
THESIS 

 

 DEVELOPMENT AND CHARACTERIZATION OF AN IN VITRO EQUINE 

AIRWAY MODEL AS A TOOL FOR THE STUDY OF HOST-PATHOGEN 

INTERACTIONS AT THE EPITHELIAL CELL BARRIER 

 

 

 

 

Submitted by 

Ayshea M. Quintana 

Department of Microbiology, Immunology and Pathology 

 

 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Summer 2010 

 



 ii 

COLORADO STATE UNIVERSITY 

 

June 28, 2010 

 WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR 

SUPERVISION BY AYSHEA M. QUINTANA ENTITLED DEVELOPMENT AND 

CHARACTERIZATION OF AN IN VITRO EQUINE AIRWAY MODEL AS A TOOL 

FOR THE STUDY OF HOST-PATHOGEN INTERACTIONS AT THE EPITHELIAL 

CELL BARRIER BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR 

THE DEGREE OF MASTER OF SCIENCE. 

 

Committee on Graduate Work 

 

        
David Paul Lunn 

        
Steven Dow 

        
Sandra Quackenbush 

        
Advisor: Gabriele Landolt 

        
Co-Advisor: Gisela Hussey 

        
Department Head: Edward Hoover 



 iii 

ABSTRACT OF THESIS 

 

DEVELOPMENT AND CHARACTERIZATION OF AN IN VITRO EQUINE 

AIRWAY MODEL AS A TOOL FOR THE STUDY OF HOST-PATHOGEN 

INTERACTIONS AT THE EPITHELIAL CELL BARRIER 

 

 

Equine influenza virus (EIV) and equine herpesvirus-1 (EHV-1) are the main causes of 

viral respiratory diseases in horses. Despite vaccination efforts, they continue to have 

serious health and economic impacts on the equine industry. While we have made 

progress understanding the host adaptive immune response to these viruses, the innate 

and early immune response remains poorly defined. One reason for this delay in our 

understanding of this essential component of immunity is the lack of a suitable in vitro 

model. The respiratory epithelium is the primary site of infection and replication for both 

EIV and EHV-1 and the site where early immune responses occur. As a component of 

innate immunity, it also functions as a physical barrier, chemical barrier, and 

microbiological barrier against pathogen invasion through the formation of tight 

junctions, mucociliary clearance, and the harboring of commensal microorganisms as 

well as antimicrobial peptides important for facilitating pathogen clearance. Because of 

the importance of the respiratory epithelium in the pathogenesis of equine respiratory 

viruses, we developed and characterized, morphologically and immunologically, an 
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equine respiratory epithelial cell (EREC) culture system grown at the air-fluid interface 

(AFI). The AFI culture system is unique because the model mimics the natural airway 

epithelium with the apical surface of the cells exposed to humidified air while the basal 

surface is submerged in liquid. In addition, respiratory epithelial cell cultures grown at 

the AFI have been successfully developed for other species and used as a tool in the study 

of allergy and infectious disease.  

To develop an equine airway model, respiratory epithelial tissues were harvested 

from humanely euthanized horses and epithelial cells were isolated using enzymatic 

digestion and gentle agitation in calcium and magnesium free minimal essential medium 

for 48 hours. ERECs were seeded on a collagen-coated membrane and kept at an air-fluid 

interface until differentiated. Factors that determined the point of differentiation included 

tight junction formation, mucin production, and cilia development. After four weeks of 

growth, we have demonstrated cell differentiation in these cultures characterized by the 

presence of ciliated epithelial cells, secretory cells, and basal cells in addition to tight 

junction formation and visible mucin production.  

While AFI cultures have been shown to undergo successful cell differentiation, 

little information exists as to how they present immunologically after several weeks of in 

vitro growth conditions. Equine respiratory epithelial tissues, isolated epithelial cells, and 

four-week old cultured, differentiated airway epithelial cells collected from six locations 

of the equine respiratory tract were examined for the expression of toll-like receptors 

(TLRs) and antimicrobial peptides (AMPs) using conventional polymerase chain reaction 

(PCR). Cultured, differentiated, respiratory epithelial cells and freshly isolated respiratory 

epithelial cells were also examined for the expression of TLR3, TLR9 and major 
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histocompatibility complex (MHC) class I and class II using fluorescence-activated cell 

sorting (FACS) analysis. In addition, cytokine and chemokine profiles from respiratory 

epithelial tissues, freshly isolated respiratory epithelial cells, and cultured, differentiated, 

epithelial cells from the upper respiratory tract were examined using real-time PCR. We 

found that respiratory epithelial tissues and isolated epithelial cells expressed TLRs 1-4 

and 6-10 as well as AMPs, MxA, 2’5’ OAS, β-defensin-1, and lactoferrin. In contrast, 

TLRs 8-10 and lactoferrin were no longer detected in epithelial cells cultured at the AFI 

after four weeks compared to respiratory tissues and freshly isolated epithelial cells. In 

addition, MHC-I and MHC-II surface expression decreased in epithelial cells cultured at 

the AFI compared to isolated epithelial cells whereas TLR3 and TLR9 were expressed at 

similar levels. Lastly, we found that after four weeks of in vitro growth conditions, 

equine respiratory epithelial cells cultured at the AFI expressed granulocyte-macrophage 

colony-stimulating factor (GM-CSF), IL-10, IL-8, TGF-β, TNF-α, and IL-6. 

To further define the use of this model, we examined the infectivity and 24 hour 

endpoint M gene copy numbers in these cultures using canine and equine H3N8 influenza 

A viruses and compared this to an in vivo study using the same influenza isolates in 

ponies. Our results demonstrated that infectivity and 24 hour endpoint M gene copy 

numbers in the primary EREC culture system mirrored viral nasal shedding seen in the in 

vivo pony challenge. More specifically, we demonstrated restricted infectivity of a 

contemporary canine influenza A isolate in the EREC AFI culture and in ponies 

compared to efficient infection of both in vitro and in vivo models using a contemporary 

equine influenza isolate as a positive control.  
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In summary, we have developed an in vitro equine respiratory epithelial cell 

culture model that is morphologically similar to the equine airway epithelium, retains 

several key immunological properties, and supports viral infection and replication. In the 

future this model will be used to study equine respiratory viral pathogenesis and cell-to-

cell interactions.  

 

Ayshea Mary Quintana 
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Colorado State University 
Fort Collins, CO 80523 
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CHAPTER 1: INTRODUCTION 

 

Equine respiratory disease 

 Equine influenza virus (EIV) and equine herpesviruses (EHV-1) are the main 

causes of viral respiratory disease in equids.1-5 EHV-1 is ubiquitous among horse 

populations with seasonal epidemics. Incidences of EHV-1 appear to increase during 

higher foaling periods and in winter through early spring.6,7 EIV is endemic in horses 

with epidemics occurring during horse racing events.8-10 Despite vaccination efforts, EIV 

and EHV-1 continue to have serious health and economic consequences for the equine 

industry.5,11-13 Effective vaccination against EIV and EHV-1 is strongly dependent on the 

ability of vaccines to induce long-term protective immunity.14-16 For EIV, protective 

immunity has been shown to be associated with robust humoral immune responses 

against influenza hemagglutinin and neuraminidase glycoproteins.17 Moreover, protection 

against EIV is correlated with the antigenic relatedness of the vaccine strain to circulating 

isolates.18,19 However, antigenic drift has had considerable adverse affects on the efficacy 

of EIV vaccines.19 For EHV-1, protection is directly correlated with a cytotoxic T-

lymphocyte response.20-22 There’s evidence that EHV-1 evades this response through the 

down-modulation of major histocompatibility complex (MHC) class I23 making the 

development of an effective vaccine a challenging task. While much progress has been 

made in understanding the adaptive immune response to EIV and EHV-1,15,24  the innate 
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and early immune responses at the initial site of viral infection and replication remain 

poorly characterized. As respiratory epithelium is the primary site of infection and 

replication for EIV and EHV-1, studying the initial immune response to these viruses at 

the epithelial cell barrier is critical for a better understanding of host-pathogen 

interactions at this site, and how this interaction affects further downstream events 

including adaptive immune responses. 

 

Innate and early immunity 

Innate immunity encompasses the earliest forms of defense against pathogen 

invasion by initiating an immediate response to infection. This involves the recognition 

of pathogens by endogenous, preformed, pathogen recognition receptors that 

subsequently lead to the activation of effector molecules and effector mechanisms. These 

pattern recognition receptors (PRRs) include toll-like receptors, nod-like receptors, and 

RNA helicases that function to recognize pathogen associated molecular patterns 

(PAMPs) subsequently mediating pathogen clearance.25-27 Toll-like receptors (TLRs) are 

a unique family of PRRs. They are highly conserved type I transmembrane proteins first 

discovered in Drosophila melanogaster.28 Structurally, TLRs contain an intracytoplasmic 

domain that is shared with members of the interleukin-1 receptor family.29 The 

extracellular domain of TLRs contain amino terminal leucine rich repeats,29 which are 

likely involved directly in PAMP recognition. Currently, thirteen TLRs have been 

characterized in humans, ten in bovines, and as many as sixteen TLRs have been 

described in certain species of fish.30 As PRRs are broadly specific, they are able to 

recognize various PAMPs (Table 1.1). 
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Table 1.1. PRRs, cellular localization and their known associated pathogen ligands 

PRR Cellular 
location 

PAMP recognition Reference 

TLR 1/2 Plasma 
membrane 

Triacylated lipopeptides 31,32 

TLR 2/6 Plasma 
membrane 

Diacylated lipopeptides, viral envelope 
proteins, lipoprotein, peptidoglycan, 

lipoarabinomannan, zymosan 

31,32 

TLR 3 Endosome  Viral double stranded RNA 31,32 

TLR 4 Plasma 
membrane 

Lipopolysaccharide, viral envelope protein 31,32 

TLR 5 Plasma 
membrane 

Bacterial flagellin 31,32 

TLR 7/8 Endosome Viral single stranded RNA 31,32 
TLR 9 Endosome Double stranded DNA viruses, unmethylated 

CpG DNA 
31,32 

TLR 10 Plasma 
membrane 

Unknown 33 

TLR 11 Plasma 
membrane 

Uropathogenic bacteria, profilin 32 

TLR 12 Plasma 
membrane 

Unknown  

TLR 13 Plasma 
membrane 

Unknown  

Dectin-1 Plasma 
membrane 

Zymosan 34 

NOD 1 & 
NOD 2 

Cytosol Peptidoglycan, diaminopimelic acid (NOD1) & 
muramyl dipeptide (NOD2) 

35,36 

RNA 
helicases 

Cytosol Viral double stranded RNA 37 

 

As key components of innate immunity, TLRs and the complement system can be 

activated rapidly to act as mediators during the transition from innate to adaptive 

immunity.38 Often studied as separate entities, it has become increasingly clear that 

crosstalk may occur between TLRs and the complement system, in which TLR agonists 
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activate complement in addition to initiating TLR signaling.39,40 Several cells of the 

innate immune response express PRRs including macrophages, dendritic cells, natural 

killer cells, mast cells, neutrophils, eosinophils and epithelial cells.41,42 

Recognition of PAMPS by PRRs induces a signaling cascade that activates 

transcription factors leading to the production and regulation of proinflammatory 

cytokines, chemokines, and antimicrobial peptides as well as an upregulation of 

costimulatory molecules, and recruitment of professional immune cells.43-45 Cytokines 

and chemokines are regulatory proteins involved in an intricate network that interact with 

receptors on cell surfaces facilitating cell-to-cell signaling and communication. Cell 

responses to cytokine and chemokine signaling usually occur in an autocrine (within the 

cell) and paracrine (on adjacent cells) manner and occasionally in an endocrine (on 

distant cells) fashion. As a result, cytokine and chemokines are potent effector molecules 

important in regulating and shaping downstream adaptive immune responses. 

