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ABSTRACT 

 

 

 

WILDFIRE IMPACTS ON WESTERN UNITED STATES SNOWPACK 

 

 

 

Snowpack in the western U.S. is critical for water supply and is threatened by wildfires, 

which are becoming larger and more common.  Numerous studies have examined impacts of 

wildfire on snow water equivalent (SWE), but many of these studies are limited in the number of 

observation locations, and they have sometimes produced conflicting results.  The objective of 

this study is to distinguish the net effects of wildfires on snowpack from those of climate.  Data 

from 45 burned sites from the SNOTEL network are used to perform an empirical analysis to 

determine SWE impacts from wildfire.  For each burned site, unburned control sites are 

identified from the same level III ecoregion.  Impacts of climate changes on snowpack are 

analyzed first by comparing pre-wildfire and post-wildfire snow water equivalent at the 

unburned sites.  Combined climate and wildfire effects are considered by comparing pre-wildfire 

and post-wildfire SWE at the burned sites.  Wildfire impacts are then isolated by taking the 

difference between the burned and unburned sites.  Four separate snow measures are considered 

in this analysis and include annual maximum SWE, normalized annual maximum SWE, peak 

SWE date, and melt-out date.  Wildfires have on average advanced melt-out (9 days) and 

maximum SWE dates (6 days) and reduced annual maximum SWE (10%) across all the sites 

considered in the analysis.  The combined effects of climate and wildfire have advanced melt-out 

and maximum SWE dates approximately 14 days and 10 days, respectively, while decreasing 

maximum SWE for the combined effects was approximately 10%.  The wildfire-induced 
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changes in SWE were compared to several possible controlling variables including burn severity, 

leaf-area index change, dominant pre-wildfire tree genus, years since the fire, and site elevation.   

 Due to increasing wildfire magnitude, the potential vulnerability of snowpack is an 

important consideration for water managers.  An analysis to quantify the spatial variability of 

wildfire impacts on snowpack within the western U.S. ecoregions and vulnerabilities of annual 

maximum SWE was performed.  Random forest models were developed for each measure using 

topographic, climatic, and land cover predictor variables along with snowpack data from wildfire 

impacted SNOTEL sites.  The results indicate terrain slope is an important variable for 

maximum SWE, while incoming shortwave radiation and aridity are important for peak SWE 

date and melt-out date changes, respectively.  The largest spatial variability amongst all snow 

measures is maximum SWE with a range of 5% increase to over 10% decrease due to wildfire 

impacts.  Spatial variability for peak SWE and melt-out dates varied between ecoregions with the 

largest range in the northern and mid-latitude ecoregions.  Peak SWE and melt-out dates are 

expected to be earlier with the exception of the Arizona-New Mexico Mountains where later 

melt-out dates are possible.  South-facing gentle slopes were identified as the most vulnerable for 

maximum SWE changes.  The total snow water volume difference due to wildfires occurring 

between 2015 through 2020 ranged from a 1% increase in the North Cascades to a 6% reduction 

in the Arizona-New Mexico Mountains. 

A consequence of increased wildfire activity in the western U.S. has resulted in 

increasing post-wildfire risk assessments by federal, state, and local governments.  Locations of 

these assessments include watersheds which have snowmelt as part of the hydrologic regime.  

The current gap in generalized recommendations for water managers related to parameter 

adjustments in snow models presents challenges for water managers performing these risk 
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assessments.  Data from wildfire impacted SNOTEL sites were again used to estimate changes in 

two key parameters (the melt-rate function and the snowfall threshold temperature).  The 

observed changes from pre- and post-wildfire periods at each SNOTEL site were used to develop 

a suite of general linear models to adjust the melt-rate function and threshold temperature.  The 

model inputs include readily available topographic, climatic, and land cover information.  The 

results indicate melt-rates typically increase after a wildfire, especially for periods later in 

ablation season.  The snowfall threshold temperatures were more variable and site dependent, 

although the statistically significant changes suggest increases in the threshold temperature will 

occur post-wildfire.  The coefficients from the models suggest that changes to the vegetation 

canopy are most important for estimating melt-rate and threshold temperature differences 

beginning immediately after the fire event though approximately 10 years post-wildfire.  After 

vegetation canopy, other important input variables include the air temperature and topographic 

characteristics (i.e., elevation, northness, and eastness).    
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CHAPTER 1 - INTRODUCTION 

 

 

 

There are continued concerns regarding freshwater supply for the United States.  Fennell 

(2014) reports that water managers in 40 states expected water shortages by 2023.  Within the 

eleven western U.S.  states, water managers from 10 of the 11 states anticipate water shortages 

ranging from local to statewide scales.  The consequences for water shortages could affect 

approximately one fourth of the country’s population (U.S. Census Bureau, 2019).  An example 

of where water supply cannot meet current demands is the Colorado River Bain.  For the first 

time since the development of major water storage projects in the Colorado River Basin, there 

has been a Federally declared water shortage (https://www.usbr.gov/newsroom/#/news-

release/3950), which results in the states of Arizona and Nevada receiving only 18% and 7% of 

their annual allotments for 2022, respectively.  The streamflow that feeds reservoir storage 

systems and other water supply infrastructure in the western U.S. is principally derived from 

snowmelt runoff (Doesken & Judson, 1996; Hammond et al., 2018; D. Li et al., 2017; Sexstone 

et al., 2020; Stewart et al., 2004).  Snowmelt has been estimated to account for 75% of the total 

runoff in the western U.S. (Doesken & Judson, 1996) although estimates range from 53% (Li et 

al., 2017) to 80% (Stewart et al., 2004).  The timing and magnitude of peak snow water 

equivalent (SWE) are key variables in predicting peak streamflow (Clow, 2010; Curry & Zwiers, 

2018).  The melt rate of the snowpack is a key driver of the summer baseflow conditions 

(Barnhart et al., 2016) as well as streamflow temperatures (Du et al., 2020), which are both 

important for aquatic ecology.    

 

 

https://www.usbr.gov/newsroom/#/news-release/3950
https://www.usbr.gov/newsroom/#/news-release/3950
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1.1 CLIMATE CHANGE IMPACTS ON SNOWPACK 

The primary forcing variables for snowpack accumulation and ablation are air 

temperature and precipitation during the winter and spring seasons in the western U.S.  

Therefore, changes in air temperature or precipitation will have direct impacts on the seasonal 

snowpack.  Climate change has resulted in a global temperature increase of 0.63 °C based on 

comparing the 1850-1900 period to 1986-2005 largely due to anthropogenic activities (IPCC, 

2019).  Based on estimates presented in the 4th National Climate Assessment report 

(https://nca2018.globalchange.gov/), the annual air temperature in the western U.S. has increased 

0.8°C between the 1986-2016 period and the baseline period of 1901-1960 (Vose et al., 2017).  

Bonfils et al. (2008) used daily maximum and minimum temperature data in mountainous areas 

of the western U.S. to evaluate trends for the western U.S.  They found statistically significant 

trends for daily minimum and maximum temperatures in the region for January through March.  

The estimated temperature changes were 1.83 °C and 1.54 °C for minimum and maximum air 

temperature, respectively, for the period of 1950 through 1999.  Bonfils et al. (2008) concluded 

that the increases in temperature are from anthropogenic climate change.  Using daily 

precipitation records, Zhang et al. (2021) reported a decrease in annual total precipitation for the 

western U.S. of 2.3 mm per decade for the period 1976-2019.  A statistically significant 

decreasing trend of approximately 11 mm per decade was reported for the areas in southern 

Colorado, northern New Mexico, and northern Arizona (Zhang et al., 2021).  Other areas of the 

western U.S. did not have statistically significant changes in annual precipitation (Zhang et al., 

2021).  The ratio of snowfall to total winter precipitation is also decreasing across the western 

U.S. (Knowles et al., 2006).  During 1949-2004, Knowles et al. (2006) found the amount of 

snowfall decreased by 50% relative to similar precipitation totals.  Feng & Hu (2007) found 

https://nca2018.globalchange.gov/
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similar decreases in the snowfall to precipitation ratio.  They reported large decreases for the 

months of January and March, averaging 3.6% and 2.9% per decade for sites in the Northwest.  

Their study did not quantify changes in the snowfall ratio for other parts of the western U.S.  

Water vapor gradients between the snow surface and atmosphere are a key driver for 

sublimation from the snowpack (Sexstone et al., 2018).  Therefore observed trends in the vapor 

pressure deficit are also important for understanding climate change impacts on snowpack.  

Ficklin & Novick (2017) found trends for increasing vapor pressure deficit over the western U.S 

for 1979 through 2013 as a result of air temperature increases.  However, the increases in vapor 

pressure deficit from December through March were less than 0.005 kPa per year and were not 

statistically significant.   

Declines in peak snow water equiavlent (SWE) across the western U.S. have been 

reported in several studies (Grundstein & Mote, 2010; Mote et al., 2018; Pierce et al., 2008; 

Zeng et al., 2018).  They reported decreases range from 15% to 31% for 1 April SWE (Mote et 

al., 2018).  While meteorological drought and inter-annual wintertime temperature variability 

contribute to episodic decreases, the observed trends can be attributed to climate change that has 

already occurred (Pierce et al., 2008).  Areas that will be most sensitive to future warming are in 

transitional snow zones where the mean winter temperatures are near freezing (Luce et al., 2014; 

Nolin & Daly, 2006).  For areas in the Northwest, almost 9,200 km2 of seasonally snow covered 

area are “at risk”(Nolin & Daly, 2006).  Mote (2003) found that lower elevation sites had the 

largest decrease in April 1 SWE (40% decreasing trend) which is consistent with Grundstein and 

Mote (2010) who reported 80% of sites below 1000 m had statistically significant declines in 

snowpack compared to 62% of sites above this elevation.  Musselman et al. (2021) used 

cumulative snowmelt prior to 1 April to assess climate impacts on snowpack.  They found that 
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34% to 42% of 634 snow monitoring sites in western North America had statistically siginficant 

increases in cumulative melt before 1 April.  

1.2 WILDFIRE TRENDS 

Along with climate change, wildfires are another potential change to snowpack.  

Wildfires are part of the western United States ecology and have been throughout history.  Large 

wildfires have been documented through analyzing lake sediments in mountainous regions 

(Calder et al., 2015).  An increase in the number of large wildfires (>400 ha) has occurred in 

recent decades for the western United States. Westerling et al. (2006) found that approximately 

four times the number of large wildfires occurred from 1987 through 2003 compared to 1970 

through 1986.  In addition, they found the total burned area was over six times greater for the 

period after 1987.  These findings were reinforced by Dennison et al. (2014) who reported 

statistically significant increases in the number of large wildfires in several ecoregions of the 

western U.S. from 1984 through 2011.  As an example, the Arizona-New Mexico Mountains 

experienced increases of 462% and 1266% in the number of fires and total area burned, 

respectively, for the 2003-2012 period (Westerling, 2016).  

1.3 CLIMATE AND WILDFIRE CONNECTION 

Climate change and wildfire occurrence are connected through changes in temperature 

and precipitation.  Increased temperatures result in increased vapor pressure deficits (even with 

similar annual precipitation amounts), which produce great stress on vegetation (Barron-Gafford 

et al., 2007; Eamus et al., 2013).  This stress results in lower moisture in vegetation which 

increases the flammability of the vegetation (Littell et al., 2016; Swetnam & Betancourt, 1998).  

Anthropogenic climate change between 1979 and 2015 doubled fuel aridity beyond what would 

be expected from natural climate variability (Abatzoglou & Williams, 2016).  Heidari et al., 
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(2021) reports the number of fires in portions of the western U.S. could increase 400% relative to 

the historical period of 1986-2015 with climate change.  The coupling between changes in 

climate and subsequent responses in wildfire probability suggest increased fire occurrences and 

severity in the future (Cannon & DeGraff, 2009; Flannigan et al., 2006; Stavros et al., 2014). 

Recovery of forests after wildfires depends on subsequent weather patterns and distance 

to nearest seed producing trees (Haffey et al., 2018; Rodman et al., 2020; Stevens-Rumann & 

Morgan, 2019). Harvey et al. (2016) found drought severity following a wildfire was a 

statistically significant predictor of tree seedling establishment and resulted in a 62 % reduction 

in seed establishment rates for each unit increase of drought severity.  Locations that have 

experienced multiple fires may have up to 31% lower tree seedling density even if post-wildfire 

drought isn’t a factor (Stevens-Rumann & Morgan, 2016).   

1.4 WILDFIRE IMPACTS ON ENERGY BALANCE 

Wildfire has been shown to alter radiative fluxes (shortwave and longwave) and turbulent 

fluxes (sensible and latent) through changes in the vegetation canopy and surface albedo (Amiro 

et al., 2006; Burles & Boon, 2011, Gleason et al., 2013; Gleason et al., 2019; Liu et al., 2005; 

Prater & Delucia, 2006).  One of the most consistent changes to the annual surface energy 

balance after a wildfire is increased ground surface temperature, which is associated with 

decreased sensible heat and net energy fluxes from the ground surface (Li et al., 2017; Liu et al., 

2019).  It was found that fires increased ground surface temperatures approximately 0.15 °C the 

first year after the fire (Liu et al. 2019).  Liu et al. (2005) compared sites in Alaska of varying 

burn age (i.e., sites burned 3-years, 15-years, and 80-years prior to the study) and sensible heat 

flux from the ground were reduced by over 50% at the 3-year and 15-year sites compared to the 

80-year site.  While the annual net energy flux is decreased, it has been shown net shortwave 
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flux increases for burned areas relative to unburned areas during the winter and spring seasons 

(Burles & Boon, 2011; Gleason et al., 2013).  Burles and Boon (2011) found increased net 

shortwave radiation for the months of April and May when comparing burned plots relative to 

unburned plots six years after a wildfire occurred.  The ratio of the net shortwave radiation 

between burned and unburned locations was 2-3.5 times.  Gleason et al. (2013) reported a 60% 

increase in net shortwave radiation during the accumulation period and a 200% increase during 

the ablation period for areas of the Cascade Mountains in Oregon.  The net shortwave radiation 

increases are due to increased incoming shortwave radiation reaching the snow surface once the 

canopy is removed (Gleason et al., 2013).  The post-wildfire response for net longwave radiation 

is different compared to the net shortwave.  When a wildfire removes the vegetation canopy, the 

absorption of incoming shortwave radiation by the vegetation canopy and tree trunks decreases, 

which results in reduced downwelling longwave radiation to the snow surface (Burles & Boon, 

2011).  The reduced downwelling longwave radiation is not sufficient to offset the outgoing 

longwave radiation from the snowpack, so the net longwave radiation shifts from positive for 

unburned sites to negative for burned locations.  The reduction in canopy coverage due to 

wildfires also reduces surface roughness and therefore increases near surface wind speeds and 

turbulent fluxes.  Burles & Boon (2011) reported an increase of over two orders of magnitude for 

sensible heat flux during the April through May period post-wildfire.  In contrast, they reported 

decreases of approximately 150% in latent heat flux during the same months post-wildfire due to 

the strong control transpiration has on latent heat flux (Williams & Torn, 2015).    

1.5 WILDFIRE IMPACTS ON SNOWPACK 

The impact of wildfires on seasonal snowpack accumulation and ablation has less 

consensus within the literature.  Numerous studies have examined impacts of wildfire on 
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snowpack, but many of these studies are limited in the number of observation locations, and they 

have sometimes produced conflicting results.  Goeking and Tarboton (2020) summarized the 

impacts of land surface disturbances (including wildfire, harvest, drought and insect mortality) 

on snowpack.  Overall, 34 of 42 studies that they summarize found increases in annual maximum 

SWE following forest disturbances while 10 studies found decreases in annual maximum SWE 

(some studies reported both increases and decreases).  Furthermore, 9 of 13 studies in Canada 

and the northern U.S. reported consistent increases in annual maximum SWE in response to 

disturbances.  In contrast, only 5 of 13 studies conducted in lower latitudes of the U.S. reported 

consistent increases (Goeking & Tarboton, 2020).  Maxwell & St. Clair (2019) investigated 

whether peak SWE varies with burn severity or percent overstory tree mortality in a mid-latitude, 

subalpine forest in Utah.  They found that peak SWE increased 15% and peak depth 17% for 

every 20% increase in overstory tree mortality.  Slope, basal area, and canopy height did not 

have a significant influence on the SWE increase.  During a two-year study of the Twitchell 

Canyon fire in south-central Utah, Maxwell et al. (2019) found that snowpack disappeared 

earlier in burned areas compared to unburned areas, especially on south-facing slopes.  However, 

peak SWE did not vary between burned and unburned areas.  Stevens (2017) examined wildfire 

impacts on snow accumulation at the stand and tree scales in the Sierra Nevada mountains of 

California.  The unburned forest had the highest overall snowpack depth, and snowpack depth 

decreased 78% for high severity burn areas.   

1.6 SNOWPACK VULNERABILITY 

Snowpack vulnerability can be defined by the sensitivity and susceptibility of regional 

snowpack to changes when a wildfire occurs.  Snowpack vulnerability can be evaluated for peak 

SWE, date of peak SWE, or melt-out date due to climatic change or land cover disturbance 



8 

caused by wildfire.  The quantification of snowpack vulnerability within the context of climate 

change has been presented in regional watershed planning and water supply risk assessments 

(Nolin & Daly, 2006).  They estimate over 9000 km2 of the areas in the northwest U.S. are at risk 

of reduced snow cover.  However, there are limited studies considering SWE vulnerability to 

wildfire at regional scales that can be used for planning and risk assessments.  Based on the 

summary of previous studies presented by Goeking & Tarboton (2020), the vast majority of 

studies were performed over relatively small domains.  This means their results would apply 

mostly to plot scales or to small stream catchments.  In contrast, Stevens (2017) collected snow 

depth measurements in the Sierra Nevada Mountains and found fire severity had a negative 

effect on snow depth.  In conjunction with the data collection, they developed statistical models 

to predict changes in snow depth using burn severity, canopy gaps, and topographic aspect in the 

Sierra Nevada Mountains.  Based on the linear model parameter estimates, they found inverse 

relationships between burn severity and snow depth.  The parameter estimates for canopy gap 

and northeast aspect indicate a positive relationship with snow depth while southwest aspect was 

negative.  These results would have predictive power for the area from which the training data 

was derived but limited applicability in other regions.  Micheletty et al. (2014) used remote 

sensing data to evaluate the spatial variability of melt-out after fires in California.  They found 

melt-out occurred on average 9 days earlier in burn areas based on snow cover data from 11 

years (6 years pre-wildfire and 5 years post-wildfire).  Again, their results are most relevant for 

estimating post-wildfire changes in snowpack for areas of the Sierra Nevada Mountains.  Other 

studies not in burned areas have evaluated tree canopy influence for snowpack variability over 

regional scales.  Tennant et al. (2017) reported canopy height explained the most snow depth 

variation relative to other physiographic variables for areas in southern Idaho and the central 
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Sierra Nevada Mountains.  Fassnacht et al. (2012) found canopy density was the least important 

variable (out of a total of 27 topographic and physiographic) explaining snowpack distribution 

within Arizona, Colorado, New Mexico, Utah, and Wyoming.     

1.7 POST-WILDFIRE SNOW AND SNOWMELT RESPONSE MODELING 

Following a wildfire event, hydrologic monitoring and modeling are often performed to 

assess the impacts on streamflow (Ebel, 2013; Hallema et al., 2017; Rengers et al., 2016).  It has 

been documented that streamflow from a watershed often increases immediately following a fire 

(Ebel et al., 2012; Moody & Martin, 2001; Neary et al., 2003; Stoof et al., 2012).  Many studies 

report hydraulic conductivity parameters used for streamflow simulation of pre and post-wildfire 

conditions (Ebel et al., 2016; Ebel & Moody, 2017; Moody et al., 2016; Rengers et al., 2016; 

Wieting et al., 2017).  For example, Ebel & Moody (2020) suggest a typical post-widlfire field 

saturated hyraulic conductivity of 20 mm hr-1 and sorptivity of 6 mm hr-0.5 within one year of the 

fire.  However, most recommendations for model parameters are focused on modeling post-

wildfire rainfall events.  

Complete evaluations of both flood risk and long-term water supply estimates can include 

snow modeling (Hock, 2003; USACE 2021).  A range of models have been developed to 

estimate changes in peak SWE and snowmelt following a wildfire.  Moeser et al. (2020) used the 

SnowPALM model to estimate post-wildfire changes in peak SWE and melt-out dates for areas 

in northern New Mexico.  Their model generally predicted increases for peak SWE, although 

over 30% of the area was predicted to have decreased peak SWE.  The model also predicted later 

melt-out dates for the study area.  While they do not directly report melt-rates, increased peak 

SWE and later melt-out dates could result in lower overall melt-rates.  The authors indicate that 

their results are likely not transferable to other regions and do not specifically provide any 
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suggestions for model parameterization.  Another detailed energy balance snow model was 

developed by Burles and Boon (2011) for southwestern Alberta.  The spatial extents for their 

study were two 2500 m2 plots in burned and unburned forest stands.  They used hourly 

metrological from data collected at both plots to simulate snow accumulation and ablation.  Both 

the modeled and measured melt-rates were increased when compared to the unburned study plot.  

Because Burles & Boon (2011) were predicting melt using a full energy balance approach, they 

do not offer estimates of parameter values for temperature index snow models, which remain 

widely used in practice (Follum et al., 2015; Hock, 2003).  Seibert et al. (2010) used a 

temperature index snow model to determine parameter changes between burned and unburned 

watersheds in western Washington.  Due to the equifinality of the model parameterization 

process, they used a Monte Carlo technique to calibrate observed streamflows and quantify 

parameter changes for the burned watersheds.  Through the Monte Carlo parameter evaluation, 

they reported higher melt-rates (50% increase) in the burned watersheds and decreased rain-snow 

threshold (50% increase) values.  Given the variety of models used in post-wildfire snow 

modeling, there is very limited information on how snow model parameters should be adjusted 

post-wildfire.  

1.8 RESEARCH MOTIVATION 

Research related to wildfire impacts on snowpack has been completed using a variety of 

measurement and analysis methods in various ecoregions.  Due to variability between studies, it 

is difficult to determine generalized impacts beyond very specific locations.  Moreover, the 

transferability of prior findings to other locations is often explicitly stated by the authors as not 

being possible due to their methods.  Consequently, previous research efforts have limited 

applicability in determining where snowpack, and thus potential snowmelt runoff for water 
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supply, are most sensitive to wildfire disturbances before these catastrophic events occur.  

Additionally, information provided by previous research efforts provides few suggestions on 

how to translate observed changes in snowpack in burned areas into generalized 

recommendations for temperature index model parameter adjustments.  Often during the initial 

months following a wildfire, several federal, state, and local organizations perform risk 

assessments for life, property, and infrastructure.  These risk assessments generally include 

hydrologic modeling because flooding can have direct impacts both within the wildfire affected 

areas and to areas far outside the actual burn perimeter.  Due to the urgent need to identify areas 

of high risk, water and emergency managers need straightforward recommendations for 

estimating changes in flood risk due to snowmelt.  The motivation for this research is centered 

on providing quantitative information about snowpack changes post-wildfire for water managers.   

1.9 STUDY OBJECTIVES 

The research presented in this study focuses on quantifying snowpack changes following 

wildfire, which is necessary for planning purposes, along with generalized recommendations on 

how to adjust hydrologic models used for risk assessments.  Based on the potential range of 

impacts that both wildfire and climate change have on the land surface energy balance, this 

research targets three key objectives that progress the scientific understanding of how wildfires, 

within the context of climate change, impact snowpack.  These objectives include: 

1) Quantification of wildfire impacts on snow phenology using data from the NRCS 

SNOTEL network, which are consistent across ecoregions. 

2) Quantification of snowpack vulnerability across ecoregions in the western U.S. based on 

a consistent set of input variables that are available for large domains. 
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3) Quantification of post-wildfire modeling parameters adjustments for temperature index 

snow models. 
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CHAPTER 2 - WILDFIRE IMPACTS ON SNOWPACK PHENOLOGY IN A CHANGING 

CLIMATE WITHIN THE WESTERN U.S.  

 

 

 

2.1 OVERVIEW 

Snowpack in the western U.S. is critical for water supply and is threatened by wildfires, 

which are becoming larger and more common.  Numerous studies have examined impacts of 

wildfire on snow water equivalent (SWE), but many of these studies are limited in the number of 

observation locations, and they have sometimes produced conflicting results.  The objective of 

this study is to distinguish the net effects of wildfires on snowpack from those of climate.  To 

quantify impacts, 45 burned sites from the SNOTEL network were used.  For each burned site, 

unburned control sites are identified from the same level III ecoregion.  Impacts of climate 

changes on snowpack are analyzed first by comparing pre-wildfire and post-wildfire snow water 

equivalent at the unburned sites.  Combined climate and wildfire effects are considered by 

comparing pre-wildfire and post-wildfire SWE at the burned sites.  Wildfire impacts are then 

isolated by taking the difference between the burned and unburned sites.  Wildfires have on 

average advanced melt-out (9 days) and maximum SWE dates (6 days) and reduced annual 

maximum SWE (10%) across all the sites we considered.  The combined effects of climate and 

wildfire have advanced melt-out and maximum SWE dates approximately 14 days and 10 days, 

respectively, while decreasing maximum SWE for the combined effects was approximately 10%.  

The wildfire-induced changes in SWE were compared to several possible controlling variables 

including burn severity, leaf-area index change, dominant pre-wildfire tree genus, years since the 

fire, and site elevation.   
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2.2 INTRODUCTION 

Snowpack is extremely important for agricultural production and domestic water supply 

in numerous regions of the world.  In 2000, approximately one sixth of the world’s population 

lived in snow-dominated, low-reservoir-storage regions (Barnett et al., 2005), and snowmelt 

contributes a large percentage of the total annual runoff in several major river systems (Barnett et 

al., 2005; Li et al., 2017; Mankin et al., 2015; Viviroli et al., 2007).  The eleven western states 

within the contiguous U.S. include approximately one fourth of the country’s population (U.S. 

Census Bureau, 2019) and greatly depend on snowmelt for their water supply.  Snowmelt has 

been estimated to account for 75% of the total runoff in the western U.S. (Doesken & Judson, 

1996) although estimates range from 53% (Li et al., 2017) to 80% (Stewart et al., 2004).   

