.11.

27] 

K00457 2 2 0 0 Early 

Salinispora 

arenicola 

(strain CNS-

205) 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00670 One 

carbon 

pool by 

folate 

[PATH:ko0

0670] 

5-

methyltetrah

ydrofolate--

homocystein

e 

methyltransf

erase 

K00548 6 13 0 0 Early 

Chloroflexus 

aggregans 

(strain MD-66 

/ DSM 9485) 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00670 One 

carbon 

pool by 

folate 

formyltetrah

ydrofolate 

deformylase 

[EC:3.5.1.10] 

K01433 0 0 2 1 Late 

Arthrobacter 

aurescens 

(strain TC1) 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0670] 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00670 One 

carbon 

pool by 

folate 

[PATH:ko0

0670] 

glycine 

hydroxymeth

yltransferase 

[EC:2.1.2.1] 

K00600 5 3 0 0 Early 

Azorhizobium 

caulinodans 

(strain ATCC 

43989 / DSM 

5975 / ORS 

571) 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00770 

Pantothenat

e and CoA 

biosynthesi

s 

[PATH:ko0

0770] 

holo-[acyl-

carrier 

protein] 

synthase 

[EC:2.7.8.7] 

K00997 0 0 2 1 Late 

Paracoccus 

denitrificans 

(strain Pd 

1222) 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00860 

Porphyrin 

and 

chlorophyll 

metabolism 

[PATH:ko0

0860] 

light-

independent 

protochlorop

hyllide 

reductase 

subunit N 

K04038 0 0 1 1 Late 
Cyanothece 

sp. PCC 8801 

Metabolism 

Metabolis

m of 

Cofactors 

and 

Vitamins 

00860 

Porphyrin 

and 

chlorophyll 

metabolism 

[PATH:ko0

0860] 

magnesium 

chelatase 

subunit H 

[EC:6.6.1.1] 

K03403 0 0 1 1 Late 

Thalassiosira 

pseudonana 

CCMP1335 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Metabolism 

Metabolis

m of 

Terpenoids 

and 

Polyketides 

00900 

Terpenoid 

backbone 

biosynthesi

s 

[PATH:ko0

0900] 

2-C-methyl-

D-erythritol 

4-phosphate 

cytidylyltran

sferase / 

K12506 0 0 2 1 Late 

Hyphomonas 

neptunium 

(strain ATCC 

15444) 

Metabolism 

Metabolis

m of 

Terpenoids 

and 

Polyketides 

00900 

Terpenoid 

backbone 

biosynthesi

s 

[PATH:ko0

0900] 

farnesyl 

diphosphate 

synthase 

[EC:2.5.1.1 

2.5.1.10] 

K00795 2 1 0 0 Early 

Rhodospirillu

m rubrum S1, 

ATCC 11170 

Metabolism 

Nucleotide 

Metabolis

m 

00230 

Purine 

metabolism 

[PATH:ko0

0230] 

GTP 

pyrophospho

kinase 

[EC:2.7.6.5] 

K00951 4 4 0 0 Early 

Acidovorax 

citrulli (strain 

AAC00-1) 

(Acidovorax 

avenae subsp. 

citrulli) 

Metabolism 

Nucleotide 

Metabolis

m 

00230 

Purine 

metabolism 

[PATH:ko0

0230] 

phosphoribos

ylaminoimid

azole-

succinocarbo

xamide 

synthase 

K01923 0 0 7 5 Late 
Azoarcus sp. 

(strain BH72) 

Metabolism 

Nucleotide 

Metabolis

m 

00240 

Pyrimidine 

metabolism 

nucleoside-

triphosphate 

pyrophosphat

K02428 0 0 2 2 Late 
Streptomyces 

avermitilis 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

[PATH:ko0

0240] 

ase 

[EC:3.6.1.19] 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00362 

Benzoate 

degradation 

[PATH:ko0

0362] 

p-

hydroxybenz

oate 3-

monooxygen

ase 

[EC:1.14.13.

2] 

K00481 0 0 2 2 Late 

Rhizobium 

meliloti (strain 

1021) (Ensifer 

meliloti) 

(Sinorhizobiu

m meliloti) 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00623 

Toluene 

degradation 

[PATH:ko0

0623] 

phenol 2-

monooxygen

ase 

[EC:1.14.13.

7] 

K03380 0 0 1 1 Late 

Bradyrhizobiu

m japonicum 

USDA 110 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00623 

Toluene 

degradation 

[PATH:ko0

0623] 

succinate 

dehydrogena

se iron-sulfur 

protein 

[EC:1.3.99.1] 

K00240 4 2 0 0 Early 

Sanguibacter 

keddieii 

(strain ATCC 

51767 / DSM 

10542 / NCFB 

3025 / ST-74) 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00627 

Aminobenz

oate 

degradation 

[PATH:ko0

0627] 

anthraniloyl-

CoA 

monooxygen

ase 

[EC:1.14.13.

40] 

K09461 0 0 5 6 Late 

Sorangium 

cellulosum 

(strain So 

ce56) 

(Polyangium 

cellulosum 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

(strain So 

ce56)) 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00633 

Nitrotoluen

e 

degradation 

[PATH:ko0

0633] 

hydrogenase 

large subunit 

[EC:1.12.99.

6] 

K06281 1 1 0 0 Early 

Thermobispor

a bispora R51, 

DSM 43833 

Metabolism 

Xenobiotic

s 

Biodegrada

tion and 

Metabolis

m 

00930 

Caprolacta

m 

degradation 

[PATH:ko0

0930] 

acyl-CoA 

dehydrogena

se 

[EC:1.3.99.-] 

K06446 0 0 1 2 Late 

Cupriavidus 

metallidurans 

CH34 

Organismal 

Systems 

Endocrine 

System 

03320 

PPAR 

signaling 

pathway 

[PATH:ko0

3320] 

ubiquitin C K08770 0 0 2 1 Late 
Volvox carteri 

(Green alga) 

Organismal 

Systems 

Excretory 

System 

04964 

Proximal 

tubule 

bicarbonate 

reclamation 

[PATH:ko0

4964] 

glutaminase 

[EC:3.5.1.2] 
K01425 0 0 2 2 Late 

Bradyrhizobiu

m japonicum 
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Level 1 Level 2 Level 3 Function 
KEGG 

ID 
Seed Veg Bolt 

Flow

ering 

Significantly 

more 

abundant 

BLAT 

taxonomy 

sequence 

alignment 

Organismal 

Systems 

Excretory 

System 

04964 

Proximal 

tubule 

bicarbonate 

reclamation 

[PATH:ko0

4964] 

phosphoenol

pyruvate 

carboxykinas

e (GTP) 

[EC:4.1.1.32] 

K01596 6 3 0 0 Early 

Mycobacteriu

m bovis BCG 

str. Mexico 
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Table 3-5. Taxonomic assignments of the differentially expressed (81) transcripts were categorized 

based on their activity and whether the corresponding transcript were significantly (t-test p<0.05) 

expressed early or late in plant development. 

 

  Early Late Total 

Symbiotic N fixers 5 9 14 

Free N fixers 6 11 17 

Antagonistic 5 6 11 

Plant growth promoting 0 3 3 

Pathogen 8 4 12 

Xenobiotic/ metal detoxification 4 5 9 

Unclassified function 4 11 15 
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Table 3-6. Pearson correlation analysis of the significantly expressed transcripts at early or late 

plant development correlated with the group of compounds released as root exudate. The values 

indicate the number of significant (p<0.05) correlations. 

 

  Early  Late Overall 

  Positive Negative Total  Positive Negative Total Total 

Amino Acids 7 160 167  198 1 199 366 

Phenolics 31 139 170  222 57 279 449 

Sugars 51 0 51  0 82 82 133 

Sugar Alcohols 0 47 47  85 6 91 138 
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Figures 

 

Figure 3-1. Schematic representation of Arabidopsis rhizosphere soil collection. 
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Figure 3-2. iPATH2 image of the soil microbial transcripts significantly expressed during early (seedling and vegetative-red) or late 

(bolting and flowering-blue) developmental stages.  
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Figure 3-3. Multivariate analyses of the rhizosphere microbial community through plant development; analyzed by 454 pyrosequencing. 

(A) Principal Coordinate Analysis (PCoA) for the visualization of pairwise community dissimilarity (Bray-Curtis index) of the 

rhizosphere microbial community at each plant developmental stage (seedling, vegetative, bolting and flowering). 95% confidence 

ellipses are shown around each developmental stage. (B) Principal Component Analysis (PCA) of the rhizosphere microbial community 

at each plant developmental stage. 95% confidence ellipses are shown around each developmental stage. 
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Figure 3-4. Relative abundance (%) of the major bacterial phyla present in the rhizosphere 

microbial community at each plant developmental stage. 
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Figure 3-5. Bacterial phyla that significantly (p<0.05) change with plant development. (A) 

Acidobacteria, (B) Actinobacteria, (C) Bacteroidetes and (D) Cyanobacteria. The bars with 

different letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. 

Each point represents one repetition and graphs show mean ± SE. 
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Figure 3-6. Bacteria classified as Acidobacteria that significantly (p<0.05) change with plant 

development. (A) Acidobacteriaceae Candidatus_Solibacter, (B) Acidobacteriaceae uncultured, 

(C) Acidobacteriaceae unclassified and (D) Holophagaceae unclassified. The bars with different 

letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. Each point 

represents one repetition and graphs show mean ± SE. 
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Figure 3-7. Bacteria classified as Actinobacteria that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Intrasporangiaceae Terrabacter, (B) 

Nocardioidaceae Nocardioides, (C) Propionibacteriaceae unclassified, (D) Pseudonocardiaceae 

Psuedonocardia, (E) Streptomycetaceae Streptomyces, (F) Streptomycetaceae unclassified, (G) 

AKIW543 unclassified and (H) Solirubrobacterales unclassified. The bars with different letters 

are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. Each point 

represents one repetition and graphs show mean ± SE. 
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Figure 3-8. Bacteria classified as Bacteroidetes that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Chitinophagaceae Flavisolibacter, (B) 

Cytophagaceae Flexibacter, (C) Sphingobacteriales Cytophagaceae, (D) Saprospiraceae 

uncultured, (E) Sphingobacteriales unclassified and (F) Bacteroidetes unclassified. The bars with 

different letters are significantly different (ANOVA Tukey post-hoc p<0.05) from one another. 

Each point represents one repetition and graphs show mean ± SE. 
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Figure 3-9. Bacteria classified as Cyanobacteria that significantly (ANOVA Tukey post-hoc 

p<0.05) change with plant development. (A) Leptolyngbya unclassified, (B) Subsection III 

unclassified and (C) Cyanobacteria unclassified. The bars with different letters are significantly 

different (ANOVA Tukey post-hoc p<0.05) from one another. Each point represents one repetition 

and graphs show mean ± SE. 
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CHAPTER 4 APPLICATION OF NATURAL BLENDS OF PHYTOCHEMICALS DERIVED 

FROM THE ROOT EXUDATES OF ARABIDOPSIS TO THE SOIL REVEAL THAT 

PHENOLIC-RELATED COMPOUNDS PREDOMINANTLY MODULATE THE SOIL 

MICROBIOME1 

 

 

Synopsis  

The roots of plants have the ability to influence its surrounding microbiology, the so-

called rhizosphere microbiome, through the creation of specific chemical niches in the soil 

mediated by the release of phytochemicals. Here we report how these phytochemicals could 

modulate the microbial composition of a soil in the absence of the plant. For this purpose, root 

exudates of Arabidopsis were collected and fractionated to obtain natural blends of 

phytochemicals at various relative concentrations that were characterized by GC-MS and applied 

repeatedly to a soil. Soil bacterial changes were monitored by amplifying and pyrosequencing 

the 16S ribosomal small subunit region. Our analysis reveal that one phytochemical can culture 

different operational taxonomic units (OTUs), mixtures of phytochemicals synergistically culture 

groups of OTUs, and the same phytochemical can act as a stimulator or deterrent to different 

groups of OTUs. Furthermore, phenolic-related compounds showed positive correlation with a 

higher number of unique OTUs compared with other groups of compounds (i.e. sugars, sugar 

alcohols, and amino acids). For instance, salicylic acid showed positive correlations with species 

of Corynebacterineae, Pseudonocardineae, and Streptomycineae, and GABA correlated with 

                                                 
1 This research was originally published in Journal of Biological Chemistry. Badri, DV; 

Chaparro, JM; Zhang, R; Shen, Q; Vivanco, JM. Application of natural blends of phytochemicals 

derived from root exudates of Arabidopsis to the soil reveal that phenolic-related compounds 

predominantly modulate the soil microbiome. JBC. 2013; 288:4502-4512. © The American 

Society for Biochemistry and Molecular Biology. 
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species of Sphingomonas, Methylobacterium, Frankineae, Variovorax, Micromonosporineae, and 

Skermanella. These results imply that phenolic compounds act as specific substrates or signaling 

molecules for a large group of microbial species in the soil.  

Introduction 

It is assumed that the roots of plants create physical and chemical niches that allow the 

colonization of microbes in the rhizosphere, the soil immediately surrounding the roots of a 

plant. Increasing evidences demonstrate that plants predominantly drive and shape the selection 

of microbes (Badri and Vivanco 2009, Berendsen et al 2012, Broeckling et al 2008, Chaparro et 

al 2012, Hartmann et al 2009) by the active secretion of compounds that specifically stimulates 

or represses distinct microbial members of the soil community (Abdel-Lateif et al 2012, 

Doornbos et al 2012, Neal et al 2012, Somers et al 2004) in order to shape the rhizosphere 

microbiome (Bakker et al 2012, Chaparro et al 2012). For example, legumes exude specific 

flavonoids that act as signaling molecules to attract nitrogen-fixing bacteria (Broughton et al 

2003). Yet when soil nitrogen is not limiting to the plant, this symbiosis does not occur (Omrane 

and Chiurazzi 2009). On the other hand, certain legumes release canavanine, an antimicrobial 

that acts against a broad range of microbes without affecting Rhizobia, which further cultures 

this beneficial microbe in the rhizosphere of legumes (Cai et al 2009). Other plant roots release 

strigolactones (sesquiterpenes) to attract mycorrhizae, and parasitic plants have benefited from 

these chemical cues to recognize their host plants (Akiyama et al 2005, Yoneyama et al 2008). 

Plants can also culture beneficial microbes such as plant-growth promoting rhizobacteria by the 

release of organic acids. For example, citric and fumaric acids released from tomato roots have 

been shown to attract Pseudomonas fluorescens strains (de Weert et al 2002, Gupta Sood 2003). 

Besides these specific signaling molecules, sugars serve as sources of energy for a broad range of 
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microbes (Behera and Wagner 1974), and secondary metabolites such as phenolics may function 

as general antimicrobials (de Weert et al 2002, Rudrappa et al 2008, Steinkellner et al 2007, 

Zhang et al 2009).  

Two recent studies have characterized the core rhizosphere microbiome of Arabidopsis, 

which is mainly comprised of the groups: Actinobacteria, Proteobacteria, and Bacteroidetes, 

which are common inhabitants of diverse soils (Bulgarelli et al 2012, Janssen 2006, Lin et al 

2012, Lundberg et al 2012, Philippot et al 2010, Singh et al 2007). Furthermore, the root 

exudates of a loss-of-function Arabidopsis mutant in an ABC transporter was found to have an 

increase in phenolic compounds and a decline in sugars compared with the wild type (Badri et al 

2009a). When this mutant was grown in soil, it elicited dramatic quantitative and qualitative 

changes in the Arabidopsis native soil microbial community; it cultivated a microbial community 

with a relatively greater abundance of beneficial bacteria (i.e. plant growth-promoting 

rhizobacteria and nitrogen fixers). These studies suggest a correlation between components in the 

root exudates and the soil microbiome as a whole. 

The goal of this study was to get a finer and initial understanding of how the chemical 

diversity present in the root exudates of plants can promote or inhibit the growth of specific 

groups within a natural soil microbiome in the absence of the plant. For this purpose we 

collected, fractionated, and chemically characterized root exudates of in vitro grown Arabidopsis 

thaliana plants, and repeatedly supplemented those fractions to Arabidopsis co-adapted soil 

(defined as a natural soil that has supported growth of Arabidopsis for a long period of time) 

without the presence of Arabidopsis. The soil microbial communities related to each fraction 

were characterized by 454 sequencing, and correlation analysis between microbial groups and 

phytochemicals was conducted. 
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Materials and methods 

Plant growth conditions and collection of root exudates 

A. thaliana wild type (Col-0) seeds were surface-sterilized with Clorox® (laundry 

bleach) for 1 min followed by four rinses in sterile distilled water and plated on full-strength 

Murashige and Skoog agar media supplemented with 3% sucrose. Plates were incubated in a 

growth chamber (Percival Scientific) at 25 °C, with a photoperiod of 16h light/8h dark for 

germination. We followed the methodology for collecting root exudates described by Badri et al. 

(2008a, 2009a, 2012a, 2012b). Briefly, 7-day-old seedlings were transferred to 6-well culture 

plates, each well containing 5 ml of liquid Murashige and Skoog (full strength Murashige and 

Skoog salts supplemented with 1% sucrose); these were incubated on an orbital shaker at 90 rpm 

and illuminated under cool white fluorescent light (45 µmol m-2 s-1) with a photoperiod of 16-h 

light/8-h dark at 25 ±2 °C. When plants were 18 days old they were gently washed with sterile 

distilled water to remove the surface-adhering exudates and transferred to new 6-well plates 

containing 5 ml sterile distilled water and incubated for 3 days on an orbital shaker under the 

same conditions described above. We used sterile distilled water to prevent the interference of 

exogenously supplemented salts and sucrose present in the Murashige and Skoog liquid media in 

subsequent GC-MS analyses of the root exudates. The 3-day period of incubation did not create 

any visible toxicity symptoms on the plants (Figure 0-1) as it has been previously reported 

(Behera and Wagner 1974, Rudrappa et al 2008, Steinkellner et al 2007, Zhang et al 2009). The 

particular window frame of collection of exudates (18-21 days) was selected because during this 

period Arabidopsis roots were reported to secrete a high diversity of phytochemicals (Behera and 

Wagner 1974, Rudrappa et al 2008, Steinkellner et al 2007, Zhang et al 2009). The exudates 

contained in the media were collected and filtered using nylon filters of pore size 0.45 µm 
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(Millipore) to remove root sheathing and root border-like cells. By following this method, we 

collected a total of three liters of root exudates by growing 600 individual Arabidopsis plants in 

6-well plates. We pooled all the root exudates collected from 600 individual Arabidopsis plants 

for further fractionation analyses. In other words, we considered that these 3 liters of pooled root 

exudates represented 600 individual biological replicates. It should be noted that the profiles of 

root exudates of Arabidopsis 18-21-day-old plants have been previously reported and found to be 

consistent and reproducible (Badri et al 2008a, 2009a, 2012a, 2012b). 

Fractionation of root exudates 

Filtered root exudates were freeze-dried and dissolved in 25 ml of sterile distilled water, 

and the pH was adjusted to 2 with 1N HCl and partitioned with 25 ml of ethyl acetate; the 

organic phase (ethyl acetate) was separated and dried under nitrogen gas. The aqueous phase was 

subsequently fractionated with 25 ml of chloroform to separate the organic (chloroform) and 

water phases. For each solvent type, we performed the extraction two times and then pooled the 

extractions together. Both fractions were collected independently and dried under nitrogen gas. 

At the end we had three types of fractions: an ethyl acetate (EtoAc) fraction, a chloroform 

(CHCl3) fraction, and a water fraction. Exudates collected from the plants without fractionation 

served as whole exudates.  

Gas chromatography-mass spectrometry (GC-MS) analyses of exudate fractions and data 

analyses 

The fractions and whole exudates were subjected to GC-MS analyses at the Genome 

Center Core Services, University of California Davis to identify the compounds present in each 

fraction. Briefly, the whole exudates and fractions were dried under nitrogen gas followed by 

methoximation and trimethylsilylation derivatization as described by Sana et al. (2010).  An 
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Agilent 6890 gas chromatograph (Santa Clara, CA) containing a 30-m-long, 0.25-mm inner 

diameter rtx5Sil-MS column with an additional 10 m integrated guard column was used to run 

the samples controlled by Leco ChromaTOF software Version 2.32 (St. Joseph, MI).  The 

resulting text files were exported to the data server with absolute spectra intensities and further 

processed by a filtering algorithm implemented in the metabolomics BinBase database (Fiehn et 

al 2005). Quantification was reported as peak height using the unique ion as default. Metabolites 

were unambiguously assigned by the BinBase identifier numbers using retention index and mass 

spectrum as the two most important identification criteria. Additional confidence criteria were 

used by giving mass spectral metadata using the combination of unique ions, apex ions, peak 

purity, and signal/noise ratios. All entries in BinBase were matched against the Fiehn mass 

spectral library. Data normalization was performed as described in Fiehn et al. (2008) by using 

“total metabolite content.” Furthermore, we determined the concentration of four target analytes 

(D-(+) glucose, serine, and valine) producing multiple derivatization products were summed 

before calculating the linear calibration curves. Final analyte masses were adjusted to sample 

preparation volume and were reported in nanomoles. 

Supplementing exudate fractions to Arabidopsis co-adapted soil  

Top soil (0-10 cm) was collected in July, 2011 from long standing fallow soil where 

Arabidopsis genotypes grow naturally. This field has been fallow for approximately more than 

eight years and is located at the Michigan Extension Station, Benton Harbor, MI (N42° 05’ 34’’, 

W86° 21’ 19’’ W, elevation 630 feet). Recently, it has been reported that the Arabidopsis 

genotype Pna-10 that harbors a sng1 mutation grows naturally on this site (Li et al 2010) along 

with some natural grasses. Soil was collected from three spots at this location, transported to the 

laboratory in air tight coolers and stored in a cold room (4oC) until use. Before the start of the 
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experiment, all soils collected from the three spots were dried under room temperature, pooled, 

and thoroughly homogenized by hand. Cubical pots (length 2.0 X width 1.0 X height 2.0 inches) 

were lined with Whatmann No. 3MM filter paper to prevent soil loss. The pots were then filled 

with soil and incubated in a growth chamber under the photoperiod of 16h light/8h dark at 25 ± 

2°C for 2 weeks and sufficiently watered before supplementing them with the exudate fractions.  

During this 2-week period, the Arabidopsis seedlings (that were present in the natural soil) were 

continuously removed from the existing seed bank present in the soil. After complete removal of 

the existing seed bank seedlings, the exudate fractions were independently supplemented to each 

of the pots, of which none contained a plant. In total, there were eight treatments including 

controls: pots supplemented with whole exudates, EtoAc fraction, CHCl3 fraction, water fraction, 

and four controls (only the solvents: methanol (2%), chloroform (2%), and sterile water; the 

negative control pots receiving no solvents (nothing)). For each treatment nine pots (considered 

as nine biological replicates) were maintained, and each pot received 2 ml of solution, which is 

equivalent to the root exudates of two plants. Additionally, we determined the absolute 

concentrations of four marker analytes present in each fraction and whole exudates that were 

supplemented to the soil (Table 4-1 and Table 4-2). These fractions were added twice a week 

with an interval of 3 days between fractions for 4 weeks. None of the pots received additional 

supplementation of water during the experimental period. The soil samples were collected at the 

end of the 4-week period. The collected soils were stored at -80°C before pyrosequencing. 

Further, we made three soil replicates by pooling three sub replicates into one for subsequent 

pyrosequencing analysis to improve the coverage of the microbiome and to reduce the variability 

between the replicates within a given treatment (see Figure 0-2).  
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Soil DNA extraction and pyrosequencing 

To characterize the soil microbial community, total DNA was extracted from soil by 

using a MoBio ultraclean soil DNA kit (Mo Bio, Carlsbad, CA) according to the manufacturer’s 

instructions. The DNA was quantified using a Nanodrop (Nanodrop Technologies, Wilmington, 

DE) spectrophotometer, and all DNA had an absorbance ratio (A260/A280) between 1.7 and 1.9.  

PCR amplification was performed by using the primer pairs 27F 

(AGAGTTTGATYMTGGCTCAG) and 533R (TTACCGCGGCTGCTGGC) with 454 adaptor 

(454 Life Sciences, Branford, CT, USA) and 10-base long barcode sequences, which are not 

shown here, to amplify the variable regions (V1-V3) of 16S ribosomal small subunit region with 

the following PCR conditions: the reaction mix (50 µl) contained 0.4 µmoles of each primer, 200 

µmoles of dNTPs, 1 X reaction buffer, and one unit of TaqDNA polymerase (Takara). PCR 

included 39 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 1 min in an Applied Biosystems 

thermal cycler (GeneAmp PCR system 2700). For each exudate fraction applied to the soil, nine 

biological replicates were subjected to PCR amplification. At the end of the PCR procedure, 

three biological replicates were derived from the nine biological replicates by pooling three 

samples together. After pooling, the PCR products were purified using AMPure XP beads 

(Agencourt) before running the agarose gel electrophoresis. The specific amplicon product (~600 

bp) was excised from the gel using a QIAquick gel extraction kit (Qiagen) according to the 

manufacturer’s instructions. The purified amplicon products were subjected to unidirectional 

pyrosequencing by using a 454 GS FLX Titanium sequencing platform. Pyrosequencing was 

performed under contract with Roy J. Carver Biotechnology Center, University of Illinois, 

Urbana-Champaign. 
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Sequencing analysis 

Sequence reads were processed using Mothur v. 1.25.1 (Schloss et al 2009) following the 

Schloss SOP. Reads having a minimum flow length of 360 flows were de-noised. This was done 

by processing through the default parameters of the Mothur-based re-implementation of the 

PyroNoise algorithm (Quince et al 2011). De-noised reads were screened by the following 

quality criteria: no more than 2 mismatches to the forward primer sequence, no more than 1 

mismatch in the barcode sequence (for sample multiplexing), no homopolymeric runs of more 

than 8 nucleotides, and read length of greater than 200 bases. Reads passing these quality criteria 

were aligned to the SILVA bacterial reference database (Pruesse et al 2007). Aligned reads were 

screened to begin at the same position. Reads were removed if they did not reach the position at 

which 95% of reads ended. Chimeras were detected using the UChime method (Edgar et al 2011) 

and excluded from further analysis. Sampling effort was equalized to the depth of the smallest 

sample (2185 reads) and operational taxonomic units (OTU) were defined at 3% sequence 

dissimilarity, with the average neighbor algorithm. Reads were classified using the naïve Baysian 

classifier embedded in Mothur (Wang et al 2007). Final taxonomic assignment was based on the 

consensus identification for each OTU. A multivariate data analysis was performed by using 

METAGENassist a web server tool (Arndt et al 2012) that assigns probable microbial functions 

based on taxonomy (16S ribosomal subunit).  Data-filtering was performed by the interquantile 

range method followed by quantile normalization within replicates after log transformation. 