In addition to cytokine and chemokine production, signaling through TLRs also 

results in the expression of antimicrobial peptides classically associated with mucosal 

surfaces. Antimicrobial peptides (AMPs) are small proteins with demonstrated 

antimicrobial and antiviral activity and are fundamental components of innate 

immunity.48 They inhabit several physiologic locations and are broadly classified 

according to their structure (Table 1.2). While mechanisms of action vary depending on 

the AMP, they generally exert inhibitory activity through electrostatic interactions with 

bacterial cytoplasmic membranes and viral envelope proteins.56-59 AMPs have also been 

demonstrated to direct monocyte differentiation toward macrophages through 

granulocyte- macrophage colony-stimulating factor (GM-CSF) regulation.43 
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Table 1.2.  Classes of antimicrobial peptides 

AMPs Structure properties Known 
sources 

Physiologic 
location Reference 

Cathelicidins, 
lactoferrins 

Cationic, β-turn Humans Blood, saliva, 
airway epithelium 

49,50 

α-β-θ-defensin 
Cationic, anionic, 
disulfide bonds, 
cysteine residues 

Mammals, 
birds, 

reptiles, 
plants 

Ubiquitous 49 

SLPI 
Cationic, disulfide 

bonds, cysteine 
residues 

Humans, 
mammals 

Airway 
epithelium, 
intestinal 

epithelium, skin, 
liver, kidney, 

saliva 

51,52 

MxA, PKR 

GTPase, leucine 
zipper, 

serine/threonine 
kinase 

Humans, 
mammals Ubiquitous 53,54 

2’5’ 
OAS/RNaseL 

Nucleotidyl-
transferase enzymes, 
polymerase β-sheet 

domain 

Humans, 
mammals Ubiquitous 55 

Maximin, 
Dermicidin Anionic Humans, 

amphibians Airway epithelium 49 

 

In addition they were demonstrated to activate monocyte-derived dendritic cells and 

modulate IFN-γ production in antigen-presenting cells suggesting they may also play a 

role in the shaping of adaptive immunity.60,61 These early innate immune responses 

involving the recruitment of professional immune cells through cytokine signaling can 

last up to 4 days before the onset of adaptive immunity. 
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Pathogen recognition by epithelial cells 

For EIV and EHV-1, early immunity occurs at the respiratory epithelium, the 

initial site of host-pathogen interactions for respiratory viruses. Therefore, epithelial cells 

play a central role in the induction of early immunity. In addition to pathogen 

recognition, PRRs along the epithelial cell barrier are essential to maintaining 

homeostasis through the sampling of the external environment, which consists of 

pathogens as well as non-pathogenic commensal microorganisms.62,63 These interactions 

prime and condition the immune response and facilitate epithelial cell crosstalk with 

underlying immune cells including antigen-sampling dendritic cells.62 As professional 

immune cells are known to secrete regulatory cytokines and chemokines (Table 1.3), 

epithelial cells have also been demonstrated to produce IL-1, IL-3, IL-6, IL-8, IL-33, 

GM-CSF, MCP-1, TGF-α, TGF-β, and TNF-α supporting their role in the regulation of 

host immunity.64-66 It has become clear that airway epithelial cells are able to regulate the 

recruitment and function of professional immune cells through the secretion of 

cytokines.67 Conventional cultures of rat trachea epithelial cells were demonstrated to 

produce the cytokine, GM-CSF, a potent activator of macrophages, neutrophils and 

eosinophils.67 Moreover, it was shown that secretion of GM-CSF by rat trachea epithelial 

cells triggered a proliferation of macrophages indicating that GM-CSF secreted by 

epithelial cells can regulate professional immune cells.67 In addition, previous studies 

have demonstrated the expression of TNF-α, TGF-β, IL-8, IL-10 and IL-6, by airway 

epithelial cells.72-74 Lastly, as AMPs primarily inhabit mucosal surfaces, the expression of 

cathelicidins, lactoferrin, β-defensins, secretory leukocyte protease inhibitor (SLPI), 
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maximin, dermicidin, and MxA have been demonstrated in airway epithelial cells (Table 

1.2).50,75-78 

Table 1.3. Cytokine and chemokine production in epithelial cells and other immune 
cells.64-71 

Cytokines 
Cell source 

  Type 1 Type 2 
Others 

Epithelial cell IL-1, IL-8 IL-6, IL-10  IL-33, TGF-α, 
TGF-β, TNF-
α, GM-CSF, 
MCP-1 

CD4 T-cell IFN-γ, IL-12, TNF-β IL-3, IL-4, IL-5, 
IL-6, IL-9, IL-10, 
IL-13, IL-21,  

IL-17, GM-
CSF 

CD8 T cell IL-2, IFN-γ IL-4, IL-5, IL-10  IL-17 

NK cell IFN-γ, TNF-β   

Monocyte/macrophage IL-12, IL-27 IL-3 GM-CSF, 
MCP-1 

B cell IL-12, TNF-β   

Dendritic cell IL-12, IL-27, IFN-α, 
IFN-β 

  

Neutrophil IL-12   

Mast cell  IL-4, IL-5, IL-6  
Eosinophil IFN-γ IL-4, IL-5, IL-6, 

IL-13, IL-10 
 

 

 

Antigen-presentation by epithelial cells 

 Major histocompatibility complexes (MHC) are essential components in 

facilitating pathogen clearance and function by binding and presenting short antigenic 

peptides on the surface of immune cells to T-cell receptors. The MHC genes are divided 

into three groups: MHC class I (MHC-I), MHC class II (MHC-II), and MHC class III 
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though only MHC-I and MHC-II are capable of antigen processing and presentation. 

MHC-III genes encode other immune components such as complement and cytokine 

components but do not encode antigen-processing molecules. MHC-I and MHC-II differ 

not only in antigen processing, but also in the type of T-cell for which they present 

peptide-MHC complexes. For example, CD8 T-cells recognize peptides processed in the 

cytosol, transported to the endoplasmic reticulum for additional modification and loaded 

onto MHC-I complexes,79 while CD4 T-cells recognize exogenous antigenic peptides 

processed in intracellular vesicles and loaded onto MHC-II complexes.80 

While all nucleated cells express MHC-I, only professional antigen-presenting 

cells such as dendritic cells, macrophages, and B-cells are known to express MHC-II. In 

addition, certain types of epithelial cells are known to process and present antigen 

through MHC-II presentation, namely thymic epithelial cells,81,82 intestinal epithelial 

cells,83,84 and renal tubular epithelial cells.85-87 However, little information exists on 

whether airway epithelial cells express MHC-II and are capable of processing and 

presenting antigen to professional immune cells. In fact, dendritic cells have been 

regarded as the antigen-presenting cell of the airways. Recently, a study demonstrated 

increased surface expression of MHC-II in immortalized human bronchial epithelial cells 

in response to stimulation with organic particulate matter88 suggesting natural airway 

epithelial cells may also function as professional antigen-presenting cells providing an 

opportunity for investigation into this novel area of research. 
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Epithelial cell barrier 

The mucosal defense at the respiratory epithelium comprises physical, chemical, 

and microbiological barriers to evade pathogens. Examples of physical barriers include 

tight junctions, adherens junctions, and mucociliary clearance. Tight junctions and 

adherens junctions function to regulate solute transport and cell permeability while 

forming a barrier from the external environment.89 Respiratory epithelium is a unique 

environment comprised of ciliated pseudostratified columnar epithelial cells, secretory 

cells such as Goblet cells, and basal cells that function to maintain airway homeostasis 

while providing protection from antigens brought in from the external environment 

through respiration.26 

As resident structural cells, airway epithelial cells lie at an interface that separates 

the external and internal environments of the respiratory tract.26 Mucociliary clearance is 

an important physical barrier in airway epithelia that involves the coating of pathogen 

and debris with mucin proteins preventing them from adhering to the epithelium and 

moving them out of the airway through the movement of cilia.26 In addition, respiratory 

mucus is a complex array of highly charged mucin glycoproteins produced by secretory 

cells that function in preventing dehydration of the apical surface of the airway epithelial 

cell, as well as harboring host protective proteins.26  

Fatty acids, enzymes, and antimicrobial peptides are examples of chemical 

barriers that are important components of innate immunity and can exhibit direct activity 

on pathogens resulting in limited growth, reduced pathogen entry into host cells, and a 

decrease in viral replication.90-92 Microbiological barriers include commensal 
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microorganisms of the normal flora lining epithelial surfaces that compete with invading 

pathogens for space and nutrients. 

 

Models of airway epithelium 

Our lack of understanding of innate and early immunity at the primary site of 

infection and replication or airway pathogens is partly the result of a lack of a suitable in 

vitro model. Earlier conventional models of respiratory epithelial cell cultures were 

established by fully immersing cells in media.96-98 One limitation to this method is the 

loss of respiratory epithelial cell differentiation over time.99,100 In contrast, the 

development of a biphasic hamster airway epithelial cell culture model provided a 

powerful new technique to culture airway epithelial cells that re-established and 

maintained characteristics of cell differentiation.101 Airway epithelial cell culture models 

grown at the air-fluid interface (AFI) have since been developed for other species 

including human, rat, mouse, bovine, and swine as a tool to study allergy and infectious 

disease.102-107 Recently, successful culture of differentiated equine bronchial epithelial 

cells cultured at the AFI has been described.108 Morphologically, respiratory epithelial 

cells cultured at the AFI appear to mimic the natural airway epithelium as a 

heterogeneous population of ciliated cells, basal cells, and secretory cells generating a 

pseudo-stratified mucociliary epithelium contrary to what is seen with respiratory 

epithelial cells cultured submerged in liquid.109,110 In addition, secretion of mucin 

proteins has been characterized in human, rat, and equine differentiated respiratory 

epithelial cell cultures grown at the AFI.108,109,111 Moreover, tight junction formation 

characteristic to epithelial cells and responsible for creating a physical barrier has also 
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been demonstrated through transepithelial electrical resistance (TEER) 

measurements.109,112 Finally, respiratory epithelial cells cultured at the AFI have been 

demonstrated to support viral infection and replication supporting their use as a tool to 

study host-pathogen interactions at the respiratory epithelial barrier.113,114 While 

respiratory epithelial cells cultured at the AFI are known to mimic the natural airway 

epithelium and support viral replication, no information exists on how these culture 

compare immunologically to the equine airway epithelium after several weeks of in vitro 

growth conditions. 

 

Research goal 

 The goal of this project was to establish and characterize a primary equine 

respiratory epithelial cell culture system in terms of morphological and immunological 

properties, to study host-pathogen interactions at the epithelial cell barrier to equine viral 

respiratory diseases. The first paper outlines the morphological features of ERECs 

cultured at the AFI after four weeks with respect to tight junction formation, production 

of mucus, and development of ciliated epithelial cells. Moreover, since EREC AFI 

cultures are grown in vitro, immunological properties including expression of toll-like 

receptors and antimicrobial peptides are described and compared to natural airway 

epithelium and isolated uncultured epithelial cells. MHC-I and MHC-II surface 

expression in ERECs cultured at the AFI is compared to isolated uncultured ERECs. In 

the second paper, ERECs cultured at the AFI were infected with H3N8 canine and equine 

influenza A viruses and compared to an in vivo experimental challenge using these same 

influenza isolates as a way to support the use of this model. This study demonstrated 
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successful infection of ERECs cultured at the AFI and viral infection and replication 

characteristics that mirrored the in vivo challenge study. 
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ABSTRACT 

 

Currently, our understanding of innate immunity within the equine respiratory tract is 

limited. As the first interface to undergo pathogen invasion, the respiratory epithelium 

plays a key role in the immediate defense as well as the shaping of the adaptive immune 

response. For this reason, we examined the innate immune characteristics of the equine 

respiratory tract and compared them to an in vitro equine respiratory epithelial cell model 

cultured at the air-fluid interface (AFI). Respiratory epithelial tissues, isolated epithelial 
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cells, and four-week old cultured, differentiated airway epithelial cells collected from six 

locations of the equine respiratory tract were examined for the expression of toll-like 

receptors (TLRs) and antimicrobial peptides (AMPs) using conventional polymerase 

chain reaction (PCR). Cultured, differentiated, respiratory epithelial cells and freshly 

isolated respiratory epithelial cells were also examined for the expression of TLR3, TLR9 

and major histocompatibility complex (MHC) class I and class II using fluorescence-

activated cell sorting (FACS) analysis. In addition, cytokine and chemokine profiles from 

respiratory epithelial tissues, freshly isolated respiratory epithelial cells, and cultured, 

differentiated, epithelial cells from the upper respiratory tract were examined using real-

time PCR. We found that respiratory epithelial tissues and isolated epithelial cells 

expressed TLRs 1-4 and 6-10 as well as AMPs, MxA, 2’5’ OAS, β-defensin-1, and 

lactoferrin. In contrast, TLRs 8-10 and lactoferrin were no longer detected in epithelial 

cells cultured at the AFI after four weeks compared to respiratory tissues and freshly 

isolated epithelial cells. In addition, MHC-I and MHC-II surface expression decreased in 

epithelial cells cultured at the AFI compared to isolated epithelial cells, whereas TLR3 

and TLR9 were expressed at similar levels. Lastly, we found that after four weeks of in 

vitro growth conditions, equine respiratory epithelial cells cultured at the AFI expressed 

granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-10, IL-8, TGF-β, 

TNF-α, and IL-6. In summary, we have developed an in vitro equine respiratory 

epithelial cell culture model that is morphologically similar to the equine airway 

epithelium and retains several key immunological properties. In the future this model will 

be used to study equine respiratory viral pathogenesis and cell-to-cell interactions.  
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ABBREVIATIONS 

AFI  Air-fluid interface 

FACS  Fluorescence-activated cell sorting 

TLR  Toll-like receptor 

AMP  Antimicrobial peptide 

EIV  Equine influenza virus 

EHV-1  Equine herpesvirus-1 

EREC  Equine respiratory epithelial cell 

PRR  Pattern recognition receptor 

PAMP  Pathogen-associated molecular pattern 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

MCP-1  Monocyte chemoattractant protein-1 

TEER  Transepithelial electrical resistance 
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INTRODUCTION 

 

Respiratory pathogens such as equine influenza (EIV) and equine herpesvirus-1 

(EHV-1) continue to have serious health and economic impacts on the equine industry,1,2 

despite vaccination. While in recent years we have made progress understanding the 

adaptive immune response to these common respiratory pathogens,2,3 the innate immune 

response remains poorly characterized.  

