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ABSTRACT

ON THE CERTAINTY FRAMEWORK FOR CAUSAL NETWORK DISCOVERY WITH APPLICATION TO

TROPICAL CYCLONE RAPID INTENSIFICATION

Causal network discovery using information theoretic measures is a powerful tool for studying new

physics in the earth sciences. To make this tool even more powerful, the certainty framework intro-

duced by van Leeuwen et al. (2021) adds two features to the existing information theoretic literature.

The first feature is a novel measure of relative strength of driving processes created specifically for con-

tinuous variables. The second feature consists of three decompositions of mutual information be-

tween a process and its drivers. These decompositions are 1) coupled influences from combinations

of drivers, 2) information coming from a single driver coupled with a specific number of other drivers

(m links), and 3) total influence of each driver. To represent all the coupled influences, directed acyclic

hypergraphs replace the standard directed acyclic graphs (DAGs).

The present work furthers the interpretation of the certainty framework. Measuring relative

strength is described thermodynamically. Two-driver coupled influence is interpreted using DAGs, in-

troducing the concept of separability of drivers’ effects. Coupled influences are proved to be a type of

interaction information. Also, total influence is proved to be nonnegative, meaning the total influences

constitute a nonnegative decomposition of mutual information. Furthermore, a new reference distri-

bution for calculating self-certainty is introduced. Finally, the framework is generalized for variables

that are continuous with one discrete mode, for which partial Shannon entropy is introduced.

The framework was then applied to the rapid intensification of Hurricane Patricia (2015). The

hourly change in maximum tangential windspeed was used as the target. The four drivers were out-

flow layer (OL) maximum radial windspeed (uu ), boundary layer (BL) radial windspeed at radius of

maximum wind (RMW) (ul ), equivalent potential temperature at BL RMW (θe ), and the temperature

difference between the OL and BL (∆T ). All variables were azimuthally averaged. The drivers explained

45.5% of the certainty. The certainty gain was 35.8% fromθe , 24.5% from∆T , 24.0% from uu , and 15.7%

from ul . The total influence of θe came mostly from inseparable effects, while the total influence of
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uu came mostly from separable effects. Physical mechanisms, both accepted in current literature and

suggested from this application, are discussed.
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CHAPTER 1

Causal Network Discovery

Causal inference is now an exact science. Within causal inference lie many subfields, of which this

work focuses on causal network discovery (CND). As the name implies, causation can be expressed in

terms of separate processes connected to one another via causal pathways, and CND seeks to discover

the full network of causal pathways. There are many methods for CND, from interventional (Pearl 2000)

to observational (Wiener 1956; Granger 1963, 1969) forms of analysis. The present work uses the recent

observational framework from van Leeuwen et al. (2021), which 1) introduces how select processes

nonlinearly couple to drive a single target variable and 2) determines the completeness of a study. As

many processes in the natural world interact with one another rather than act individually, introducing

how to measure nonlinear coupling is a great leap forward for CND, especially in the earth sciences.

Beyond this, the completeness of a study indicates how thoroughly the select processes represent the

underlying physics that drives the target. Thus, van Leeuwen et al. (2021) revolutionizes CND while

adding to existing CND methods.

This chapter introduces the necessary components for CND. Section 1.1 introduces what a causal

network is, how to represent it, and briefly how to use it. Section 1.2 discusses discovery methods, fo-

cusing on measuring the strength of a causal connection. In Section 1.3, current attempts to represent

and measure coupled causation are discussed. Section 1.4 gives a few examples of using CND in the

earth sciences. Section 1.5 briefly introduces the necessary information theoretic measures for the rest

of the thesis.

Beyond this chapter, the thesis is organized as follows. Chapter 2 summarizes the certainty frame-

work in (van Leeuwen et al. 2021), while Chapter 3 furthers the framework’s interpretations. Chapter

4 discusses implementing the framework in code. In Chapter 5 is the application to tropical cyclone

rapid intensification. Chapter 6 generalizes the framework to targets that are mostly continuous with

one discrete mode. Chapter 7 summarizes this work and suggests related future work.

1.1 Causal Networks

A causal network (CN) shows how processes affect one another. For instance, how does the El Niño

Southern Oscillation (ENSO) affect land surface temperatures in different places around the world?

How does land surface temperature affect daily precipitation rates? How do local precipitation rates

affect the global hydrological cycle? The uses of such a CN are vast and important. Including economic
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FIG. 1.1. Different types of graphs. From left to right, the graphs are undirected, directed but cyclic,

and directed and acyclic.

activity in this CN could help determine humanity’s effect on this part of the natural world. CNs, and

how to discover them, are thus an essential element of causal inference.

Often, graphical models are used to represent CNs. Most often, these models are directed acyclic

graphs (DAGs). A graph contains nodes and edges connecting the nodes. (See Fig. 1.1 (a).) For a

CN, the nodes represent processes, and the edges represent the relationship between processes. In a

directed graph, or digraph, each edge is an arrow, pointing from one process to another. (See Fig. 1.1

(b).) For two processes X and Y , Y causing X is written as Y → X . In the case that Y indirectly causes

X , i.e. Y drives processes that either directly or indirectly drive X , then there is a forward, or causal,

path from Y to X , written Y → ·· · → X . A single directed edge also constitutes a forward path. When

Y indeed causes X , Y is an ancestor of X , and X is a descendent of Y . When Y directly causes X , then

Y is a parent of X , and X is a child of Y . Furthermore, when X and Y are connected by a common

ancestor, then the path through the common ancestor is a backdoor path. Acyclic means that, if there

is a forward path from Y to X , then there cannot be a forward path from X to Y . (See Fig. 1.1 (c).)

There is a small caveat when representing feedbacks, but that is beyond the scope of this work. I revisit

DAGs in Section 1.3 in discussing how to represent coupled causation.
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Two forms of analysis can be used to calculate how changes in one process affect another process

in the same network. The most popular is interventional analysis, which calculates the results of an

intervention. The standard method for intervention by experimentation for the past several decades is

the randomized control trial (RCT). In an RCT, there is a control group and one or more experimental

groups. The control group receives the standard treatment, which may be no treatment at all, and is

therefore controlled. Each experimental group, however, receives a different nonstandard treatment.

Which group receives which treatment is randomized prior to experimentation, theoretically removing

variation between groups. Assuming, then, that the groups are identical prior to the experiment, sta-

tistically significant differences between groups must be the result of the differing treatments. In the

earth sciences, where 1) control is difficult, 2) small interventions may have little effect, and 3) large

interventions are unethical, numerical sensitivity studies permit analyzing interventions without do-

ing experiments in the physical world. An example could be anomalously heating a certain region and

letting the simulation run.

In light of the difficulty, ethics, and expense of experiments, as well as attempting to implement ar-

tificial human-like intelligence, Pearl (1995, 2000) introduced do-calculus. According to do-calculus,

intervening on a process severs the ties between the process and its parents, thereby creating a dif-

ferent CN. Do-calculus, explicitly recognizing this, aims to use the undisturbed network to calculate

the effect of an intervention. In other words, it aims to calculate interventional causation from obser-

vational data. While Pearl (1995, 2000) give example CNs on which certain interventions still require

experimentation, fewer experiments are needed, and each experiment is potentially minimally inva-

sive. The end result is what would happen if a real intervention occurred, placing do-calculus in the

realm of interventional analysis.

The other form is observational analysis, in which interventions are not used. Common forms of

observational causation include Wiener-Granger Causality (Wiener 1956; Granger 1963, 1969), nonlin-

ear Granger Causality using transfer entropy (Schreiber 2000), and convergent cross mapping (Sugihara

et al. 2012). While many CND analyses assume, either implicitly or explicitly, that causation cannot be

defined in the absence of an intervention, van Leeuwen et al. (2021) argue that permitting interven-

tions at all may hinder analysis. Because intervening on a process results in a different CN than what

occurs naturally, the results from interventional analysis may not accurately reflect results from the

underlying system.
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FIG. 1.2. Three simplest causal networks of three variables. From left to right, they are a chain, a

fork, and a collider, where X is always between Y and Z .

To illustrate the distinction, consider a closed system. Every state of the system must be a result of

the system. Observational analysis treats the state as coming from a closed system, thereby accurately

reflecting this situation. Interventional analysis, however, opens the system to set the state, whether

or not the previous state of the system would have generated the new state. If the environmental state

does not come from the previous state, then the results may not reproduce what would occur in the

intervention-free system.

1.2 Discovering Causal Networks

Discovering causal networks is much different from using a causal network. To demonstrate how to

discover networks, consider the following basic causal structures. These are chains, forks, and colliders,

each of which involve three processes, say X , Y , and Z . (See Fig. 1.2.) The edges Y → X and X → Z

constitute a chain, Y → X → Z . Reversing the first of these edges, so X → Y , results instead in a fork,

Y ← X → Z . Reversing both edges in a fork, so Y → X and Z → X , results in a collider, Y → X ← Z . This

gives a sense of the flow and origin of information in a CN. In a chain, information flows from previous

generations to later generations. A fork, instead, is an instance of a common source of information

for two different forward paths in a CN. In contrast to both a chain and a fork, each of which has one
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source of information, a collider has two or more sources of information with forward paths to the

same process.

To reason with both simple and complicated CNs, we use the concept d-separation. For processes

X , Y , and Z , X d-separates Y and Z if and only if X blocks all forward or backdoor paths between Y

and Z , where X may be empty or contain many variables. In a CN, this generally means X contains no

common descendents of Y and Z and only ancestors of Y or Z , including common ancestors. When

given only three processes, d-separation distinguishes chains and forks from colliders. In the chain

and fork, X d-separates Y and Z because it is a parent of at least one of them, and Y and Z are not

otherwise related. What would then distinguish the chain from the fork are assumptions about which

variables precede others. But, in the collider, Y and Z are already d-separated by the empty set, and

X does not d-separate them. Instead, conditioning on X creates a path between Y and Z . While this

may seem counter intuitive, consider the collider in Fig. 1.2. Conditioning on an observed value of X

means keeping it fixed while Y and Z are free to vary. Thus, variations in Y must be offset by variations

in Z , thereby creating a dependence between them. Thus, these simple structures and d-separation

allow us to intuit effects from changes in a process. Appendix A.1 discusses examples of d-separation,

and for a full discussion of d-separation, see Pearl (2000), Section 1.2.3..

To actually discover complicated causal structures, Spirtes et al. (2000) list three major causal as-

sumptions that go beyond statistical reasoning. The first is causal sufficiency, which requires that all

common causes of processes in a network are included in the analysis. Inversely, causes that are not

common may be neglected and treated as independent noise. The second is the causal markov condi-

tion, which states that d-separation of two processes on the graph by one of their parent sets implies

conditional independence of the two processes given the same parent set. This also means that condi-

tional dependence of the two processes given either parent set implies they are not d-separated by ei-

ther parent set. The third assumption is faithfulness, which essentially means that, if the causal markov

condition is met, then the converse of the causal markov condition is also met. That is, conditional in-

dependence of two processes given a set of variables implies that the set of variables d-separates the

two processes. To infer causal networks from time series, Runge (2018) adds the assumption of causal

stationarity, which assumes the causal network discovered for one time is the same throughout time.

Many causal discovery algorithms incorporate these three or four assumptions. Some algorithms,

e.g. PC (Spirtes and Glymour 1991), start with a fully connected CN and prune connections of d-

separated variables, while others, like greedy search algorithm (Chickering 2002) or optimal causation
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entropy (Sun et al. 2014), start with a minimally connected network and add strong connections. An-

other popular method is PC-MCI, or TIGRAMITE, in which the PC algorithm generates a preliminary

causal network, and then the parent set for each process is reviewed and revised (Runge 2015).

This leads to discussing how to measure the strength of a connection in the first place to determine

whether or not a connection is negligible. Strength can be measured either in an absolute sense or in

a relative sense. Using absolute strength often involves some threshold value for determining whether

or not a connection exists. This is how information theoretic measures are often evaluated.

Using relative strength, by contrast, is often preferable to absolute measures of strength. To show

this, consider linear regression analysis for driver Y and target X . The correlation coefficient, the typ-

ical measure of strength, is given by

R =
σx y

σxσy

, (1.1)

where σx and σy are the standard deviations of X and Y , respectively, σx y is their covariance, and

the value of R is between −1 and 1. Covariance is an absolute measure of strength. Meanwhile, R 2 is

interpreted as the proportion of variance explained, thereby making it a measure of relative strength.

Suppose X and Y have covariance σx y = 3, and further say that the variance of Y is σ2
y = 1. Knowing

σx y = 3 reveals hardly anything about how strongly Y drives X , as the variance of X , σ2
x , remains

unknown. Ifσ2
x = 9, then the correlation coefficient R = 1, and Y completely determines X . If instead

σ2
x = 900, then R = 0.1, or R 2 = 0.01, and we might question if Y even causes X . Thus, not only does

R 2 suggest how completely Y determines X , but it also suggests how complete the physics in a study

is overall.

As the framework in van Leeuwen et al. (2021) is based on information theoretic measures, this

work necessarily focuses on these measures. When using information theoretic measures, we must

first determine whether the target process is discrete or continuous. If the target is discrete, then the

parent set explains the Shannon entropy of the target (McGill 1954). If the target is continuous, then

the parent set explains the total certainty of the target (van Leeuwen et al. 2021). In either case, mutual

information between the target and the parent set is the amount of explanation offered. Dividing by the

appropriate value then shows how complete the parent set is in explaining the target. This contribution

of van Leeuwen et al. (2021) will be made more intuitive in Section 3.1, while Chapter 6 generalizes the

framework to handle variables like precipitation, which are partly continuous with one discrete mode.
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FIG. 1.3. Comparison of (a) a directed graph and (b,c) directed hypergraphs. In the graph, Y and Z

each have individual edges directed into X . In (b), however, Y and Z instead have a single shared

edge directed into X . In (c), another valid hypergraph, all edges are present

1.3 Coupled Causation

Calculating coupled causation explicitly recognizes that a mechanism which causes a process may

require more than one driver process. To motivate the necessity of coupled causation, consider as

target convective initiation (CI), and as drivers convective available potential energy (CAPE) and con-

vective inhibition (CIN). A standard graph representation is a collider, CAPE→CI←CIN. (See Fig. 1.3

(a), where Y and Z are CAPE and CIN, and X is CI.) The implication is almost that of logical operator

OR, i.e. either CAPE is large enough or CIN is small enough for CI to occur. The reality is that both

thresholds need to be satisfied.