Principal component analysis and identification of significant features were performed for all 

treatments together. Cluster analysis was performed using the Ward method.  
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Statistical analysis 

We computed the Pearson correlation of the OTU abundances to the exudate fractions 

using SAS Version 9.3 (SAS Institute, Cary, NC). For the data to follow a normal distribution, it 

was transformed. For the GC-MS data of the root exudate fractions, the peak area of each 

identified compound underwent a log transformation. On the other hand, the abundance of each 

OTU in each sample was normalized using a log2 transformation procedure and subsequently 

standardized to a mean of 0 and S.D. of 1 as is usually implemented for microarray data (Speed 

2003). The average of the transformed OTU abundances for each treatment was correlated to the 

transformed GC-MS-identified compounds found in each treatment. A p-value of <0.05 

indicated a significant correlation.  

Results 

Composition of compounds in each fraction by GC-MS analyses 

In total, we detected 415 compounds in the fractions and whole exudates. We observed 

that all identified compounds were present in all the fractions, but the abundance of a particular 

compound in each fraction varied. Furthermore, we identified 130 compounds by broadly 

categorizing them based on its chemical nature (i.e. sugars, sugar alcohols, amino acids, and 

phenolics). The phenolics category includes organic acids, fatty acids, and aliphatic and aromatic 

amino acids. In total we identified 12 sugars, 11 sugar alcohols, 29 amino acids and 59 phenolic 

compounds (Table 4-3). The fractionation of exudates modified the composition of the major 

types of compounds present in a particular fraction compared to the whole exudates (Table 4-4). 

For instance, the water fraction had a higher abundance of amino acids (29.55 versus 9.85%) and 

phenolics (32.01 versus 18.55%) compared with the whole exudates. Similarly, the CHCl3 

fraction had a higher concentration of sugars (27.25 versus 3.10%) compared with the whole 
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exudates. The EtoAc fraction showed an increase in amino acids (21.47 versus 9.85%) and 

phenolics (30.24 versus 18.55%) compared with the whole exudates. It should be noted that in all 

fractions as well as in the whole exudates the unknowns accounted for the highest percentage of 

compounds. 

Influence of whole exudates and fractions on soil microbial composition 

We analyzed the influence of the water/solvent-extracted fractions, whole exudates, and 

their respective controls on the soil microbial community structure by 454 pyrosequencing 

analyses. We used principal component analyses on pair-wise and normalized OTUs between all 

treatments to identify the main factors driving community composition differences. Based on our 

principle component analyses, we did not observe significant differences between the treatments 

and controls at phylum level (Figure 0-3A). However, we observed that the controls (nothing 

added, water, CHCl3, and EtoAc) and treatments (water, CHCl3, EtoAc fractions, and whole 

exudates) formed two different clusters at the genus level (Figure 0-3B). The second principal 

component (2.7%) revealed that the controls separated from their respective treatments. This 

pattern was recapitulated by hierarchical clustering using Ward method where controls clustered 

separately from the treatments (Figure 0-4). These data clearly indicate that the compounds 

present in the whole root exudates and extracted fractions have a significant impact on the soil 

microbial composition.  

We also determined the total estimated species richness, evenness, and diversity of the 

sequencing data of all controls and treatments, and only the CHCl3 control showed significant 

differences in the evenness compared with other control and treatments (Table 4-5). 

Furthermore, we performed the analysis of variance and Tukey post-hoc significance test to 

determine significant differences at the phylum level in pair-wise combinations of all controls 
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and treatments. Overall, we classified all the OTUs into 21 phyla; among those Proteobacteria 

showed a higher abundance in all the controls and treatments followed by Actinobacteria (Figure 

0-5). However, the EtoAc fraction showed a significantly higher abundance of Proteobacteria, 

and the water fraction showed a significantly higher abundance of Actinobacteria compared with 

the other controls and treatments. Interestingly, the CHCl3 control treatment showed an increased 

abundance of Firmicutes than the other treatments and controls.  

OTUs present uniquely for a given treatment   

We performed qualitative analyses to identify the OTUs shared by all treatments and 

controls and also uniquely present in a given treatment or control (Figure 0-6). We identified 138 

OTUs shared by all four controls (nothing added, CHCl3, EtoAc, and water). Similarly, only 11 

OTUs were shared by all four treatments (whole exudates, water, EtoAc, and CHCl3 fractions). 

We also identified OTUs that were specific to a given treatment or control. The controls (nothing 

added, CHCl3, water, and EtoAc) cultured seven, five, four, and two unique OTUs (Figure 

0-6A). Similarly, the treatments revealed that 3, 6, 25, and 32 OTUs are unique to whole 

exudates, CHCl3, water, and EtoAc fractions, respectively (Figure 0-6B). Among the four 

treatments, the EtoAc fraction cultured a higher number (32) of specific OTUs including 

Methylobacterium, Sphingomonas, Pseudocardineae, and Bradyrhizobium. The water fraction 

cultured the second highest number of OTUs (25) including Micromonosporineae, Skermanella, 

Burkholderia, Varivorax, and Frankineae (Supplementary Material 4-1). Similarly, the CHCl3 

fraction cultured only six OTUs including species of Propionibacterineae, Bacillus, 

Streptomycineae, Duganella, and unclassified. 
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Taxonomic to phenotype mapping 

We assigned the OTUs from taxonomic to phenotype mapping by employing 

METAGENassist webserver tool (Arndt et al 2012) for nearly 20 phenotype categories classified 

based on oxygen requirement, metabolism, energy source, habitat, etc. Based on our analyses we 

observed that only two categories, habitat and metabolism, showed significant differences in the 

abundance of sequence reads among the 20 phenotype categories analyzed in this study. For 

instance, the EtoAc fraction significantly enriched the number of sequence reads assigned to 

symbiotic bacteria (Figure 0-7A) whereas the CHCl3 control enriched the number of sequence 

reads assigned to free-living bacteria (Figure 0-7B). Interestingly, whole exudates showed the 

least number of free-living bacteria compared with other controls and treatments. In the 

metabolism category all the controls significantly reduced the number of sequence reads 

assigned to carbon fixation compared with the treatments (Figure 0-8A). The CHCl3 control 

significantly enriched the number of sequence reads assigned to nitrite-reducing bacteria 

compared with the controls and treatments (Figure 0-8B). On the contrary, CHCl3 control and 

nothing added significantly reduced the number of sequence reads assigned to atrazine 

metabolism, while EtoAc and water fractions significantly increased the number of sequence 

reads compared with other controls and treatments (Figure 0-8C). 

Correlation analyses between compounds and soil microbes  

We performed correlation analyses to determine the relationship between the abundances 

of sequences at phyla and OTU levels with each category of compounds detected in the root 

exudate fractions. Initially, the correlation analyses of these broad groups of compounds (sugars, 

sugar alcohols, amino acids, and phenolics) at phyla level revealed that the majority of phenolics 

and related compounds showed positive correlation with the phyla Cyanobacteria and were 
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negatively correlated with the phyla Actinobacteria, Chlorobi, Fibrobacteres, and Candidate 

division TM6 (Table 4-6; Supplementary Material 4-2). Other groups of compounds (sugars, 

sugar alcohols, and amino acids) showed correlation with all 21 phyla at various levels. 

Interestingly, the majority of compounds related to phenolics, sugars, sugar alcohols, and amino 

acids did not show correlation with the phyla Proteobacteria and Bacteroidetes. The majority of 

compounds related to amino acids and phenolics showed negative correlation with the phyla 

Actinobacteria. 

We also determined the number of OTUs that were significantly (positively and 

negatively) correlated with each group of compounds. We found that phenolics showed the 

highest number of OTUs (966) followed by amino acids (389), sugars (206), and sugar alcohols 

(205) (Table 4-7). Furthermore, we calculated the number of OTUs positively correlated with 

each group of compounds and found that phenolics (742) showed the highest number of OTUs 

positively correlated followed by amino acids (319), sugar alcohols (166), and sugars (161). In 

addition, we determined the number of OTUs that did not significantly correlate with any group 

of compounds and the OTUs that uniquely showed significant positive correlation with each 

group of compounds. For instance, 20 OTUs significantly positively correlated with phenolics, 

followed by nine OTUs with amino acids, two OTUs with sugars, and one OTU with sugar 

alcohols. On the other hand, there are 20 OTUs which are not correlated with any group of 

compounds analyzed in this study.  

Furthermore, we  analyzed the correlations at the individual compound  level and 

observed that four compounds (cellobiotol, urea, citramalic acid, and 4-hydroxybenzoate) 

significantly correlated with a higher number of  OTUs (50) including species of Burkholderia, 

Variovorax, Pesudomonas, Pseudocardineae, Frankineae, Skermanella, and some unclassified. 
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Similarly, two sugars (glucose and fructose) were significantly positively correlated with 28 

OTUs including species of Bacillus, Methylobacterium, Sphingomonas, Propionibacterineae, 

Variovorax, Nitrobacter, Pseudomonas and some unclassified (Supplementary Material 4-3). 

Based on these analyses, it is clear that one compound can culture many different OTUs and that 

a mixture of compounds can synergistically culture groups of OTUs. Besides these two 

scenarios, we also observed that a single compound showed both positive and negative 

correlation with some OTUs. For example, isoleucine shows a significant positive correlation 

with one OTU (Propionibacterineae) and significantly negatively correlates with a different OTU 

(unclassified). Similarly, azelaic acid shows a significant positive correlation with one OTU 

(unclassified), while it significantly negatively correlates with a different OTU 

(Kineosporiineae). On the other hand, some compounds such as salicylic acid, ferulic acid, and 

GABA showed significant positive and negative correlation with many OTUs. For instance, 

salicylic acid positively correlated with three OTUs (Corynebacterineae, Streptomycineae and 

Pseudonocardineae) and negatively correlated with four OTUs (Nitrobacter and three 

unclassified). Similarly, GABA showed significant positive correlation with 18 OTUs (species of 

Propionibacterineae, Micromonosporineae, Methylobacterium, Sphingomonas, Frankineae, 

Variovorax, and unclassified) and negatively correlated with three OTUs (species of Bacillus, 

Streptomycineae, and unclassified). This suggests that the same compound could act as a 

positive regulator for some OTUs while also acting as a negative regulator for other OTUs. 

Discussion 

Plant root-secreted phytochemicals mediate a number of rhizospheric interactions, and 

these can vary from neutral to beneficial to deleterious interactions (Badri et al 2009b, Bais et al 

2004, Doornbos et al 2012, Mercado-Blanco and Bakker 2007, Raaijmakers et al 2009, Walker 
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et al 2003). The majority of these findings were demonstrated under highly controlled conditions 

in such a way that a specific compound could attract or deter a specific microbe. However, in 

nature, plants tend to release an array of compounds that interact with a community of 

rhizospheric microbes. It has been proposed that root exudates among other factors such as the 

creation of microenvironments by roots (i.e. by soil fertility or modification of soil structure and 

chemistry) and plant gentotype characteristics allow the culturing of rhizosphere-specific 

microbiomes (Berg and Smalla 2009, Dennis et al 2010, Micallef et al 2009a, 2009b).  

Therefore, in this study we removed all plant/root-associated characteristics to study the effect of 

different components of root exudates on the soil microbial composition.  

We collected root exudates from plants that were 18-21-days old because it has been 

previously shown that at this time point (that corresponds to vegetative) Arabidopsis plants 

secrete the largest number of phytochemicals (Behera and Wagner 1974, Rudrappa et al 2008, 

Steinkellner et al 2007, Zhang et al 2009). Furthermore, our previous studies clearly 

demonstrated that the root exudate profiles collected from individual grown plants at this time 

point were very consistent and reproducible (Badri et al 2008a, 2009a, 2012a, 2012b). Based on 

that information, in the present study we pooled the root exudates collected from 600 individual 

plants for further extraction studies. It is also worth mentioning that Arabidopsis secretes 

different blends of phytochemicals at distinct developmental stages (Chaparro et al 2013).  

Therefore, it is likely that root exudates collected at other time points when applied to the soil 

might create different microbial scenarios. Keeping in mind this situation, we artificially 

separated and extracted the root exudates of 18-21-day-old plants and when applied to the soil 

observed significant differences between the controls and treatments with regards to carbon 

fixation, where carbon fixation significantly increased in the treatments (Figure 0-8A). This 
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observation suggests that the root-secreted phytochemicals impact soil microbial activity (Chen 

et al 2003) by utilizing the compounds present in the treatments. In addition, we also observed 

specific OTUs uniquely present in each fraction. Overall, we observed that the controls shared 

more OTUs (138) than the treatments (11), suggesting that the treatments culture more specific 

microbes upon the quantitative distribution of compounds present in a given fraction (Figure 

0-6). A higher number of unique OTUs were observed in the EtoAc fraction (32) and water 

fraction (25) compared with the CHCl3 fraction, whole exudates, and controls. This is probably 

due to the higher percentage of phenolics present in the EtoAc fraction. EtoAc fraction has 

higher percentage of phenolic-related compounds than sugars, amino acids, and sugar alcohols. 

However, when compared with the water fraction, the EtoAc fraction had less percentage of 

amino acids that act as substrates (carbon and nitrogen source) for the majority of microbes. 

Conversely, the EtoAc fraction (having more phenolics and less sugars) had a significant 

increase in symbiotic bacteria than other fractions (Figure 0-7A). Symbiotic bacteria usually 

interact with plants through specific signals such as legume flavonoids that induce nod factors in 

Rhizobia (Zhang et al 2009), although we did not identify flavonoids due to the limitation of the 

GC-MS analyses. 

Plant roots attract microbes through the release of cues in which carbohydrates and amino 

acids predominantly act as chemo-attractants (Somers et al 2004). In contrast, secondary 

metabolites such as flavonoids act as chemo-attractants to draw Rhizobia to the root surface 

regulating nod gene expression (Abdel-Lateif et al 2012), and root-secreted malic acid is 

involved in recruiting the plant growth-promoting rhizobacteria Bacillus subtilis to the 

rhizosphere upon infection with foliar pathogens (Rudrappa et al 2008). However, for the most 

part secondary metabolites are considered antimicrobial compounds (Dixon 2001, Wallace 
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2004). We performed correlation analyses to determine the relationship between the compounds 

added to the soil and the subsequent microbes being influenced by these compounds. The 

correlation analyses revealed that the phenolic compounds showed significant correlation with 

most OTUs (966), among those, 742 OTUs were positively correlated and 224 OTUs were 

negatively correlated compared with the other groups of compounds (sugars, sugar alcohols, and 

amino acids). These data clearly suggest that phenolic compounds play a major role in attracting 

microbes. However, it is unclear if these phenolics accomplish this function by acting as 

attractants, signaling molecules, or specific substrates.  

Furthermore, we analyzed the number of OTUs showing a positive correlation to a 

particular group of compounds, and this revealed that phenolics significantly correlated with 31 

OTUs (species of Rhizobium, Bacillus, Sphingomonas, Streptoycineae, Pseudonocardineae, etc.) 

followed by amino acids with nine OTUs, sugars with two OTUs, and sugar alcohols with one 

OTU. These data suggest that sugars, amino acids, and sugar alcohols act as general attractants to 

a broad range of microbes, but the phenolic compounds act as specific substrates or signaling 

molecules for specific microbe(s). Two sugars (glucose and fructose) positively correlated with 

28 OTUs, reinforcing the statement that sugars act as general chemo-attractants. It should be 

noted that the values of glucose supplied to the soil at a given application ranged from 10 to 95 

nmol depending on the fraction. These quantities are comparable (or even lower) to previous 

studies that applied glucose to the soil to measure its effects on soil microbes (Baudoin et al 

2003, Eilers et al 2010).  

Root-secreting compounds could act as stimulators for certain microbes while also acting 

as deterrents for other microbes. For instance, the compound canavanine secreted from the seed 

coat or roots of leguminous plants acts as an antimicrobial for many rhizosphere bacteria but not 
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for Rhizobia, suggesting that the host plant secretes this compound for selection of the beneficial 

Rhizobia (Cai et al 2009). In the present study we observed a few compounds such as GABA, 

ferulic acid, salicylic acid, idonic acid, and isoleucine that show a positive correlation with some 

OTUs while also being negatively correlated with other OTUs. For example, GABA showed a 

positive correlation with certain OTUs (species of Sphingomonas, Methylobacterium, 

Frankineae, Variovorax, Micromonosporineae, Skermanella, and unclassified) but negatively 

correlated with other OTUs (species of Bacillus and Streptomycineae). Accordingly, GABA has 

been reported to have multiple functions. For example, it acts as a carbon and nitrogen source for 

a wide variety of microbes (Hosie et al 2002), and it specifically reduces Agrobacterium quorum 

sensing ability (Chevrot et al 2006). Interestingly, we did not observe any OTUs assigned to 

Agrobacterium in our studies. 

Similarly, salicylic acid showed a positive correlation with certain OTUs (species of 

Corynebacterineae, Pseudonocardineae and Streptomycineae). Both salicylic acid and GABA 

showed positive correlation with OTUs belonging to the group of endophytic Actinobacteria 

(Pseudonocardineae, Corynebacterineae, Streptomycineae, Frankineae and 

Micromonosporineae), which are known to promote plant growth and reduce the disease 

symptoms caused by plant pathogens through various mechanisms (Castillo et al 2007, Conn et 

al 2008, Qin et al 2009). Therefore, the ability of salicylic acid and GABA to attract beneficial 

microbes should be explored in detail. Similarly, the species of Variovorax and 

Methylobacterium, whose presence was correlated with GABA, are reported to produce ACC 

deaminase, which helps to alleviate the impact of both biotic and abiotic stresses (Saleem et al 

2007). It should be noted that the amount of salicylic acid applied in the different treatments (15-

62 nmol) in the present study is lower than the usual concentrations of salicylic acid used in 
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bioactivity studies (Badri et al 2008b, Prithiviraj et al 2005). This suggests that the soil 

microbiome might be very sensitive to this signaling molecule. 

Here, we demonstrated the effect of different groups of natural compounds derived from 

plant root exudates on soil microbial composition. Based on our analyses, we formulated three 

scenarios: 1) one compound can culture different OTUs, 2) mixtures of compounds 

synergistically culture groups of OTUs, and 3) the same compound can act as a stimulator or 

deterrent to a group or groups of OTUs. Furthermore, our correlation analyses revealed that the 

phyla Proteobacteria and Bacteroidetes recently determined to be part of the Arabidopsis core 

microbiome (Bulgarelli et al 2012, Lundberg et al 2012) did not show any correlation with the 

groups of compounds (i.e. sugars, sugar alcohols, amino acids, and phenolics) present in the root 

exudates. This suggests that the components present in the root exudates are not necessary for 

culturing these two core microbiome groups. This finding is supported by the fact that these 

groups of microbes are widely present in a variety of dissimilar soil types, some of them 

supporting plants while others do not support vegetation (Barberan et al 2011, Janssen 2006, Lin 

et al 2012, Nemergut et al 2011, Philippot et al 2010, Singh et al 2007).  

We have provided a glimpse of how the natural chemical diversity of compounds present 

in the root exudates (excluding the plant) could affect the soil microbial composition.  Further 

studies are warranted to include additional natural mixes of compounds present in the root 

exudates at different stages of development so extensive correlations with OTUs could be 

accomplished. Additionally, this study provides some level of mechanistic understanding of the 

microbiome by employing a webserver tool, METAGENassist, where microbial functions are 

assigned based on taxonomic (16S pyrosequencing) data. However, we believe that the only way 

to provide a functional understanding of the microbiome is by performing metatranscriptomics 
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analysis. Yet, our taxonomic to phenotypic mapping analysis via the use of METAGENassist 

does provide a starting point and hints at the potential roles of the soil microbiome. In summary, 

these studies hold the promise to develop natural mixes of compounds that could influence plant-

microbiome interactions to increase crop yield and sustainability. 
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Tables 

Table 4-1. Calibration curve properties of four analytes measured in this study 

 

 Glucose Serine Valine Salicylic acid 

slope 7.71E+09 1.19E+10 2.27E+10 8.77E+09 

intercept -3268.71 -359.882 11338.4 -13264.1 

R2 0.97 0.99 0.99 0.98 

Lowest standard (M) 5.55E-07 9.52E-07 8.54E-07 7.24E-07 

Highest standard (M) 2.78E-05 4.76E-05 4.27E-05 3.62E-05 
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Table 4-2. Absolute concentrations (nanomoles) of four compounds present in the whole exudates 

and fractions added to the soil. The values represented are the equivalent of two plant exudates 

added to the soil per supplemental time. LOD: below the limit of detect 

 

Sample name Glucose Serine Valine Salicylic acid 

Whole exudates 95.9931 253.116 17.3453 40.1557164 

Water fraction 236.336 2809.02 1147.67 62.5506512 

CHCl3 fraction 53.0792 2.83566 LOD 15.6158104 

EtoAc fraction 10.8169 2.84518 LOD 15.6158104 
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Table 4-3. List of compounds and their relative concentrations (peak areas in %) present in the 

whole exudates, water fraction, ethylacetate fraction and chloroform fraction analyzed by GC-MS. 

 

Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

Sugars     

xylose 0.041284673 0.174157072 0.164066156 0.340677431 

trehalose 0.030752536 0.002101556 0.224478717 0.159986845 

maltose 0.589739639 0.002461411 0.19618472 0.050189753 

levanbiose 0.35271553 0.010634448 0.250079906 0.052170436 

glucose 0.016255733 0.095240777 0.885660641 0.055982316 

glucoheptulose 0.158000064 0.051977518 0.024391377 0.014574835 

fucose 1.311145997 0.351427613 0.251484849 0.253340534 

fructose 0.226582019 1.245979263 24.92349889 0.527833264 

cellobiose 0.14137385 0.022440584 0.098424083 0.043163935 

beta-gentiobiose 0.148707153 0.012325768 0.054909867 0.03703503 

arabinose 0.081254652 0.238243005 0.132767141 0.178560417 

1-kestose 0.004318854 0.000844941 0.045738709 0.03049504 

Amino acids     

valine 0.304772481 2.396114632 1.182298807 0.674142187 

tryptophan 0.098429728 0.925225727 0.072393606 0.079003081 

thymine 0.148467026 0.010955439 0.025601189 0.061289051 

threonine 0.116010447 0.504432382 0.367392671 0.22273338 

serine 0.088652275 2.194165206 0.399316105 0.26059058 

saccharopine 0.010917198 0.013945117 0.041484853 0.029037556 

proline 0.103868602 0.709234742 0.146192155 0.149634975 

phenylalanine 0.068707164 0.093363771 0.283837571 0.136405509 

oxyproline 6.247774967 4.394803492 3.22360336 15.09127023 

ornithine 0.009647955 0.028943892 0.050812116 0.044172962 

O-acetylserine 0.011751639 0.003605751 0.029269652 0.021264311 

N-methylalanine 0.011956604 0.012641001 0.222839617 0.133527914 

methionine 0.023693663 0.128838319 0.117312765 0.048844384 

lysine 0.094285824 0.835359751 0.11325404 0.049404954 

leucine 0.042329225 0.00293642 0.026850027 0.022572309 

isoleucine 0.06129925 0.464119938 1.34351605 0.61595496 

homoserine 0.030192526 0.009337529 0.025210927 0.022460195 

homocystine 0.057805403 0.023245221 0.080901318 0.040959024 

glycine 1.292046476 3.837512665 0.928550438 0.342247029 

glutamine 0.30554689 4.520863727 1.273776226 2.041859674 

cytidine 0.001099438 0.005544652 0.054480579 0.037707715 

cysteine-glycine 0.124563252 0.036487901 0.055104998 0.056393401 

cysteine 0.003429527 0.02382099 0.023805984 0.016480775 

cyano-L-alanine 0.014191499 0.212347809 0.062637055 0.118504622 

citrulline 0.072391397 0.519601008 0.050421854 0.07788194 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