Elucidating the innate immune response to these viruses is important, as the early 

events following infection not only determine whether the virus can establish infection 

but also set the stage for downstream adaptive immune responses.  Initiation of innate 

immunity relies on the activation of germline encoded pattern recognition receptors 

(PRRs) through the recognition of pathogen-associated molecular patterns (PAMPs).4 

Toll-like receptors (TLRs) are classic PRRs that are found on immune cells as well as 

mucosal epithelia exposed to invading pathogens. Thirteen mammalian TLRs have been 

identified of which TLRs 2-4 and 7-9 have been identified in horses.4-6 These TLRs 

function to recognize various pathogen ligands including lipopolysaccharides, diacylated 

and triacylated lipopeptides, flagellin, single-stranded and double stranded RNA, and 

CpG motifs among others.4,5 Recognition of invading pathogens by PRRs results in a 

signaling cascade that leads to the production of cytokines, chemokines, and 

antimicrobial peptides (AMPs). Cytokines and chemokines are key mediators that initiate 

immediate immune responses and ultimately shape the adaptive immune response via 

chemoattraction, activation of immune cells, and up-regulation of co-stimulatory 

molecules for antigen presentation.4 Antimicrobial peptides are small proteins with 
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demonstrated antimicrobial and antiviral activity.7,8 Moreover, AMPs have been shown to 

activate monocyte-derived dendritic cells and modulate IFN-γ production in antigen-

presenting cells suggesting they may also play a role in the shaping of adaptive 

immunity.9,10 

For respiratory pathogens, including EHV-1 and EIV, the respiratory epithelium 

is the first to encounter and interact with invading pathogens and initiate early immune 

responses. In recent years it has become evident that as this first line of defense, epithelial 

cells are multifunctional, playing an important role in immunity in addition to providing a 

physical barrier.11 Epithelial cells have been shown to express TLRs, secrete 

antimicrobial peptides, cytokines and chemokines, and even present antigen.11-13 In 

addition, innate immune recognition by the epithelial cell barrier largely determines the 

functional properties of resident tissue macrophages and dendritic cells, thus driving the 

outcome of antigen-specific immunity.11,14 While respiratory epithelia of many 

mammalian species have been studied in recent years and have been found to express 

TLRs, AMPs, cytokines and MHC class I and II molecules,11,13,15 equine immunity at the 

respiratory epithelial cell barrier remains poorly described. 

Investigation of this important area has been hindered by a lack of a suitable in 

vitro model. Conventional models of respiratory epithelial cell cultures were established 

by fully immersing cells in media.16,17 One limitation to this culture method is the loss of 

respiratory epithelial cell differentiation over time.18,19 To address this limitation, a 

biphasic hamster airway epithelial cell culture model provided a powerful new technique 

to culture airway epithelial cells that maintained characteristics of cell differentiation.20 

Airway epithelial cell culture models grown at the air-fluid interface (AFI) have since 



 25 

been developed for other species as a tool to study allergy and infectious disease.21-23 

More recently, successful culture of differentiated equine bronchial epithelial cells 

cultured at the AFI has been described.24 Morphologically, respiratory epithelial cells 

cultured at the AFI appear to mimic the equine airway epithelium as a heterogeneous 

population of ciliated cells, basal cells, and secretory cells generating a pseudo-stratified 

mucociliary epithelium contrary to what is seen with respiratory epithelial cells cultured 

submerged.25 In addition, secretion of mucin proteins has been characterized in 

differentiated respiratory epithelial cell cultures grown at the AFI.24,25 Tight junction 

formation, characteristic of epithelial cells and responsible for creating a physical barrier, 

can be demonstrated by transepithelial electrical resistance (TEER) measurement.25 

Finally, these cultures have been demonstrated to support viral infection and 

replication.26,27 

Despite evidence that respiratory epithelial cells grown at the AFI mimic the 

equine airway epithelium morphologically, little information exists as to how these 

cultures perform immunologically. So far, toll-like receptor and antimicrobial peptide 

expression has only been described in human airway epithelial cells cultured at the AFI.28 

While constitutive cytokine expression has been demonstrated in respiratory epithelial 

tissues and conventional primary respiratory epithelial cell cultures,11 no such 

information is available for differentiated airway epithelial cells cultured at the AFI. The 

goals of this study were to establish baseline immunological characteristics in equine 

respiratory epithelial cells cultured at the AFI and compare them to the equine airway 

epithelium. In the future this model will be used study host immunity to respiratory 
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pathogens including EIV and EHV-1 and may open pivotal new avenues for the 

development of novel preventative and therapeutic strategies.  

 

METHODS 

 

Animals, epithelial tissue collection, and processing 

Respiratory epithelium was collected from three horses with no apparent signs of 

respiratory disease. The horses consisted of a 2 year old mixed breed stallion, a 5 year old 

Morgan gelding, and an 8 year old Quarter Horse mare. Horses were humanely 

euthanized intravenously by administration of an overdose of 390 mg/mL of 

pentobarbital (Buthanasia) for medical reasons unrelated to any respiratory condition. For 

each horse, a large section of epithelium was collected from the larynx and two tracheal 

rings were collected from the upper, middle and lower trachea. Bronchial rings from the 

left and right primary bronchi were collected distal to the carina of the trachea. A large 

section of lung was pulled from the center of the right or left lobe. For RNA isolation, 

respiratory tissues were collected in cold phosphate buffered saline (PBS; Cellgro, 

Mediatech Inc., Manassas, VA) and 200 mg tissue sections were excised and snap-frozen 

in liquid nitrogen. For epithelial cell isolation, respiratory tissues were collected from the 

same locations in cold Dulbecco’s Modified Eagle Medium supplemented with Ham’s 

F12 nutrient mixture (DMEM/F12) (Gibco, Invitrogen, Carlsbad, CA) for further 

processing. Procedures and experimental protocols followed the animal care guidelines of 

the Animal Care and Use Committee, Colorado State University. 
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Isolation and culture of primary equine respiratory epithelial cells 

Isolation and culture of primary respiratory epithelial cells were performed as 

previously described.25 Briefly, equine epithelial tissues were washed in PBS to remove 

red blood cells. Following enzymatic digestion in 1.4% pronase (Roche Applied Science, 

Indianapolis, IN) and 0.1% deoxyribonuclease I (Sigma-Aldrich, St. Louis, MO), 

epithelial cells from each location were harvested using gentle agitation in calcium and 

magnesium free minimal essential medium for 48 hours. Epithelial cells were then 

incubated in a plastic uncoated petri dish for two hours to reduce fibroblast contamination 

by adherence. Isolated ERECs were stored in liquid nitrogen at a density of 2 million 

cells per cryovial until further use. For culture at the air-fluid interface, primary equine 

respiratory epithelial cells (ERECs) were seeded into Type IV collagen (Sigma-Aldrich) 

coated transwell cell culture wells (Costar, Corning, Fisher Scientific, Fair Lawn, NJ) in 

DMEM/F12, containing 2% Ultroser G (Pall Life Sciences, Pall Corp., Cergy, France), 

1% penicillin-streptomycin (Gibco, Invitrogen, Carlsbad, CA) and 0.5% amphotericin B 

(Biowhittaker, Walkersville, MD). ERECs were incubated in a 37°C, 5% CO2, 

humidified incubator until differentiated. Factors that determined the point of 

differentiation included tight junction formation, mucin production, and cilia 

development. A transepithelial electrical resistance (TEER) voltometer (EVOM, World 

Precision Instruments, Sarasota, FL) was used to determine the presence of tight 

junctions. A positive control for TEER measurements provided by the manufacturer was 

used for comparison. The presence of ciliated epithelial cells was assessed 

microscopically following formalin-fixation, paraffin-embedding, and routine 

hematoxylin and eosin staining. 
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RNA isolation and Polymerase Chain Reaction 

Total RNA was extracted from tissues through homogenization on ice using an 

Omni™ hand-held tissue homogenizer (Omni international, Kennesaw, GA) in TRIzol 

reagent (Invitrogen, Carlsbad, CA). RNA was isolated from fresh, uncultured ERECs or 

ERECs cultured at the AFI by adding 1mL TRIzol to a tube containing 1 x 106 cells per 

location, or directly onto the transwell insert, respectively. Total RNA was extracted from 

homogenized airway tissues, spleen, mesenteric lymph node, isolated, uncultured ERECs, 

and four-week epithelial cell AFI cultures using a Qiagen RNeasy Minikit (Qiagen, 

Hilden, Germany) following the manufacturers instructions and treated with 

deoxyribonuclease (Sigma-Aldrich, St. Louis, MO) to eliminate genomic DNA 

contamination. RNA isolated from spleen and mesenteric lymph node was used as 

positive control tissues for the mRNA expression of TLR9. RNA quality and quantity 

was determined using spectrophotometry. Reverse transcriptase PCR (RT-PCR) of 1µg 

of RNA was performed using the iScript ™ cDNA synthesis kit (Bio Rad, Hercules, CA) 

in a total volume of 20µl following the manufacturers recommended incubation 

conditions (5 min at 25°C, 30 min at 42°C, 5 min at 85°C). Controls consisting of 

reactions without the addition of reverse transcriptase were included for each sample to 

detect genomic contamination. All cDNA samples were stored at -20°C until further use. 

 For detection of TLR and AMP expression, sequence-specific primers were 

designed based on published and predicted equine DNA sequences from the NCBI 

database using Primer 3 Input software version 4.0 (http://frodo.wi.mit.edu/primer3/) 

(Table 2.1). For each reaction, 3 µl of cDNA was amplified in a 25 µl standard reaction 

using 20 µl Platinum PCR SuperMix (Invitrogen, Carlsbad, CA) and 2 µl of forward and 
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reverse primers at the following cycling conditions: 35 cycles of 94°C for 30 seconds, 

45°C for 30 seconds, and 72°C for 1 min. All reactions included β-actin as a 

housekeeping gene. PCR products were stained using EZvision Three™ fluorescent dye 

(Amresco, Solon, Ohio) and analyzed on a 2% agarose gel. PCR reaction products were 

purified for sequencing using Phenol:Chloroform (Fisher Scientific, Fair Lawn, NJ) 

followed by standard ethanol precipitation and sequenced at the Proteomics and 

Metabolomics Core Facility at Colorado State University using an ABI 3130 Genetic 

Analyzer. All sequenced PCR products were confirmed using DNASTAR Lasergene 

software (DNASTAR, Inc, Madison, WI). 

 

Table 2.1. Primer design (5’ to 3’) for respective equine toll-like receptors and 
antimicrobial peptides. 

Name Forward Reverse Product 
(bp) 

Reference 

TLR1 actttgcccaccacaatctc ccaaaagcagcaacagtgaa 275  
TLR2 acggcagctgtgaaaagtct cctgaaccaggaggacgata 213  
TLR3 acctcccagcaaacataacg ctggaggtccaaaatttcca 179  
TLR4 gacgactcaggaaagccttg cacaatgcctggtatgttgc 194  
TLR6 tcagaccccattagacagcc caagtaccttgaccctggga 640  
TLR7 atcttgacgcctctcatgct ggaatgtccgtcaaatgctt 249  
TLR8 ggaatctgacacggcttgat agaaggcaggtgggaaatct 272  
TLR9 gtgactggctacctggcaagac tggttatagaagtggcggttgtcc 373 29 

TLR10 gcttgccccaaagtattcaa aagtggaggcagcagaaagt 484  
β-actin ggcatcctgaccctcaagta ggggtgttgaaggtctcaaa 203  
β-defensin 1 ttaagctcaccagccatcag ctgtcacagcagtttctccg 243  
MxA agagtcctcgatggcagaaa tgagacagagagcccgattt 298               30 

2’5’ OAS agacagcgaggacgacactt cttctcaccaggcacacaga 444 31 
Lactoferrin caaagactctgccctggt ggagcctgtctggttgaaga 541  
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Flow cytometry 

Epithelial cell purity in both freshly isolated ERECs and 4 week ERECs cultured 

at the AFI were estimated by permeabilizing with 1% Saponin (Fluka, Biochemika, 

Sigma-Aldrich, St. Louis, MO) and staining the cells for two hours at room temperature 

with a pan-anticytokeratin antibody (Zymed, Invitrogen, Carlsbad, CA; 5 µg/ml) 

followed by a secondary fragment goat anti-mouse IgG antibody conjugated with 

fluorescein (3 µg/mL) (Jackson Laboratories, West Grove, PA) and analyzed using 

FACS. Expression of TLRs 3 and 9 in freshly isolated ERECs and 4 week ERECs 

cultured at the AFI were determined by incubating 1 x 106 cells for two hours at room 

temperature in 5µg/ml of either mouse anti-human TLR 3 or TLR 9 conjugated with 

Alexa-Fluor 647 (Imgenex, San Diego, CA). MHC-I and MHC-II expression was 

examined using anti equine MHC-I and MHC-II (CVS 22 and CVS 10) monoclonal 

antibodies.32 One million cells were incubated with either CVS10 or CVS22 for 45 

minutes at 4°C followed by incubation with a secondary fragment goat anti-mouse IgG 

antibody (Jackson Laboratories, West Grove, PA) conjugated with allophycocyanin 

(0.1µg/mL) for 30 minutes at room temperature and analyzed by flow cytometry. 