Changes in the magnitude and timing of snow accumulation and melt (i.e., snowpack 

phenology) could have trillions of dollars of economic impact in the western U.S. (Sturm et al., 

2017).  Impacts range from abbreviated winter sports seasons to changes in streamflow timing 

downstream.  The timing and magnitude of peak snow water equivalent (SWE) are key variables 

in predicting peak streamflow (Clow, 2010; Curry & Zwiers, 2018).  The melt rate of the 

snowpack is a key driver of the summer baseflow conditions (Barnhart et al., 2016) as well as 

streamflow temperatures (Du et al., 2020), which are important for aquatic ecology.   

The snowpack phenology depends on the energy balance of the snowpack, and the 

snowpack energy balance is highly influenced by the forest canopy (Marks & Winstral, 2001; 

Musselman et al., 2012; Revuelto et al. 2015; Varhola et al., 2010).  Several studies have 

considered the net relationship between the canopy and snowpack, but the conclusions about this 

relationship vary substantially with location.  For example, Veatch et al. (2009) found that forest 

edges strongly influence patterns of snow depth in New Mexico and have greater snow depths 
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than either open or densely forested areas.  In contrast, Hubbart et al. (2015) found greater 

accumulation and later melt-out dates for clear cut areas than forested areas in northern Idaho. 

Changes in the canopy can occur for several reasons including tree mortality, drought, 

and land surface disturbance.  The most abrupt of these causes is land surface disturbance, which 

can include blowdown events, avalanches, and wildfires.  A recent review by Goeking and 

Tarboton (2020) summarizes the impacts of land surface disturbances on several aspects of the 

water balance.  Overall, 34 of 42 studies that they summarize found increases in annual 

maximum SWE following forest disturbances while 10 studies found decreases in annual 

maximum SWE (some studies reported both increases and decreases).  Furthermore, 9 of 13 

studies in Canada and the northern U.S. reported consistent increases in annual maximum SWE 

in response to disturbances.  In contrast, only 5 of 13 studies conducted in lower latitudes of the 

U.S. reported consistent increases (Goeking & Tarboton, 2020).     

Among the land surface disturbances, wildfire is of particular concern because it can 

impact large land areas and because the canopy changes can occur quickly.  The occurrence and 

magnitude of wildfires are increasing in the western U.S. (Dennison et al., 2014; Littell et al., 

2009; Westerling et al., 2006).  Warmer and drier conditions in the western U.S. in part due to 

climate change have been found to be an important factor in the increased fire activity (Dennison 

et al., 2014; Yang et al., 2015).  Nearly all studies of wildfire impacts on snowpack have focused 

on specific regions, and their results vary.  Gleason et al. (2018) reported a four-fold increase in 

solar energy absorbed by the snowpack after wildfires, which caused earlier melt-out dates at 

locations in Colorado, Utah, and Wyoming.  Maxwell and St. Clair (2019) investigated whether 

peak snowpack varies with burn severity or percent overstory tree mortality in a mid-latitude, 

subalpine forest.  They found that peak SWE increased 15% and peak depth 17% for every 20% 
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increase in overstory tree mortality.  They also found that slope, basal area, and canopy height 

did not have a significant influence on the SWE increase.  During a two-year study of the 

Twitchell Canyon fire in south-central Utah, Maxwell et al. (2018) found that snowpack 

disappeared earlier in burned areas compared to unburned areas, especially on south-facing 

slopes.  However, peak SWE did not vary between burned and unburned areas.  Stevens (2017) 

examined wildfire impacts on snow accumulation at the stand and tree scales in the Sierra 

Nevada mountains of California.  The unburned forest had the highest overall snowpack depth, 

and snowpack depth decreased 78% for high severity burn areas.  However, within the unburned 

areas, the depths were greatest in canopy openings.  Stevens (2017) also found that open areas 

had greater average snow depth at the tree scale while unburned areas had a greater average 

depth at the stand scale.  Harpold et al. (2014) evaluated snowpack changes in New Mexico 

following the Las Conchas Fire.  Based on several hundred measurements of snowpack, the 

burned area had approximately 10% less average SWE than unburned areas.  They concluded 

that a lack of strong vegetation controls in burned areas led to topographically controlled 

variability at peak snowpack.  Overall, it is difficult to get a general picture of wildfire impacts 

on snowpack because each study focused on different aspects of snowpack, had different 

quantities and qualities of available data, and performed the comparisons in different ways.  

Specifically, studies that report pre- vs. post-wildfire comparisons for the same location avoid 

the confounding effects of spatial heterogeneity of snowpack (Broxton et al., 2016; Sexstone & 

Fassnacht, 2014).  However, that approach combines the effects of wildfire occurrence with any 

climate changes (i.e., interannual precipitation or temperature changes) during the study period.  

Anthropogenic climate change is impacting all regions within the western U.S. including 



28 

observed increases in average annual temperatures (Vose et al., 2017) and decreasing trends in 

snowpack (Mote et al., 2018; Zeng et al., 2018).    

The objective of this study is to distinguish the net effects of wildfires on snowpack from 

those of climate change using a consistent methodology for different ecoregions in the western 

U.S.  The study uses Snow Telemetry (SNOTEL) data, which is consistently collected and 

reported for numerous sites across the western U.S. and Alaska.  We identified burned SNOTEL 

sites along with comparable unburned sites within the same level 3 ecoregion.  The SWE records 

for the burned and unburned sites are divided into pre- and post-wildfire periods based on the 

date of the wildfire at the burned site.  The difference between the post-wildfire and pre-wildfire 

SWE at the unburned sites is used to analyze the impacts of climate changes (climate signal).  

The difference between the post-wildfire and pre-wildfire snowpack at the burned sites is used to 

determine the combined impacts of climate change and wildfires (combined signal).  Finally, the 

difference between the combined and climate signals is used to isolate the effects of the 

wildfires.  The results are analyzed first by ecoregion.  Then, they are divided by burn severity 

and other site characteristics to identify potential controls on the impacts of wildfires.  

2.3 DATA AND METHODS 

2.3.1 SNOTEL Data 

SNOTEL sites are operated by the Natural Resources Conservation Service (NRCS, 

2021) and range from southern New Mexico (latitude 33.4° N) to central Alaska (latitude 65.1° 

N) (Figure 1).  From SNOTEL, we use the daily SWE and precipitation values along with the 

site elevations.  Quality control was performed through visual inspection of the SWE and 

precipitation time series.  Any apparent reporting errors were discussed with local NRCS Snow 

Survey offices and removed from the analysis if confirmed.  Any years with more than 10% of 
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daily precipitation or SWE values missing were removed from the dataset.  Of the 1576 station-

years available for the burned sites, 24 were removed.  

Burned locations and dates were determined based on information provided by each 

NRCS Snow Survey Data Collection Office.  Through 2019, 45 sites were identified as being 

directly impacted by wildfires across the entire network.  Figure 2 shows the periods when both 

SWE and precipitation data are available for each burned site.  The date each site burned is also 

shown on the timeline.  The average pre-wildfire period is approximately 23 years with over 

87% of the burned sites having at least 10 years.  The average post-wildfire period is 

approximately 12 years with 44% of the sites having at least 10 years.   

For each burned site, at least two similar SNOTEL sites were identified that were not 

burned.  The unburned sites were selected to be in the same level 3 ecoregion.  A level 3 

ecoregion represents a region that is similar in geology, physiography, vegetation, climate, and 

soils (Omernik & Griffith, 2014).  For approximately 80% of the burned locations, there were at 

least two unburned sites identified within a distance of 50 km and an elevation difference of 

±300 m.  The remaining unburned sites required expansion of the search radius or elevation 

range.  The sites that did not meet the initial search criteria are noted in the supporting data.  The 

time series for each of the 110 unburned sites was divided based on the fire date of the associated 

burned site.  For example, if a site was burned in 2007 and has a period of record from 1985 to 

2019, the pre-wildfire period would be 1985 through 2007 and the post-wildfire period would be 

2008 through 2019.  Subsequently, all unburned sites associated with this location would also 

split the period of record in 2007 with the pre-wildfire period spanning the first year of the 

unburned site’s period of record until 2007.  Validation of unburned site selection process was 

performed using the daily SWE time series for pre-wildfire periods for each burned SNOTEL 
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site and the associated unburned locations using the Kling-Gupta efficiency scores (KGE) (Gupta 

et al., 2009).  The associated unburned sites used for comparison with each burned site had an 

overall average KGE = 0.82 determined by using functions in the hydroGOF R package 

(Zambrano- Bigiarini, 2020). 

 

Figure 1. Map of burned (red triangles) and unburned (black circles) SNOTEL sites in (a) 

western coterminous United States and (b) Alaska.  The Alaska sites are located northeast of 

Fairbanks in the central part of the state (c). 
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Figure 2. Period of record used for each burned SNOTEL site.  The red triangles identify the 

wildfire dates. 

2.3.2 Site Characteristics 

Pre-wildfire tree genus and canopy density were considered as potential mediators of 

wildfire’s impact on SWE.  U.S. Department of Agriculture Forest Service (USDA-FS) Forest 

Inventory and Analysis (FIA) data from 2017 were used to obtain the dominant tree genus for the 

area around each burned SNOTEL location (FIA data were not available for all pre-wildfire 

periods).  The date of the dataset may reduce the data’s explanatory power if the dominant tree 

genus changed after the fire.  However, the FIA dataset provides consistent forest stand level 

information on the extent, distribution, and forest composition (Burrill et al., 2018).  The 
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dominant tree genus was determined as the most common genus in a 1 km2 box centered on the 

burned SNOTEL site.  Frequently occurring genera were pine (Pinus), fir (includes both Abies 

and Pseudotsuga), and spruce (Picea).  Only three sites were hemlock (Tsuga), and three sites 

were other genera.  For analysis purposes, those six sites are grouped as “hemlock/other.”  

Canopy density was quantified using leaf-area index (LAI), which for coniferous 

canopies is defined as one-half the total needle surface area per unit ground area (Jonckheere et 

al., 2004).  The MODIS 8-day 500 m (MCD15A2H) LAI product (Myneni et al., 2015) was 

used, which has good agreement when compared with ground-based measurements of LAI 

(Jensen et al., 2011).  The phenology of the canopy can cause LAI to vary seasonally.  Because 

winter LAI is most relevant to snowpack (Xiao et al., 2019), LAI values from the beginning of 

October were used for all locations (LAI from summer dates were also used in the analysis and 

produced similar results).  The October LAI represents the beginning of the snow accumulation 

season and the lowest LAI prior to snow cover (Yang et al., 2006).  The average pre-wildfire and 

post-wildfire LAI values at the burned SNOTEL sites are 5.0 and 3.1, respectively.  The change 

in LAI was calculated by subtracting the October LAI that immediately followed the fire from 

the October LAI that immediately preceded the fire.  Due to the limited period of MODIS 

observations, LAI was not available for fires that occurred prior to 2003.  Therefore only 37 of 

the 45 burned sites are used in analyses that consider LAI.   

Burn severity was obtained from the Monitoring Trends in Burn Severity program 

(MTBS) (https://www.mtbs.gov/project-overview).  This program is an inter-agency effort led 

by the USDA-FS and the U.S. Geological Survey with the goal of providing consistent 

categorized burn severity information for all fires since 1984 (Eidenshink et al., 2007).  In the 

western U.S., the MTBS information is available through 2019 for fires greater than 1000 acres.  

https://www.mtbs.gov/project-overview
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Burn severity from MTBS has been used in other studies that examined patterns and impacts of 

burn severity on the landscape (Arkle et al., 2012; Baker, 2015; Bradley et al., 2016).  In this 

study, the categorical burn severity (i.e., low, moderate, and high) was used, which is based on 

threshold values of the differenced Normalized Burn Ratio (dNBR) (Eidenshink et al., 2007).  

Burn severity is defined as the loss of above ground organic matter and organic matter in the soil 

(Keeley, 2009).  The near infrared and shortwave infrared wavelengths are used to quantify 

NBR, and the difference between pre-wildfire and post-wildfire values is the final dNBR 

estimate.  The consistency of these categories between fires has been questioned (Kolden et al., 

2015), but Meigs et al. (2011) showed that the MTBS burn severity categorization is related to 

tree mortality, so it might indicate the change in canopy condition during the snow season.  

Picotte et al. (2020) also noted that the MTBS program uses various measures to promote 

consistency between analysts.  Due to the temporal and spatial extents of the SNOTEL dataset 

and associated fires, the MTBS data burn severity categories provide the most consistent data 

available. 

2.3.3 Summary Methods 

Four measures are used to quantify the snow phenology: (1) annual maximum SWE, (2) 

annual maximum normalized SWE (nSWE), (3) date of annual maximum SWE, and (4) annual 

melt-out date.  The annual maximum SWE was determined using a 01 October through 30 

September water year.  If the maximum value occurred over multiple dates, the first date was 

selected.  nSWE normalizes the SWE to account for interannual variations in precipitation.  The 

annual maximum nSWE was calculated as the maximum SWE divided by the total October 

through April precipitation.  The melt-out date is identified as the first day when SWE equaled 

zero.  For each measure of snow phenology, median values were calculated for the pre- and post-
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wildfire periods.  Then, the difference between the post-wildfire and pre-wildfire medians was 

calculated.  At unburned sites, this change is expected to reflect changes in climate between the 

two periods.  At burned sites, this change reflects the combined changes in climate and the 

effects of the wildfire.  To isolate the effect of the fire, the difference between the change at the 

burned sites and the unburned sites was calculated as the fire signal. 

To assess the significance of the changes, the non-parametric Wilcoxon Rank Sum Test 

was applied to evaluate the hypothesis that the snow phenology measures from the pre- and post-

wildfire periods are drawn from the same populations (Helsel et al., 2020).  The test was applied 

to both the burned and unburned sites and significance was determined using a p-value of 0.05. 

2.4 RESULTS 

2.4.1 Changes in Snow Phenology Measures 

The changes in median melt-out dates between the pre-wildfire and post-wildfire periods 

are shown in Figure 3.  The sites are also grouped by level 3 ecoregions (Omernik & Griffith, 

2014) to examine the behavior for regions that are similar in geology, physiography, vegetation, 

climate, and soil.  Overall, 78% of the unburned locations had earlier melt-out dates for their 

post-wildfire periods than their pre-wildfire periods (Figure 3a).  The sites in the Arizona-New 

Mexico Mountains ecoregion in particularly had much earlier melt-out dates for the post-wildfire 

periods.  Some site-to-site variability is observed within ecoregions (e.g., 5 of the 12 ecoregions 

contain sites with later post-wildfire melt-out dates), but the changes tend to be similar within 

ecoregions.  Overall, the results suggest that the climate during the post-wildfire periods was less 

favorable to late season snowpack than the pre-wildfire period for most ecoregions. 

In contrast, the burned SNOTEL sites almost uniformly (42 of 45 sites and all 

ecoregions) had earlier melt-out dates for their post-wildfire periods (Figure 3b).  About half of 
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the ecoregions contain one or more burned sites where the change in melt-out date is statistically 

significant according to the test described earlier.  The change in the melt-out date is also more 

negative at the burned sites than the unburned sites.  Overall, 84% (38 out of 45) burned sites had 

larger changes in melt-out date than the unburned comparison sites.  The earlier melt-out dates 

likely occur in part because the wildfires reduce the canopy coverage and decrease the snowpack 

albedo (due to pyrogenic carbon particles and burned wood debris), both of which increase the 

available energy and promote snowmelt (Gleason et al., 2013).  The shift to earlier melt-out dates 

averaged approximately 20 days for the 11 statistically significant sites.    

 

Figure 3. Difference in pre- and post-wildfire melt-out dates at (a) unburned control sites and (b) 

associated burned sites.  For each unburned site, the difference is calculate using the wildfire 

date at the associated burned site.  A negative value indicates an earlier melt-out date post-

wildfire than pre-wildfire.  An asterisk indicates a statistically significant (p-value < 0.05) 

difference between pre- and post-wildfire periods at a burned site.  Ecoregions are listed from 

approximately northwest to southeast (see Figure 1). 
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The changes in the median date of maximum SWE between the post-wildfire and pre-

wildfire periods are presented in Figure 4 for both the unburned and burned sites.  A weak 

majority of unburned sites (56% ) had earlier maximum SWE dates for the post-wildfire period 

than the pre-wildfire period (Figure 4a).  Clear differences are observed in the behavior of 

different ecoregions.  The northernmost ecoregions (left side of figure) typically had later 

maximum SWE dates for the post-wildfire period while the southern ecoregions (right side of 

figure) typically had earlier maximum SWE dates.  Sites that had earlier post-wildfire melt-out 

dates (Figure 3a) also tended to have earlier maximum SWE dates (Figure 4a), and the average 

magnitude of change is often similar.  This similarity suggests that the factors producing the 

changes at the unburned sites (likely precipitation and temperature changes) are similarly 

impacting both the accumulation and ablation periods for the snowpack.   

Most burned sites (78% or 35 out of 45) had earlier maximum SWE dates post-wildfire 

than pre-wildfire (Figure 4b).  About half the ecoregions contain one or more sites where the 

change in maximum SWE date is statistically significant.  Overall, the values are more negative 

for the burned sites than the unburned sites.  The burned sites also exhibit more variability within 

ecoregions than the unburned sites.  Within a given ecoregion, the unburned canopy may 

promote similarity between sites because the dominant vegetation type is one criterion for 

defining ecoregions.  When the canopy is reduced and altered by a wildfire, site-specific factors 

such as slope and aspect may play larger relative roles as discussed by Harpold et al. (2014) and 

promote variability within ecoregions.  The average shift in maximum SWE at the 11 statistically 

significant sites was approximately 13 day earlier.   
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Figure 4. Difference in median dates of maximum SWE for pre- and post-wildfire periods and 

(a) unburned control sites and (b) associated burned sites.  For each unburned site, the difference 

is calculate using the wildfire date at the associated burned site.  A negative value indicates an 

earlier date of maximum SWE post-wildfire than pre-wildfire.  An asterisk indicates a 

statistically significant (p-value < 0.05) difference between pre- and post-wildfire periods at the 

burned site.  Ecoregions are listed from approximately northwest to southeast (see Figure 1). 

The changes in the maximum depth of SWE between the pre-wildfire and post-wildfire 

periods are shown in Figure 5.  Overall, 62% of unburned sites (28 out of 45) had an increase in 

maximum SWE for the post-wildfire period (Figure 5a).  Thus, the earlier melt-out and 

maximum SWE dates are not necessarily associated with lower maximum SWE values.  For the 

unburned sites, the direction and magnitude of change tends to be similar within a given 

ecoregion, but it varies notably between ecoregions.  The largest changes are observed in the 

southern ecoregions (Northern Basin and Range, Southern Basin and Range, and Arizona-New 
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Mexico Mountains).  The large differences in these ecoregions suggests that precipitation and/or 

temperature differed substantially between the pre- and post-wildfire periods.   

In contrast to the unburned sites, 60% of burned sites (27 out of 45) had reductions in 

maximum SWE in the post-wildfire periods (Figure 5b), and 8 of 13 ecoregions contain one or 

more sites where the change was statistically significant.  More site-to-site variability is observed 

within ecoregions for the burned sites than the unburned sites with some locations having very 

large changes in the maximum SWE.  These results suggest that the change in maximum SWE 

from a single burned location may not be representative of other burned parts of an ecoregion.  

The average maximum SWE decrease for the 11 statistically significant sites was approximately 

26%.   
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Figure 5. Percent difference in median annual maximum SWE for pre- and post-wildfire periods 

for burned and unburned sites.  The average percent difference for unburned sites is based on 

similar pre- and post-wildfire periods for the associated with the burned SNOTEL listed.  

Negative value indicates lower SWE post-wildfire.  An asterisk indicates statistically significant 

(p-value < 0.05) between pre- and post-wildfire periods at burned sites.  Ecoregions are listed 

from approximately northwest to southeast (see Figure 1) 

The change in annual maximum nSWE between the post-wildfire and pre-wildfire 

periods is shown in Figure 6.  Inter-annual precipitation variations are reduced when using 

nSWE in the analysis, so remaining differences at the unburned sites reflect changes in other 

climatic factors.  Slightly less than half (49% or 22 out of 45) of the unburned sites had decreases 

in maximum nSWE between the pre- and post-wildfire periods, and in most ecoregions, the 

changes in nSWE are small.  Thus, differences in precipitation between the two periods primarily 

caused changes in the maximum SWE at the unburned sites.  However, for the Arizona-New 

Mexico Mountains, large changes are still observed in nSWE between the pre- and post-wildfire 



40 

periods.  This persistence suggests other climate factors (such as wintertime temperature) are the 

main sources of change in maximum SWE for this ecoregion. 

Maximum nSWE decreased in the post-wildfire periods for approximately 67% (30 out 

of 45) of the burned sites, and 10 of 13 ecoregions contain at least one site where the difference 

is statistically significant.  While most burned sites had decreases in maximum nSWE, most 

ecoregions also include sites where the maximum nSWE increased.  The exceptions are the most 

northern and southern ecoregions considered.  The Interior Highlands-Klondike Plateau in 

Alaska had consistent increases in nSWE while the Arizona-New Mexico Mountains had 

consistent decreases in nSWE.  For the 16 statistically significant burned sites, the average 

nSWE decrease was approximately 16% between fire periods.  
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Figure 6. Percent difference in annual maximum nSWE between pre- and post-wildfire periods.  

The average percent difference for unburned sites is based on similar pre- and post-wildfire 

periods for the associated with the burned SNOTEL listed.  Negative value indicates lower 

nSWE post-wildfire.  An asterisk indicates statistically significant (p-value < 0.05) between pre- 

and post-wildfire periods at burned sites.  Ecoregions are listed from approximately northwest to 

southeast (see Figure 1) 

Table 1 summarizes the average change between the pre- and post-wildfire periods for 

the unburned and burned sites by ecoregion.  The climate signal results consider the unburned 

sites.  They show that the melt-out and maximum SWE dates advanced by averages of 6 and 5 

days, respectively, for the post-wildfire period when all ecoregions are combined.  The climate 

signal also reduced maximum SWE values for the post-wildfire period by an average of about 

2%.  For regions within the Cold Desert level 2 ecoregion (10.1), climate-related reductions in 

maximum SWE are largely explained by reductions in precipitation.  This is apparent because 

the reductions in nSWE are much smaller than the reductions in SWE.  The efficiency of 
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snowpack production changed little between the two periods.  In the Upper Gila Mountains level 

2 ecoregion (13.1), the change in maximum SWE is mostly unrelated to precipitation changes.  

In the Boreal Cordillera level 2 ecoregion (6.2), SWE changes are due to a combination of 

precipitation and other factors.  The largest changes in SWE properties occurred in southern part 

of the Boreal Cordillera (6.2) ecoregion and the Cold Desert (10.1) and Upper Gila Mountain 

(13.1) ecoregions. 

The combined signal results in Table 1 considers the burned sites.  Overall, the largest 

changes in the snow phenology measures occurred in the Cascades, Eastern Cascades Slopes and 

Foothills, and Southern Rockies level 3 ecoregions.  For the Cascades and Southern Rockies, a 

majority of sites exhibited statistically significant changes for the phenological measures.   

The wildfire signal results are derived by taking the difference between the combined 

signal (burned sites) and climate signal (unburned sites).  Overall, wildfires advanced melt-out and 

peak SWE dates in the ecoregions by averages of 9 and 7 days, respectively.  In addition, wildfires 

reduced peak SWE values in the ecoregions by an average of about 13%. While these reductions 

varied by ecoregion, nearly all ecoregions experienced an average reduction.  The changes in melt-

out and maximum SWE dates are more consistent across ecoregions than the changes in maximum 

SWE.  The maximum SWE changes ranged from -35% to 7% between the ecoregions.  Overall, 

the wildfires had stronger impacts on SWE properties than climate changes during the period of 

study.  
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Table 1. Average changes in the melt-out date, date of maximum SWE, maximum SWE, and normalized maximum SWE within 

ecoregions.  The climate signal section calculates the changes using the unburned sites, and the combined signal section uses the 

burned sites.  The wildfire signal section takes the difference of the combined and climate signals.  An asterisk indicates that most 

burned sites within the ecoregion had statistically significant changes (p-value < 0.05). 

 

Ecoregion Climate Signal Combined Signal Wildfire Signal 

  
 

Post-Fire Minus Pre-wildfire at Unburned 

Sites 

Post-Fire Minus Pre-wildfire at Burned 

Sites 
Burned Diff. Minus Unburned Diff. 

Number Name 

Melt-out 

Date 

[days] 

Max. 

SWE 

Date 

[days] 

Max. 

SWE 

[%] 

Max. 

nSWE 

[%] 

Melt-out 

Date 

[days] 

Max. 

SWE 

Date 

[days] 

Max. 

SWE 

[%] 

Max. 

nSWE 

[%] 

Melt-out 

Date 

[days] 

Max. 

SWE 

Date 

[days] 

Max. 

SWE 

[%] 

Max. 

nSWE 

[%] 
 

6.1.1 
Interior Highlands-

Klondike Plateau 
-5 1 7.3 6.0 -6 -9 -4.3 22.9 -1 -10 -11.5 16.9  

6.2.3 Northern Rockies 0 -2 2.8 -4.7 -8 7 9.8 0.7 -8 9 7.0 5.4  

6.2.4 Canadian Rockies 0 6 13.3 2.6 -13 -3 -19.4 -19.8 -13 -9 -32.7 -22.4  

6.2.5 North Cascades -6 0 -4.1 -8.5 -13 -5 -4.8 -7.8 -8 -5 -0.8 0.6  

6.2.7 Cascades -8 -3 -4.1 -2.7 -26* -13* -16.7* -12.8* -18 -9 -12.6 -10.1  

6.2.8 

Eastern Cascades 

Slopes and 

Foothills 

-9 -6 -1.1 -0.9 -20 -25 -35.9 -25.9 -11 -19 -34.8 -24.9  

6.2.10 Middle Rockies -2 0 7.6 3.2 -10 -6 6.9 -2.4* -8 -5 -0.7 -5.7  

6.2.15 Idaho Batholith 1 1 13.6 -1.6 -10 -5 5.1 -2.4 -11 -6 -8.5 -0.8  

6.2.13 
Wasatch and Uinta 

Mountains 
2 2 15.4 14.9 -7 -10 -13.7 -8.0 -9 -12 -29.1 -22.9  

6.2.14 Southern Rockies -2 -5 0.8 11.1 -13* -11* -10.9* -7.1 -11 -6 -11.7 -18.2  

10.1.3 
Northern Basin and 

Range 
-12 -10 -13.5 -1.2 -21 -26 -42.4 -13.4 -9 -16 -28.9 -12.2  

10.1.5 
Central Basin and 

Range 
-7 -12 -25.0 3.3 -23 -13 -38.3 -3.7 -16 0 -13.4 -7.1  

13.1.1 
Arizona-New 

Mexico Mountains 
-27 -23 -37.6 -30.2 -20 -22 -30.6 -25.1 7 1 7.0 5.1  

  Average -5.9 -4.0 -1.9 -0.7 -14.7 -10.7 -15.0 -8.1 -8.8 -6.7 -13.1 -7.4  

  Median -5.3 -2.0 0.8 -0.9 -13.2 -10.0 -13.7 -7.8 -8.9 -6.1 -11.7 -7.1  
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2.4.2 Potential Controls on SWE Changes 

In this section, examination of other variables and their effects of wildfire on SWE 

phenology is explored.  Similar to Table 1, the change in the snow phenology measures between 

the pre-wildfire and post-wildfire periods is calculated first.  At the unburned sites, this 

difference is considered a climate signal, and at the burned sites, this difference is a combined 

wildfire and climate signal.  The wildfire signal is then obtained by comparing the changes at the 

unburned and burned sites.  The readily available information includes the burn severity, change 

in leaf-area index, dominant pre-wildfire tree genus, time since the fire, and land surface 

elevation.   

