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ABSTRACT

ON THE CERTAINTY FRAMEWORK FOR CAUSAL NETWORK DISCOVERY WITH APPLICATION TO
TROPICAL CYCLONE RAPID INTENSIFICATION

Causal network discovery using information theoretic measures is a powerful tool for studying new
physics in the earth sciences. To make this tool even more powerful, the certainty framework intro-
duced by van Leeuwen et al. (2021) adds two features to the existing information theoretic literature.
The first feature is a novel measure of relative strength of driving processes created specifically for con-
tinuous variables. The second feature consists of three decompositions of mutual information be-
tween a process and its drivers. These decompositions are 1) coupled influences from combinations
of drivers, 2) information coming from a single driver coupled with a specific number of other drivers
(mlinks), and 3) total influence of each driver. To represent all the coupled influences, directed acyclic
hypergraphs replace the standard directed acyclic graphs (DAGs).

The present work furthers the interpretation of the certainty framework. Measuring relative
strength is described thermodynamically. Two-driver coupled influence is interpreted using DAGs, in-
troducing the concept of separability of drivers’ effects. Coupled influences are proved to be a type of
interaction information. Also, total influence is proved to be nonnegative, meaning the total influences
constitute a nonnegative decomposition of mutual information. Furthermore, a new reference distri-
bution for calculating self-certainty is introduced. Finally, the framework is generalized for variables
that are continuous with one discrete mode, for which partial Shannon entropy is introduced.

The framework was then applied to the rapid intensification of Hurricane Patricia (2015). The
hourly change in maximum tangential windspeed was used as the target. The four drivers were out-
flow layer (OL) maximum radial windspeed (u,), boundary layer (BL) radial windspeed at radius of
maximum wind (RMW) (u;), equivalent potential temperature at BL RMW (0,), and the temperature
difference between the OLand BL (A T). All variables were azimuthally averaged. The drivers explained
45.5% of the certainty. The certainty gain was 35.8% from 6, 24.5% from AT, 24.0% from u,,, and 15.7%

from u;. The total influence of 8, came mostly from inseparable effects, while the total influence of
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u,, came mostly from separable effects. Physical mechanisms, both accepted in current literature and

suggested from this application, are discussed.
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CHAPTER 1
Causal Network Discovery

Causal inference is now an exact science. Within causal inference lie many subfields, of which this
work focuses on causal network discovery (CND). As the name implies, causation can be expressed in
terms of separate processes connected to one another via causal pathways, and CND seeks to discover
the full network of causal pathways. There are many methods for CND, from interventional (Pearl 2000)
to observational (Wiener 1956; Granger 1963, 1969) forms of analysis. The present work uses the recent
observational framework from van Leeuwen et al. (2021), which 1) introduces how select processes
nonlinearly couple to drive a single target variable and 2) determines the completeness of a study. As
many processes in the natural world interact with one another rather than act individually, introducing
how to measure nonlinear coupling is a great leap forward for CND, especially in the earth sciences.
Beyond this, the completeness of a study indicates how thoroughly the select processes represent the
underlying physics that drives the target. Thus, van Leeuwen et al. (2021) revolutionizes CND while
adding to existing CND methods.

This chapter introduces the necessary components for CND. Section 1.1 introduces what a causal
network is, how to represent it, and briefly how to use it. Section 1.2 discusses discovery methods, fo-
cusing on measuring the strength of a causal connection. In Section 1.3, current attempts to represent
and measure coupled causation are discussed. Section 1.4 gives a few examples of using CND in the
earth sciences. Section 1.5 briefly introduces the necessary information theoretic measures for the rest
of the thesis.

Beyond this chapter, the thesis is organized as follows. Chapter 2 summarizes the certainty frame-
work in (van Leeuwen et al. 2021), while Chapter 3 furthers the framework’s interpretations. Chapter
4 discusses implementing the framework in code. In Chapter 5 is the application to tropical cyclone
rapid intensification. Chapter 6 generalizes the framework to targets that are mostly continuous with

one discrete mode. Chapter 7 summarizes this work and suggests related future work.

1.1 Causal Networks

A causal network (CN) shows how processes affect one another. For instance, how does the El Nifio
Southern Oscillation (ENSO) affect land surface temperatures in different places around the world?
How does land surface temperature affect daily precipitation rates? How do local precipitation rates

affect the global hydrological cycle? The uses of such a CN are vast and important. Including economic
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Fi1G.1.1. Different types of graphs. From left to right, the graphs are undirected, directed but cyclic,
and directed and acyclic.

activity in this CN could help determine humanity’s effect on this part of the natural world. CNs, and
how to discover them, are thus an essential element of causal inference.