 

Cytokine/Chemokine Analysis 

Cytokines to be examined were selected based on what has been reported for 

epithelial cytokine panels in the literature12,33 in addition to those important in innate 

homeostatic regulation and anti-viral defense. These cytokines included IL-1, IL-6, IL-8, 

IL-10, IL-12, TNF-α, TGF-β, IFN-α, IFN-β, GM-CSF and MCP-1. Cytokine and 

chemokine expression was compared between epithelial tissues, freshly isolated, 
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uncultured ERECs, and ERECs grown at AFI. RNA was isolated and 1µg of RNA was 

reverse transcribed as described above. Samples of cDNA and their respective no-RT 

controls were analyzed using previously established real-time PCR assays 

(http://www.ca.uky.edu/Gluck/HorohovDW_EIRClonedCytokines.asp). A standard 

housekeeping gene (β-gus) was used as an internal control. Relative expression of each 

gene was determined by calculating the 2(-Delta Delta C(T)) values using  average delta 

CT values of equine airway tissue samples as calibrators.34 

 

Statistical Analyses 

All values for the expression MHC-I, MHC-II, TLR3, and TLR9 determined by 

FACS staining and analyses are expressed as mean percent ± standard errors of the mean 

(SEM). Mann-Whitney tests were used to determine differences in the mean percent 

expression of MHC-1, MHC-II, TLR3, and TLR9 between isolated ERECs, and ERECs 

cultured at the AFI. Kruskal-Wallis rank sum tests were used to determine differences in 

the mean percent expression of MHC-I, MHC-II, TLR3, and TLR9 from FACS staining 

between five different locations of the equine respiratory tract in isolated ERECs, and 

EREC AFI cultures. Means were considered significantly different at P ≤ 0.05. 

Kruskal-Wallis rank sum tests were also used to evaluate differences in the 

mRNA cytokine and chemokine expression from real-time PCR between equine airway 

tissue and ERECs cultured at the AFI after four weeks. Differences in mean relative 

expression of cytokines and chemokines between EREC AFI cultures and equine airway 

tissues were considered significantly different when P ≤ 0.05.  
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RESULTS 

 

Equine respiratory epithelial cell differentiation 

Differentiation of respiratory epithelial cells was defined as cultures exhibiting 

ciliated epithelial cells, mucin production, and tight junction formation. AFI cultures of 

epithelial cells from locations throughout the respiratory tract of three horses displayed 

consistent differentiation by week four. Representative images from hematoxylin and 

eosin stains of the larynx, upper trachea, lower trachea and bronchus are shown in figure 

2.1. Cultures featured ciliated epithelial cells, non-ciliated epithelial cells and basal cells. 

Additionally, mucin production was clearly visible on the apical surface of the cells and 

tight-junction formation was demonstrated by mean TEER measurements of 267 Ω-cm2 

when compared to a positive control (167 Ω-cm2). 
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Figure 2.1. Hematoxylin and eosin staining showing morphological appearance of 
ciliated pseudostratified ERECs cultured at the AFI from the (A) larynx, (B) upper 
trachea, (C) lower trachea, and (D) bronchus. Images from middle trachea are not shown 
but mirrored images from the other locations. 
 

Expression of TLRs and AMPs in equine airway tissues 

Expression mRNA specific for TLRs 1-4, 6-8 and 10 and the antimicrobial 

peptides beta-defensin 1, MxA, the 2’5’ oligoadenylate synthase-like (2’5’ OAS) 

molecule and lactoferrin was detected in homogenized airway tissues of the larynx, 

upper, middle, and lower trachea as well as the bronchus of three different horses. A 

representative gel for these results is shown in figure 2.2A. In addition, expression of 

equine TLR9 mRNA was detected in airway tissue epithelium from all locations of the 

respiratory tract, as well as in spleen and mesenteric lymph node (Figure 2.2B). However, 

the band intensity for TLR9 was low for all locations of the airway epithelium as well as 

the spleen tissue compared to mesenteric lymph node tissue. Sequencing of PCR products 
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confirmed the identities of all respective TLRs and AMPs through comparison of each 

respective sequence to those published in the database of the National Center for 

Biotechnology Information. 

 

Immunological characteristics of isolated ERECs 

TLR and AMP expression was evaluated in epithelial cells harvested from tissue 

epithelium to evaluate the effects of enzymatic digestion and processing on their 

immunological properties. There were no differences in TLR and AMP expression 

between equine airway epithelium and isolated ERECs, therefore, PCR gels from both 

equine airway epithelial tissue and isolated ERECs can be depicted in Figure 2.2. In 

addition to mRNA expression, TLR3 and TLR9 protein expression was also 

demonstrated throughout several locations of the respiratory tract in isolated epithelial 

cells using fluorescence-activated cell sorting (FACS) staining and analysis (Table 2.2). 
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Figure 2.2. A) Top: mRNA expression of TLRs 1-4, TLRs 6-8 and TLR 10 in equine 
bronchus epithelium; bottom: mRNA expression of beta-defensin 1, MxA , 2’5’ OAS and 
lactoferrin. Beta-actin was the housekeeping gene used as an internal control. Results 
were consistent for all locations of the respiratory tract in three horses; therefore, the gels 
depicted are representative. B) mRNA expression of TLR 9 in the epithelial tissue of the 
larynx, upper, middle, and lower trachea, as well as the bronchus of one horse. Spleen 
and mesenteric lymph node were incorporated as controls. Results were consistent for all 
three horses examined.  
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Table 2.2. Comparison of TLR3 and TLR9 between isolated ERECs and ERECs cultured 
at the AFI throughout the respiratory tract using FACS staining and analysis. Data is 
shown as mean percent of cells (± SEM) that stain positive for TLR3 and TLR9.  

 TLR9 TLR3 
 Isolated ERECs EREC AFI Isolated ERECs EREC AFI 

Larynxab (n=3) 28.2 ± 9.3 37.9 ± 6.9 11.4 ± 5.7 39.9 ± 8.8 
Upper tracheab (n=3) 15.3 ± 4.4 37.2 ± 7.6 2.0 ± 1.2 35.3 ± 15.6 
Middle trachea (n=4) 24.7 ± 4.8 34.6 ± 7.5 5.0 ± 1.7 26.9 ± 11.9 
Lower trachea (n=4) 28.1 ± 8.4 32.7 ± 6.4 7.0 ± 2.3 32.2 ± 10.0 
Bronchusa (n=3) 17.6 ± 14.7 40.2 ± 0.6 5.9 ± 4.3 35.1 ± 6.0 
aP<0.05 is where significant differences were observed in the expression of TLR3 
between isolated ERECs and EREC AFI cultures. 
bP<0.05 is where significant differences were observed in the expression of TLR9 
between isolated ERECs and EREC AFI cultures. 
No differences were observed in the expression of TLR3 and TLR9 between different 
locations of the equine respiratory tract. 

 

 

Lastly, MHC-I and MHC-II expression in isolated ERECs from throughout the 

equine respiratory tract is shown in Table 4. MHC-I was expressed in the majority of 

ERECs isolated from the respiratory tract from all locations evaluated. This ranged, on 

average, from 86.7% ± 0.7% MHC-I expression in isolated epithelial cells of the 

bronchus to 96.7% ± 0.6% MHC-I expression in isolated epithelial cells of the larynx 

(Table 2.3). A similar pattern was observed in the expression of MHC-II where, on 

average, MHC-II expression in freshly isolated, uncultured ERECs ranged from 59.6% ± 

6.8% in the bronchus to 81.0% ± 5.3% in the larynx (Table 2.3). 
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Table 2.3. Comparison of MHC-I and MHC-II between isolated epithelial cells and 
epithelial cells cultured at the AFI throughout the respiratory tract (n=3) using FACS 
staining and analysis. Data is shown as mean percent of cells (± SEM) that stain positive 
for MHC-I and MHC-II. 

 MHC-I MHC-II 
 Isolated ERECs EREC AFI Isolated ERECs EREC AFI 

Larynxab 96.7 ± 0.6 56.6 ± 13.2  81.0 ± 5.3 20.6 ± 2.9 
Upper tracheaab 97.4 ± 0.8 49.4 ± 4.8  72.8 ± 16.3 9.2 ± 4.3 
Middle tracheaab 92.2 ± 2.8 57.8 ± 2.8 76.8 ± 6.1 17.4 ± 7.5 
Lower tracheaab 88.0 ± 1.4 63.2 ± 3.5 64.9 ± 3.1 18.4 ± 9.5 
Bronchusab  86.9 ± 0.7 53.6 ± 6.8 59.6 ± 6.8 19.4 ± 12.8 
aP<0.05 is where significant differences were observed in the expression of MHC-I 
between isolated ERECs and EREC AFI cultures.  
bP<0.05 is where significant differences were observed in the expression of MHC-II 
between isolated ERECs and EREC AFI cultures. 
No differences were observed in the expression of MHC-I and MHC-II between different 
locations of the equine respiratory tract.  
 

 

Immunological characteristics of ERECs cultured at the AFI 

EREC AFI cultures retained several of the same immunological properties 

characterized in equine airway tissues and isolated epithelial cells. Consistent mRNA 

expression was demonstrated for TLRs 1-4, TLR6 and TLR7 of three different horses 

(Figure 2.3A) and is summarized in Table 2.4. Interestingly, mRNA expression of TLR8, 

TLR9 and TLR10 was not detected despite the fact that moderate band intensity of TLR8 

and TLR10 was found in the airway epithelial tissues. All antimicrobial peptides 

characteristic to airway tissues were detected in the AFI cultures after four weeks with 

the exception of lactoferrin (Figure 2.3B).  
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Figure 2.3. A) mRNA expression of TLRs 1-4, 6 and 7 in bronchus epithelial cells 
cultures at the air-fluid interface after 4 weeks and B) mRNA expression of β-defensin, 
MxA, and 2’5’OAS in bronchus epithelial cells cultures at the air-fluid interface after 4 
weeks. Gel picture is representative for other locations of the respiratory tract cultured at 
the air-fluid interface from three different horses, as no differences between locations 
were seen. 
 
 
 
 
 
Table 2.4. Comparison of mRNA expression of TLRs and AMPs in equine epithelial 
tissue, isolated ERECs, and EREC AFI cultures using conventional PCR where n=3. 

 Epithelial tissues Isolated ERECs EREC AFI 
cultures 

TLRs TLRs 1-4, 6-10 TLRs 1-4, 6-10 TLRs 1-4, 6, 7 

AMPs β-def 1, MxA, 2’5’ OAS, 
lactoferrin 

β-def 1, MxA, 2’5’ OAS, 
lactoferrin 

β-def 1, MxA, 
 2’5’ OAS 
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Expression of TLR3 and TLR9 protein was also demonstrated in epithelial cells 

cultured at the AFI throughout the respiratory tract using FACS (Table 2.2). Interestingly, 

TLR9 protein was detected using FACS staining and analysis in EREC AFI cultures 

throughout the respiratory tract despite the loss of detection for TLR9 mRNA (Figure 

2.3A). While no differences were observed in the expression of TLR9 between isolated, 

uncultured ERECs and ERECs cultured at the AFI after four weeks, significant 

differences were found in the expression of TLR3 between isolated, uncultured ERECs, 

and EREC AFI cultures from the upper trachea (P=0.023) and the bronchus (P=0.034). 

Differences were also observed in the expression of MHC-I and MHC-II between 

isolated, uncultured ERECs, and ERECs grown at the AFI from different locations of the 

equine respiratory tract with the exception of the upper trachea (Table 2.3). After four 

weeks of in vitro growth conditions, MHC-I expression in EREC AFI cultures ranged, on 

average, from 50.0% ± 8.3% in the upper trachea to 63.2% ± 3.5% in the lower trachea 

(Table 2.3). Differences in MHC-II expression between isolated ERECs and EREC AFI 

cultures were even more pronounced. MHC-II expression in EREC AFI cultures ranged 

from 6.4% ± 5.6% in the upper trachea to 20.6% ± 2.9% in the larynx (Table 2.3). 

 

 

Equine airway cytokine and chemokine expression 

We found that after four weeks of in vitro growth conditions, ERECs cultured at 

the AFI expressed IL-8, IL-10, TNF-α, TGF-β, GM-CSF, and IL-6, but not IL-1, IL-12, 

IFN-α, IFN-β, or MCP-1 (Figure 2.4A). While constitutive cytokine expression was 

evaluated in EREC AFI cultures from three different horses, TNF-α and IL-10 were 
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detected in only two of the three cultures examined, however, the culture not secreting 

TNF-α and the culture not secreting IL-10 were not from the same horse. No significant 

differences were observed in the expression of GM-CSF, IL-10, and TGF-β, between 

equine airway tissue, and ERECs cultured at the AFI after four weeks. In contrast, 

significant differences (P ≤ 0.05) were observed in the mRNA expression of IFN-α, IFN-

β, IL-1, IL-12, IL-6, IL-8, MCP-1, and TNF-α. 