Representing coupled causation requires generalization beyond the standard graph. This requires

introducing directed acyclic hypergraphs, called causal webs in van Leeuwen et al. (2021). In the exam-

ple, the causal web would have the standard graph as well as lines exiting CAPE and CIN which come

together at a vertex, and an arrow pointing from this vertex to CI, written as {CAPE,CIN}→CI. (See Fig.

1.3 (b).) It is also possible that shared and individual paths are present. (See Fig. 1.3 (c).) As shown in

van Leeuwen et al. (2021), there are as many such vertices as there are combinations of drivers.
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There are few frameworks that attempt to describe this, and only three that use information the-

ory. One framework not using information theory is the sufficient-component cause (SCC) framework,

introduced by Rothman (2017) and named such by Koopman (1981). This framework addresses some-

thing critically lacking in DAG notation: using AND versus OR. A sufficient cause is any process that,

when certain conditions are met, results in a change of state in another process. The sufficient cause

may contain any number of component causes, each of which is equally required for the sufficient

cause. In the above example, CAPE and CIN are component causes to a sufficient cause. Not only

must there be something to convect, i.e. CAPE is nonzero, but CIN cannot be too large. If only one of

these conditions is met in this example, then CI will not occur. The SCC framework focuses on binary

drivers and binary targets, so applying it to earth science would require generalization.

One of the frameworks using information theory is partial information decomposition (PID), pro-

posed by Williams and Beer (2010). PID claims to be able to decompose mutual information into multi-

ple nonnegative components, with unique contributions from individual drivers, synergistic contribu-

tions from combinations of drivers, and redundant contributions from all drivers. Unfortunately, these

terms are not fully defined, so many interpretations exist. While the theory enforces that all terms are

nonnegative, Barrett (2015) show that, with a multivariate Gaussian system with one target and two dri-

vers, many popular interpretations of PID are degenerate and yield that the weakest driver contributes

zero unique information. This suggests that PID is not appropriate for continuous variables in general.

Another framework using information theory is multivariate information, a term proposed origi-

nally by McGill (1954) and later negated and called interaction information. Interpreting interaction

information has been troubled for decades, as it may be positive or negative. Interpretation for two

drivers is relatively straight forward, which I detail in Section 3.2.1. Beyond two drivers, interpretation

is still lacking.

Needless to say, the third framework using information theory to address coupled causation is the

certainty framework. This is introduced in the next chapter, while Chapter 3 details how I have fur-

thered interpretations since van Leeuwen et al. (2021).

1.4 Causal Discovery in the Earth Sciences

Causal discovery methods have benefited the earth sciences for over a decade. For example, causal

discovery can evidence teleconnections in surface pressure anomalies (Runge et al. 2019a; Ebert-

Uphoff and Deng 2012), feedbacks between sea ice and atmospheric patterns (Kretschmer et al. 2016;
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Matthewman and Magnusdottir 2011; Strong et al. 2009), between the MJO and the NAO (Samarasinghe

et al. 2021; Barnes et al. 2019), and how ENSO affects temperatures throughout the world (McGraw and

Barnes 2018). This is but a very short list of causal discovery in the earth sciences to date. For a more

complete review, see Runge et al. (2019b). What van Leeuwen et al. (2021) and the present thesis do

differently is explicitly address the issue of variables coupling to drive a target as well as introduce in-

formation theoretic measures to evidence physical completeness of a study. What all the above studies

show is that, while causation is only evidenced until physical pathways are identified, discovering con-

nections via causal discovery in the first place can lead to hypotheses about said physical pathways!

1.5 Information Theory Primer

Information theory was created to study the degradation of information as it is transmitted via

phone lines. Now, information theory has many applications in the sciences, from psychology and

neuroscience to the earth sciences, often to infer causation. Familiarity with information theory is

essential to understand the certainty framework, as there are several information theoretic measures

relevant to the framework. These are Shannon entropy and conditional Shannon entropy, mutual in-

formation and conditional mutual information, interaction information, and Kullback-Leibner (KL)

divergence. I will discuss each of them below. Throughout this primer, X is always the target, and Y

and Z are drivers, all assumed continuous.

Shannon entropy is essentially a measure of uncertainty. The Shannon entropy of X is

H (X ) =−

∫

p (x ) log p (x )d x , (1.2)

where p is the probability density of X . One property of Shannon entropy of continuous variables is

that it depends on the spread of X . For example, if we define X ′ = a X , for some a > 0, then

H (X ′) =−

∫

p (x ′) log p (x ′)d x ′ =−

∫

p (x ) log

�

1

a
p (x )

�

d x = log a +H (X ). (1.3)

If a > 1, i.e. the spread of X ′ is larger than the spread of X , then H (X ′)>H (X ). If a < 1, i.e. the spread

of X ′ is smaller than the spread of X , then H (X ′)<H (X ). A consequence of this is that, unlike Shannon

entropy of discrete variables, Shannon entropy of continuous variables may be negative.
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Conditional Shannon entropy is a measure of uncertainty after conditioning on a variable. Thus,

the conditional Shannon entropy of X given Y is

H (X |Y ) =−

∫

p (x , y ) log p (x |y )d x d y . (1.4)

Note that p (x , y ) is used for the weighting, but p (x |y ) is inside the logarithm. Whether the variables

are discrete or continuous, conditioning on a variable never increases the entropy, i.e. H (X |Y )≤H (X ).

Mutual information is a measure of dependence between two variables. One way to define it is the

decrease in Shannon entropy of one variable by conditioning on the other,

I (X ; Y ) =H (X )−H (X |Y ) =

∫

p (x , y ) log
p (x |y )

p (x )
d x d y ≥ 0, (1.5)

with I (X ; Y ) = 0 only when X and Y are independent, i.e. p (x |y ) = p (x ) for all x and y . Mutual

information is symmetric, that is I (X ; Y ) = I (Y ; X ), and non-negative.

Conditional mutual information is a measure of conditional dependence between two variables

given a third variable. For X , Y , Z , the mutual information between X and Y conditioned on Z is

I (X ; Y |Z ) =H (X |Z )−H (X |Y , Z ) =

∫

p (x , y , z ) log
p (x |y , z )

p (x |z )
d x d y d z ≥ 0, (1.6)

attaining zero only when X and Y are conditionally independent given Z . Unlike with Shannon en-

tropy, conditioning on a variable does not always decrease mutual information.

In fact, studying how conditioning changes mutual information is how interaction information was

first conceptualized (McGill 1954). (The modern definition of interaction information negates McGill’s

definition of multivariate information.) The interaction information of three variables is the change in

mutual information between any two conditioned on the third,

I I (X , Y , Z ) = I (X ; Y )− I (X ; Y |Z ) = I (X ; Z )− I (X ; Z |Y ) = I (Y ; Z )− I (Y ; Z |X ), (1.7)

where I I is the interaction information. Because mutual information does not always decrease by

conditioning on a third variable, interaction information may be positive or negative. Interaction in-

formation can be generalized to any number of variables as

I I (X1, . . . , Xn−1, Xn ) = I I (X1, . . . , Xn−1)− I I (X1, . . . , Xn−1|Xn ), (1.8)
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where I I (X1, . . . , Xn−1|Xn ) is a conditional interaction information, and Xn is used as the condition

without loss of generality. Interpreting interaction information is addressed in Section 3.2.

KL divergence is sometimes also called relative entropy. It is a measure of difference between the

observed probability density and some chosen reference density, q . In essence, q defines a base level

of entropy, and any departure of p from q is a source of uncertainty, hence KL divergence is indeed

relative entropy. KL divergence is expressed as

DK L (p ||q ) =

∫

p (x ) log
p (x )

q (x )
d x =−Ep (log q )−H (X )≥ 0, (1.9)

where Ep (log q ) is the cross-entropy and H (X ) is the Shannon entropy of X . A KL divergence is zero

only when p = q , and is positive otherwise. Mutual information can also be thought of as a specific KL

divergence, measuring the departure of a variable’s conditional distribution from its marginal distri-

bution.
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CHAPTER 2

The Certainty Framework

Before discussing my work beyond van Leeuwen et al. (2021), this chapter introduces the main

concepts of the framework, henceforth the certainty framework. First, certainty is discussed as an in-

formation theoretic quantity, followed by the standard choice of reference density. Then, the three

decompositions of mutual information are described. Third, normalizing for relative strength is dis-

cussed. Finally, my contributions to van Leeuwen et al. (2021) are made explicit. Throughout this

chapter and the next, X is the target and Y is the set of all drivers.

The gain in explaining the evolution of the target X by a set of drivers Y is expressed as

W (X |Y) = I (X ; Y) +W (X ), (2.1)

where W (X |Y) is the total certainty of X and W (X ) is the self-certainty of X , as introduced in van

Leeuwen et al. (2021). This equation can be compared to the equation for Shannon entropy, H (X ) =

I (X ; Y) + H (X |Y), but has the advantage that all terms are always nonnegative. Self-certainty is a

Kullback-Leibner (KL) divergence. That is,

W (X ) =DK L (pX ||qX )≥ 0, (2.2)

where pX is the true distribution of X and qX is the reference distribution. (For more on KL divergence,

see the information theory primer, Section 1.5.) Mutual information between the target X and the

drivers Y is added to the self-certainty of X to form the total certainty of X . Then, total certainty is also

a KL divergence,

W (X |Y) =DK L (pX |Y||qX )≥ I (X ; Y), (2.3)

where pX |Y is the distribution of X conditioned on all the drivers. This gives the interpretation that

I (X ; Y) is total certainty explained or certainty gain.

Because self-certainty is a KL divergence, a reference probability density must be determined for

X . In van Leeuwen et al. (2021), we suggest the reference density should be as wide and as featureless

as possible. Therefore, we suggest using a Lorentz-Cauchy distribution,

q (x ) =
1

π

γ

γ2+ (x − x0)2
, (2.4)
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where x0 is the sample mean of X , and the spread parameter γ=
p

e /8πσX , whereσX is the standard

deviation of X . Using σX ensures that self-certainty is determined only by the shape, and not the

spread, of the target’s distribution.

Included in the certainty framework are three decompositions of mutual information. The first

decomposition is direct influences and coupled influences, called 1links and (multivariate) m links in

van Leeuwen et al. (2021). The direct influence of a driver, Y , is the mutual information between it and

X conditioned on all remaining drivers, that is

IY |Y\{Y } = (Y → X )1l i nk =
X
Y M Y = I (X ; Y |Y \ {Y }), (2.5)

where the left two notations are from van Leeuwen et al. (2021) and the M -notation is my invention.

The coupled influence of Y with another driver, Z , is the mutual information they have with X condi-

tioned on all other drivers, minus their individual direct influences. That is,

IY ,Z |Y\{Y ,Z } =
X

Y Z M Y = I (X ; Y , Z |Y \ {Y })− X
Y M Y−

X
Z M Y, (2.6)

where again the leftmost notation is from the paper. In general, for a combination of drivers J ⊆ Y, its

coupled influence on X is

I J |Y\J =
X
J M Y = I (X ; J |Y \ J )−

| j |>0
∑

j⊂J

X
j M Y, (2.7)

where I J |Y\J would be the paper’s notation, and | j | > 0 means that the subsets used in the summation

are not empty. The direct and coupled influences sum to the mutual information between all drivers

and the target, I (X ; Y).

The next two decompositions are derived from the direct and coupled influences. The first is

m links, called (single-variate) m links in van Leeuwen et al. (2021). As shown above, the 1link of a

driver is its direct influence. The 2link of a driver, Y , is the sum of all coupled influences in which Y

couples with exactly one other driver. We can express this as

(Y → X )2l i nk s =

|J |=2
∑

J⊆Y,Y ∈J

X
J M Y. (2.8)

Note that the summation expresses both that Y is included (Y ∈ J ) and that exactly one other driver is

involved (|J |= 2). In general, m links for any m are calculated similarly,

(Y → X )m =

|J |=m
∑

J⊆Y,Y ∈J

X
J M Y, (2.9)
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where m appears wherever 2 did before. The 2links of Y can be seen as the influence that Y has by

coupling with exactly one other driver, whatever driver that is, and so on for higher order m links. When

summing all the m links of all drivers, each m link must be divided by m to avoid counting the value

multiple times. This can also be thought of as dividing each coupled influence of m variables by m ,

which then is evenly distributed among the m links of the m drivers. This is because the m drivers

contribute symmetrically to the value, so the value must be divided evenly among them. Thus, all the

m links of all drivers, where each m link is divided by m , sum to I (X ; Y).

The final decomposition is into the total influences, called total contributions in van Leeuwen et al.

(2021). The total influence of a driver, Y , is the sum of all its m links that are normalized by the number

m of drivers involved. If there are n drivers in the study, then the total influence of a driver is

(Y → X )t o t a l =

n
∑

m=1

1

m
(Y → X )ml i nk s . (2.10)

The total influences of all drivers sum to I (X ; Y).

Normalizing each term by W (X |Y) then expresses each term’s relative contribution to the certainty

of X . Normalizing the coupled influence of a combination of drivers shows how much certainty comes

from that particular combination of drivers. Normalizing a driver’s m link shows the relative influence

of that driver when coupled with m −1 other drivers. The relative strength of a driver overall is shown

by normalizing that driver’s total influence. Normalizing I (X ; Y)measures how complete a particular

set of drivers is. By contrast, normalizing W (X ) indicates the relative influence of noise and unknown

drivers.

My second authorship for van Leeuwen et al. (2021) is due to my overall contributions to the frame-

work, involving myself in discussions on reference densities, and being actively involved in editing the

text and formulating replies to reviewers. Specific contributions to the framework include showing

that Shannon entropy cannot be used for normalization when the target is continuous, and develop-

ing equation (2.3). Specific contributions to shaping the reference density include 1) advocating that

the density changes with the sample standard deviation so that distributions with equivalent shape but

different spread will have equal self-certainty, and 2) the width parameter expression for the Lorentz-

Cauchy reference density, which is now standard for the framework. I also implemented the code for

all calculations in the paper, and this implementation is discussed in Chapter 4.
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CHAPTER 3

New developments in the certainty framework

In chapter 1, I outlined causal network discovery (CND). Then, in chapter 2, the certainty frame-

work from van Leeuwen et al. (2021) was introduced. In short, it provides a way to calculate relative

causal strength using information theory for continuous variables, allowing both for easy comparison

of results between studies and for more meaningful representations of the discovered relationships.

Included in the framework are three decompositions of mutual information into contributions from

individual and coupled processes.