2.4.2.1 Burn Severity 

Figure 7 compares the changes in the snow phenology measures at the unburned and burned sites 

when the sites are grouped according to the burn severity (at the burned site). The effect of the 

wildfire is seen for all three burn severity categories and does not appear to depend on the burn 

severity (i.e., the differences of the average values for the unburned and burned sites does not 

exhibit a clear trend with changing burn severity).  Similarly, Figures 7c and 7d show that the 

wildfires typically reduced SWE and nSWE for all burn severity categories with no clear 

dependence on burn severity.   
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Figure 7. Differences in snow phenology measures between post-wildfire and pre-wildfire 

periods for the unburned sites (climate signal) and burned sites (combined signal) when the sites 

are grouped by burn severity (at the burned sites).  The sample size n for each grouping is shown 

at the bottom of each panel.  Black triangles show the average values.  The differences in the 

average values (i.e., the fire signal) are shown at the top of each panel. 

2.4.2.2 Leaf-area Index 

Figure 8 compares the changes in snow phenology measures at the unburned and burned 

sites when the sites are grouped by the change in burned site LAI.  The difference between the 

unburned and burned sites suggests that wildfires typically promoted earlier melt-out and 
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maximum SWE dates when LAI decreased (Figure 8a and 8b).  Earlier dates are potentially a 

result of increased shortwave radiation on the snow surface during both the accumulation and 

ablation periods due to reduced canopy cover and increased snowpack albedo.  However, the 

burned sites typically had earlier melt-out and peak SWE dates than the unburned sites even if 

LAI increased at the burned site.  All three sites in this LAI category (Mores Creek Summit, 

Bone Springs Divide, and Brown Top) had below normal annual precipitation immediately 

preceding the fire and above normal annual precipitation immediately post-wildfire.  Therefore, 

the apparent dependence on LAI for these sites is partially due to local precipitation variations.  

Figure 8c and 8d suggest that more substantial LAI decreases at the burned sites tended to 

produce more substantial reductions in maximum SWE and nSWE.  In particular, when LAI 

decreased by more than 1.5, the average difference between the unburned and burned sites was 

13% and 9% for maximum SWE and nSWE, respectively.  Smaller reductions in LAI are 

associated with much smaller average differences between the unburned and burned sites (2-

4%). 
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Figure 8. Differences in snow phenology measures between post-wildfire and pre-wildfire 

periods for the unburned sites (climate signal) and burned sites (combined signal) when the sites 

are grouped by change in leaf area index (LAI).  A negative change indicates a post- fire 

reduction in LAI.  The sample size n for each grouping is shown at the bottom of each panel.  

Black triangles show the average values.  The differences in the average values (i.e., the fire 

signal) are shown at the top of each panel. 

2.4.2.3 Tree Genera 

Figure 9 compares the change in the snow phenology measures for the unburned and 

burned sites when the sites are grouped by dominant pre-wildfire trees genus.  For melt-out dates 

(Figure 9a), substantial differences in behavior are observed between the different genera.  The 
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largest differences in melt-out dates between the unburned and burned sites occurred for the 

hemlock/other sites while the smallest differences occurred for the pine and spruce sites.  The 

differences in the date of maximum SWE have less variability between the different vegetation 

types (Figure 9b).  Wildfires typically advanced the dates of maximum SWE for all genera 

categories, but the largest average change occurred again for the hemlock/other category.  In 

Figure 9c, the change in maximum SWE is typically more negative for the burned sites than the 

unburned sites for all genera categories.  The largest difference between the unburned and 

burned sites (i.e., wildfire signal) occurs for the hemlock/other category (Figure 9c).  However, 

the nSWE results (Figure 9d) show less variability in wildfire signal between the genera 

categories. 
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Figure 9. Differences in snow phenology measures between post-wildfire and pre-wildfire 

periods for the unburned sites (climate signal) and burned sites (combined signal) when the sites 

are grouped by tree species.  The sample size n for each grouping is shown at the bottom of each 

panel.  Black triangles show the average values.  The differences in the average values (i.e., the 

fire signal) are shown at the top of each panel. 

2.4.2.4 Time Since Fire 

Figure 10 compares the changes in the snow phenology measures between the unburned 

and burned sites when the sites are grouped according to the time since fire occurrence.  For both 

the unburned and burned sites, the changes in all four measures are typically most severe for the 
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5-to-10-year category while the 10-to-32-year category shows the greatest variability in the 

changes.  Comparing the unburned and burned sites suggests that the effect of the wildfires on 

melt-out and maximum SWE dates typically persists beyond 10 years.  For SWE and nSWE, the 

largest average impact of the wildfires occurs beyond 10 years.  Overall, the results suggest that 

most sites have not recovered to pre-wildfire conditions within their available periods of record.  

Based on the studies summarized in Stevens-Rumann & Morgan (2019), it is not uncommon for 

little or no tree regeneration to occur after wildfires in parts of the western U.S.  Several 

variables that can influence recovery include genera, distance to seed source, water stress, 

precipitation, elevation, slope, aspect, and plant competition.  
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Figure 10. Differences in snow phenology measures between post-wildfire and pre-wildfire 

periods for the unburned sites (climate signal) and burned sites (combined signal) when the sites 

are grouped by years since the fire.  The sample size n for each grouping is shown at the bottom 

of each panel.  Black triangles show the average values.  The differences in the average values 

(i.e., the fire signal) are shown at the top of each panel. 

2.4.2.5 Elevation 

Figure 11 compares the change in the snow phenology measures for the burned and 

unburned sites when the sites are grouped by elevation.  The changes in melt-out and peak SWE 

dates are typically more severe at burned sites than unburned sites irrespective of the elevation 
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category, but the greatest advances in these dates typically occur at the lowest elevations (Figure 

11a and 11b).  Similarly, the burned sites usually exhibit greater reductions in SWE than the 

unburned sites (Figure 11c) for all elevation categories.  Wildfires produced the greatest average 

effect on SWE and nSWE for sites in the lowest elevation category (below 1960 m).  Above 

1960 m, the wildfire’s impact on SWE and nSWE does not exhibit a consistent dependence on 

elevation.  The lack of dependence of nSWE on elevation may occur due to varied geographic 

location, climate and vegetation for sites within each elevation category.  
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Figure 11. Differences in snow phenology measures between post-wildfire and pre-wildfire 

periods for the unburned sites (climate signal) and burned sites (combined signal) when the sites 

are grouped by burned site elevation.  The sample size n for each grouping is shown at the 

bottom of each panel.  Black triangles show the average values.  The differences in the average 

values (i.e., the fire signal) are shown at the top of each panel. 

2.5 DISCUSSION 

Overall, the results suggest that wildfires typically produce lower annual maximum SWE 

values compared to pre-wildfire or nearby unburned conditions.  The reductions are likely related 

to increased shortwave radiation and albedo changes for the snow surface (Burles & Boon, 2011; 
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Gleason et al., 2018; Gleason & Nolin, 2016).  In addition to the increased shortwave radiation 

reaching the snow surface, turbulent fluxes can also effect the total energy available for melt 

following a wildfire.  Burles & Boon (2011) found both net shortwave radiation and sensible 

heat flux were important drivers of snowmelt in burned areas.  In New Mexico, increased latent 

heat flux through sublimation of the snowpack was suggested as a cause for reduced SWE 

(Harpold et al., 2014).  The wildfire-induced changes to maximum SWE vary by ecoregion, and 

more northern ecoregions have some sites that show increases in maximum SWE due to wildfire 

(Figure 5).  The results generally support the summary by Goeking & Tarboton (2020), who 

found that studies in the higher latitude regions of the U.S. and southern Canada observed 

increases in SWE while studies in lower latitudes observed reductions in SWE due to wildfire.  

The results for sites in Alaska indicate increases in nSWE even as the unburned sites in the 

region have minimal change in nSWE.  The results also agree with Hubbart et al. (2015), who 

observed increases in SWE in the Northern Rockies.  However, the results differ somewhat in 

other northern ecoregions because the majority of burned sites still indicate decreases in annual 

maximum SWE or nSWE.  Furthermore, the results support the findings from Stevens (2017), 

who found that SWE decreased substantially in burned areas of the Sierra Nevada Mountains. 

The tendency of wildfires to produce earlier melt-out dates has also been documented in 

previous research (Gleason et al., 2018).  The magnitude of change seen in the climate signal 

results is also similar to Harpold et al. (2012), who found changes from 2 to 5 days per decade 

for watersheds in the southwestern U.S.  In addition, the results typically show earlier dates 

regardless of ecoregion, burn severity, change in LAI, tree genus, years since the fire occurred, 

and elevation.  This result initially appears to conflict with Hubbart et al. (2015), who observed 

later melt-out dates in clear cut areas compared to undisturbed locations.  However, the change 
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in snow albedo due to pyrogenic carbon particles is significant in burn areas and can last for 

several years (Gleason et al., 2013; Gleason et al., 2018; Gleason & Nolin, 2016).  Furthermore, 

the snow surface energy balance after a fire can still include absorption of shortwave radiation 

and emission of longwave radiation by standing timber.  Such absorption and emission do not 

occur if the canopy has been completely removed. 

The relationship between post-wildfire changes in snow phenology measures and readily 

available fire, watershed or land surface variables is complex.  None of the phenology measures 

were strongly controlled by a single explanatory variable, but certain measures indicated more 

substantial responses for certain variable classifications (e.g., larger reductions in LAI and sites 

with lower elevations).  The complexities likely arise because reduced canopy density, and 

therefore interception, has been shown to generally increase snow accumulation (Veatch et al., 

2009; Varhola et al. 2010).  Yet the changes in snow albedo and energy fluxes in a burned 

landscape present unique conditions that may overwhelm any canopy interception changes.  The 

apparent insensitivity to burn severity could be due to errors in the categorization of burn 

severity.  Shadows from snags and standing dead trees with remaining crown structure can 

influence the dNBR values and can result in misclassifications (Fassnacht et al., 2021).  These 

results are seemingly inconsistent with previous research, which found that canopy removal 

through logging can significantly influence snow accumulation ( Storck et al., 2002; Varhola et 

al., 2010).  Therefore high burn severity would be classified in areas with complete canopy 

removal.  The present results suggest that changes in snow accumulation and ablation in burned 

forests may not be directly comparable to measurements from areas with complete tree removal 

(i.e., clear cut areas).  In Figures 7a and 7b, the relationship with burn severity indicates 

unburned sites typically exhibit negative values, which suggests that those sites typically had 



 

56 

earlier melt-out and maximum SWE dates in the post-wildfire period (due to changes in the 

climate).  However, the burned sites are typically more negative, which suggests that the 

wildfires typically advanced the dates further.   

Using SNOTEL to represent snowpack processes in surrounding landscape does have 

limitations.  Based on the equipment at these sites, small openings in the canopy are required to 

allow snowfall to accumulate on the snow measurement sensor 

(https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/automatedSnow

Monitoring/).  The sites are not directly influenced by snowfall interception or ablation due to 

opening of the canopy near the sensor.  They can be influenced by radiation and shading from 

the surrounding canopy.  Therefore, SNOTEL sites impacted by wildfire may not capture 

changes in accumulation due to decreased canopy interception following a wildfire.  However, 

these sites can represent energy balance changes due to increased incoming shortwave radiation 

and snow surface albedo changes.  The removal of the canopy following a fire can also impact 

turbulent fluxes which are not directly measured by SNOTEL sites.  Even with these limitations, 

SNOTEL data provides systematic records with consistent measurement methods and temporal 

resolution, which is important for separating wildfire and climate effects on snow phenology.   

Pairing unburned SNOTEL sites as a reference for pre-wildfire conditions at burned sites 

does introduce additional uncertainty in the analysis based on the spatial variability of snowpack 

(Sexstone & Fassnacht, 2014).  Even pairing sites within the same ecoregion can be challenging 

depending on the snow phenology measure being considered.  The actual SWE accumulation and 

ablation will vary based on local site conditions, which control energy balance fluxes (Tennant et 

al., 2017).  The unburned site selection based on distance and elevation differences relative to the 

burned site, provides a reasonable pairing of sites based on the KGE values.  By using paired 
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SNOTEL sites there is still uncertainty in the analysis which requires further investigation to 

fully quantify.  Controlling for regional climate trends was done using unburned SNOTEL sites, 

there are other factors that could not be controlled using this data.  These factors include local 

orographic precipitation patterns, the inter-annual variability of cloudy days which impacts the 

net shortwave radiation input to the snowpack and wind redistribution which may be occurring 

once the canopy is removed. 

2.6 CONCLUSIONS 

This study used SWE data from 45 SNOTEL sites that have been impacted by wildfire and 

110 comparison SNOTEL sites that have not been impacted by wildfire.  The dataset at the 

burned sites was divided into pre- and post-wildfire periods, and the dataset at the comparison 

sites was divided using the same points in time.  Several measures of snow phenology were 

derived from the SWE data at each site including annual melt-out date, date of maximum SWE, 

maximum SWE, and maximum normalized SWE (maximum SWE divided by October through 

April total precipitation).  Data were grouped by ecoregion, burn severity, change in LAI, 

dominant pre-wildfire trees genus, years since fire, and elevation.  The following conclusions can 

be drawn from the study: 

• Overall, climate has a strong influence on SWE and should be considered when 

quantifying the wildfire signal.  In most ecoregions, normalizing the peak SWE by the 

total winter precipitation reduced the changes in the snow phenology measures at the 

unburned sites between the pre- and post-wildfire periods to small values.  Thus, much of 

the climate signal is due to variations in precipitation.  However, for the southernmost 

ecoregion (Arizona-New Mexico Mountains), substantial differences persisted at the 
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unburned sites even after this normalization.  In that case, the difference between the pre- 

and post-wildfire periods was due to another factor, perhaps wintertime temperatures. 

• Wildfires produced earlier melt-out dates for all ecoregions except the Arizona-New 

Mexico Mountains.  On average, the wildfires advanced the melt-out date by 9 days for 

the ecoregions considered.   

• Wildfires produced earlier peak SWE dates for all ecoregions except the Northern 

Rockies and the Arizona-New Mexico Mountains.  On average, the wildfires advanced 

the peak SWE date by 7 days for the ecoregions considered.  

• Wildfires produced lower maximum SWE values for most ecoregions.  On average, 

wildfires reduced peak SWE by approximately 13% for the ecoregions considered.  

However, part of the reduction was likely due to localized precipitation occurring over 

some of the unburned sites.  On average, wildfires reduced peak nSWE by 7% for the 

ecoregions considered.  Nonetheless, increases in peak nSWE were observed for several 

of the northern ecoregions.  

• When the climate and wildfire signals are combined, the largest changes in SWE timing 

and depth occurred in the Cascades, Eastern Cascades Slopes and Foothills, and Southern 

Rockies.  For the Cascades and Southern Rockies, many of the changes were significant 

using a p-value of 0.05. 

• The impact of wildfire on the snow phenology measures does not exhibit a clear 

dependence on burn severity but is more sensitive to the change in LAI.  In particular, 

larger reductions in LAI typically produced larger changes in the peak SWE and nSWE 

values. 
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• The effect of the wildfire depends on the dominant pre-wildfire tree genus.  The smallest 

changes in the snow phenology measures typically occurred for spruce and pine forests, 

while the largest changes usually occurred for the hemlock/other category.   

• The effects of the wildfires on the snow phenology measures persist more than 10 years 

after the fires.  The changes to the melt-out and peak SWE dates exhibit no clear 

dependence on the time since fire (for the periods of record available in this study), while 

changes to maximum SWE and nSWE were largest for times greater than 10 years. 

• The effects of wildfires on the snow phenology measures are strongest at low elevations 

(below 1960 m).  For higher elevations, the wildfire effects exhibit no clear dependence 

on elevation. 

 

The analyzed dataset represents a range of climates and ecosystems, but it has important 

limitations.  The sample size is not evenly distributed between ecoregions, so aggregated 

measures tend to emphasize ecoregions with more data.  Similarly, the pre- and post-wildfire 

time periods are not the same across all sites, which emphasize individual years from sites with 

shorter records.  We also have assumed the burned SNOTEL sites provide reasonable 

representations of the snow accumulation and ablation processes for the area near the site.  The 

spatial representativeness may be limited depending on the exact site location.  Finally, the 

unburned comparison sites were selected based on two key geographic factors.  A in-depth 

analysis on pairing burned sites with the burned locations could refine the estimated changes due 

to wildfire. 

This study helps address some limitations of previous efforts while still prompting 

several opportunities for future research.  Future efforts may include assembling additional pre- 
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and post-wildfire snow measurements into a comprehensive dataset that can be compared with 

the SNOTEL sites.  Further research can also include an analysis of snowmelt rates in burned 

areas to understand potential hydrologic changes following wildfire.  Finally, remote sensing 

products can be used along with ground-based measurements to quantify snowpack distribution 

changes between pre- and post-wildfire periods.  

While this study presents results that are relevant to the scientific community, the results 

also have operational implications for water managers.  Water managers should anticipate 

changes to snow accumulation and ablation following a wildfire.  They can expect earlier 

initiation of snowmelt and a longer snow-free season, which may impact summer streamflow and 

water temperatures.  In addition, an overall shift of the spring snowmelt hydrograph may occur 

in watersheds where large fires have occurred.  The pre-wildfire flow regime is likely to take 

more than a decade to return to pre-wildfire conditions (if it does return to pre-wildfire 

conditions).  Therefore, long-term adjustments to reservoir operating criteria or other 

management activities may be necessary to account for the changes caused by wildfire. 
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CHAPTER 3 - REGIONAL SNOWPACK VULNERABILITY TO WILDFIRE AND 

CHANGING CLIMATE WITHIN THE WESTERN U.S. 

 

 

 

3.1 OVERVIEW 

Snowpack is important for water supply in the western U.S. where most streamflow in 

major watersheds is derived from snowpack.  Due to increasing wildfire frequency and 

magnitude, the potential vulnerability of snowpack is an important consideration for water 

managers.  However, not all locations on the landscape will experience the same changes in 

snowpack if a wildfire occurs.  The objective of this analysis is to determine locations and 

conditions where the snowpack is more sensitive to wildfire occurrence in the western U.S. 

ecoregions.  Four snowpack measures were evaluated including annual maximum snow water 

equivalent (SWE), annual maximum SWE normalized by winter precipitation, peak SWE date, 

and melt-out date.  Random forest models were developed for each measure using topographic, 

climatic, and land cover predictor variables along with snowpack data from wildfire impacted 

SNOTEL sites.  The results indicate terrain slope is an important variable for predicting changes 

in maximum SWE, while incoming shortwave radiation and aridity are important for peak SWE 

date and melt-out date changes, respectively.  The largest spatial variability amongst all snow 

measures occurs for maximum SWE with a range of 5% increase to over 10% decrease due to 

wildfire.  Spatial variability for peak SWE and melt-out dates varied between ecoregions with 

the largest range in the northern and mid-latitude ecoregions.  Peak SWE and melt-out dates are 

expected to be earlier across most ecoregions, with the exception of the Arizona-New Mexico 

Mountains where later melt-out dates are possible.  Shallow slopes were identified as the most 

vulnerable for maximum SWE changes from wildfire.  When evaluating the combined impacts 
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of climate and wildfire, areas with fewer days below freezing were most vulnerable.  The 

estimated total snow water volume difference due to wildfires occurring between 2015 through 

2020 ranged from a 1% increase in the North Cascades to an 6% reduction in the Arizona-New 

Mexico Mountains.    

 

3.2 INTRODUCTION 

Snowpack is a critical component of water supply for the western U.S. where 

approximately one fourth of the country’s population (U.S. Census Bureau, 2019) reside.  It has 

been estimated that total runoff from snowmelt provides a significant majority of annual 

streamflow in the western U.S.  The snowmelt contribution has been estimated in several 

publications (Barnett et al., 2005; Doesken & Judson, 1996; Li et al., 2017; Serreze et al., 1999; 

Stewart et al., 2004) and ranges from 53% (Li et al., 2017) to 80% (Stewart et al., 2004).  Given 

the importance of snowmelt runoff in the region, water management activities are especially 

focused on snowpack processes.  This focus is due to the integral parts that snow accumulation 

and snowmelt play for water supply, flood risk management and ecological requirements.  Water 

supply and flood forecasting depend on snowpack information to inform prediction models used 

for several aspects of water management (Adams, 2016; Horn, 1968; Lea, 2008).  Key variables 

for accurately predicting peak streamflow are timing and magnitude of peak snow water 

equivalent (SWE) (Clow, 2010; Curry & Zwiers, 2018).  The melt rate of the snowpack is an 

important driver of the summer baseflow (Barnhart et al., 2016), which has both water supply 

and ecological implications.  In addition, streamflow temperatures (Du et al., 2020) and 

mountain lake temperatures (Smits et al., 2020) increase with reductions in snowpack and may 
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have negative consequences for aquatic ecology.  Decreases in runoff from snowpack also affect 

irrigated agriculture and result in water curtailment (Vano et al., 2010).   

In recent years, air temperatures have been increasing due to climate change (see 

National Climate Assessment report at https://nca2018.globalchange.gov/).  In the western U.S., 

air temperature increased 0.8°C during 1986-2016 compared to the baseline period of 1901-1960 

(Vose et al., 2017), and this air temperature increase is higher than the national average (Vose et 

al., 2017).  Air temperature increases can have broad implications for snow accumulation and 

ablation process.  Peak snowpack has been declining across the western U.S. as air temperatures 

have increased (Grundstein & Mote, 2010; Mote et al., 2018; Pierce et al., 2008; Zeng et al., 

2018).  The reported decreases in peak SWE range from 15% to 31% for 01 April in the western 

U.S. (Mote et al., 2018).  While drought and inter-annual wintertime temperature variability 

contribute to episodic decreases, the observed trends in snowpack can be attributed to climate 

change that has already occurred (Pierce et al., 2008).  Vulnerable areas due to climate change 

that are those most sensitive to future warming and are susceptible to large changes. In the 

western U.S. these areas are in transitional snow zones where the mean winter temperatures are 

near freezing (Luce et al., 2014; Nolin & Daly, 2006).  Mote (2003) found that lower elevation 

sites had the largest decrease in 1 April snow water equivalent (SWE) (40% decreasing trend). 

Similarly, Grundstein and Mote (2010) reported 80% of sites below 1000 m had statistically 

significant declines in snowpack compared to 62% of sites above this elevation.  Several 

publications predict continuing decreases in peak SWE due to increasing temperatures (Cayan, 

1996; Hamlet et al., 2005; Knowles et al., 2006; Luce et al., 2014; Marshall et al., 2019).  A 

consequence of this reduction in peak SWE may be overall reduced water availability from 

snowmelt (Barnett et al., 2005; Fyfe et al., 2017).  
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Climate change has also increased the occurrence and magnitude of wildfires in the 

western U.S. (Dennison et al., 2014; Littell et al., 2009; Westerling et al., 2006, Yang et al., 

2015), and future climate scenarios predict further increases in fire activity as extreme 

temperatures and droughts become more common in the region (Flannigan et al., 2000; Guyette 

et al., 2014; Stavros et al., 2014).  The increase in wildfire activity is through increased aridity 

from warming air temperatures (Greve et al., 2019) and associated increases of vegetation stress, 

which results in lower moisture and increased flammability of the vegetation (Goodwin et al., 

2021; Littell et al., 2016; Swetnam & Betancourt, 1998).     

Data analysis and modeling impacts from wildfire on snowpack have been evaluated in 

previous studies, but most studies have focused on changes in relatively limited spatial domains 

(Burles & Boon, 2011; Gleason et al., 2013; Gleason & Nolin, 2016; Harpold et al., 2014; 

Moeser et al., 2020).  These studies have also used a variety of methods to summarize and model 

post-wildfire snowpack or components of the snow surface energy balance.  Chapter 2 

summarized snowpack changes for several burned NRCS SNOw TELemetry (SNOTEL) sites 

across the western U.S.  The results indicated earlier melt-out and peak SWE dates are likely, 

while changes to peak SWE are variable between northern and southern regions.  Additionally, 

the observed snowpack changes were not sensitive to burn severity classification but did show 

dependence on the change in leaf-area index and the tree genus.  Burles and Boon (2011) used a 

process-based point energy balance model to quantify differences in energy balance 

characteristics between burned and unburned locations in Alberta, Canada.  Their model was not 

designed to be transferrable to other locations without requiring the full suite of input variables 

necessary for modeling energy fluxes for snowpack.  Another modeling study by Moeser et al. 

(2020) applied a snowpack energy budget model at 1 m2 resolution to a burned site in New 
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Mexico.  Their model results had less than 10% bias when compared to the observed snow depth 

measurements, but the authors also noted those results may not be transferable to other regions.  

In addition, the data requirements for simulating snowpack using an energy balance model are 

extensive and often one of the limitations to using this method for post-wildfire snowpack 

analysis, especially at the high spatial resolutions.  In the Northwest U.S., Gleason and Nolin 

(2016) used an energy balance model to test new parameterizations of post-wildfire snow albedo 

decay.  This work was focused on a specific aspect of model parameterization and may be useful 

in other regions; however, the quantification of changes to snowpack would still require 

additional models and input data.  For water managers, the limited spatial domain of the previous 

work presents challenges and the results may not be reliable indictors of snowpack changes over 

an entire burn area.  As shown in Chapter 2 in Figures 3-6, observations of snowpack changes 

vary within western U.S. ecoregions and may have limited applicability of other areas with 

similar burn severity and elevation.   

At regional scales, there are limited studies related to snowpack changes due to wildfire.  