Intriguingly, mRNA cytokine and chemokine expression in isolated, uncultured 

ERECs was higher than both the equine respiratory epithelial tissue and EREC AFI 

cultures for all cytokines and chemokines evaluated with the exception of IFN-α, IL-12, 

and MCP-1 (Figure 2.4B). 
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Figure 2.4. mRNA cytokine and chemokine expression from real-time PCR in A) ERECs 
cultured at the AFI compared to equine respiratory tissues and B) isolated ERECs where 
n=3 for all groups; *P ≤ 0.05. 
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DISCUSSION 

 

Our study is the first to describe the development of a novel equine respiratory epithelial 

cell culture AFI system that is morphologically similar to the equine airway epithelium, 

and retains several immunological characteristics important in host immune defense after 

four weeks of in vitro growth conditions. We examined the same immunological 

characteristics in equine airway epithelium, freshly isolated epithelial cells and 4 week 

old equine respiratory epithelial cell cultures (ERECs) grown at AFI as a basis for 

comparison. The results of our study demonstrate that equine respiratory epithelial cell 

cultures grown at AFI retain mRNA expression of TLRs 1-4, and 6-10 and express TLR3 

and TLR9 protein at similar levels seen in freshly isolated epithelial cells from the same 

location. In addition, we could demonstrate expression of several antimicrobials 

including β-defensin, MxA and 2’5’OAS that have the potential to serve as a defense 

mechanism from viral invasion. Lastly, we were able to show expression of both MHC-I 

and MHC-II, molecules critical for antigen presentation. 

While the loss of TLR9 mRNA was not unexpected considering the low band 

intensity seen in the equine respiratory epithelium tissue samples and the isolated 

epithelial cells, it was interesting that TLR9 expression could still be demonstrated in 

EREC AFI cultures using FACS. In human respiratory epithelial cell lines and fully 

differentiated primary respiratory epithelial cells cultured at the AFI, TLR9 expression is 

demonstrated at low levels using quantitative real-time PCR.35 It is possible that the 
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differences between our mRNA expression results and protein expression results are due 

to differences in assay sensitivity. 

The loss of TLR8, TLR10 and lactoferrin mRNA expression is interesting and 

similar observations were made in a study in human lung epithelial cells that showed 

absence of TLR7 or TLR8.36 A later study in human fallopian tube epithelial cells 

demonstrated expression of TLRs 1-9 but not 10.37 As ERECs cultured at the AFI are 

grown in vitro for four weeks, a reduction or loss of antigenic stimulation could account 

for the loss of expression of these molecules. Previous studies have demonstrated the 

activation and up-regulation of TLRs using synthetic and non-synthetic immune 

modifiers.36,38 Whether the introduction of TLR agonists restore TLR8 or TLR10 

expression in the EREC AFI model needs to be examined.  

Intriguingly, we also found a reduction of both MHC-I and MHC-II in ERECs 

cultured at the AFI after four weeks when compared to freshly isolated epithelial cells. 

This is an interesting observation, particularly for MHC-I, which is normally expressed 

on all nucleated cells. In the airway epithelium, the surface expression of MHC-I and 

MHC-II molecules is tightly regulated by cytokines, particularly interferons (IFN). 

Additionally, cytosolic peptidases are known to regulate MHC-I peptide production and a 

number of studies have demonstrated that over expression of the endopeptidase EP24.15 

is primarily responsible for degrading MHC-I peptides resulting in the suppression of 

surface MHC-I expression.39 However, this study demonstrated that IFN-γ treatments 

(10ng/ml) can restore MHC-I surface expression in EP24.15-overexpressing cells.39 In 

the equine airway epithelium, major sources of IFN-γ include natural killer cells and T-

cells, whereas fibroblasts, dendritic cells and leukocytes are major sources of IFN-α and 
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IFN-β. While IFN-γ production by EREC AFI cultures was not measured, IFN-α and 

IFN-β were examined using quantitative real-time PCR and were not detected in these 

cultures after four weeks of in vitro growth conditions suggesting that the lack of 

underlying immune cells and IFNs in the AFI model may account for the reduction of 

MHC-I, MHC-II or both.  

As cytokines and chemokines are paramount in the regulation of host immunity, 

cytokine and chemokine mRNA expression was examined using real-time PCR in 

ERECs cultured at the AFI, isolated ERECs, and equine airway tissue. While constitutive 

cytokine expression in EREC AFI cultures was reduced when compared to whole tissues, 

constitutive expression of several cytokines was still demonstrated in the AFI model 

including those important in maintaining airway inflammation homeostasis (IL-10 and 

TGF-β).40 The production of TNF-α, IL-8, IL-6, and GM-CSF was not unexpected, as 

previous literature has demonstrated secretion of these cytokines by airway epithelial 

cells.11,41,42 Secondly, IL-12, IFN-α, and IFN-β were not detected in EREC AFI cultures 

after four weeks of in vitro growth conditions. However, epithelial cells have not been 

implicated as a major source for these cytokines. In contrast, the loss of IL-1 and MCP-1 

in the EREC AFI cultures is remarkable as epithelial cells are robust producers of IL-1 

and have been also known to produce MCP-1.43 TLRs 1, 2, 4, and 6 are known to signal 

the production of IL-1 through NF-κB4 and these TLRs were detected in our EREC AFI 

cultures. However, an earlier study found that unstimulated thymic epithelial cells 

produced negligible amounts of IL-1α and IL-β44 suggesting ERECs cultured at the AFI 

might produce IL-1 upon stimulation. Therefore, a lack of antigenic stimulation and 
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underlying immune cells would likely account for the low expression levels of cytokines 

and chemokines in the EREC AFI model.  

The finding that isolated, uncultured ERECs consistently produced higher levels 

of cytokines and chemokines with the exception of IFN-α, IL-12 and MCP-1 compared 

to EREC AFI cultures and equine airway tissues is interesting and suggests that these 

cells may have been stimulated during processing through enzymatic tissue digestion but 

may decrease following cell culture in vitro. 

In summary, we have demonstrated, through the comparison of six different 

locations of the respiratory tract, consistent patterns in the expression of toll-like 

receptors, antimicrobial peptides, MHC-I, and MHC-II for ERECs cultured at the AFI, 

isolated ERECs, and equine airway epithelial tissue. Furthermore, we have confirmed 

that ERECs cultured at the AFI are morphologically similar to the equine airway epithelia 

and retain a number of key immunological properties after four weeks of standard 

laboratory growth conditions. While we can demonstrate that ERECs cultured at the AFI 

are immunologically competent, it appears that some of the immunological properties are 

altered, most likely as a consequence of sterile in vitro growth conditions and presumably 

as a temporary state that could be remedied by adding antigenic stimuli and/or underlying 

immune cells. In the future, this EREC-AFI model will be used as a tool to study equine 

infectious respiratory disease and cell-to-cell interactions during host-pathogen 

interactions.  
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ABSTRACT 
 
 

The purpose of this study was to evaluate whether an equine-derived contemporary 

canine H3N8 influenza A virus remained capable of infecting and transmitting among 

ponies. Twenty influenza virus seronegative ponies aged 12 to 24 months were used in 

this study. Two groups of 5 ponies were inoculated by aerosol exposure with 107 TCID50 

dose per pony of A/Canine/Wyoming/86033/07 (Ca/WY) for one group and, serving as a 

positive control, a contemporary A/Eq/CO/10/07 (Eq/CO) for the second group. As a 
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negative control, four ponies were mock-inoculated. To evaluate the potential for virus 

transmission to in-contact horses, three ponies were introduced two days after aerosol 

exposure and housed with the inoculated animals as sentinels. Clinical signs, nasal virus 

shedding, and serological responses to inoculation were monitored in all ponies for up to 

21 days after virus challenge. Growth and infection characteristics of challenge isolates 

were examined using MDCK cells and primary equine and canine respiratory epithelial 

cells. Ponies inoculated with Ca/WY demonstrated mild changes in clinical appearance 

compared to the Eq/CO inoculated ponies. Additionally, Ca/WY produced significantly 

lower M gene copy numbers in nasal secretions as well as significantly lower systemic 

antibody responses in ponies than Eq/CO. Lastly, the Ca/WY isolate did not transmit to 

the sentinel ponies. Compared to the equine H3N8 influenza isolate, inoculation of ponies 

with the contemporary canine H3N8 isolate resulted in mild clinical disease, minimal 

nasal virus shedding and weak systemic antibody responses. Taken together, these results 

suggest that Ca/WY has not maintained infectivity for horses. 
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ABBREVIATIONS 

TCID50 50% tissue culture infectious dose 

EIV  Equine influenza virus 

CIV  Canine influenza virus 

HA  Hemagglutinin 

NA  Neuraminidase 

M  Matrix 

Ca/WY A/Canine/Wyoming/86033/07 

Eq/CO  A/Equine/Colorado/10/07 

REC  Respiratory epithelial cell 

CREC  Canine respiratory epithelial cell 

EREC  Equine respiratory epithelial cell 

HI  Hemagglutination inhibition 

MDCK Madin-Darby canine kidney 

MEM  Minimal essential medium 

RT-PCR Reverse transcriptase polymerase chain reaction 

MOI  Multiplicity of infection 

BSA  Bovine serum albumin 

ICC  Immunocytochemical staining 
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INTRODUCTION 

 

Infections with equine influenza virus have remained a serious health and economic 

problem in horses worldwide.1 The immune response induced by influenza virus 

infection protects against re-infection with the same or antigenically similar virus strain. 

However, as influenza virus undergoes frequent antigenic change (“antigenic drift”), 

protection provided by the host’s immunity may be reduced as the virus becomes more 

antigenically distinct.2 The occasional introduction of gene segments or entire viruses 

from other host species also adds to the vast genetic and antigenic diversity of influenza 

viruses.3 Although horses have often been regarded as isolated or “dead-end” hosts for 

influenza cross-species transmission,3,4 the transmission and subsequent maintenance of 

an equine-lineage H3N8 virus to dogs in the U. S. highlights the fact that the barrier for 

influenza viruses emerging from horses is not absolute.5 

Since their first isolation in 2004, the canine influenza viruses have continued to 

evolve genetically. Phylogenetic analyses of the HA and NA genes of contemporary 

canine isolates indicate that the canine viruses since have segregated from the equine H3 

“Florida lineage” as a distinct sub-lineage.5,6 Five amino acid residues at positions 54, 83, 

222, 328 and 483 of the H3 HA appear to differentiate the canine isolates from 

contemporary equine H3N8 viruses.5,6 Although the biological significance of these 

amino acid substitutions remains unclear, from a host immunological perspective, the 

asparagine to lysine mutation at position 54 and possibly the serine to asparagine 

substitution at position 83 are of particular interest as they are located in antibody binding 
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regions of the HA protein.7,8 The potential importance of these amino acid residues is 

highlighted by the finding that residue 83 has been shown to be involved in antigenic 

drift in human H3 viruses.9,10 Similarly, the N54K substitution occurred in the center of 

an N-linked glycosylation motive and as a consequence, the posttranslational 

glycosylation of the protein may be altered,11 thereby resulting in the reduced 

accessibility of the epitope.12,13 In light of these findings, the mutations at residues 54 and 

83 have been hypothesized to facilitate viral escape from neutralization by preexisting 

antibodies.8 As asparagine at position 54 is highly conserved in equine and other non-

canine H3N8 influenza viruses, including the strains used for production of equine 

vaccines currently marketed in the U.S., we hypothesized that the canine isolates could 

represent an emerging disease threat to horses provided that they have maintained the 

ability to infect horses. Moreover, the finding that dogs could represent a source of 

infection for horses would have importance for the development and implementation of 

biosecurity protocols on equine farms. 

Despite the fact that cross-species transmission of influenza A viruses occurs 

relatively frequently, such newly introduced viruses are only rarely maintained in the new 

host species.3 While it is not known what properties are necessary to allow a virus to 

form a stable lineage, the viral HA is considered to play a key role in influenza species-

specificity.14,15 Given the importance of the HA protein in limiting transmission of 

influenza A viruses among species, it is unclear whether the genetic divergence of the 

canine and equine H3 viruses, including the five amino acid mutations in the HA protein, 

has resulted in a reduction of infectivity of canine-lineage influenza in horses. To 

examine whether an equine-derived canine H3N8 influenza A virus maintained its 
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infectivity in equines, we inoculated ponies by aerosol exposure with a canine influenza 

isolate (Ca/WY). Serving as positive controls, a second group of ponies was inoculated 

with a contemporary equine H3N8 virus (Eq/CO). Lastly, as efficient horse-to-horse 

transmission is an important requirement for virus maintenance, we also studied the 

horizontal spread of the virus to influenza naïve sentinel ponies housed in direct contact 

with the inoculated animals. Growth and infection characteristics of Ca/WY and Eq/CO 

were also examined in MDCK cells and primary canine and equine respiratory epithelial 

cells, which previously have been used as a tool to study infection with influenza 

viruses.16-19 

 

METHODS 

 

Animals  

Twenty ponies aged 12 through 24 months were purchased from a commercial source 

and shown to be serologically negative for EIV by enzyme-linked immunosorbent assay20 

and hemagglutination inhibition assay as previously described.21 The animals were 

clinically healthy and in good body condition and were maintained in accordance with 

guidelines of the Colorado State University Research and Animal Resources Committee. 