In this chapter, I will outline my development of the concepts since van Leeuwen et al. (2021). Sec-

tion 3.1 holds a thermodynamic interpretation of calculating relative strength for both traditional mea-

sures and for certainty. My interpretation of the coupled influences, as well as discussions of single-

variable m links and total influences are in Section 3.2. On top of this, a new reference density for highly

noisy variables is introduced and discussed in Section 3.3.

3.1 Certainty: The New Norm

In Section 1.2, I discussed how measuring relative strength is better than measuring absolute

strength. The nature of the relative strength measure introduced in van Leeuwen et al. (2021), however,

is different from most measures of relative strength. To illustrate and justify the distinction, I liken the

differences between traditional measures and certainty to the differences between a heat engine and

a heat pump, respectively, which is shown below.

3.1.1 Relative Strength and the Heat Engine

In a heat engine, a hot reservoir at temperature TH emits heat energy QH , some of which the en-

gine extracts and turns into usable work, W . Whatever is not turned into work is passed as waste heat

into a cold reservoir at temperature TC . This process is illustrated in Figure 3.1 on the left. The ther-

mal efficiency of the engine is the ratio of work to emitted heat, W /QH , which is upper bounded by

(TH −TC )/TH . Friction in the engine makes it such that the theoretical maximum is never attained, i.e.

W /QH < (TH −TC )/TH .

The analogy of the heat engine to traditional methods of measuring relative strength starts with the

observed target in place of the hot reservoir. (See Fig. 3.1, right side.) Some of the analogy is method-

dependent, so I will continue the analogy using linear regression. The observed target has a variance,
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FIG. 3.1. Side by side comparison of the heat engine (left) and the analogical information engine

(right). The thermal efficiency of the heat engine is shown as work extracted, W , over the total

emitted heat energy, QH , with theoretical upper bound of (TH −TC )/TH , where TH and TC are the

temperatures of the hot and cold reservoirs, respectively. The information engine diagram shows

the analogical measures for both regression and information theory, where the regression mea-

sures appear above the information theory measures. Note that, while the upper bound of ther-

mal efficiency is less than 1 whenever TC > 0, the upper bound for R 2 and proportion of Shannon

entropy explained is always 1.

equivalent to the emitted thermal energy. The observed drivers are the engine itself, and their covari-

ance with the target is the work extracted. What they fail to explain is equivalent to the waste heat.

This wasted explanation ultimately enters the unexplained target, which is in place of the cold reser-

voir. The relative amount of explanation is the familiar R 2, which is the covariance squared divided by

the variances of the target and drivers.

Regardless of the method, there are three main reasons the drivers fail to fully explain the target.

The first is physical, in that the selected drivers are either incorrect or not complete. This means that

some physics in driving the target remains hidden. Just as heat engines are specialized based on their

intended use, using incorrect drivers or an incomplete driver set will not perform well at explaining a

target. The next two reasons are related, as they regard noise in the drivers and target. Noise is inherent

in any data, whether from observation or from numerical inaccuracies. The roles are distinct in this

analogy, though. Noise in the drivers acts as friction in the engine, reducing the ability of the drivers
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to extract the theoretical upper bound of information content. Noise in the target, however, acts as the

temperature of the cold reservoir. Note that the upper bound of thermal efficiency is 1 when TC = 0.

Any other temperature, which cannot be negative, yields an upper bound less than 1. Similarly, if the

target has any noise, then even a correct and complete set of noiseless drivers cannot fully explain the

target.

The framework in McGill (1954) uses information theoretic measures to fill these roles. (See again

Fig. 3.1, right side.) Shannon entropy of the target is used instead of variance. The drivers are still the

engine, but they extract mutual information between them and the target as explanation, leaving the

conditional Shannon entropy of the target as wasted explanation.

3.1.2 Relative Strength and the Heat Pump

Using information theory for continuous variables instead of discrete variables requires a new

method for measuring relative strength. The reason is that mutual information between continuous

variables is not upper bounded while Shannon entropy remains finite. This means that Shannon en-

tropy specifically no longer upper bounds mutual information, and so mutual information cannot be

interpreted as Shannon entropy explained. By reversing the arrows in the heat engine analogy, mutual

information again has an upper bound, allowing for calculating the relative strength of explanation.

This is exactly how the heat pump differs from the heat engine. (See Fig. 3.2, left side.) A heat

pump extracts energy from the cold reservoir, adds the work it does to that, and puts the total into the

hot reservoir. Certainty, introduced in van Leeuwen et al. (2021), follows a similar concept. (See Fig.

3.2, right side.) The observed target now acts as the cold reservoir, emitting some self-certainty. To this

self-certainty, the drivers add the mutual information between them and the target as a certainty gain.

Their sum, the total certainty, is equivalent to the heat added to the hot reservoir. The more certain

target is then equivalent to the hot reservoir.

Admittedly, this particular analogy with the heat pump is not as exact as for the heat engine. The

issue comes from how heat pumps not only add work to the hot reservoir, but also move heat from the

cold reservoir to the hot reservoir. The difficulty to add heat to the hot reservoir appears as extracting

less heat from the cold reservoir for the same amount of work. In the certainty framework, however,

self-certainty is independent of the certainty gain from the drivers, and the difficulty to explain the

target appears as adding less certainty for the same amount of self-certainty.
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FIG. 3.2. Comparison of heat pump (left) and information pump (right). The heat pump moves

heat energy, QC , from a cold reservoir at temperature TC to a hot reservoir at temperature TH . The

work, W , put into the system from the heat pump may be arbitrarily large, so it has no finite upper

bound. The total heat that the pump puts into the hot reservoir is QC +W . With the information

pump, there is some background certainty, W (X ), that comes from the observation. The drivers,

Y, add an arbitrarily large amount of certainty as mutual information, I (X ; Y). Their sum, W (X )+

I (X ; Y), is the full, or conditional, certainty about the target, W (X |Y).

The analogy can be corrected, however, when we look at the relative contributions. As heat pumps

create a temperature difference, the drivers create a certainty difference in the target. Just as a heat

pump does little work if the temperature difference is small, the drivers poorly explain the target if the

certainty difference is small. When normalized by the certainty of the more certain target, the relative

contribution of the drivers is small. However, when the contribution from the drivers is large compared

to the self certainty, the relative contribution of the self certainty is small. In this way, the self certainty

does factor into how an information pump works, and so the analogy to the heat pump stands.

3.2 Coupled Influence, M links, and Total Influence

All the decompositions of certainty gain from van Leeuwen et al. (2021) were shown in the previous

chapter. Since van Leeuwen et al. (2021), I proved that coupled influences are actually interaction in-

formations. (Proof in Appendix A.5.) Interaction information was introduced in McGill (1954) to show
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how drivers interact to yield more or less predictability of a target. The trivariate interaction informa-

tion of X , Y , Z can be expressed as

I I (X , Y , Z ) = I (X ; Y )− I (X ; Y |Z ) = I (X ; Z )− I (X ; Z |Y ) = I (Y ; Z )− I (Y ; Z |X ), (3.1)

where I I is the interaction information. The symmetry of the decomposition is clear. If X was the

target of Y and Z , we could express this instead as

X
Y Z M Y = I (X ; Y , Z |Y \ {Y , Z })− I (X ; Y |Z , Y \ {Y , Z })− I (X ; Z |Y , Y \ {Y , Z }) (3.2)

= I (X ; Z |Y \ {Y , Z })− I (X ; Z |Y , Y \ {Y , Z }) (3.3)

= I I (X , Y , Z |Y \ {Y , Z }), (3.4)

where I used the relation I (X ; Y , Z |Y \ {Y , Z }) = I (X ; Y |Z , Y \ {Y , Z }) + I (X ; Z |Y \ {Y , Z }). The result for

two drivers was already shown in van Leeuwen et al. (2021). In general, the coupled influence of J ⊆ Y

on X is the interaction information of X and every driver in J , written

X
J M Y = I I (X , J |Y \ J ), (3.5)

the proof of which is in Appendix A.5.

3.2.1 Interpreting Coupled Influences from Two Variables

The physical interpretation of coupled influences in van Leeuwen et al. (2021) was only evidenced

by examples, and there is no strong link to underlying forms of equations. Because measures of infor-

mation are conserved under bijective transformations of a single variable, a link to equations might not

exist. For example, for drivers Y and Z and target X , the information measures for x = y z are equal

to those for log x = log y + log z when the noise is small relative to the influences of Y and Z . Thus, to

make an interpretation for coupled influences, I will simply use an additive form x = f (y ) + g (z ) +η,

where η represents noise and f and g are some functions of Y and Z , respectively, noting that many

forms of equations are represented by this one. For the rest of this section, I will use Y and Z as drivers

of target X .

Assuming drivers Y and Z are independent, the graphical representation of x = f (y ) + g (z ) + η

is Y → X ← Z , a standard collider. By the equation and the graph, we can and should conclude the

effects of Y and Z are separate. In terms of mutual information, we observe I (Y ; Z ) = 0 because Y and
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FIG. 3.3. Standard graphs where Y and Z are dependent, which would yield less negative coupled

influence from them. On the left, they have a common cause, where the dashed lines imply W is

not included in the study. On the right, Y mediates the indirect effect of Z .

Z are independent. Meanwhile, since Pearl (2000) shows conditioning on a target makes its parents

dependent, I (Y ; Z |X )> 0. This yields I (Y ; Z )< I (Y ; Z |X ), so the coupled influence of Y and Z

X
Y Z M Y = I I (X , Y , Z ) = I (Y ; Z )− I (Y ; Z |X )< 0 (3.6)

is negative.

We should also expect this from the equation. When Z , for example, is not included in the analysis,

it looks like noise. That is, x = f (y ) + (g (z ) +η), in which the variability of Z is clearly part of the un-

certainty of the effect of Y . Conditioning on Z means that we instead study the effect of Y on X while

keeping Z constant, repeating this for each value of Z . This removes the variability of Z from the equa-

tion for X and thereby decreases the uncertainty of the effect of Y . This decrease in the uncertainty of

the effect of Y appears as an increase in its mutual information with X , so I (X ; Y ) < I (X ; Y |Z ). This

argument also holds when calculating the mutual information between Z and X and conditioning on

Y instead. Thus, when Y and Z are independent, the system x = f (y ) + g (z ) +η will yield negative

coupled influence, which shows that the effects of Y and Z are separable from each other.
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To understand when coupled influences will be less negative and possibly positive, we again need

the interaction information decomposition. That is,

X
Y Z M Y = I I (X , Y , Z ) = I (Y ; Z )− I (Y ; Z |X ), (3.7)

where it is obvious that X
Y Z M Y ≤ I (Y ; Z ). When Y and Z are dependent, so I (Y , Z ) > 0, their coupled

influence is less negative and possibly positive. They may be dependent in many ways. Pure chains, like

Y → Z → X or Z → Y → X , are not allowed, however, as we would see the middle process d-separates

its parent from X , which appears as a 1link or direct influence that is zero for the root process. Instead,

Y and Z may have a common ancestor W , yielding the graph Y ←W → Z and Y → X ← Z . (See Fig.

3.3 (a).) This means that y = h1(w ) +ηy and z = h2(w ) +ηz , so

x = f (h1(w ) +ηy ) + g (h2(w ) +ηz ) +η. (3.8)

Conditioning on Z will again remove its variability. But, since the variability of both Y and Z contains

the variability of W , conditioning on Z will decrease the variability of Y , thereby decreasing I (X ; Y |Z ).

By a similar argument, without conditioning on Z , the variability that Z has in common with Y is

attributed instead to Y , thereby increasing I (X ; Y ). The amount of change in I (X ; Y |Z ) and I (X ; Y )

is dependent on the strength of both W → Y and W → Z . If one or both connections are weak, then

Y and Z will be weakly dependent, so their coupled influence will likely remain negative. But, if both

connections are strong, then Y and Z will be strongly dependent, likely yielding I (X ; Y ) > I (X ; Y |Z ),

or positive coupled influence. Since W is excluded from the study because {Y , Z } d-separates it from

X , the effects of Y and Z are inseparable.

Another possibility is that, instead of Y and Z being dependent because of a common ancestor,

suppose Z has a direct effect on X as well as a mediated effect through Y . The graph would be Z →

X and Z → Y → X . (See Fig. 3.3 (b).) If Z → Y is weak, then Y and Z are weakly dependent, so

I (X ; Y |Z ) > I (X ; Y ). And, if Z completely determines Y , then I (X ; Y |Z ) = 0, meaning Y would be

removed from the study. But, if Z → Y is strong yet not deterministic, then their strong dependence

will yield I (X ; Y )> I (X ; Y |Z ), even if Y → X is strong. Again, the effects of Y and Z appear inseparable,

but there is no other process to condition on to separate their influences.

This leads to an important discussion regarding causal sufficiency. Causal sufficiency, again, re-

quires that the common cause of two or more variables must also enter the analysis. Yet, the above

argument states that W , the common cause of Y and Z , should be removed from the analysis because
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it is d-separated from X . This does not go against causal sufficiency, however, because the effects of the

W are still captured by Y and Z . If the direct influence of W was nonzero, then the certainty framework

requires that an arrow connects W directly to X . If the direct influence is instead zero, including it in

the study jeopardizes the analysis because the coupled influences W has with Y and Z would give W

causal significance. In this way, causal sufficiency can be restored by calculating the coupled influence

of Y and Z .

The current interpretation is clear for the two-driver case. Negative coupled influence indicates

that the effects of the drivers are separable. Inversely, positive coupled influence indicates that the

effects are inseparable, mostly because the drivers themselves are dependent. The more negative or

positive the coupled influence is, the more separable or inseparable the effects are, respectively.

For now, this interpretation is carried over to coupled influence terms of more than two drivers.

As of yet, however, exactly how the value reflects the structure of the causal web is unknown. Possible

interpretations are explored in the discussion portion of the thesis (Section 7.1.2).

3.2.2 M links and Total Influence

Coupled influences are combined to form both m links and total influence for individual variables

(van Leeuwen et al. 2021). An m link shows how inseparable an individual driver is at a given level of

coupling. Because an m link involves multiple coupled influences, it can indicate how active a driver is

at a certain level of coupling. If a driver’s largest influence comes from its 1link, then it is mostly active

alone, and its effect is generally separable. If, however, the driver’s largest m link is its 2link, then it is

most active when coupled with exactly one other driver, and its effect is generally inseparable.