Stevens (2017) collected snow depth measurements in the Sierra Nevada Mountains and found 

fire severity had a negative effect on snow depth.  In their observations, the highest snow depths 

were found in unburned areas.  They also developed statistical models to predict changes in snow 

depth using burn severity, canopy gaps, and topographic aspect in the Sierra Nevada Mountains.  

Based on the linear model parameter estimates, they found inverse relationships between burn 

severity and snow depth.  The parameter estimates for canopy gap and northeast aspect indicate a 

positive relationship while southwest aspect was negative.  Again, these results would have 

predictive power for the area from which the training data was derived, but potentially limited 

applicability in other regions.  Another regional scale study by Micheletty et al. (2014) used 
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remote sensing data to evaluate the spatial variability of melt-out after fires in California.  They 

found melt-out occurred on average 9 days earlier in burn areas based on 11 years (6 years pre-

wildfire and 5 years post-wildfire) of snow cover data. 

Snowpack vulnerability can be defined by the sensitivity and susceptibility of regional 

snowpack to changes when a wildfire occurs.  While many studies have examined the impacts of 

individual wildfires on snowpack properties, few tools are available to help water managers plan 

for expected impacts of a wildfire in a particular region.  The objective of this study is to 

determine locations and conditions where the snowpack is more sensitive to wildfire occurrences 

in the western U.S.  This includes:   

1. Determining spatial variability of wildfire impacts on SWE within ecoregions (and how 

representative an analysis at a select site is expected to be for an ecoregion)   

2. Identifying locations within the ecoregions where snowpack is especially sensitive to 

wildfire and whether those sites have been preferentially burned. 

3. Quantify the snow water changes across each ecoregion due to fires from 2015 through 

2020. 

The study uses SNOTEL data for the western U.S., which are consistently collected and 

reported for numerous sites across the western U.S.  A random forest (RF) model was developed 

using pre- and post-wildfire changes at burned SNOTEL sites and associated unburned sites to 

predict the magnitude of snowpack change following a wildfire.  The model is evaluated based 

on comparing RF error statistics to the variability of changes at the burned SNOTEL sites.  The 

model is applied to several ecoregions across the western U.S. to quantify potential changes to 

peak SWE magnitude and date along with melt-out dates.  The wildfire perimeters from the 

interagency fire perimeter history dataset (NIFC, 2021) are then used to quantify areas that have 
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burned in each ecoregion during 2015 through 2020 period.  This provides information about 

how much snowpack has already changed due to recent wildfire activity.   

 

3.3 DATA  

3.3.1 SNOTEL Data  

The ground-based data used in the vulnerability analysis are the daily reported SWE and 

precipitation values from the SNOTEL network sites, which are operated by the Natural 

Resources Conservation Service (NRCS, 2021).  The sites in the analysis range from southern 

New Mexico (latitude 33.4° N) to the mountain ranges in northern Washington (latitude 48.9° N) 

(Figure 12).  Quality control was completed through visual inspection of the SWE and 

precipitation time series.  The local NRCS Snow Survey offices were consulted before removing 

any apparent reporting errors.  To maximize the utilization of available data, only years with 

more than 10% of daily precipitation or SWE values missing were removed from the dataset.  Of 

the 1500 station-years available for the burned sites, 23 years were removed. 

NRCS Snow Survey Data Collection Offices have identified 43 sites that have been 

directly impacted by wildfires through 2019 in the western U.S.  The period of record for both 

SWE and precipitation at each burned site is shown in Figure 13 along with the wildfire date.  

Comparison unburned sites were identified within the same level 3 ecoregion for each burned 

site.  Using level 3 ecoregion as a grouping criterion allows us to compare burned and unburned 

sites that have similar regionally classified geology, physiography, vegetation, climate, and soils 

(Omernik & Griffith, 2014).  At least two unburned sites were identified for each burned site.  

The initial matching criteria was to find unburned sites within a distance of 50 km and ±300 m of 
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elevation.  These criteria resulted in unburned sites for approximately 80 percent of the burned 

locations.  Pairing for the remaining 20% of burned sites required expansion of the search radius 

or elevation range and are noted in the supporting data.  The time series for each of the 108 

unburned sites was divided based on the fire date of the associated burned location.  The 

representativeness of the unburned sites relative to the burned locations was evaluated using the 

Kling-Gupta efficiency (KGE) (Gupta et al., 2009).  The KGE average of 0.82 suggests the 

unburned sites behavior relatively similarly to the burned sites for this period.   

 

Figure 12. Map of burned (red triangles) and unburned (blue circles) SNOTEL sites in western 

United States along with the level 3 ecoregions (Omernik & Griffith, 2014) used in the analysis.  
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Figure 13. Period of record used for each of the 43 burned SNOTEL site.  The date of the 

wildfire (red triangle) is shown for reference within the record. 

 

3.3.2 Snowpack Measures  

The snowpack measures used in this analysis are annual maximum SWE; annual 

maximum SWE normalized by dividing the maximum SWE value by the cumulative October 

through April precipitation (nSWE); date of annual maximum SWE (peak date); and melt-out 

date (Table 2).  For each of these measures it is important to distinguish between the combined 

signal (climate plus wildfire) and the wildfire signal when considering changes in snowpack.  

The climate signal is estimated using the difference between post-wildfire and the pre-wildfire 
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snowpack measure at the unburned sites.  The combined signal is the difference between the pre-

wildfire and post-wildfire snowpack measure at the burned sites.  Both the climate and combined 

signals are derived using differences between the temporal subsets of the data.  The wildfire 

signal is then calculated as the difference between the post-wildfire to pre-wildfire changes at the 

burned and unburned sites.  The results for this analysis focus on the snowpack changes (percent 

difference for SWE and days difference for dates) due to both wildfire and combined signals.   

 

Table 2. Definitions for SWE measures used which are consistent with those defined in Chapter 

2. 

Measure Description 

Annual maximum SWE 

(SWE) 

First date of maximum SWE using a 01 October through 30 

September water year 

Annual maximum 

normalized SWE (nSWE) 

The annual maximum SWE value divided by the total October 

through April precipitation 

Date of annual maximum 

SWE (Peak date) 

Date of annual maximum SWE as defined above 

Melt-out date First daily value after the peak SWE for which SWE equaled 

zero 

 

3.3.3 Topographic and Land Cover Data  

Several data products from the LANDFIRE data portal (https://landfire.gov/) were used 

as candidate predictor variables in the model development.  These spatially continuous datasets 

for the United States are produced through a shared program between the wildland fire 

management programs of the U.S. Department of Agriculture Forest Service and U.S. 

Department of the Interior.  The variables from LANDFIRE include both land surface and 

topographic information available for the contiguous United States at 30 m spatial resolution.  

The topographic data includes aspect (LANDFIRE, 2016a), elevation (LANDFIRE, 2016b), and 

slope (LANDFIRE, 2016d).  The only land cover dataset used was existing vegetation type, 

https://landfire.gov/
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which groups ecological and plant communities by similar physical environments (LANDFIRE, 

2016c; NatureServe, 2009).  Based on results presented Figure 7 burn severity was not 

considered because changes in the snow measures were not found to be sensitive to categories of 

burn severity.  The results show in Figure 8 indicate the snow measure changes are sensitive to 

the leaf area index change.  Changes in leaf area index were not included due to their spatial-

temporal variability (Pokorný et al, 2008).  A single location may have a range of potential post-

wildfire leaf area index changes going into the future which will be further influenced by climate 

and insect mortality of forests.   

3.3.4 Forest Inventory and Analysis Data  

Forest metrics from the U.S. Department of Agriculture Forest Service (USDA-FS) 

Forest Inventory and Analysis (FIA) were used as predictor variables in the analysis.  The FIA 

data provides consistent forest stand level data for both public and privately owned U.S. forested 

areas (Burrill et al., 2018).  The 240 m gridded data from 2017 was used to obtain the total basal 

area and dominant stand density index species.  Total basal area represents the sum of the cross-

sectional area of trees at 1.37 m height relative to the ground over a grid cell (Bettinger, 2008).  

The dominant stand density index species represents the tree species with the largest basal area 

per number of trees for a grid cell (Woodall et al., 2003).  From the dominant stand index tree 

species, the tree genus was determined.  Updated metrics are not available throughout the period 

of record used in this analysis.  Therefore, pre-wildfire FIA metrics associated with each burned 

site are not available for all wildfires.  In this analysis the 2017 FIA metrics are used for all 

burned sites regardless of the year in which they were burned.  The 240 m grids were resampled 

to create 30 m grids that align with other predictor variables.  During the RF development, both 

the total basal area and tree genus were used based on the resampled 240 m grid coincident with 
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the burned site location.  Inspection of the 30 m grid values from resampled grid was performed 

to ensure consistency with the original 240 m datasets at the burned sites.  The genus used in this 

analysis include pine (Pinus), fir (includes both Abies and Pseudotsuga), spruce (Picea), 

hemlock (Tsuga) and three sites which were other genera.  For analysis purposes, the hemlock 

and unspecified genera are grouped as “hemlock/other” to create a total of four genus classes. 

3.3.5 Incoming Shortwave Radiation   

The Daymet average daily incident shortwave radiation flux was also considered as a 

candidate predictor variable (Thornton et al., 2020).  This dataset has a 1 km spatial resolution 

and has continuous spatial coverage for North America.  The daily values for the grid cell 

coincident with the burned sites were averaged over the 1980-2020 for use in the RF model 

development.  The algorithms used to develop Daymet require only air temperature and 

precipitation as inputs and have been shown to be representative of data collected at ground-

based meteorological stations in complex terrain (Thornton et al., 2000).  The 1 km spatial 

resolution was resampled to 30 m grids for the RF model development. 

3.3.6 Climate Data  

Daily precipitation and temperature values were used as candidate predictor variables in 

the analysis.  The data are from the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) datasets (Daly et al., 1994) (https://prism.oregonstate.edu/).  The daily total 

precipitation and mean air temperature at the 30 arc-second spatial resolution (approximately 4 

km grid) were used in this analysis.  PRISM precipitation dataset has been shown to be 

representative of ground-based precipitation measurements (Buban et al., 2020) and is used to 

improve model simulations for streamflow and snowpack (Gao et al., 2017; Raleigh & 

https://prism.oregonstate.edu/
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Lundquist, 2012).  The PRISM temperature datasets have some known biases in mountainous 

terrain but are still considered representative conditions on mountain slopes (Strachan & Daly, 

2017).  To create consistency in the spatial resolution between the climate and topographic data, 

a resampling of the 3-arc second grids was performed to create 30 m grids for both the daily air 

temperature and precipitation (PRISM, 2021).  This was accomplished by using GIS software 

and using a resampling technique set of “nearest,” which simply divides the original PRISM 

grids into small pieces but does not create new or interpolated values. 

3.3.7 Potential Evaporation  

The daily potential evaporation (PET) was used in this study to evaluate the ratio of 

annual PET to annual precipitation.  The PET dataset developed by Abatzoglou (2013) was used 

because it has been used in other studies related to snowpack modeling the western U.S. 

(Hammond et al., 2018; Harpold et al., 2017) and provide spatially consistent coverage for the 

entire study domain.  The 4 km PET grids were resampled to 30 m spatial resolution for the RF 

model development.    

3.3.8 Snowpack Data  

A spatially continuous snow water equivalent dataset (https://nsidc.org/data/nsidc-0719) 

by Broxton et al. (2019) was also used in this analysis.  The model developed in the current 

analysis from the burned SNOTEL sites estimates changes to SWE and the dataset by Broxton et 

al. (2016) provides spatially continuous estimates of SWE across the western U.S.  The dataset 

by Broxton et al. (2019), hereafter referred to as UA SWE, assimilates SNOTEL and cooperative 

observer snow measurements to generate a 4 km spatial resolution dataset that extends from 

1981 through 2020 and were resampled to 30 m spatial resolution.  The UA SWE dataset has 

https://nsidc.org/data/nsidc-0719
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been used in efforts to quantify SWE trends for the continous U.S. (Zeng et al., 2018) for WY 

1982-2016 and to estimate peak SWE quantiles in eastern Idaho (Giovando et al., 2021) for WY 

1982-2020.  The peak SWE information from this dataset was used to quantify changes in snow 

water from wildfires. 

3.3.9 Predictor variables  

The predictor variables used in the RF model development are either directly from the 

datasets described previously or derived from those datasets.  Predictor variables directly from 

the datasets include longitude, latitude, elevation, slope, total basal area, tree genus, incoming 

radiation, mean October through April temperature, and mean October through April 

precipitation totals.  The derived variables include seasonal climatic indices, northness, eastness, 

curvature, aridity, and heat load index (HLI).  

Latitude and longitude were based on the burned SNOTEL site metadata provided by the 

NRCS.  Latitude controls the solar angle and the amount of incoming radiation during 

accumulation season (Seyednasrollah & Kumar, 2019).  Longitude was used as a predictor 

variable since many of the North American mountain ranges have a north-south orientation and 

can provide distinction of regions with similar climate and lithology. 

The elevation was extracted for each burned site from the 30 m elevation file 

(LANDFIRE, 2016b).  The relationship between snow and elevation is primarily through the 

orographically influenced precipitation and temperature patterns (Dingman, 1981; Sospedra-

Alfonso et al., 2015).  Increased SWE accumulation occurs at higher elevations (Sospera-

Alfonso et al., 2015). 

Land surface slope for each burned site was determined using the 30 m dataset 

(LANDFIRE, 2016d).  The values from the dataset are natively in degrees, but were converted to 
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percent slope for use in the RF model development.  Slope has been shown to influence the 

stability of the snowpack and the input of solar radiation (Anderton et al., 2004; Varhola et al., 

2010).  Berndt (1965) reported steeper slopes (18%) accumulated 20-30% less snowpack 

compared to gentler slopes (<6%). 

Total basal area and tree genus are indicators of canopy density and distribution.  Tree 

size, shape, and crown height can have a significant influence on the amount of radiation 

reaching the land surface (Seyednasrollah & Kumar, 2013).  In addition, snowpack accumulation 

and ablation have been shown to be strongly related to canopy density (Tennant et al., 2017; 

Varhola et al., 2010) due to increased snowfall interception and sublimation (Sexstone et al., 

2018).  The snowfall interception can vary by tree genus based on the efficiency of the branch 

tips to hold snow (Schmidt & Glun, 1991). 

Incoming shortwave radiation was used in this study because radiation fluxes have been 

shown to be the largest contributor to snowmelt (Follum et al., 2015; Maidment, 1993).  The 

shortwave radiation grids coincident with the burned SNOTEL sites were extracted from the 

1980-2020 average values derived from the Daymet daily time series.   

Air temperature and precipitation both have direct influence on both snowpack 

accumulation and ablation (Hamlet et al., 2005; Sospedra-Alfonso et al., 2015).  Air temperature, 

and winter precipitation are the primary climatic forcing variables for snow processes.  The 

precipitation and temperature seasonal variables were derived from the daily PRISM data for 

water years (WY) 1982-2020.  The seasonally aggregated (October through April) temperature 

and precipitation variables are reflective of the overall winter weather.  The aggregation was 

performed because the snow measures used in the model development represent seasonal totals 

(e.g., peak SWE).  The precipitation predictor variable used is the mean annual October through 
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April precipitation total was derived from the daily PRISM data (MeanOct_Apr_tot).  The 

temperature derived variables used the daily mean temperature from the PRISM products.  The 

simplest of the predictor variables is the mean October through April daily temperature 

(MeanTemp).  Several additional variables were created that follow the temperature index (TI) 

concept (USACE, 1956) used for snowmelt modeling.  For this analysis, the TI is simply the 

maximum of either the daily mean temperature or zero.  TI can be considered an index of daily 

net energy flux into the snowpack.  The opposite temperature variable from TI is referred to as 

freezing degree-day (FDD) which is the minimum of either the daily mean temperature or zero.  

FDD is often used to model ice formation on water bodies (USACE, 2006).  FDD would be 

related to the net energy out of the snowpack when daily temperature is below freezing.  The TI 

and FDD variables are defined as:    

               (1) 

          (2) 

 

Where Ta is the daily mean air temperature (°C).  The derived temperature variables used 

in the analysis are based on TI (Eq.1) and FDD (Eq. 2).  Using the TI and FDD index values, 

several additional seasonally aggregated predictor variables related to temperature were 

developed.  The accumulated TI (ATI) was determined for each year during the October through 

April season.  The average of the annual ATI values was determined for the period of WY 1982-

2020 to produce the MeanATI predicator variable for each burned SNOTEL site.  Following a 

similar process, the average of the annual accumulated FDD (AFDD) was determined to produce 

the MeanAFDD variable for WY 1982-2020.  The final temperature variable used in the RF 

development was the average annual number of days below freezing.  This variable is similar to 

𝐹𝐷𝐷 =  min (𝑇𝑎, 0) 

      

TI = max (𝑇𝑎 ,0) 
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AFDD in that it represents the total energy removed from the snowpack during the winter, but it 

is binary and excludes the magnitude of the temperature below freezing.   

Land surface aspect (aspect) was extracted for all the burn sites using the LANDFIRE 

aspect dataset (LANDFIRE, 2016a).  Aspect has been shown to be important in understanding 

snowpack distribution in the western U.S. (Tennant et al., 2017).  Due to the continuous range of 

aspect (0 to 360°), it was normalized in this study by determining degree of northness and 

eastness.  Northness is a measure of the degree to which the land surface is north-facing.  

Generally, northness has a positive correlation with SWE and represents areas of more persistent 

snow cover (Sexstone & Fassnacht, 2014).  The northness follows the formulation of Molotch et 

al. (2005), which uses the product of the cosine of aspect (degrees) and sine of slope (degrees).  

Eastness is the product of the sine of aspect (degrees) and sine of slope (degrees).  Eastness is the 

degree to which the land surface is east-facing and is related to potential snow loading in areas 

where west winds redistribute snow on leeward east-facing slopes (Sexstone & Fassnacht, 2014).  

Both of these variables control solar radiation input (Schaerer & McClung, 2006; Tennant et al., 

2017). 

Terrain curvature (curvature) for each of the burned sites was determined using the slope 

dataset and the Spatial Analysis tools within ArcGIS.  Curvature is the derivative of slope and 

represents local relief of terrain.  Local relief is related to wind drifting of snow from exposed 

steep slopes to gullies (Lapen & Martz, 1996).  Curvature has also been considered in other 

studies evaluating spatial variability of snowpack (Sexstone & Fassnacht, 2014). 

 In this study the average aridity index (aridity) was also used as an input variable for the 

RF model development.  The aridity index is the ratio of annual potential evaporation to annual 

precipitation (Greve et al., 2019).  Areas with high aridity can indicate locations of higher 
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snowpack sublimation potential during the later winter months which could influence peak SWE 

magnitude and date.  The average annual PET for this study was derived using the geographic 

locations from the burned SNOTEL sites and extracting values from the gridMet dataset 

(Abatzoglou, 2013).  The average annual precipitation was derived from the PRISM daily totals 

for grids coincident with the burned sites.  Table 3 summarizes predictor variables used for 

model development.   

HLI is related to the amount of clear-sky incoming shortwave radiation by combining 

latitude, slope, and aspect into a single index (McCune & Keon, 2002).  By combining these 

variables into a single index, an estimate of the incident radiation can be made for any location 

using only topographic information.  HLI is useful when comparing locations which receive 

afternoon sun compared to morning sun because the same daily radiation may be occurring on 

similar slopes, but the potential for impacting snow process is much greater for the slope with 

afternoon sun (McCune & Keon, 2002).  The HLI values for each burned site were processed 

using the LANDFIRE datasets and the R package spatialEco (Evans, 2021), which use the 

formulation of HLI specified by McCune & Keon (2002). 
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Table 3: Summary of predictor variables used in the development of the RF models. 

Variable Physical Basis for Snow Modeling (units) Data Source 

Latitude  Geographic location (degrees) Natural Resources Conservation Service 

Latitude  Geographic location (degrees) Natural Resources Conservation Service 

MeanOct_Apr_tot  Mean annual total precipitation between Oct-Apr; controls total annual snowpack 

accumulation (mm) 

PRISM 

MeanTemp  Mean Oct-Apr daily temperature values; index of seasonal energy flux into snowpack (°C) PRISM 

MeanATI  Mean of annual accumulated TI between Oct-Apr; index of seasonal energy flux into 

snowpack (°C - Days) 

PRISM 

MeanAFFD  Mean of annual accumulated freezing degree days between Oct-Apr; index of seasonal 

energy removed from snowpack (°C -Days) 

PRISM 

MeanLT0  Mean of annual accumulated count for days less than 0 °C between Oct-Apr; binary index of 

seasonal energy flux removed from snowpack (days) 

PRISM 

Elevation  Direct relationship to snowpack accumulation ablation based on orographic precipitation 

patterns and temperature (m) 

LANDFIRE 

Slope  Influences stability of snowpack during accumulation (m/m) LANDFIRE 

Curvature This is the derivative of land surface slope; represents local relief which can influence 

accumulation and ablation  

LANDFIRE (extracted from elevation file) 

Northness cos(aspect) x sin(slope) 

Controls snow cover persistence and input radiation flux (degrees) 

LANDFIRE (extracted from slope and aspect 

file) 

Eastness sin(aspect) x sin(slope) 

Controls degree of snow loading from west winds and input radiation flux (degrees) 

LANDFIRE (extracted from slope and aspect 

file) 

Total Basal Area  Resampled to 30 m spatial resolution from 240 m total basal area dataset using nearest 

neighbor value; index of canopy density which will control snowfall interception (m2) 

Forest Inventory and Analysis 

Tree Genus Classified from resampled 30 m spatial resolution from 240 m dominant stand index species 

dataset using nearest neighbor value; index canopy density and branch shape which will 

control snowfall interception 

Forest Inventory and Analysis 

Incoming Radiation Estimated incoming shortwave radiation at land surface based on 1 km2 resolution; key 

variable to drive snowmelt (W/m2) 

Daymet 

Heat Load Index (HLI) An index which combines both potential incoming radiation and land surface temperature 

from latitude, slope, and aspect; indicator of fluxes to driver snowmelt 

R package (spatialEco) using LANDFIRE 

elevation 

Aridity Ratio of total annual potential evaporation (PET) to total annual precipitation; areas with 

higher aridity can have increased sublimation through elevated vapor pressure deficits  

PET: gridMet 

Precipitation: PRISM 
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3.4 METHODS 

3.4.1 Random Forest Models 

Random Forest (RF), a subset of the available machine learning (ML) approaches, is a 

supervised ML method that uses an ensemble of decision trees to predict responses from a set of 

predictor variables (Breiman, 2001).  RF models have been shown to be effective and accurate in 

modeling water resources and snow processes while providing several advantages.  The 

advantages that are most relevant to the vulnerability analysis are the ability of RF models to: 1) 

capture both linear and non-linear dependencies between predictor and response variables 

(Boulesteix et al., 2012); and 2) effectively use small sample sizes (Biau & Scornet, 2016).  A 

complete list of advantages for RF is succinctly outlined in Tyralis et al. (2019).  RF models 

have been increasingly used for water resource applications in recent years (Tyralis et al., 2019; 

Yang et al., 2019; Zhang et al., 2019).  Publications related to streamflow and water quality are 

the most common water resource applications of RF models, while there are other recent 

publications that directly estimate snow distribution (Tyralis et al., 2019; Yang et al. 2019).  The 

RF approach has been used in many applications related to estimating snow quantity or 

distribution.  Yang et al. (2019) used a RF for snow depth reconstruction in China, while Zhang 

et al. (2021) used the RF approach to estimate SWE in Sweden using satellite, topographic, and 

land cover information.  RF was also used to bias correct the Snow Data Assimilation System 

SWE product in Ontario, Canada to provide more accurate snowpack information to water 

managers (King et al., 2020).  

The foundation of the RF approach is the Classification and Regression Trees (CART) 

described by Breiman et al. (1984).  The input data to the CART are matrices of predictor 

variables (X) and response variables (Y).  In this analysis X is p x m matrix comprised of p 
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predictor variables for m SNOTEL sites.  The CART process begins with determining the initial 

split for a single predictor variable by iteratively dividing the groups of data and predicting snow 

measure changes.  This process continues until mean squared error (MSE) of the measured 

values at the burned SNOTEL sites compared to the predicted values is minimized.  The 

minimum MSE is then used to determine the threshold value to establish a tree node with value 

tn (Figure 14).  Once the node of the first predictor variable is determined, the remaining 

predictor variables are divided based on the groups created from divisions of the first variable.  

This process is repeated until all predictor variables have been evaluated.  The final groups, 

representing the leaf of the CART, generally have a small number of observations (between 1 

and 5) which are not split further (Biau and Scornet, 2016).        

 

Figure 14. Example of CART which are the basis of the ensemble of decision trees used in the 

RF approach.  The split at each node is based on binary split of the predictor variable X based on 

the threshold t, continuing until the groups of predictor and response variable are determined in 

the leaf R.  

 

The RF approach uses an ensemble of CARTs based on four parameters that need to be 

specified.  The ensemble is created by varying the predictor variables used for splitting at each 

node (Biau and Scornet, 2016).  These parameters are 1) number of trained trees used in the 

ensemble (ntree); 2) number of randomly selected predictor variables used at each node to split 

(mtry); 3) number of observations used in each tree (samplesize), and maximum number of 
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observations in each leaf (nodesize).  For the vulnerability analysis the samplesize and nodesize 

were set to 27 and 5 for this analysis.  Sensitivity testing for these two parameters indicated the 

results remained similar for each of the snow measures.  Due to limited size of the burned 

SNOTEL dataset, larger values for these parameters were not considered.  Sensitivity testing was 

performed for slightly smaller values and the RF model accuracy was not found to be sensitive.  

The number of trained trees was set to 500 based on the criterion proposed by Boulesteix et al. 

(2012) which states RF performance increases approaches 0 for ntree ≥250.  The assumed ntree 

values was confirmed with sensitivity testing of the results to the ntree parameter and showed no 

error reduction for values greater than 500.  Determination of the mtry parameter was estimated 

using the lowest root-mean squared error (RMSE) for the RF model.  In this analysis, the 

randomForest R package (version 4.6-14) is used for the RF model development (Breiman et al., 

2021.; Liaw & Wiener, 2002). 

3.4.2 Model Development  

In total 8 RF models were developed for this analysis.  There were several steps involved 

to arrive at the final RF models used for predication across each ecoregion.  These steps included 

training each model using k-fold cross validation (James et al., 2013) with all potential predictor 

variables, evaluating variable importance, final selection of predicator variables, and evaluation 

of training error statistics to determine optimal RF parameters (i.e., mtry).  