They were fed a diet of hay and a pelleted vitamin and mineral concentrate, and group-

housed outdoors in pens in three geographically separate locations with access to water 

and shelter. Prior to initiation, this study was reviewed and approved for conduct by the 

Colorado State University Institutional Animal Care and Use Committee. 
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Influenza viruses 

The contemporary H3N8 canine influenza virus Ca/WY and the contemporary H3N8 

equine influenza virus Eq/CO were isolated during field outbreaks of EIV and CIV 

respectively. EIV infection was confirmed at an equine boarding facility housing 42 

horses in July 2007. Clinical signs of equine influenza consisting of fever, coughing, and 

nasal discharge had first been observed among two horses that had returned from a show 

three days earlier. Subsequently, clinical disease spread rapidly among the remaining 

horses on the property. Nasal shedding of influenza virus was diagnosed in four of 32 

horses tested by real-time RT-PCR. EIV was isolated on first passage in embryonated 

chicken eggs from two of the four real-time RT-PCR positive nasal swab specimens and 

designated as Eq/CO. After the positive diagnoses, serum samples were collected from 32 

of 42 horses. A convalescent serum sample was taken from all 32 horses 14 days later. 

Testing of the paired serum samples for influenza-specific antibodies by HI assay 

demonstrated seroconversion in 20 of 32 (62.5%) horses tested. The contemporary canine 

virus was isolated that same year. In mid February 2007, an outbreak of respiratory 

disease occurred in dogs at a humane shelter. The outbreak involved all 27 dogs housed 

at the shelter at the time. Clinical signs observed included fever, lethargy, cough, and 

nasal discharge. Nasal swab and serum samples were collected from 18 of 27 dogs. 

Paired acute- and convalescent-phase serum samples were available for collection from 

13 dogs and were tested for CIV-specific antibodies by HI assay. Twelve of 18 nasal 

swab samples tested positive for CIV by real-time RT-PCR and virus was isolated from 

three dogs on first passage in embryonated chicken eggs and designated as Ca/WY. Of 

the paired serum samples tested, 13 (100%) dogs showed seroconversion. 
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Genetic characterization and growth characteristics of viruses   

Both Ca/WY and Eq/CO were passaged three times in MDCK (American Type Culture 

Company, Manassas, VA) cells grown in MEM (Gibco, Invitrogen, Carlsbad, CA) as 

previously described.21 To rule out introduction of spurious mutations during cell culture 

passage, the full-length protein coding regions of all eight gene segments of Eq/CO and 

Ca/WY from allantoic fluid (pre cell culture passage) and 3rd passage MDCK stocks 

(used to inoculate ponies) were amplified by RT-PCR. The sequences of the amplified 

genes were determined by direct cycle sequencing (BigDye Terminator Cycle 

Sequencing Ready Reaction Kit, Perkin-Elmer Applied Biosystems). Sequence 

comparisons at the nucleotide and deduced amino acid levels were made using clustal 

analysis (http://align.genome.jp) and commercially available software (Lasergene, 

DNASTAR, Inc. Madison, WI). The phylogenetic relationships among the HA and NA 

genes of the virus isolates and selected reference strains were estimated from their 

nucleotide sequences by maximum parsimony with bootstrap analysis with a 

commercially available software program (PAUP 4.0 Macintosh beta version 10; Sinauer 

Associates, Inc., Sunderland, MA). Phylogenetic analyses of the HA and NA genes 

confirmed that Ca/WY clustered with the canine isolates and Eq/CO clustered with the 

contemporary equine viruses, placing them into the previously described canine and 

equine sub-lineages of the equine H3 “Florida lineage”.5,6 Moreover, amino acid 

sequence analysis of the HA genes of Ca/WY and Eq/CO verified the presence of five 

amino acid substitutions that differentiate the equine from the canine H3 consensus 

sequence.5,6 
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To characterize virus growth, one-step growth curves were performed in MDCK cells as 

previously described22 as well as in primary CRECs and ERECs grown at an air-fluid 

interface. Briefly, MDCK cells were grown in 35 x10 mm tissue culture plates and 

infected at an MOI of 10 TCID50/cell with either Ca/WY or Eq/CO. After 1 hr of 

adsorption, the inoculum was removed and 2 mLs of MEM containing 0.5% BSA (Fisher 

Scientific, Fair Lawn, NJ), penicillin-streptomycin (Gibco, Invitrogen, Carlsbad, CA), 

amphotericin B (Biowhittaker, Cambrex Bioscience, Walkersville, MD) and tolylsulfonyl 

phenylalanyl chloromethyl ketone (TPCK)-treated trypsin (1 µg/mL) (Worthington 

Biochemical Corp, Lakewood, NJ) was added. Supernatants were harvested at 2, 3, 4, 5, 

6, 7, 8, 10, 12, 14, 16, 20, and 24 hrs after infection and frozen at -80ºC until analysis by 

quantitative real-time RT-PCR. Isolation, culture and estimation of purity of primary 

RECs were performed as previously described.16,23 Briefly, RECs were isolated from 

fresh canine and equine trachea by enzymatic digestion using 1.4% pronase (Roche 

Applied Science, Indianapolis, IN) and 0.1% deoxyribonuclease I (Sigma-Aldrich 

Chemical Co., St. Louis, MO) in calcium and magnesium free MEM for 48 hours. After 

digestion, epithelial cells were harvested and incubated on an uncoated petri dish for two 

hours to reduce fibroblast contamination. Epithelial cell purity was estimated by ICC 

using a pan-anticytokeratin antibody (5 µg/ml) (Zymed, Invitrogen, Carlsbad, CA) and 

analyzed by flow cytometry. Primary CRECs and ERECs were seeded into Type IV 

collagen (Sigma-Aldrich Chemical Co., St. Louis, MO) coated transwell cell culture 

wells (Costar, Corning, Fisher Scientific, Fair Lawn, NJ) and cultured at the air-fluid 

interface in DMEM/F12 (Gibco, Invitrogen, Carlsbad, CA), 2% Ultroser G (Pall Life 

Sciences, Pall Corp., Cergy, France), penicillin-streptomycin and amphotericin B until 
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confluent. Primary cells were washed with DMEM/F12 to remove mucin and wells were 

infected in duplicate at an MOI of 10 with either Ca/WY or Eq/CO. After 2 hrs of 

adsorption, the inoculum was removed and replaced with fresh maintenance media. 

Alliquots of media were collected at 3, 4, 5, 6, 8, 12, 16 and 24 hours after infection and 

stored at -80 until real-time PCR analysis. Influenza M gene copy numbers in the cell 

culture media were determined by use of a quantitative real-time RT-PCR assay, as 

previously described.24,25 In addition, the presence of virus antigen was determined by 

ICC using a mouse anti-nucleoprotein monoclonal antibody (68D2) (courtesy of M. 

McGregor and Y. Kawaoka, University of Wisconsin, Madison, WI) as previously 

described.21 

 

Experimental design 

Ponies were randomly assigned to two groups of eight (primary inoculated ponies [n=5] 

and sentinel ponies [n=3]) and one group of four ponies (controls), respectively. For the 

duration of the experiment, each group was housed separately to prevent cross-

contamination. Physical examination and clinical scoring was conducted on all ponies 

throughout the course of the experiment at the same time as collection of serum and nasal 

swab samples daily from 2 days prior to inoculation and 14 days after inoculation 

(primary inoculated and control ponies), and daily from 2 days prior to 21 days after 

group introduction (sentinel animals). Clinical scoring was performed as previously 

described.26 Briefly, animals were observed for 20 min each day to assess their general 

appearance (attitude, food intake, and respiration were quantified on a scale of 0 to 1, 

with 0 indicating a clinically normal animal and 1 indicating an abnormal finding), 
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coughing (with 0 indicating that no cough is present, 1 indicating coughing once during 

observation, and 2 indicating coughing twice or more during observation), nasal 

discharge (with 0 indicating no discharge, 1 indicating serous discharge, 2 indicating 

mucopurulent discharge, and 3 indicating profuse mucopurulent nasal discharge), and 

rectal temperatures. Two days prior to inoculation, pre-inoculation nasal swab (sterile 

Dacron polyester tipped applicators, Hardwood Products Company LLC, Guilford, ME) 

samples and serum samples were collected. On day 0 of the experiment five ponies in the 

challenge groups were sedated by intravenous administration of 5 µg/kg of body weight 

of detomidine (Dormosedan® (10mg/mL), Pfizer, Kalamazoo, MI) and 0.05 mg/kg of 

body weight of butorphanol (Torbugesic® (10mg/mL), Fort Dodge, Fort Dodge, IA) and 

inoculated with either Eq/CO or Ca/WY at 107 TCID50 by aerosol inhalation as 

previously described.27 Four ponies were mock inoculated to serve as uninfected controls. 

On day 2 post inoculation, three influenza seronegative ponies were introduced to each of 

the virus inoculated groups and housed together with the inoculated ponies as sentinels 

throughout the remainder of the experiment. At daily intervals after inoculation, nasal 

swabs were obtained from each animal. The swabs were placed in 1 ml of viral transport 

medium containing phosphate-buffered saline, 0.5% BSA, and the antimicrobials 

penicillin-streptomycin, nystatin (Sigma-Aldrich Chemical Co, St Louis, MO), and 

gentamicin (Gibco, Invitrogen, Carlsbad, CA) and stored at -80ºC until further analysis. 

Additional blood samples for serology were collected from all animals on days 7, 14, and 

21. 
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Evaluation of virus shedding 

Matrix gene copy numbers in nasal swab specimens were determined by use of a 

previously established quantitative real-time RT-PCR assay.24,25 Briefly, from each nasal 

swab sample, RNA was extracted from 140 µl of viral transport medium using a 

commercial RNA extraction kit (QIAamp® Viral RNA Mini Kit, QIAGEN, Hilden, 

Germany) according to the manufacturer’s instructions. One-tube real-time RT-PCR 

assay was performed using the following cycling conditions: 10 min 52°C, 5 min at 

95°C, 45 cycles of 10 sec at 95°C and 45 sec at 68.4°C. Each nasal swab sample was run 

in duplicates. Negative controls included with each assay consisted of water and neat 

transport medium. The positive control consisted of 101 TCID50 of A/Ca/Fort 

Collins/224986/06 in viral transport medium. Purified full-length M gene RNA was used 

as a standard for quantification of influenza virus M gene copy number. Matrix gene 

RNA was transcribed with a large scale RNA production kit (RiboMAX® Large Scale 

RNA production systems kit, Promega, Madison, WI) from the T7 promoter according to 

the manufacturer’s instructions. The RNA generated was treated with RNase-free DNase 

I and tested for purity by both gel electrophoresis and PCR prior to use in real-time RT-

PCR. The purified RNA was suspended in RNase-free water, quantified by 

spectrophotometer and stored at -80°C in 10 µL aliquots. To determine the minimum 

detection level for real-time RT-PCR, the in vitro transcribed RNA was serially diluted in 

RNase-free water to produce dilutions ranging from 107 to 100 copies/mL of M gene 

RNA. To evaluate inter-assay variation, the threshold cycle (Ct) values of 10 RNA 

standard curves, run on different days were determined. The mean, standard error of the 

mean, and coefficient of variation were calculated. The minimum detection level of RNA 
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was determined to be 103 M gene copies/reaction for real-time RT-PCR. Amplification of 

dilutions of the RNA transcripts showed linearity over a range of 6 orders of magnitude. 

The average Ct values corresponding to each dilution of M gene RNA was 15.9 (± 0.13) 

at 108 copies, 19.5 (± 0.14) at 107 copies, 22.9 (± 0.1) at 106 copies, 26.3 (± 0.11) at 105 

copies, 29.9 (± 0.13) at 104 copies, and 33.8 (± 0.3) at 103 copies. Matrix gene RNA at 

102, 101 and 100 copies was either undetectable or detectable at higher Ct (above 36). 

Coefficients of variation were between 1.5 and 4.7% for the Ct values. 

 

Hemagglutination inhibition assay  

Hemagglutination inhibition assays were performed as previously described.21 Briefly, 

sera were pretreated with receptor destroying enzyme (Denko Seiken Co., Tokyo, Japan) 

and incubated overnight at 37°C. Following enzyme inactivation, two-fold serial 

dilutions of sera were mixed with 4 hemagglutination units of Eq/CO and Ca/WY, 

respectively. The assays were developed by adding 0.5% (vol/vol) chicken red blood 

cells and the HI antibody titers were interpreted as the reciprocal of the highest dilution 

causing complete inhibition of agglutination. 