As stated in van Leeuwen et al. (2021), the total influence of a driver is the sum of its m links. Since

van Leeuwen et al. (2021), I proved that a driver’s total influence is nonnegative. (Proof in Appendix

A.4.) This means that, even though coupled influences and mlinks may be negative, the total influ-

ences constitute a nonnegative decomposition of mutual information. A nonnegative decomposition

is important because it implies that information attributed to one driver is not also attributed to an-

other driver.

3.3 Choice of reference

In the certainty framework, the choice of reference density is the only explicitly subjective com-

ponent. We have yet to determine clear recommendations for users of the framework. In fact, many
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possible densities are explored in van Leeuwen et al. (2021). There will probably always be some re-

maining subjectivity no matter what we do.

Of special interest to the application to tropical cyclone rapid intensification (TCRI), in Chapter 5,

is a reference density designed specifically for high noise targets. Since noise in any process diminishes

the total mutual information, the presence of high noise may artificially make relevant drivers appear

irrelevant. This problem is made worse when the self-certainty is large. Because the reference density

to a large extent determines the size of the self-certainty, the reference density should be different when

the target is believed to have high noise and the drivers are believed to be relevant. This is intended

simply as a correction so that the results more truly evidence the relevance of the drivers.

Using the TCRI data, I experimented with many different reference densities. Gaussian references

with varying spread were tried, but they all yielded a very low self-certainty. For example, using a Gauss-

ian reference with the same variance as the target yielded W (X ) = 0.0113. Since self-certainty is a KL

divergence, a measure of departure of the target’s density from the reference density, I concluded the

target was too Gaussian-like to use a Gaussian reference, which is evidenced in the examples in van

Leeuwen et al. (2021). Ultimately, the Lorentz-Cauchy distribution seemed to be preferable given that

it is not a Gaussian and that it is featureless. After experimenting with the width-parameter expression,

the expression resulting in the minimum self-certainty was

γ=

s

e

2π
σX , (3.9)

whereσX is the standard deviation of the target. This is simply double the original expression.
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CHAPTER 4

Implementing the Framework

Implementing the framework in code is a feat of combinatorics. The number of (conditional) mu-

tual information terms is exponential with the number of drivers. To be exact, if the driver set, Y, has

n drivers, the number of information terms is 2n − 1. When including the self-certainty of the target,

W (X ), the total number of information theoretic calculations is 2n . The 2n−1 information calculations

are recombined into 2n − 1 coupled influence terms. These coupled influence terms are recombined

according to the amount of linkage into n 2 m link terms, which themselves are summed over each dri-

ver to make n total influence terms. Everything is normalized by the conditional certainty, W (X |Y),

which is calculated as the sum of W (X ) and I (X ; Y).

The entire framework is implemented in C++ using double precision arithmetic. The main reason

is that I can use C++fluently, allowing me to quickly write the implementation. Beyond this, object ori-

entation allows for easy transition from concepts to code, and C++ offers potentially the most compu-

tational efficiency for object orientation. Also, compiled code is automatically faster than interpreted

code, and most C++ compilers additionally offer a lot of optimization. A Python wrapper as well as a

FORTRAN implementation are future projects.

The rest of this chapter is organized as follows. First, estimating mutual information is discussed in

Section 4.1. Combining the mutual information to calculate coupled influences is discussed in Section

4.2, while calculating m links and total influences is discussed in Section 4.3. Finally, calculating self-

certainty is discussed in Section 4.4.

4.1 Calculating Mutual Information

Calculating mutual information for the framework entails two main parts. The first is determining

which drivers are active and which are conditioned on. To do this, the drivers are first given a set order.

(One such ordering is detailed at the end of Section 4.1.2.) Then, to efficiently populate the active

set, the implementation loops through the integers between 1 and 2n − 1 inclusively, where n is the

number of drivers. In the computer, bits are either ON or OFF. The integer 1 is represented by only the

smallest bit being ON, in which case only the first driver in the driver set is active and all other drivers

are conditioned on. The integer 2 is represented instead by only the second smallest bit being ON, so

only the second driver is active and all other drivers are conditioned on. The integer 3 has both the
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smallest and second smallest bits ON, so the first two drivers are active and the rest are conditioned

on. The integer 2n −1 has the first n bits ON, so all drivers are active and the condition set is empty.

The other main part is implementing the mutual information estimators themselves. The imple-

mentation uses k-nearest neighbors (kNN) estimators as developed by Kraskov et al. (2004) (mutual

information) and Vejmelka and Palus̆ (2008) (conditional variant). Specifically, the mutual informa-

tion estimator follows the first algorithm in Kraskov et al. (2004),

I (X ; Y )≈ψ(k ) +ψ(N )−<ψ(nx +1) +ψ(ny +1)>, (4.1)

where ψ is the digamma function, k is the nearest-neighbors parameter, N is the length of the time

series, and nx is the number of neighbors in X within the kNN distance of the set {X , Y }, and likewise

for ny and Y . The kNN distance, ε, from each point, (xi , yi ), in the time series is the the k th smallest

distance to any other point (x j , yj ). We chose the Chebychev, or maximum, norm to calculate distance.

Finally, the values ofψ(nx +1)+ψ(ny +1) are averaged over all points (xi , yi ), yielding the term<ψ(nx +

1) +ψ(ny +1)>.

The algorithm from Vejmelka and Palus̆ (2008) closely parallels this. It is,

I (X ; Y |Z )≈ψ(k )−<ψ(nx z +1) +ψ(ny z +1)−ψ(nz +1)>, (4.2)

where nx z is the number of neighbors in the combined set {X , Z } within the kNN distance of the set

{X , Y , Z }, and likewise for ny z and {Y , Z }.

Choosing the mutual information estimator that parallels the conditional estimator helps reduce

error. Further reducing error can happen by 1) transforming the data, 2) addressing large active sets,

and 3) choosing the optimal value of k . (The transformation for self-certainty estimation is different,

which is detailed is Section 4.4.) These separate parts are detailed below.

4.1.1 Transforming the Data

While kNN estimators do not assume any underlying distribution for the drivers and target, they are

sensitive to highly peaked probability densities. Furthermore, since the Chebychev distance is the max-

imum value in a vector, variables with larger scales are over represented while those with smaller scales

are under represented. Since the true value of mutual information is insensitive to single-variable bi-

jective transformations, applying any such transformation to individual drivers is allowed to fix the
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above issues. Experimentation suggests the estimators yield their maximum values when each vari-

able is marginally Gaussian. Thus, for the information estimation, each variable is transformed to a

truncated standard Gaussian.

The transformation starts with replacing a value in a time series with its overall rank in value in the

time series. Repeated values have the same rank, and the next highest value has a rank that is greater by

the number of repeated values. These ranks are then divided by the length of the time series, making it

approximately uniformly distributed over the interval [0, 1]. From here, the inverse cumulative distri-

bution function of the standard Gaussian is applied to the time series, using the approximation to the

inverse error function in Winitzki (2008), such that the tails of the distribution are equally truncated.

Many amounts of truncation were tried. The estimators were maximized by removing 4.25% of the full

distribution from each tail such that the central 91.50% of the Gaussian distribution is occupied.

4.1.2 Overcoming the Curse of Dimensionality

Dimensionality refers to the number of time series comprising the target and active set. In the

estimators, X , Y , and Z may comprise multiple time series, making implementation very simple at

first. But, with even a few active drivers, the estimators became highly inaccurate, a phenomenon

known as the curse of dimensionality. Kraskov et al. (2004) recognized this and offered an alternate

estimator in such cases, but it is less consistent conceptually with the conditional mutual information

estimator. Furthermore, only one of the information terms is a regular mutual information, and the

other 2d − 2 terms are conditional mutual informations. Therefore, the implementation follows the

original algorithm.

To alleviate the issue, both estimators are a sum of mutual informations with only one target time

series and one active time series at a time. The formula for two active time series Y1, Y2 is

I (X ; Y1, Y2|Z ) = I (X ; Y1|Y2, Z ) + I (X ; Y2|Z ), (4.3)

and for m active time series Y1, . . . , Ym ,

I (X ; Y1, . . . , Ym |Z ) = I (X ; Y1|Y2, . . . , Ym , Z ) + · · ·+ I (X ; Ym |Z ), (4.4)

and similarly for multiple target time series. Any information estimation with more than one active or

target time series becomes a summation of information estimations between one target and one driver

time series at a time.
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Computing the mutual information using this decomposition may over represent strong drivers

and under represent weak drivers in the estimation. The information terms calculated toward the be-

ginning of this decomposition will have more time series in the condition set, while those toward the

end of the decomposition will have less. If a strong driver is active with less processes in the condition

set, the resulting value may be greater than it should be. Inversely, if a weak driver is active with more

processes in the condition set, the resulting value may be less than it should be. The order of decom-

position often changes the final value, showing that the systematic biases do not necessarily cancel.

To address this, the drivers are reordered by their 1links, where the driver with the greatest 1link

is first, and the driver with the least 1link is last. This way, when an estimation is decomposed, the

calculations in which the strong drivers are active will always have more processes in the condition set

than calculations in which the weak drivers are active. This reduces both the over representation of

the strong drivers and the under representation of the weak drivers. Thus, the overall systematic bias

should be reduced.

4.1.3 Determining the Number of Neighbors Parameter

Part of the art of using kNN estimators is figuring out what number of neighbors, k , to use for a given

dataset. The user must tell the program which k to use. The implementation does not automatically

choose the value of k , though the default is k = 3.

But, the implementation does have functionality to suggest a k based on two criteria. The first

criterion was that k is less than 1% of the time series length, based on Kraskov et al. (2004) and Vejmelka

and Palus̆ (2008). The second criterion was that the estimation of the total certainty gain had the least

dependency on the order of decomposition.

This dependency was evaluated in the following way. For each k , the kNN estimators above were

used. This means that the drivers were first reordered based on their 1links for each value of k . Second,

I (X ; Y) was estimated, where X is the target and Y is the set of all drivers. Third, for each driver Y ∈ Y,

both I (X ; Y |Y \ {Y }) and I (X ; Y \ {Y }) were estimated, the sum of which should be I (X ; Y). Finally, the

code calculated the relative deviation of each I (X ; Y |Y\ {Y })+ I (X ; Y\ {Y }) from I (X ; Y), then squared

and summed the relative deviations. The relative deviation for the first driver is always 0. This square

relative deviation evidences how strongly an estimate depends on the order of decomposition, with

greater values indicating greater dependency.
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When using this functionality of the implementation, the program prints the k that is less than 1%

of the time series length and has the least square relative deviation as described above. The user must

then run the framework and explicitly input the desired value of k .

4.2 Calculating the Coupled Influences

To calculate coupled influences from the mutual information terms, I prove in section A.2 that the

coupled influence of a set of drivers J ⊆ Y is

X
J M Y =

| j |>0
∑

j⊆J

(−1)|J |−| j |I (X ; j |Y \ j ). (4.5)

In words, the conditional mutual information between X and every nonempty subset j ⊆ J condi-

tioned on all drivers not in j is calculated. Then, the mutual information is added if | j | and |J | are both

even or both odd, or it is subtracted otherwise. Writing the influences as a summation of the mutual

informations removes the dependencies imposed by the framework’s recursive definition of influence.

Instead of finding the subsets of a set, J , to calculate the coupled influence of J , the implemen-

tation finds the supersets of J to iteratively adjust their coupled influences. A superset of a set is the

reverse relationship of a subset of a set. Just as a subset of J is fully contained in J , J is fully contained

by its supersets. The term I (X ; J |Y \ J ) will not appear in the coupled influence of any proper subset

of J , but it will appear in the coupled influence of J and all supersets of J . The implementation loops

through the sets as previously described. The conditional mutual information for each set is first added

to the set’s coupled influence. Then, the OFF bits are turned ON and OFF in a recursive scheme such

that the supersets are updated in increasing order of their integer representation. When the size of the

set and a superset are both even or both odd, the set’s mutual information is added to the superset’s

coupled influence, and subtracted otherwise. While other implementations for combining the infor-

mation estimates into coupled influences may be faster, this was the first one that made sense to me,

and I did not explore others.

4.3 Calculating M links and Total Influences

The m link and total influences are calculated from the coupled influence terms as shown in section

3.2.2. Alternate calculations for m link and total influences using mutual information terms as basic

units are developed in sections A.3 and A.4, respectively. While these equations might prove useful
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to avoid round off errors from adding and subtracting terms repeatedly, double precision arithmetic

makes such errors negligible. Thus, the implementation no longer uses them.

These results do merit discussion, however, as the result for total influence is important for the

framework. Sometimes the implementation yields negative total influences, which was not expected.

The result for total influences in Section A.4, which uses the result for m links in Section A.3, shows that

the true value of total influence can never be negative. Thus, a calculated negative total influence is

due to numerical error.

4.4 Calculating Self-certainty

The self-certainty is a simple KL divergence, written as

W (X ) =DK L (pX ||qX ) =

∫

pX (x ) log
pX (x )

qX (x )
d x =−EpX

(log qX )−H (X ), (4.6)

where pX is the distribution of X , qX is the reference distribution, and the expectation of log qX is

called the cross entropy while H (X ) is the familiar Shannon entropy. To avoid implementing a KL di-

vergence estimator, I used the fact that KL divergence, like mutual information, is conserved under

single-variable bijective transformations. Any such transformation applied to the target’s time series is

a transformation applied to the reference density. Thus, the implementation applies a transformation

to the target such that the cross entropy is zero in the transformed space. Because the implementation

lacks a KL divergence estimator, each reference density must have a separate transformation imple-

mented. Currently, the supported reference densities are the uniform distribution, both the original

and wide Lorentz-Cauchy (LC) distributions, and the Gaussian distribution.

Applying the cumulative density function of the reference density makes the cross entropy zero.

The reference density in the transformed space is then uniform on [0, 1]. As the density is 1 everywhere,

its logarithm is 0, and so its cross entropy is zero. This leaves

W (X ) =−H (X t r a n s ), (4.7)

where X t r a n s is the transformed target. This method is used for the uniform distribution and the LC

distributions.

The transformation for the uniform distribution scales and shifts the data. The minimum observed

value is mapped to zero. The maximum observed value is mapped to one.
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For the LC distributions, the transformation is

X t r a n s =
1

π
arctan

�

X − x0

γ

�

+
1

2
, (4.8)

where x0 is the sample mean of X , and γ is the spread parameter. The formula for γ is either the original

or the wide variant (from Section 3.3), depending on which the user says to use.