beta-alanine 0.002324085 0.000335385 0.031533172 0.014911178 

asparagine 0.381618232 4.679773004 0.419024337 0.348338562 

arginine + ornithine 0.105692709 1.266991941 0.108570896 0.060205281 

alanine 0.022509323 1.697154482 0.117117634 0.652653648 

Sugar alcohols     

xylitol 0.091536371 0.072721024 0.042889797 0.03539069 

threitol 0.628500407 0.173620167 0.048392491 0.074668002 

ribitol 0.007877877 0.059219248 0.021542464 0.015920205 

pentitol 0.362818011 0.136386646 0.031299014 0.033036293 

inositol-4-monophosphate 0.002829209 0.001312753 0.024391377 0.014350607 

inositol myo- 0.078385136 0.878563994 0.254567919 0.344339825 

galactinol 0.846104253 0.057155118 0.19618472 0.294523786 

erythritol 0.048332398 0.196224846 0.050812116 0.026047847 

cellobiotol 0.06730328 0.006642931 0.147401967 1.347350089 

arabitol 0.009102524 0.06372032 0.025835346 0.014686949 

2-deoxyerythritol 1.659617284 0.439366203 0.277320196 0.491097205 

Phenolic-related     

xylonolactone NIST 0.209576748 0.03915371 0.083359969 0.065100931 

xylonic acid 0.008188327 0.028240014 0.030713621 0.034605891 

urea 0.60209674 1.891310879 2.103317188 9.832557566 

threonic acid 0.402907196 0.403415206 0.042304404 0.109273893 

succinic acid 0.0721264 0.613893206 0.596125244 0.631613565 

salicylic acid 0.153840723 0.038100053 0.088862663 0.084795644 

saccharic acid 0.011597271 0.012491302 0.024196246 0.016144433 

pyrazine 2,5-dihydroxy  

NIST 0.024433769 0.013696098 0.052060954 0.055870202 

phthalic acid 5.365674835 1.202481379 0.505857638 0.742120713 

phosphoric acid 3.046069648 0.594553136 0.170778663 1.258929422 

parabanic acid NIST 0.248376965 0.07183434 0.152904662 0.229871312 

oxalic acid 0.698702361 0.09386469 1.229676617 1.19894837 

N-acetyl-glutamic acid 0.020749536 4.36528815 0.040665303 0.045069875 

myristic acid 0.015326099 0.011154079 0.291955022 0.154082168 

methylmaleic acid 0.001749496 0.002434062 0.024391377 0.018349344 

methylhexadecanoic acid 0.034951327 0.00806364 0.870206265 0.391876211 

methionine sulfoxide 0.046518582 0.27377513 0.090892026 0.0571782 

mannonic acid NIST 0.077434919 0.022292324 0.02805984 0.023581336 

malic acid 0.003429527 1.553825505 0.230137517 0.459182053 

maleimide 0.172861346 0.058678026 0.059788142 0.573089996 

lauric acid 0.201828367 0.065117999 1.05421481 0.512922086 

lactic acid 0.029992706 0.202195567 1.450682002 1.846594253 

kynurenine 0.014706057 0.010458838 0.026850027 0.028140643 

itaconic acid 0.100774396 0.082262951 0.455435784 0.946168407 

isonicotinic acid 0.574084223 0.09107653 0.090892026 0.071416693 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

isocitric acid 0.002574503 0.066495525 0.021737595 0.01823723 

idonic acid NIST 0.000204965 0.012491302 0.036411447 0.022348081 

glycolic acid 0.028672866 0.108803008 0.453601553 0.721641201 

glycerol-alpha-phosphate 0.002494747 0.010371033 0.031103883 0.067978526 

glycerol-3-galactoside 0.178074672 2.738423508 0.261280426 0.108825436 

glycerol 0.268511605 1.398193791 1.459228741 1.855600754 

glyceric acid 0.051746487 0.217133886 0.148416648 0.297849838 

glutamic acid 0.887514136 2.57578181 0.315761005 0.491657775 

glucuronic acid 0.031512367 0.015089458 0.044333766 0.016929232 

galactonic acid 0.265287902 0.073935896 0.030908752 0.026720531 

galactinol 0.846104253 0.057155118 0.19618472 0.294523786 

GABA 0.011982332 4.270156769 0.549176723 0.216641846 

fumaric acid 0.634098794 2.207193412 0.557684435 0.669358651 

ferulic acid 0.005573517 0.001128507 0.023181564 0.023917678 

erythronic acid lactone 0.159319047 0.365437504 0.788875659 0.672908932 

citric acid 0.03129711 1.54293484 0.149236199 0.194929078 

citramalic acid 0.01480125 0.016307209 0.035396766 0.086215756 

capric acid 0.031171901 0.011659316 0.669728663 0.297289268 

beta-sitosterol 0.015306374 0.00116881 0.259641326 0.04929284 

azelaic acid 0.081089136 0.009170556 0.051436535 0.163985582 

aspartic acid 1.313655323 3.46528397 0.512140856 0.673805845 

aminomalonic acid 0.008077697 0.000695241 0.035396766 0.018349344 

alpha ketoglutaric acid 0.037500102 0.021382609 0.068100724 0.033148407 

adipic acid 0.034776377 0.038873023 0.260851138 0.336006009 

aconitic acid 0.003848891 0.056989584 0.030479464 0.021712767 

4-hydroxybutyric acid 0.031382012 0.123428972 0.037191971 0.041071138 

4-hydroxybenzoate 0.026218426 0.039221363 0.128513285 0.88962552 

3-hydroxypropionic acid 0.021309546 0.193692903 0.365987728 0.312312559 

3-hydroxy-3-methylglutaric 

acid 0.020844729 0.155515121 0.081955025 0.107143725 

3-aminoisobutyric acid 0.012936836 0.006343531 0.038011521 0.017564545 

2-hydroxyvaleric acid 0.308466147 0.081874307 0.894792773 1.858814692 

2-hydroxyglutaric acid 1.026663381 0.381023562 0.181354763 0.211933053 

2-5-diketopiperazine NIST 0.003624201 0.001925946 0.027045158 0.018349344 

2,3-dihydroxybutanoic acid 

NIST 0.021684316 0.003854771 0.022166883 0.019470485 

Unclassified     

214152 0.311505467 0.369876681 0.052256085 0.024814591 

268610 0.712019112 0.034510135 0.150875299 0.267579026 

357788 0.918795809 0.082827204 0.023571826 0.01334158 

288866 0.019109813 0.752231708 0.022557145 0.02313288 

214165 0.311140989 0.660498802 0.055924548 0.046489987 

226848 0.844585451 0.075978435 0.025015796 0.018125116 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

213160 0.016760857 0.163748613 0.026030477 0.014686949 

213148 0.024013547 0.124425052 0.041055565 0.022908651 

216832 1.461218444 0.091604797 0.054480579 0.084347188 

373725 0.016600487 0.329521054 0.091906707 0.039837883 

352812 1.223668628 0.105525445 0.022986433 0.026608417 

201005 0.001924446 1.962041183 0.024586508 0.050413981 

385048 0.002749453 0.322775924 0.034967478 0.026384189 

223830 0.003958663 0.15494511 0.031533172 0.019806827 

371568 0.02537884 0.043233031 0.029074521 0.015471748 

362008 0.369340887 0.080666632 0.072978999 0.053291577 

213179 0.746090546 0.263956834 0.031923434 0.094699058 

367939 4.829931158 0.992692862 0.180340082 0.193807937 

213188 0.007328158 0.408648944 0.024820665 0.025375162 

217809 0.669859691 0.213260402 0.033952796 0.038716742 

267904 0.105913111 0.13909132 0.051826797 0.034830119 

199203 19.84754412 3.691949706 0.427571075 3.570685148 

228018 0.004014407 0.143811183 0.028450102 0.022908651 

238134 0.034236092 0.186138818 0.090267607 0.034269548 

327468 0.002384117 3.169514476 0.025601189 0.027131616 

385107 0.002244329 0.264975945 0.030713621 0.032812065 

357841 0.007517687 0.121197868 0.055924548 0.029598127 

362010 0.010507267 0.158997082 0.113839433 0.021712767 

269256 0.006793018 0.060419726 0.02743542 0.015359634 

362028 0.020740103 0.155672018 0.051436535 0.028140643 

321749 0.146263005 0.054556962 0.021347333 0.020591626 

367944 0.628500407 0.173620167 0.048392491 0.074668002 

267692 0.065478315 0.101269075 0.033133246 0.021152197 

362023 0.016660518 0.114334706 0.038831072 0.027804301 

307912 0.002209167 0.082395377 0.021737595 0.034269548 

219507 1.593873972 3.874756263 0.3374986 0.532504685 

207188 0.042004196 0.067511757 0.025015796 0.026047847 

200490 0.040184378 0.027685837 0.019513101 0.017041346 

328420 0.00459843 0.164333019 0.025015796 0.018349344 

226841 0.030641907 0.047608873 0.028684259 0.021824881 

200906 0.004014407 0.143811183 0.028450102 0.022908651 

218492 0.02770807 0.101269075 0.033133246 0.019246257 

224843 0.313825265 0.049062689 0.031728303 0.028252758 

330992 3.689461352 0.274942501 0.128279128 0.083113932 

299185 0.048622265 0.000106517 0.054909867 0.051385637 

362130 0.048622265 1.581630814 0.054909867 0.051385637 

268345 0.094630577 0.032427292 0.034343058 0.054300604 

352980 0.355344919 0.080647919 0.032118565 0.021488539 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

269249 0.004043565 0.046763932 0.031103883 0.017564545 

213141 0.011671882 0.025138061 0.037191971 0.027804301 

224632 0.005598387 0.030331494 0.021737595 0.013677922 

385023 0.090641898 0.015845154 0.021542464 0.013453694 

359697 0.023474119 0.070354615 0.040665303 0.022796537 

269294 0.053081765 0.06302364 0.039845753 0.030607154 

385021 0.004318854 0.008502664 0.024391377 0.014686949 

200610 0.319403927 0.05204805 0.044138635 0.037819829 

310063 0.319403927 0.05204805 0.044138635 0.037819829 

310897 0.009817759 0.051194472 0.056119679 0.026907388 

199177 0.141863537 0.034466953 0.036411447 0.029037556 

268353 0.002269199 0.015575982 0.029074521 0.013790036 

228911 0.056356066 0.018107925 0.024001115 0.01823723 

213154 0.043414084 0.189602067 0.030089202 0.064876702 

362086 0.324782769 0.084593374 0.112044228 0.056953972 

381469 0.253225813 1.285595028 0.146192155 0.064204018 

268565 0.014506237 0.060517607 0.032547853 0.024814591 

225327 0.079084934 0.046061495 0.01767887 0.019246257 

385058 0.015156295 0.016734717 0.030089202 0.01334158 

385112 0.00417392 0.001055096 0.027045158 0.014686949 

303838 0.896607227 0.327623896 0.090072476 0.092232547 

385028 0.033201831 0.031072796 0.03781639 0.032363609 

280930 0.086003161 0.01754799 0.024001115 0.018909914 

285340 0.140364459 0.004843654 0.031103883 0.022235967 

224589 0.014146047 0.043002724 0.053270767 0.039389427 

280945 0.038860249 0.0103552 0.024391377 0.014911178 

352849 0.003159384 0.001769049 0.023181564 0.020031056 

385024 0.003634492 0.001088203 0.025406058 0.014014265 

307669 0.035575657 0.020821235 0.024391377 0.015808091 

218748 0.308481584 0.03074029 0.032547853 0.133415799 

268583 0.021464771 0.031818417 0.026420739 0.020591626 

303956 0.370275666 0.181385848 0.039455491 0.057962999 

208897 0.020514555 0.019617878 0.027864709 0.013677922 

250380 0.269056179 0.091963213 0.115673664 0.026496303 

385034 0.019185281 0.064785492 0.076842593 0.043948734 

223191 0.012207022 0.026819305 0.041055565 0.033708978 

310871 0.007108614 0.010326411 0.022166883 0.014126379 

199205 0.375624493 0.076606023 0.030713621 0.039613655 

202899 0.008957591 0.058309534 0.055104998 0.045854674 

208686 0.168542492 0.088708681 0.105526852 0.075004344 

352777 0.136100492 0.035366591 0.039845753 0.032475723 

362109 0.006038334 0.106397734 0.030479464 0.031616181 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

367914 0.0813447 1.667532623 0.150641142 0.329428648 

211945 0.033091201 0.011593102 0.061622374 0.074555888 

245705 0.228016778 0.264626165 0.041875115 0.120373191 

385065 0.040129492 0.004683878 0.034343058 0.027580073 

200509 0.291086106 0.009000704 0.857171514 0.034830119 

213227 0.01975987 0.029156926 0.021542464 0.038492514 

310888 0.006103511 0.051033257 0.102482808 0.039837883 

231350 0.097770237 0.02655733 0.024820665 0.018909914 

237415 0.024433769 0.013696098 0.052060954 0.055870202 

359567 0.024338576 0.032057361 0.03699684 0.031391953 

224818 0.024743361 0.005120023 0.02887939 0.012444667 

303992 0.038015517 0.005642533 0.027669578 0.014686949 

281187 0.12617296 0.038524683 0.041875115 0.055309631 

213253 0.066683238 0.306867435 0.316775686 0.121045875 

208538 0.043018733 0.114042503 0.302531122 0.198479359 

267751 0.049687399 0.022535586 0.065681099 0.041183252 

310757 0.26849188 0.058408854 0.026030477 0.037819829 

240551 0.043748547 0.03054165 0.059553985 0.027692187 

267691 0.022954416 0.024726386 0.038831072 0.021824881 

267649 0.056065341 0.009966556 0.042694666 0.171459857 

310162 0.22674239 0.067226751 0.046363129 0.07108035 

385117 0.006898503 0.032502142 0.145177474 0.096007056 

236810 0.008957591 0.048384721 0.062637055 0.045854674 

202599 0.026333344 0.025926864 0.10287307 0.045294103 

228619 0.060429647 0.016226601 0.027669578 0.015471748 

202573 0.030432653 0.848688796 0.155324286 0.022572309 

227816 0.007227819 0.005311466 0.020137521 0.017041346 

225540 0.001079713 0.009883069 0.024391377 0.013902151 

310875 0.003993825 0.021461778 0.025406058 0.032363609 

324275 0.00301445 0.102829408 0.03617729 0.027467959 

362073 0.003993825 0.021461778 0.025406058 0.032363609 

199242 0.017850862 0.003481961 0.026225608 0.017340317 

236605 0.254935002 0.170290785 0.027045158 0.038268285 

218734 0.510195033 0.131305488 0.189706371 0.173440539 

231254 0.037500102 0.021382609 0.068100724 0.033148407 

281132 0.00606835 0.006815662 0.023571826 0.017041346 

284607 0.003023884 0.005995191 0.025015796 0.020927969 

375029 0.073386208 0.019104005 0.031923434 0.183568181 

212022 1.437288941 0.116185802 0.163246605 0.258236183 

227598 0.066022889 0.008748805 0.041055565 0.022348081 

307924 0.003019596 0.005829658 0.024391377 0.012332553 

215445 0.955956303 0.268555787 0.046167998 0.105798355 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

267696 0.024918311 0.006273 0.020332652 0.017676659 

202572 0.355209419 0.042200966 0.044333766 0.024590363 

208397 0.085498037 0.002651415 0.302531122 0.141525387 

213143 0.009992709 0.030579075 0.033328377 0.012668895 

374786 0.275249737 0.083142437 0.124220403 0.135844939 

323686 0.298953692 0.213516619 0.155324286 0.192275711 

200710 0.029172845 0.008253644 0.040860434 0.0285891 

212761 0.078765051 0.014493537 0.045543578 0.071865149 

212016 0.193140919 0.066325673 0.06443226 0.109610235 

200557 0.00515844 0.000903957 0.039845753 0.016817118 

233408 0.019019765 0.012055157 0.022166883 0.017340317 

353047 0.038644993 0.004575922 0.087613825 0.340341089 

280546 0.024233949 0.005982237 0.028684259 0.014350607 

228680 0.004763946 0.00131995 0.023571826 0.014686949 

268365 0.006358217 0.091669571 0.060997955 0.132518887 

238267 trisaccharide 0.011037261 0.001224948 0.034343058 0.015920205 

269250 0.020224687 0.029578677 0.025835346 0.103817673 

235449 0.005963723 0.022266414 0.036801709 0.019246257 

215397 1.051327843 0.261394664 1.530997927 1.749690285 

296119 0.014621155 0.004393115 0.022557145 0.015135406 

237606 0.014111743 0.012698578 0.030284333 0.026159961 

224811 0.024258819 0.003041498 0.027240289 0.016705003 

227652 0.095365537 0.037391858 0.043084928 0.039613655 

214416 0.021284676 0.003255972 0.023805984 0.018461458 

237520 0.013216413 0.004060609 0.018927708 0.017564545 

224635 0.008227776 0.015191657 0.029464783 0.016032319 

385085 0.503076986 0.025653374 0.179520532 0.269260738 

310053 0.00913254 0.004935777 0.031923434 0.025711504 

200624 0.018675011 0.003181122 0.022166883 0.016705003 

212177 0.088017654 0.014772785 0.044919159 0.047835357 

205672 0.090537272 0.031235451 0.413131381 0.244782489 

205674 0.26297325 0.055512738 0.803510485 2.902559752 

237605 0.013606619 0.006950967 0.032547853 0.022908651 

232755 0.07668538 0.038089977 0.021152202 0.030382926 

240436 0.574084223 0.09107653 0.090892026 0.071416693 

310380 0.097045568 0.019245068 0.059358854 0.029037556 

227728 0.012507181 0.011601739 0.121995909 0.065549387 

213243 0.406216659 0.098347049 0.031923434 0.241306952 

296071 0.005153295 0.001283964 0.02969894 0.020479512 

385030 0.122633661 0.016667064 0.095965432 0.033148407 

374402 0.054820969 0.00988163 0.02661587 0.018573572 

211896 0.830468562 0.182429428 0.131947591 0.114169543 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

200615 0.008977315 0.002356333 0.024391377 0.0187978 

231248 0.215190571 0.006081557 0.039650622 0.026496303 

238938 0.006913082 0.001288282 0.026850027 0.019358371 

233790 0.021419319 0.00440463 0.112044228 0.345909423 

212261 0.07530122 0.08726638 0.075827912 0.457724569 

310581 0.002673984 0.009943525 0.025835346 0.018685686 

331031 0.07094206 0.016010688 0.03844081 0.07978788 

267654 0.003514429 0.021487687 0.063651736 0.063194991 

227822 0.008662578 0.007404385 0.030908752 0.021712767 

268671 0.029237164 0.005085477 0.028450102 0.011585125 

231098 0.011367436 0.004518345 0.044724028 0.031690924 

322204 0.084228795 0.062414765 0.124220403 0.070445037 

200702 0.234975312 0.246466421 0.046167998 0.22329395 

224322 0.078560085 0.026827942 0.360680164 0.176355506 

208714 0.005653273 0.001728745 0.02805984 0.023020765 

232946 0.021234936 0.000808955 0.026030477 0.019022029 

228164 0.118314807 0.033243444 0.106541533 0.184689322 

304391 0.006748423 0.00039872 0.033562534 0.022684423 

384918 0.726255207 0.196201815 0.552611029 0.702058602 

268506 0.013376783 0.00627156 0.029269652 0.038380399 

318770 0.025033228 0.091315474 0.118951865 0.038156171 

211921 0.010032158 0.002621187 0.034577215 0.040398454 

202083 0.256774546 0.009144646 0.043514216 0.0473869 

241312 0.00605377 0.00458024 0.022557145 0.036063374 

385104 0.008337549 0.022886805 0.034577215 0.017340317 

310006 0.153810707 0.01503332 0.033757665 0.033372636 

310367 0.043983528 0.010552401 0.07543765 0.049180726 

237333 0.028312676 0.002126026 0.025406058 0.019358371 

310448 0.098254778 0.016010688 0.040040884 0.07978788 

353091 0.026078638 0.055230611 0.063846867 0.023020765 

231576 0.015170874 0.020455622 0.024820665 0.022235967 

241168 0.004783671 0.00176617 0.04901691 0.042042794 

220122 0.079934812 0.01680093 0.053895186 0.040959024 

231260 0.004783671 0.001984963 0.04901691 0.042042794 

237392 0.022799191 0.003140818 0.028450102 0.022348081 

211916 0.018915138 0.011191504 0.096784982 0.049965525 

237652 0.018235065 0.002929223 0.037191971 0.017116089 

385042 0.011807382 0.002036782 0.022752276 0.016032319 

268712 0.070691642 0.015563027 0.034577215 0.027467959 

214201 0.007082886 0.003057332 0.050226723 0.022796537 

310193 0.017485526 0.002504594 0.032742984 0.024814591 

269776 0.391420554 0.038995373 1.088557869 0.662108605 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

199562 0.0730466 0.006093072 0.128513285 0.027019502 

206309 0.075255768 0.01630433 1.11927149 0.068539097 

229277 0.005798207 0.000960094 0.151460692 0.071528807 

385075 0.078719598 0.009636928 0.024820665 0.019246257 

206965 0.018434884 0.021458899 0.667504169 0.033036293 

213960 0.001204922 0.001948977 0.029074521 0.028701214 

231210 0.017590152 0.003417187 0.031728303 0.016256547 

241387 0.082843777 0.020226754 0.927340626 0.068539097 

303966 0.054691472 0.004958808 0.009132131 0.142982871 

233471 0.003479267 0.00054842 0.025015796 0.016144433 

267880 0.003119077 0.000279248 0.021152202 0.014799063 

233289 0.015356115 0.00169276 0.037621259 0.022684423 

211910 0.201828367 0.057031327 1.219100516 0.606798974 

319168 0.276649334 0.115939661 1.346169832 1.345817863 

311041 0.016050767 0.002292999 0.027669578 0.020815854 

305637 0.013431669 0.001053657 0.048587622 0.024141907 

225867 0.023719391 0.002973845 0.022362014 0.011809354 

238549 0.02007032 0.009255482 0.027669578 0.016032319 

239332 0.287766351 0.098098029 0.546913203 0.127286894 

374356 0.020449378 0.011467873 0.03844081 0.146645265 

211636 0.435849175 0.04515178 0.878753004 1.705405208 

211590 0.606365853 0.053369439 1.810737747 2.863618782 

322260 0.009238025 0.006929376 0.032938115 0.031616181 

199942 0.017315722 0.016654109 0.549371854 0.295046985 

385006 0.745320424 0.003231502 0.057524623 0.236747644 

227658 0.001379872 0.000394402 0.035787028 0.050974552 

227923 0.002704 0.001853975 0.030089202 0.025263048 

238550 0.070087036 0.01040414 0.088862663 0.079899994 

226256 0.003184254 0.000303718 0.027045158 0.014014265 

271049 0.112941111 0.062810606 1.095075244 0.470057122 

200486 0.070087036 0.01040414 0.266353833 0.079899994 

236965 0.021739202 0.004252052 0.165900387 0.112263603 

299487 0.000825007 0.000175609 0.024196246 0.019582599 

385055 0.122843772 0.02282491 0.039650622 0.068426983 

218694 0.225817901 0.020382211 0.17913027 0.122727587 

203592 0.034456494 0.008027655 0.556084361 0.330325561 

199246 0.011606705 0.002673006 0.115673664 0.079563652 

200905 0.28442773 0.050153771 0.152904662 0.658894667 

373752 0.086897634 0.011777348 0.090462738 0.059308368 

309617 0.02906736 0.005000551 0.108961158 0.326887394 

200567 0.028632559 0.006628537 0.250079906 0.04682633 

308219 0.01046696 0.003939697 0.117507896 0.061849621 
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Compounds 
Whole 

exudates 

Water 

fraction 

CHCl3 

fraction 

EtoAc 

fraction 

268438 0.009572487 2.87884E-05 0.042694666 0.029934469 

219512 0.628700227 0.011007258 0.146582417 5.904265755 

211919 0.023564166 0.002854373 0.037621259 0.039277312 

299441 0.008158311 0.001223508 0.042889797 0.005904677 

385120 0.056890349 0.015748713 0.021971752 0.024478249 

224627 0.006753569 0.006319061 0.068920274 0.197059247 

206022 0.022629387 0.011505298 0.60994052 0.359923688 

224574 0.008918141 0.001458134 0.103497489 0.055085403 

303839 0.090081888 0.054220137 0.544493578 0.155875994 

238506 0.106082915 0.019612121 0.027864709 0.024478249 

234717 0.035810638 0.02434206 1.347379644 0.592112024 

201042 0.061903855 0.012459634 1.377273715 0.43268575 

294511 0.003408944 0.000601678 0.074618099 0.021264311 

267987 0.081939014 0.016904569 0.064237129 0.097016083 

268437 0.002509326 0.001669729 0.071144767 0.031279839 

235327 0.033476261 0.007780074 0.978972292 0.358914661 

384992 0.072946262 0.020090009 1.658886793 1.063215545 

213191 0.006718407 0.001068051 0.035591897 0.050301867 

357685 0.032201874 0.006352168 0.236459761 0.251770936 

241881 0.00073496 0.000152579 0.021347333 0.010463984 

288810 0.016501005 0.002875965 0.223034748 0.137078194 

368156 0.006808455 0.001653896 0.210624415 0.101911733 

357502 0.045263061 0.008656682 0.03844081 0.020367398 

200540 0.257934015 0.047136743 0.132376879 0.07108035 

224849 0.005663564 0.001707154 0.211053704 0.062970763 

216428 0.085528053 0.017316243 3.323237255 1.537047176 

327143 0.002099395 0.000418872 0.055690391 0.035502804 

 



 

172 

Table 4-4. Abundance (%) of different categories of compounds present in the whole exudates 

and fractions of exudates analyzed by GC-MS. The percentage of the compounds in each 

category was calculated by dividing the sum of compounds in each category with the sum of 

compounds in all categories. 

 

Categories Water fraction CHCl3 fraction EtoAc fraction 
Whole 

exudates 

Sugars  2.20 27.25  1.74  3.10 

Amino acids 29.55 10.87 21.47  9.85 

Sugar alcohols  2.08  1.12  2.69  3.80 

Phenolics 32.01 18.56 30.24 18.55 

Unknown 34.13 42.18 43.85 64.68 
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Table 4-5. Total observed (Sobs) and estimated (Chao and ACE) species richness, evenness, and 

diversity (Shannon) of the soil samples supplemented with whole exudates and their fractions with 

respective controls. * indicates significantly different at p<0.05. 

 

 Richness Shannon 

Treatments Sobs Chao Ace Evenness Diversity 

Nothing 1227.67 3790.93 7419.23 0.92 6.57 

Water control 1140.00 3415.79 6643.4 0.93 6.53 

CHCl3 control 987.67 3276.23 6216.58 0.83* 5.70 

EtoAc control 1033.33 3082.48 5997.75 0.92 6.39 

Water fraction 1288.00 3411.12 4993.73 0.96 6.84 

CHCl3 fraction 957.67 2687.32 4466.56 0.92 6.29 

EtoAc fraction 849.67 1849.17 2623.46 0.92 6.17 

Whole exudates 1009.67 2998.14 5259.03 0.95 6.44 
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Table 4-6. Pearson correlation analyses of compounds identified by GC-MS with the pyrosequencing data classified at the phyla level. 

The numbers represented are significant at p value 0.05. + indicates positive correlation. – indicates negative correlation. 