Due to the limited sample size available for training the model, all sites were used in the 

random forest model development.  The model training was performed using a 5-fold cross 

validation process which provides a more robust estimate of the model error statistics (James et 

al., 2013).  The 5-fold cross validation process randomly splits the initial 43 sites into five equal 

subsets (or as close to equal as possible), then trains the model on the four subsets and validates 
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the model against the remaining subset.    This is repeated until all subsets are used for 

evaluation.  The mean training error statistics for all 5 folds are used as the training error 

associated with that specific RF model.  The validation error is calculated using the combined 

results from the validation folds.  For example, during each fold, 35 burned sites are used for 

training the RF and 8 sites are used for validation.  This process is repeated 5 times and the 

validation statistics are evaluated on the combined validation results from each fold. James et al. 

(2013) suggests that the number of folds (k) should be equal to 5 or 10 because these values do 

not result in excessively high bias or high variance for the mean squared error statistic.  In 

addition, as the number of folds in the k-fold cross validation approaches the total sample size, 

the variance of the mean squared error can  increase between each fold and provides a less robust 

estimate of the true model error (James et al., 2013).  For the vulnerability analysis k=5 was 

selected because of the relatively small training dataset available for RF models. 

3.4.3 Model Training and Variable Importance   

The RF training and cross validation followed a two-step procedure.  First, the k-fold 

training process was performed for all combinations of predictor variables listed in Table 3.  A 

table of error statistics associated with each combination of predictor variables was compiled and 

evaluated.  The final set of predictor variables used for the RF models was based on the 

minimum RMSE statistic for each snow measure.   

The importance of the predictor variables is determined by evaluating the mean decrease 

in accuracy (mean increase in error) of the RF model.  The mean decrease in accuracy is 

determined for each variable by assessing differences in errors averaged across all trees when 

individual predictor variables are randomly rearranged.  This rearranging disassociates predictor 
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variable values from the snow measures for a specific burned site.  As described by Biau and 

Scornet (2016), the important prediction variables result in larger errors when rearranged.  

3.4.4 Model Application   

The RF models were trained using the percent difference of in peak SWE, nSWE, and 

days difference for peak date and melt-out date for both the combined and wildfire signals for 

each of the burned SNOTEL sites.  The input variables used for the RF models are derived from 

spatially continuous datasets for all of the western U.S.  Using the spatially continuous predictor 

variable datasets allows for prediction of snowpack changes for both the combined and wildfire 

signals for all areas that may experience changes in SWE after a wildfire.  Using the raster R 

package (version 3.4-5) (Hijmans, 2020), the trained RF models for all ecoregions were used to 

create spatially continuous predictions of snowpack changes for western U.S. ecoregions that 

include burned sites.  The RF results were only applied to areas classified with tree cover based 

on the LANDFIRE Existing Vegetation Type (EVT) (LANDFIRE, 2016c) dataset.  The majority 

of burned sites were located within or immediately adjacent to treed areas; therefore, the RF 

models were only applied to the tree land cover classification.  Using the final RF model output, 

subsequent to the masking steps, the total snow water volume changes was quantified for each of 

the ecoregions at 30 m resolution.  This was accomplished by using the fire signal annual 

maximum SWE percent change from the RF model multiplying them to a spatially continuous 

UA annual maximum SWE dataset to quantify volumes of snow water changes for post-wildfire 

conditions. 
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3.4.5 Model Evaluation   

The RF model evaluation consisted of two separate performance comparisons.  These 

comparisons use results from simple models to ensure the RF models provide more predictive 

information then just using the average of the SNOTEL observations.  The two simple models 

were derived using the average snow measure change from 1) all 43 SNOTEL sites (Overall 

Average) and 2) the average for each ecoregion (Ecoregion Average) for each snow measure and 

signal.  The RMSE and coefficient of determination (R2) were then determined for the simple 

models for only for the purpose of comparing to the error statistics of the RF models. The RF 

RMSE is derived using the final predicted values from each trained RF model and the associated 

snow measure changes at all the 43 SNOTEL sites.  The simple models were not used for any 

further analysis beyond comparisons of error statistics. 

A second measure of performance to ensure the RF models are sufficient for predictions 

at burned sites are the criteria described by Moriasi et al. (2007).  The ratio of RMSE-to the 

standard deviation of the observation (RSR) was used for each RF model.  The RSR uses the 

model RMSE and the standard deviation of the observations to determine the relative model 

error.  Specifically, RSR is: 

 

           (3) 

In addition to RSR (Eq. 3), the Nash-Sutcliff efficiency (NSE) (Nash & Sutcliffe, 1970) is also 

used by Moriasi et al. (2007) to classify model performance.  Models are considered 

“satisfactory” for NSE > 0.5 and RSR ≤ 0.70 (Moriasi et al., 2007).  The Nash-Sutcliffe 

efficiency is defined as:  

 

𝑅𝑆𝑅 = 𝑅𝑀𝑆𝐸𝑆𝑇𝐷𝐸𝑉𝑂𝐵𝑆 
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                     (4) 

 

Where Yi
obs is the ith observation for the snow measure, Yi

sim is the corresponding ith simulated 

value and Ymean is the mean of all the snow measure observations (Eq. 4).   

3.5 RESULTS 

3.5.1 RF Model Training and Evaluation 

The model error statistics resulting from the k-fold cross validation process are shown in 

Table 4.  Both the training and validation RMSE for the combine signal (CS) and wildfire signal 

(FS) SWE models are 19%.  The coefficient of determination was slightly reduced for the FS 

SWE model as compared to the combined signal model.  The CS nSWE model RMSE for 

training and validation are 15% and 16%, respectively.  The nSWE FS model RMSE for both 

training and validation is 15%.  The RMSE for peak SWE and melt-out date CS models is 

approximately 9 and 7 days, respectively.  The RMSE for the FS peak SWE date and melt-out 

date changes are approximately 11 days and 8 days, respectively.   

Table 4: Summary k-fold cross validation error statistics for both the combined and fire signal 

models.  The SWE and nSWE error are a percentage while the peak and melt-out error is in days.    

 

Snow Measure CS Training 

(Validation) 

RMSE 

CS Training 

(Validation) 

R2 

FS Training 

(Validation) 

RMSE 

FS Training 

(Validation) 

R2 

SWE 19% (19%) 0.52 (0.45) 19 % (19%) 0.42 (0.40) 

nSWE 15% (16%) 0.40 (0.15) 15% (15%) 0.38 (0.25) 

Peak Date 8.7 d (8.7d) 0.46 (0.41) 10.6 d (10.9 d) 0.48 (0.18) 

Melt-out Date 6.7 d (6.9 d) 0.50 (0.37) 8.1 d (8.3 d) 0.44 (0.07) 

 

Predictions for each snow measures change at the 43 sites were made using the RF 

models resulting from the k-fold cross validation process.  The observations were used to 

𝑁𝑆𝐸 = 1 −  [ ∑ (𝑌𝑖𝑜𝑏𝑠 −  𝑌𝑖𝑠𝑖𝑚)2𝑛𝑖=1∑ (𝑌𝑖𝑜𝑏𝑠 −  𝑌𝑚𝑒𝑎𝑛)2𝑛𝑖=1 ] 
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compare with results from both the RF and simple models.  These simple models are useful 

because they provide a benchmark for more complex models.  The complex models should have 

at least the same prediction ability as using the simple models.  The RF RMSE and coefficient of 

determination (R2) values are improvements over the two simple models in all cases (Table 5).  

The coefficient of determination is zero for the simple-overall average model since the predicted 

snow measure changes are the same for each burned site.  The simple-ecoregion average model 

does perform better when compared to the overall average, but still does not match the RF 

models.   

The RSR, NSE, and model classification using the Moriasi et al. (2007) criteria are 

shown in Table 6.  All models are “satisfactory” except for the combined signal nSWE model.  

Based on the RMSE values in Table 5, the combined signal nSWE model only shows a slight 

improvement over just using the ecoregion average for the nSWE changes at the burned 

SNOTEL sites.  Therefore, the RSR resulting in a “unsatisfactory” classification is 

understandable.  The combined signal nSWE model does indicate improved R2 values relative to 

the simple-ecoregion average predictions.   
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Table 5: Summary of RMSE values comparing the combined signal (CS) and fire signal (FS) random forest models to the simple 

models which only use the average of the burned SNOTEL observations.  The SWE and nSWE RMSE values are percentages while 

peak and melt-out date RMSE values are in days. 

  SWE-FS SWE-CS nSWE-FS nSWE-CS Peak Date-FS Peak Date-CS 

Meltout 

Date-FS 

Meltout 

Date-CS 

Model RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Random 

Forest 0.10 0.88 0.09 0.90 0.08 0.86 0.12 0.47 4.7 0.87 3.8 0.91 4.1 0.83 3.3 0.89 

Simple-

Overall 

Average 0.25 0.00 0.25 0.00 0.18 0.00 0.17 0.00 9.3 0.00 11.3 0.00 8.4 0.00 8.7 0.00 

Siimple-

Ecoregion 

Average 0.21 0.31 0.18 0.45 0.15 0.31 0.14 0.26 7.1 0.41 7.8 0.52 6.2 0.45 6.6 0.43 

 

Table 6: Summary RSR values and model classification based on RSR and NSE ranges specified by Moriasi et al. (2007). 

Model RSR NSE Classification 

SWE-FS 0.40 0.86 satisfactory 

SWE-CS 0.36 0.85 satisfactory 

nSWE-FS 0.43 0.81 satisfactory 

nSWE-CS 0.73 0.75 unsatisfactory 

Peak Date-FS 0.50 0.86 satisfactory 

Peak Date-CS 0.33 0.89 satisfactory 

Meltout Date-FS 0.48 0.76 satisfactory 

Meltout Date-CS 0.37 0.86 satisfactory 
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3.5.2 Input Variable Importance 

The predictor variables importance from the 5-fold cross validation are shown Figure 15.  

The most important variable for CS SWE changes is Mean LT0 (Figure 15a), while the most 

important variable for the FS SWE is slope (Figure 15b).  This indicates when only considering 

wildfire impacts, topographic variables (i.e., slope, HLI, and northness) should be the focus 

when assessing the magnitude of SWE change. However, when evaluating the CS SWE changes, 

topographic information importance is reduced and mean winter climate is the key variable.      

The most important variables are incoming radiation and slope for CS nSWE (Figure 

15c) and FS nSWE (Figure 15d), respectively.  The topographic variables for FS nSWE and FS 

SWE are similar, suggesting that regardless of winter precipitation totals, slope is likely key for 

determining SWE changes from only wildfire impacts.  Other studies have found slope to be an 

important factor in snow accumulation (Berndt, 1965; Varhola et al., 2010).   Gentler slopes 

were found to have increased snow accumulation especially when the canopy is removed 

(Berndt, 1965).  Stevens (2017) found southwest facing slopes to have a negative correlation to 

snow depth in burned areas.  The results from these studies suggest that areas of more SWE 

accumulation could be susceptible to larger changes in SWE following a wildfire.      

The most important variable for the CS peak and melt-out date is mean winter 

temperature (Figure 15e and 15g).  In addition, mean temperature importance is relatively much 

greater than other variables for both of these models.  This result suggests that perhaps only 

mean winter temperature needs to be considered when evaluating the magnitude in date changes. 

The most important variable for the FS peak date model is incoming radiation (Figure 15f) while 

the most important variable for FS melt-out date is aridity (Figure 15h).  Aridity could be an 
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indicator of increased sublimation post-wildfire resulting in earlier melt-out as suggested by 

Harpold et al. (2014). 

The R2 for the CS nSWE, FS peak date, and FS melt-out date differences decreases 

substantially between the training and validation output from the k-fold cross validation process 

(Table 4).  This decrease of R2 for the CS nSWE and FS peak date differences could be 

associated with the variability of incoming radiation.  The coefficient of variation for incoming 

radiation is much greater than unity, indicating the variance in the predictor variable is much 

larger than the mean.  Therefore, the RF model training data used for each fold of the k-fold 

cross validation process may not adequately capture the incoming radiation variability.  The 

reduced R2 for the FS melt-out date may be attributed to the importance of the individual 

ecoregion used by the RF model and the unbalanced sample size available with the limited 

number of SNOTEL sites in each ecoregion (Figure 15h).   
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Figure 15: Variable importance for each RF model.  The list of predictor variables used in the RF 

model along with the relative of importance for a) combined signal SWE model; b) fire signal 

SWE model; c) combined signal nSWE model; d) fire signal nSWE model; e) combined signal 

peak date model; f) fire signal peak date model; g) combined signal melt-out model; and h) fire 

signal melt-out model. 

 

3.5.3 Spatial Variability 

A summary of spatial results for each ecoregion and snow measure is shown in Figure 16.  

The overall results indicate increased spatial variability for the CS models as compared to the FS 

models.  The inter-quartile range (IQR) values, which represent the intra-ecoregion spatial 
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variability for SWE, are 2-3 times larger for the CS model compared to the FS model for most 

ecoregions (Figure 16a).  The IQR differences between CS and FS are less for nSWE (Figure 

16b), which suggest spatial variability in precipitation could be contributing to the spatial 

variability of the CS SWE changes. The IQR for the peak and melt-out dates does indicate 

certain ecoregions have increased spatial variability for the CS model results compared to the FS 

model results (Figure 16c and 16d).  The largest IQR for the CS peak and melt-out date 

differences occur in the Northern Rockies, North Cascades, Wasatch and Uinta Mountains and 

the Southern Rockies.  The larger IQR values for the CS models are likely a result of the most 

important variables identified by RF model development process.  Both MeanLT0 and 

MeanTemp have a relatively large distributional range for most ecoregions and could be the 

source of the spatial variability.  
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Figure 16. Ecoregion median and interquartile range (IQR) of combined and fire signal changes 

for a) peak SWE, b) maximum normalized SWE, c) peak SWE date, and d) melt-out date.  

 

3.5.4 Identification and evaluation of snow vulnerable areas 

The location and quantification of areas where snow is most vulnerable are based on the 

predicted SWE changes.  Vulnerable areas within each ecoregion are those areas with predicted 

SWE changes exceeding the RF model training RMSE resulting from the k-fold cross validation 
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process (Table 4).  Specifically, any areas within the ecoregions which have a predicted absolute 

SWE value change of greater than 19% were classified as vulnerable.  An example of vulnerable 

areas for the Southern Rockies is shown in Figure 17 along with wildfire perimeters from this 

region during the 2015-2020 period.  The fire perimeters are from the National Interagency Fire 

Center (https://data-nifc.opendata.arcgis.com/datasets/nifc::interagency-fire-perimeter-history-

all-years/about).  From Figure 17a, areas of the southern Rockies that are vulnerable from the CS 

are at lower latitudes.  This is due to the warmer mean winter temperatures and reduced days 

below freezing.  Zooming into the areas in southern Colorado, near La Veta, Colorado, there are 

large portions of the Junkins and Spring Creek burn areas that are vulnerable (Figure 17b).  The 

majority of burned area in the Spring Creek fire perimeter is vulnerable to changes in SWE using 

CS model results (Figure 17c).  In contrast to the CS results, the areas of vulnerability based on 

the FS are substantially less because they are only located in areas with shallow slope (Figure 

17d).  Again, zooming into areas of southern Colorado, there are limited locations with the 

Junkins and Spring Creek fire perimeters which are classified as vulnerable (Figure 17e).  Only 

the west side of the Spring Creek fire perimeter has concentrations of vulnerable areas based on 

the fire signal RF model results (Figure 17f).   

 

https://data-nifc.opendata.arcgis.com/datasets/nifc::interagency-fire-perimeter-history-all-years/about
https://data-nifc.opendata.arcgis.com/datasets/nifc::interagency-fire-perimeter-history-all-years/about
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Figure 17. Vulnerable areas of Southern Rockies based on SWE change magnitude greater than 

model RMSE.  Vulnerable areas using the combined signal SWE model for a) the Southern 

Rockies ecoregion; b) areas in southern Colorado; and c) areas of Spring Creek Fire from 2018.   

Vulnerable areas using the fire signal SWE model for d) Southern Rockies ecoregion; e) areas in 

southern Colorado; and f) areas of Spring Creek Fire from 2018.   

 

Using the important variables from each RF model, the distribution of predictor variables 

helps further clarify the characteristics in each ecoregion where SWE vulnerability may exist.  

The distribution of predictor variables used in the CS SWE model are shown in Figure 18 and 

are sorted by variable importance.  There are three distributions shown for each predator 

variable.  The first is the values for the entire ecoregion classified as tree cover; the second is 
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areas classified as tree cover within the fire 2015-2020 perimeters; and the final distribution are 

areas identified as vulnerable based on the percent SWE difference exceeding the model RMSE.  

The most important variable for the CS SWE model is MeanLT0.  For the northern and mid-

latitude ecoregions many areas within these ecoregions have more than 100 days of temperatures 

below freezing.  However, the vulnerable areas are limited to lower MeanLT0 values (less than 

100 days) and are a relatively small portion of the total ecoregion distribution (Figure 18a).  In 

contrast, the MeanLT0 values for vulnerable areas for the southern ecoregions generally span the 

entire ecoregion distribution.  This suggests that more areas are potentially vulnerable to SWE 

changes post-wildfire when both climate and wildfire are combined.  The northern and mid-

latitude ecoregions areas, where wildfires have occurred, span only a small portion of the total 

ecoregion range for the MeanLT0 predictor variable (Figure 18a).  There is substantial variability 

for incoming radiation between ecoregions.  Within each ecoregion, the vulnerable distributions 

for incoming radiation are generally within the distribution range for the entire ecoregion (Figure 

18b).  There are minimal differences between ecoregions and distributions within each ecoregion 

for eastness.  The vulnerable area distribution aligns with both the entire ecoregion as well as the 

areas where fires have occurred (Figure 18c).  The distribution of slope shows differences 

between ecoregions, however only there are minimal differences in the range of slope values for 

the entire ecoregion as compared to the vulnerable areas (Figure 18d).  Using the combined 

model results, vulnerable areas are located in ecoregions (or portions of ecoregions) which have 

few winter days below freezing.  This would suggest that even small changes in land surface 

temperatures due to wildfire would result in less seasonal snowpack accumulation, regardless of 

the incoming radiation and topographic position.  Areas of the Cascades and Eastern Cascades 

Slopes and Foothills ecoregions that are susceptible to increases in temperature and considered 
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“at risk” for SWE decreases from climate (Nolin & Daly, 2006) may also be vulnerable to 

wildfire impacts on SWE.          

 

Figure 18. Distribution predictor variables used in combined signal SWE model for the 

ecoregion area (black), burned areas (brown), and vulnerable areas (light blue).  The variables in 

descending order of importance are a) MeanLT0, b) incoming radiation, c) eastness, and d) 

slope.  The median values are the heavy black line in the colored rectangle.  The colored 

rectangle extents represent the 25th and 75th percentile.  The lines extending from the colored 

rectangle represent the 5th and 95th percentiles. 

 

The predictor variable distributions for the FS SWE model are shown in Figure 19.  The 

vulnerable areas are in shallower slope areas (Figure 19a).  Shallow slope areas tend to have 

increased SWE accumulation because areas of higher slope are subject to more wind 

redistribution and solar radiation depending on the aspect direction (Berndt, 1965).  The HLI for 
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areas of vulnerability is generally consistent with the median HLI values for the entire ecoregion 

(Figure 19b), while the northness values for vulnerable areas are lower (more south-facing) 

across all ecoregions (Figure 19c).  The vulnerable areas on south-facing slopes are likely due to 

the increased solar radiation reaching the snow surface when the canopy is removed following a 

wildfire.  The increased radiation can result in more sublimation (Harpold et al., 2014) and 

therefore lower peak SWE.  

  

Figure 19. Distribution predictor variables used in fire signal SWE model for the ecoregion area 

(black), burned areas (brown), and vulnerable areas (light blue).  The variables in descending 

order of importance are a) slope, b) HLI, and c) northness.  The median values are the heavy 

black line in the colored rectangle.  The colored rectangle extents represent the 25th and 75th 

percentile.  The lines extending from the colored rectangle represent the 5th and 95th percentiles. 
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3.5.6 Snow Water volume changes due to fires from 2015-2020 

The potential changes for snow measures across ecoregions is important for quantifying 

vulnerabilities to future wildfires.  Given the increase in frequency and size of fires in recent 

years, it is important to also quantify snow water changes which have already occurred in each of 

these regions and put these differences in the context of mean annual peak snow water.   

The burned area for each ecoregion summarized in Table 7.  The burned areas are based 

the National Interagency Fire Center wildfire perimeters from 2015 through 2020.  The percent 

of the total area burned between the 2015-2020 was less than 10% of any ecoregion.  The highest 

burned area proportion is in the Cascades while the lowest is in the Central Basin and Range.  

The change in snow water depth based on the FS SWE model and recent fires is also quantified 

by ecoregion in Table 7.  The snow water change is reported as an average depth over the spatial 

domain for discussion clarity.  From the results, there is a range of depth differences for the 

burned areas between the pre- and post-wildfire periods.  All depth changes are negative for the 

burned areas, with the exception of the Northern Rockies and North Cascades which were 

approximately zero and 1% difference.  The largest snow water depth decreases are for the 

Eastern Cascades Slopes and Foothills and Arizona-New Mexico Mountains were approximately 

6% for the burned areas.  Considering the short duration of the previous fires evaluated (2015-

2020), the changes for some of the ecoregions could be consequential for processes that depend 

on snowmelt (e.g. streamflow runoff volume, stream and lake temperature, etc.).  
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Table 7. Summary of average SWE depth along with pre- and post-wildfire SWE depth changes 

based on the burned areas from 2015-2020 for each ecoregion. 

Ecoregion 

Percent of 

Tree 

Classified 

Ecoregion 

Area 

Burned 

Ecoregion 

SWE Avg. 

Depth [mm] 

Burned Area 

2015-2020 

Pre-wildfire 

SWE Avg. 

Depth [mm] 

Burned Area 

2015-2020 

Post-wildfire 

SWE Avg. 

Depth [mm] 

Burned 

Area 

2015-2020 

Snow 

Water 

Change 

[%] 

Northern Rockies 3.1 279 293 293 0 

Canadian Rockies 6.2 542 553 550 -1> 

North Cascades 5.3 602 585 588 1 

Cascades 8.8 318 307 300 -2 

Eastern Cascades Slopes 

and Foothills 4.1 195 190 177 -6 

Middle Rockies 2.1 295 397 394 -2 

Idaho Batholith 6.4 441 484 477 -1 

Southern Rockies 4.5 235 230 222 -4 

Wasatch and Uinta 

Mountains 4.6 280 319 310 -3 

Central Basin and Range 1.3 82 101 100 -1 

Northern Basin and Range 5.5 175 188 182 -3 

Arizona-New Mexico 

Mountains 4.8 49 65 61 -6 

 

3.6 DISCUSSION 

The spatial variability of snowpack in unburned areas has been documented in other 

studies due to topographic, land cover, and climatic variables (Anderton et al., 2004; Fassnacht et 

al., 2017; Sexstone & Fassnacht, 2014; Sospedra-Alfonso et al., 2015; Tennant et al., 2017).  The 

SWE model results (Figure 16a) for CS and FS demonstrate post-wildfire snowpack changes 

within ecoregions are also spatially variable using similar predictor variables.  This suggest the 

spatial variability in the SWE changes are likely a direct consequence of the inherent variability 

of snowpack.  This reasoning applies to the CS peak and melt-out results which are also quite 

spatially variable for several of the ecoregions and have importance placed on topographic 

variables.  In contrast, the spatial variability of the FS peak and melt-out dates is substantially 
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less than the CS results.  In both of these models only climatic and land cover variables are 

considered important.  This suggests that topography would be the primary source of intra-

ecoregion spatial variability for post-wildfire snow measure changes while climate and land 

cover are the source of inter-ecoregion variability.  

Using the results from Figure 16 and in Table 1 (Chapter 2), conclusions can be made 

about the spatial representativeness of the SNOTEL site used in this analysis.  The empirical 

results from the SNOTEL sites indicate all ecoregions except the Northern Rockies, Middle 

Rockies, and Idaho Batholith have decreasing SWE post-wildfire.  By comparison the CS SWE 

results also indicate spatial median decreases in all of the ecoregions except the Middle Rockies 

and Idaho Batholith.  The empirical analysis for the Northern Rockies only includes one burned 

SNOTEL site.  This could increase uncertainty in the empirical results and therefore would not 

necessarily make the RF model results inconsistent with previous findings.  The empirical results 

(Table 1) are generally consistent in the FS SWE change direction but not magnitude.  This 

inconsistency in the magnitude of change is likely due to the spatial representativeness of the 

SNOTEL sites.  Measurements at SNOTEL sites adequately represent the temporal evolution of 

snowpack (Fassnacht et al., 2014), but have limited spatial representation of the SWE 

distribution surrounding the site (Meromy et al., 2013; Molotch et al., 2005).   

  The vulnerable areas for SWE changes from wildfire are concentrated in shallow slope 

areas of each ecoregion (Figure 19).  In many of the ecoregions the south-facing shallow slope 

areas are only a limited subset of the entire distribution of slope values.  This indicates areas 

across the western U.S. vulnerable to wildfire impacts may be isolated.  In contrast, SWE 

changes, when climate and wildfire are combined, are primarily dependent on the average 

number of days below freezing that occur each winter.  Vulnerable areas for northern and mid-
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latitude ecoregions are concentrated in areas with overall warmer winter temperatures.  For the 

southern ecoregions the vulnerable areas from the combined effects cover substantial portions of 

the entire ecoregion (Figure 18).  The vulnerable CS SWE results are consistent with the current 

statistically significant SWE trends described by Grundstein and Mote (2010) at lower elevation 

and presumably warmer snow measurement sites.     

The changes in snow water volume due to recent fires also presents an interesting 

challenge for water managers.  In some areas, as much as a 6% decrease may have occurred due 

to the cumulative effect of wildfire during 2015 through 2020.  This decrease may have 

significant impacts to municipal and agricultural water supplies.  Moreover, any SWE decrease 

resulting from wildfire is compounded with continuing climate change impacts which have also 

resulted in decreased peak SWE.  The snow water volume lost due to wildfire may be a long-

term effect.   Figure 10 showed the differences in peak SWE do not recover quickly and in some 

cases were not recovered after more than 30 years post-wildfire.  The potential long-term 

reduction of snow water volume will have several consequences including economic loss at a 

regional or national scale (Sturm et al., 2017), reductions in water allocations for agricultural 

users (Vano et al., 2010), and ecological functions (Saccone et al., 2013).    