The transformation for the Gaussian reference shifts and scales the data. With Gaussian refer-

ences, the cross entropy is the Shannon entropy of the reference Gaussian, 1/2 log(2πeσ2), where the

implementation uses the variance of the target for σ2. Thus, transforming the target to have variance

σ2
t r a n s = (2πe )−1 makes the cross entropy zero. Because the formula for the cross entropy is known,

the implementation does not need to transform the data. The transformation in this case is only for

the sake of consistency.
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CHAPTER 5

A Case Study of the Rapid Intensification of Hurricane Patricia (2015)

Tropical cyclone (TC) rapid intensification (RI) is defined as an incease of at least 30 knots (about

35 mph or 55 kph) within 24 hours in sustained maximum tangential wind. Predicting whether or

not a hurricane undergoes RI is one part of the problem, though the vast majority do. Assuming the

conditions allow for RI, the questions then become when and by how much the TC will rapidly intensify.

While TC dynamics and thermodynamics are governed by processes at all levels of the troposphere, the

present analysis focuses on processes in outflow and boundary layers.

The importance of the outflow layer is well recognized (Gray 1968; McBride and Zehr 1981; Merrill

1988a,b; Davis and Bosart 2004; McTaggart-Cowan et al. 2008; Kimberlain et al. 2016). While low ver-

tical shear over the center of the storm is preferable to prevent ventilation and loss of heat, the ability

for air to exit the system is critical (Gray 1968; McBride and Zehr 1981). Furthermore, synoptic forcing,

such as interactions with upper-level troughs and ridges, is responsible for the formation and inten-

sification of many TCs (Davis and Bosart 2004; McTaggart-Cowan et al. 2008). In fact, of the several

modes of cyclogensis that McTaggart-Cowan et al. (2008) identify, many involve synoptic forcing of

the outflow layer. The local vertical shear gradients may create large cyclonic vorticity fields to spinup

the TC (McBride and Zehr 1981; McTaggart-Cowan et al. 2008; Kimberlain et al. 2016). Merrill (1988b)

also shows that the "azimuthal mean radial outflow tends to be stronger for intensifying hurricanes...

[than for nonintensifying hurricanes]," implying that intensification entails a net removal of air from

the center of the storm. Many more complex dynamics certainly occur in the outflow layer, but the

importance of the outflow itself cannot be ignored.

The boundary layer also exhibits dynamics and thermodynamics peculiar for TC intensification.

Early studies even suggested that TCs could form solely based on boundary layer dynamics and ther-

modynamics (Gray 1968). Though this was later debunked, the role of the boundary layer remains

important (Ooyama 1969; McBride and Zehr 1981). Specifically, for both intensification and mainte-

nance, TCs need water vapor supplied to the core of the storm by warm oceans, which is well known

since Gray (1968). The friction of the circulation against the ocean induces convergence in the bound-

ary layer, which carries the water vapor toward the center. The core lies within the radius of maximum

wind (RMW), pointing to the importance of the radial wind at RMW in conjunction with water vapor.
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The thermodynamics of TC development are just as rich. For instance, a mature TC can be viewed

as a Carnot engine, linking TC intensity to the temperature difference between the outflow and the sea

surface temperature (Emanuel 1986, 1991). Later, Emanuel and Rotunno (2011) and Emanuel (2012)

related the outflow temperature to intensification. In an idealized model, Hu and Wu (2020) showed

that high equivalent potential temperature (θe ) between RMW and 3 RMW leads to intensification,

while high θe beyond 3 RMW instead leads to stronger rainbands. Furthermore, Vigh and Schubert

(2009) show that diabatic heating is more efficient at spinning up circulation when applied inside than

outside RMW, stressing the importance of moving high θe air into the core of the storm. The thermo-

dynamics are much more complex, but this is what is most relevant to this study.

Kimberlain et al. (2016) show that Hurricane Patricia (2015), the most rapidly intensifying and

rapidly weakening TC on record for both the northeast Pacific and north Atlantic basins, was highly

favored by synoptic forcing. Even though the initial low was slow to develop, it combined with a tropi-

cal wave and later intensified from convergence of cyclonic vorticity generated by a Tehuantepec gap

wind event. On top of this, the rising branch of an eastward propagating Madden-Julian Oscillation

possibly increased the deep convection of the system prior to RI. More synoptic forcing and steering

occurred to turn this depression into a storm, which was also slow to develop. Then, Patricia finally

passed through an environment with a patch of anomalously warm water, high humidity, and low ver-

tical shear, where it underwent RI. In many ways, Patricia was a very ideal storm to study RI.

5.1 Methodology

5.1.1 Data

The data comes from a 60-member Weather and Research Forecasting (WRF) ensemble forecast

which simulates Hurricane Patricia during its RI, from 21:00 UTC on October 21 to 00:00 UTC on Octo-

ber 23. The horizontal grid resolution was 1km, while there were 42 vertical levels using the eta vertical

coordinate. The ensemble was initialized using data from typical observations as well as data from the

Office of Naval Research Tropical Cyclone Intensification 2015 field campaign. Simulation data was

output hourly, yielding 28 time steps per member. See Tao et al. (2020) for more information on these

simulations.

For each member, two time steps were removed. The initial and final time steps were removed from

the drivers’ time series. The initial time step seemed to experience shock from the data assimilation.
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The final time step was removed because the drivers’ time series lagged the target’s time series by an

hour. Accordingly, the target’s first two time steps were removed. In total, the time series had 26 time

steps per member.

The data was then azimuthally averaged. To obtain the azimuthal averages, the WRF output was

first interpolated to fixed vertical coordinates. Variables derived from potential temperature, pressure,

and/or moisture were calculated after the interpolation but before the azimuthal averaging. A 21km by

21km moving average was applied to the surface perturbation pressure, and the location of the min-

imum was used as the center of the storm. Using the perturbation pressure helped account for any

topographical effects, as higher altitudes are naturally at a lower pressure. From there, the processes

were azimuthally averaged in 1km bins from 1km to 120km.

5.1.2 Selected Processes

Because the time series length was relatively short (26 time steps per member× 60 members= 1560

time steps), we limited the study to considering only four drivers for the sake of accurate information

estimations. Another criterion was proximity to the core of the storm. Thus, the processes were 1) the

upper-level radial wind, uu , 2) the cross-RMW boundary layer (BL) radial wind, ul , 3) the BL equiv-

alent potential temperature at RMW, θe , and 4) the temperature difference between the surface and

outflow layers, ∆T . The reasoning behind choosing these drivers is described first. Then, generating

the representative time series is described. Defining RMW is detailed in the next section (5.1.3).

Based on the importance of the outflow, uu was selected as the proxy variable. We experimented

with using the actual outflow, which is the radial wind weighted by mass, instead of the radial wind.

The results are not shown, but uu was a better predictor than mass outflow. There are two reasons we

think are plausible. The first is that, since the maximum value at each time was chosen, the value for uu

tended to be closer to the eye, while outflow peaks further from the center because the mass weighting

increases linearly with radius. Proximity to the eye of the storm is crucial when the time lag is only one

hour. The other reason is that, as the storm intensifies, the central pressure drops. Because mass and

pressure are positively related, the decrease in pressure may offset changes in radial wind, meaning

that the net outflow of air may not change much. Directly using radial wind avoids this issue.

To gauge whether or not warm moist air is able to reach the core of a TC, ul was used. There were

some times when ul was directed out of the core. While air may have entered the core at other places

at that time, the azimuthal average indicates that air was ultimately leaving the core.
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Using θe was based on Hu and Wu (2020). Their study showed that θe near RMW in the boundary

layer has a high partial correlation with the rate of intensification. Given the strong linear dependence

between θe and intensification, θe was included as a potential driver.

Using ∆T to study intensification was new, as far as we could tell. Again, a TC is a Carnot engine,

so ∆T is linked to intensity once the storm matures and is in a steady state (Emanuel 1986). But, the

TC also physically links the outflow and surface layers. As with any physical link between two bodies of

different temperatures, the rate of heat exchange is proportional to the temperature difference. Since

the TC does the heat exchange, perhaps ∆T drives intensification until a steady state is reached. Any

statement beyond this would be mere speculation, but this was why∆T was a potential driver.

The time series for these processes were generated in the following ways. First, the value of uu

was the maximum value of a moving 3km wide by 1km tall average of the radial component u over the

outflow layer. Second, the value of ul was a 3km wide by 1km tall average at the surface centered on

the RMW. Third, the value of θe was a 3km wide by 1km tall average at the surface centered at RMW.

Finally, the value of∆T was the difference between the average BL temperature and the average outflow

layer temperature. The region for averaging the BL temperature was the bottom 1km, from RMW to

RMW+10km, including only where u < 0.95ul . The region for averaging the outflow layer temperature

was wherever u > 0.95uu .

5.1.3 Choosing the target and the reference

The hourly change in maximum tangential wind, ∆vma x , was the target variable. The hourly in-

tensification is a natural proxy for instantaneous intensification, and the assumed small memory in

the process means its past can be neglected as a potential driver. The maximum tangential windspeed

itself, vma x , was defined by first a 3km wide moving average of the tangential windspeed over the 600m

to 1km heights, from which the maximum value was used. The radius where vma x occurred was used

as the radius of maximum wind (RMW).

Because ∆vma x was believed to have high noise, the wide Lorentz-Cauchy distribution, as de-

scribed in section 3.3, was used for the reference density. The belief of high noise is because of the

following. Assuming that the errors of the vma x time series are independent, the error variance in

∆vma x time series is doubled. Meanwhile, the maximum value of the ratio between∆vma x and vma x

is about 1/7, meaning the noise-to-signal ratio is roughly 14 times larger for∆vma x than for vma x . This

and other experiments not shown here suggest that∆vma x had high noise.
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5.1.4 Calculating the information quantities

The implementation as described in Chapter 4 was used. To determine the best number of neigh-

bors, k , the criteria in Section 4.1.3 were followed. This yielded k = 7 for the number of neighbors.

5.2 Results

The framework yielded W (∆vma x ) = 0.1575 and I (∆vma x ; Y) = 0.1316, where Y = {uu , ul ,θe ,∆T }.

This yielded a conditional certainty W (∆vma x |Y) = 0.2891, 45.5% of which came from the drivers. The

process uu accounts for 10.9% of W (∆vma x |Y), ul for 7.1%, θe for 16.3%, and ∆T for 11.2%. Overall,

the drivers left 54.5% unexplained. These totals are shown in figure 5.1.

The causal web (Fig. 5.2) shows the direct and coupled influences normalized by I (∆vma x ; Y). Nor-

malizing by this instead of the conditional certainty helps highlight the origin of the certainty gain itself.

The largest direct influence is from uu while the smallest is from ul . There are six two-driver coupled

influences. Coupled influences involving θe were all positive. Specifically, uu or ∆T coupled with θe

yielded large influences, 18.0% and 16.1% respectively. The coupled influence of ul and∆T was mod-

erately negative, -8.0%. The other two-driver coupled influences were relatively negligible.

Of the four three-driver coupled influences, two are worth noting for the size of contribution.

Coupling {uu , ul ,θe } yielded -9.4%, while {ul ,θe ,∆T } yielded 29.9%. The coupled influence of

{uu ,θe ,∆T } was -1.9%, a small but negative term. This means two of the three three-driver couplings

involving both uu and∆T yielded negative values, while the third was weakly positive.

Finally, the coupled influence of all drivers was -17.1%, a large negative value. This is how the

certainty gain, i.e. I (∆vma x ; Y), decomposed into coupled influences.

The m links and total influences are shown in table 5.1. Recall they are calculated by summing all

m-driver coupled influences where the driver listed in the row header is included, then divided by the

number of processes. The total influences are the m links summed across the row.

Both the smallest direct and smallest total influences come from ul , at 10.4% and 15.7%, respec-

tively. It does contribute roughly as much as its direct influence via its 2link and 3link, but much of

this gain is corrected by the 4link. Most of its moderate 3link comes from the {ul ,θe ,∆T } coupled

influence. In net, about one third of its total influence comes from interaction terms.

While uu yields the largest direct influence, it largely acts alone, making it have the third largest

total influence. Its two-driver coupled influences with ∆T or ul largely cancel, making the coupled
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FIG. 5.1. Axisymmetric cross section of a generic hurricane with total influences superimposed

approximately where the processes were located. Upper-level radial wind, uu accounted for 10.9%

of our certainty, boundary layer θe at the radius of maximum wind (RMW) for 16.3%, top-bottom

temperature difference,∆T , for 11.2%, and boundary layer cross-RMW radial wind, ul , for 7.1%.

Overall, the processes left 54.5% of the certainty unexplained.

interaction with θe the main source of its 2link. But, moving from 21.1% in direct influence to 24.0% in

total, uu contributes least of all via interactions.

36



FIG. 5.2. Causal web showing direct and coupled influences as percentages of the 45.5% certainty

explained. The target, ∆vma x , and the lag of each driver, which was 1hr, are implied. The direct

influences are shown in the black boxes containing the driver labels. The influences from two dri-

vers are shown in the blue boxes attached to blue lines which connect the two constituent drivers.

The influences from three drivers are shown in the red boxes at the intersection of three red lines,

each line connecting to one of the constituent drivers. The influence from all four drivers together

is shown in the green box below, and not connected to, the rest of the web.

The source of the second largest direct influence,∆T , remained second in total influence. Its total

influence is only slightly greater than that of uu , though. But, its coupled influences yield positive

2links and 3links, increasing its total influence by about 13%. Like with ul , the 3link its strongest level

of coupling mostly due to the {ul ,θe ,∆T } term. In net, interactions increase the influence of∆T from

15.8% to 24.5%.
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TABLE 5.1. Table decomposing the certainty gain into m link influences from each driver. All val-

ues are percentages of the certainty gain. Note that the 1link influences are simply the direct in-

fluences. Meanwhile, the 4link influence is the same for every driver, as it is the coupled influence

of all four drivers divided four ways.

Process 1link 2link 3link 4link Total

uu 21.1 9.4 -2.3 -4.3 24.0

ul 10.4 1.3 8.3 -4.3 15.7

θe 13.8 20.1 6.2 -4.3 35.8

∆T 15.8 2.2 10.8 -4.3 24.5

Though θe contributed the third largest direct influence, it contributed the most in total influence.

It was the only process contributing more via interactions than by direct action. Specifically, it seemed

most active at the 2link level, where all its coupled influences are positive. Almost half of this comes

from its coupling with uu , with its coupling with∆T being another large contribution. Of all the pos-

itive 3links, the 3link from θe was the smallest, largely because two of its three three-driver coupled

influences were negative. Overall, θe directly contributed 13.8%, but its total influence accounted for

35.8% of the certainty gain.

