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Abstract

We use a supply-demand approach to value energy products exposed to emission

cost uncertainty. We find closed form solutions for a number of popularly traded

energy derivatives such as: forwards, European call options written on spot prices

and European Call options written on forward contracts. Our modeling approach

is to first construct noisy supply and demand processes and then equate them to

find an equilibrium price. This approach is very general while still allowing for

sensitivity analysis within a valuation setting. Our assumption is that, in the pres-

ence of emission costs, traditional supply growth will slow causing output prices

of energy products to become more costly over time. However, emission costs

do not immediately cause output price appreciation, but instead expose individ-

ual projects, particularly those with high emission outputs, to much more extreme

risks through the cost side of their profit stream. Our results have implications for

hedging and pricing for producers operating in areas facing a stochastic emission

∗Corresponding Author
1mrlyle@ucalgary.ca
2relliott@ucalgary.ca
3Hong.Miao@business.colostate.edu

Preprint submitted to Energy Economics July 23, 2009

Manuscript
Click here to view linked References



cost environment.
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1. Introduction

Across the globe the negative impact of emissions on the environment has be-

come a central issue in economic and political debate. As a result, governments

are beginning to formulate policies and measures to reduce the impact of human

economic activity on the environment. By design, these new policies will have im-

plications on energy intensive industries such as electricity generation, oil extrac-

tion (including oil sands production), and the production of metals such as copper

and gold. These industries are fundamental components of the global economy.

In particular, electricity generation, which is essential for industrial countries, and

oil production, which is linked to a multitude of consumption goods, play central

roles in both the current and future economic welfare of the planet. However,

the energy industry is filled with risk and uncertainty. The prices of energy prod-

ucts are highly volatile and notoriously difficult to model, as noted by numerous

researchers and practitioners, (see for example (Eyderland and Wolyniec, 2003)

and the references within). These modeling challenges include mean reversion,

price spikes and jumps, extreme volatility, and complex cyclical behavior. Such

characteristics make forecasting price paths and the pricing of financial contracts

difficult. This, however, is necessary when planning large scale investments, such

as the building or purchasing of power generators and evaluating the risks associ-

ated with an oil sands project. In addition to these complexities, the introduction

of a cost for emissions system to mitigate Greenhouse Gas (GHG) emissions has
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made operating in the energy market even more difficult.

With the general increase in awareness of the importance of emissions reduc-

tion, we expect that policies will soon be in place that will force energy intensive

projects to be evaluated differently. This will require the re-adjustment of pricing

methods and models in the near future and is an area of research that will require

attention. Proper pricing models that incorporate the risks and rewards associated

with energy investments are an absolute necessity when determining whether to

invest in a project or not. The objective of this paper is to provide appropriate

models.

In January 2005 the European Emissions Trading Scheme, (EU ETS), was

launched. This is considered a new element in energy industry operations. Basi-

cally the EU ETS restricts the overall amount of CO2 emissions in EU countries

by allocating a limited number of so called EU emission allowances. Those al-

lowances can be traded between the participants. Since then, research has been

done to investigate the price dynamics of emission allowances and the impacts of

emissions trading on energy markets.

Some of the empirical research which attempts to describe the behaviour of

emission prices includes: Benz and Trück (2009), who analyze the short-term

spot price behavior of the CO2 emission allowance of the EU ETS system and

suggest the use of Markov switching, and AR-GARCH models for modeling its

spot price. Seifert and Ührig-Homburg (2008), present a tractable stochastic equi-

librium model reflecting stylized features of the EU ETS and analyze the result-

ing CO2 spot price dynamics. Paolella and Taschini (2008), analyze two emission

permits markets, CO2 in Europe, and SO2 in the US, and suggest a model for

dealing with the unique stylized facts of this type of data. They demonstrate that
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their model is more effective in terms of model fit and out-of-sample value-at-

risk forecasting compared to models commonly used in risk management con-

texts. Daskalakis and Markellos (2009), show that the prohibition of banking of

emission allowances between distinct phases of the EU ETS has significant impli-

cations for futures pricing and develop a framework for the pricing and hedging

of intra-phase and inter-phase futures and options on futures. Frauendorfer and

Güssow (2009), introduce a modeling framework that considers the influence of

emission trading on portfolio problems in the electric power sector by applying

clean valuation schemes that particularly take fuel costs and emission efficiency

in combination with investment possibilities, and generation flexibility into ac-

count.

The EU ETS seems to have produced an environment where large profits are

obtained by electricity producers. Kara et al. (2008), assess the impacts of the EU

emission trading system on the Nordic electricity market and on the position of

various market participants. They find that emissions trading brings large windfall

profits to the electricity producers. Daskalakis and Markellos (2009) analyze the

data from three major EU ETS major markets, the EES, Nord Pool and Powernext,

and find that the allocation of free allowances and their unrestricted trading enable

electricity producers to accomplish windfall profits in the derivatives market at the

expense of other market participants. Their results are consistent with Kara et al.

(2008). Veith et al. (2009), measure the EU ETS’s economic consequences and

show that returns on common stock of the largest affected industry, power gener-

ation, are positively correlated with rising prices for emission rights. Their results

imply that the market predicts that firms are not only able to pass on their share of

regulatory burden to customers but even achieve windfall profits by overcompen-
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sating for the costs. Bunn and Fezzi (2007), show how the prices of carbon and

gas jointly influence the equilibrium price of electricity and derive the dynamic

pass-through of carbon into electricity price and the response of electricity and

carbon prices to shocks in gas price.

Previous studies show that the electricity industry actually passes the emission

costs to customers. It is reasonable to expect the emission costs will significantly

affect both the spot prices of energy products and derivatives on energy commodi-

ties. Therefore, appropriate models for energy spot prices and energy commodity

derivatives should include the impact of emission costs. In this paper, we shall

address the emission cost effects on energy pricing and develop appropriate mod-

els for pricing both energy spot and derivatives. Where our modeling approach

differs from some of the previous studies is that we allow output prices to react to

emission. Our goal is to formulate a model which is applicable to the general en-

ergy industry, which includes Oil and other global energy commodities. Though

electricity producers may be able to instantaneously pass along the costs of emis-

sions, we believe that many other energy producers will not, our model is designed

to address the case where costs gradually become incorporated into energy prices.