Based on two separate evaluation methods, the RF models do have predictive ability for 

snowpack changes post-wildfire at the burned SNOTEL sites which are used in the model 

development.  However, there are other concerns when using ground-based stations to estimate 

changes over larger domains.  Due to SNOTEL site characteristics, changes in interception from 

canopy loss due to wildfire would likely not be reflected in the SWE measurements.  

Sublimation from snowfall interception can be important in the overall water balance (Sexstone 

et al., 2018).  However, changes in albedo, turbulent fluxes, and net incoming radiation reaching 
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the snow surface are incorporated into the measured values.  Given the limited spatial 

representativeness and limited number of SNOTEL sites used in this analysis, the RF results do 

have substantial uncertainty when developing a tool for large portions of the western U.S.  

However, these results do lead to several testable hypothesis.  The first hypothesis is the largest 

SWE changes in a region, when comparing burned and burned areas, will occur in relatively 

gentle slope areas.  In contrast, locations with relatively low mean days below freezing will have 

the largest SWE changes when considering both climate and wildfire.  Another hypothesis could 

be topographic variables such as slope and aspect are the key for explaining spatial variability of 

SWE between ecoregions.  Finally, decreases in snow water in burned areas persist for several 

years following a wildfire. 

3.7 CONCLUSIONS 

In this study, there are eight RF models developed to quantify wildfire effects on 

snowpack across several ecoregions in the western U.S.  Separate models were used to predict 

changes using two signal classifications (combined and fire) for four different snow measures.  

The data used to develop these signals is based on pre- and post-wildfire periods at 43 SNOTEL 

sites that have been impacted by wildfire (combined signal).  Unburned comparison SNOTEL 

sites were identified for each of the 43 wildfire impacted locations.  A total of 108 comparison 

sites, divided based on the same points in time as the burned sites, were used to remove climatic 

differences and isolate the effects of wildfire (fire signal).  The snow measures include melt-out 

date, date of maximum SWE, maximum SWE, and maximum normalized SWE (maximum SWE 

divided by October through April total precipitation).  The training data used in the model 

development was based on several predictor variables and the snow measures at each of the 

wildfire impacted SNOTEL sites.  The predictor variables consist of several sources of 
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information including geographic (i.e., longitude, latitude); topographic (i.e., slope, northness, 

eastness, elevation, curvature); climatic information (i.e., temperature and precipitation); land 

surface energy fluxes (i.e., incoming shortwave radiation, HLI) and land cover (i.e., tree genus, 

total basal area).  The RF models were used to predict areas of snow vulnerability in each 

ecoregion.  Quantification of snow water volume changes from recent fires was also performed.  

The RF model development used relatively limited training data (only 43 wildfire impacted 

SNOTEL sites) and has training error which exceeds the median change in peak SWE.  In 

addition, the SNOTEL sites used for training the RF models are not evenly distributed between 

ecoregions.    

The key conclusions from the vulnerability study are: 

• There is substantial spatial variability within all ecoregions for changes in maximum 

SWE.  The largest spatial variability is in the northern and mid-latitude ecoregions.  The 

combined signal peak SWE changes range from over 35% decrease in the Eastern 

Cascades Slopes and Foothills to 10% increase in the Middle Rockies.  The fire signal 

peak SWE changes range from approximately 10% decrease to 5% increase.   

• The spatial variability for the wildfire only signal is less than the combined signal, 

especially for peak SWE and melt-out dates. 

• The most important variables for prediction maximum SWE and nSWE from only 

wildfire effects is terrain slope.  

• The most important variable for predicting peak SWE and melt-out date changes from 

wildfire only effects is incoming shortwave radiation and aridity, respectively. 
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• The most important variables for predicting changes to maximum SWE, peak date and 

melt-out date changes using the combined signal data are mean days below freezing and 

mean winter temperature. 

• Vulnerable areas for changes in SWE due to wildfire only are located in shallow sloped 

terrain.  Areas with warmer winter temperatures (i.e., where snowfall occurs near the ice-

water transition temperature) are also vulnerable to combined climate and wildfire 

impacts. 

• The snow water volume changes for areas burned from 2015-2020 resulted in SWE 

decreases for all ecoregions except the Northern Rockies and North Cascades.  The 

maximum snow water decrease was 6% for areas burned between 2015-2020 in the 

Eastern Cascades Slopes and Foothills and the Arizona-New Mexico Mountains.  

 

While the results of this analysis provide an improved predictive tool over using simple 

average for water resource managers, there are important limitations that should be noted.  

Relatively few ground-based measurement sites for snowpack are available to use in the training 

of the RF models.  In addition, the spatial representativeness of SNOTEL sites is very limited 

which may introduce substantial uncertainty when modeling changes over entire ecoregions.  

There are also limitations with the SNOTEL data from the perspective of the RF models can only 

predict vulnerable areas for ecoregions where training data is available.  Much of the Sierra 

Nevada Mountains are not included in the model development for this reason.  Also, there is 

currently no high spatial/temporal resolution remote sensing product that measures SWE.  

Products like the UA SWE data are based on interpolating ground-based measurements.  This 

further limits comparisons between the model results and observations.  However, this 
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framework can be utilized as additional data becomes available from ground-based 

measurements.  Finally, RF models do not provide predictions in snowpack melt-rates or 

changes in snowmelt runoff volume, which are often most important for water management 

activities.   

From vulnerability analysis there are several potential directions for future research.  The 

framework for the RF model development can be used as more measurements become available 

which would provide additional training data.  As remote sensing platforms come online which 

directly measure SWE at high spatial resolutions, comparisons between predicted snowpack 

changes from the vulnerability results comparison for large areas can be made.  Another possible 

direction would be including snow cover area products along with the SNOTEL information.  

Finally, evaluating differences in snowmelt runoff from predicted vulnerable areas which have 

been burned recently will provide the connection from this work to the water management 

activities in each region.  The snow vulnerability results provide an initial step to risk 

identification for areas before wildfires occur as well as potentially informing post-wildfire 

assessments and field measurement campaigns. 
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CHAPTER 4 - WILDFIRE IMPACTS FOR TEMPERATURE INDEX SNOWPACK 

MODEL PARAMETERS 

 

 

 

4.1 OVERVIEW 

The continued trend for increased wildfire activity in the western U.S. has resulted in 

federal, state, and local governments performing more post-wildfire risk assessments.  These 

assessments include watersheds that have snowmelt as part of the hydrologic regime.  The 

current gap in generalized recommendations for water managers related to parameter 

adjustments in snow models presents challenges for water managers performing these risk 

assessments.  The objectives of this analysis are to (1) quantify pre- and post-wildfire changes to 

melt-rate functions and Px temperature parameters commonly used by temperature index snow 

models, and (2) develop equations for snow modelers to use in adjusting temperature index 

parameters in post-wildfire analysis.  In this snow model parameter analysis, 42 SNOTEL sites 

that have been impacted by wildfire are used to estimate changes in melt-rates and snowfall 

threshold temperature.  The observed changes from pre- and post-wildfire periods at each 

SNOTEL site are used to develop a suite of general linear models (GLMs) to create snow model 

parameter adjustments for melt-rate factors and temperature.  The GLM inputs include readily 

available topographic, climatic, and land cover information to estimate changes.  The results 

indicate melt-rates generally increase after a wildfire, especially for periods later in the ablation 

season.  The snowfall threshold temperatures are more variable and site dependent, although the 

statistically significant changes suggest increases in the threshold temperature will occur post-

wildfire.  The coefficients from the suite of models suggest that changes to the vegetation canopy 

are most important for estimating melt-rate and threshold temperature differences beginning 

immediately after the fire event though approximately 10 years post-wildfire.  After vegetation 
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canopy, other important input variables include air temperature regime and topographic 

characteristics (i.e., elevation, northness, and eastness).    

4.2 INTRODUCTION 

Wildfires are part of the western United States ecology and have been for millennia. 

Large wildfires have been documented going back 2000 years through analyzing lake sediments 

in mountainous regions (Calder et al., 2015).  Accordingly, wildfire is important in western U.S. 

ecosystem functions such as vegetation composition and landscape heterogeneity (Agee, 1993).  

In addition, specific ecosystems like ponderosa pine forests are highly reliant on wildfire for tree 

regeneration (Korb et al., 2019; Stevens-Rumann & Morgan, 2019).  Fire suppression during the 

last century has resulted in increased fire severity (Steel et al., 2015) and climate change is 

expected to continue to increase the size of wildfires (Littell et al., 2018).  

While long-term ecosystem function depends on wildfire, the impacts to watersheds can 

produce abrupt changes to land surface energy and water balances (Burles & Boon, 2011; 

Gleason et al., 2019), which can present substantial challenges for water resources managers.  

One of the most consistent changes to the energy balance after a wildfire is increased ground 

surface temperature which is associated with decreased sensible heat flux and net radiation (Liu 

et al., 2005).  Fires result in increased surface temperature regardless of pre-burn vegetation type 

and latitude due to additional net shortwave radiation flux at the surface (Liu et al., 2019).  The 

magnitude of change for other turbulent energy fluxes (i.e., sensible and latent heat) depends on 

latitude and pre-burn vegetation type because solar radiation and soil-water availability are 

significant factors for partitioning of those fluxes.  Liu et al. (2005) reported that in post-wildfire 

areas of Alaska the annual net radiation declined by 31% for sites that were burned 15 years or 

less compared to another site that had burned over 80 years ago.  The decline in net radiation is 
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mostly attributed to ground surface albedo differences.  In addition, the sensible heat fluxes were 

reduced by over 50% by comparison for those same locations.  Annual ET values (latent heat 

exchange) were also decreased by over 30% for more recent fire locations as compared to older 

burn areas.  In the Great Basin of the western U.S., soil temperatures were increased for 

sagebrush communities that were replaced by invasive grassland communities following 

wildfire.  Net radiation was again decreased along with sensible heat flux (Prater & Delucia, 

2006).  Another study by Sanches et al. (2015) used remote sensing to evaluate change in energy 

fluxes after wildfires in Spain.  The location had both shrub and pine vegetation prior to the fire.  

Their analysis indicated that 6-7 years after the fire there were increases in ground and sensible 

heat fluxes while latent heat flux decreased.  

There are several aspects of the water balance that are impacted by wildfires including 

infiltration, evapotranspiration, surface runoff, and snowmelt processes (Hallema et al., 2017).  

The impact of wildfire on soil infiltration rate has been a topic of much interest to foresters, 

ecologists, and hydrologists.  Several studies have evaluated the post-wildfire infiltration at 

various locations around the western U.S. (Balfour & Woods, 2013; Hubbert et al., 2012; 

Robichaud et al., 2016; Wieting et al., 2017).  Enhanced soil-water repellency due to heating of 

the soil is the commonly cited reason for reduced infiltration (Ebel & Moody, 2013, Shillito et 

al., 2020).  Infiltration in fire affected soils may approach zero immediately following the event 

resulting in increased excess precipitation and thus increased surface runoff (Ebel & Moody, 

2013). 

Watershed scale evapotranspiration is reduced following wildfire (Dore et al., 2010; 

Montes-helu et al., 2009).  The reduction includes both bare ground evaporation and 

transpiration from vegetation.  Transpiration from vegetation can decrease up to 36% depending 
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on the burn severity immediately after the wildfire (Poon & Kinoshita, 2018).  Reduced 

infiltration rates in burned areas result in decreased soil water content even after multiple 

precipitation events (Ebel et al., 2012).  The decreased soil water content reduces the soil 

evaporation. 

The alteration of the water balance generally results in increased streamflow from 

wildfire effected watersheds (Ebel et al., 2012; Moody & Martin, 2001; Neary, Gottfried, & 

Ffolliott, 2003; Stoof et al., 2012).  As the revegetation process begins, the changes to overall 

water supply and mean annual streamflow are more site specific.  It was found that following 

fires in the Gila River watershed in Arizona, mean annual streamflow increased (controlling for 

climate and snowpack variability) while there was no evidence of an increase in the Jemez River 

watershed in New Mexico (Wine & Cadol, 2016).  The relationship between streamflow and 

spatial extents of burned areas has also been explored.  In the Cache La Poudre River watershed 

following the 2012 High Park, it was found that a 75% increase in runoff occurred for certain 

subbasins, while the hydrologic response at the watershed scale was minimally impacted (Havel 

et al., 2018).  Increases in post-wildfire peak streamflow are also well documented (Hallema et 

al., 2017; Moody & Martin, 2001; Wagenbrenner, 2013) and range from 120% (Seibert et al., 

2010) to over 1000% (Chen et al., 2013).   

In forested areas, the vegetation canopy influences the surface energy and water balance 

(Burles & Boon, 2011; Varhola et al., 2010) mainly through differences in incoming shortwave 

radiation and turbulent fluxes.  Forest canopies also influence snowpack accumulation and 

ablation (Roth & Nolin, 2017) through interception.  Consequently, when a significant 

disturbance like wildfire occurs, the snow regime will be impacted.  Table 1 from Chapter 2, 

shows peak SWE decreased and melt-out dates are shifted earlier at SNOTEL sites that have 
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been impacted by wildfire for ecoregions in the western U.S.  In addition, increased snowmelt 

rates have been observed due to a 30% increase in available energy for snowmelt in burned areas 

compared with nearby unburned areas (Burles & Boon, 2011).  Along with the increased 

available energy at the snow surface, decreases in albedo (Gleason & Nolin, 2016) will also 

affect the energy balance of the snowpack.  Increased melt-rates have been reported for burned 

watersheds in the Cascade Mountains in Washington (Gleason et al., 2013; Seibert et al., 2010).   

Snowmelt is a critical component to the overall water supply for the western U.S. 

(Doesken & Judson, 1996) and changes in magnitude and timing of snow accumulation and melt 

could have trillions of dollars of economic impact in the western U.S. (Sturm et al., 2017).  

Therefore, it is important to model potential snowpack changes in burned watersheds for 

quantifying potential social, economic, and ecological impacts.  A range of models have been 

developed to estimate changes in peak SWE and snowmelt following a wildfire.  Moeser et al. 

(2020) used the SnowPALM model to estimate post-wildfire changes in peak SWE and melt-out 

dates for areas in northern New Mexico.  The model was developed to simulate mass and energy 

balances for snowpack at an hourly timestep and 1 m2 spatial resolution.  The goal of this work 

was to estimate impacts from canopy structural changes and did not include any decreased 

albedo from black carbon on the snow surface.  The results of their modeling focused on changes 

in peak SWE and melt-out dates.  The model generally predicted increases for peak SWE 

although over 30% of the area was predicted to have decreased peak SWE.  The model also 

predicted later melt-out dates for the study area.  While they do not directly report melt-rates, the 

increased peak SWE and later melt-out dates could result in lower overall melt-rates.  Based on 

field observations of peak SWE and melt-out date, their high temporal and spatial resolution 

model results generally match observations, although the authors indicate that their results are 
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likely not transferable to other regions.  Another detailed energy balance snow model was 

developed by Burles and Boon (2011) for southwestern Alberta.  The spatial extents for their 

study were two 2500 m2 plots in burned and unburned forest stands.  They used hourly 

metrological from data collected at both plots to simulate snow accumulation and ablation.  Both 

the modeled and measured melt-rates were increased when compared to the unburned study plot.  

Seibert et al. (2010) used a snowmelt runoff model to determine parameter changes between 

burned and unburned watersheds in western Washington.  Due to the equifinality of model 

parameterization process, they used a Monte Carlo technique to calibrate observed streamflow 

and quantify parameter changes for the burned watersheds.  Through the Monte Carlo parameter 

evaluation, they report higher melt-rates in the burned watersheds and decreased rain-snow 

threshold values.  Based on these previous studies melt-rates in northern watersheds are likely to 

increase post-wildfire, while decreased melt-rates are likely in the southwestern U.S. 

Temperature index (TI) snowmelt models are still commonly used for operational 

forecasting (USACE 2017; Duan et al., 2019) and planning studies for major infrastructure 

(USACE 2020).  The TI model is based on an assumption of linearity between snowmelt and air 

temperature (USACE 1956).  Two important parameters for snow accumulation and ablation 

included in most TI models are the rain-snow threshold (Px temperature) for snow accumulation 

and melt-rate functions (either time-varying function or constant value) used during the ablation 

season.  There are limited studies that have explored how these parameters change following a 

wildfire.  Post-wildfire snowmelt modeling was performed in Oregon following the 2020 fire 

season (USACE 2021a) to estimate potential changes in peak streamflow.  Only the sensitivity of 

melt-rate functions was tested in their analysis for simulating rain-on-snow runoff events.  They 

used double and quadrupled snowmelt rates combined with large historical rain events to 
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evaluate flood risk downstream of the burn area.  In the USACE (2021a) study, the rain-snow 

threshold temperature was calibrated to match observed snow accumulation and no 

quantification of post-wildfire changes was made.  The post-wildfire change for the Px 

temperature parameter change reported by Seibert at al. (2010) was calibrated only for their 

specific watershed which doesn’t allow for generalizations except for watersheds in western 

Washington. 

Currently there are still several unresolved questions about how to model snowpack in 

burned watersheds.  The objective of the parameter analysis is to quantify melt-rate function and 

Px temperature threshold changes which are used for parameterization of TI snow models.  This 

includes: 

1) Quantifying pre- and post-wildfire changes for melt-rate functions and rain-snow 

threshold temperature by ecoregions in the western U.S. 

2) Develop a suite of equations for parameter adjustments that can be implemented by 

modelers to simulate snowpack in wildfire affected watersheds.        

The pre- and post-wildfire snowmelt data from 42 SNOTEL sites which have been 

impacted by wildfire were used to estimate both changes in melt-rate values and Px temperatures 

for several post-wildfire periods.  The quantified differences between fire periods are then used 

to train generalized linear models (GLMs) to predict adjustments for these two key snow model 

parameters commonly used in TI models.  The data types were considered in development of the 

GLMs.  These data included land cover, burn severity, topographic, and climatic data.  Trained 

GLMs are developed for several post-wildfire periods including 0-5, 5-10, and 10-20 years after 

the wildfire occurs.   
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4.3 DATA 

4.3.1 SNOTEL Data 

The snowpack data used in this analysis is from SNOTEL network sites operated by the 

Natural Resources Conservation Service (NRCS, 2021).  Burned locations were determined 

based on information provided by each NRCS Snow Survey Data Collection Office and are 

distributed from northern Washington to southern New Mexico (Figure 20).  Through 2019, 42 

sites out of the entire SNOTEL network were identified as being directly impacted by wildfires 

and had daily snowpack, precipitation, and temperature data for both pre- and post-wildfire 

periods.  The same number of sites could not be used as the RF model development because air 

temperature was not available at the Thumb Divide SNOTEL site for the pre-wildfire period.  

Figure 21 shows the periods when both SWE, precipitation, and air temperature data are 

available for each burned site.  

Quality control was performed on the daily data through visual inspection of the SWE, 

precipitation, and air temperature time series.  Reporting errors were removed following 

discussions with local NRCS Snow Survey offices.  Any years with more than 10% of daily 

values missing for any of these variables were removed from the dataset.  Of the 1401 station-

years available for the burned sites, 7 years were removed.  The average pre-wildfire period is 

approximately 19 years with over 81% of the sites having at least 10 years.  The average post-

wildfire period is approximately 12 years with 38% of the sites having at least 10 years.   

Additional quality control was performed on the SNOTEL air temperature time series.  

Based on other work by Oyler et al. (2015) SNOTEL air temperature has been shown to have 

inconsistencies coinciding with air temperature sensor changes which occurred from the mid-

1990s through mid-2000s.  In order to homogenize the temperature data, the correction presented 
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in Ma et al. (2019) was used to make the earlier air temperature values consistent with the more 

recent period.  A list of dates when each burned SNOTEL had the air temperature sensor change 

was obtained from the NRCS and the correction was applied for all daily values prior to the 

change. 

 

 

 

Figure 20. Map of 42 burned (black triangles) SNOTEL sites in western United States shown 

with level 3 ecoregions used in this analysis. 
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Figure 21. Period of record used for each 41 burned SNOTEL site used in this analysis.  The date 

of the fire (green triangle) is shown for reference within the record. 

 

4.3.2 Land Cover Data 

The level 3 ecoregion associated with each SNOTEL site was included as a potential 

explanatory variable for observed changes.  A level 3 ecoregion represents a region that is 

similar in geology, physiography, vegetation, climate, and soils (Omernik & Griffith, 2014).  

Other land cover variables included in the parameter analysis are pre-wildfire tree genus, total 

basal area, and leaf-area index.  The dominant tree genus for the area around each SNOTEL 

location was sourced from the U.S. Department of Agriculture Forest Service (USDA-FS) Forest 

Inventory and Analysis (FIA) program data from 2017 (Burrill et al., 2018).  The FIA data was 
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not available at each burned site for every pre-wildfire period in the dataset.  In this analysis the 

2017 tree genus was used in the GLM development.  The FIA data does provide consistent forest 

stand level data on the extent, distribution and forest type composition for forested areas in the 

U.S. (Burrill et al., 2018).  The dominant tree genus was determined through spatial analysis 

using a 1 km2 box centered on the burned site location.  Based on the FIA data the tree genus 

classification results for the 32 sites were 17 fir (includes both Abies and Pseudotsuga), 11 pine 

(Pinus), 8 spruce (Picea), 3 hemlock (Tsuga), and three sites were other genera.  For analysis 

purposes, the hemlock and other genera are grouped as “hemlock/other.”  Along with the 

dominant tree genus, the total basal area values provided by FIA was also used.  The basal area 

represents the total cross-sectional area of larger diameter trees in each grid cell.  These values 

are averaged using the same bounding box for each SNOTEL site.  Both tree genus and basal 

area are not direct measures of canopy density but can be used as a potential predictors of 

changes to the surface energy balance which can impact snowpack melt-rate and Px temperature 

values.   

The MODIS 8-day 500 m (MCD15A2H) leaf-area index (LAI) product (Myneni et al., 

2015) was used to quantify canopy density changes.  MODIS LAI has been demonstrated to have 

good agreement when compared with ground-based measurements of LAI (Jensen et al., 2011).  

LAI information was not available for 7 sites because the fires occurred prior to 2003.  During 

the GLM development, if LAI was used as input, these 7 sites were excluded from the input 

dataset.  Due to the annual phenology of the canopy and the seasonal nature of snowpack, the 

winter LAI is most relevant (Xiao et al., 2019).  The MODIS imagery LAI values from the 

beginning of October were used for all locations to represent canopy density at the beginning of 

the snow accumulation season.  The LAI change was evaluated by subtracting the October LAI 
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from the year in which the fire occurred from the year previous to the fire.  The difference in LAI 

represents canopy density changes which again may influence both snow accumulation and 

ablation through differences in energy and water balance components. 

4.3.3 Burn Severity 

Burn severity information was obtained from the inter-agency Monitoring Trends in Burn 

Severity program (MTBS) (https://www.mtbs.gov/project-overview).  The goal of MTBS is to 

provide consistent categorized burn severity information for all fires since 1984 (Eidenshink et 

al., 2007).  The burn severity information from MTBS has been used in other studies for 

quantifying patterns and impacts of burn severity on the landscape (Arkle et al., 2012; Baker, 

2015; Bradley et al., 2016).  For the parameter analysis, both the categorical burn severity 

information (i.e., low, moderate, and high) and differenced Normalized Burn Ratio (dNBR) were 

used in the analysis.  The dNBR values are based on the differenced (pre- and post-wildfire) for 

Normalized Burn Ratio which is derived using bands 4 and 7 from Landsat Thematic Mapper 

imagery (Eidenshink et al., 2007).  Burn severity and dNBR are related to changes in canopy due 

to the wildfire (Eidenshink et al., 2007) and can influence snow accumulation and ablation 

(Tennant et al., 2017). 

4.3.4 Topographic Data 

Topographic variables have been used in previous studies to explain snowpack 

distribution (Fassnacht et al., 2003) and to quantify variability in snowpack properties (Sexstone 

& Fassnacht, 2014).  A similar suite of topographic variables is used in the melt-rate function 

and Px temperature parameter analysis and are summarized in Table 1.  The longitude and 

latitude were provided by the NRCS for each SNOTEL site used in this analysis.  Using this 

information, elevation was extracted for the SNOTEL sites using a 30 m digital elevation model 

https://www.mtbs.gov/project-overview
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(DEM) (LANDFIRE, 2016b).  Through orographic precipitation patterns and air temperature 

differences, elevation has been shown to be a key variable in snow accumulation (Dingman, 

1981).   

Land surface slope affects the stability of snowpack during both the accumulation and 

ablation seasons (Anderton et al., 2004).  The land surface slope in degrees was extracted 

directly from a separate file (LANDFIRE, 2016c) based on the geographic coordinates of each 

SNOTEL site.  The slope values were converted to a percent slope for input to the GLM 

development.   

Northness and eastness are two measures that combine both land surface aspect and slope 

(degrees) and have been shown to have high correlation with snowpack (Sexstone & Fassnacht, 

2014).  Northness represents the degree to which the land surface faces north while eastness is 

the degree facing east.  Steep slopes that face north will have values approaching unity.  The 

aspect for each SNOTEL site was extracted from the same source as both the elevation and slope 

files (LANDFIRE, 2016a).  The northness formulation used in this analysis is the product of the 

cosine of aspect and sine of slope (Molotch et al., 2005).  We expect a positive correlation with 

SWE because north facing slopes tend to have more persistent snowpack (Sexstone & Fassnacht, 

2014).  Eastness can also be positively correlated with snowpack because snow loading can 

occur from windward slopes in areas of dominant west winds (Sexstone & Fassnacht, 2014).   

Terrain curvature, which is the derivative of slope, was determined using the 30 m DEM 

information in ArcGIS.  The combined profile (parallel to maximum slope) and planform 

curvature (perpendicular to maximum slope) produced by ArcGIS was used in the analysis.  

Curvature represents the local relief (i.e., concavity or convexity) and has been shown to be 
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important for modeling variability in snowpack characteristics, especially in areas of substantial 

wind redistribution (Sexstone & Fassnacht, 2014). 

4.3.5 Climatic Data 

Air temperature and precipitation are primary forcing variables associated with snowpack 

accumulation and ablation.  Daily Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) average air temperature and total precipitation grids coincident with each 

burned SNOTEL site were used (PRISM, 2021).  Several derived variables were also included in 

the parameter analysis based on temperature index (Hock, 2003) and freezing degree-day 

(USACE 2005) formulations evaluated with daily data.  In this study, the variable TI is defined 

as the maximum of either the daily average air temperature (°C) or zero.  This results in TI 

always being greater than or equal to zero for any day.  Conversely, the freezing degree-day 

(FDD) variable is defined as the minimum of either zero or the average daily air temperature.  