5.3 Discussion

The results for uu appear to corroborate existing narratives. A large upper-level outflow removes

air aloft, thereby decreasing the surface pressure and sharpening the pressure gradient. This sharper

gradient then allows for a more intense storm in order to maintain a balanced state. The storm will also

contract, which will intensify the storm to conserve angular momentum. The large direct influence

from uu , which is the second largest influence in this study, evidences just how important this role of

uu is for driving intensification.

The role of uu in this particular ensemble, however, may suggest something more. At the initializa-

tion time of the ensemble, synoptic-scale forcing was present. While this may be the source of uu at the

beginning, the memory of the synoptic-scale forcing diminishes as the simulation continues. Thus, in

the later stages, when most of the ensemble members experience a second intensification, the simu-

lated hurricane itself may be the source of uu . This suggests the possibility of a self-intensifying storm

as uu would then feedback to intensify the storm.

If the outflow is at least partially storm-driven, anamolous warming of the core may explain most

of it. This would cause the air in the core to expand, causing pressure to rise aloft. The circulation aloft
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then becomes super gradient. This triggers a larger outflow over the core of the hurricane, thereby

intensifying the storm.

This pushes the burden of explanation onto finding a source for the anamolous warming, and

preferably one driven by the storm itself. Once the eye forms, there is subsidence within the eye, which

could serve to further warm the eyewall. But as Vigh and Schubert (2009) showed, diabatic, i.e. la-

tent, heating in the eyewall itself efficiently drives intensification. This is evidenced by the coupled

influence of {uu ,θe }, which is the third largest contribution to our certainty gain. A large uu over the

eyewall allows high θe air to enter and rise. As it rises, the water condenses and releases large amounts

of heat into the upper layers. This high θe air could not have been as effective if uu was not also acting

simultaneously to remove air aloft, which would explain the large coupled term. The positive coupled

influence from ul and θe also supports this warming narrative.

The radial winds were expected to be very inseparable because of how the secondary circulation

is defined. Instead, the winds are only weakly inseparable, possibly due to where the variables are

defined. The location of ul is always defined by the RMW, making it always part of the secondary

circulation. Meanwhile, the location of uu is sometimes over the eyewall, and it is sometimes within the

eye. When it is over the eyewall, uu is part of the secondary circulation, thereby making it inseparable

from ul . When it is within the eye, however, uu represents air moving out of the center, and therefore

is not part of the secondary circulation. This effect is therefore separable from the effect of ul , so their

overall effects are only weakly inseparable.

There is an interesting narrative involving uu , ul , and θe . Note that the two-driver couplings

{ul , uu}, {ul ,θe }, and {uu ,θe } all suggest inseparable effects, but the effects of {uu , ul ,θe } are sepa-

rable. This implies that the effects of two-driver couplings themselves are separable, even if the effects

of the drivers involved in each two-driver coupling are not separable. This suggests that ul and uu each

couple with θe , but these two-driver coupled effects are separable. Physically, this may mean that uu

and ul each present valid pathways for high θe air to enter the core, and they do not need to cooperate

to govern the flow of high θe air. That is, the effect of ul bringing high θe air into the core is separable

from the effect of uu allowing the air to rise. There also may be a more complex story based on the

timing of events like there was with uu and ul .

The direct influence of∆T evidences its possible role of determining at least the maximum rate of

intensification. And, this could in turn suggest that the view of a hurricane as a Carnot engine, while
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correct, is incomplete. Of course, more explicitly physical studies are necessary to test this. One pos-

sible nonphysical explanation is that∆T is a proxy for the vertical motion of the secondary flow. Note

that uu and ul are components of the secondary flow. The two-driver coupled influences of ∆T with

either uu or ul are negative, while their three-driver coupled influence is positive. Unlike what hap-

pened with uu , ul , and θe , the two-driver coupled effects are inseparable even though the effects of

∆T are separable from either uu or ul . Thus, the three drivers together are inseparable, suggesting

they may together represent the secondary circulation.

Despite the enigmatic role of∆T , it is involved with by far the largest contribution toward the cer-

tainty gain. In fact, this could also evidence that∆T contains information about the vertical motion in

the secondary circulation, as that dictates the path of high θe air beyond the boundary layer. What this

term does clearly evidence, along with the large term from {θe ,∆T }, is that thermodynamics played

an important role in Patricia’s RI.

Aside from the four-driver coupled influence, the other negative coupled influences arise when

uu and θe are coupled with either ul or ∆T , and when ∆T is coupled with either uu or ul . Together,

they may evidence the changing importance of processes during the RI of Patricia. When Patricia was

first starting, the mechanical driving, and so dynamical variables like uu and ul , may have been more

important. Later, when Patricia was formed and the dynamics were stable, the thermodynamics, rep-

resented here by θe and∆T , gave her a second wind. These modes of driving are vastly different, which

could lead to the large negative values.

In the end, however, θe proved to be the most responsible of these four for driving intensification.

It drove RI mostly be being worked on. The hot, humid air did little on its own, as evidenced by only one

storm in the same region four months prior to Patricia (Kimberlain et al. 2016). But, with uu allowing

it to rise, ul directing it into the core, and ∆T governing the connection between the boundary and

outflow layers, the hot humid air was able to realize its full potential. This agrees strongly with the

findings by Hu and Wu (2020).

One thing that needs mention is the relatively large self-certainty of the target. With 45.5% of our

conditional certainty coming from the drivers, they failed to explain even a simple majority. This does

not, however, reduce the above discussion to nothing. For example, having only 45.5% come from

certainty gain does not change the fact that θe was responsible for 35.8% of that gain. It just means

that θe is only 45.5%× 0.358 = 16.3% of the full story. And overall, the above discussion is only about

45.5% of the full story, hinting that there is still much more physics to be had.
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5.4 Conclusions and Moving Forward

Despite having only four azimuthally averaged drivers and a noisy target, the drivers explained

about 45.5% of W (∆vma x |Y). The framework yielded 24−1= 15 direct and coupled influences, together

yielding explanations of Patricia’s RI that were rich in physics. How I (∆vma x ; Y) decomposed appears

to agree with most of the existing literature. Namely, the solo action of outflow drives intensification

mechanically, while high θe air in the boundary layer at RMW drives the hurricane thermally.

Specifically, the influence of θe by and large comes from its inseparability. Without the secondary

circulation, the hot, humid air did little to directly act. But, with the secondary circulation, the air was

then in a position to drive intensification by warming the core. Such interactions showed that θe is

actually the responsible for most of the certainty gain.

Some of the possible physical explanations were new to this analysis. For one, given the nature of

the simulations, the concept of self-driven intensification was plausible. For another, the hypothetical

view that a TC not only acts like a Carnot engine, but also serves as a physical bridge between the

boundary and outflow layers, seems plausible given the importance of the direct, coupled, and total

influences of∆T .

There are many ways to improve upon the current study. For example, azimuthal averages, like all

averages, are great summaries that smooth over many of the features which contain vital information.

To increase the extractibility and availability of information content, we could perform principle com-

ponent analysis and use the resulting principle components instead. This is still a summary, but it is

more of a summary of information-containing features rather than smoothing over features. It would

also implicitly include more drivers in the same number of time series.

Another possibility for improvement could come from using vma x instead of ∆vma x as a target.

This would require including vma x as a potential driver, which might result in excluding one of the

drivers in the present study in order to preserve the accuracy of information estimation. But, the noise-

to-signal ratio will be decreased potentially 14 times, thereby yielding a much higher availability of

information content. This might also serve to increase the reliability of the information estimators.

The only concern with this would be that the target is not as direct a proxy to intensification as∆vma x

is.

On top of this, we are still discussing if 45.5% is an acceptable amount of explanation. Currently,

we are of the opinion that the study is not diminished. In fact, we are hopeful that this drives more

research to reduce the 55.5% of unexplained certainty!
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CHAPTER 6

Generalizing the Certainty Framework to Precipitation-like Targets

To motivate generalizing the certainty framework to noncontinuous targets, consider precipitation.

Either there is no precipitation, or there is some continuously distributed value of precipitation. In

other words, precipitation is partially discrete and partially continuous, or quasidiscrete. Precipitation

is not the only example of a noncontinuous variable. Discrete variables, too, are a type of noncontinu-

ous variable, examples of which include some implementations of transfer coefficients in convection-

permitting models and categorizing phenomena like El Niño Southern Oscillation as strong, weak, neu-

tral, or La Niña. The rest of this section will be devoted to treating precipitation.

The distribution (pdf) of precipitation can be represented continuously as

pR (r ) = aδ(r ) + (1−a )pR>0(r ), (6.1)

where r is the amount of precipitation, 0≤ a ≤ 1 is the proportion of the observations without precip-

itation, pR>0 is a true probability density, i.e. integrates to 1 and is nonnegative everywhere, which is

zero when r ≤ 0, and δ is the Dirac delta. The Dirac delta is the continuous equivalent of the Kronecker

delta, with the property
∫ ∞

−∞

f (r )δ(r − r0)d r = f (r0), (6.2)

where r0 is some value in the domain of R . In other words, the value of the entire integral is the value

of whatever is multiplied by the Dirac delta whenever the Dirac delta’s argument is zero. This property

means that the probability density of precipitation (Eq. (6.1)) integrates to 1, making it a true distribu-

tion.

The joint pdf of precipitation and a driver, Y , becomes

pR ,Y (r, y ) = aδ(r )pY (y |r = 0) + (1−a )pR>0,Y (r, y ). (6.3)

The mutual information between R and Y is then

I (R ; Y ) =

∫

pR ,Y (r, y ) log
pR ,Y (r, y )

pR (r )pY (y )
d r d y (6.4)

=

∫

�

aδ(r )pY (y |r = 0) + (1−a )pR>0,Y (r, y )
�

log
aδ(r )pY (y |r = 0) + (1−a )pR>0,Y (r, y )

[aδ(r ) + (1−a )pR>0(r )]pY (y )
d r d y .

(6.5)
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This integral splits into two parts: one where r = 0, and another where r > 0. In the former, only the

Dirac delta part of pR remains because the continuous portion of the distribution is zero. Similarly, in

the latter integral, only the continuous portion because the Dirac delta is zero. Thus,

I (R ; Y ) =

∫

(aδ(r )pY (y |r = 0)) log
aδ(r )pY (y |r = 0)

[aδ(r )]pY (y )
d r d y

+

∫

(1−a )pR>0,Y (r, y ) log
(1−a )pR>0,Y (r, y )

[(1−a )pR>0(r )]pY (y )
d r d y . (6.6)

In the logarithm of the first integral, the aδ(r ) terms cancel in the limit as r → 0, while in the logarithm

of the second integral, only the (1−a ) terms cancel. This leaves

I (R ; Y ) =

∫

(aδ(r )pY (y |r = 0)) log
pY (y |r = 0)

pY (y )
d r d y

+

∫

(1−a )pR>0,Y (r, y ) log
pR>0,Y (r, y )

pR>0(r )pY (y )
d r d y (6.7)

=a DK L (pY |r=0||pY ) + (1−a )IR>0(R ; Y ). (6.8)

In the first integral, the Dirac delta returns pY (y |r = 0) whenever r = 0. This means the first integral is

the KL divergence of the conditional pdf of Y when there is no precipitation from the marginal pdf of

Y , multiplied by the proportion of observations lacking precipitation. The second integral is clearly a

mutual information between continuous variables, multiplied by the proportion of observations with

precipitation.

The KL divergence comes from when precipitation is discrete, while the mutual information comes

from when it is continuous. This shows that the framework itself, when applied to precipitation, can

be split into a discrete portion and a continuous portion! To combine the two parts, the results from

the discrete part are simply multiplied by the probability of a dry observation, and the results from the

continuous part are multiplied by the probability of a wet observation.

To calculate relative influence for the discrete results, the framework uses Shannon entropy like in

McGill (1954), but only the part of the Shannon entropy coming from dry observations. That is, instead

of thinking of dry observations themselves as a separate unary variable, i.e. having only one possible

value, the dry observations are part of a binary variable. More plainly, even though the dry portion of

precipitation is the target of the discrete part of the framework, the dry observations are not the only

observations in the discrete portion of the framework. While this may seem incorrect, note that the

marginal pdf of Y is used in the KL divergence. Since the marginal pdf still contains wet observations,
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wet observations are considered in the dry part of the framework. Furthermore, the Shannon entropy

of a unary variable is always zero, while the KL divergence coming from the discrete portion of the

framework may be positive, meaning normalization is impossible in this case. For these two reasons, I

argue that partial Shannon entropy is the correct normalization for the discrete part of the framework.

To calculate partial Shannon entropy, first treat precipitation as a binary (wet or dry) variable, and

use only the portion of the Shannon entropy that comes from when it is dry. In other words,

HR=0(R ) =−a log a = a DK L (pY |r=0||pY ) +HR=0(R |Y ), (6.9)

where HR=0(R ) is the partial Shannon entropy. Thus, the physics of the dry observations that is captured

by the drivers is

a DK L (pY |r=0||pY )

HR=0(R )
=−

1

log a
DK L (pY |r=0||pY ), (6.10)

while the unexplained forcing is

HR=0(R |Y )

HR=0(R )
=

1

log a
(log a +DK L (pY |r=0||pY )). (6.11)

The generalized certainty framework differs from the original only in calculating relative influence.

The framework can now be applied to quasidiscrete targets with only one value that is considered dis-

crete. More work is needed to generalize the framework further. For example, if a quasidiscrete variable

has more than one value at which it is discrete, the question is whether the discrete values should be

analyzed together or individually. If the discrete modes are analyzed together, then the results for a

completely discrete target follow the framework from McGill (1954) exactly. But, if the discrete modes

are analyzed individually, then each mode has a separate analysis that is normalized by its partial Shan-

non entropy. Which form of analysis is better requires future investigation.
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CHAPTER 7

Concluding Remarks and Moving Forward

This thesis expanded upon the certainty framework proposed by van Leeuwen et al. (2021). A

thermodynamic interpretation of the differences between entropy and certainty was introduced. The

concept of separability of effects was introduced, and two-driver coupled influences were shown to

evidence the separability of the effects of two drivers, with negative numbers implying separability

and positive numbers implying inseparability. Furthermore, a new reference density was introduced

specifically for targets with high noise. Different expressions for coupled influences, m links, and to-

tal influences are proven in the Appendix. Of great importance was that the theoretical value of total

influence is nonnegative, making the decomposition of mutual information into total influences non-

negative.