Additionally, we believe that the widely recognized behaviour of producers within

the EU ETS and the wind fall profits which they received will cause policy mak-

ers to design a market such that emission costs are more gradually incorporated

into the output price of the good. To the best of our knowledge, this paper is the

first to consider a bottom-up energy pricing model which incorporates emission

costs and uncertainty. We use a ‘hybrid’ model framework which combines the

fundamentals of energy commodities and stochastic dynamics.

A number of hybrid models have been proposed in the literature. For example,
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Anderson and Davison (2008), develop a hybrid system econometric model for

electricity spot prices and test the model using both the Pennsylvania-New Jersey-

Maryland (PJM) and Alberta market data. For more details of the model, see also

Anderson (2004), and Davison et al. (2002). Research has been undertaken in

energy, particularly electricity, and derivatives pricing; see, for instance, Longstaff

and Wang (2004), Bessembinder and Lemmon (2002), Deng and Oren (2006),

Lucia and Schwartz (2002), Vucetic et al. (2001), and most recently Pirrong and

Jermakyan (2008), Cartea and Villaplana (2008), and Lyle and Elliott (2009). In

all these studies, none consider the impact of emissions or their stochastic nature.

Our contribution is to provide a realistic model which is still simple enough to

maintain mathematical tractability while incorporating emission costs into energy

pricing.

The paper will be presented as follows: in section 2 we derive an equilibrium

price for an asset given assumed supply and demand functions. There are a large

number of energy derivative products which are used for hedging, operating, and

speculation on a daily basis within the energy sector, and section 3 provides so-

lutions for the price of a forward contract, a European call option written on the

spot price and the price of a European call option written on a forward contract.

Section 4 provides insight into how the model can be calibrated. In section 5 we

propose a project valuation model and include simulation results to indicate how

emissions affect the value of energy producing assets. In section 6 we conclude

the paper and indicate several areas of future research.
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2. The Model

We begin with the assumption that there is both a supply and demand function

for a commodity. Each of these functions has a time component, say fi(t), which

is assumed to be stochastic, and a price component, say gi(P ). Here P is price

and i ∈ {s, d}, indicates supply and demand, respectively. Thus, for supply we

write:

S = S(t, P ) = fs(t)gs(P ),

and for demand

D = D(t, P ) = fd(t)gd(P ).

We impose the following requirements on supply and demand functions:

•
∂S

∂fs

> 0,
∂S

∂P
> 0,

∂2S

∂P 2
≤ 0, (1)

•
∂D

∂fd

> 0,
∂D

∂P
≤ 0. (2)

These indicate that both supply and demand grow with respect to the time depen-

dent component. That is, over time, all else being equal, we expect that demand

will increase for a commodity such as oil, natural gas, and electricity, etc. Like-

wise, we expect available supply to increase as time goes on, assuming of course

that the costs of production do not make additional supply uneconomical. How-

ever, the price component of supply is concave with respect to price, indicating
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that producers can produce more product as price increases, but their ability to do

so slows. We also assume that demand decreases in price.

Assuming that fi(t) = exp(aiB(t)i), where ai is a constant and B(t)i is the

stochastic time dependent component, and gi(P ) = P bi , where bi is also a con-

stant, then a simple example which satisfies the above requirements is:

ln S = asBs(t) + bs ln P,

for the logarithm of supply, and

ln D = adBd(t) + bd ln P,

for the logarithm of demand. This supply function is similar to that used by Ram-

charran (2002). However, we include uncertainty into the model through the Bi’s,

which are scaled by the ai’s, and act like shock parameters. The bi’s are the

elasticities of supply and demand. For commodities, demand elasticity is often

considered very low (close to 0), at least in the short run. In order to satisfy the

requirements (1) and (2), we require,

ad, as > 0, bd ≤ 0, and bs ∈ (0, 1).

Given the market clearing condition D = S we obtain,

ln P =
asBs(t) − adBd(t)

bd − bs

,

or

P = exp[
asBs(t) − adBd(t)

bd − bs

]. (3)
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This indicates that price is a function of the difference between the stochastic

components in supply and demand. We also want price to increase in demand.

Therefore, we need − ad

bd−bs
> 0 which implies that bd < bs.

2.1. Supply and Demand Dynamics

The goal of this paper is to provide “simple” models which approximate re-

ality. Consequently we avoid providing complex dynamics for supply, demand,

and emission costs. We assume that the stochastic component of demand is an

exogenous process described by dynamics:

dBd(t) = μddt + σddZd(t). (4)

Here μd represents instantaneous demand growth4 and σd is the volatility associ-

ated with the Brownian motion Zd.

Similarly, we model supply with a diffusion process:

dBs(t) = μs(t)dt + σsdZs(t). (5)

Here, μs(t) is a time dependent supply growth rate, σs is the volatility parameter

and Zs is a Brownian motion. The supply growth rate is written as:

μs = μd − γc(t). (6)

4In general, many commodities, particularly electricity and power, are seasonal or multi-

cyclical and it can be important to model these cycles which will cause the growth rate to be time

dependent. These time dependent components are unique to commodities and can be dealt with as

required. With proper planning the complexity of our model does not become unmanageable.
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Here γ is a positive constant and c(t) represents the logarithm of emission costs5

which has mean-reverting dynamics

dc(t) = κ(μ − c(t))dt + σcdZc(t). (7)

Here κ is the parameter of mean-reversion, μ is the long run mean of emissions

price and σc is a volatility parameter. Zd, Zs and Zc are assumed to be independent

Brownian motions. For (6) to make sense, we must consider the units of each of

the variables. μd represents log units of a good per unit time, and c(t) represents

the log dollar value per log unit of emissions. Thus, γ must be the ratio of log

units of emissions to log dollars multiplied by the log unit of log units of a good

per unit time. For simplicity it can be thought of as an efficiency parameter. That

is, if γ is high then the effects of emissions are significant while if γ is low then

the impact from emissions is low.

Using (3) we can price a number of derivative contracts that include a noisy

cost of emissions component.

2.2. Distribution of Demand and Supply

Before we price assets it is useful to determine the probability distribution of

both demand and supply.