Therefore, FDD is always less than or equal to zero for any day.  From these variables, the 

seasonal accumulations of TI and FDD are referred to as accumulated temperature index (ATI) 

and accumulated freezing degree-days (AFDD), respectively.  The seasonal accumulation was 

from October through April of each year.  ATI is a proxy for the seasonal accumulation of 

energy into the snowpack, which is important during the ablation.  In contrast, AFDD is 

associated with the removal of energy from the snowpack and is used as a proxy for the cold 

content of the snowpack.  The mean period of record value for each site was calculated using the 

annual average daily air temperature, ATI, and AFDD during October through April.  An 

additional variable related to the cold content of the snowpack is the number of days below 

freezing (LT0).  Unlike AFDD, the LT0 is simply a binary response on each day based on 

whether or not the air temperature is at or below zero.  This count was summed each year during 
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the October through April period for each site.  Again, the mean annual average over the period 

of record was used as an input variable the GLM development.  

The snow model parameter analysis for melt-rate function and Px temperature changes 

used two variables related to precipitation.  The first variable is the mean period of record 

average October through April total precipitation accumulation from PRISM.  The second 

variable is aridity which is the ratio of annual total potential evapotranspiration to annual total 

precipitation (Greve et al., 2019).  To provide consistency with other temperature and 

precipitation variables, PRISM total annual precipitation values were used.  The total annual 

potential evapotranspiration for each site was taken from gridMet (Abatzoglou 2013) which is 

based on the Penman-Montieth method for reference evaporation. 

Following a wildfire event, changes to surface energy balance are expected (Burles & 

Boon, 2011; Liu et al., 2005).  Therefore two radiation related varables were included in the suite 

of input variables for the GLMs.  These include incoming shortwave radiation from DayMet 

(Thorton et al, 2021).  The DayMet time series was extracted for the locations coincident with 

each SNOTEL site and an average was evaluated for the daily October through April values for 

the 1980-2020 period.  The final climatic variable we used was heat load index (HLI).  This 

variable is derived from elevation data using the spatialEco R package (Evans, 2021).  HLI is a 

measure of direct incident radiation reaching the earth surface.  HLI differs from shortwave 

radiation in that it is not time varying because it is a function of latitude, slope, and aspect.  In 

addition, HLI accounts for the occurrence of higher surface temperature on slopes that receive 

afternoon sun as compared to morning sun (McCune & Keon, 2002).  A summary of predictor 

variables used for the GLM development are listed in Table 8.  
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Table 8. Summary of predictor variables used in development of GLMs to estimate changes in 

melt-rate function and Px temperature. 

Type Variable Name Source 

Land cover Ecoregion U.S. Environmental Protection 

Agency Level 3 

Land cover Tree Genus U.S. Department of Agriculture FIA 

database 

Land cover Total Basal 

Area 

U.S. Department of Agriculture FIA 

database 

Land cover LAI 1-Year 

Pre-wildfire 

MODIS 

Land cover LAI 1-Year 

Post-wildfire 

MODIS 

Land cover LAI Percent 

Change 

MODIS 

Burn severity Burn Severity 

Classification 

MTBS 

Burn severity dNBR MTBS 

Topographic Longitude NRCS data converted to Albers 

Topographic Latitude NRCS data converted to Albers 

Topographic Elevation 30-m elevation raster (LANDFIRE 

2016) 

Topographic Slope 30-m slope raster (LANDFIRE 2016) 

Topographic Northness cos(aspect) x sin(slope) 

Topographic Eastness sin(aspect) x sin(slope) 

Topographic Curvature ArcGIS function using 30-m 

elevation raster 

Climatic Mean 

Temperature 

PRISM 

Climatic Mean ATI PRISM  

Climatic Mean AFDD PRISM 

Climatic Mean LT0 PRISM 

Climatic Mean Oct-Apr 

Precipitation 

PRISM 

Climatic Aridity gridMet and PRISM 

Climatic Incoming Solar 

Radiation 

DayMet 

Climatic HLI 30-m elevation raster processed using 

R package spatialEco 
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4.4 METHODS 

4.4.1 Melt-rate Function 

The framework for developing estimates of post-wildfire melt-rate functions is described 

in Figure 22.  The primary output products from this framework are melt-rate function changes at 

each of the SNOTEL sites and adjustment equations for post-wildfire melt-rate functions which 

can be used to parameterize a TI snow model.  There are five steps in the process to produce both 

output products.  

 

Figure 22. Process for developing post-wildfire melt-rate parameter adjustment equations. 

 

Step1: Splitting of SNOTEL data between pre- and post-wildfire periods. 

This step of the process used the dates wildfire impacted each SNOTEL site to separate 

the daily data between pre- and post-wildfire periods.  

  

Step 2: Estimating observed melt-rates for each SNOTEL site and water year.   
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This step of the process distills temperature and SWE changes during the ablation season 

into melt-rate functions.  Figure 23 describes a general process for how melt-rate functions are 

estimated for TI models.  Estimating the melt-rate function used in TI models has the basic goal 

of determining the amount of snowmelt expected to occur given a specific ATI value.  Variations 

of this process exist depending on how the exact parameterization of the snow model is required.  

For example, Fassnacht et al. (2017) developed estimates of melt-rates from daily mean 

temperatures for several SNOTEL sites in Colorado.  Rango & Martinec (1995) used 

accumulated degree-day values to estimate melt-rate coefficients.  For this study, the process 

outlined by U.S. Army Corps of Engineers for development of real-time snowmelt runoff 

forecasting model was used (USACE, 2021b).  The initial step in the melt-rate function 

estimation process is to use the niveograph for each water year and SNOTEL site (Figure 23a) 

and extract the ablation period starting at annual peak SWE value (Figure 23b) going though 

melt-out.  The daily air temperature values during the ablation season are then used (Figure 23c) 

to determine ATI values from peak SWE to melt-out date (Figure 23d).  Plotting the daily SWE 

values and ATI values together shows the melt versus temperature (Figure 23e).  The melt-rate 

function values are the derivative of these plots (Figure 23f).   
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Figure 23. Melt-rate function estimate process using mean daily air temperature and SWE 

measurements. 

 

Step 3: Determination of Melt-rate Function Structure.  

While individual water year melt-rate relationships are available through the procedure 

described in Figure 23, parameterization of melt-rate functions in TI models requires 

determining a simplified functional relationship (or structure) of melt-rates to be parametrized 

into the snow model.  The simplified structure should provide a reasonable approximation to the 

continuous derivative.  This simplification is accomplished by fitting a function to the SWE 

versus ATI plots shown in Figure 24 which reduces the variability of melt-rates (Figure 23f).  

Several function structures were evaluated including linear, piece-wise continuous linear, and 

non-linear (i.e., quadradic and log-linear).  The overall best fit function structure was evaluated 

using the Akaike Information Criterion (AIC) to select the best function structure for all of the 

water years at all sites.  The piecewise linear function with a single change point has the best 
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overall fit (lowest AIC) to the annual melt pattern for all years at all SNOTEL sites.  This 

function structure results in three components of the melt-rate function.  The components consist 

of the initial melt-rate slope (Slope 1), an inflection point (Change Point) as the ATI increases, 

and a secondary melt-rate slope (Slope 2) (Figure 24).     

 

Figure 24. Melt-rate function structure used for burned SNOTEL sites to determine differences 

between pre- and post-wildfire periods. 

   

Step 4: Calculate mean melt-rates for pre- and post-wildfire periods at each site.  

Fitted functions for each year in the period of record were determined using the function 

structure determined in Step 3 (Figure 22).   Based on the fire year at the individual SNOTEL 

sites, the pre- and post-wildfire mean values for each melt-rate function component were 

determined.  The percent change is the difference between the post-wildfire and pre-wildfire 

mean melt-rate for each component divided by the pre-wildfire mean melt-rate component.  The 

total range of years included in the data is 1 to 32 years, and the planning horizons used for 

model development are less than 5 years (<5 yrs), between 5 and 10 years (5-10 yrs), between 10 

and 20 years (10-20 yrs) and any duration (All).  The mean post-wildfire melt-rate is based using 
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the only data from years within planning horizon interval.  For example, if a site has a period of 

record ending in 2019 and was burned in 2003, and the planning horizon is less than 5 years, 

then data from WY2004-2008 is used for determining the mean post-wildfire melt-rate function 

component for that site, from which the pre-wildfire melt-rate is then subtracted.  Using this 

same site and fire year, the mean post-wildfire melt-rate function component for 5-10 yrs 

planning horizon would include WY2009-2013, which would produce a different change 

between pre- and post-wildfire periods.  Following this same process, the mean post-wildfire 

melt-rate information would use WY2014-2019 for the planning horizon 10-20 yrs.   In the latter 

planning horizon only 4 years are used in the mean post-wildfire value calculation due to the 

total period of record available.  

The percent change was converted to a multiplying factor (MF) by adding one to all of 

the percent change values for each SNOTEL site.  The MF is specifically defined as: 

 

                   (5) 

 

Where PCi is the individual melt-rate function component percent change value in 

Equation 5.  This conversion is advantageous for the GLM development because negative 

changes in melt-rates (i.e., lower melt-rates) are normalized to be greater than zero.  Therefore, 

multiplying factors between zero and one represent decreases in melt-rates, while factors greater 

than one represent increases.  Included in this step was testing for statistically significant 

differences between pre- and post-wildfire mean melt-rate values.  The non-parametric Wilcoxon 

Sum Rank test (Helsel et al., 2020) was applied to assess the significance of the changes from the 

𝑀𝐹 = 𝑃𝐶𝑖100 + 1 
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pre- and post-wildfire periods from each of the melt-rate function components.  A p-value of 

0.05 was used for significance testing. 

Step 5: Develop predictive model of post-wildfire melt-rate changes.  

The final step in the process is development of predictive models to estimate MF for pre-

wildfire melt-rate function components.  This is most directly accomplished through linear 

regression because linear model coefficients can be reported and reused easily without additional 

software or programming code.  To achieve transferability to practitioners, generalized linear 

model (GLM) coefficients for the MF for each melt-rate function component were developed 

using the topographic, climatic, and land cover variables.  An exhaustive evaluation of input 

variable combinations was performed using a GLM in the leaps package in R (Lumley, 2020).  

The GLM model development included a k-fold cross validation process to determine the model 

evaluation RMSE. The combination of variables that minimize the k-fold cross validation RMSE 

were selected for use in the final model formulation.  The data used in the exhaustive search 

consisted all sites due to the limited total sites available for this analysis.  The k-fold process 

used 5-folds which have been shown to produce robust model training error statistics for datasets 

with high variance (James et al., 2013).  The coefficient of variation for all the melt-rate function 

components are much greater than one, thus indicating relatively high variance in the data. 

Besides providing a robust estimate of error statistics, an additional advantage of the k-fold cross 

validation process is the data is iteratively split between training and validation data during each 

fold of the process.  The 5-fold selection results in 80% of the SNOTEL sites being used for 

determining GLM coefficients while 20% is used for evaluating the trained model during each 

iteration.  This process is repeated 5 times to provide robust error estimates from the final GLM 

coefficients.  Separate models were developed for each component and duration of years since 
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the fire occurred at the site.  A total of 12 GLMs were developed to provide estimated MF for 

four different planning horizons and each of the three melt-rate function components.   

4.4.2 Px Temperature 

The other TI snow model parameter considered in the snow model parameter analysis is 

the Px temperature.  The process for finding the post-wildfire Px temperature adjustments is 

similar to the melt-rate function and diagramed in Figure 25.  

 

Figure 25. Px temperature parameter adjustment equations using mean daily air temperature, 

snow depth, and precipitation measurements. 

 

Step 1: Filtering Data 

The determination of a representative Px temperature was determined for period of record 

at each SNOTEL site using three filtering criteria (Figure 25).  These criteria include days when 

the snow depth increased, precipitation was positive, and air temperature was below a maximum 

threshold.  The first two criteria ensure only days when snowfall occurs are considered in the 
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analysis, which is a necessary condition for determining Px temperature.  The temperature 

threshold uses the maximum temperature threshold (Tmax) for snowfall determined by Rajagopal 

& Harpold (2016) for the western U.S. ecoregions.  Above this temperature threshold only 

rainfall will occur, while below this threshold snowfall or a mix or rain and snow can occur.  

They used a total of 502 SNOTEL sites across the western U.S. and a minimum of 10 sites per 

ecoregion.  The process they used was independent of air temperature, thus the influence of Px 

temperature changes at burned SNOTEL sites contained within their ecoregion results is not a 

factor.  A summary of their findings for Tmax in the coincident ecoregions from the current 

analysis is presented in Table 9.  The daily Px temperature is then determined by filtering all the 

daily temperature values for the period of record at each site by the criteria shown in Step 1 of 

Figure 25.  The subsets of daily temperatures at each site are the Px temperatures used for the 

remaining steps of this process.     

 

Table 9. Maximum snow day temperature estimate by ecoregion reproduced from Rajagopal and 

Harpold (2016). 

Level III Ecoregion Tmax [°C] 

Northern Rockies 0.4 

North Cascades 1.1 

Canadian Rockies -0.2 

Cascades 1.7 

Eastern Cascades Slopes and Foothills 1.2 

Idaho Batholith 1.1 

Middle Rockies -0.2 

Wasatch and Uinta Mountains -0.4 

Southern Rockies -0.7 

Northern Basin and Range 0.8 

Central Basin and Range -0.1 

Arizona-New Mexico Mountains 1.7 
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Step 2: Determining Difference of mean Px temperature values pre- and post-wildfire. 

After the data filtering, the average of the Px temperature values were determined for 

both the pre- and post-wildfire periods at each site.  The difference of the mean values was then 

determined.  The Wilcoxon Sum Rank test was also applied to the Px Temperature differences to 

determine significance using a p-value of 0.05.  

Step 3: Develop predictive model of post-wildfire Px temperature changes. 

The development of the GLM to predict changes in Px temperature was very similar to 

the process used for the melt-rate function.  The predictor variables producing the lowest 5-fold 

cross validation RMSE were utilized.  Again, the process was repeated for the subsets of sites 

based on duration since the wildfire occurred at that location.  All sites were used in the 5-fold 

cross validation process due to the limited number of sites available in this analysis.  The post-

wildfire Px temperature used a similar process as the melt-rate analysis and evaluated the mean 

post-wildfire Px temperature at each site based on the various planning horizon intervals relative 

to the fire year associated with the site. 

4.4.3 Model evaluation 

Evaluating GLM model performance can be challenging depending on the metrics being 

used, and criteria should be established a priori to model development (Knoben et al., 2019).  In 

this study, two criteria were used to evaluate the performance of the GLMs.  The first criterion is 

comparing the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) and the second is the ratio of 

the RMSE to the standard deviation of the observations (RSR).  Specifically, RSR is 𝑅𝑆𝑅 = 𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙𝑆𝐷𝑜𝑏𝑠       (6) 

The benefit of RSR (Eq. 6) is the normalization of a commonly presented model training 

statistic (RMSE) by the variation in the observed dataset (SDobs) (Moriasi et al., 2007).  A 
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perfectly fit model would have an RSR value of zero. The criterion using RSR is presented by 

Moriasi et al. (2007) which specifies that RSR values less than 0.5 are considered “very good”; 

values between 0.5≤RSR≤0.6 are “good”; and values 0.6≤RSR≤0.7 are “satisfactory” for model 

performance.  This analysis used the same intervals with the addition of 0.7<RSR resulting in 

“unsatisfactory” model performance. 

A perfectly fit model using KGE would have a value of unity.  As the model fit declines, 

the KGE values will decrease and can go below zero.  When this occurs, it can be difficult to 

judge the sufficiency of the model for prediction purposes.  Knoben et al. (2019) have proposed 

that KGE values above the mean model benchmark have some ability to relate input and 

response variables.  The benchmark formulation is based on using the mean of the observations 

within the KGE formula which results in KGEbenchmark≈ -0.41 (Knoben et al., 2019).  Therefore, 

even if the KGE is negative, a comparison can be made to the benchmark for evaluating model 

performance.  

4.5 RESULTS 

4.5.1 Variable Correlation 

The Pearson correlation coefficients for all input variables, melt-rate components, and Px 

temperature differences are shown in Figure 26.  Topographic variables including elevation, 

northness, and eastness are included as predictors in several of final GLM listed in Table A1. 

Elevation has a strong positive correlation with incoming radiation, while a moderate negative 

correlation with northness.  This indicates the incoming radiation, which is a component of the 

snow surface energy balance, will depend on topographic variables.  HLI, which is another 

variable related to incident solar radiation, is moderately correlated to slope, northness, and 

curvature.  Both slope and aspect are used to determine HLI and northness, therefore the 

correlation is likely due to these two topographic variables.   
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Burn severity, specifically dNBR, is positivity correlated with total basal area and the 

mean October through April precipitation.  Areas with high precipitation are more likely to have 

dense vegetation.  Therefore, when a wildfire occurs there is potential for large differences in 

canopy density between pre- and post-wildfire conditions.  

Climatic variables such as Mean LT0 and Mean October through April precipitation are 

positively correlated with latitude while negatively correlated with Mean Temperature and Mean 

ATI.  These results follow earth’s temperature gradient when moving towards the extreme 

latitudes.  Aridity is strongly correlated to the climatic variables, but in the opposite direction.  

Aridity is a function of potential evapotranspiration which increases with air temperature.  Tree 

genus also has moderate correlations with climatic variables due to the plant physiology and soil 

water requirements of different genus.    

The strongest positive correlations for the Change Point component are curvature, LAI 

one-year post-wildfire, and the percent change in LAI.  The strongest negative correlation for the 

Change Point is based on ecoregion (i.e., Cascades, Idaho Batholith).  Overall, the correlations 

between the input variables and Slope 1 were relatively weak.  The strongest positive 

correlations for Slope 1 are HLI and the years since the fire occurred, while there were only 

small negative correlations for incoming shortwave radiation and the tree genus fir (includes 

both Abies and Pseudotsuga).  The correlations between Slope 2 and the input variables showed 

greater strength (both positive and negative) overall relative to the other melt-rate components.  

The strongest positive correlations for Slope 2 are latitude, high burn severity, dNBR, Mean 

LTO and Mean October through April total precipitation.  Conversely, the strongest negative 

correlations are aridity, low burn severity, mean temperature, mean ATI, mean AFDD, incoming 

shortwave radiation, and ecoregion (i.e., Arizona-New Mexico Mountains, Central Basin and 
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Range).  The correlations between Px Temperature and input variables are relatively weak and 

only a few input variables show any notable correlation strength.  Both longitude and total basal 

area are positively correlated, while dNBR, years since the fire, the tree genus hemlock (Tsuga) 

and ecoregions (i.e., Canadian Rockies, Central Basin and Range, Middle Rockies). 

 

 

Figure 26. Pearson correlation coefficient for input variables compared to melt-rate function 

components (Slope 1, Slope 2, and ATI Change Point) and Px temperature (highlighted).  The 

strength of the correlation is reflected in the circle size with larger circles resulting from higher 

correlation coefficient values.  The sign of the correlation is based on the circle colors with red 

indicating negative correlation and blue positive correlation. 
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4.5.2 Melt-rate function component changes 

Using the assumed melt-rate function structure described previously, the mean pre- and 

post-wildfire changes for the two slope segments and the change point at each SNOTEL site 

were quantified using the entire post-wildfire period (Figure 27).  The sites are ordered 

approximately north to south using level 3 ecoregion (Omernik & Griffith, 2014) grouping.  The 

pre-and post-wildfire difference for Slope 1 indicates most of the northern sites have increasing 

slopes (Figure 27a).  Conversely, there is a shift in this pattern in the Middle Rockies, and most 

sites have a decreasing melt-rate slope.  Only three sites have statistically significant changes in 

the mean Slope 1 values between pre- and post-wildfire.  Two of the statistically significant sites 

are in the Middle Rockies ecoregion, while the third is in the Arizona-New Mexico Mountains.  

The direction of melt-rate differences for Slope 2 varies substantially across sites, except 

for the southernmost sites where these locations have constantly decreasing post-wildfire melt-

rate differences (Figure 27b).  There are eleven sites with statistically significant pre- and post-

wildfire changes for the mean Slope 2 magnitudes.  Within the subset of sites that have 

statistically significant changes, all but two of them indicate a positive (increasing) melt-rate 

change.  The magnitude of Slope 2 differences also varies with larger differences in the northern 

ecoregions.  

The change point component of the melt-rate function has a relatively consistent pattern 

of decreasing values except for the northern and southern most ecoregions (Figure 27c).  There 

are two sites with statistically significant changes in the mean Change Point value between pre- 

and post-wildfire periods.  The direction and magnitude for these sites differ and do not provide 

insight to geographic patterns in the Change Point component.  However, the average magnitude 

of negative Change Point differences (decreasing ATI values) is larger than the average positive 
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values for the northern and southern ecoregions (Figure 27c).  The negative differences in 

Change Points indicate lower accumulated TI values (few days with above freezing 

temperatures) necessary to transition from the Slope 1 melt-rate to Slope 2 melt-rate in the post-

wildfire areas.  

 

Figure 27. Post-wildfire minus pre-wildfire changes in melt-rate function components from 

SNOTEL data between pre- and post-wildfire for a) slope 1 (early season melt), b) slope 2 (late 

season melt), and c) change point (ATI value for transition from slope 1 to slope 2).  Statistically 

significant changes (p ≤ 0.05) between the mean pre- and post-wildfire periods are shown with 

an asterisk. 
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4.5.3 Px Temperature Differences 

The differences in mean Px temperature between pre- and entire post-wildfire periods 

varies between ecoregions and sites within the same ecoregion (Figure 28).  Most statistically 

significant changes are positive, which indicates the Px Temperature increased post-wildfire. 

Regardless of the direction of change, most changes are less than 0.5 °C.  There are five sites 

with statistically significant differences.  These occur within the Cascades, Eastern Cascades 

Slopes and Foothills, and the Idaho Batholith ecoregions.  While there is substantial variability in 

the direction of change, the largest magnitude differences are negative.  Moreover, the overall 

largest magnitude change is statistically significant and negative at Hogg Pass SNOTEL, which 

has over 1 °C in Px Temperature difference. 
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Figure 28. Changes in Px temperature from SNOTEL data between pre- and post-wildfire.  

Statistically significant changes (p ≤ 0.05) between the mean pre- and post-wildfire periods are 

shown with an asterisk. 

 

4.5.4 Models for Estimating Melt-rate changes post-wildfire 

Using the measured melt-rate changes from the burned SNOTEL sites and the input 

variables described previously, GLMs were produced which can be used to estimate the factors 

snowmelt modelers need to adjust melt-rate components post-wildfire.  Figure 29 shows the 

results comparing the final factor values each GLM produced with the observed changes.  
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Factors above unity represent increases to pre-wildfire component values (i.e., increased ATI 

values and higher melt-rates).  The GLMs for melt-rate components for periods less than 5 years 

since the fire occurred are shown in Figure 29a through 29c.  The training and validation 

statistics from the 5-fold cross validation process are shown on each of the panels.  The majority 

of SNOTEL sites have a Change Point factor of below unity (Figure 29a) which indicates lower 

ATI values between melt-rate slopes.  There is an even distribution of Slope 1 (Figure 29b) and 

Slope 2 (Figure 29c) factors above and below unity.  

The GLMs for the 5-10 year period since the wildfire occurred have coefficient of 

determination (R2) values between the predictive and observed components approximately equal 

to 0.70 for all three components with Slope 1 model having the lowest RMSE value (Figure 29d 

– 29f).  Again, the majority of Change Point factors (Figure 29d) for the sites are below unity, 

while the Slope 1 (Figure 29e) and Slope 2 model (Figure 29f) results are evenly distributed 

above and below unity.  The results of the GLMs for the 10-20 year period since the wildfire 

occurred are shown in Figures 29g through 29i.  These models indicate agreement between the 

predicted and observed component values; however, these models were developed using a very 

limited subset of the total burned SNOTEL sites.  Even with this limitation, the distribution of 

component values from the models is consistent with other post-wildfire periods.  

The final set of GLMs developed for the melt-rate components include data from all 42 

sites used for this study (Figures 29j-29l).  The GLM for the Change Point factor (Figure 29j) has 

moderate agreement (based on R2) between the predicted and observed values while the models 

for the Slope 1 (Figure 29k) and Slope 2 (Figure 29l) melt-rate function components have 

stronger agreement.  The distribution of factors for the Change Point shows most sites would 

have values at or below unity (Figure 29j).  The Slope 1 factors are more evenly distributed with 
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a slight majority below unity (Figure 29k) and the Slope 2 factors are evenly distributed above 

and below unity (Figure 29l).  The GLM model coefficients for the melt-rate function 

components are listed in Table A1 in Appendix A.  

4.5.5 Models for Estimating Px Temperature changes post-wildfire 

The results for the final set of GLMs developed for Px temperature adjustments are 

shown in Figure 30.  There are some differences between the observed Px temperature change 

and the modeled for planning horizons less than 5 years (Figure 30a).  There is better agreement 

(higher R2) for the longer planning horizons (Figure 30b and 30c) and for the GLM trained using 

all the SNOTEL sites (Figure 30d).  The results indicate the Px temperature is likely to decrease 

for periods less than 5 years since the wildfire (Figure 30a) while increase be close to 0 °C 

change for periods 5-10 years after the fire (Figure 30b).  The larger magnitude changes for Px 

temperature are negative when using the model results trained on all SNOTEL sites (Figure 30d).  

The GLM coefficients for the Px temperature adjustment models are listed in Table A2 in 

Appendix A. 
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Figure 29. GLM results for melt-rate component multiplying factor for a)-c) less than 5 years 

since fire occurred; d)-f) 5 to 10 years since fire occurred; g)-i) 10 to 20 years since fire 

occurred; and j)-l) all sites regardless of time since fire.  The 5-fold cross validation training 

RMSE and R2 results are shown in black while the validation results for all folds are in blue 

italic.  The 1:1 line is shown in red and black circles are the predicted values based on the final 

coefficients from the k-fold training. 
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Figure 30. GLM results for melt-rate component multipliers for a)-c) less than 5 years since fire 

occurred; d)-f) 5 to 10 years since fire occurred; g)-i) 10 to 20 years since fire occurred; and j)-l) 

all sites regardless of time since fire.  The 5-fold cross validation training RMSE and R2 results 

are shown in black while the validation results for all folds are in blue italic.  The 1:1 line is 

shown in red and black circles are the predicted values based on the final coefficients from the k-

fold training. 