Implementing the framework was detailed. The choice of computer language was discussed, as

was the choice of algorithm for mutual information estimation. To make the estimators more accu-

rate, the k -nearest neighbors (kNN) algorithms of Kraskov et al. (2004) and Vejmelka and Palus̆ (2008)

were refined, the data in the time series were made marginally Gaussian, and new criteria for determin-

ing the parameter k were developed. Combining the information estimations to calculate the coupled

influences, m links, and total influences was detailed. Calculating self-certainty without explicitly im-

plementing a KL divergence estimator was described.

The framework was applied to study the rapid intensification of Hurricane Patricia (2015). To re-

duce numerical error in the implementation due to the curse of dimensionality, the study was limited

to four drivers. These were radial wind in the outflow layer (uu ), radial wind in the boundary layer (BL)

at the radius of maximum wind (RMW) (ul ), the equivalent potential temperature at BL RMW (θe ),

and the difference in temperature between the BL and outflow layer (∆T ). The target was the hourly

change in maximum tangential wind between the heights 600m and 1km. The drivers explained 45.5%

of the target’s total certainty.

Decomposing the certainty gain into coupled influences evidenced rich physics based on the sep-

arability and inseparability of the drivers. The largest direct contribution was from uu , which together

with relatively weak m links was interpreted as uu decreasing the central pressure and thereby allowing

the storm to intensify. The only large coupled influence of uu was with θe , which was interpreted as

uu allowing high θe air to convect in the eyewall. Other direct contributions were not nearly as large.
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By considering more than one coupled influence, more complex physics was evidenced. For ex-

ample, the three-driver coupled influence from {uu , ul ,θe } evidenced separability of the effects of the

three constituent drivers, but the coupled influence of any two of these three drivers evidenced insep-

arability. This was interpreted as the two-driver effects themselves being separable, specifically that

the pathway of uu and θe acting together is separable from the pathway of ul and θe acting together.

For another example of this kind of reasoning, there was another three-driver coupled influence, from

{uu , ul ,∆T }, that instead suggested inseparability of the three drivers, even though the two-driver cou-

pled influences∆T had with either uu or ul suggested separability. This was interpreted that all three

drivers together might represent one process, namely the secondary circulation, which was not evi-

denced by considering the above two-driver coupled influences alone. For a final example, it was sug-

gested that the coupled influences that were negative evidence that the mode of Patricia’s RI changed

from a dynamic to a thermodynamic origin during the RI.

The framework was generalized to handle variables like precipitation. Precipitation time series in

this generalization were either zero or some continuously distributed positive value. The framework

was split into studying the one discrete value separate from the continuous part of the distribution. In

doing so, partial Shannon entropy was introduced to normalize the discrete portion of the framework.

Further generalization to variables with more than one discrete value was mentioned but not evaluated

further.

7.1 Future Work

7.1.1 Hurricane Patricia

With the study of Hurricane Patricia, other drivers or targets should be considered for network

discovery. For example, studying vma x is different from studying∆vma x . Since the time series for vma x

is less affected by uncertainty, however, recovering the analysis of ∆vma x from the analysis of vma x

would be convenient. Other drivers many include principal components from principal component

analysis, which could potentially capture the structure of the hurricane and determine what structures

lead to intensification.

At the same time, the results from the current study already provide interesting leads for future,

more focused studies. For instance, whether of not the simulated uu came from synoptic forcing needs

to be determined to verify or reject the hypothesis of self-driven outflow. Also, whether or not∆T was
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FIG. 7.1. Algebraic link diagram of Borromean rings. Note that cutting any one ring leaves the

other two rings unlinked. Image made public domain by David Eppstein via Creative Commons.

Image URL https://commons.wikimedia.org/wiki/File:Algebraic_Borromean_link_diagram.svg.

active or passive, or even just a proxy for another process, needs to be determined. These future studies

should be designed to determine the physical mechanisms which led to these results, which will in turn

provide feedback on the abilities of the framework to detect physical phenomena.

7.1.2 Interpretations and Results in the Framework

As stated in Section 3.2.1, the interpretations of two-driver coupled influences may not hold for

coupled influences from more than two drivers. Two potential interpretations need to be studied fur-

ther. The results in the TCRI application hint at an interpretation related to Brunnian links, a concept

from knot theory. A famous example is a set of Borromean rings, which are three rings that are three-

wise linked but not pairwise linked. (See Fig. 7.1.) This interpretation is evidenced by showing that the

coupled influence of three drivers Y , Z , W on X is

X
Y Z W M Y = I I (X , Y , Z , W ) = I I (X , Y , Z )− I I (X , Y , Z |W ) = X

Y Z M Y\{W }−
X

Y Z M Y, (7.1)

where X
Y Z M Y\{W } is the coupled influence of Y and Z if W was not included in the analysis. When

X
Y Z W M Y > 0, this means X

Y Z M Y\{W } >
X

Y Z M Y, which does not show if either X
Y Z M Y\{W } or X

Y Z M Y are

positive or negative. That is, the effects of Y and Z become more inseparable when W is excluded
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FIG. 7.2. An annotated evaluation of the Lorenz 1963 system. In region A, the system clearly ex-

hibits two dimensional behavior despite being represented by three variables. In region B, the

system transitions between being two and three dimensional. In region C, the system is clearly

three dimensional. The dimension of the system overall is 2.4013 (Kuznetsov et al. 2020). Image

annotations by me. Original image made public domain by Wikimol via Creative Commons. Orig-

inal image URL https://en.wikipedia.org/wiki/File:Lorenz_system_r28_s10_b2-6666.png.

than when W is included, whether or not the effects of Y and Z are separable. But, because this

value is symmetric for Y , Z , W , excluding any one makes the other two more inseparable, suggest-

ing the three variables are three-ways linked so that the effects of one is marginalized into the others.

Inversely, a negative three-driver coupled influence implies that excluding any one driver makes the

other two more separable, suggesting that the drivers are not three-ways linked, so the effects of one is

not marginalized into the others. As evidence for this interpretation in the physical world, I cite the in-

terpretations used for the TCRI study. In general, an m-driver coupled influence may suggest whether

or not the drivers are m-linked in the topological sense.

Another possible interpretation involves joint action by multiple drivers. I have yet to clearly define

action, let alone joint action and how it relates to coupled influence. But, one of the properties of joint

action is a reduction in overall dimension of the system. For example, consider the classical Lorenz

1963 system using standard parameter values (Fig. 7.2). While it is represented using three dimensions,

the Hausdorf dimension of the global attractor, i.e. the attractor on the region with stable oscillations,

is 2.4013 (Kuznetsov et al. 2020). A reduction of dimension may evidence joint action, and how this
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joint action appears in coupled influence should be investigated. Whether or not joint action relates

to sufficient-component causation should also be investigated.

Another topic to study is how results change when a driver is removed from the analysis. If a driver’s

direct influence is zero, removing it from a study does not change the certainty gain. Furthermore, a

zero direct influence means the driver is d-separated by the other drivers. But, when a driver’s 1link

is nonzero, how the results change if the driver is removed is unknown. Early evidence (not shown)

suggests that, when a driver has a small relative total influence, removing it did not change the order

of the total relative strength of the remaining drivers. Inversely, removing a driver with a large relative

total influence dramatically changed the final order of importance. Furthermore, how the causal web

changes upon removal of any driver would need to be studied.

7.1.3 Implementation

Making the implementation faster is always a positive result, so long as accuracy is not compro-

mised. Speed gains could be realized by implementing the framework in FORTRAN, as the language

performs vector and matrix operations faster than any other language. Based on the same reasoning,

designing a graphical processing unit-friendly version could offer an even faster implementation.

The information estimators themselves could be improved, both for speed and accuracy gains. In-

stead of recombining (conditional) mutual informations to calculate the coupled influences, designing

an estimator for coupled influences directly would be both faster and potentially more accurate. The

information estimator from Kraskov et al. (2004) is extendable to interaction information by another

formulation they introduce, but there seems to be no existing estimator for conditional interaction in-

formation, which is what the coupled influences are. The norm used for kNN distance may also affect

the results. While the maximum norm is simple and efficient, perhaps using another norm would make

the estimators more efficient.

Speed and accuracy gains could also come from transforming the joint distribution of the target

and drivers to be multivariate Gaussian. There are analytic equations for information theoretic terms

for variables that are multivariately Gaussian distributed. The Shannon entropy of a set X , assumed to

be multivariate Gaussian system, or a subset thereof, is

H (X ) =
1

2
ln det(2πeΣX ), (7.2)
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where ΣX is the covariance matrix of X . We can use this directly in information calculations, as

I (X ; Y ) =H (X ) +H (Y )−H (X , Y ) and I (X ; Y |Z ) =H (X , Z ) +H (Y , Z )−H (X , Y , Z )−H (Z ). (7.3)

These equations were used to rigorously test the information estimators, and being able to use these

equations would also greatly speed up the framework. This shows the need to develop a fast algorithm

for multivariate Gaussianification such that the theoretical value of mutual information is preserved,

if such a transformation exists.

Needless to say, KL divergence estimators will be implemented. The self-certainty estimation is

as accurate as the Shannon entropy estimator, but a KL divergence estimator may still be better. Fur-

thermore, in order to implement the generalized framework, a KL divergence estimator is absolutely

needed. Previous implementation attempts had large systematic errors.
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APPENDIX A

A.1 D-Separation Example

D-separation is a concept for directed acyclic graphs (DAGs) with statistically measurable conse-

quences. Specifically, if two variables are d-separated by a set of variables on the same DAG, then

the two variables are conditionally independent given that set. The set that is conditioned on may be

empty, implying the two variables have no common ancestors.

To illustrate a more complex example for d-separation, consider the DAG in Figure A.1. Variables

Z and W are d-separated by the empty set, meaning they are unconditionally independent. Similarly,

because U is a child only of W , Z and U are d-separated by the empty set. The variable Y d-separates

X from the rest of the graph. Variables U and V d-separate Y from W , and U and V are d-separated

by W . Meanwhile, V with either W or U d-separates Y from Z .

It is tempting to say V , as the only child of Z , d-separates Z from the rest of the graph. Indeed,

conditioning on V blocks the forward path from Z . But, because V is a collider for Z and W , condi-

tioning on V opens a path between Z and W . This path is blocked by adding either W or U to the

conditioning.

FIG. A.1. Standard directed acyclic graph with six nodes, two of which are root nodes.
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A.2 Rewriting Influence as Sum of Mutual Informations

The development below is what the current implementation uses to calculate the coupled influ-

ences, as discussed in section 4.2. Calculating coupled influences is actually a newer addition than

calculating the m links, even though this result is used to prove the next result. The reason is that the

influences come from a combination of drivers, while the m links revolve around one driver acting with

a few others. Before developing the representation of a combination by an integer (Section 4.2), it was

difficult to loop through the combinations. This made calculating and storing the values in memory

conceptually easier for m links.

Another product of this result is to simplify the dependencies that arise from the recursive defini-

tion, shown in equation (2.7). These dependencies create difficulty from constantly checking whether

or not a coupled influence has been calculated in order to use it. And, coupled influences from large

sets naturally have lots of overlapping dependencies. This result pushes the burden off of the recursive

definition and onto already calculated mutual informations. Section 4.2 finishes discussing how this

result is ultimately used.

Suppose Y is the set of considered variables. The coupled influence of a set J ⊆ Y on a target X as

X
J M Y =

�

X
J I Y

�

−

| j |>0
∑

j⊂J

X
j M Y (A.1)

where
�

X
J I Y

�

= I (X ; J |Y \ J ) is introduced as a convenient shorthand. Note that the notation leaves

conditioning on the remaining drivers in Y implied, which will be absent in the case of J = Y. Below, I

prove by induction that

X
J M Y =

| j |>0
∑

j⊆J

(−1)|J |−| j |
�

X
j I Y

�

. (A.2)

To start, for J ⊆ Y such that |J |= 1,

X
J M Y =

�

X
J I Y

�

=

| j |>0
∑

j⊆J

(−1)|J |−| j |
�

X
j I Y

�

. (A.3)

For J ⊆ Y such that |J |= 2, then

X
J M Y =

�

X
J I Y

�

−

| j |>0
∑

j⊂J

X
j M Y =

�

X
J I Y

�

−

| j |>0
∑

j⊂J

�

X
j I Y

�

=

| j |>0
∑

j⊆J

(−1)|J |−| j |
�

X
j I Y

�

. (A.4)

56



Now, suppose that, for all K ⊂ Y such that |K | ≤ κ,

X
K M Y =

|k |>0
∑

k⊆K

(−1)|K |−|k |
�

X
k I Y

�

. (A.5)

Then, for K ⊆ Y with |K |= κ+1,

X
K M Y =

�

X
K I Y

�

−

|k |>0
∑

k⊂K

X
k M Y (A.6)

=
�

X
K I Y

�

−

|k |>0
∑

k⊂K

|k ′|>0
∑

k ′⊆k

(−1)|k |−|k
′|
�

X
k ′

I Y

�

. (A.7)

I will rewrite the double summation. First, consider the summation of the influences of all sets

k ⊂ K such that |k |= |K | − 1= κ. For each k , there is 1=
�

|K |−|k |
(|K |−1)−|k |

�

term which yields a positive
�

X
k

I Y

�

.

But, for each k ′ ⊂ K such that |k ′| = |K | − 2 = κ− 1, there are 2 =
�

|K |−|k ′|
(|K |−1)−|k ′|

�

sets k that contain k ′,

meaning that summing all X
k

M Y yields−2
�

X
k ′

I Y

�

. It should be clear that summing all X
k

M Y where k ⊂ K

and |k |= |K | −1= κwill yield (−1)(|K |−1)−|k ′|
�

|K |−|k ′|
(|K |−1)−|k ′|

� �

X
k ′

I Y

�

for all k ′ ⊂ K .

Next, consider the summation of the influences of all sets k ⊂ K such that |k |= |K |−2= κ−1. There

is 1=
�

|K |−|k |
(|K |−2)−|k |

�

term which yields a positive
�

X
k

I Y

�

. For each k ′ ⊂ K such that |k ′|= |K |−3= κ−2, there

are 3 =
�

|K |−|k ′|
(|K |−2)−|k ′|

�

sets k that contain k ′. In general, there are
�

|K |−|k ′|
(|K |−2)−|k ′|

�

sets k ⊂ K that contain each

set k ′ ⊂ K with |k ′| ≤ |k |= |K | −2= κ−1.