5
Bs is likely to be more complex than is proposed, as sudden large shocks can take supply

off-line and causing a price jump. A Poisson processes or a Markov chain can be added to the

dynamics of supply allowing one to build more realistic processes within the simple framework

which we propose. Additionally, assuming that emissions are the only costs which would slow

supply growth is perhaps too simple. However, the main goal of this paper it to study emission

cost uncertainty.
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2.2.1. Distribution of Demand

From (4) it is clear that, given the demand Bd(t) at time t, the stochastic

component of demand at time T is normally distributed with mean

μDem(T ) = BD(t) + μd(T − t), (8)

and variance

σ2
Dem(T ) = σ2

d(T − t). (9)

That is Bd(t, T ) ∼ N(μDem(T ), σ2
Dem(T )).

2.2.2. Distribution of Emission costs

The supply distribution function is slightly more complicated than demand, as

the supply growth is stochastic and depends on emission costs. Therefore, we first

consider the distribution of emission costs. Given c(t) the solution to (7) is either

written:

c(T ) = c(t) + κ

∫ T

t

(μ − c(u))du + σc(Zc(T ) − Zc(t)), (10)

or: = e−κ(T−t)(c(t) + μ(eκ(T−t) − 1) + σc

∫ T

t

eκ(u−t)dZc(u)). (11)

From (10),

−
∫ T

t

c(u)du =
c(T ) − c(t) − κμ(T − t) − σc

∫ T

t
dZc(u)

κ
. (12)

Then from (11) :
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−
∫ T

t

c(u)du =
e−κ(T−t)(c(t) + μ(eκ(T−t) − 1) + σc

∫ T

t
eκ(u−t)dZc(u))

κ
.

−c(t) − κμ(T − t) − σc

∫ T

t
dZc(u)

κ

=
c(t)

κ
(e−κ(T−t) − 1) +

μ

κ
(1 − e−κ(T−t) − κ(T − t))

+
σc

κ

∫ T

t

(eκ(u−T ) − 1)dZc(u).

This implies that − ∫ T

t
c(u)du is Gaussian with mean

−
∫ T

t

E[c(u)|Ft]du = mc(t, T )

=
c(t)

κ
(e−κ(T−t) − 1) +

μ

κ
(1 − e−κ(T−t) − κ(T − t))

=
(μ − c(t))(1 − e−κ(T−t)) − μκ(T − t)

κ
, (13)

and variance

σ2
c (t, T ) =

σ2
c

κ2
E[(

∫ T

t

(eκ(u−T ) − 1)dZc(u))2]

=
σ2

c

κ2
[

∫ T

t

(e2κ(u−T ) + 1 − 2eκ(u−T ))du]

=
σ2

c

κ2
[
(1 − e2κ(t−T ))

2κ
+ (T − t) − 2(1 − eκ(t−T ))

κ
]. (14)

2.2.3. Distribution of Supply

The solution of (5) is:

Bs(T ) = Bs(t) + μd(T − t) − γ

∫ T

t

c(u)du + σs

∫ T

t

dZs(u).
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Now since Zsis a Brownian motion, then Bs is normally distributed with mean,

μSup(T ) = Bs(t) + μd(T − t) + γ
(μ − c(t))(1 − e−κ(T−t)) − μκ(T − t)

κ
, (15)

and variance

σ2
Sup(t) = V [−γ

∫ T

t

c(u)dτ + σs(Zs(T ) − Zs(t)]

= γ2V [

∫ T

t

c(u)du] + σ2
sV [Zs(T ) − Zs(t)]

= γ2 σ2
c

κ2
[
(1 − e2κ(t−T ))

2κ
+ (T − t) − 2(1 − eκ(t−T ))

κ
] + σ2

s(T − t). (16)

Thus, Bs(t, T ) ∼ N(μSup(T ), σ2
Sup(T )).

3. Derivatives Pricing

This section provides the main results of our paper which are formulas for

pricing derivative products using the model in the previous section. A natural

question that arises when looking at our model is: why might firms need to con-

sider risks related to the way we have set up our model? (Emissions only affect

price through supply growth rates and not instantaneous level changes.) Naturally

this framework produces significant effects on prices as time goes by, but little in

the way of a clearing price when the time period is small. This may seem unre-

alistic. However, most emission policies are designed to gradually ease industry

into full exposure to emission costs. For example, in Alberta, firms who will face

emission costs are benchmarked to a certain number of CO2 equivalent emissions

per year during a benchmarking period. Firms which are exposed to emission
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costs are subject to change their behavior relative to the benchmarking period

numbers. Similarly, other regulations provide a certain number of free emission

credits for the first few years of the program, gradually lowering the number of

free credits as time passes so that the effect of emission costs is eventually born

by the emitters, (and subsequently the consumer). Though power producers were

able to pass along complete or close to complete costs in the EU ETS trading

system, we believe that policy makers will try to avoid similar behaviour in the

future. Excluding perhaps the the power sector, we believe that our model is a

parsimonious model which approximates reality.

3.1. Profit Flows

As motivation, we first show that a producer of a product is subject to addi-

tional risk in the presence of emission cost uncertainty.

Suppose that a firm is producing Q units of energy which are exposed to emis-

sion price uncertainty. The firm is assumed to be operating in a competitive market

and is unable to affect price as given in (3). The firm receives profit, π, for each

unit sold to the market and the profit is the difference between revenue R and costs

Ĉ and can be represented by:

π(t) = R(t) − Ĉ(t) = Q(P (t) − C(t)).

Here P is the market price as in (3), and C is the cost of production per unit.

Cost is composed of an input price Pin, a transformation parameter, ω, which

dictates how much of the input is required to produce one unit of output, a cost of

emissions, ε(t) = ec(t), where the dynamics of c(t) are given by (7), and a project

specific efficiency parameter, γid, which determines the impact that emission costs

have on profits. Costs are thus expressed by:
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C(t) = P (t)inω + ε(t)γid.

Profits can then be expressed as:

π(t) = Q(P (t) − Pin(t)ω − ε(t)γid). (17)

Traditionally, producers have not been subject to emission costs and so were

exposed to profit uncertainty from only the first two terms in (17). However, in a

world where emission costs are included in the profit equation there is now a third

source of uncertainty, emission costs. Depending on the values of ε(t) and γid this

new source of risk could be large.