 

  Sugars Amino acids Sugar alcohols Phenolics 

  + - + - + - + - 

Actinobacteria 0 0 2 8 0 3 1 9 

Bacteriodetes 0 0 1 0 0 0 1 2 

Proteobacteria 0 1 0 0 0 0 0 1 

Acidobacteria 0 0 0 0 0 0 1 0 

BD1–5 0 0 0 0 0 0 0 0 

Candidate division BRC1 0 2 0 1 0 0 0 1 

Candidate division OP10 0 0 0 1 0 0 1 0 

Candidate division TM6 0 0 0 7 0 3 1 10 

Candidate division TM7 2 1 1 2 0 0 1 1 

Candidate division WSB 0 0 0 0 0 0 0 0 

Chlorobi 0 0 0 7 0 3 1 10 

Chloroflexi 0 1 0 0 0 0 0 1 

Cyanobacteria 2 0 5 0 0 0 8 0 

Fibrobacteres 0 4 0 1 1 3 3 7 

Firmicutes 0 2 0 0 0 0 0 0 

Gemmatimonadetes 0 0 0 0 0 0 0 0 

Nitrospirae 0 0 0 0 0 0 0 0 

Planctomycetes 0 1 0 0 0 0 0 1 

Verrucomicrobia 0 0 0 2 0 0 1 0 

WCHB1-60 0 0 1 0 0 0 0 0 

Unclassified 1 0 0 0 0 0 0 0 
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Table 4-7. Pearson correlation analyses of the groups of compounds with OTUs at the genus level. 

The numbers represented are significant at p value 0.05 

 

Compounds group 

Total number of 

OTUs correlated 

Number of OTUs 

positively correlated 

Number of OTUs 

negatively 

correlated 

Sugars 206 161 45 

Amino acids 389 319 70 

Sugar alcohols 205 166 39 

Phenolics 966 742 224 
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Figures 

 

 

Figure 0-1. Picture showing the Arabidopsis plants were transferred into sterile distilled water for 

three days prior to exudate collection 
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Figure 0-2. Principal Coordinate Analyses (PCoA) of soil microbiome sequence data at genus 

level. Whole: whole exudates; Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, Water: 

water fraction; Cont 1: nothing added in the soil; Cont 2: water control; Cont 3: ethylacetate 

control; Cont 4: chloroform control. 
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Figure 0-3. Soil microbiome sequencing data of treatments and controls analyzed by Principal Component Analyses (PCA) at phyla 

level (A) and genus level (B). Whole: whole exudates; Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, Water: water fraction; 

Nothing: nothing added in the soil; Water ctrl: water control; EtoAc ctrl: ethylacetate control; CHCl3 Ctrl: chloroform control. 
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Figure 0-4. Cluster analysis of the soil microbiome sequencing data of controls and treatments by 

Ward method. Whole: whole exudates; Chloro: CHCl3 fraction; EtoAc: ethylacetate fraction, 

Water: water fraction; Nothing: nothing added in the soil; Water ctrl: water control; EtoAc ctrl: 

ethylacetate control; CHCl3 Ctrl: chloroform control 
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Figure 0-5. Relative abundance (%) of the major bacterial phyla present in the treatments and 

controls revealed by pyrosequencing. 
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Figure 0-6. Flow diagram indicating the shared and unique OTUs present in controls and 

treatments. (A) Controls and (B) Treatments. Overall, 138 OTUs were shared by controls and 11 

OTUs were shared by treatments. The number of OTUs unique to a particular control or 

treatment are represented inside the shaded box and the number of OTUs shared between the 

controls and treatments are represented in the intersections. 
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Figure 0-7. Taxonomic to phenotypic mapping based on the biotic habitat. Graph illustrates the number of sequence reads present in the 

controls and treatments. (A) symbiotic bacteria and (B) free-living bacteria. The bars with different letters are significantly different (p 

value<0.05) from one another. 
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Figure 0-8. Taxonomic to phenotypic mapping based on the metabolism of specific microbial 

groups. The graph illustrates the number of sequence reads present in the controls and treatments. 

Carbon fixation (A), nitrite reducing (B), and atrazine degradation (C) are shown. The bars with 

different letters are significantly different (p value < 0.05) from one another.  
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CHAPTER 5  AN EXPERIMENTAL PIPELINE FOR THE DEVELOPMENT OF SOIL 

PREBIOTICS OF AGRICULTURAL IMPORTANCE 

 

 

Synopsis 

We report the development of an experimental pipeline to discover natural products that 

could act as promoters of beneficial microbes for agricultural purposes. We first developed nine 

chemical libraries by collecting root exudates of Arabidopsis thaliana at distinct developmental 

time points and by additional chemical extraction. These chemical libraries were then 

supplemented to a natural soil for a period of 2 or 6 weeks, and the 16S ribosomal DNA of 

bacteria was pyrosequenced. These data sets allowed us to develop 5 distinct models in order to 

develop highly interactive analyses to correlate compounds with microbial abundances at the 

Order taxonomic level. To validate and determine which model adequately predicts the dynamics 

of the soil microbial community twelve compounds from our chemical library were selected and 

added as distinct artificial blends to the soil for a period of 5 weeks. The 16S ribosomal RNA of 

bacteria derived from those soils was pyrosequenced in order to identify the active microbial 

community influenced. Out of 5 statistical models tested, those that implemented machine 

learning (random forest and boosted decision trees) were able to reliably and precisely model soil 

microbial community dynamics as measured by the mean square predicted error. Boosted 

decision trees were then used as a predictive tool to identify compounds that could reliably be 

used as soil prebiotics. 

Introduction 

Natural products and synthetic chemicals have traditionally been used as biocides to deter 

the growth of harmful microorganisms or malignant cells. Chemical biocides are used in distinct 
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areas ranging from medicine, agriculture, and industry. While the purpose of a microbial biocide 

is to kill harmful organisms it is usually not target-specific and could be harmful to the beneficial 

flora of a particular biome (Blaser 2011, Dethlefsen et al 2008, Dethlefsen and Relman 2011, 

Sjolund et al 2003). Accordingly, biocides have come under scrutiny due to their hazards to 

humans and the environment (Blaser 2011, Cotter et al 2013). Thus, there is a need to develop 

pipelines that will allow the screening and identification of chemicals as inducers of beneficial 

microbes as compared to biocides. For this purpose, the use of a system in which an organism 

selects beneficial microbes by natural means will be desirable. 

Roots of plants secrete compounds into the soil that are essential to attract beneficial 

microbes involved in defense against pathogens (Rudrappa et al 2008) or in nutrient acquisition 

(Dimkpa et al 2009). For example, when Arabidopsis is under attack by Pseudomonas syringae 

pv tomato they release malic acid to enlist beneficial microbes (Rudrappa et al 2008). Similarly, 

when nitrogen is limiting the roots of Medicago truncatula release flavones and flavonols to 

directly attract the N-fixer Sinorhizobium meliloti (Zhang et al 2009) or they release volatile 

signals that attract C. elegans to the roots which then transfer rhizobium to the plant (Horiuchi et 

al 2005). Under phosphorus-limiting conditions in the soil certain plants release organic acids to 

increase phosphorus availability (Dakora and Phillips 2002) and initiate associations with 

mycorrhizae (Yoneyama et al 2007a, 2007b). Thus, the use of root exudates as a reservoir to 

identify such chemicals is warranted in order to explore how these chemicals might favor the 

growth of soil beneficial microbes in the absence of the plant and likewise deter the proliferation 

of harmful ones.  

Arabidopsis thaliana has been found to secrete different blends of compounds at distinct 

developmental stages (Chaparro et al 2013a) that correlate with specific microbial groups 
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(Chaparro et al 2014). An initial pilot study tested four chemical libraries that were derived from 

root exudates taken from one Arabidopsis thaliana developmental time point and found that 

these chemical libraries differentially shaped the soil microbial communities when compared to 

the controls (Badri et al 2013a). Furthermore, these chemical libraries seemed to culture and 

attract different types of bacteria as analyzed by 16S ribosomal DNA pyrosequencing. For 

example, the soils supplemented with two of these chemical libraries were significantly more 

abundant in bacteria capable of atrazine degradation (Badri et al 2013a). Additionally, one of 

these libraries significantly enriched symbiotic bacteria in the soil (Badri et al 2013a). In this 

study, we tested nine distinct chemical libraries that were characterized by GC-MS in order to 

augment the predictive ability for linking metabolites with microbial OTUs. The libraries were 

created by collecting root exudates of Arabidopsis thaliana at distinct developmental time points 

(seedling, vegetative, and bolting) and these were further separated by additional chemical 

extraction. These chemical libraries were then supplemented to a natural soil for a period of 2 or 

6 weeks. From this experimental set up, soil microbial DNA was isolated, the 16S rRNA gene 

was amplified and using next-generation sequencing we identified the soil microbial taxa that 

were influenced by the addition of these nine distinct natural chemical libraries to the soil. The 

availability of a large matrix of natural compounds present in the nine chemical libraries and soil 

microbial OTUs, allowed us to test 5 statistical modeling approaches (partial least squares 

regression, principle components regression, LASSO, random forest, and boosted decision trees) 

in order to develop highly interactive analyses to correlate compounds with microbial groups. To 

validate and determine which of the 5 models more adequately predicted the dynamics of the soil 

microbial community upon exposure to specific chemical compounds 12 compounds were 

selected based on results from Badri et al. (2013a). These compounds were then grouped into 
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chemical classes (amino acids, sugars, or secondary metabolites) and added to the soil along with 

a mixture of all 12 compounds for a period of 5 weeks. The soil microbial community was then 

pyrosequenced in order to determine which model most adequately simulates and predicts soil 

microbial community dynamics. 

Materials and methods 

Plant growth conditions and collection of root exudates 

Arabidopsis thaliana wild type (Col-0) seeds were placed on MS agar media 

supplemented with 3% sucrose after surface-sterilization for one minute with Clorox® followed 

by four rinses with sterile distilled water and incubated in a growth chamber (Percival Scientific) 

at 25°C, with a photoperiod of 16h light/8h dark. Root exudate collection followed the 

methodology described previously (Badri et al 2008, 2009, 2012, 2013a). Briefly, seven-day-old 

seedlings were transferred to 6-well culture plates (one plant per well) containing 5 ml of liquid 

MS (full strength MS salts supplemented with 1% sucrose) media per well, incubated on an 

orbital shaker at 90 rpm and illuminated under cool white fluorescent light (45 µmol m-2 s-1) with 

a photoperiod of 16h light/8h dark at 25±2°C. Root exudates were collected at three 

developmental stages: seedling (between 7-10 days), vegetative (between 18-21 days), and 

bolting (between 25-28 days). For this purpose, we transferred the plants when  they were 7, 18, 

and 25 days old to new 6-well plates containing 5 ml sterile distilled water, after gently washing 

plants with sterile distilled water to remove the surface adhering exudates, and incubated them 

for three days on an orbital shaker under the same conditions described above. Sterile distilled 

water was used to collect the root exudates instead of MS liquid media to prevent the 

interference of exogenously supplemented salts and sucrose in ensuing GC-MS analyses. No 

visible toxicity symptoms were observed after the three day period of incubation in sterile 
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distilled water, consistent with previous results (Badri et al 2013a). The exudates contained in the 

media were collected from three developmental stages and were filtered using nylon filters of 

pore size 0.45 µm (Millipore, Billerica, MA, USA) to remove root sheathing and root-border-like 

cells. For each developmental time point, we collected a total of three liters of root exudates by 

growing 600 individual Arabidopsis plants in 6-well plates and pooling them for further partition 

analyses. Each three liters of pooled root exudates was collected from 600 individual plants or 

600 biological replicates, as discussed in Badri et al. (2013a).  

Partition of root exudates 

Root exudates collected from 600 individual plants for each developmental time point 

(1800 plants total) were filtered. Exudates from 300 plants were freeze dried and dissolved in 50 

ml of water served as whole exudates. The remaining 300 plants per time point were freeze dried 

and dissolved in 25 ml of sterile distilled water. The pH was adjusted to two with 1N HCl. The 

solutions were partitioned with 25 ml of ethyl acetate (EtoAc); the organic phase (EtoAc) was 

separated and dried under nitrogen gas. The aqueous phase constituted the water phase. We 

performed the partition two times and then pooled the extractions together. All fractions (EtoAc 

and water) were collected independently and dried under nitrogen gas. The root exudate 

partitioning procedure and whole exudates resulted in 9 different chemical libraries (see Table 

5-1). 

Gas chromatography-mass spectrometry (GC-MS) of the chemical libraries and data analyses 

The nine fractions were subjected to GC-MS analyses at the Genome Center Core 

Services, University of California Davis to identify the compounds present in each library and 

their relative concentrations. We followed the methods described previously, (Badri et al 2013a, 

Chaparro et al 2013a, Sana et al 2010). Briefly, samples were derivatized using methoximation 
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and trimethylsilylation. GC-MS was done on an Agilent 6890 gas chromatograph (Santa Clara, 

CA) containing a 30 m long, 0.25 mm i.d. rtx5Sil-MS column with an additional 10 m integrated 

guard column. The instrument was controlled by Leco ChromaTOF software version 2.32 (St. 

Joseph, MI). Data was processed using the BinBase database (Fiehn et al 2005). The unique ion 

was used in order to report relative peak height. Retention index, mass spectrum unique ions, 

apex ions, peak purity, and signal/noise ratio were used to assign the metabolites by the BinBase 

identifier numbers. All entries in BinBase were matched against the Fiehn mass spectral library 

(http://fiehnlab.ucdavis.edu/Metabolite-Library). Data normalization was performed by using 

“total metabolite content” (Fiehn et al 2008); see Table 5-2 for compounds present in each of the 

9 chemical libraries and their relative concentrations. 

Adding chemical libraries to Arabidopsis co-adapted soil  

Arabidopsis co-adapted soil (referred here as natural soil) was collected on July, 2011 

from the Michigan Extension Station, Benton Harbor, MI (N42° 05’ 34’’, W86° 21’ 19’’ W, 

elevation 630 feet) where Arabidopsis genotype (Pna-10) has grown naturally in a fallow field 

for more than eight years (Li et al 2010). Soil from this location has been extensively 

characterized (Badri et al 2009, 2013a, 2013b, Chaparro et al 2013a, 2013b, Zolla et al 2013). 

Top soil (0-10 cm) was collected from three spots at this location within Arabidopsis patches, 

transported to the laboratory in air tight coolers and stored in a cold room (4°C) until use. All 

soils collected from the three spots were dried under room temperature, pooled, and thoroughly 

homogenized by hand before starting the experiment. Cubical pots (2.0L X 1.0W X 2.0D inches) 

were bottom lined with Whatmann 3MM filter paper to prevent soil loss and filled with soil, 

incubated in a growth chamber under the photoperiod of 16h light/8h dark at 25±2°C for two 

weeks and sufficiently watered before supplementing them with the chemical libraries. The 

http://fiehnlab.ucdavis.edu/Metabolite-Library
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Arabidopsis seedlings that emerged from the existing seed bank present in the natural soil were 

continuously removed during this two-week period. After completely removing the seedlings, 

the nine chemical libraries (Table 5-1) were independently supplemented to each of the pots in 

the absence of any plants. Overall, there were three treatments per developmental time point 

(when the exudates were collected) along with controls: pots supplemented with whole exudates, 

EtoAc fraction, water fraction, and three controls (only the solvents: 2% methanol (EtOAc 

Control), sterile water, and negative control (pots receiving no solvents or water)). For each 

treatment nine pots (considered as nine biological replicates) were maintained and each pot 

received 2 ml of the respective chemical library (representing root exudation of two plants) or 

control. These distinct chemical libraries or controls were added twice a week with an interval of 

three days over a period of two or six weeks. None of the pots received additional 

supplementation of water during the experimental period. The soil samples were collected after 

the second or sixth week of supplementation and stored at -80°C for future extraction of soil 

DNA and pyrosequencing.  

Soil DNA extraction and pyrosequencing 

Total DNA was extracted from soil by using a Mo Bio ultraclean soil DNA kit (Mo Bio, 

Carlsbad, CA) according to the manufacturer’s instructions. The DNA was quantified using a 

Nanodrop (Nanodrop Technologies, Wilmington, DE) spectrophotometer, samples showing an 

absorbance ratio (A260/A280) between 1.7 and 2.0 were subjected to PCR analyses. The DNA 

samples that did not show an absorbance ratio between 1.7 and 2.0 were re-extracted. PCR 

amplification was performed by using the primer pairs 515F (GTGCCAGCMGCCGCGGTAA) 

and 806R (GGACTACVSGGGTATCTAAT) (Walters et al 2011) with 454 adaptor (454 Life 

Sciences, Branford, CT, USA) and a ten-base bar-code sequence, not shown here, to amplify the 
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variable region (V4) of the 16S ribosomal small subunit using the following PCR conditions: the 

reaction mix (50 µl) contained 0.4 µmoles of each primer, 200 µmoles of dNTPs, 1 X reaction 

buffer and one unit of Taq DNA polymerase (Takara). PCR included 30 cycles of 94°C for 30 s, 

50°C for 30 s, and 72°C for one minute in an Applied Biosystems thermal cycler (GeneAmp 

PCR system 2700). For each chemical library applied to the soil, nine biological replicates were 

subjected to PCR amplification and three biological replicates were derived from the nine 

biological replicates by pooling three samples together for pyrosequencing analyses. This was 

done to improve the coverage of the microbiome and to reduce the variability between the 

replicates within a given treatment. After pooling, the PCR products were purified using 

AMPure XP beads (Agencourt) before running the products on an agarose gel electrophoresis. 

The specific amplicon product (approximately 400 bp) was eluted from the gel by using 

QIAquick gel extraction kit (Qiagen) according to the manufacturer’s instructions. The purified 

amplicon products were subjected to unidirectional pyrosequencing using a 454 GS FLX 

Titanium sequencing platform (Roche, Indianapolis, IN). Pyrosequencing was performed under 

contract from the Roy J. Carver Biotechnology Center, University of Illinois, Urbana-

Champaign. 

Sequencing analyses 

454 pyrosequencing data analysis was performed using Mothur, version 1.32 (Schloss et 

al 2009). Sequencing reads that had flow lengths between 360 and 720 were retained for analyses 

and separated by barcode. Additional criteria were used to retain sequences and these were: 1 

mismatch to the barcode, up to 2 mismatches for the primer and homopolymer length was 

capped at 8. Sequences were then de-noised with Mothur’s execution of the PyroNoise algorithm 

(Quince et al 2011). Reads that passed the above quality criteria, had the barcode, and primers 
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removed, and those reads that again had up to 1 mismatch of barcode or up to 2 mismatches in 

the primer were removed. Additionally homopolymer length was limited to 8. All retained 

sequences were aligned to the SILVA bacterial reference database (Pruesse et al 2007). Reads 

were screened to begin at the same position and those that did not end at which 95% of the reads 

ended were removed. Chimeras were identified using the UCHIME method within Mothur and 

excluded from further processing (Edgar et al 2011). Sequences were classified against the 

ribosomal database using the naïve Baysian classifier (Wang method) within Mothur (Wang et al 

2007) with a minimum confidence of 60% for each assignment. Sampling effort was equalized to 

the depth of the smallest sample (500 reads). Operational taxonomic units (OTUs) were defined 

at 97% sequence similarity using the furthest neighbor algorithm (Supplementary Material 5-1). 

Principle coordinate analysis (PCoA) was done using weighted UniFrac distances (Lozupone et 

al 2007) obtained in Mothur. 

Statistical analyses 

Relative abundance of each compound within each library was used. Additionally, 

sequencing data was normalized, in each instance, to the water control using a log2 ratio.  

Statistical modeling 

The R project for statistical learning (R Core Team 2014) was used for statistical model 

implementation. The following statistical packages glmnet (Friedman et al 2010), pls (Mevik and 

Wehrens 2007), tree (Ripley 2014), randomForest (Liaw and Wiener 2002), and gbm (Ridgeway 

2013) were used in order to implement and test the performance of the 5 statistical models, 3 

based on linear regression (partial least squares regression, principle components regression, and 

LASSO) and 2 based on machine learning (random forest and boosted decision trees).  
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Adding libraries of compounds to Arabidopsis co-adapted soil 

In order to validate and determine which statistical model most accurately modeled the 

behavior of the soil microbial community we selected twelve compounds (4 amino acids, 4 

sugars, and 4 secondary metabolites; see Table 5-3) from the original libraries and previously 

identified in Badri et al. (2013a) to generate four new chemical blends for additional testing. 

Specifically, we created a mixture of amino acids, sugars, or secondary metabolites (each 

mixture had 4 compounds) along with a mixture containing all twelve compounds (referred here 

as artificial blends), and a water control that were added to Arabidopsis co-adapted soil in the 

same manner as described above with a few modifications. Briefly, microcosms containing 5g of 

Arabidopsis co-adapted soil (8 reps per treatment) were supplemented with 2 ml of each mixture 

twice a week for a period of 5 weeks. The concentration of each compound in the mixture was 

0.05 nmoles/ compound/ day. This value was determined based on the results of Badri et al. 

(2013a) and Larsen et al. (1998). Soil was collected after five weeks of addition (eight reps per 

treatment) and stored in -80°C for future soil RNA extraction.  

Soil RNA extraction 

In order to determine what active microbes are directly influenced by the artificial blends, 

soil RNA extraction was performed as previously published (Chaparro et al 2013a). The Mo Bio 

RNA PowerSoil® Total RNA isolation kit was used. RNA quality was determined using agarose 

gel electrophoresis and concentration was determined using a Nanodrop. All samples had an 

absorbance ratio (A260/A280) between 1.9 and 2.0. One microgram of total RNA underwent a 

DNAse treatment using DNAse I (Fisher Scientific). Total RNA was subsequently transcribed 

using Superscript III RT and random primers (Invitrogen, CA) at 45°C for one hour according to 

the manufacturer’s instructions. PCR was performed using the same 16S rRNA universal primer 
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pair (515F and 806R) (Walters et al 2011) with 454 adaptor (454 Life Sciences, Branford, CT, 

USA) and a ten-base bar-code sequence as described above except that 2 PCR replicates were 

performed for each sample and later combined. PCR clean up including AMPure bead 

purification and gel extraction were carried out as described above. A total of 4 replicates per 

treatment were obtained for pyrosequencing analysis by combining two of the biological 

replicates along with their technical replicates together. Pyrosequencing, as described above, was 

performed under contract from the Roy J. Carver Biotechnology Center, University of Illinois, 

Urbana-Champaign. Sequences were analyzed as described above using Mothur, version 1.32 

(Schloss et al 2009). Operational taxonomic units (OTUs) were defined at 97% sequence 

similarity using the furthest neighbor algorithm (Supplementary Material 5-2). Principle 

coordinate analysis (PCoA) was done using weighted UniFrac distances, as described above. 

Results 

Development of distinct chemical libraries  

The 9 chemical libraries obtained through plant development and subsequent 

fractionation produced distinct changes with respect to the classes of compounds (amino acids, 

secondary metabolites, sugars, and sugar alcohols) found in each library (Table 5-1). For 

example, libraries 7 and 9 contained the highest percentage of secondary metabolite compounds 

(44.33% and 51.80% respectively; Table 5-1). Libraries 4 and 6 were made up mostly of amino 

acids (39.92% and 38.82%; Table 5-1). Additionally, library 4 contained a high percentage of 

sugar compounds (31.01%; Table 5-1). Chemical library 3 had the highest abundance of sugar 

alcohols (6.33%; Table 5-1). Interestingly, library 5 had amino acids, secondary metabolites, and 

unknown classes of compounds at relatively equal abundance (29.55%, 32.02% and 34.14%; 

Table 5-1). Libraries 1 and 8 were made up of secondary metabolites and unknown compounds 
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at the same relative abundance (48.48% and 43.85%; Table 5-1). On the other hand, chemical 

library 2 was composed mostly of unknown compounds (64.68%; Table 5-1). A closer 

examination of the compounds in each chemical library revealed that urea accounted for over 7% 

of library 1 and over 24% of library 7; fructose made up over 26% of chemical library 4, whereas 

oxoproline was most abundant in libraries 8 and 9 (Table 5-2). Glycerol-3-galactosidase 

accounted for about 10% of fraction 6 while asparagine was most abundant in library 5 (Table 

5-2). On the other hand, libraries 2 and 3 were more abundant in unknowns (19.85% and 8.21% 

respectively; Table 5-2). These data suggest that each chemical library was unique. 

Addition of specific chemical libraries to the soil creates distinct microbial communities 

Principle coordinate analysis (PCoA) (Figure 5-1) revealed that the distinct chemical 

libraries significantly altered soil microbial community composition. The first two axes of PCoA 

analysis explained a total of 69.9 % of the variability. PCoA 1 explained 43.4% of this variability 

while PCoA 2 explained 26.5% of the overall variability (Figure 5-1). After the addition of these 

chemical libraries for 2 weeks, libraries 1, 4, and 6-9 were dissimilar from the controls (nothing 

added, water, and EtOAc control) (Figure 5-1A). Similarly, the addition of these natural 

chemical blends for 6 weeks also produced distinct microbial communities (Figure 5-1B). The 

microbial communities generated by libraries 3, 5, 6, 7, and 9 after 6 weeks of addition were 

different from the controls (Figure 5-1B). At 6 weeks, libraries 3, 5, and 6 formed distinct 

microbial communities when compared to each other and the other chemical libraries (Figure 

5-1B). It should be noted that at 2 weeks the microbial communities were separated from the 

controls along PCoA 2; and at 6 weeks the separation between the microbial communities and 

the controls were along PCoA 1 (Figure 5-1A and B). Overall these data indicate that at both 2 

weeks and 6 weeks of chemical library addition distinct changes at various levels of influence 
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occurred between all the microbial communities. Furthermore, many of the microbial 

communities established were distinct from that of the solvents alone. 

Interestingly, the microbial communities were also influenced by the duration of 

exposure to a given library (Figure 5-1). Specifically, libraries 3 and 6 produced the most change 

in microbial communities when comparing 2 (Figure 5-1A) and 6 weeks (Figure 5-1B) of 

amendment duration. On the other hand, the soil microbial community established after exposure 

to library 9 did not significantly change irrespective to the duration of exposure. Additionally, for 

most libraries this prolonged exposure appeared to reduce the variability of the microbial 

communities established at 6 weeks when compared to 2 weeks for a given treatment. 