Finally, by continuing this process, we have that, for some 0 < i < |K | = κ+ 1, summing all X
k

M Y

where k ⊂ K and |k | = i yields (−1)i−|k
′|
�

|K |−|k ′|
i−|k ′|

� �

X
k ′

I Y

�

for each k ′ ⊂ K such that |k ′| ≤ i . Then, by

collecting similar terms across all values of i ,

|k |>0
∑

k⊂K

|k ′|>0
∑

k ′⊆k

(−1)|k |−|k
′|
�

X
k ′

I Y

�

=

|k |>0
∑

k⊂K

�

X
k I Y

�

 

|K |−1
∑

i=|k |

(−1)i−|k |
�

|K | − |k |

i − |k |

�

!

. (A.8)

We can rewrite the inner summation as

(|K |−1)−|k |
∑

i=0

(−1)i
�

|K |−|k |
i

�

. Lemma 1 in Aupetit (2009) proved

that

n
∑

i=0

(−1)i
�

n
i

�

= 0. Instead, we have

(|K |−1)−|k |
∑

i=0

(−1)i
�

|K | − |k |

i

�

=

|K |−|k |
∑

i=0

(−1)i
�

|K | − |k |

i

�

− (−1)|K |−|k |
�

|K | − |k |

|K | − |k |

�

= 0− (−1)|K |−|k |. (A.9)
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Substituting this into equation (A.8) yields

|k |>0
∑

k⊂K

�

X
k I Y

�

 

|K |−1
∑

i=|k |

(−1)i−|k |
�

|K | − |k |

i − |k |

�

!

=−

|k |>0
∑

k⊂K

�

X
k I Y

�

(−1)|K |−|k |. (A.10)

Finally, equation (A.6) becomes

X
K M Y =

�

X
K I Y

�

+

|k |>0
∑

k⊂K

(−1)|K |−|k |
�

X
k I Y

�

(A.11)

=

|k |>0
∑

k⊆K

(−1)|K |−|k |
�

X
k I Y

�

, (A.12)

meaning that the supposition for all sets with κ processes implies the supposition for a set with κ+ 1

processes.

Since the supposition was true for all sets with 1 or 2 processes, by the principal of mathematical

induction, for all J ⊆ Y,

X
J M Y =

| j |>0
∑

j⊆J

(−1)|J |−| j |
�

X
j I Y

�

. (A.13)

A.3 Rewriting m link Influence as Summation of Mutual Informations

Writing m link influences in terms of mutual informations allowed for the original implementation

for calculating them, as stated in section 4.3. This was before the implementation calculated the cou-

pled influence terms, which are now used to calculate m link influences. The result at the end, however,

is used in the next result, which is critical to the framework as a whole.

Let Y be the set of all considered drivers, with |Y|= n . The m link influence of driver Y ∈ Y on target

X is

(Y → X )m =
1

m

|J |=m−1
∑

J⊆(Y\{Y })

X
J Y M Y. (A.14)

Using the previous result, this is

m (Y → X )m =

|J |=m−1
∑

J⊆(Y\{Y })





| j |>0
∑

j⊆(J∪{Y })

(−1)(|J |+1)−| j |
�

X
j I Y

�



 . (A.15)

To find J , note Y is already in the active set. So, m − 1 other variables are chosen from n − 1 other

variables. Thus, in the inner summation of equation (A.15), there is 1 =
�

(n−1)−(m−1)
(m−1)−(m−1)

�

=
�

n−(|J |+1)
m−(|J |+1)

�

set

that can contribute a positive
�

X
J Y I Y

�

and a negative
�

X
J I Y

�

. For each j ⊂ (Y \ {Y }) such that | j |=m − 2,
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there are
�

(n−1)−(m−2)
(m−1)−(m−2)

�

=
�n−(| j |+1)

m−(| j |+1)

�

sets J that contain j , so the inner summation yields
�n−(| j |+1)

m−(| j |+1)

�

copies

of negative
�

X
j∪{Y }

I Y

�

and
�n−| j |−1

m−| j |−1

�

copies of positive
�

X
j I Y

�

. This pattern continues until | j |= 0, i.e. j is

empty. In this case, the inner summation yields
�

n−1
m−1

�

copies of (−1)m−1
�

X
Y I Y

�

.

Therefore,

m (Y → X )m =(−1)m−1

�

n −1

m −1

�

�

X
Y I Y

�

+

0<|J |<m
∑

J⊆(Y\{Y })

(−1)m−(|J |+1)

�

n − |J | −1

m − |J | −1

�

��

X
J Y I Y

�

−
�

X
J I Y

��

. (A.16)

A.4 Total Influence is Nonnegative

The need for total influence to be nonnegative is discussed briefly in section 4.3. One of the first

applications, before even explicitly storing the coupled influence terms, was studying the time series

data from Christman field. It was a really long time series, so we were certain that the estimators would

be accurate. The results came the day before I presented them, but they contained negative total in-

fluences. Unfortunately, this seemed to be what generated the most discussion after my presentation.

At that time, I could only intuit that total influence was nonnegative.

To prove this, start from result from the m links. Then, I develop a coefficient for each mutual in-

formation in the summation that is not expressed as a summation. This is then combined with an

inequality of mutual informations at the end to prove the measure is indeed nonnegative.

The total influence of a driver Y ∈ Y on target X is the sum of all m links from Y to X . That is,

(Y → X )t o t =

n
∑

m=1

(Y → X )m , (A.17)

where the m links have already been normalized by m . Using the previous expression and then collect-

ing terms, this becomes

(Y → X )t o t =

n
∑

m=1

1

m

|J |<m
∑

J⊆(Y\{Y })

(−1)m−(|J |+1)

�

n − (|J |+1)

m − (|J |+1)

�

�

X
J Y I Y

�

+

n
∑

m=1

1

m

0<|J |<m
∑

J⊆(Y\{Y })

(−1)m−|J |
�

n − |J | −1

m − |J | −1

�

�

X
J I Y

�

(A.18a)

=
∑

J⊆(Y\{Y })

A
|Y|
|J |

�

X
J Y I Y

�

+

|J |6=0
∑

J⊆(Y\{Y })

B
|Y|
|J |

�

X
J I Y

�

, (A.18b)
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where A
|Y|
|J |
=

|Y|
∑

m=|J |+1

(−1)m−(|J |+1)

m

�

|Y|−(|J |+1)
m−(|J |+1)

�

and B
|Y|
|J |
=−A

|Y|
|J |

. We need to show A
|Y|
|J |
≥ 0.

For the sake of brevity, I use k = |J | ≥ 0 and n = |Y|, so

An
k =

n
∑

m=k+1

(−1)m−(k+1)

m

�

n − (k +1)

m − (k +1)

�

. (A.19)

A well known result is
n
∑

m=1

1

m
=

n
∑

m=1

(−1)m−1

m

�

n

m

�

. (A.20)

Thus, for k = 0 and any n ∈N,

An
k =

n
∑

m=1

(−1)m−1

m

�

n −1

m −1

�

(A.21)

=
(−1)n−1

n
+

n−1
∑

m=1

(−1)m−1

m

�

n −1

m −1

�

(A.22)

=
(−1)n−1

n
+

n−1
∑

m=1

(−1)m−1

m

��

n

m

�

−

�

n −1

m

��

(A.23)

=

n
∑

m=1

(−1)m−1

m

�

n

m

�

−

n−1
∑

m=1

(−1)m−1

m

�

n −1

m

�

(A.24)

=

n
∑

m=1

1

m
−

n−1
∑

m=1

1

m
(A.25)

=
1

n
(A.26)

=

�

(k +1)

�

n

k +1

��−1

. (A.27)

Now, assume An
k ′
=

n
∑

m=k ′+1

(−1)m−(k
′+1)

m

�

n−(k ′+1)
m−(k ′+1)

�

=
�

(k ′+1)
�

n
k ′+1

��−1
for 0 ≤ k ′ ≤ k < n − 1. Again, this is

for any n ≥ 1. Then,

An
k+1 =

n
∑

m=k+2

(−1)m−(k+2)

m

�

n − (k +2)

m − (k +2)

�

(A.28)

=
(−1)n−(k+2)

n
+

n−1
∑

m=k+2

(−1)m−(k+2)

m

�

n − (k +2)

m − (k +2)

�

(A.29)

=−
(−1)n−(k+1)

n
−

n−1
∑

m=k+2

(−1)m−(k+1)

m

�

n − (k +2)

m − (k +2)

�

(A.30)

=−
(−1)n−(k+1)

n
−

n−1
∑

m=k+2

(−1)m−(k+1)

m

��

n − (k +1)

m − (k +1)

�

−

�

n − (k +2)

m − (k +1)

��

(A.31)
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From here, the lower bound in the summation is decreased by 1 to m = k+1. When this value is used in

the summation, the bottom part of each combination term will be zero. This makes the value of each

combination term 1, so their difference is 0. Thus, the value of the summation does not change. So,

An
k+1 =−

(−1)n−(k+1)

n
−

n−1
∑

m=k+1

(−1)m−(k+1)

m

��

n − (k +1)

m − (k +1)

�

−

�

(n −1)− (k −1)

m − (k +1)

��

(A.32)

=−

n
∑

m=k+1

(−1)m−(k+1)

m

�

n − (k +1)

m − (k +1)

�

+

n−1
∑

m=k+1

(−1)m−(k+1)

m

�

(n −1)− (k +1)

m − (k +1)

�

(A.33)

=−An
k +An−1

k (A.34)

=−

�

(k +1)

�

n

k +1

��−1

+

�

(k +1)

�

n −1

k +1

��−1

(A.35)

=

�

(k +2)

�

n

k +2

��−1

, (A.36)

where the final equality comes from a bit of algebra. By the principal of mathematical induction,

An
k =

n
∑

m=k+1

(−1)m−(k+1)

m

�

n − (k +1)

m − (k +1)

�

=

�

(k +1)

�

n

k +1

��−1

> 0, for all n ∈N and 0≤ k < n . (A.37)

To prove the total influence is nonnegative, an important relationship is that, for any processes

X , Y , Z , W (where W may be empty),

I (X ; Y , Z |W ) = I (X ; Y |Z , W ) + I (X ; Z |W )≥ I (X ; Y |Z , W ). (A.38)

So, for process Y ∈ Y and any nonempty subset J ⊆ Y \ {Y },
�

X
J Y I Y

�

≥
�

X
J I Y

�

. Rewriting (A.18) shows

(Y → X )t o t =
1

n

�

X
Y I Y

�

+

|J |6=0
∑

J⊆(Y\{Y })

�

(|J |+1)

�

n

|J |+1

��−1
��

X
J Y I Y

�

−
�

X
J I Y

��

≥ 0, (A.39)

as desired.

A.5 Coupled Influence is Interaction Information

The development in this section shows that coupled influence is a version of interaction informa-

tion. Interaction information has been researched extensively since McGill (1954) introduced it. Thus,

with this proof, we are able to use and even add to this already rich body of research, as demonstrated

in section 3.2.1.
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Assume that we have a target X and a set containing at least 2 drivers Y= {Y , Z , . . .}. Then, following

equation (2.7),

X
Y Z M Y =I (X ; Y , Z |Y \ {Y , Z })− I (X ; Z |Y \ {Z })− I (X ; Y |Y \ {Y }) (A.40)

=I (X ; Y |Y \ {Y , Z })− I (X ; Y |Y \ {Z }) (A.41)

=I I (X , Y , Z |Y \ {Y , Z }), (A.42)

which is the interaction information between X , Y , Z given all other drivers. Note that I (X ; Y |Y\{Y , Z })

excludes both Y and Z from the condition, while Z is not active. We can rewrite this term as X
Y M Y\{Z },

so

X
Y Z M Y =

X
Y M Y\{Z }−

X
Y M Y. (A.43)

I will prove a similar relation for all coupled influences.

Now, for some K ⊆ Y such that |K | ≥ 2, suppose that for any nonempty k ⊂ K and any process

W ∈ Y \k ,

X
k W M Y =

X
k M Y\{W }−

X
k M Y. (A.44)

This implies also that, for any partition of K = k ∪{W }, X
K M Y =

X
k

M Y\{W }−
X
k

M Y. Then,

X
K W M Y =

�

X
K W I Y

�

−

|k |>0
∑

k⊂(K ∪{W })

�

X
k M Y

�

(A.45)

=
�

X
K W I Y

�

−
�

X
W I Y

�

−

|k |>0
∑

k⊂K

�

X
k W M Y+

X
k M Y

�

− X
K M Y (A.46)

=
�

X
K I Y\{W }

�

−

|k |>0
∑

k⊂K

�

X
k M Y\{W }−

X
k M Y+

X
k M Y

�

− X
K M Y (A.47)

=
�

X
K I Y\{W }

�

−

|k |>0
∑

k⊂K

�

X
k M Y\{W }

�

− X
K M Y (A.48)

= X
K M Y\{W }−

X
K M Y. (A.49)

Thus, the supposition holds when joining one process W ∈ Y \K to K .

By the principle of mathematical induction, for all J ⊂ Y and any Z ∈ Y \ J ,

X
J Z M Y =

X
J M Y\{Z }−

X
J M Y. (A.50)
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The definition of n-variable interaction information follows a similar recursive definition, e.g. for 4

variables I (X , Y , Z , W ) = I (X , Y , Z )−I (X , Y , Z |W ). We may arbitrarily add conditions as we add drivers

to the study. In our case, we now require at least 3 drivers Y = {Y , Z , W , . . .}. Since we already showed

the two-driver coupled influence is a three-variable interaction information, it is easy to show that

X
Y Z W M Y =

X
Y Z M Y\{W }−

X
Y Z M Y (A.51)

=I I (X , Y , Z |Y \ {Y , Z , W })− I I (X , Y , Z |Y \ {Y , Z }) (A.52)

=I I (X , Y , Z , W |Y \ {Y , Z , W }). (A.53)

Now, assume that, for some nonempty K ⊂ Y,

X
K M Y = I I (X , K |Y \K ). (A.54)

Note that, as in the 2link case, if any driver not in K is removed from Y, this merely redefines the uni-

versal set of drivers, so the above equation holds. Then, for any process W ∈ Y \K ,

X
K W M Y =

X
K M Y\{W }−

X
K M Y (A.55)

=I I (X , K |Y \ (K ∪{W }))− I I (X , K |Y \K ) (A.56)

=I I (X , K , W |Y \ (K ∪{W })). (A.57)

Thus, even by joining one process W to K , the assumption still holds.

By the principle of mathematical induction, for any J ⊆ Y,

X
J M Y = I I (X , J |Y \ J ). (A.58)
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