Even if a single firm does not pay emission costs, so γid = 0, it still faces

higher profit uncertainty through the output price P (t). By the dynamics of supply

(5), it is clear that the inclusion of emission costs in the economy causes output

prices to be more uncertain (although with a price that will almost surely be higher

as well). Therefore, models that allow firms to hedge their future profit streams

in the presence of emission price uncertainty are important. We suggest some

solutions to these issues below.

3.2. Asset Pricing with Emission Uncertainty

Throughout this paper we shall price assets using a stochastic discount factor,

(SDF) M . The time t value, V (t) of an asset which has a payoff X which is paid

at time T ≥ t ≥ 0 is then given by:

V (t) = EP [
M(T )

M(t)
X(T )|F(t)]. (18)

Here, P represents the physical or real-world probability, and F(t) is the in-

formation flow up to time t ≥ 0. For each product, (forwards, options, or physical
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assets), which are to be priced equation (18) will be used. Using this approach,

Lyle and Elliott (2009) show that the price of a European call option written on

electricity can be found with a price function similar to (3) and a SDF which sat-

isfies EP [MX] = e−r−αEP [X] where r is the risk free rate and α represents the

market price of risk. We shall also follow this convention within this paper. We

first derive an equation for a forward contract. The price of a European call option

written on the spot price is then found. Finally, the price of a European call option

written on a forward contract is derived.

3.2.1. Forward Price and Dynamics

In both energy, and more general commodity markets, forward or futures 6

contracts play an important, (perhaps vital), role in planning and profitability, as

well as in risk management. Indeed, what is often referred to on television as the

“price” of a commodity, such as a barrel of oil, is actually the price of a futures

contract which is closest to expiration, (also called the prompt month contract),

and not the actual cash, or spot, price.

Recall that the price of the asset at time t ≤ T in our model is:

P (t) = exp(
asBs(t) − adBd(t)

bd − bs

).

Then the price of a forward contract with expiry T ≥ t is7:

6We assume that forward and future contacts are equal in this paper. However, in reality this is

not always the case.
7We drop the P superscript on the above the expectation operator for notational convenience.

Unless explicitly stated E(·) represents the expectation taken with respect to the physical measure

P .
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F (t, T ) = E[
M(T )

M(t)
P (T )|Ft] = e−(r+α)(T−t)E[P (T )|Ft]. (19)

This leads to the first proposition which provides a closed form solution for

the forward price:

Proposition 1. Given the pricing equation, (3), and the dynamics of stochastic

demand, supply and emissions (4), (5), and (7), the price of a forward contract at

time t with expiration T ≥ t ≥ 0, F (t, T ) is:

F (t, T ) = F (0, T ) exp(
1

bd − bs

(asσsZs(t) − adσddZd(t))

− 1

2(bd − bs)2
(a2

sσ
2
s + a2

dσ
2
d)t). (20)

Here

F (0, T ) = P (0)G(0, T )J(0, T ), (21)

which is the price of the forward contract at time 0, and

G(0, T ) = exp[
(as − ad)μd(T )

bd − bs

+
asγ

bd − bs

mc(0, T )],

J(0, T ) = exp(
σ2

H(0, T )

2
),

σ2
H =

a2
sγ

2

(bd − bs)2
σ2

c (0, T )2 +
a2

sσ
2
s

(bd − bs)2
T +

a2
dσ

2
d

(bd − bs)2
T.

Proof. From (3) it follows that:
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P (T )

P (t)
= exp(

1

bd − bs

[as(Bs(T ) − Bs(t)) − ad(Bd(T ) − Bd(t))])

= exp(
as

bd − bs

(

∫ T

t

μs(u)du + σs

∫ T

t

dZs(u)) − ad

bd − bs

(

∫ T

t

μddu + σd

∫ T

t

dZd(u)))

= exp(
(as − ad)μd(T − t)

bd − bs

+
asγ

bd − bs

mc(t, T ) from (13)

+
asγ

bd − bs

σc

κ

∫ T

t

(eκ(u−T ) − 1)dZc(u)

+
as

bd − bs

σs

∫ T

t

dZs(u) − ad

bd − bs

σd

∫ T

t

dZd(u)).

Write

G(t, T ) = exp[
(as − ad)μd(T − t)

bd − bs

+
asγ

bd − bs

mc(t, T )].

So

P (T ) = P (t)G(t, T ) exp[
asγ

bd − bs

σc

κ

∫ t

t

(eκ(u−T ) − 1)dZc(u)

+
as

bd − bs

σs

∫ T

t

dZs(u) − ad

bd − bs

σd

∫ T

t

dZd(u))].

Now, since Zc, Zs, Zd are independent Brownian motions,

asγ

bd − bs

σc

κ

∫ t

t

(eκ(u−T ) − 1)dZc(u)

+
as

bd − bs

σs

∫ T

t

dZs(u) − ad

bd − bs

σd

∫ T

t

dZd(u)) = H(Zd, Zs, Zc, T )

is Gaussian with mean 0 and variance.
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σH(t, T )2 =
a2

sγ
2

(bd − bs)2
σ2

c (t, T )2 +
a2

sσ
2
s

(bd − bs)2
(T − t) +

a2
sσ

2
d

(bd − bs)2
(T − t).

Therefore,

E[P (T )|Ft] = P (t)G(t, T )E[exp(H(Zd, Zs, Zc, T ))|Ft]

= P (t)G(t, T ) exp(
σH(t, T )2

2
).

Thus, the forward price is:

F (t, T ) = e−(r+α)(T−t)E[P (T )|Ft] = P (t)Φ(t, T ),

where Φ(t, T ) = e−(r+α)(T−t)G(t, T ) exp(σH(t,T )2

2
).

Now for a fixed T , F (t, T ) is a martingale so its differential will only have dZ

terms.

That is

dF (t, T ) = Φ(t, T )
P (t)

bd − bs

(asσsdZs(t) − adσddZd(t))

= F (t, T )
1

bd − bs

(asσsdZs(t) − adσddZd(t)).