We analyzed the observed species richness (Sobs), Chao estimate of total species richness 

(Schao), Shannon’s diversity (H’), and evenness (EH) within the soil communities after exposure 

to a chemical library or control after 2 or 6 weeks. Since there were no significant differences in 

soil microbial community structure (Sobs, Schao, H’, and EH, ANOVA Dunnett post-hoc, p<0.05; 

Table 5-4) between the controls (Nothing, EtoAc, and water control) within time points all 

treatments were compared to the water control. Within 2 weeks of exposure we observed that 

Sobs and H’ for the soil microbial communities exposed to the libraries were not significantly 

different from the control (water control; Table 5-5). Schao of the soil microbial community 

exposed to library 8 was significantly different from the control (Table 5-5). Additionally, the EH 

of the soil microbial community exposed to library 3 and 6 were significantly lower when 

compared to the control (ANOVA Dunnett post-hoc p<0.05; Table 5-5). Investigating how Sobs, 

Schao, H’ and EH of the soil microbial community were influenced after exposure of the chemical 

libraries to 6 weeks we observed that EH was significantly altered when compared to the control 

(Table 5-5). For example, evenness of soil microbial communities exposed to libraries 2, 3, 5, 6, 
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8 and 9 for 6 weeks were significantly lower than the control (ANOVA Dunnett post-hoc 

p<0.05; Table 5-5). H’ of soil microbial communities exposed to library 1, 3, 6 and 7 were 

significantly lower than the control at 6 weeks of exposure (Table 5-5). At 6 weeks both Schao 

and Sobs of the microbial community exposed to library 8 for 6 weeks were significantly higher 

than the control (ANOVA Dunnett post-hoc p<0.05; Table 5-5). Interestingly, community 

evenness significantly decreased with time in microbial communities exposed to libraries 2 and 8 

(ANOVA Dunnett post-hoc p<0.05; Table 5-5). These observations further indicate that the 

libraries added to the soil cause changes within soil microbial community structure. 

Modeling soil microbial community dynamics 

The large matrix of natural compounds present in the nine chemical libraries and soil 

microbial OTUs, allowed us to test 5 statistical modeling approaches (partial least squares 

regression, principle components regression, LASSO, random forest, and boosted decision trees) 

in order to develop highly interactive analyses to link compounds with microbial groups. To 

control for length of exposure, the water control at each time point was used to normalize the soil 

microbial communities at each time point since significant differences in microbial community 

structure were observed in water control communities with time (Sobs, Schao, and H’, t-test, 

p<0.05; Table 5-4). To evaluate the performance of each model implemented artificial blends 

derived from the chemical libraries were developed. 

Artificial chemical blends added to the soil influence the soil microbiome 

To validate and determine which statistical model accurately predicted the behavior of 

the soil microbial community; soil was exposed to 12 chemical compounds identified previously 

(Badri et al 2013a) and in our chemical libraries (Table 5-3). These 12 compounds were 

classified in to 3 categories (amino acids, secondary metabolites, and sugars). Solutions of these 
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artificial chemical blends were added to the soil along with a mixture of all 12 compounds to 

determine how the soil microbial community would be influenced by these artificial blends (see 

Materials and Methods). Analyses of the soil microbial communities exposed to these different 

classes of compounds revealed that, although subtle, some differences could be detected. PCoA 

of the weighted UniFrac distance matrix revealed that our control separated from our treatments 

(mixture, amino acids, secondary metabolites, and sugars) (Figure 5-2). This separation between 

the treatments and control is due to PCoA 1 which explained 22.28% of the variability observed 

(Figure 5-2). Furthermore, the solutions containing the three classes of compounds were 

separated by PCoA 2 which explained 11.88% of the observed variability between the samples 

(Figure 5-2). Additionally, the solution with all 12 compounds produced a microbial community 

that appeared to be a transition state between the control and treatments (amino acids, secondary 

metabolites, and sugar) (Figure 5-2).  

Community richness, diversity, and evenness as measured via Sobs, Schao, H’, and EH 

revealed that richness as measured by Sobs and Schao, were significantly higher in the amino acid 

treatment than the control (ANOVA Dunnett post-hoc p<0.05; Table 5-5); the evenness (EH) of 

the community decreased compared to the control, although this change was not significant. Sobs 

was significantly higher in the sugar treatment compared to the control (ANOVA Dunnett post-

hoc p<0.05; Table 5-5). While no other significant differences were observed with respect to 

community structure some trends were noted. For example, our blend of secondary metabolites 

had the lowest measured richness (Sobs and Schao) and diversity (H’) when compared to all other 

soil microbial communities (Table 5-5). The soil microbial community exposed to the sugar 

blend had the highest H’ when compared to all other treatments. Interestingly, the soil microbial 

community exposed to all 12 compounds had Sobs, Schao, H’, and EH measurements that fell 
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between the other treatments (amino acids, sugars, and secondary metabolites exposed soil 

microbial communities; Table 5-5). This may indicate that the mixture of compounds nullifies 

the changes that each chemical class individually produces on the soil microbial community.  

Machine learning models outperforms linear models when predicting the dynamics of the soil 

microbial community 

The effectiveness of the three linear based models (partial least squares regression, 

principle components regression, and LASSO) and two statistical models based on machine 

leaning (random forest and boosted decision trees) on modeling soil microbial community 

dynamics was tested. In order to determine each model’s goodness of fit the mean predicted 

squared error (MPSE) was calculated for each bacterial order (Table 5-7). MPSE is a measure of 

predictive power of a model and how inaccurate the predicted abundance is with respect to the 

true observed abundance. Our data revealed that the models based on machine learning (random 

forest and boosted decision trees) outperform the models based on linear models, as determined 

by MSPE (Table 5-8). Machine learning was able to more accurately predict the dynamics of 

75% of the bacterial orders to a better degree (i.e., lower MSPE), as compared to the models 

based on linear regression (Table 5-7). Eight microbial orders had the lowest MSPE when 

implementing LASSO, while partial least squares regression and principle components 

regression had the lowest MSE for only 2 orders (Bdellovibrionales and Methylophilales) when 

compared to the other models implemented, yet in each of these cases the machine learning 

models had comparable results. Overall, boosted decision trees outperformed random forest, as 

they were able to more accurately predict 16 vs. 14 orders; despite, similar overall average 

MSPEs (1.96 vs. 1.97; Table 5-8). Thus, boosted decision trees was the model chosen for 

continued analysis. 
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Our analysis revealed that the predictive power of forecasting soil microbial community 

abundance after exposure to the artificial blends (Table 5-3) was dependent on chemical class 

(Table 5-9 and Table 5-10). For example, the blend composed of secondary metabolites had the 

lowest MSPE (1.52; Table 5-10). Indicative of the fact that secondary metabolites successfully 

predict soil microbial community dynamics when compared to the other classes of compounds 

tested (sugars, amino acids, and a mixture of these; see Table 5-10). Additionally, the model 

based on secondary metabolites accurately predicted the abundance of 16 microbial orders such 

as Bacillales, Opitutales, Rhodocyclales, etc when compared to the other artificial blends, as 

measured by lower MSPEs (Table 5-9). Artificial blends consisting of sugars had the second 

lowest average MSPE value (1.95; Table 5-10) and was able to accurately predict the changes in 

6 microbial orders such as Actinomycetales, Methylophilales, Planctomycetales, 

Xanthomonadales, etc (Table 5-9). A model derived from the addition of the mixture of all the 

compounds tested was able to most accurately predict 10 microbial orders such as 

Acidomicrobiales, Clostridiales, Pseudomonadales, Rhizobiales, etc (Table 5-9). Additionally, 

the artificial blend consisting of amino acid compounds was able to accurately predict the 

dynamics of 8 microbial orders (Verrucomicrobiales, Nitrospirales, Burkholderiales, etc; Table 

5-9). These data in combination begin to shape our understanding of the soil microbial 

community and how distinct compounds or mixtures of compounds influence specific microbial 

orders.  

Boosted decision tree modeling identifies potential soil probiotics 

Boosted decision tree modeling of the natural compounds present in the nine chemical 

libraries and soil microbial OTUs provided a measure of importance for each chemical 

compound (Table 5-11). This measure of importance for each predictor variable, in this case 
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chemical compound, is based on the how many times a variable is used for separating or splitting 

the data (Elith et al 2008). Furthermore, a variable with a higher relative importance indicates a 

strong influence on the response since the relative contribution of each variable is scaled so that 

the sum of all variables combined is 100 (Elith et al 2008). This enabled the identification of the 

relative importance of each compound in modeling soil microbial community dynamics (Table 

5-11). Seven microbial orders of agricultural importance, ranging from plant growth promotion 

activity to plant pathogens were selected, and the compounds most responsible for the changes in 

abundance were identified (Table 5-11). Partial dependence plots were then used to visualize the 

effect of the important predictor variables (chemical compound) on the response variable 

(bacterial order) after accounting for the average effect of all other variables in the model (Elith 

et al 2008). Interestingly, the amino acid methionine was predicted as being very important in 

determining the abundance of all the bacterial orders selected (Table 5-11). For example, as the 

relative abundance of methionine increases our model predicts that orders such as 

Acidomicrobiales, Actinomycetales, Bacillales, Nitrospirales, and Xanthomodales also increase 

in abundance (Figure 5-3). On the other hand, Pseudomonadales and Rhizobiales appear to 

behave in a more dynamic matter by which they initially decrease in abundance and then once 

methionine reaches a specific relative concentration they begin to increase their abundance 

(Figure 5-3). Increasing the relative abundance of 4-hydroxybutyric acid decreases the 

abundance of 6 bacterial orders (Figure 5-4). Interestingly, Rhizobiales is predicted to increase 

with supplementation of 4-hydroxybutyric acid but this only occurs until a specific relative 

concentration has been reached at which point additional supplementation decreases the 

abundance of Rhizobiales (Figure 5-4F). Similar phenomena are predicted with 

Acidomicrobiales. Increasing the abundance of 3-hydroxy-3-methylglutaric acid increases the 
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abundance of Actinomycetales, Bacillales, and Pseudomonadales, while at low concentrations of 

3-hydroxy-3-methylglutaric acid the abundance of Xanthomonadales decreases (Figure 5-5). 

Discussion 

The importance of the microbial communities associated with all life forms has recently 

been brought to light (Consortium 2012, Kristin and Miranda 2013, Morrissey et al 2004). 

Humans benefit from our microbial gut (Bajzer and Seeley 2006, Turnbaugh et al 2007, Zhao 

2010) as do plants from their rhizosphere microbiome (Dimkpa et al 2009, Kirankumar et al 

2008, Mendes et al 2011, Ramos Solano et al 2008, Rudrappa et al 2008, Selvakumar et al 2012, 

Yang et al 2009, Zhang et al 2010). Understanding how host microbial communities interact and 

communicate with their host is of utmost importance in order to employ targeted approaches for 

selecting and controlling host associated microbial communities. Host associated microbial 

communities can provide many benefits but they can also be detrimental, and an unbalanced 

microbial community can lead to disease (Reid et al 2011). Relatively few strategies have been 

adopted to modulate associated microbial communities in a manner that benefits the human host 

(Rastall et al 2005). For example, prebiotics such as inulin and fructoologosaccharides have been 

used to selectively promote the growth of the beneficial bacteria Bifidobacteria in humans 

(Fukuda et al 2011, Schrezenmeir and de Vrese 2001). This is in contrast to the nonspecific use 

of antibiotics that result in an overhaul of the gut microbial community which is not always able 

to fully recover (Modi et al 2014, Reid et al 2011, Willner et al 2011). Similarly the use of 

pesticides influences both the beneficial and detrimental soil microbial community (Berlec 2012) 

and subsequent reestablishment of the soil microbial community does not guarantee a 

community replete with beneficial microbes. 
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There is mounting evidence identifying the microbial members in the soil that could aid 

plants in dealing with stress and help in proper development (Chaparro et al 2014, Dimkpa et al 

2009, Mendes et al 2011, Palaniyandi et al 2013, Saravanakumar and Samiyappan 2007, 

Selvakumar et al 2012). Here we created and analyzed 9 chemical libraries derived from root 

exudates during three important developmental time points (seedling, vegetative, and bolting) 

that have previously been shown to be distinct with respect to their rhizosphere microbial 

community (Chaparro et al 2014). We then performed an in depth analysis on how these distinct 

libraries influenced the soil microbiome after exposing the soil to these libraries. This approach 

helped in the identification of potential prebiotics that could be used selectively to enhance the 

growth of beneficial microbes or to deter the growth of pathogenic ones. In order to identify such 

candidates we tested and validated several statistical modeling approaches in their ability to 

predict the impact of chemical profiles and thus compounds applied to the soil on the soil 

microbial community.  

Modeling the complex dynamics and multifaceted components that occur in a biological 

ecosystem, such as soil, is difficult and challenging. Multiple factors and mechanisms need to be 

taken into account. A successful model requires the ability to incorporate enough complexity to 

enable robust inferences while simultaneously limiting this complexity for ease of 

interpretability (Merow et al 2014, Olden et al 2008). Here we selected between 5 distinct 

modeling approaches to help interpret and tease apart soil microbial community dynamics upon 

the addition of chemicals. We establish enough complexity within the model selected to 

accurately predict and forecast soil microbial community abundance. Our criteria, model 

training, and validation identified machine learning based models as suitable means of ascribing 

relationships and inference to the data. The linear based models (pcr and pca) implemented had 
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large error rates (as measured by MSPE; see Table 5-7and Table 5-8) that tend to produce 

“underfit” models that were inappropriate for our study (Merow et al 2014). The high MSPE 

found with linear models highlight the complexity of soil microbial community dynamics and 

indicate that linear relationships are insufficient in explaining soil microbial community 

abundances at finer taxonomic levels. On the other hand, machine learning models have the 

ability to model complex, nonlinear relationships, and are capable of handling multifaceted 

systems containing multiple interacting factors (Elith et al 2008, Olden et al 2008). These 

abilities are why machine learning models and in this case boosted decision trees were 

implemented and performed successfully. 

Our analysis revealed not only that distinct classes of compounds influenced the soil 

microbial community but also identified which classes or compounds lend themselves to 

accurately predict microbial community behavior. We observed that the addition of secondary 

metabolites to the soil more reliably predicted the behavior of the soil microbes upon exposure. 

This could be due to the more recalcitrant nature of these compounds which results in the 

utilization of these compounds in a more predictable manner and thus this predictability is what 

enables successful modeling. For example, secondary metabolites such as phenolic compounds 

correlate more readily with soil microbial abundance (Badri et al 2013a). This higher number of 

significant correlations implicates secondary metabolites with the ability to more readily predict 

and model these mechanisms. On the other hand, sugars possibly due to the fact that they are 

more labile and readily used by a multitude of microbes (Chigineva et al 2009) seem to produce 

fewer predictions with respect to soil microbial community dynamics.   

We also observed the effect compounds had on bacteria (Actinomycetales, Bacillales, 

Pseudomonadales and Rhizobiales) shown to be involved in disease suppression (Mendes et al 
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2011) and plant-growth promotion (Babalola 2010). Additionally, we are also able to identify 

how compounds or mixes of compounds influence microbial orders replete with plant pathogens, 

such as Xanthomonadales (Naushad and Gupta 2013, Turner et al 2013). For example, our model 

predicts that the addition of 3-hydroxy-3-methylglutaric acid increases the abundance of 

Actinomycetales, Bacillales, Pseudomonadales, and Rhizobiales while simultaneous decreasing 

the abundance of Xanthomonadales. These examples highlight the predictive ability of the model 

and points us in the direction of personalized/boutique agriculture (Stokes and McCourt 2014). 

Farmers will eventually have the ability to test the soils microbial community, identify areas that 

need improvement, and add a cocktail of compounds that would target the issue(s) and resolve 

them.  

Here we provide an assessment of how chemical compounds within a matrix and 

artificial mixtures of these compounds influence the soil microbial community. It is worth noting 

that we have only tested one soil type and a limited number of natural libraries and artificial 

mixtures. Depending on a particular starting soil microbial condition the outcome of addition of 

compounds might be different. Ultimately, the inherent nature of refining and teaching machine 

learning based models and analyzing how chemical compounds and blends of these interact with 

distinct soil microbial communities will enable the ability for new, refined, more sophisticated 

strategies at a higher level of resolution to help manage the soil microbiome for agricultural 

purposes and mitigate inadequate, unhealthy soil.  
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Tables 

Table 5-1. Summary of the nine chemical libraries obtained. Outlined below is the distribution of the different categories and compounds 

in each chemical library. Each percentage was calculated by dividing the sum of the normalized peak GC-MS areas for each library with 

the sum of the peak area for the compounds in each of the given chemical classes. This was done for each chemical library. 

 

Chemical 

Library 

Developmental 

Time Point 
Fraction 

% Abundance of the chemical classes in each chemical library 

Amino Acids 
Secondary 

Metabolites 
Sugars 

Sugar 

Alcohols 
Unknown 

1 Seedling Whole Exudates 10.16% 35.02% 3.66% 2.66% 48.49% 

2 Vegetative Whole Exudates 9.86% 18.56% 3.10% 3.80% 64.68% 

3 Bolting Whole Exudates 12.68% 21.86% 4.12% 6.33% 55.02% 

4 Seedling Water Fraction 39.29% 13.45% 31.01% 1.40% 14.85% 

5 Vegetative Water Fraction 29.55% 32.02% 2.21% 2.08% 34.14% 

6 Bolting Water Fraction 38.82% 26.24% 3.18% 1.84% 29.92% 

7 Seedling Ethyl Acetate Fraction 16.50% 44.33% 3.23% 2.66% 33.28% 

8 Vegetative Ethyl Acetate Fraction 21.47% 30.24% 1.74% 2.69% 43.85% 

9 Bolting Ethyl Acetate Fraction 27.90% 51.80% 0.80% 0.29% 19.21% 
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Table 5-2. List of the compounds and their relative concentrations (peak area) in each of the 9 chemical libraries analyzed by GC-MS. 

 

Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

xylose Sugars 6792 48140 188835 2428 120991 144514 1184 9116 586 

trehalose Sugars 16326 35859 1263282 2595 1460 3597 4666 4281 437 

maltose Sugars 15193 687666 1281153 1620 1710 7002 5212 1343 189 

levanbiose Sugars 2037 411284 104501 6077 7388 11496 783 1396 167 

glucose Sugars 1233 18955 89764 54068 66166 57017 2128 1498 3832 

glucoheptulose Sugars 781 184236 402543 97 36110 24745 318 390 48 

fucose Sugars 42291 1528862 751668 1798 244145 124567 5295 6779 626 

fructose Sugars 18498 264206 295293 495584 865611 1512583 48964 14124 8302 

cellobiose Sugars 2342 164849 118408 3688 15590 11327 1400 1155 898 

beta-

gentiobiose 
Sugars 963 173400 12320 262 8563 1717 523 991 87 

arabinose Sugars 2677 94747 144052 6107 165513 269182 2149 4778 371 

1-kestose Sugars 746 5036 8341 199 587 894 1013 816 90 

valine Amino Acids 19578 355380 1587852 35216 1664637 701877 15469 18039 21730 

tryptophan Amino Acids 945 114774 183351 226 642776 7138 2771 2114 931 

thymine Amino Acids 1567 173120 100123 265 7611 8151 2034 1640 469 

threonine Amino Acids 10802 135274 206292 12455 350441 1723855 6036 5960 4358 

serine Amino Acids 6011 103373 42237 28643 1524338 1603194 4869 6973 10482 

saccharopine Amino Acids 892 12730 5478 121 9688 4816 596 777 180 

proline Amino Acids 8354 121116 19946 19684 492722 2330459 2312 4004 3279 

phenylalanine Amino Acids 4638 80116 237975 4473 64862 1093662 3178 3650 6141 

oxoproline Amino Acids 96587 7285219 6410779 382899 3053173 2313524 100422 403819 379438 

ornithine Amino Acids 2425 11250 67495 358 20108 270700 739 1182 358 

O-acetylserine Amino Acids 746 13703 13182 260 2505 10738 421 569 76 

N-

methylalanine 
Amino Acids 10238 13942 55569 5563 8782 31457 3482 3573 1215 

methionine Amino Acids 1098 27628 200943 437 89507 66127 887 1307 381 

lysine Amino Acids 1626 109942 121619 3475 580344 754606 1246 1322 927 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

leucine Amino Acids 1074 49358 13422 21079 2040 951666 525 604 9140 

isoleucine Amino Acids 30503 71478 77395 28660 322435 3122993 18827 16482 16949 

homoserine Amino Acids 898 35206 2327 190 6487 1138 431 601 58 

homocystine Amino Acids 1749 67404 197487 175 16149 64346 781 1096 97 

glycine Amino Acids 45984 1506591 1337055 50424 2666010 2179122 21747 9158 9668 

glutamine Amino Acids 23241 356283 157325 71697 3140750 2169195 123254 54637 46885 

cytidine Amino Acids 1509 1282 2906 198 3852 372 882 1009 91 

cysteine-

glycine 
Amino Acids 898 145247 166536 182 25349 6460 905 1509 5197 

cysteine Amino Acids 816 3999 12879 118 16549 34652 334 441 1137 

cyano-L-

alanine 
Amino Acids 1591 16548 22022 3369 147523 583001 2340 3171 1253 

citrulline Amino Acids 886 84412 42625 156 360979 578578 1580 2084 365 

beta-alanine Amino Acids 793 2710 3237 2079 233 617004 371 399 788 

asparagine Amino Acids 6240 444986 902583 10011 3251148 1977886 41366 9321 8997 

arginine + 

ornithine 
Amino Acids 1691 123243 1214235 3685 880209 1771876 3051 1611 1512 

alanine Amino Acids 21263 26247 947449 41778 1179053 1492453 15534 17464 12563 

xylitol 
Sugar 

Alcohols 
2348 106736 177301 244 50521 78162 889 947 337 

threitol 
Sugar 

Alcohols 
4773 732863 519261 429 120618 43665 1981 1998 563 

ribitol 
Sugar 

Alcohols 
728 9186 56650 1071 41141 21923 435 426 63 

pentitol 
Sugar 

Alcohols 
2618 423064 548050 387 94751 72317 1087 884 215 

inositol-4-

monophosphat

e 

Sugar 

Alcohols 
1292 3299 1290 104 912 1694 327 384 39 

inositol myo- 
Sugar 

Alcohols 
2313 91401 438383 10230 610359 215746 2794 9214 1271 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

galactinol 
Sugar 

Alcohols 
30726 986600 4366592 5731 39707 640790 15147 7881 1504 

erythritol 
Sugar 

Alcohols 
1644 56358 569251 625 136322 68308 1531 697 259 

cellobiotol 
Sugar 

Alcohols 
2254 78479 70273 6652 4615 15236 33315 36053 284 

arabitol 
Sugar 

Alcohols 
804 10614 938 50 44268 12002 272 393 46 

2-

deoxyerythritol 

Sugar 

Alcohols 
30333 1935197 412015 428 305238 82308 2863 13141 1104 

xylonolactone 

NIST 

Secondary 

Metabolites 
2436 244377 116267 460 27201 58271 2248 1742 415 

xylonic acid 
Secondary 

Metabolites 
2002 9548 2564 124 19619 750 288 926 194 

urea 
Secondary 

Metabolites 
231903 702075 841624 29449 1313938 71993 568705 263104 50780 

threonic acid 
Secondary 

Metabolites 
63713 469810 648552 7540 280262 79132 5652 2924 1382 

succinic acid 
Secondary 

Metabolites 
26916 84103 58917 5111 426486 165588 14735 16901 47489 

salicylic acid 
Secondary 

Metabolites 
2383 179386 61002 356 26469 3975 1861 2269 1722 

saccharic acid 
Secondary 

Metabolites 
816 13523 8284 74 8678 22969 329 432 95 

pyrazine 2,5-

dihydroxy  

NIST 

Secondary 

Metabolites 
916 28491 9665 250 9515 4494 797 1495 154 

phthalic acid 
Secondary 

Metabolites 
25496 6256646 103574 937 835392 196171 10557 19858 1826 

phosphoric 

acid 

Secondary 

Metabolites 
5912 3551870 3324 5478 413050 262752 17544 33687 2948 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

parabanic acid 

NIST 

Secondary 

Metabolites 
3417 289620 39980 1913 49905 17516 4726 6151 15548 

oxalic acid 
Secondary 

Metabolites 
185226 814722 35580 16513 65210 5197 36995 32082 5584 

N-acetyl-

glutamic acid 

Secondary 

Metabolites 
2154 24195 38175 322 3032668 1987539 1064 1206 880 

myristic acid 
Secondary 

Metabolites 
5154 17871 16569 760 7749 5533 4383 4123 576 

methylmaleic 

acid 

Secondary 

Metabolites 
710 2040 722 69 1691 155 516 491 390 

methylhexadec

anoic acid 

Secondary 

Metabolites 
6634 40755 28584 2115 5602 17535 10734 10486 1179 

methionine 

sulfoxide 

Secondary 

Metabolites 
2571 54243 85736 520 190198 513840 1246 1530 1412 

mannonic acid 

NIST 

Secondary 

Metabolites 
1268 90293 38985 522 15487 47457 419 631 265 

malic acid 
Secondary 

Metabolites 
10514 3999 10954 26252 1079479 744338 8507 12287 156836 

maleimide 
Secondary 

Metabolites 
3411 201565 21066 3030 40765 18459 8705 15335 1481 

lauric acid 
Secondary 

Metabolites 
21615 235342 551042 2844 45239 152387 21793 13725 3168 

lactic acid 
Secondary 

Metabolites 
35293 34973 20387 10071 140470 13116 31572 49412 6346 

kynurenine 
Secondary 

Metabolites 
746 17148 16268 155 7266 20033 428 753 126 

itaconic acid 
Secondary 

Metabolites 
18175 117508 237156 3752 57150 135926 11294 25318 4970 

isonicotinic 

acid 

Secondary 

Metabolites 
30703 669411 84797 813 63273 91472 2727 1911 4293 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

isocitric acid 
Secondary 

Metabolites 
2818 3002 4404 168 46196 93056 442 488 3109 

idonic acid 

NIST 

Secondary 

Metabolites 
904 239 17054 74 8678 22969 240 598 95 

glycolic acid 
Secondary 

Metabolites 
27544 33434 57411 2529 75588 17401 8081 19310 1523 

glycerol-alpha-

phosphate 

Secondary 

Metabolites 
2841 2909 975 667 7205 29057 2602 1819 237 

glycerol-3-

galactoside 

Secondary 

Metabolites 
13027 207644 7701842 1053 1902447 6517643 66513 2912 707 

glycerol 
Secondary 

Metabolites 
45491 313098 241128 31384 971358 172945 25379 49653 5222 

glyceric acid 
Secondary 

Metabolites 
31472 60339 119375 6380 150848 939963 4254 7970 14287 

glutamic acid 
Secondary 

Metabolites 
3105 1034886 4993096 14552 1789456 1013786 7651 13156 15345 

glucuronic acid 
Secondary 

Metabolites 
2642 36745 8373 741 10483 40747 295 453 1952 

galactonic acid 
Secondary 

Metabolites 
4133 309339 11384 527 51365 48626 963 715 321 

galactinol 
Secondary 

Metabolites 
30726 986600 4366592 5731 39707 640790 15147 7881 1504 

GABA 
Secondary 

Metabolites 
8688 13972 105843 21244 2966578 840200 11411 5797 20488 

fumaric acid 
Secondary 

Metabolites 
8765 739391 132399 4159 1533389 560655 17093 17911 362398 

ferulic acid 
Secondary 

Metabolites 
622 6499 4337 104 784 708 306 640 176 

erythronic acid 

lactone 

Secondary 

Metabolites 
29587 185774 417206 6889 253878 521297 7572 18006 2972 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

citric acid 
Secondary 

Metabolites 
2712 36494 19252 1158 1071913 659494 2404 5216 189846 

citramalic acid 
Secondary 

Metabolites 
2436 17259 57977 216 11329 8789 707 2307 1032 

capric acid 
Secondary 

Metabolites 
13027 36348 24912 1396 8100 24440 6897 7955 1340 

beta-sitosterol 
Secondary 

Metabolites 
2143 17848 14039 206 812 652 1149 1319 900 

azelaic acid 
Secondary 

Metabolites 
2560 94554 102646 325 6371 6030 2128 4388 5123 

aspartic acid 
Secondary 

Metabolites 
6910 1531788 1290685 22849 2407414 711763 11690 18030 15573 

aminomalonic 

acid 

Secondary 

Metabolites 
611 9419 7900 178 483 1947 444 491 62 

alpha 

ketoglutaric 

acid 

Secondary 

Metabolites 
1186 43727 30936 354 14855 5239 820 887 7664 

adipic acid 
Secondary 

Metabolites 
17218 40551 42817 1055 27006 3636 6688 8991 2320 

aconitic acid 
Secondary 

Metabolites 
1245 4488 5694 145 39592 45395 560 581 2511 

4-

hydroxybutyric 

acid 

Secondary 

Metabolites 
2055 36593 326324 103 85749 154 2674 1099 997 

4-

hydroxybenzoa

te 

Secondary 

Metabolites 
3223 30572 138983 679 27248 5695 2865 23805 10166 

3-

hydroxypropio

nic acid 

Secondary 

Metabolites 
12974 24848 169172 931 134563 49388 6331 8357 3351 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