4.5.6 Model Evaluation 

The evaluation of model performance for each melt-rate component GLM is summarized 

in Table 10.  The RSR and KGE are based on comparing the values produced by the GLMs 

using the final coefficients determined through the k-fold cross validation process.  The majority 

of the models are classified as “very good” based on the RSR and KGE values.  The Change 

Point GLM developed for the 10≤ year planning horizon was classified as “unsatisfactory” even 

though the RSR was only slightly outside the defined range.  For this model the KGE value is 
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well above the KGEbenchmark of -0.41 which indicates the model does produce results better than a 

mean value of the observations.  Again, models for this planning horizon were developed with 

very limited data and should be used with that consideration in mind.  Results from using a 

similar process to evaluate the Px Temperature models is summarized in Table 11.  Based on the 

RSR and KGE values all models were classified as “very good” in the snow parameter analysis.  

Tables A1 and A2 in the Appendix A summarizes the coefficients for the GLMs that can be used 

by snow modelers to adjust melt-rate functions and Px Temperatures, respectively.  A linear 

combination of the coefficients can be used with values of the associated input variables for 

development of parameter adjustments. 

Table 10. Evaluation of GLM performance for melt-rate components based on RSR and KGE 

values. 
Planning 

Horizon Component RMR KGE 

Performance 

Summary 

≤5 years 

Change 

Point 0.44 0.85 very good 

 Slope 1 0.25 0.95 very good 

 Slope 2 0.20 0.97 very good 

5-10 years 

Change 

Point 0.41 0.87 

very good 

 Slope 1 0.31 0.93 very good 

 Slope 2 0.35 0.90 very good 

10-20 years 

Change 

Point 0.71 0.54 unsatisfactory 

 Slope 1 0.01 1.00 very good 

 Slope 2 0.05 1.00 very good 

All Data 

Change 

Point 0.53 0.78 good 

 

Slope 1 0.19 0.97 very good 

 

Slope 2 0.22 0.96 very good 
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Table 11. Evaluation of GLM performance for Px Temperature based on RSR and KGE values. 

Planning 

Horizon RMR KGE Summary 

≤5 years 0.17 0.98 very good 

5≤ years 0.27 0.95 very good 

10≤ years 0.01 1.00 very good 

All Data 0.38 0.89 very good 

  

4.6 DISCUSSION 

The assumed melt-rate function structure used in this analysis has a physical basis.  Slope 

1 represents early season melt when albedo is relatively high and net shortwave radiation at the 

snow surface is high.  During this period turbulent fluxes and downwelling longwave radiation 

will be the primary energy inputs to melt snowpack (Bilish et al., 2018; Mioduszewski et al., 

2015).  Since net incoming shortwave radiation is relatively low during early season melt, the 

total available energy for melt is less and therefore resulting in Slope 1 melt-rate magnitudes 

being lower.  Further into the ablation season the combination of albedo decay as snow ages 

(Aguado, 1985) and increased hours of illumination result in the net shortwave radiation 

decreasing (more energy into the snowpack).  During the Slope 2 period of melt, the dominant 

energy flux becomes incoming shortwave radiation which drives the secondary melt-rate through 

the remainder of the ablation season.  The magnitude of shortwave radiation flux into the 

snowpack provides a substantially greater total energy input and thus the Slope 2 melt-rates are 

higher. 

There are several key input variables with relatively strong correlations to melt-rate 

function components.  The Change Point difference has higher correlations with curvature and 

LAI percent change.  Both of these input variables influence the early season energy input into 

the snowpack.  The LAI changes are directly related to canopy density difference pre- and post-

wildfire and canopy has direct impacts on the surface energy balance (Hotovy & Jenicek, 2020; 
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Suzuki & Ohta, 2003).  Curvature has been found to be important in modeling SWE spatial 

distribution (Sexstone & Fassnacht, 2014) and accumulation due to wind redistribution (Blöschl 

et al., 1991).  Locations of high curvature may also have larger differences in the surface energy 

balance due to canopy losses which could result in increased energy into the snowpack and thus 

lower Change Point values between melt-rates.  

The difference in Slope 1 magnitude is most strongly correlated with HLA and years 

since the fire occurred.  An increase in melt-rate magnitudes for area of larger HLI is consistent 

with increased energy reaching the snow surface following a wildfire.  The slightly positive 

correlation with the number of years since the fire occurred presents an interesting and 

potentially counter-intuitive result.  However, vegetation recovery to pre-wildfire conditions 

takes time.  Liu et al. (2005) demonstrated that surface temperatures are still elevated 15 years 

after a wildfire relative to 80-year-old forest stands in Alaska.  Therefore, increased melt-rates 

can persist for several years after a wildfire occurs. 

The Slope 2 difference has several variables with relatively high correlations.  These 

variables can generally be categorized by temperature, precipitation, incoming radiation, and 

burn severity.  The negative correlation with temperature variables indicates that the largest 

difference in Slope 2 magnitudes will be associated with colder regions.  This is because net 

shortwave radiation will be the largest driver of melt during the late winter and early spring 

compared to areas that have higher air temperatures and increased turbulent fluxes.  Conversely 

there is a positive correlation with winter precipitation.  This indicates areas with high winter 

precipitation will have larger differences in the Slope 2 melt-rate following a wildfire likely due 

to the pre-wildfire canopy density commonly associated with areas of higher precipitation.  

Therefore, after a wildfire and the canopy is removed, a greater increase of incoming radiation 
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reaching the snow surface occurs.  This same reasoning can also be applied to the correlation 

with burn severity.  High burn severity will result in reduced canopy loss and thus more 

incoming radiation reaching the snow surface which drives higher melt-rates.    

The Px Temperature is a challenging parameter to determine due to both time and space 

variation (Rajagopal & Harpold, 2016).  Part of the space dimension is the vertical distance from 

the ground surface this temperature is applied.  Snowfall may be occurring higher up in the 

atmosphere above the canopy but as the snow crystals get closer to the ground surface, longwave 

radiation from the vegetation along with turbulent fluxes can influence the mixture of snow and 

liquid precipitation.  Keeping these complexities in mind, the results indicate the highest 

correlations for Px temperature with pre-wildfire total basal area and years since the fire 

occurred.  The pre-wildfire total basal area is a measure of large vegetation in the area.  The 

larger vegetation will have more influence on the surface fluxes which will impact the threshold 

temperature at which snow occurs near the surface.  Conversely, the years since the fired 

occurred will be a proxy for the vegetation recovery which will again influence the magnitude of 

longwave radiation occurring from the canopy and the potential threshold temperature for 

snowfall.     

The majority of GLMs developed to estimate changes in both melt-rate components and 

Px Temperature are classified as “very good” based on the RSR and KGE evaluation criteria.  

Only the Change Point GLM for the 10≤ year planning horizon was classified as “satisfactory” 

due to the RSR value slightly exceeding the defined threshold.  The results indicate that even 

with limited data, models were produced that perform substantially better than using average 

values derived from the SNOTEL data.  The process used in this analysis includes an exhaustive 

evaluation of input variable combination to determine the best set of inputs for each melt-rate 
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component.  From the model development process, information about commonly selected inputs 

selected across all planning horizons can be gleaned.  The most commonly used input is LAI 

measured 1-year post-wildfire.  This is consistent with the known influence that canopy density 

has on snow accumulation and ablation (Varhola et al., 2010).  Second most commonly used 

inputs are longitude and dNBR.  Longitude is likely associated with the north-south orientation 

of mountain ranges found in North America.  Burn severity, based on the dNBR values, is also a 

direct measure of vegetation canopy reduction.  Again, this is consistent with know influences 

the canopy has on snow accumulation.  There are several input variables which are tied for the 

next most commonly used.  These inputs include northness, eastness, mean temperature, mean 

ATI, and the tree genus spruce (Picea).  Sexstone & Fassnacht have shown that both northness 

and eastness are important for snow distribution, while air temperature will be directly associated 

with snowfall.  The association with spruce trees is consistent with field observations which 

found Engelmann spruce (Picea engelmannii) had increased snowfall interception compared to 

other conifer species (Schmidt & Glun, 1991).  

The most commonly used input variable for the GLMs related to Px Temperature is Mean 

LT0 which represents the average number of days below freezing for a site.  Since air 

temperature will have a direct influence on the Px temperature, the inclusion of this variable is 

consistent with previous work (Harpold et al., 2017).  Several other input variables are included 

in at least two of the four GLMs developed for Px Temperature.  Within this subset of commonly 

used variables with the GLMs are elevation, dNBR, and specific ecoregions.  Elevation has been 

shown to be an important predictor of snowpack due to orographic precipitation effects 

(Fassnacht et al., 2003).  Burn severity, as measured by dNBR, will impact the density of the 

canopy and thus change the net downwelling longwave radiation which could impact the 
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snowfall threshold temperature.  The inclusion of specific ecoregions for various planning 

horizons would indicate the post-wildfire response to Px Temperature changes is not consistent 

across the entire western U.S. which is also apparent from the differences in Figure 28.   

A limitation of evaluating melt-rate and Px temperature changes by planning horizon is 

the variable fire year of each site.  Some sites do not have data available for all years specified by 

the planning horizon interval.  However, as burned sites continue to gain years since the fire 

occurred, the melt-rate and Px temperature analyses can be updated to better refine the relative 

differences between post-wildfire and pre-wildfire mean values.  

4.7 CONCLUSIONS 

The need for generalized recommendations on snow model parameter adjustments 

following wildfire continues to increase each year as more and large wildfires occur.  

Differences between pre- and post-wildfire melt-rates and Px temperature were evaluated using 

42 SNOTEL sites that have been impacted by wildfire.  Using the differences of the mean values 

between each fire period, a suite of GLMs was developed using a k-fold cross validation process.  

Included in this process was an exhaustive evaluation of input variable combinations.  These 

models can be used by water resource managers and hydrologic modelers to estimate parameter 

changes for snow modeling.  The GLMs provide information on parameter adjustments by the 

number of years since the fire occurred, which provides modelers various planning horizons to 

assess the impact to snow accumulation and ablation in a watershed.  The key conclusions from 

this analysis include: 

• A melt-rate function structure with a single change point and two slopes provides the 

best overall function form for melt-rates at the SNOTEL sites used in the snow model 

parameter study. 
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• Differences in slopes indicate dependence on ecoregion based on the SNOTEL data; the 

Slope 2 magnitudes are generally positive (increased melt-rate) except in the most 

southern ecoregions. 

• Differences in Px temperature direction and magnitude vary by SNOTEL site and 

ecoregion which indicates these changes are localized and should not be considered 

uniform over larger areas.  

• Predictor variables related to changes in canopy density (e.g., LAI percent change, burn 

severity, etc.), temperature, and solar radiation are most often included in the GLM 

equations to predict parameter changes. 

• The melt-rate factors produced by the GLMs show predictive ability especially for 

planning horizons immediately after the wildfire extending to 10 years post-wildfire. 

• The majority of Slope 1 melt-rates decrease while the majority of Slope 2 melt-rates 

increase post-wildfire due to the shifts in energy fluxes reaching the snow surface. 

• The Px temperature adjustments produced by the GLMs show predictive ability 

especially for planning horizons immediately after the wildfire extending to 10 years 

post-wildfire. 

The snow model parameter study objective included development of generalized 

recommendations for model parametrization due to the lack of this type of information currently 

available in the literature.  While this objective has been accomplished using methods that are 

reproducible and readily updated by practitioners, there are some important limitations to this 

work.  The first is the number of sites available to use for model development is limited.  Next, 

the spatial representativeness of the SNOTEL sites is limited and extrapolation to other areas 

with no data has not been thoroughly investigated.  Finally, the variables considered in this 
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analysis are all documented as being important either from the snow accumulation and ablation 

perspective or for the overall energy and water balance.  However, there may be other input 

variables, in combination with those used in the current analysis, which could improve the 

predictive ability of the parameter adjustment models. 

The next steps for research related to post-wildfire parameter adjustments include testing 

methods for spatially distributing the melt-rate adjustment factors along with the Px Temperature 

differences.  Included in this effort could be additional data collection in areas recently impacted 

by wildfire to validate the differences predicted by the GLMs.  Testing the snow model 

parameters adjustment results in burned areas would also prove useful and could inform 

subsequent analysis that are necessary.  Finally, additional analysis to provide recommendations 

for other parameters commonly used in temperature index snow models would help water 

managers and practitioners during post-wildfire assessments.  While further testing and analysis 

should be performed, this is an important first step to provide modeling guidance to water 

managers performing risk assessments following wildfires.  
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CHAPTER 5 – CONCLUSIONS 

 

 

 

5.1 SUMMARY OF RESULTS 

In this study, SWE data from 45 SNOTEL sites that were impacted by wildfire were used 

to quantify the changes of snow phenology measures from both wildfire and climate changes.  

These sites range from southern New Mexico to Alaska.  An additional 110 unburned SNOTEL 

sites were used as comparison sites for the burned locations.  Overall, climate has a strong 

influence on SWE and should be considered when quantifying the wildfire signal.  Wildfires 

produced earlier melt-out dates for nearly all ecoregions and on average, the wildfires advanced 

the melt-out date by 9 days for the ecoregions considered.  Wildfires produced earlier peak SWE 

dates for most ecoregions and on average, the wildfires advanced the peak SWE date by 7 days 

for the ecoregions considered.  Wildfires produced lower maximum SWE values for most 

ecoregions.  On average, wildfires reduced peak SWE by approximately 13% for the ecoregions 

considered.  However, part of the reduction was likely due to localized precipitation patterns 

occurring over some of the unburned sites.  Nonetheless, increases in peak nSWE were observed 

for several of the northern ecoregions.  When the climate and wildfire signals are combined, the 

largest changes in SWE timing and depth occurred in the Cascades, Eastern Cascades Slopes and 

Foothills, Southern Rockies, Northern and Central Basin and Ranges, and the Arizona-New 

Mexico Mountains.  The impact of wildfire on the snow phenology measures does not exhibit a 

clear dependence on burn severity but is sensitive to the change in LAI.  In particular, larger 

reductions in LAI typically produced larger changes in the peak SWE and nSWE values.  The 

effect of the wildfire depends on the dominant pre-wildfire tree genus.  The smallest changes in 

the snow phenology measures typically occurred for spruce and pine forests, while the largest 
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changes usually occurred for the hemlock/other category.  The effects of the wildfires on the 

snow phenology measures persist more than 10 years after the fires.  The changes to the melt-out 

and peak SWE dates exhibit no clear dependence on the time since fire (for the periods of record 

available in this study), while changes to maximum SWE and nSWE were largest for times 

greater than 10 years.  The effects of wildfires on the snow phenology measures are strongest at 

low elevations (below 1960 m).  For higher elevations, the wildfire effects exhibit no clear 

dependence on elevation. 

RF models were developed to quantify wildfire effects on snowpack across several 

ecoregions in the western U.S.  Separate models were used to predict changes using two signal 

classifications (combined and fire) for four different snow measures.  The data used to develop 

these signals is based on pre- and post-wildfire periods at 43 SNOTEL sites that have been 

impacted by wildfire (combined signal).  Unburned comparison SNOTEL sites were identified 

for each of the 43 wildfire impacted locations.  A total of 108 comparison sites, divided based on 

the same points in time as the associated burned sites, were used to remove climatic differences 

and isolate the effects of wildfire (fire signal).  The snow measures modeled are consistent with 

those used in the empirical analysis presented in Chapter 2.  The predictor variables consist of 

several sources of information including geographic (i.e., longitude, latitude); topographic (i.e., 

slope, northness, eastness, elevation, curvature); climatic information (i.e., temperature and 

precipitation); land surface energy fluxes (i.e., incoming shortwave radiation, HLI), and land 

cover (i.e., tree genera, total basal area).  The RF model development used an exhaustive 

evaluation of predictor variable combinations within a k-fold cross validation training process to 

determine the final RF model for each snow measure.  The RF models were used to predict areas 

of snow vulnerability in each ecoregion.  There is substantial spatial variability for the combined 
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signal results but reduced variability for the fire signal results.  Earlier peak SWE (up to 26 days) 

and melt-out (up to 22 days) dates for the combined signal can be expected for all ecoregions.  

The magnitude of earlier dates is smaller for the fire signal but the results still indicate earlier 

peak SWE and melt-out dates.  The primary exception is fire signal melt-out dates in the 

Arizona-New Mexico Mountains, which may be up to 10 days later.  Maximum SWE and nSWE 

are slightly reduced from wildfire effects across most ecoregions; however, when wildfire and 

climate are combined the decreases are more substantial (up to 30% median decrease).  The most 

important variables for prediction of maximum SWE, peak SWE date, and melt-out date changes 

for wildfires alone are slope, incoming shortwave radiation and aridity, respectively.  The most 

important variables for predicting changes to maximum SWE, peak date, and melt-out date 

changes using the combined signal data are mean days below freezing and mean winter 

temperature.  Quantification of vulnerable areas for changes in SWE indicate that gently sloped 

terrain that is south-facing will likely be impacted most from wildfire.  Areas with warmer winter 

temperatures (i.e., where snowfall occurs near the ice-water transition temperature) are also 

vulnerable to both climate and wildfire impacts.  The snow water volume changes for areas 

burned from 2015-2020 resulted in SWE decreases for all ecoregions except the Northern 

Rockies and North Cascades.  The maximum snow water decrease was 6% for areas burned 

between 2015-2020 in the Eastern Cascades Slopes and Foothills and the Arizona-New Mexico 

Mountains.  

The need for general recommendations on snow model parameter adjustments following 

wildfire continues to increase each year as more and large wildfires occur.  Again, this analysis 

used SNOTEL sites impacted by wildfire to evaluate the differences between pre- and post-

wildfire melt-rates and Px temperatures (i.e., threshold temperature distinguishing rain and 
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snow).  Using the differences of the mean values between each fire period, several GLMs were 

developed using a k-fold cross validation process.  Models were developed for various planning 

horizons (i.e., ≤5 years, 5≤ years, 10≤ years, and all years).  Included in the model development 

process was an exhaustive evaluation of predictor variables, which consist of several sources of 

information including geographic (i.e., longitude, latitude); topographic (i.e., slope, northness, 

eastness, elevation, curvature); climatic information (i.e., temperature and precipitation); land 

surface energy fluxes (i.e., incoming shortwave radiation, HLI), and land cover (i.e., tree genus, 

total basal area).  The results of this analysis indicate that a melt-rate function structure with a 

single change point and two slopes provides the best overall functional form for melt-rates at the 

burned SNOTEL sites.  Using this assumed function structure, melt-rate slopes indicate 

dependence on ecoregion, and slope magnitudes are generally positive (increased melt-rate) 

except in the most southern ecoregions.  Differences in Px temperature direction and magnitude 

vary by SNOTEL site and ecoregion, which indicates these changes are localized and should not 

be considered uniform over larger areas.  The melt-rate factors produced by the GLMs show 

predictive ability especially for planning horizons immediately after the wildfire extending to 10 

years post-wildfire.  Early ablation season melt-rates typically decrease while most later ablation 

season melt-rates increase post-wildfire due to the shifts in energy fluxes reaching the snow 

surface.  The Px temperature adjustments produced by the GLMs show predictive ability, 

especially for planning horizons immediately after the wildfire extending to 10 years post-

wildfire. 

5.2 FUTURE RESEARCH 

There are several areas of potential future research based on the work that is presented in 

this study.  The three main focus areas are (1) collection of future snowpack data in burned areas, 
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(2) analysis of existing data that has been collected, and (3) translation of field measurements to 

generalized recommendations or tools for post-wildfire snow modeling.   

The collection of future data in burned areas would benefit from some standardization in 

methods, type of variables measured, and instrumentation used to measure these variables.  To 

date each research effort related to snowpack changes following wildfire has used different 

configurations of instrumentation and data sampling design.  While site specific adjustments will 

still be required, there is enormous benefit to having comparable measurements from similar 

equipment across multiple regions.  For example, snow depth measurements made once a month 

for non-established transects may be difficult to directly compare to automated SWE 

measurements collected at a single location.  Investigation into the temporal and spatial 

resolution needed in burn areas to adequately quantify snowpack changes is another area of 

future work.  Such a study would be enormously helpful in planning and budgeting the resources 

to assess changes in snowpack for a given domain.   

In addition to more systematic ground-based data collection, there is an excellent 

opportunity to combine remote sensing products with this data.  There is currently still no high 

spatial or high temporal SWE products available from remote sensing platforms.  One of the 

most promising options in the near-term is snow LiDAR collection which provides high spatial 

resolution of snow depth (Broxton et al., 2019; Deems et al., 2013).  The LiDAR collection is 

performed using unmanned, rotatory, or fixed-wing aircraft and only provides snapshots of snow 

depth during the winter.  While many of the current post-wildfire research efforts are collecting 

snow LiDAR information, future research could include determining the minimum temporal 

resolution needed to fully capture the snowpack evolution from beginning of accumulation 

through ablation.  Other remote sensing products, such as MODIS fractional snow cover, could 
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be better integrated with post-wildfire data collection and analysis.  Additional research could 

include recommendations regarding commercially available remote sensing products that 

provide the most useful information related to snowpack changes post-wildfire.  

Another area of research would be aggregation and analysis of all existing post-wildfire 

snowpack datasets.  There have been many data collection efforts from previous fire events that 

could be combined into a single comprehensive dataset.  While many of the issues related to 

sampling methods and design would need to be taken into account, combining this information 

along with the burned SNOTEL sites would allow for a more robust spatial analysis of snowpack 

changes.  The aggregation of this data, and potential development of a clearinghouse for other 

researchers, would mark a substantial step forward in connecting research across multiple 

institutions. 

Finally, one of the fundamental motivations for research is to ultimately provide solutions 

to societal issues or concerns.  Therefore, a key path for future research should be development 

of guidance or tools for post-wildfire snow modeling.  This path would include identification of 

other parameter adjustments for modeling snow in burned areas especially for temperature index 

snow models.  Temperature index snow models continue to be widely used especially in rapid 

post-wildfire assessments performed by states and local communities.  Therefore, research 

efforts should be made to help users of this type of snow model.  Specifically, additional research 

related to Px temperature differences post-wildfire will be helpful for modelers.  Creation of a 

simple tool that could determine Px temperature differences based on a few key input variables 

could be developed and included in the post-wildfire toolboxes currently being used in many 

states (e.g., California, Colorado).   
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APPENDIX A 

 

 

 

Table A1. Equations for melt-rate function adjustment following a wildfire. 

 Time Since Fire ≤5 years 5-10 years 10-20 years All years 

Component Change Point Slope 1 Slope 2 Change Point Slope 1 Slope 2 Change Point Slope 1 Slope 2 Change Point Slope 1 Slope 2 

Input Variable Name             

Intercept -7.019 -25.411 11.949 -2.008 -24.135 -5.226 1.038 0.573 1.060 -0.806 -23.697 2.493 

Ecoregion: AZ-NM             

Ecoregion: C -0.217 -0.542     -0.294    0.397 -0.367 

Ecoregion: CBR   0.740 0.281        0.541 

Ecoregion: CR  2.035 -0.835          

Ecoregion: ECSF   0.353       0.285   

Ecoregion: IB     -0.312      -0.529  

Ecoregion: MR  3.061 -0.966  0.544 0.503     1.359  

Ecoregion: NBR  -1.689 1.298   0.660     -1.934 1.141 

Ecoregion: NC    0.428  -0.613    0.347  -0.304 

Ecoregion: NR  1.108        0.407   

Ecoregion: SR             

Ecoregion: WUM             

Tree Genus: fir             

Tree Genus: hemlock/other  0.524 -0.468      -0.949  0.749 -0.455 

Tree Genus: pine  -0.700 0.549 0.526       -0.279 0.407 

Tree Genus: spruce  0.515 0.260 0.428 0.747      0.636 0.312 

Total Basal Area        -0.010     

LAI 1-Year Pre-wildfire  -0.101         -0.844  

LAI 1-Year Post-wildfire 0.190 0.341 -0.138  0.214 0.130    0.110 1.098 -0.059 

LAI Percent Change    0.549     -0.104  -1.435 0.282 

Burn Severity 

Classification: high 
 0.732         0.705  

dNBR 0.000 0.001 0.001 0.001    0.000   0.002 0.001 

Longitude  -0.332 0.117          

Latitude -0.044 -0.259 0.141 -0.023 -0.119      -0.118 0.045 

Elevation  0.002 -0.001        0.001 0.000 

Slope             

Northness -0.306   -0.532 -0.535    0.568 -0.183 -0.356  

Eastness 0.199     -0.352   -0.555 0.103 0.335 -0.141 

Curvature  -0.559     -0.600 0.239   -0.689  

Mean Temperature  1.374 886.102   0.602    -310.549 0.927 864.354 

Mean ATI 0.003  -4.175  0.007   0.005  1.464  -4.070 

Mean AFDD -0.002  -4.175       1.462  -4.070 

Mean LT0  0.099   0.047 0.052     0.063 0.043 

Mean Oct-Apr Precipitation   0.001 0.000        0.001 

Aridity -0.309            

Incoming Solar Radiation  -0.017 0.006  0.007        

HLI   0.633        2.613  
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Table A2. Equations for Px Temperature adjustment following a wildfire. 

 

 

Time Since Fire ≤5 years 5-10 years 10-20 years All years 

Input Variable Name 
    

Intercept 
3.989 -8.788 0.582 -18.025 

Ecoregion: AZ-NM     

Ecoregion: C 1.302    

Ecoregion: CBR 2.878    

Ecoregion: CR -1.604 0.658   

Ecoregion: ECSF 0.773    

Ecoregion: IB 0.016    

Ecoregion: MR -2.312   -0.486 

Ecoregion: NBR 3.062   1.193 

Ecoregion: NC -0.244    

Ecoregion: NR 0.987   0.921 

Ecoregion: SR     

Ecoregion: WUM    -0.427 

Tree Genus: fir     

Tree Genus: 

hemlock/other 
-2.069   -0.949 

Tree Genus: pine     

Tree Genus: spruce -0.252    

Total Basal Area  0.005  0.003 

LAI 1-Year Pre-wildfire     

LAI 1-Year Post-

wildfire 
  -0.582  

LAI Percent Change -0.289    

Burn Severity 

Classification: high 
-0.109    

dNBR   -0.002 0.000 

Latitude   -0.320   

Longitude  -0.164  -0.120 

Elevation 0.000   0.001 

Slope   14.391  

Northness 0.659    

Eastness 0.306    

Curvature 0.753    

Mean Temperature    450.115 

Mean ATI  0.005  -2.119 

Mean AFDD -0.006   -2.123 

Mean LT0 -0.050 0.051 -0.004  

Mean Oct-Apr 

Precipitation 
 -0.002   

Aridity -0.767 -0.882   

Incoming Solar 

Radiation 
 -0.009   

HLI -1.501    