Thus, the forward price is:

F (t, T ) = F (0, T ) exp(
1

bd − bs

(asσsZs(t) − adσddZd(t))

− 1

2(bd − bs)2
(a2

sσ
2
s + a2

dσ
2
d)t).
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3.2.2. The Price of a European Call Option on the Spot Price

Although options written on spot prices may be less common than those writ-

ten on forward contacts, they are still traded and have important implications for

capital budgeting, (for example, when considering the option value of a physi-

cal asset). As such, the ability to price these claims is important and the next

proposition gives the formula for doing so.

Proposition 2. Given the pricing equation, (3), and the dynamics of stochastic

demand, supply and emissions (4), (5), and (7), the price at time t of a European

option contract with expiration T ≥ t ≥ 0, and strike price K is:

C(t) = C(t) = e−(r+α)(T−t)[eμz+
σ2

z
2 Φ(d1) − KΦ(d2)]. (22)

Here,

d1 =
σz + μz − ln(K)

σz

,

d2 =
μz + log(K)

σz

= d1 − σz ,

μz =
1

bd − bs

(asμsup(T ) − adμdem(T )),

σ2
z =

1

(bd − bs)2
(a2

sσ
2
sup(T ) + a2

dσ
2
dem(T )).

Proof. Recall that

P (t) = exp(
1

bd − bs

(asBs(t) − abBd(t))).

Now since Bs(t) and Bd(t) are both normally distributed and assumed to be

independent,

1

bd − bs

(asBs(t)−abBd(t)) = Z(t) ∼ N(
1

bd − bs

(asμsup−adμdem),
1

(bd − bs)2
(a2

sσ
2
sup+a2

dσ
2
dem)).
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Thus, P (t) = exp(Z(t)).

The price of a call is:

C(t) = e−(r+α)(T−t)E[(P (T ) − K)+|Ft]

= e−(r+α)(T−t)

∫
∞

−∞

(exp(Z) − K)+ 1√
2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ.

For the integrand to be non-zero Z > ln K. Therefore,

∫
∞

−∞

(exp(Z) − K)+ 1√
2πσz

exp(−(Z − μz)
2

2σ2
z

) =

∫
∞

ln K

(eZ − K)
1√

2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ

=

∫
∞

ln K

eZ 1√
2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ

−
∫

∞

lnK

K
1√

2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ

=

∫
∞

ln K

eZ 1√
2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ

− K

∫
∞

lnK−μz
σz

1√
2π

exp(−(ν)2

2
)dν

=

∫
∞

ln K

eZ 1√
2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ

− KΦ(
μz − ln(K)

σz

).

Now,
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∫
∞

ln K

exp(Z)
1√

2πσz

exp(−(Z − μz)
2

2σ2
z

)dZ =

1√
2πσz

∫
∞

lnK

exp(
2σ2

zZ − (Z2 − 2Zμz + μ2
z)

2σ2
z

)dZ

=
1√

2πσz

∫
∞

lnK

exp(−Z2 − 2Zμz + μ2
z − 2σ2

zZ

2σ2
z

)dZ

=
1√

2πσz

∫
∞

lnK

exp(−(Z − (σz + μz))
2 − (σ2

z

2
+ μz)

2σ2
z

)dZ

=
1√

2πσz

e(
σ2

z
2

+μz)

∫
∞

ln K

exp(−(Z − (σz + μz))
2

2σ2
z

)dZ

=
1√
2π

e(
σ2

z
2

+μz)

∫
∞

ln K−(σz+μz)
σz

exp(−(Z − ν)2

2
)dν

=e(
σ2

z
2

+μz)Φ(
σz + μz − ln(K)

σz

).

So,

C(t) = e−(r+α)(T−t)[e
σ2

z
2

+μzΦ(
σz + μz − ln(K)

σz

) − KΦ(
μz − ln(K)

σz

)].

3.2.3. The Price of a European Call Option Written on a Forward Contract

Many option contracts are written on forwards and not on spot prices. Conse-

quently pricing options which are written on forwards is of great importance. The

next proposition provides a formula for pricing such options.

Proposition 3. Suppose that a call option is written for which the underlying is

a forward contract which the purchaser receives at time T ∗, where the actual

forward expires at time T ≥ T ∗ ≥ t ≥ 0, F (T ∗, T ). Then the price at time t of
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this call, C(T, T ∗, t), assuming dynamics described in (4), (5), and (7) and the

forward price (20) is:

C(T, T ∗, t) = e−(r+α)(T−t)[F (t, T )Φ(d1 + σF ) − KΦ(d1)] . (23)

Here„

d1 =
1

σF

[log(K/F (t, T )) +
σ2

F

2
],

σ2
F =

1

(bd − bs)2
(a2

sσ
2
s + a2

dσ
2
d)(T

∗ − t).

Proof. We first write F (T ∗, T ) as a function of F (t, T ):

F (T ∗, T ) = F (t, T ) exp(
1

bd − bs

(asσs[Zs(T
∗) − Zs(t)] − adσd[Zd(T

∗) − Zd(t)])

− 1

2(bd − bs)2
(a2

sσ
2
s + a2

dσ
2
d)(T

∗ − t)).

Let σ2
F = 1

(bd−bs)2
(a2

sσ
2
s + a2

dσ
2
d)(T

∗ − t), then

F (T ∗, T ) = F (t, T ) exp[−σ2
F

2
+ σF ν] = Ψ(ν),

where, ν ∼ N(0, 1).

We need F (T ∗, T ) ≥ K, so

ν ≥ 1

σF

[log(K/F (t, T )) +
σ2

F

2
] = d1.

Let f(ν) = 1√
(2π)

e−
ν
2

2

. Then the price of the call written on the forward is:
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C(T ∗, T, t) =e−(r+α)(T ∗−t)E[(F (T ∗, T ) − K)+]

=e−(r+α)(T ∗−t)[

∫
∞

−d1

Ψ(ν)f(ν)dν

− K

∫
∞

−d1

f(ν)dν]

=e−(r+α)(T ∗−t)[

∫
∞

−d1

Ψ(ν)f(ν)dν − KN(d1)]. (24)

Now,
∫

∞

−d1

Ψ(ν)f(ν)dν =
1√
2π

∫
∞

−d1

F (t, T ) exp(
−σ2

F + 2σF ν − ν2

2
)dν

=
1√
2π

∫
∞

−d1

F (t, T ) exp(−(ν − σF )2

2
)dν.