 

Statistical analyses 

Generalized estimating equations were used to analyze the overall mean differences in 

the levels of M gene copy numbers in nasal swab specimens, HI antibody titers, clinical 

scores, and body temperatures between the Ca/WY and Eq/CO infected groups and 

between the infected groups and the mock-inoculated controls. Mean differences were 

adjusted for days and clustered on repeated measures for each outcome in the analysis. 
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Clinical scores were ranked prior to analysis. All other outcome variables were log 

transformed, if necessary, to meet the major assumptions, including linearity and 

normality. HI antibody titers with values of zero were converted to 1 in the challenge 

groups for data transformation and easier statistical analyses. Comparison of M gene 

copy numbers of Ca/WY in ERECs and CRECs at 24 hours post inoculation was 

determined using a one-way ANOVA. M gene copy numbers of Ca/WY in CRECs and 

Eq/CO in ERECs were compared using a student’s T-test. M gene copy numbers were 

log transformed prior to both analyses. Significant differences were determined when 

P<0.05. All statistical analyses were performed using commercially available software 

(STATA statistical software, Macintosh version 10.1, StataCorp LP, College Station, 

TX). 

 

RESULTS 

 

In vitro growth characteristics 

In MDCK cell cultures, Ca/WY and Eq/CO demonstrated no differences in growth 

kinetics and M gene copy numbers at 24 hours post inoculation (data not shown). 

Similarly, no significant differences were found when comparing the growth and M gene 

copy numbers of Eq/CO in ERECs and Ca/WY in CRECs (P>0.5). Correspondingly, 

visual inspection of the ERECs and CRECs infected with Eq/CO and Ca/WY, 

respectively, and stained with ICC revealed that the viruses were able to infect virtually 

every available cell derived from their respective host species (Figure 3.1). In contrast, 

Ca/WY demonstrated a low infectivity phenotype in ERECs (Figure 3.1), which was 
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paralleled by significantly lower end-point M gene copy numbers (data not shown) 

reached compared to M gene copy numbers achieved in CRECs (P<0.005). 

 

Figure 3.1. ICC staining of virus-infected ERECs and CRECs. From left to right: Ca/WY 
in ERECs and Ca/WY in CRECs; Eq/CO in ERECs and uninfected control ERECs. 
These are representative images. Similar patterns of infection were seen with repeated 
experiments and with cells from multiple animal donors. Magnification is shown at 4X. 
Clinical responses to inoculation 

 

The clinical responses to inoculation in ponies were remarkably different for the two 

viruses. More specifically, after inoculation, all ponies inoculated with Eq/CO developed 

severe mucopurulent nasal discharge of 7-11 days duration, and spontaneous coughing 

for 12-14 days (Figure 3.2). In addition, all five ponies were pyrexic (T > 101.5ºF) for 2-

7 days (Figure 3.3). In contrast, in the Ca/WY inoculated group, only one of five ponies 

developed mild to moderate mucopurulent nasal discharge for 2 days duration. Moreover, 

none of the ponies in the CIV inoculated group developed a cough or pyrexia. 

Statistically, the Eq/CO inoculated ponies showed significantly (P<0.001) more disease, 

as assessed by clinical scores and rectal temperatures, than either the Ca/WY or mock-
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inoculated ponies. No statistical differences (P>0.05) in the clinical scores or rectal 

temperatures were found between the Ca/WY and the mock-inoculated ponies. 

 

 

 
Figure 3.2. Group mean scores of clinical responses by day for ponies inoculated with 
Eq/CO (◆) along with Eq/CO sentinels (◇) and Ca/WY inoculated ponies (▲). Group 
mean scores of Ca/WY sentinel animals and mock inoculated ponies remained =0 
throughout the experiment and therefore they are not represented in the graph. 
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Figure 3.3. Group means ± standard error (SEMs) of rectal temperatures by day for 
ponies inoculated with either Eq/CO (◆) or Ca/WY (▲), along with Eq/CO sentinels (◇), 
Ca/WY sentinels (△), and mock inoculated controls (∗). 
 

 

Virus shedding 

The duration and levels of M gene copies detected in nasal secretions were distinctly 

different between the canine and equine H3N8 virus (Figure 3.4). In the Eq/CO infected 

ponies, the influenza virus M gene was detected in nasal secretions in all five ponies 

starting as early as 2 days after inoculation. Nasal virus shedding was detectable for up to 

8 days with M gene copy numbers of ≥ 104 for at least 5 days in all five ponies. In 

contrast, among animals infected with Ca/WY, in 4 ponies M-gene copies were never 

detected in the nasal swab samples. Only one pony demonstrated real-time RT-PCR 
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positive nasal swab specimens at ≤ 104 M gene copies for two consecutive days (days 5 

and 6) after inoculation. Overall, the mean M gene copy numbers in the nasal swab 

specimens was significantly higher in ponies inoculated with Eq/CO compared to ponies 

inoculated with Ca/WY. In contrast, there were no significant differences in the numbers 

of M gene copies detected in nasal secretions of ponies challenged with Ca/WY and the 

mock-inoculated control animals. 

 

 
 
 
Figure 3.4. Group means ± SEMs of virus shed in the nasal passages by day for ponies 
inoculated with either Eq/CO (◆) or Ca/WY (▲), along with Eq/CO sentinels (◇). The 
minimum detection level of the real-time RT-PCR was 1000 M gene copies per reaction 
corresponding to 100 TCID50 of A/Ca/Fort Collins/224986/06. The Ca/WY sentinels and 
mock-inoculated control animals did not shed detectable levels of virus at any point 
during the experiment and are not represented in the graph. 
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HI antibody responses 

The pattern of systemic antibody responses generally mimicked the differences in the 

severity of clinical signs and extent of nasal virus shedding found between the challenge 

groups. Prior to inoculation, all animals were serologically negative for the equine and 

canine influenza virus (Table 3.1). Seven days post infection, all five ponies inoculated 

with Eq/CO had detectable, low-level virus-specific antibody titers and by day 14 and 

day 21 these titers had increased substantially (≥ 1:1024). In contrast, none of the ponies 

inoculated with Ca/WY developed detectable antibody titers by day 7. Moreover, only 

two of five ponies developed a low-titered antibody response by day 14 (1:64 and 1:16) 

and day 21 (1:64 and 1:4). Statistically, the overall mean HI antibody responses in ponies 

inoculated with the contemporary equine isolate were significantly higher compared to 

the ponies inoculated with the canine isolate. 

 
Table 3.1. Serum antibody response (titer) to Ca/WY measured by hemagglutination 
inhibition1. 

Pony challenge 
group 

Pre-challengea Day 7 Day 14 Day 21 

Controlsb 0 0 0 0 

Eq/COc, e 0 32.0 ± 11.0 2560.0 ± 494.6 1356.8 ± 656.7 

Eq/CO sentinelsd, f, e 0 2.7 ± 3.8 768.0 ± 161.9 853.3 ± 358.0 

Ca/WYc 0 0 31.2 ± 35.8 10.4 ± 9.5 

Ca/WY sentinelsd, f 0 0 0 0 

1Serum antibody responses to Eq/CO did not differ significantly from Ca/WY and 
therefore are not represented in this table. 
a Data are means ± SEMs. 
b, c, d Sample sizes for controls, challenge groups and sentinels are n = 4, n = 5, and n = 3, 
respectively; e P < 0.05. 
f Serum was collected two days after primary challenge group for Days 7, 14 and 21. 
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Virus transmission to sentinels 

To examine the potential for horizontal transmission of virus, three influenza 

seronegative ponies were introduced to the EIV and CIV inoculated groups to serve as 

sentinels. The clinical signs, virus shedding, and antibody responses of the Eq/CO 

sentinels closely mirrored the responses observed in the inoculated animals. More 

specifically, all three ponies exposed to the Eq/CO inoculated animals developed 

mucopurulent nasal discharge, spontaneous coughing, and pyrexia as early as 2 days post 

group introduction (Figures 3.2 and 3.3). In addition, nasal virus shedding was detected 

in all three Eq/CO sentinels on day 3 after introduction and persisted for up to 7 days 

(Figure 3.4). All three sentinels showed influenza-specific seroconversion by day 14 

(Table 3.1). In contrast, none of the Ca/WY sentinels developed any clinical 

abnormalities or shed detectable levels of virus in nasal secretions. Lack of biologically 

relevant virus transmission was further confirmed by the absence of an immune response 

in these ponies (Table 3.1). 

 

DISCUSSION 

 

The aims of this study were to evaluate whether a contemporary CIV isolate could infect, 

replicate, cause clinical disease, and spread among ponies and in primary respiratory 

epithelial cells grown in cell culture. While CIV was first identified subsequent to the 

interspecies transfer of an equine-lineage H3N8 virus to dogs,5 the canine viruses have 

since evolved genetically resulting in segregation of the canine genes from the equine H3 

“Florida lineage”.5,6 Based on this genetic diversion, we hypothesized that CIV could 
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represent a disease threat to horses provided the viruses had maintained the ability to 

infect horses. The results of this study indicate that the contemporary canine H3N8 

influenza virus Ca/WY infected and replicated poorly in ponies. Moreover, virus 

inoculation did not result in clinical disease or spread of virus to naïve in-contact ponies. 

By comparison, the contemporary Eq/CO isolate, infected, replicated, and transmitted 

efficiently between ponies. Although the latter finding was not unexpected, based on the 

epidemiology of the outbreak during which Eq/CO was isolated and results of similar 

equine influenza challenge experiments conducted by our group and others,20,26,27 the 

near complete lack of infectivity of the canine isolate in horses is interesting. Ca/WY is 

clearly not an inherently replication-defective virus. This notion is supported by the rapid 

spread of virus among dogs at an animal shelter as well as the efficient growth of the 

virus in MDCK cells and primary canine RECs. In mammals, the primary targets of 

influenza viruses are the airway epithelial cells and these cells are being used with 

increasing frequency to study influenza virus-host interactions. In fact, recent studies 

have demonstrated that primary RECs represent a suitable in vitro system to investigate 

species-specific infection characteristics and host range of influenza A viruses.16-19 In the 

present study, we extended our findings of the in vivo infection characteristics of Ca/WY 

and Eq/CO to an in vitro primary respiratory cell culture system. Although both viruses 

were able to infect and replicate to comparable levels in primary airway epithelial cells 

derived from their respective host species, the viruses displayed distinctly different levels 

of infection and replication efficiencies in primary ERECs. These results closely 

paralleled the infection characteristics observed in ponies, in particular the nasal virus 

shedding data, suggesting that primary ERECs and CRECs could represent a feasible 
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model system to dissect virus and host factors controlling species-specific replication 

characteristics of influenza in horses. Studies are currently being conducted in our 

laboratory to further validate this in vitro system. 

The first step of influenza virus infection is dependent on the interaction of the 

viral HA with cellular sialic acid residues. As such the viral HA is thought to be a major 

contributor of influenza virus host range.15,28 Previous work has shown that CIV isolates 

(including Ca/WY) contain five amino acid differences in their HA protein that are not 

present in the most closely related equine H3 HAs (including Eq/CO) and it has been 

hypothesized that these amino acid substitutions have occurred as a result of mutational 

adaptation of the virus to its new host species.5,6 It is therefore possible that the amino 

acid differences in the HA protein could account for at least part of the observed 

differences in infectivity and replication efficiency of Ca/WY and Eq/CO. For example, 

the isoleucine (I) to threonine (T) substitution at position 328 occurred near the cleavage 

site of the H3 HA protein.7 As the peptide structure connecting the HA1 and HA2 subunit 

has been found to determine tissue tropism of avian influenza virus,29,30 it is possible that 

diminished cleavability of the CIV HA by equine cellular proteases resulted in the 

reduced infectivity of Ca/WY in ponies. Similarly, the N483T substitution results in the 

loss of a glycosylation site in the HA2 subunit,5,6 which has been found to affect the HA’s 

interaction with the host cell receptor and the release of progeny virus from the host 

cell.31 Lastly, the substitution of leucine for tryptophan at position 222 is remarkable 

because it represents a non-conservative change adjacent to the receptor binding 

pocket.5,6 As species-specificity of influenza is partly determined by the binding 

preference of the HA protein to cellular sialic acid species,15,28 modulation of receptor 
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binding specificity as a result of the W222L substitution could provide an attractive 

explanation for the inability of Ca/WY to infect and to replicate in ponies. Currently, 

studies are underway in our laboratory to determine the sialic acid receptor binding 

specificities of canine and equine influenza virus isolates. Finally, while the HA is 

recognized as a key factor controlling the species-specificity of influenza A viruses, it is 

clear that the other seven influenza virus gene segments also contribute to influenza virus 

host range. It is therefore possible that the critical viral factors that impact infection and 

replication of Ca/WY in ponies may include equine to canine amino acid substitutions 

that are present in other gene segments than the HA. 

In summary, our findings indicate that Ca/WY, a contemporary equine-derived 

canine H3N8 influenza virus, has virtually lost the ability to infect, replicate, cause 

clinical disease, and spread among ponies. This was further supported by the significantly 

lower levels of infection and M gene copy numbers of Ca/WY in ERECs compared to the 

Eq/CO isolate. However, while these results appear to support the existence of a barrier 

to CIV infection in horses, it remains to be determined whether other canine isolates 

demonstrate similar restricted infectivity in equids. 

 

 

 

 

 

 

 



 73 

 

ACKNOWLEDGEMENTS 

 

This study was supported entirely by a grant from the College Research Council at 

Colorado State University. Protocols for this study were reviewed and approved by the 

Institutional Animal Care and Use Committee of Colorado State University. 