3-hydroxy-3-

methylglutaric 

acid 

Secondary 

Metabolites 
2448 24306 117935 502 108040 13420 1393 2867 12229 

3-

aminoisobutyri

c acid 

Secondary 

Metabolites 
611 15085 33320 85 4407 14532 290 470 45 

2-

hydroxyvaleric 

acid 

Secondary 

Metabolites 
50345 359687 343372 1646 56880 11156 18799 49739 2940 

2-

hydroxyglutari

c acid 

Secondary 

Metabolites 
24298 1197141 736585 1519 264706 230184 8484 5671 14585 

2-5-

diketopiperazin

e NIST 

Secondary 

Metabolites 
710 4226 1506 80 1338 825 357 491 33 

2,3-

dihydroxybuta

noic acid NIST 

Secondary 

Metabolites 
1039 25285 15525 74 2678 5512 544 521 131 

214152 Unknowns 1110 363231 81833 170 256962 80332 1004 664 199 

268610 Unknowns 16273 830250 4297797 4134 23975 613982 2395 7160 697 

357788 Unknowns 2219 1071362 2052 75 57542 582 332 357 112 

288866 Unknowns 939 22283 24603 150 522593 783222 387 619 277 

214165 Unknowns 1004 362806 129245 340 458864 144075 877 1244 634 

226848 Unknowns 2730 984829 28608 77 52784 3767 389 485 108 

213160 Unknowns 6675 19544 4066 130 113760 87848 808 393 99 

213148 Unknowns 1162 28001 5124 106 86441 1442 716 613 75 

216832 Unknowns 3599 1703854 1481954 480 63640 116754 5246 2257 306 

373725 Unknowns 998 19357 34488 2211 228926 16680 935 1066 471 

352812 Unknowns 851 1426859 316104 140 73311 10207 477 712 118 

201005 Unknowns 1139 2244 63770 1574 1363076 574715 997 1349 3870 

385048 Unknowns 704 3206 2558 124 224240 147739 827 706 427 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

223830 Unknowns 652 4616 5892 339 107644 166570 532 530 167 

371568 Unknowns 945 29593 9219 115 30035 3828 401 414 76 

362008 Unknowns 9358 430670 792245 305 56041 59141 1034 1426 169 

213179 Unknowns 3311 869979 297224 209 183377 135099 769 2534 346 

367939 Unknowns 9880 5631942 2434517 2790 689647 345509 5108 5186 4991 

213188 Unknowns 810 8545 6784 90 283898 230370 415 679 167 

217809 Unknowns 2430 781090 524452 443 148157 224702 2529 1036 511 

267904 Unknowns 986 123500 8610 174 96630 12144 562 932 133 

199203 Unknowns 16461 
2314323

2 
6602637 16263 2564884 1079905 48969 95546 5393 

228018 Unknowns 611 4681 5284 347 99909 192965 398 613 333 

238134 Unknowns 1362 39921 16524 1510 129315 23269 866 917 680 

327468 Unknowns 839 2780 22196 342 2201936 1060429 562 726 1976 

385107 Unknowns 687 2617 2881 227 184085 122831 557 878 328 

357841 Unknowns 1286 8766 13516 175 84199 16901 755 792 233 

362010 Unknowns 1104 12252 8547 125 110459 31373 659 581 249 

269256 Unknowns 928 7921 5472 84 41975 4835 408 411 100 

362028 Unknowns 933 24184 139355 148 108149 55628 979 753 325 

321749 Unknowns 2184 170550 225879 163 37902 32516 364 551 76 

367944 Unknowns 3763 732863 519261 298 120618 147556 924 1998 563 

267692 Unknowns 1209 76351 4066 150 70354 73008 580 566 116 

362023 Unknowns 922 19427 16795 311 79431 36374 537 744 196 

307912 Unknowns 611 2576 5130 81 57242 115480 368 917 179 

219507 Unknowns 1297 1858537 9294272 4745 2691884 2293558 53519 14249 9257 

207188 Unknowns 1174 48979 10112 118 46902 83403 444 697 245 

200490 Unknowns 675 46857 103902 72 19234 10207 336 456 82 

328420 Unknowns 740 5362 3842 264 114166 83531 491 491 247 

226841 Unknowns 1021 35730 7431 83 33075 4054 362 584 85 

200906 Unknowns 669 4681 4586 456 99909 192965 316 613 333 

218492 Unknowns 1497 32309 4135 128 70354 18368 580 515 155 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

224843 Unknowns 4332 365936 144321 380 34085 20182 815 756 86 

330992 Unknowns 4538 4302097 434901 1825 191009 46238 1041 2224 603 

299185 Unknowns 1104 56696 431 226 74 777 2057 1375 96 

362130 Unknowns 1104 56696 431 226 1098796 777 2057 1375 96 

268345 Unknowns 869 110344 93159 147 22528 27427 567 1453 103 

352980 Unknowns 746 414350 471084 88 56028 17334 859 575 247 

269249 Unknowns 757 4715 2202 99 32488 11669 412 470 74 

213141 Unknowns 986 13610 7427 133 17464 2505 544 744 99 

224632 Unknowns 710 6528 5128 72 21072 100784 260 366 51 

385023 Unknowns 681 105693 28414 88 11008 1354 304 360 26 

359697 Unknowns 1450 27372 8582 135 48877 36910 790 610 151 

269294 Unknowns 886 61896 12571 147 43784 43976 534 819 134 

385021 Unknowns 605 5036 11748 83 5907 3036 327 393 32 

200610 Unknowns 8354 372441 309700 795 36159 25286 1290 1012 215 

310063 Unknowns 8354 372441 309700 795 36159 22925 1290 1012 215 

310897 Unknowns 1338 11448 12177 393 35566 5671 691 720 514 

199177 Unknowns 2560 165420 144149 216 23945 129784 912 777 100 

268353 Unknowns 646 2646 475 65 10821 393 304 369 49 

228911 Unknowns 922 65714 99702 111 12580 15878 327 488 60 

213154 Unknowns 1473 50623 20744 561 131721 106806 871 1736 735 

362086 Unknowns 5354 378713 267708 288 58769 30382 1467 1524 210 

381469 Unknowns 2524 295274 537711 7227 893133 1619609 2432 1718 3881 

268565 Unknowns 945 16915 86100 140 42043 241192 451 664 176 

225327 Unknowns 881 92217 52028 111 32000 2619 924 515 147 

385058 Unknowns 652 17673 5344 90 11626 894 514 357 57 

385112 Unknowns 5148 4867 4839 232 733 883 274 393 43 

303838 Unknowns 1620 1045489 2160935 2125 227608 682584 1193 2468 719 

385028 Unknowns 928 38715 95696 75 21587 1624 419 866 104 

280930 Unknowns 1720 100284 27878 134 12191 11829 666 506 159 

285340 Unknowns 2824 163672 51731 192 3365 3362 1467 595 68 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

224589 Unknowns 1051 16495 2287 131 29875 1197 647 1054 270 

280945 Unknowns 787 45313 18354 79 7194 6180 389 399 130 

352849 Unknowns 1168 3684 1533 96 1229 4176 504 536 55 

385024 Unknowns 663 4238 1246 91 756 118 332 375 26 

307669 Unknowns 916 41483 270818 118 14465 87322 368 423 60 

218748 Unknowns 746 359705 64747 106 21356 310 507 3570 824 

268583 Unknowns 3105 25029 42767 148 22105 6180 318 551 54 

303956 Unknowns 869 431760 501979 323 126013 230806 1720 1551 900 

208897 Unknowns 969 23921 65824 98 13629 19452 465 366 100 

250380 Unknowns 1708 313733 414251 2308 63889 22056 882 709 107 

385034 Unknowns 2765 22371 208682 1001 45008 291273 1522 1176 249 

223191 Unknowns 1532 14234 35499 355 18632 10199 666 902 109 

310871 Unknowns 687 8289 6818 73 7174 6011 281 378 82 

199205 Unknowns 2783 437997 867318 1349 53220 222053 4115 1060 398 

202899 Unknowns 2002 10445 255820 336 40509 366962 1025 1227 156 

208686 Unknowns 3217 196529 359263 301 61628 110440 5387 2007 1765 

352777 Unknowns 1145 158700 364393 180 24570 39282 1094 869 101 

362109 Unknowns 1039 7041 129404 190 73917 45375 601 846 322 

367914 Unknowns 1802 94852 78665 6471 1158474 235953 9841 8815 15582 

211945 Unknowns 2507 38586 181001 289 8054 52933 1039 1995 1020 

245705 Unknowns 1338 265879 936463 9003 183842 74046 2918 3221 619 

385065 Unknowns 1045 46793 12779 196 3254 829 781 738 111 

200509 Unknowns 14976 339421 134595 2597 6253 11969 1442 932 134 

213227 Unknowns 986 23041 5684 234 20256 9666 698 1030 220 

310888 Unknowns 822 7117 14862 6323 35454 4893 926 1066 532 

231350 Unknowns 622 114005 353274 107 18450 29994 541 506 74 

237415 Unknowns 916 28491 9665 250 9515 4324 797 1495 154 

359567 Unknowns 951 28380 5577 170 22271 13859 474 840 222 

224818 Unknowns 669 28852 32877 118 3557 4543 309 333 47 

303992 Unknowns 851 44328 20354 79 3920 101 297 393 56 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

281187 Unknowns 1920 147124 256178 462 26764 134337 1338 1480 381 

213253 Unknowns 4291 77756 34377 1938 213188 476941 4820 3239 2041 

208538 Unknowns 12164 50162 731473 1334 79228 195704 5251 5311 732 

267751 Unknowns 1286 57938 321107 4259 15656 56002 624 1102 340 

310757 Unknowns 3869 313075 483903 302 40578 73844 1925 1012 377 

240551 Unknowns 928 51013 91897 174 21218 38809 458 741 308 

267691 Unknowns 933 26766 17157 186 17178 30603 474 584 63 

267649 Unknowns 1039 65375 103811 280 6924 6064 550 4588 280 

310162 Unknowns 2225 264393 274492 347 46704 52310 1511 1902 410 

385117 Unknowns 6052 8044 5338 365 22580 972 1564 2569 585 

236810 Unknowns 1802 10445 92989 244 33614 171720 951 1227 211 

202599 Unknowns 1773 30706 17821 1458 18012 18146 8178 1212 489 

228619 Unknowns 716 70464 31564 140 11273 44340 396 414 207 

202573 Unknowns 1579 35486 37875 676 589604 151049 610 604 1843 

227816 Unknowns 675 8428 3472 84 3690 2059 355 456 52 

225540 Unknowns 704 1259 683 75 6866 336 244 372 28 

310875 Unknowns 875 4657 4418 292 14910 9779 431 866 141 

324275 Unknowns 1139 3515 22081 621 71438 23424 848 735 249 

362073 Unknowns 875 4657 4418 292 14910 16096 431 866 141 

199242 Unknowns 646 20815 47686 119 2419 9943 638 464 64 

236605 Unknowns 1368 297267 58339 287 118305 40050 838 1024 206 

218734 Unknowns 2554 594913 1542321 276 91221 309273 4189 4641 1322 

231254 Unknowns 1362 43727 30936 354 14855 3940 820 887 7625 

281132 Unknowns 804 7076 50269 73 4735 11866 359 456 152 

284607 Unknowns 1110 3526 1262 70 4165 871 322 560 111 

375029 Unknowns 1714 85572 165729 171 13272 10620 576 4912 1744 

212022 Unknowns 3393 1675951 45116 3725 80717 6034 6838 6910 566 

227598 Unknowns 787 76986 6715 81 6078 1089 590 598 52 

307924 Unknowns 775 3521 6226 69 4050 8697 302 330 34 

215445 Unknowns 1732 1114693 977096 4697 186572 143690 3332 2831 619 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

267696 Unknowns 746 29056 34339 76 4358 1656 352 473 77 

202572 Unknowns 1080 414192 243437 253 29318 51213 986 658 2493 

208397 Unknowns 10567 99695 539963 785 1842 75540 3666 3787 429 

213143 Unknowns 881 11652 5452 91 21244 1100 246 339 45 

374786 Unknowns 2143 320955 518485 989 57761 56126 3740 3635 2140 

323686 Unknowns 2700 348595 449013 1406 148335 152959 3639 5145 6031 

200710 Unknowns 1755 34017 25846 358 5734 6831 633 765 100 

212761 Unknowns 1961 91844 69082 188 10069 523 723 1923 147 

212016 Unknowns 2061 225212 219255 245 46078 92297 1110 2933 2075 

200557 Unknowns 910 6015 9550 121 628 1115 355 450 63 

233408 Unknowns 1427 22178 63279 83 8375 3315 431 464 223 

353047 Unknowns 869 45062 23498 135 3179 3621 829 9107 784 

280546 Unknowns 939 28258 24101 125 4156 1779 412 384 95 

228680 Unknowns 1162 5555 11601 102 917 179 221 393 29 

268365 Unknowns 1427 7414 9415 4019 63685 51876 4086 3546 808 

238267 

trisaccharide 
Unknowns 1380 12870 12731 138 851 220 329 426 52 

269250 Unknowns 1303 23583 34458 124 20549 9830 500 2778 1065 

235449 Unknowns 1368 6954 9390 206 15469 5776 417 515 99 

215397 Unknowns 141321 1225901 745379 12970 181597 38534 90335 46819 7547 

296119 Unknowns 605 17049 13150 199 3052 2135 329 405 53 

237606 Unknowns 834 16455 15350 94 8822 48363 670 700 75 

224811 Unknowns 728 28287 22020 104 2113 3675 281 447 177 

227652 Unknowns 2630 111201 573811 205 25977 5905 2957 1060 784 

214416 Unknowns 881 24819 8424 85 2262 898 811 494 102 

237520 Unknowns 740 15411 15685 70 2821 4281 375 470 46 

224635 Unknowns 1051 9594 26198 240 10554 6718 288 429 138 

385085 Unknowns 2154 586613 100661 255 17822 1793 1108 7205 5607 

310053 Unknowns 798 10649 14094 398 3429 2979 442 688 435 

200624 Unknowns 793 21776 275 67 2210 4472 401 447 31 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

212177 Unknowns 1620 102633 150027 466 10263 17582 1057 1280 674 

205672 Unknowns 12445 105571 95201 1347 21700 44686 6006 6550 1276 

205674 Unknowns 24093 306640 23387 2186 38566 83273 5859 77668 3782 

237605 Unknowns 652 15866 10804 63 4829 20193 357 613 44 

232755 Unknowns 4280 89419 36480 207 26462 3895 1092 813 786 

240436 Unknowns 31801 669411 84797 813 63273 88630 2727 1911 4347 

310380 Unknowns 1139 113160 290256 408 13370 23745 599 777 761 

227728 Unknowns 1409 14584 757350 2423 8060 12902 1755 1754 1045 

213243 Unknowns 928 473669 649897 419 68324 57102 3040 6457 4098 

296071 Unknowns 892 6009 4362 129 892 8043 403 548 444 

385030 Unknowns 875 142997 19994 112 11579 5145 822 887 896 

374402 Unknowns 693 63924 380826 54 6865 2290 778 497 586 

211896 Unknowns 3757 968368 1307316 18985 126738 115996 2651 3055 624 

200615 Unknowns 863 10468 12391 75 1637 3263 362 503 37 

231248 Unknowns 822 250923 93555 412 4225 7518 1034 709 292 

238938 Unknowns 675 8061 6246 69 895 3046 408 518 45 

233790 Unknowns 963 24976 35449 133 3060 3337 583 9256 2329 

212261 Unknowns 2342 87805 934091 685 60626 104091 4813 12248 5235 

310581 Unknowns 751 3118 13050 152 6908 19716 424 500 100 

331031 Unknowns 1315 82722 83524 231 11123 5076 804 2135 909 

267654 Unknowns 1333 4098 253050 157 14928 6446 944 1691 1200 

227822 Unknowns 969 10101 3088 110 5144 3061 371 581 93 

268671 Unknowns 599 34092 5452 71 3533 289 260 310 869 

231098 Unknowns 980 13255 14824 89 3139 1718 357 848 99 

322204 Unknowns 2507 98215 80450 4687 43361 45277 1541 1885 315 

200702 Unknowns 1732 273993 977096 889 171226 143690 5437 5975 868 

224322 Unknowns 7080 91605 8705 942 18638 19730 4770 4719 264 

208714 Unknowns 2360 6592 7718 161 1201 1889 408 616 43 

232946 Unknowns 687 24761 12191 70 562 1985 345 509 165 

228164 Unknowns 3264 137961 135038 443 23095 18673 1674 4942 1523 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

304391 Unknowns 886 7869 12919 88 277 289 410 607 49 

384918 Unknowns 46712 846850 153968 996 136306 227258 6009 18786 1977 

268506 Unknowns 1004 15598 10945 355 4357 11542 562 1027 303 

318770 Unknowns 1585 29190 54034 4069 63439 61813 1955 1021 748 

211921 Unknowns 945 11698 115422 88 1821 218 322 1081 45 

202083 Unknowns 1092 299412 326833 395 6353 54317 2757 1268 417 

241312 Unknowns 828 7059 2956 185 3182 6996 615 965 127 

385104 Unknowns 1039 9722 14814 87 15900 19885 435 464 108 

310006 Unknowns 3916 179351 108897 190 10444 25992 1465 893 391 

310367 Unknowns 951 51287 40882 166 7331 3602 465 1316 234 

237333 Unknowns 622 33014 27088 85 1477 662 311 518 96 

310448 Unknowns 2912 114570 192095 194 11123 9506 889 2135 582 

353091 Unknowns 710 30409 25862 2247 38370 29503 868 616 774 

231576 Unknowns 1016 17690 7589 91 14211 2875 304 595 64 

241168 Unknowns 3194 5578 2861 213 1227 277 541 1125 403 

220122 Unknowns 1773 93208 133693 180 11672 35479 820 1096 117 

231260 Unknowns 3194 5578 2861 249 1379 277 541 1125 403 

237392 Unknowns 810 26585 15900 96 2182 1010 265 598 63 

211916 Unknowns 3833 22056 6093 379 7775 105188 1126 1337 164 

237652 Unknowns 1068 21263 28234 88 2035 2011 670 458 186 

385042 Unknowns 687 13768 1480 58 1415 87 269 429 623 

268712 Unknowns 1239 82430 18091 75 10812 751 903 735 6316 

214201 Unknowns 1785 8259 4924 158 2124 6550 873 610 45 

310193 Unknowns 1039 20389 15170 105 1740 1556 431 664 57 

269776 Unknowns 58388 456416 394795 5887 27091 6714 24030 17717 2878 

199562 Unknowns 2736 85176 25614 447 4233 227717 732 723 243 

206309 Unknowns 3610 87752 170881 289 11327 7731 10288 1834 219 

229277 Unknowns 3957 6761 7201 438 667 879 1239 1914 196 

385075 Unknowns 693 91791 183009 62 6695 119 728 515 170 

206965 Unknowns 6123 21496 48305 2423 14908 37766 1013 884 139 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

213960 Unknowns 746 1405 412 97 1354 334 686 768 35 

231210 Unknowns 769 20511 30303 107 2374 5326 523 435 49 

241387 Unknowns 3282 96600 196903 289 14052 7731 7950 1834 219 

303966 Unknowns 2906 63773 48194 331 3445 23615 2151 3826 130 

233471 Unknowns 616 4057 8972 81 381 138 313 432 39 

267880 Unknowns 710 3637 5530 74 194 206 343 396 35 

233289 Unknowns 957 17906 19299 229 1176 1382 352 607 49 

211910 Unknowns 24556 235342 551042 3255 39621 146319 21793 16237 3494 

319168 Unknowns 36749 322587 52926 8620 80546 55771 28032 36012 3886 

311041 Unknowns 793 18716 11129 236 1593 248 332 557 385 

305637 Unknowns 1462 15662 3367 110 732 178 412 646 69 

225867 Unknowns 264 27658 35989 62 2066 5911 514 316 329 

238549 Unknowns 2225 23403 34834 292 6430 3818 415 429 1075 

239332 Unknowns 6745 335550 374774 456 68151 127866 1283 3406 4456 

374356 Unknowns 722 23845 15742 99 7967 30835 470 3924 567 

211636 Unknowns 115062 508222 191446 1532 31368 240048 8457 45634 5612 

211590 Unknowns 175211 707053 286663 1118 37077 196358 12650 76626 9497 

322260 Unknowns 1104 10772 1496 78 4814 149 339 846 90 

199942 Unknowns 15921 20191 24184 1381 11570 11685 7609 7895 660 

385006 Unknowns 1245 869081 38431 109 2245 684 2496 6335 25525 

227658 Unknowns 816 1609 813 84 274 247 304 1364 45 

227923 Unknowns 722 3153 4542 245 1288 536 647 676 37 

238550 Unknowns 1391 81725 39802 136 7228 4678 2538 2138 1005 

226256 Unknowns 581 3713 7296 63 211 1168 309 375 31 

271049 Unknowns 13549 131695 44411 1974 43636 39832 16439 12578 708 

200486 Unknowns 2548 81725 39802 464 7228 4678 2137 2138 938 

236965 Unknowns 10332 25349 7629 129 2954 6232 2913 3004 422 

299487 Unknowns 710 962 621 68 122 96 348 524 33 

385055 Unknowns 763 143242 143094 202 15857 632 739 1831 6267 

218694 Unknowns 10221 263315 116853 617 14160 32250 2508 3284 4130 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

203592 Unknowns 11764 40178 28078 1097 5577 8807 8141 8839 960 

199246 Unknowns 3135 13534 23598 318 1857 909 1363 2129 229 

200905 Unknowns 6657 331657 23699 4535 34843 45122 3478 17631 2640 

373752 Unknowns 2154 101327 228308 341 8182 5395 2151 1587 1668 

309617 Unknowns 17159 33894 15459 377 3474 1741 2312 8747 708 

200567 Unknowns 1350 33387 98624 6077 4605 16108 898 1253 316 

308219 Unknowns 1920 12205 6505 316 2737 897 1870 1655 125 

268438 Unknowns 1256 11162 1527 126 20 164 555 801 75 

219512 Unknowns 18598 733096 933990 87 7647 2571 8364 157989 59793 

211919 Unknowns 1086 27477 13920 140 1983 7013 702 1051 673 

299441 Unknowns 957 9513 40644 236 850 607 668 158 415 

385120 Unknowns 992 66337 98885 74 10941 7748 725 655 2804 

224627 Unknowns 2301 7875 40733 790 4390 321 1603 5273 638 

206022 Unknowns 16279 26387 31680 1501 7993 7908 8583 9631 1113 

224574 Unknowns 781 10399 1163 264 1013 1068 1476 1474 101 

303839 Unknowns 3217 105040 300670 19210 37668 155118 3579 4171 3111 

238506 Unknowns 793 123698 403914 79 13625 5895 1345 655 9146 

234717 Unknowns 17958 41757 115499 2568 16911 27314 13489 15844 2050 

201042 Unknowns 12727 72183 119258 1161 8656 5267 5813 11578 10919 

294511 Unknowns 975 3975 6618 150 418 1442 751 569 88 

267987 Unknowns 5307 95545 46142 343 11744 5819 2204 2596 4451 

268437 Unknowns 1749 2926 18075 236 1160 3197 859 837 247 

235327 Unknowns 5777 39035 38541 1505 5405 2638 12240 9604 500 

384992 Unknowns 40712 85059 37954 4036 13957 13988 25964 28450 2786 

213191 Unknowns 975 7834 8258 121 742 1897 3597 1346 63 

357685 Unknowns 14982 37549 13991 427 4413 69379 4086 6737 1077 

241881 Unknowns 2014 857 1587 205 106 348 801 280 37 

288810 Unknowns 4796 19241 5817 815 1998 3281 3151 3668 315 

368156 Unknowns 4602 7939 2964 471 1149 315 2227 2727 272 

357502 Unknowns 693 52779 6022 152 6014 9861 702 545 1964 
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Name Group 
Library 

1 

Library 

2 

Library 

3 

Library 

4 

Library 

5 

Library 

6 

Library 

7 

Library 

8 

Library 

9 

200540 Unknowns 1427 300764 884934 3049 32747 23526 3275 1902 20459 

224849 Unknowns 2372 6604 6568 357 1186 1710 2043 1685 259 

216428 Unknowns 63889 99730 25535 5783 12030 3571 12795 41129 1430 

327143 Unknowns 1309 2448 1428 32 291 207 624 950 20 
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Table 5-3. The 12 selected compounds composing the artificial chemical blends added to the soil 

in order to validate the 5 statistical models. 