Write y − ν − σF = −d1 − σF . Then

1√
2π

∫
∞

−d1

F (t, T ) exp(−(ν − σF )2

2
) =

∫
∞

−d1−σF

exp(−y2

2
)dy

=F (t, T )N(d1 + σF ).

This gives the desired result:

C(T ∗, T, t) = e−(r+α)(T−t)[F (t, T )N(d1 + σF ) − KN(d1)].

4. Estimating the Parameters

Having provided a number of theoretical results, we now provide insight into

how these findings can be implemented and used for actual analysis. We first show
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how the parameters can be estimated and then provide a simulated example using

sensible values for our parameters. In each of the above models estimates for

as, bs, ad, bd, μd, μs, σd, σs, γ, κ, μ, σc are required and we show how to find these

estimates.

4.1. Estimating Stochastic Supply and Demand Parameters

Recall that the following equations describe supply and demand:

ln S(t) = asBs(t) + bs ln P (t),

for the logarithm of supply, and

ln D(t) = adBd(t) + bd ln P (t),

for the logarithm of demand.

In all cases we believe a reasonable proxy of time dependent demand growth

should approximate economic growth. For power, economic growth will be highly

region specific. However, for assets such as oil or coal, global growth parameters

should likely be used. The pricing equation hinges on the ability to identify Bs(t)

and Bd(t) which is not always obvious. For electricity, this much easier to do

than for other industries. Take for instance, the production of oil. One can assume

that the process describing stochastic demand can be proxied reasonably well by

global consumption. For stochastic supply this is not so obvious. However, one

might use traditional production as a proxy for oil, that is, those types of reserves

that have been used in the past for producing oil, such as the fields in Saudi Arabia.

In the absence of additional costs, new sources of oil, such as oil or tar sands,
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may come on-line to add to and fill the void left by declining traditional reserves.

However, in the presence of emission costs the growth rate of Bs(t) will slow.

To find the parameters for the stochastic process defining Bs(t) and Bd(t)

standard approaches for estimating diffusion processes can be used. These include

estimating μd from the mean of historical demand, (or consumption), and σ2
d from

historical demand variance. That is

μd = E[d ln Xconsuption(t)]

and σ2
d = V [d lnXconsuption(t)].

Estimating supply is slightly more complicated as one must consider emission

costs and dynamics. However, we propose the following approach. Since emis-

sion costs are either not yet relevant in a given market or have only been trading

for only a few years we suggest using historical data which was not exposed to

emission trading costs, that is, when ε = 0:

σ2
s = V [dBs(t)].

Here Bs can be proxied using various measures of production changes, such

as base-load power for the electricity industry.

4.2. Estimating γ

Finding the long run value of emissions is difficult and may be highly depen-

dent on government regulation and regional nuances. Therefore, we propose the

following simple method of deriving a long term price.

Suppose that an electricity market consists of nuclear, coal and natural gas

generation. Nuclear bids into the market for free, coal has a higher marginal cost,

but is still a price taker, so they bid in above nuclear power, and natural gas has
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the highest marginal cost and sets the price in the market. In the the absence of an

emission cost the bidding behavior looks like :

Fuel Bid/MWh

Nuclear 0

Coal P1

Natural Gas P2

Here P2 > P1 > 0 sets the price in the market, (on average). Now suppose

that an emission cost, ε, is placed into the market then the bidding schedule now

becomes:

Fuel Bid/MWh

Nuclear 0

Coal P1 + ε

Natural Gas P2 + ρε

Emissions do not effect nuclear generation because it does not produce emis-

sions, (at least not CO2 or equivalents). However, it does come into play for coal

and natural gas generation. So long as P1 + ε is lower than P2 + ρε, natural gas

is still the highest cost producer. The market price will be P2 + ρε, where ρ is a

parameter that measures the number of emission equivalents per unit produced by

natural gas. (Coal is assumed to produce one emission equivalent per MWh and

nuclear none) . In theory, one might expect ε = P2−P1

1−ρ
, which would place the

emission cost at the point where producers become indifferent between supplying

the market with coal or natural gas, (the switching price).

Recall that the stochastic component of supply is represented by:

dBs(t) = (μd − γc(t))dt + σsdZs(t).
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Thus, γ represents an efficiency factor that limits growth of traditional, (or dirty),

supply, for instance, traditional coal generation. In an emission reducing world,

we would like to cease, (or shrink), growth in the traditional supply of production.

This does not suggest that no new coal generation or equivalents in other indus-

tries may come on-line, only that it will probably be coal generation with a more

efficient or clean technology than traditional supply and so will probably be more

expensive. Then γ is chosen such that in equilibrium,

μd − γc(t) = 0.

Recall fin the previous sections that c = ln ε, so we find that,

γ =
μd

ln ε
.

This transforms the supply dynamics into:

dBs(t) = (μd(1 − 1

ln ε
)c(t))dt + σsdZs(t). (25)

In theory the long run mean, μ, should approach the switching price which can

be estimated using the marginal costs associated with producing power from coal

and gas. Additionally the implied switching rate can be recovered from actual

emission prices.

In general ε will be dynamic and can also be modeled using a stochastic dif-

ferential equation. However, we leave this more realistic and complex approach

for further research. Additionally, there may be policy and other regulation shifts

which would cause ε to jump up or down. Further work which models these shifts,

(using Markov chains for instance), would be of interest.
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4.3. Calibration the Emissions Process

The calibration of an emissions process can be very difficult because there are

few markets which currently have traded emission contracts. We propose to use

the market data from the European Trading system to approximate the dynamics

within a market. We model the log price of emission as a mean-reverting pro-

cess, which when discretized is simply an AR(1) process. Then one can use the

following dynamics to estimate μ, κ and σc:

c(t + δt) = a + bc(t) + σ̂ε(t),

a = μ(1 − e−κδt),

b = e−κδt,

σ̂2 = σ2
c

(1 − e−2κδt)

2κ
.

Standard linear regression or maximum likelihood methods can be used to

estimate the values. The estimate obtained for μ can be considered the market

implied log switching price.