The authors thank Dr. D. Paul Lunn and Susan Bennett for technical assistance and 

Matthew Dubois, Kyle Innes, Julie Blossom, and Natalia Fernando for assistance during 

the animal experiments. 

 

 

REFERENCES 

 

1. Mumford EL, Traub-Dargatz JL, Carman J, et al. Occurrence of infectious upper 
respiratory tract disease and response to vaccination in horses on six sentinel 
premises in northern Colorado. Equine Vet J 2003;35:72-77. 

2. Mumford JA, Jessett D, Dunleavy U, et al. Antigenicity and immunogenicity of 
experimental equine influenza ISCOM vaccines. Vaccine 1994;12:857-863. 

3. Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A 
viruses. Microbiol Reviews 1992;56:152-179. 

4. Tumova B. Equine influenza--a segment in influenza virus ecology. Comp 
Immunol, Microbiol Infect Dis 1980;3:45-59. 

5. Crawford PC, Dubovi EJ, Castleman WL, et al. Transmission of Equine Influenza 
Virus to Dogs. Science 2005;310:482-485. 

6. Payungporn S, Crawford PC, Kouo TS, et al. Influenza A virus (H3N8) in dogs 
with respiratory disease, Florida. Emerg Infect Dis 2008;14:902-908. 

7. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the 
influenza hemagglutinin. Annu Rev Biochem 2000;69:531-569. 

8. Von Grotthuss M, Rychlewski L. Influenza mutation from equine to canine. 
Science 2006;311:1241-1242. 

9. Plotkin JB, Dushoff J. Codon bias and frequency-dependent selection on the 
hemagglutinin epitopes of influenza A virus. Proc Natl Acad Sci U.S.A. 
2003;100:7152-7157. 



 74 

10. Verhoeyen M, Fang R, Jou WM, et al. Antigenic drift between the 
haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and 
A/Victoria/3/75. Nature 1980;286:771-776. 

11. Shakin-Eshleman SH, Spitalnik SL, Kasturi L. The amino acid at the X position 
of an Asn-X-Ser sequon is an important determinant of N-linked core-
glycosylation efficiency. J Biol Chem 1996;271:6363-6366. 

12. Ye Y, Si ZH, Moore JP, et al. Association of structural changes in the V2 and V3 
loops of the gp120 envelope glycoprotein with acquisition of neutralization 
resistance in a simian-human immunodeficiency virus passaged in vivo. J Virol 
2000;74:11955-11962. 

13. Zhang M, Gashen B, Blay W, et al. Tracking global patterns of N-linked 
glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and 
HCV envelopes and influenza hemagglutinin. Glycobiol 2004;14:1229-1246. 

14. Ito T. Interspecies transmission and receptor recognition of influenza A viruses. 
Microbiol Immunol 2000;44:423-430. 

15. Suzuki Y, Ito T, Suzuki T, et al. Sialic acid species as a determinant of the host 
range of influenza A viruses. J Virol 2000;74:11825-11831. 

16. Busch MG, Bateman AC, Landolt GA, et al. Identification of amino acids in the 
HA of H3 influenza viruses that determine infectivity levels in primary swine 
respiratory epithelial cells. Virus Res 2008;133:269-279. 

17. Matrosovich MN, Matrosovich TY, Gray T, et al. Human and avian influenza 
viruses target different cell types in cultures of human airway epithelium. Proc 
Natl Acad Sci U.S.A. 2004;101:4620-4624. 

18. Thompson CI, Barclay WS, Zambon MC, et al. Infection of human airway 
epithelium by human and avian strains of influenza A virus. J Virol 
2006;80:8060-8068. 

19. Wan H, Perez DR. Amino acid 226 in the hemagglutinin of H9N2 influenza 
viruses deterimines cell tropism and replication in human airway epithelial cells. J 
Virol 2007;81:5181-5191. 

20. Nelson KM, Schram BR, McGregor MW, et al. Local and systemic isotype-
specific antibody responses to equine influenza virus infection versus 
conventional vaccination. Vaccine 1998;16:1306-1313. 

21. Landolt GA, Karasin AI, Phillips L, et al. Comparison of the pathogenesis of two 
genetically different H3N2 influenza A viruses in pigs. J Clin Microbiol 
2003;41:1936-1941. 

22. Kaverin NV, Webster RG. Impairment of multicycle influenza virus growth in 
Vero (WHO) cells by loss of trypsin activity. J Virol 1995;69:2700-2703. 

23. Bals R, Beisswenger C, Blouquit S, et al. Isolation and air-liquid interface culture 
of human large airway and bronchiolar epithelial cells. J Cystic Fibrosis 2004;3 
Suppl 2:49-51. 

24. Soboll G, Hussey S, Minke JM, et al. Onset and duration of immunity to equine 
influenza virus resulting from canarypox-vectored (ALVAC) vaccination. Vet 
Immunol Immunopathol 2010;135:100-107. 

25. Landolt GA, Karasin AI, Hofer C, et al. Use of real-time reverse transcriptase 
polymerase chain reaction assay and cell culture methods for detection of swine 
influenza A viruses. Am J Vet Res 2005;66:119-124. 



 75 

26. Chambers TM, Holland RE, Tudor LR, et al. A new modified live equine 
influenza virus vaccine: phenotypic stability, restricted spread and efficacy 
against heterologous virus challenge. Equine Vet J 2001;33:630-636. 

27. Mumford JA, Hannant D, Jessett DM. Experimental infection of ponies with 
equine influenza (H3N8) viruses by intranasal inoculation or exposure to aerosols. 
Epidemiol Infect 1990;100:501-510. 

28. Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of 
influenza A viruses with pandemic potential. J Virol 1998;72:7367-7373. 

29. Bosch FX, Garten W, Klenk HD, et al. Proteolytic cleavage of influenza virus 
hemagglutinins: primary structure of the connecting peptide between HA1 and 
HA2 determines proteolytic cleavability and pathogenicity of Avian influenza 
viruses. Virology 1981;113:725-735. 

30. Rott R, Reinacher M, Orlich M, et al. Cleavability of hemagglutinin determines 
spread of avian influenza viruses in the chorioallantoic membrane of chicken 
embryo. Arch Virol 1980;65:123-133. 

31. Vigerust DJ, Ulett KB, Boyd KL, et al. N-linked glycosylation attenuates H3N2 
influenza viruses. J Virol 2007;81:8593-8600. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

 
 
 
 
 
 

CHAPTER 4: CONCLUSION 

 

The primary goal of this Master’s project has been the development and characterization 

of a primary equine respiratory epithelial cell culture model grown at the air-fluid 

interface. Data presented in both papers show that these cultures are morphologically 

similar to equine airway epithelium, retain several immunological characteristics 

important in the host immune defense, and present similar patterns of infection, 

replication, and pathogenesis with influenza virus infection both in vitro and in vivo. The 

experiments performed as part of this project clearly show that we have developed an 

equine airway model that can be used as tool to study host-pathogen interactions. The 

usefulness of this model is considerable. In addition to examining host-pathogen 

interactions including mechanisms of viral immune evasion, pathogen binding and host 

cell entry, this model might also be used to investigate the effects of novel preventatives 

and immunotherapeutics against equine respiratory pathogens.  

Despite vaccination, both EIV and EHV-1 continue to have detrimental effects on 

equine health.1-4 As mentioned previously, antigenic drift represents a significant 

challenge in the continuing development of effective vaccines against EIV. Conversely, 

EHV-1 modulation of host immunity remains an obstacle for EHV-1 vaccine 

development. Novel therapeutics against EIV and EHV-1 might be further investigated as 

we come to learn more about innate and early immunity to equine respiratory viruses at 
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the epithelial cell barrier using the EREC AFI model. For example, one study 

demonstrated that mice pretreated with a TLR3 agonist (poly I:C) had significant 

increases in survival rates after they were challenged with an encephalitic strain of herpes 

simplex virus.5 While this study supports the usefulness of TLR agonists as therapeutics, 

it can often be difficult to apply results of studies in mice to an equine model.  

 When in vivo studies of equine respiratory disease using equine models may 

prove costly and logistically difficult, the EREC AFI model would be a simple, practical, 

and less costly alternative. This is especially true when performing experiments involving 

sequential sampling or repeated measures. As experiments done in vitro are often 

performed in a more controlled environment, this would also limit the possibility of 

confounding effects on experimental studies. For example, EREC AFI cultures might be 

more useful than an in vivo model when studying cell-to-cell interactions or when 

examining the immune responses of specific cell types. In addition, we have 

demonstrated in this project that patterns of infection using H3N8 canine and equine 

influenza A isolates in ponies and in primary RECs cultured at the AFI were similar. 

Therefore, RECs cultured at the AFI could be useful for assessing viral infectivity.  

Secondly, preliminary experiments in our lab have demonstrated that infection of 

the EREC AFI model with EHV-1 down-modulates surface expression of MHC-I and 

MHC-II (data not shown). As EHV-1 has demonstrated immune modulation similar to 

other alpha herpesviruses,6,7 we are currently examining the effects of host 

immunomodulatory genes using deletion mutants of EHV-1 at the epithelial cell barrier 

in the EREC AFI model. In addition, herpesviruses are known to alter the host cytokine 

network.8 We have demonstrated that EREC AFI cultures still express low levels of GM-
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CSF, IL-10, IL-8, TGF-β, TNF-α, and IL-6 after four weeks of in vitro growth 

conditions. Even though IFN-α, IFN-β, IL-1, IL-12, and MCP-1 were not detected in the 

EREC AFI cultures, it would be interesting to see how infection with EHV-1 affects the 

expression in both of these groups of cytokines. Immune modulation by EHV-1 has been 

demonstrated in an in vitro study using peripheral blood mononuclear cells in as early as 

six hours post-infection8. As immune modulation by EHV-1 at the respiratory epithelial 

cell barrier also likely occurs within the first several hours after infection, the EREC AFI 

model could be a suitable alternative to an in vivo study when examining immune 

modulation at the early stages of EHV-1 infection. 

However, while there are several advantages in using this model, some challenges 

do exist. It has been made clear by this project that after four weeks of in vitro growth 

conditions epithelial cells undergo differentiation. However, contaminating fibroblasts 

represent a challenge in cultures of respiratory epithelial cells where in vitro growth 

conditions are suitable for fibroblast cell lines. An essential requirement for in vitro 

epithelial cell culture is the presence of an extracellular matrix. In the case of the EREC 

AFI model, 5% collagen is utilized as this matrix, however, a fibroblast feeder layer is 

probably a more natural form of extracellular matrix secretion.9 While the EREC AFI 

system is a model to study host-pathogen interactions at the epithelial cell barrier, the 

presence of other cells such as contaminating fibroblasts in this model should be taken 

into consideration. While we know that the EREC AFI model is not a pure culture of 

epithelial cells but rather predominately epithelial (65%) in origin, we are currently 

investigating the presence of other cell types in the model.  



 79 

In addition, while the natural airway epithelium and isolated, uncultured, 

epithelial cells expressed TLRs 1-4 and 6-10, after four weeks of in vitro growth 

conditions, TLRs 8 and 10 could no longer be detected in the EREC AFI model using 

conventional PCR techniques. However, antigenic stimulation may restore these 

properties. Previous studies have implicated that TLRs 2, 3, 7, 8, and 9 as well as RNA 

helicases plays a role in the recognition of viruses including influenza and herpesviruses 

among other pathogens.10-15 For example, evidence supports that type I interferon (IFN-α 

and IFN-β) production critical to controlling herpesvirus infection is primarily mediated 

through the toll-like receptor 9 pathway.11,16,17 In addition, TLR2 has been implicated as a 

secondary pathway in the recognition of herpesviruses where TLR2 expressed on the 

surface of antigen-presenting cells recognizes extracellular virions.10,18 Even though 

TLRs 3, 7, and 8 have often been implicated in the recognition of influenza viruses,12,19,20 

some research has indicated that TLR3 serves a role in the recognition of herpesviruses as 

well5. Future studies using this model might investigate how EIV and EHV-1 affect the 

expression of toll-like receptors in airway epithelial cells using real-time PCR for which 

assays are currently being developed. 

Lastly, mRNA expression of β-defensin1, MxA, 2’5’ OAS, and lactoferrin were 

detected in the equine natural airway epithelium and in the isolated epithelial cells, 

however, lactoferrin was no longer detected in the EREC AFI cultures. In addition, 

MHC-I and MHC-II expression was greatly reduced in the EREC AFI cultures compared 

to isolated, uncultured, epithelial cells. As the lack of antigenic stimulation and 

underlying immune cells might account for the reduction in these immunological 
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properties, the loss of these characteristics could possibly be restored after infection with 

EHV-1 or EIV but merits further examination. 

In conclusion the development of the EREC AFI model presents exciting new 

opportunities as a tool to understand host-pathogen interactions at the epithelial cell 

barrier to equine respiratory diseases. For years, our understanding of the innate and early 

immune responses to equine respiratory diseases has been hindered by a lack of a suitable 

in vitro model. The development and characterization of this model will undoubtedly 

advance our understanding of host-pathogen interactions at this site.  
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