 

Compound Chemical Class 

Glycine Amino Acid 

Oxoproline Amino Acid 

Phenylalanine Amino Acid 

Tryptophan Amino Acid 

citramalic acid Secondary Metabolite 

fumaric acid Secondary Metabolite 

Ethyl-4-hydroxybenzoate Secondary Metabolite 

Maleimide Secondary Metabolite 

Fructose Sugar 

Fucose Sugar 

Maltose Sugar 

Xylose Sugar 
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Table 5-4. Observed species richness (Sobs), Chao1 estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) of soil microbial community controls (Water, 

Nothing, and EtOAc) after a period of 2 and 6 weeks. * indicates statistically significant 

differences between water control soil microbial communities after 2 and 6 weeks. 

 

 Control 2 weeks 6 weeks 

Sobs 

Water* 503.67 ± 56.22 1054.67 ± 128.53 

EtOAc 319.33 ± 31.42 1190.67 ± 157.35 

Nothing 1012.00 ± 210.97 1681.33 ± 261.02 

Schao 

Water* 826.80 ± 99.42 1858.75 ± 197.43 

EtOAc 618.21 ± 84.47 2091.50 ± 256.55 

Nothing 1702.66 ± 357.37 2889.74 ± 459.53 

H’ 

Water* 5.76 ± 0.09 6.34 ± 0.10 

EtOAc 5.35 ± 0.10 6.36 ± 0.14 

Nothing 6.25 ± 0.23 6.73 ± 0.10 

EH 

Water 0.93 ± 0.005 0.91 ± 0.003 

EtOAc 0.92 ± 0.008 0.90 ± 0.005 

Nothing 0.91 ± 0.001 0.91 ± 0.006 
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Table 5-5. The observed species richness (Sobs), Chao estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) for soil microbial communities, which have 

been exposed to a given chemical library for 2 or 6 weeks. * indicates statistically significant 

differences between water control soil microbial communities within a given week (ANOVA 

Dunnett post-hoc, p<0.05). # indicates statistically significant differences between the soil 

microbial communities after exposure to a given chemical library at 2 and 6 weeks (t-test 

Bonferroni correction, p<0.001). 

 

 Library 2 weeks 6 weeks 

Sobs 

1 368.50 ± 213.50 318.00 ± 9.00 

2 737.33 ± 293.42 1220.33 ± 290.89 

3 677.33 ± 195.65 1276.33 ± 196.71 

4 639.00 ± 147.60 560.00 ± 103.59 

5 508.67 ± 65.51 1192.33 ± 126.24 

6 974.00 ± 429.49 625.33 ± 81.24 

7 507.67 ± 65.70 525.33 ± 97.05 

8 1055.33 ± 166.25 2078.33 ± 379.31* 

9 698.00 ± 133.51 1335.33 ± 114.62 

Schao 

1 470.94 ± 273.16 477.36 ± 0.68 

2 1889.38 ± 692.44 3252.66 ± 574.36 

3 1307.82 ± 429.15 2725.19 ± 463.12 

4 867.62 ± 197.99 881.18 ± 150.25 

5 1386.96 ± 201.88 3043.46 ± 302.16 

6 1659.79 ± 678.55 1452.58 ± 267.41 

7 689.60 ± 106.67 801.22 ± 152.46 

8 2506.66 ± 343.32* 4766.85 ± 1025.15* 

9 1373.12 ± 193.87 3086.33 ± 299.31 

H’ 

1 5.30 ± 0.60 5.43 ± 0.07* 

2 6.03 ± 0.32 6.17 ± 0.21 

3 5.31 ± 0.13 5.64 ± 0.18* 

4 5.91 ± 0.24 5.79 ± 0.18 

5 5.74 ± 0.06 6.16 ± 0.12 

6 5.47 ± 0.27 4.87 ± 0.19* 

7 5.67 ± 0.18 5.47 ± 0.20* 

8 6.31 ± 0.19 6.41 ± 0.15 

9 5.79 ± 0.12 6.30 ± 0.10 

EH 

1 0.93 ± 0.003 0.94 ± 0.007 

2# 0.94 ± 0.007 0.88 ± 0.003* 

3 0.83 ± 0.047* 0.79 ± 0.013* 

4 0.93 ± 0.004 0.92 ± 0.003 

5 0.92 ± 0.017 0.87 ± 0.004* 

6 0.83 ± 0.046* 0.76 ± 0.016* 

7 0.91 ± 0.011 0.88 ± 0.013 

8# 0.91 ± 0.006 0.84 ± 0.002* 

9 0.89 ± 0.011 0.88 ± 0.005* 
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Table 5-6. The observed species richness (Sobs), Chao estimate of total species richness Schao, 

Shannon diversity (H’), and Shannon Evenness (EH) for soil microbial communities, which have 

been exposed to artificial chemical blends. * indicates statistically significant differences between 

water control soil microbial communities (ANOVA Dunnett post-hoc, p<0.05). 

 

Treatments 

Richness Shannon 

Sobs Chao (SChao) 
Diversity 

(H’) 

Evenness 

(EH) 

Water Control 437.00 ± 61.99 1201.04 ± 144.42 5.44 ± 0.18 0.90 ± 0.02 

Amino Acids 707.75 ± 68.92* 1894.28 ± 62.45* 5.58 ± 0.29 0.85 ± 0.04 

Mixture 481.75 ± 18.86 1437.93 ± 52.32 5.45 ± 0.27 0.88 ± 0.04 

Secondary Metabolites 320.00 ± 18.25 981.77 ± 29.48 5.00 ± 0.29 0.87 ± 0.05 

Sugars 711.75 ± 109.66* 1744.43 ± 303.39 5.87 ± 0.10 0.90 ± 0.02 
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Table 5-7. Mean square predicted error (MSPE) of each of the 5 statistical models implemented 

for each microbial order (pcr- partial components regression, pls - partial least squares regression, 

LASSO- LASSO, random forest-random forest, and boosted - boosted decision trees). 

 

Microbial Orders MSPE pcr MSPE pls 

MSPE 

LASSO 

MSPE 

random 

forest 

MSPE 

boosted 

Acidimicrobiales 5.68 5.68 0.72 1.17 1.07 

Acidobacteria Gp1 

order incertae sedis 
244.74 244.74 2.40 1.08 0.90 

Acidobacteria Gp16 

order incertae sedis 
26.27 26.27 1.34 2.93 2.29 

Acidobacteria Gp17 

order incertae sedis 
49.35 49.35 1.28 2.39 2.43 

Acidobacteria Gp3 

order incertae sedis 
8.79 8.79 1.92 1.40 1.22 

Acidobacteria Gp4 

order incertae sedis 
116.37 116.37 3.10 1.45 1.59 

Actinomycetales 67.49 67.49 1.08 1.28 1.19 

Armatimonadetes gp5 

order incetae sedis 
7.82 7.82 2.52 1.05 1.29 

Bacillales 244.42 244.42 1.31 0.82 0.70 

Bacteroidetes incertae 

sedis order incertae 

sedis 

3.20 3.20 3.74 1.02 1.02 

Bdellovibrionales 1.95 1.95 2.00 2.08 2.01 

Burkholderiales 184.60 184.60 5.98 2.28 2.21 

Caulobacterales 26.70 26.70 3.94 3.81 3.14 

Clostridiales 0.72 0.72 3.92 0.65 0.66 

Desulfuromonadales 1.17 1.17 2.18 0.48 0.48 

Flavobacteriales 50.84 50.84 1.96 1.09 1.15 

Legionellales 1.92 1.92 4.05 0.31 0.39 

Methylophilales 6.37 6.37 15.72 8.12 8.29 

Myxococcales 239.79 239.79 1.62 1.53 1.51 

Nitrospirales 516.68 516.68 5.36 3.21 3.92 

Opitutales 5.90 5.90 0.96 0.94 1.19 

Planctomycetales 303.24 303.24 2.92 1.83 1.65 

Pseudomonadales 640.18 640.18 0.13 3.94 4.65 

Rhizobiales 2.04 2.04 4.80 0.75 0.67 

Rhodocyclales 288.93 288.93 1.61 1.08 1.24 

Rhodospirillales 6.14 6.14 3.03 1.30 1.29 

Solirubrobacterales 21.72 21.72 5.34 2.33 2.07 

Spartobacteria order 

incertae sedis 
217.95 217.95 1.67 1.32 1.43 

Sphingobacteriales 124.17 124.17 7.87 6.07 5.73 
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Microbial Orders MSPE pcr MSPE pls 

MSPE 

LASSO 

MSPE 

random 

forest 

MSPE 

boosted 

Sphingomonadales 18.15 18.15 5.06 3.12 2.86 

Subdivision3 order 

incertae sedis 
50.45 50.45 5.46 2.99 3.14 

unclassified 

Actinobacteria 
22.43 22.43 1.91 2.59 2.58 

unclassified Bacteria 35.50 35.50 3.58 2.98 2.80 

unclassified 

Bacteroidetes 
118.42 118.42 1.17 1.79 1.81 

unclassified 

Chloroflexi 
35.29 35.29 4.70 1.67 1.71 

unclassified 

Firmicutes 
115.62 115.62 1.02 1.20 1.38 

unclassified 

Planctomycetes 
11.35 11.35 6.62 1.90 2.00 

unclassified 

Proteobacteria 
104.35 104.35 3.96 1.66 1.49 

Verrucomicrobiales 5.76 5.76 2.26 0.42 0.41 

Xanthomonadales 210.79 210.79 1.85 0.63 0.79 
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Table 5-8. Average and standard error obtained for overall MSPE of each statistical model 

employed. 

 

 pls pcr LASSO random forest boosted 

Average 103.58 103.58 3.30 1.97 1.96 

Standard Error 22.80 22.80 0.43 0.24 0.24 
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Table 5-9. Mean square predicted error (MSPE) after boosted decision tree modeling for each of 

the artificial blends added to the soil for each microbial order. 

Microbial Orders Mixture 

Amino 

Acids 

Secondary 

Metabolites Sugars 

Acidimicrobiales 0.22 0.95 0.42 2.52 

Acidobacteria Gp1 order incertae sedis 0.70 1.53 0.35 0.89 

Acidobacteria Gp16 order incertae sedis 3.12 2.69 1.50 1.64 

Acidobacteria Gp17 order incertae sedis 1.76 1.39 3.78 3.13 

Acidobacteria Gp3 order incertae sedis 1.42 1.21 0.76 1.37 

Acidobacteria Gp4 order incertae sedis 0.79 1.36 3.43 1.24 

Actinomycetales 0.67 1.42 2.51 0.49 

Armatimonadetes gp5 order incetae sedis 3.16 1.03 0.43 0.31 

Bacillales 0.31 1.56 0.19 0.61 

Bacteroidetes incertae sedis order incertae sedis 0.21 2.74 0.69 0.34 

Bdellovibrionales 1.53 4.17 0.91 1.16 

Burkholderiales 2.34 1.60 3.39 1.83 

Caulobacterales 4.09 3.45 0.77 3.67 

Clostridiales 0.39 0.76 0.89 0.66 

Desulfuromonadales 0.46 0.44 0.34 0.65 

Flavobacteriales 2.08 0.79 0.57 1.01 

Legionellales 0.91 0.04 0.07 0.47 

Methylophilales 11.52 6.96 10.00 5.12 

Myxococcales 1.05 2.64 1.13 1.11 

Nitrospirales 6.31 0.57 6.14 3.22 

Opitutales 2.37 0.93 0.10 1.09 

Planctomycetales 1.76 2.13 2.08 0.73 

Pseudomonadales 0.77 11.68 1.82 3.64 

Rhizobiales 0.11 0.21 1.24 1.27 

Rhodocyclales 2.79 1.20 0.04 0.64 

Rhodospirillales 1.27 0.84 1.38 1.69 

Solirubrobacterales 1.02 1.51 0.27 5.03 

Spartobacteria order incertae sedis 1.45 1.38 1.98 1.04 

Sphingobacteriales 5.53 7.20 0.38 8.48 

Sphingomonadales 1.19 4.92 0.48 4.26 

Subdivision3 order incertae sedis 6.08 1.52 3.09 1.85 

unclassified Actinobacteria 3.54 1.43 3.27 2.24 

unclassified Bacteria 3.32 4.59 0.23 2.40 

unclassified Bacteroidetes 0.32 1.63 1.73 3.54 

unclassified Chloroflexi 0.57 1.58 1.11 3.43 

unclassified Firmicutes 0.74 2.23 1.05 1.43 

unclassified Planctomycetes 2.18 2.56 1.45 1.68 

unclassified Proteobacteria 1.26 2.70 0.41 1.32 

Verrucomicrobiales 0.56 0.06 0.22 0.77 

Xanthomonadales 2.37 0.27 0.25 0.15 
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Table 5-10. Average and standard error obtained for overall MSPE of each artificial blend 

employed after boosted decision tree modeling. 

 

 
Mixture 

Amino 

Acids 

Secondary 

Metabolites Sugars 

Average 2.06 2.20 1.52 1.95 

Standard Error 0.35 0.36 0.30 0.27 
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Table 5-11. Relative importance of each compound as determined by boosted decision tree modeling for predicting the abundance of 

microbial Orders found in the soil. The relative contribution of each variable is scaled so that the sum of all variables combined within 

a bacterial order is 100, higher numbers indicate stronger influences on respective bacterial order relative abundance. 

 

Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

methionine 1.68 2.53 2.29 1.77 1.34 1.61 1.66 

erythronic acid 

lactone 
2.03 1.57 1.70 1.65 1.31 1.88 1.69 

3-hydroxy-3-

methylglutaric acid 
1.89 2.43 1.80 1.82 2.01 2.67 1.79 

4-hydroxybutyric 

acid 
1.60 1.68 1.79 2.35 1.39 1.62 2.14 

threonic acid 1.82 2.07 1.61 1.76 1.25 1.60 1.96 

Unk206965 1.90 1.47 1.52 1.68 1.16 1.84 1.60 

leucine 1.27 1.29 1.33 1.62 1.70 1.29 1.37 

Unk218748 1.49 1.33 1.17 0.51 0.64 1.61 0.58 

Unk224635 1.17 1.10 1.28 1.32 1.49 1.29 1.58 

Unk232755 1.27 1.06 1.70 1.60 1.00 1.06 1.42 

2-hydroxyglutaric 

acid 
1.72 1.13 1.29 1.26 1.21 1.37 1.55 

Unk238134 1.48 2.65 1.35 1.33 0.78 1.20 1.08 

citrulline 1.41 1.43 1.29 1.17 1.10 1.30 1.20 

fucose 1.03 0.83 0.92 0.82 0.91 0.99 0.99 

isonicotinic acid 1.12 1.19 1.19 1.25 1.47 1.36 1.23 

ornithine 0.97 0.93 1.45 1.15 1.11 0.97 1.11 

Unk199562 1.02 1.08 1.45 0.67 1.10 1.76 1.08 

Unk212261 1.09 2.81 0.92 0.98 0.81 1.35 0.71 

citramalic acid 0.76 0.77 0.70 0.86 1.08 0.90 0.78 

cytidine 0.44 0.37 0.55 0.54 1.44 0.50 0.46 

fructose 1.55 1.09 1.14 0.90 1.28 1.33 0.93 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

galactonic acid 0.92 1.15 1.01 1.07 1.07 1.76 1.04 

glucoheptulose 0.89 0.82 0.76 0.85 1.14 0.90 0.91 

glycerol-3-

galactoside 
0.70 0.35 1.49 0.35 0.75 0.68 0.44 

homocystine 0.57 0.49 0.85 0.56 1.44 0.75 0.46 

levanbiose 1.07 0.97 0.93 0.82 1.11 0.93 1.02 

oxoproline 1.07 0.83 0.99 0.86 0.60 1.17 0.98 

tryptophan 1.04 0.96 0.99 0.76 0.78 0.94 0.89 

Unk211945 1.01 0.99 0.78 1.15 0.67 0.85 0.99 

Unk212022 0.84 0.71 1.14 1.00 1.18 0.82 0.88 

Unk214165 0.67 0.88 0.43 0.53 0.20 0.48 0.51 

Unk227728 1.58 0.99 1.07 1.08 0.97 0.99 1.04 

Unk245705 0.68 0.53 0.62 0.64 0.52 0.54 0.64 

Unk384918 0.87 0.84 1.02 1.08 0.88 1.07 0.89 

Unk385034 1.13 0.80 1.90 0.53 0.90 1.19 0.55 

xylonic acid 0.70 0.66 0.74 0.97 1.29 0.78 0.60 

aconitic acid 0.01 0.01 0.01 0.02 0.01 0.01 0.01 

adipic acid 0.02 0.02 0.03 0.03 0.03 0.02 0.02 

alanine 0.60 0.48 0.46 0.66 0.48 0.55 0.75 

alpha ketoglutaric 

acid 
0.13 0.15 0.13 0.18 0.05 0.10 0.29 

aminomalonic acid 0.04 0.03 0.03 0.04 0.04 0.03 0.02 

arabinose 0.88 0.79 0.77 0.92 0.55 0.67 1.15 

arabitol 0.49 0.41 0.45 0.41 0.69 0.45 0.42 

arginine + ornithine 0.25 0.22 0.25 0.35 0.34 0.20 0.28 

asparagine 1.01 0.97 1.37 0.88 0.94 1.07 0.89 

aspartic acid 0.54 0.47 0.36 0.51 0.52 0.42 0.39 

azelaic acid 0.35 0.38 0.29 0.36 0.29 0.48 0.36 

beta-alanine 0.16 0.22 0.21 0.24 0.24 0.21 0.17 

beta-gentiobiose 0.70 0.62 0.88 0.83 1.18 0.75 0.81 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

beta-sitosterol 0.04 0.05 0.05 0.06 0.06 0.05 0.07 

capric acid 0.03 0.02 0.03 0.04 0.07 0.03 0.02 

cellobiose 0.45 0.48 0.48 0.50 0.45 0.44 0.50 

cellobiotol 0.26 0.18 0.14 0.18 0.14 0.15 0.17 

citric acid 0.27 0.26 0.28 0.34 0.25 0.28 0.37 

cyano-L-alanine 0.31 0.38 0.34 0.42 0.59 0.24 0.43 

cysteine 1.45 1.28 1.18 1.17 1.24 1.32 1.16 

cysteine-glycine 0.28 0.39 0.32 0.32 0.44 0.35 0.30 

erythritol 0.37 0.25 0.53 0.41 0.40 0.35 0.39 

ferulic acid 0.02 0.02 0.02 0.03 0.02 0.01 0.02 

fumaric acid 0.43 0.38 0.42 0.40 0.56 0.44 0.51 

GABA 0.09 0.07 0.10 0.12 0.04 0.07 0.11 

galactinol1 0.51 0.50 0.62 0.68 0.64 0.64 0.66 

galactinol2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

glucose 0.66 0.59 0.51 0.73 0.54 0.48 0.66 

glucuronic acid 0.30 0.32 0.38 0.30 0.36 0.36 0.32 

glutamic acid 0.13 0.14 0.14 0.15 0.22 0.10 0.12 

glutamine 0.42 0.28 0.28 0.27 0.18 0.28 0.20 

glyceric acid 0.25 0.30 0.27 0.28 0.25 0.27 0.32 

glycerol 0.65 0.68 0.61 0.64 0.77 0.52 0.56 

glycerol-alpha-

phosphate 
0.14 0.16 0.19 0.23 0.28 0.20 0.24 

glycine 0.74 0.95 0.74 0.68 0.51 1.03 0.74 

glycolic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

homoserine 0.16 0.16 0.24 0.24 0.33 0.21 0.26 

idonic acid NIST 0.31 0.27 0.37 0.26 0.30 0.26 0.35 

inositol myo- 0.19 0.20 0.17 0.25 0.26 0.17 0.22 

inositol-4-

monophosphate 
0.60 0.64 0.62 0.76 0.51 0.57 0.64 

isocitric acid 0.30 0.32 0.31 0.40 0.34 0.32 0.31 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

isoleucine 0.76 0.72 0.64 0.62 0.67 0.72 0.59 

itaconic acid 0.48 0.44 0.40 0.57 0.63 0.53 0.46 

kynurenine 0.26 0.21 0.25 0.30 0.23 0.25 0.33 

lactic acid 0.03 0.03 0.05 0.03 0.14 0.05 0.03 

lauric acid 0.28 0.27 0.29 0.35 0.20 0.24 0.36 

lysine 0.52 0.41 0.41 0.67 0.59 0.42 0.67 

maleimide 0.23 0.22 0.25 0.28 0.26 0.26 0.26 

malic acid 0.06 0.07 0.07 0.09 0.07 0.06 0.09 

maltose 0.89 0.93 0.91 0.81 0.70 0.85 0.85 

mannonic acid NIST 0.94 1.09 0.92 1.05 1.13 1.30 1.16 

methionine sulfoxide 1.21 1.16 1.12 1.05 1.14 1.12 1.02 

methylhexadecanoic 

acid 
0.06 0.03 0.04 0.07 0.08 0.05 0.03 

methylmaleic acid 0.09 0.10 0.16 0.10 0.29 0.10 0.14 

myristic acid 0.08 0.09 0.12 0.12 0.18 0.09 0.06 

N-acetyl-glutamic 

acid 
0.84 0.86 0.83 0.97 0.79 0.92 0.92 

N-methylalanine 0.47 0.52 0.35 0.35 0.48 0.37 0.29 

O-acetylserine 0.89 0.74 1.01 0.97 0.92 0.75 0.93 

oxalic acid 0.06 0.06 0.06 0.07 0.07 0.04 0.06 

parabanic acid NIST 0.15 0.13 0.19 0.19 0.25 0.14 0.20 

pentitol 0.09 0.06 0.07 0.10 0.06 0.09 0.12 

phenylalanine 0.82 0.86 0.74 1.03 0.86 0.85 0.98 

phosphoric acid 0.46 0.47 0.46 0.47 0.40 0.46 0.50 

phthalic acid 0.25 0.29 0.23 0.21 0.23 0.24 0.19 

proline 0.47 0.49 0.35 0.40 0.38 0.40 0.30 

pyrazine 2,5-

dihydroxy  NIST 
0.15 0.13 0.12 0.19 0.17 0.12 0.20 

ribitol 0.15 0.10 0.12 0.15 0.14 0.14 0.17 

saccharic acid 0.29 0.21 0.27 0.31 0.25 0.27 0.34 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

saccharopine 0.88 0.61 0.91 0.90 1.12 0.81 0.84 

salicylic acid 0.35 0.25 0.27 0.40 0.27 0.23 0.47 

serine 0.31 0.32 0.41 0.37 0.31 0.33 0.38 

succinic acid 0.23 0.21 0.26 0.40 0.59 0.25 0.30 

threitol 0.54 0.47 0.45 0.66 0.48 0.70 0.71 

threonine 0.69 0.60 0.49 0.45 0.54 0.72 0.40 

thymine 0.64 0.71 0.62 0.68 0.63 0.57 0.66 

trehalose 0.83 0.89 0.89 1.10 1.00 0.78 0.89 

Unk199177 0.03 0.02 0.04 0.03 0.06 0.05 0.03 

Unk199203 0.27 0.20 0.21 0.31 0.21 0.23 0.24 

Unk199205 0.14 0.07 0.12 0.12 0.17 0.13 0.13 

Unk199242 0.02 0.03 0.03 0.01 0.01 0.01 0.02 

Unk199246 0.05 0.03 0.05 0.05 0.05 0.03 0.07 

Unk199942 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk200486 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Unk200490 0.17 0.12 0.08 0.08 0.13 0.17 0.15 

Unk200509 0.16 0.46 0.07 0.10 0.04 0.14 0.07 

Unk200540 0.16 0.19 0.16 0.17 0.25 0.15 0.18 

Unk200557 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk200567 0.73 0.65 0.62 0.59 0.54 0.55 0.51 

Unk200610 0.17 0.21 0.20 0.27 0.20 0.25 0.29 

Unk200615 0.00 0.01 0.02 0.01 0.01 0.00 0.01 

Unk200624 0.10 0.09 0.09 0.10 0.09 0.05 0.15 

Unk200702 0.08 0.08 0.07 0.06 0.07 0.07 0.05 

Unk200710 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

Unk200905 0.88 0.86 0.53 0.94 0.66 0.75 0.89 

Unk200906 0.15 0.15 0.14 0.17 0.10 0.15 0.23 

Unk201005 0.08 0.13 0.10 0.14 0.08 0.09 0.12 

Unk201042 0.02 0.02 0.02 0.04 0.04 0.03 0.04 

Unk202083 0.21 0.35 0.19 0.21 0.15 0.22 0.22 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk202572 0.33 0.31 0.24 0.38 0.62 0.26 0.29 