4.4. Estimating Supply and Demand Elasticities of Price

Price elasticity, b, is defined to be the percentage change in quantity, Q, of a

good supplied divided by the percentage change in price:

b =
∂ ln Q

∂ln P
.

It is usually difficult to estimate price elasticities. However, there are some

methods to estimate these numbers, for instance, error correction models, bottom-

up models, and log-linear models. See, for example Hamilton (2009), Lijesen

(2007) and references therein.
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Historical elasticity estimates suggest that demand elasticity, bd, is quite low.

Krichene (2002) finds that demand elasticities are around −0.02 for oil8 and

−0.01 to 0.04 for natural gas during 1973-1999, while supply elasticities (bs) are

−0.07 to 0.01 for oil and −0.01 to 0.06 for natural gas during the same period.

Lijesen (2007) estimates demand elasticities for electricity also to be quite low

and indicates that the numbers range from −0.85 to−0.09 for the short run and

−0.88 to −0.04 for the long run. Little work has been done trying to estimate

supply elasticities for electricity, but one would also expect them to be quite low.

(That is, it takes a large price move to induce a small amount of additional sup-

ply). Additionally, one can observe, (in some markets), the bid stack within the

electricity market and estimate the elasticity directly.

Generally, elasticity tends to be lower in the short run and higher in the long

run. Given the discrepancies in long and short run elasticities , depending on the

length of the prospective investments, mixtures of these numbers may be required.

4.5. Estimating as and ad

In both of the equations, supply and demand possibly have upward drift com-

ponents which may yield unreliable estimates. Let Xd(t) = ln D(t) and Xp(t) =

ln P (t) and Xs(t) = ln S(t). Then

Xs(t) = asBs(t) + bsXp(t),

8Cooper (2003) also estimates the price elasticity of crude oil demand for 23 countries. For

21 of the 23 countries, the estimates are between -0.109 to -0.016 for short run with exception

of China (0.001) and Portugal (0.023). They are between -0.568 and -0.033 for long term, with

exception of China (0.005) and Portugal (0.038).
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and

Xd(t) = adBd(t) + bdXp(t).

This implies that:

XP (t) =
as

bd − bs

Bd(t) − ad

bd − bs

Bs(t).

Thus the dynamics for log price are:

dXP (t) =
as

bd − bs

dBd(t) − ad

bd − bs

dBs(t).

Writing each equation in discrete time:

Xp(t)−Xp(t−δt) =
as

bd − bs

(Bs(t)−Bs(t−δt))− ad

bd − bs

(Bd(t)−Bd(t−δt)).

As the elasticities are assumed to be known, (suggested ranges are presented

in the previous subsection), one can use the proxies which were chosen for both

Bd(t) and Bs(t) and then estimate as and ad.

5. Simulations

To provide an example of estimation we show one can generate price paths

using Monte Carlo simulation. To obtain approximate values for emissions we

use daily closing futures prices (December 2009 expiration) for EU ETS contracts

from January 1 2007 to June 6 2009. The initial value for carbon is set at $18 and

the long term value is set to $24. For an estimate of the supply and demand

elasticities we use values which are within those presented in section 4.4, and
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Table 1: Model Parameters for Simulation

Parameter Value Parameter Value

bs 0.06 bd -0.04

as 0.085 ad 0.12

μs μd − γc(t) μd 0.02

σs 0.45 σd 0.15

γ 0.064 μ 3.18

κ 1.00 σc 0.50

c(0) 2.89

Bs(0) 9.5 Bd(0) 10

P (0) 50

choose bs = 0.06 and bd = −0.04. For demand growth we use a 2% annual growth

rate, and a 15% annual volatility. We choose the supply volatility parameter to be

45% annually. In choosing as and ad we first set ad = 0.12, and then select as so

that the initial price is P (0) = $50, Bs(0) = 9.5 and Bd(0) = 10. These values

are summarized in Table 1.

5.1. Profit Flows

Using the values in Table 1 we simulated 1000 sample paths with 2500 trading

days, (250 trading days are assumed to equal one year), for emission prices, de-

mand, supply without emission costs, supply with emission costs, and prices with

and without emission costs. Figure 1 shows average price paths with and without
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emissions. From the figure it is clear that emission costs play a significant role in

longer term pricing. However, they have little impact, (on the output price), in the

early trading period which is what we would expect.

Figure 1: Average simulated path based on 1000 simulations
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To understand how emissions might affect an individual project, we simulate

cash flows using (17). We generate paths for the input cost using a geometric

Brownian motion with an initial value of $80, an annual growth rate of 0.02 and

annual volatility of 30%. We also set ω = 0.5 . The project is exposed to an

emission cost for each unit output. Figure 2 shows average profits less the prof-

its in a non-emission environment, with the individual efficiency parameter set to
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γid = [0.25, 0.5, 0.75, 1]. That is, we simulate profit paths where output price is

free from emission costs, as in the top plot in Figure 1, and we simultaneously sim-

ulate profit paths where emission costs are present, as in the middle plot in Figure

1. The difference is found between profits generated in an emission costs environ-

ment and profits in an non-emissions world. In each case profits start lower when

emission costs are present, but as time progresses, profits in the emission costs

world begin to overtake the non-emission world. (This is caused by the same phe-

nomenon seen in Figure 1). What is striking is the lower plot in Figure 2, which

represents cumulative profits, and shows that several of the projects in an emission

costs world have sustained lower, (even negative), profits than in a world without

emission costs. This undoubtedly has significant consequences when evaluating

physical asset values. One must recognize that it may take some time before the

output price reaches a level where a high emission cost project will attain a pos-

itive net present value, (NPV), relative to a non-emission cost world. Figure 3

shows a simulated profit path for a project facing emission costs compared with

one without. As observed, the profit paths are noticeably different from one an-

other. This reinforces our suggestion that risk management approaches should be

modified in a stochastic emission cost regime.

In the next section we how asset values are affected by the inclusion of emis-

sion costs.

5.2. The Value Effects of Emissions on Generation Assets

The value of a physical asset is the discounted expected payoff of the future

profits from the asset. That is
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Figure 2: Profit differences between a world where emission costs are present and where they are

not.
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Vphy(t) = E[

∫ T

t

M(τ)

M(t)
π(τ)dτ ]

= e−(rc)(T−t)E[

∫ T

t

π(τ)dτ ].