Unk202573 0.21 0.20 0.22 0.24 0.20 0.18 0.27 

Unk202599 0.09 0.14 0.07 0.08 0.06 0.05 0.10 

Unk202899 0.07 0.08 0.19 0.07 0.13 0.11 0.09 

Unk203592 0.01 0.00 0.02 0.00 0.02 0.01 0.01 

Unk205672 0.00 0.01 0.01 0.00 0.01 0.01 0.01 

Unk205674 0.06 0.06 0.06 0.07 0.07 0.03 0.08 

Unk206022 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk206309 0.01 0.01 0.03 0.03 0.01 0.00 0.01 

Unk207188 0.80 0.66 0.62 0.58 0.52 0.68 0.67 

Unk208397 0.07 0.07 0.08 0.06 0.05 0.03 0.06 

Unk208538 0.31 0.26 0.53 0.21 0.27 0.29 0.20 

Unk208686 0.33 0.28 0.26 0.39 0.25 0.33 0.30 

Unk208714 0.12 0.06 0.08 0.08 0.07 0.07 0.07 

Unk208897 0.00 0.00 0.01 0.00 0.01 0.01 0.00 

Unk211590 0.01 0.01 0.02 0.01 0.03 0.01 0.02 

Unk211636 0.07 0.05 0.05 0.06 0.04 0.03 0.04 

Unk211896 0.03 0.03 0.03 0.03 0.05 0.05 0.02 

Unk211910 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk211916 0.02 0.01 0.02 0.01 0.01 0.03 0.03 

Unk211919 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Unk211921 0.01 0.01 0.02 0.02 0.01 0.01 0.01 

Unk212016 0.47 0.90 0.42 0.47 0.30 0.46 0.49 

Unk212177 0.02 0.02 0.02 0.03 0.03 0.02 0.02 

Unk212761 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk213141 0.02 0.02 0.03 0.03 0.01 0.00 0.04 

Unk213143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk213148 0.11 0.31 0.16 0.20 0.05 0.17 0.20 

Unk213154 0.10 0.05 0.09 0.07 0.05 0.09 0.05 

Unk213160 0.23 0.24 0.28 0.24 0.14 0.37 0.27 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk213179 0.03 0.04 0.03 0.02 0.02 0.05 0.03 

Unk213188 0.08 0.07 0.07 0.09 0.09 0.10 0.06 

Unk213191 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk213227 0.01 0.01 0.01 0.00 0.02 0.02 0.03 

Unk213243 0.02 0.05 0.03 0.04 0.04 0.02 0.03 

Unk213253 0.01 0.00 0.01 0.01 0.00 0.01 0.00 

Unk213960 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Unk214152 0.34 0.37 0.21 0.41 0.31 0.31 0.38 

Unk214201 0.02 0.02 0.03 0.06 0.03 0.02 0.05 

Unk214416 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Unk215397 0.02 0.01 0.02 0.01 0.03 0.02 0.03 

Unk215445 0.04 0.05 0.04 0.06 0.05 0.05 0.05 

Unk216428 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk216832 0.16 0.12 0.20 0.15 0.17 0.20 0.20 

Unk217809 0.02 0.01 0.02 0.01 0.07 0.02 0.00 

Unk218492 0.09 0.13 0.09 0.11 0.08 0.18 0.12 

Unk218694 0.06 0.04 0.06 0.05 0.04 0.06 0.05 

Unk218734 0.83 1.00 0.62 0.55 0.32 0.53 0.65 

Unk219507 0.19 0.19 0.16 0.15 0.09 0.18 0.18 

Unk219512 0.01 0.01 0.00 0.01 0.01 0.00 0.01 

Unk220122 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk223191 0.01 0.02 0.03 0.04 0.04 0.01 0.01 

Unk223830 0.13 0.10 0.16 0.13 0.15 0.13 0.13 

Unk224322 0.01 0.02 0.01 0.03 0.03 0.03 0.03 

Unk224574 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk224589 0.00 0.01 0.00 0.02 0.01 0.00 0.01 

Unk224627 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk224632 0.02 0.02 0.02 0.04 0.02 0.02 0.02 

Unk224811 0.02 0.02 0.03 0.03 0.04 0.02 0.03 

Unk224818 0.03 0.04 0.04 0.02 0.04 0.03 0.05 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk224843 0.20 0.13 0.16 0.18 0.15 0.18 0.22 

Unk224849 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk225327 0.10 0.06 0.09 0.11 0.09 0.10 0.13 

Unk225540 0.02 0.02 0.02 0.02 0.05 0.02 0.02 

Unk225867 0.13 0.14 0.12 0.11 0.09 0.16 0.10 

Unk226256 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Unk226841 0.06 0.06 0.08 0.07 0.07 0.05 0.05 

Unk226848 0.19 0.14 0.17 0.18 0.20 0.21 0.15 

Unk227598 0.02 0.03 0.02 0.01 0.01 0.02 0.02 

Unk227652 0.19 0.17 0.17 0.21 0.12 0.14 0.19 

Unk227658 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk227816 0.03 0.03 0.09 0.05 0.09 0.03 0.05 

Unk227822 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Unk227923 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Unk228018 0.35 0.35 0.31 0.36 0.33 0.23 0.45 

Unk228164 0.01 0.03 0.02 0.02 0.06 0.02 0.03 

Unk228619 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Unk228680 0.14 0.10 0.12 0.11 0.11 0.07 0.10 

Unk228911 0.06 0.05 0.03 0.04 0.04 0.03 0.04 

Unk229277 0.01 0.01 0.01 0.01 0.03 0.01 0.01 

Unk231098 0.01 0.02 0.01 0.02 0.01 0.01 0.01 

Unk231210 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk231248 0.01 0.02 0.01 0.01 0.03 0.01 0.02 

Unk231254 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk231260 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk231350 0.05 0.05 0.02 0.04 0.05 0.05 0.05 

Unk231576 0.02 0.02 0.02 0.04 0.03 0.03 0.02 

Unk232946 0.00 0.00 0.01 0.01 0.00 0.00 0.01 

Unk233289 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk233408 0.02 0.03 0.05 0.02 0.04 0.04 0.05 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk233471 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk233790 0.10 0.11 0.11 0.12 0.13 0.11 0.13 

Unk234717 0.00 0.01 0.00 0.01 0.01 0.01 0.01 

Unk235327 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk235449 0.01 0.03 0.02 0.03 0.13 0.02 0.05 

Unk236605 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

Unk236810 0.02 0.02 0.03 0.02 0.04 0.03 0.05 

Unk236965 0.02 0.01 0.01 0.02 0.02 0.00 0.01 

Unk237333 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Unk237392 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk237415 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk237520 0.03 0.03 0.05 0.04 0.02 0.03 0.05 

Unk237605 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk237606 0.04 0.03 0.07 0.02 0.01 0.08 0.02 

Unk237652 0.01 0.02 0.02 0.01 0.00 0.00 0.01 

Unk238267 

trisaccharide 
0.01 0.03 0.03 0.02 0.03 0.01 0.03 

Unk238506 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk238549 0.06 0.09 0.08 0.11 0.13 0.06 0.11 

Unk238550 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Unk238938 0.00 0.01 0.00 0.01 0.00 0.00 0.01 

Unk239332 0.06 0.09 0.04 0.07 0.07 0.04 0.04 

Unk240436 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk240551 0.01 0.01 0.01 0.01 0.02 0.02 0.01 

Unk241168 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk241312 0.02 0.01 0.02 0.02 0.03 0.02 0.02 

Unk241387 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk241881 0.02 0.03 0.01 0.00 0.00 0.00 0.00 

Unk250380 0.12 0.13 0.09 0.17 0.25 0.09 0.12 

Unk267649 0.03 0.04 0.04 0.04 0.04 0.01 0.02 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk267654 0.04 0.07 0.11 0.10 0.12 0.13 0.13 

Unk267691 0.05 0.04 0.05 0.03 0.07 0.14 0.02 

Unk267692 0.07 0.11 0.10 0.10 0.10 0.21 0.07 

Unk267696 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk267751 0.48 0.36 0.44 0.48 0.95 0.52 0.41 

Unk267880 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk267904 0.13 0.10 0.09 0.18 0.14 0.11 0.15 

Unk267987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk268345 0.40 0.46 0.51 0.53 0.44 0.29 0.38 

Unk268353 0.05 0.06 0.07 0.05 0.12 0.04 0.04 

Unk268365 0.14 0.14 0.08 0.13 0.13 0.11 0.13 

Unk268437 0.04 0.05 0.08 0.07 0.08 0.05 0.06 

Unk268438 0.02 0.01 0.01 0.01 0.01 0.01 0.02 

Unk268506 0.05 0.04 0.04 0.07 0.05 0.04 0.05 

Unk268565 0.17 0.19 0.25 0.14 0.23 0.17 0.14 

Unk268583 0.04 0.09 0.07 0.03 0.04 0.05 0.02 

Unk268610 0.15 0.13 0.17 0.17 0.22 0.18 0.18 

Unk268671 0.20 0.18 0.14 0.17 0.22 0.18 0.19 

Unk268712 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk269249 0.02 0.04 0.02 0.04 0.06 0.02 0.02 

Unk269250 0.28 0.31 0.29 0.27 0.39 0.48 0.31 

Unk269256 0.05 0.05 0.02 0.05 0.03 0.03 0.04 

Unk269294 0.29 0.23 0.25 0.35 0.29 0.26 0.28 

Unk269776 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk271049 0.04 0.02 0.07 0.05 0.10 0.06 0.06 

Unk280546 0.02 0.02 0.03 0.02 0.03 0.02 0.03 

Unk280930 0.10 0.07 0.08 0.08 0.06 0.08 0.10 

Unk280945 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk281132 0.12 0.10 0.14 0.15 0.14 0.10 0.15 

Unk281187 0.00 0.01 0.02 0.02 0.03 0.02 0.01 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk284607 0.01 0.02 0.04 0.03 0.05 0.02 0.02 

Unk285340 0.05 0.04 0.05 0.05 0.05 0.05 0.05 

Unk288810 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk288866 0.18 0.18 0.15 0.14 0.09 0.14 0.18 

Unk294511 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk296071 0.13 0.17 0.12 0.15 0.19 0.10 0.16 

Unk296119 0.00 0.02 0.02 0.02 0.03 0.01 0.01 

Unk299185 0.05 0.07 0.05 0.07 0.07 0.05 0.07 

Unk299441 0.82 0.84 0.91 1.08 0.51 0.59 1.04 

Unk299487 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk303838 0.04 0.08 0.05 0.08 0.12 0.07 0.09 

Unk303839 0.20 0.26 0.27 0.25 0.34 0.24 0.18 

Unk303956 0.04 0.04 0.05 0.04 0.07 0.06 0.05 

Unk303966 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk303992 0.06 0.09 0.08 0.11 0.14 0.04 0.12 

Unk304391 0.00 0.01 0.00 0.01 0.01 0.00 0.00 

Unk305637 0.00 0.01 0.00 0.00 0.00 0.00 0.01 

Unk307669 0.00 0.01 0.01 0.01 0.01 0.02 0.01 

Unk307912 0.04 0.01 0.04 0.04 0.04 0.03 0.03 

Unk307924 0.24 0.22 0.32 0.09 0.11 0.29 0.17 

Unk308219 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk309617 0.00 0.01 0.01 0.02 0.01 0.00 0.01 

Unk310006 0.04 0.05 0.05 0.04 0.02 0.04 0.04 

Unk310053 0.12 0.12 0.11 0.14 0.17 0.11 0.15 

Unk310063 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk310162 0.04 0.02 0.04 0.03 0.04 0.03 0.03 

Unk310193 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk310367 0.01 0.02 0.00 0.01 0.02 0.01 0.01 

Unk310380 0.20 0.18 0.15 0.20 0.37 0.16 0.20 

Unk310448 0.00 0.00 0.01 0.01 0.01 0.01 0.00 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk310581 0.02 0.04 0.04 0.05 0.03 0.02 0.04 

Unk310757 0.04 0.03 0.04 0.03 0.04 0.05 0.02 

Unk310871 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Unk310875 0.04 0.05 0.04 0.06 0.13 0.03 0.06 

Unk310888 0.15 0.10 0.10 0.13 0.21 0.11 0.11 

Unk310897 0.02 0.02 0.01 0.02 0.02 0.01 0.03 

Unk311041 0.06 0.03 0.03 0.05 0.04 0.02 0.04 

Unk318770 0.11 0.11 0.10 0.10 0.12 0.09 0.12 

Unk319168 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Unk321749 0.04 0.05 0.04 0.05 0.08 0.05 0.04 

Unk322204 0.01 0.01 0.00 0.01 0.00 0.00 0.00 

Unk322260 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Unk323686 0.14 0.20 0.12 0.12 0.24 0.12 0.12 

Unk324275 0.07 0.08 0.12 0.07 0.10 0.07 0.12 

Unk327143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk327468 0.01 0.00 0.01 0.01 0.00 0.01 0.01 

Unk328420 0.02 0.02 0.05 0.03 0.06 0.03 0.03 

Unk330992 0.56 0.50 0.66 0.50 0.44 0.62 0.96 

Unk331031 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

Unk352777 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk352812 0.01 0.00 0.00 0.00 0.02 0.00 0.00 

Unk352849 0.09 0.06 0.08 0.06 0.09 0.08 0.07 

Unk352980 0.07 0.08 0.08 0.08 0.08 0.04 0.07 

Unk353047 0.06 0.04 0.07 0.08 0.08 0.07 0.12 

Unk353091 0.04 0.04 0.04 0.07 0.06 0.04 0.05 

Unk357502 0.05 0.10 0.06 0.10 0.05 0.04 0.16 

Unk357685 0.06 0.06 0.06 0.05 0.05 0.07 0.05 

Unk357788 0.41 0.98 0.60 0.63 0.30 0.68 0.77 

Unk357841 0.09 0.11 0.06 0.10 0.09 0.09 0.10 

Unk359567 0.02 0.02 0.03 0.04 0.04 0.02 0.02 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk359697 0.06 0.07 0.09 0.07 0.08 0.10 0.05 

Unk362008 0.02 0.04 0.04 0.02 0.08 0.06 0.04 

Unk362010 0.07 0.05 0.06 0.02 0.02 0.04 0.01 

Unk362023 0.04 0.02 0.05 0.06 0.18 0.04 0.04 

Unk362028 0.15 0.08 0.14 0.13 0.16 0.15 0.17 

Unk362073 0.00 0.01 0.00 0.02 0.01 0.02 0.01 

Unk362086 0.02 0.03 0.02 0.02 0.01 0.03 0.03 

Unk362109 0.04 0.03 0.05 0.03 0.08 0.06 0.03 

Unk362130 0.19 0.19 0.20 0.28 0.17 0.17 0.22 

Unk367914 0.10 0.11 0.10 0.14 0.08 0.07 0.15 

Unk367939 0.14 0.13 0.12 0.12 0.07 0.12 0.16 

Unk367944 0.01 0.01 0.02 0.01 0.03 0.01 0.00 

Unk368156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk371568 0.14 0.17 0.19 0.16 0.14 0.17 0.23 

Unk373725 0.60 0.60 0.64 0.66 1.02 0.65 0.78 

Unk373752 0.02 0.03 0.03 0.05 0.04 0.02 0.04 

Unk374356 0.33 0.36 0.35 0.39 0.30 0.39 0.43 

Unk374402 0.16 0.12 0.15 0.14 0.20 0.13 0.20 

Unk374786 0.17 0.20 0.17 0.09 0.15 0.23 0.12 

Unk375029 0.36 0.31 0.23 0.29 0.19 0.28 0.30 

Unk381469 0.06 0.06 0.05 0.09 0.05 0.05 0.08 

Unk384992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk385006 0.01 0.01 0.01 0.01 0.01 0.01 0.02 

Unk385021 0.33 0.28 0.31 0.40 0.65 0.36 0.52 

Unk385023 0.06 0.05 0.08 0.07 0.06 0.10 0.08 

Unk385024 0.02 0.02 0.01 0.02 0.03 0.02 0.01 

Unk385028 0.14 0.09 0.13 0.16 0.12 0.13 0.15 

Unk385030 0.08 0.07 0.05 0.07 0.06 0.05 0.09 

Unk385042 0.06 0.04 0.03 0.06 0.03 0.05 0.08 

Unk385048 0.87 0.74 0.85 0.84 0.73 0.85 0.75 
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Compound Name Acidimicrobiales Actinomycetales Bacillales Nitrospirales Pseudomonadales Rhizobiales Xanthomonadales 

Unk385055 0.03 0.05 0.03 0.03 0.06 0.03 0.02 

Unk385058 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Unk385065 0.02 0.05 0.03 0.03 0.02 0.03 0.06 

Unk385075 0.00 0.00 0.01 0.01 0.00 0.01 0.01 

Unk385085 0.12 0.06 0.06 0.05 0.05 0.06 0.09 

Unk385104 0.02 0.02 0.05 0.04 0.02 0.06 0.04 

Unk385107 0.10 0.10 0.11 0.12 0.14 0.09 0.10 

Unk385112 0.02 0.02 0.01 0.01 0.01 0.02 0.02 

Unk385117 0.02 0.03 0.03 0.04 0.05 0.02 0.03 

Unk385120 0.01 0.00 0.01 0.02 0.05 0.01 0.02 

urea 0.23 0.25 0.21 0.33 0.40 0.33 0.34 

valine 0.58 0.49 0.51 0.75 0.50 0.44 0.70 

1-kestose 0.41 0.44 0.39 0.52 0.47 0.45 0.46 

2,3-

dihydroxybutanoic 

acid NIST 

0.11 0.17 0.06 0.13 0.06 0.09 0.21 

2-5-diketopiperazine 

NIST 
0.01 0.01 0.01 0.00 0.00 0.00 0.00 

2-deoxyerythritol 0.42 0.45 0.35 0.50 0.31 0.39 0.36 

2-hydroxyvaleric acid 0.07 0.05 0.05 0.08 0.06 0.06 0.09 

3-aminoisobutyric 

acid 
0.10 0.09 0.21 0.11 0.14 0.10 0.06 

3-hydroxypropionic 

acid 
0.19 0.16 0.17 0.25 0.37 0.27 0.14 

4-hydroxybenzoate 0.20 0.23 0.13 0.18 0.29 0.29 0.22 

xylitol 0.37 0.34 0.44 0.33 0.98 0.49 0.39 

xylonolactone NIST 0.65 0.64 1.16 0.61 1.08 0.82 0.67 

xylose 0.87 0.84 0.81 0.91 0.60 0.83 1.06 
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Figures 

 

Figure 5-1. Principle coordinates analysis (PCoA) of the weighted UniFrac values for the visualization of the soil microbial community 

after exposure to the chemical libraries analyzed by 454 pyrosequencing. A-After 2 weeks of exposure. B- After 6 weeks of exposure. 
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Figure 5-2. Principle coordinates analysis (PCoA) of the weighted UniFrac values for the 

visualization of the soil microbial community after exposure to artificial blends analyzed by 454 

pyrosequencing. 
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Figure 5-3. Partial dependency plots for boosted decision tree analyses identifies how methionine, 

after accounting for the average effect of all other variables in the model, influences bacterial 

relative abundance of A- Acidobacteria, B- Actinobacteria, C- Bacillales, D- Nitrospirales, E- 

Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. 
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Figure 5-4. Partial dependency plots for boosted decision tree analyses identifies how 4-

hydroxybutyric acid, after accounting for the average effect of all other variables in the model, 

influences bacterial relative abundance of A- Acidobacteria, B- Actinobacteria, C- Bacillales, D- 

Nitrospirales, E- Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. 
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Figure 5-5. Partial dependency plots for boosted decision tree analyses of the identifies how 3-

hydroxy-3-methylglutaric acid, after accounting for the average effect of all other variables in the 

model, influences bacterial relative abundance of A- Acidobacteria, B- Actinobacteria, C- 

Bacillales, D- Nitrospirales, E- Pseudomonadales, F- Rhizobiales, and G- Xanthomonadales. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

 

 

Conclusions 

Host associated microbial communities are fundamental for host health (Caporaso et al 

2011, Chaparro et al 2012, Consortium 2012, Dethlefsen and Relman 2011, Dimkpa et al 2009, 

Marcobal et al 2013, Selvakumar et al 2012, Yang et al 2009). Furthermore, a compromised 

associated microbial community may result in disease (Bakker et al 2012, Berendsen et al 2012, 

Consortium 2012, Mercado-Blanco and Bakker 2007, Sugiyama et al 2010, Turnbaugh et al 

2007, van Loon et al 1998). Plant associated microbial communities, specifically those in the 

rhizosphere, are increasingly important in helping overcome biotic (Berendsen et al 2012, 

Mendes et al 2011) and abiotic stresses and increasing productivity. In this study, analysis of the 

fundamental mechanisms of plant-microbiome interactions was undertaken. This research was 

accomplished to understand how to exploit soil microbial communities and provide plants with 

healthy soils to increase plant health and productivity. Furthermore, results from these studies 

may be extended to crops of agricultural importance. 

Understanding how plants and the soil microbiome interact naturally without the addition 

of biotic or abiotic stresses is crucial to our understanding of the essential mechanisms at play in 

plant-microbiome interactions. Our initial foray into the interactions between plants and their 

rhizosphere microbiome identified root exudation as significant in initiating, establishing, and 

enhancing these exchanges. Furthermore, results indicate that there are patterns in root 

exudation. Qualitative and quantitative changes were found in root exudation that are associated 

with plant development. Significant correlations were also observed between root exudation 
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patterns and the functional capacity of the microbiome. Overall these results suggest that root 

exudation profiles follow a developmental pattern that is genetically programmed. 

Analysis of the members making up the Arabidopsis rhizosphere microbiome reveal that 

Arabidopsis develops a core rhizosphere microbiome. Certain members that make up this core 

microbiome change with plant development, which suggests that the plant can select a subset of 

microbes through development for specific functions. For example, we observed that 

Actinobacteria were significantly more abundant at early developmental stages while bacteria 

classified as Cyanobacteria were more abundant at later developmental stages. This is 

noteworthy as plants are more susceptible to disease early in development and Actinobacteria are 

associated with disease suppression. On the other hand, Cyanobacteria are known plant growth 

promoters and are an important source of inorganic nitrogen at a point in development when the 

plant needs the most nitrogen. Overall, these results suggest that the plant maintains control over 

the rhizosphere microbiome enabling it to enhance and repress specific interactions as necessary. 

Furthermore, the plant secretes blends of compounds and specific phytochemicals that are 

differentially produced at distinct stages of plant growth to help orchestrate these activities. In 

other words, plants and the rhizomicrobiome are in constant communication through the 

exchange of signals. 

Chapters 2 and 3 explores how through the use of root exudation, plants shape and 

modulate both the functionality and identity of their rhizosphere microbiome at their behest. In 

Chapter 4, root exudates are added to the soil in the absence of the plant to determine how these 

compounds on their own influence the soil microbial community. Root exudates were 

fractionated to obtain distinct blends of root exudate compounds. The addition of these blends to 

the soil caused distinct changes in the soil microbial community. Furthermore, one 
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phytochemical can culture different microbial species, mixtures of these phytochemicals can 

synergistically culture groups of microbial species and the same phytochemical can enhance or 

deter the abundance of different microbial species. Additionally, phenolic compounds more 

readily modulate the soil microbial community. This suggests that secondary metabolites could 

be used as candidate compounds for controlling and changing soil microbial communities. 

The knowledge gained from studying the interaction of plants and their rhizosphere 

microbial communities was used to model these interactions and complexities. Nine chemical 

libraries derived from root exudates were supplemented to the soil. The resulting soil microbial 

communities, after exposure to these chemical libraries, were used in statistical modeling. Five 

statistical models were evaluated to identify a modeling approach that could be used to 

accurately predict soil microbial community dynamics upon exposure to natural chemical 

compounds. After model training and validation, models based on machine learning reliably 

predicted soil microbial community dynamics. This modeling approach was able to identify 

specific compounds and classes of compounds (secondary metabolites) that could be used as a 

means to correctly forecast soil microbial community behavior and thus identify compounds that 

could be used to enhance and create healthy soils for increased crop production. 

Future directions 

The ability to manipulate and enhance soil microbial communities can only be achieved 

once there is a comprehensive understanding of the dynamics that occur between plants and their 

rhizosphere microbiome. In this study, the model organism Arabidopsis thaliana and its 

associated rhizosphere microbial community was used to provide a framework to understand the 

mechanisms and complexities that occur in this niche. The knowledge gained was then used to 

produce a model that would help identify compounds that could be used to modulate the soil 
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microbial community in a predictive manner. Similar studies need to be conducted on different 

plant species, soil types, and soil microbial communities to determine whether these results and 

predictions could be extended to other soil types and plant species. Recent developments in the 

identification of the rhizosphere microbial communities of important agricultural crops such as 

rice (Edwards et al 2015), maize (Peiffer et al 2013), and barley (Bulgarelli et al 2015), provide a 

means of evaluating the microbial species that are important for increased crop health and 

productivity. Utilizing this information and applying machine learning will produce new models 

tailored to each plant species and soil type. This is essential to understand which microbial 

species need to be altered and/or manipulated with respect to each crop studied.  

Additional studies should also focus on the functional capacity of the soil microbiome 

since the functional redundancy of the microbiome may provide a more reliable way to predict 

plant health and productivity (Chaparro et al 2012, Nannipieri et al 2003, 2008). Such 

redundancy would allow potential models and discoveries to be implemented and extended to a 

wide array of plant species. 

One of the benefits of using statistical modeling based on machine learning is the ability 

to teach and refine your model as new data is acquired. Analyzing how new chemical 

compounds and blends of these interact with distinct soil microbial communities will enable the 

implementation of new, refined, and more sophisticated strategies at a higher level of resolution 

to help manage the soil microbiome. Additionally, combining all the information gathered across 

plant species, soil type, and soil microbial communities will result in a more robust model that 

can be utilized across the world to help remediate poor soils enabling the growth of crops in 

marginal lands. 
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