Here, rc represents the required cost of capital, or the hurdle rate, which a

firm requires, and π, as above, represents profits as described in (17). To consider

future profits we should use a discrete time model and consider the following

expression, assuming that quantity, Q, is fixed:
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Figure 3: A simulated profit flow path showing the difference in risk when operating in a world of

emission costs compared with one without.
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E[
T∑

i=1

π(t + i)] = E[Q(P (t) − C(t)) + Q
T∑

i=1

F (t, t + i) − C(t + i)]

= QE[P (t) − C(t) +

T∑
i=1

F (t, t + i) − C(t + i)]. (26)

Here we use the forward price for dates beyond t, as they represent what the

market is willing to pay for that good at some future date. Suppose, for instance,

we wish to evaluate the project on a per quantity basis. Then we set Q = 1.

So from (26) and (20), expected future profits are:
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E[
T∑

i=1

π(t + i)] = E[(P (t) − C(t)) +
T∑

i=1

F (t, t + i) − C(t + i)]

= E[(P (t) − C(t)) +

T∑
i=1

P (t)e−(r+α)(i)G(t, t + i) exp(
σH(t, t + i)2

2
) − C(t + i)]

= P (t)[1 +

T∑
i=1

e−(r+α)(i)G(t, t + i) exp(
σH(t, t + i)2

2
)]

−E[C(t) +
T∑

i=1

C(t + i)].

Thus, it follows that expected future revenues are:

E[

T∑
i=1

R(t)] = E[

T∑
i=1

π(t + i)] + E[C(t) +

T∑
i=1

C(t + i)]

= P (t)[1 +
T∑

i=1

e−(r+α)(i)G(t, t + i) exp(
σH(t, t + i)2

2
)].

As in (17), costs are composed of an input price Pin and an emission cost

which implies that,

E[C(t) +

T∑
i=1

C(t + i)] = C(t) + E[

T∑
i=1

Fin(t, t + i)ω + ec(t+i)γid]

= C(t) + γid

T∑
i=1

eμc(t+i)+
σ2

ε (t+i)

2 + ω
T∑

i=1

E[Fin(t, t + i)].

Here, μc(t) = μ(1− e−κt), σ2
ε(t) = σ2

c

2κ
(1− e−2κt), and Fin(t, t + i) represents

the price of a forward contract for the input good.
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5.2.1. Numerical Example

Suppose that we wish to value a plant which transforms an input, (say coal,

oil, natural gas or some other commodity), into an output. Then the plant receives

revenue from the sale of the output and generates costs from the purchase and

transformation of the input into the output. For simplicity we assume that the

input cost follows a geometric Brownian motion:

dPin(t) = μinPin(t)dt + σinPin(t)dZin(t).

This is log normally distributed with mean

E[ln Pin(T )] = μin(T ) = μin(T − t),

and variance

V [ln Pin(T )] = σ2
in(T ) = σ2

in(T − t).

Thus the forward price for the input cost is:

F (t, T ) = e−(r+αin)(T−t)E[Pin(T )] = Pin(t)e−(r+αin−μin)(T−t).

Here αin is the market price of risk for the input cost. We assume that forwards

are not readily available for emission costs.

Expected profits are thus:

E[
T∑

i=1

π(t + i)] =P (t)[1 +
T∑

i=1

e−(r+α)(i)G(t, t + i) exp(
σH(t, t + i)2

2
)]

− Pin(t)ω[1 +
T∑

i=1

e−(r+αin−μin)(T−t)]

− γid[e
c(t) +

T∑
i=1

emc(t+i)+
σ2

c (t+i)

2 ]. (27)
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Figure 4: The value of a project exposed to emission costs.

Using this model with the values in Table 1 and setting α = αin = 0.05,

μin = 0.02, ω = 0.5, γid = 1, rc = 0.15 and Pin(t) = 80. Figure 4 shows the

valuation at various times. The project is not NPV positive unless the time horizon

is aproximately less than 13 years.

Figure 5, gives the value of the project with a time horizon of 20 years when ε

varies from $24 to $123. This corresponds to about a 16% difference in valuation.

Given that this project is valued on a per unit basis, a project worth billions (which

can certainly be the case for energy projects) could be mis-valued by hundreds of
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Figure 5: The value of a project with a 20 year horizon and the long term mean cost of emissions

varying from $24 to $123.

millions if ε is significantly mis-estimated.

6. Conclusion

In this paper we introduced a supply-demand framework in which an equilib-

rium price was found in the presence of emission costs. The results are of interest

because firstly, the impact of emissions is included into the equilibrium price over

time, and is not passed on instantaneously. This appears to contradict some em-

pirical evidence observed for electricity prices in Europe. However, our model is
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general and attempts to be applicable to the energy sector in general, additionally

we believe that new government policies will be such that the price of these goods

does not jump (or by not as much) immediately upon initiation of an emission

costs environment. Secondly, the stochastic nature of emission costs have little

impact on price fluctuation on output prices, but instead induce a significant risk

to individual projects which face large emission costs. This is the main and most

interesting result of the paper which pertains to real asset valuation. That is, at the

project level, costs jump instantaneously but output prices do not. A consequence

is that many traditional projects, which otherwise would have been NPV positive,

may now be non-economical unless long term horizons are considered. Similarly,

profit flow risk is higher in a stochastic emissions environment.

We believe that this paper presents a model which is intuitive and provides

interesting insights into how assets might be valued in a emission environment

when producers cannot pass along the cost of emissions instantaneously. How-

ever, the paper should be regarded as an initial effort in this type of modeling and,

therefore, there are many future research areas which will be of interest. In par-

ticular, more realistic processes for supply and demand, such as mean reversion

or regime switching models, would be applicable. Also, a model which allows for

instantaneous jumps in price levels because of emission costs would be a natural

extension. A simple such model could be developed using a framework similar to

ours except one might replace ln(P ) with ln(P − qε) in both of the supply and

demand equations. Here ε is a stochastic process representing emission costs and

q is a scalar multiplier which indicates to what degree emission costs are passed

through to the consumer. This would produce results which might be more in

line with what has been observed in Europe. The pricing of derivatives and other
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assets would be a simple extension of the work done here.
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