Often, graphical models are used to represent CNs. Most often, these models are directed acyclic
graphs (DAGs). A graph contains nodes and edges connecting the nodes. (See Fig. 1.1 (a).) For a
CN, the nodes represent processes, and the edges represent the relationship between processes. In a
directed graph, or digraph, each edge is an arrow, pointing from one process to another. (See Fig. 1.1
(b).) For two processes X and Y, Y causing X is written as Y — X. In the case that Y indirectly causes
X, i.e. Y drives processes that either directly or indirectly drive X, then there is a forward, or causal,
path from Y to X, written ¥ — --- — X. A single directed edge also constitutes a forward path. When
Y indeed causes X, Y is an ancestor of X, and X is a descendent of Y. When Y directly causes X, then
Y is a parent of X, and X is a child of Y. Furthermore, when X and Y are connected by a common
ancestor, then the path through the common ancestor is a backdoor path. Acyclic means that, if there
is a forward path from Y to X, then there cannot be a forward path from X to Y. (See Fig. 1.1 (c).)
There is a small caveat when representing feedbacks, but that is beyond the scope of this work. I revisit

DAGs in Section 1.3 in discussing how to represent coupled causation.



Two forms of analysis can be used to calculate how changes in one process affect another process
in the same network. The most popular is interventional analysis, which calculates the results of an
intervention. The standard method for intervention by experimentation for the past several decades is
the randomized control trial (RCT). In an RCT, there is a control group and one or more experimental
groups. The control group receives the standard treatment, which may be no treatment at all, and is
therefore controlled. Each experimental group, however, receives a different nonstandard treatment.
Which group receives which treatment is randomized prior to experimentation, theoretically removing
variation between groups. Assuming, then, that the groups are identical prior to the experiment, sta-
tistically significant differences between groups must be the result of the differing treatments. In the
earth sciences, where 1) control is difficult, 2) small interventions may have little effect, and 3) large
interventions are unethical, numerical sensitivity studies permit analyzing interventions without do-
ing experiments in the physical world. An example could be anomalously heating a certain region and
letting the simulation run.

In light of the difficulty, ethics, and expense of experiments, as well as attempting to implement ar-
tificial human-like intelligence, Pearl (1995, 2000) introduced do-calculus. According to do-calculus,
intervening on a process severs the ties between the process and its parents, thereby creating a dif-
ferent CN. Do-calculus, explicitly recognizing this, aims to use the undisturbed network to calculate
the effect of an intervention. In other words, it aims to calculate interventional causation from obser-
vational data. While Pearl (1995, 2000) give example CNs on which certain interventions still require
experimentation, fewer experiments are needed, and each experiment is potentially minimally inva-
sive. The end result is what would happen if a real intervention occurred, placing do-calculus in the
realm of interventional analysis.

The other form is observational analysis, in which interventions are not used. Common forms of
observational causation include Wiener-Granger Causality (Wiener 1956; Granger 1963, 1969), nonlin-
ear Granger Causality using transfer entropy (Schreiber 2000), and convergent cross mapping (Sugihara
etal. 2012). While many CND analyses assume, either implicitly or explicitly, that causation cannot be
defined in the absence of an intervention, van Leeuwen et al. (2021) argue that permitting interven-
tions at all may hinder analysis. Because intervening on a process results in a different CN than what
occurs naturally, the results from interventional analysis may not accurately reflect results from the

underlying system.
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FI1G. 1.2. Three simplest causal networks of three variables. From left to right, they are a chain, a
fork, and a collider, where X is always between Y and Z.

To illustrate the distinction, consider a closed system. Every state of the system must be a result of
the system. Observational analysis treats the state as coming from a closed system, thereby accurately
reflecting this situation. Interventional analysis, however, opens the system to set the state, whether
or not the previous state of the system would have generated the new state. If the environmental state
does not come from the previous state, then the results may not reproduce what would occur in the

intervention-free system.

1.2 Discovering Causal Networks

Discovering causal networks is much different from using a causal network. To demonstrate how to
discover networks, consider the following basic causal structures. These are chains, forks, and colliders,
each of which involve three processes, say X, Y, and Z. (See Fig. 1.2.) Theedges Y - X and X — Z
constitute a chain, Y — X — Z. Reversing the first of these edges, so X — Y, results instead in a fork,
Y «— X — Z. Reversingboth edges in afork,so Y — X and Z — X, resultsin a collider, Y — X « Z. This
gives a sense of the flow and origin of information in a CN. In a chain, information flows from previous
generations to later generations. A fork, instead, is an instance of a common source of information

for two different forward paths in a CN. In contrast to both a chain and a fork, each of which has one



source of information, a collider has two or more sources of information with forward paths to the
same process.

To reason with both simple and complicated CNs, we use the concept d-separation. For processes
X,Y, and Z, X d-separates Y and Z if and only if X blocks all forward or backdoor paths between Y
and Z, where X may be empty or contain many variables. In a CN, this generally means X contains no
common descendents of Y and Z and only ancestors of Y or Z, including common ancestors. When
given only three processes, d-separation distinguishes chains and forks from colliders. In the chain
and fork, X d-separates Y and Z because it is a parent of at least one of them, and Y and Z are not
otherwise related. What would then distinguish the chain from the fork are assumptions about which
variables precede others. But, in the collider, Y and Z are already d-separated by the empty set, and
X does not d-separate them. Instead, conditioning on X creates a path between Y and Z. While this
may seem counter intuitive, consider the collider in Fig. 1.2. Conditioning on an observed value of X
means keeping it fixed while Y and Z are free to vary. Thus, variations in Y must be offset by variations
in Z, thereby creating a dependence between them. Thus, these simple structures and d-separation
allow us to intuit effects from changes in a process. Appendix A.1 discusses examples of d-separation,
and for a full discussion of d-separation, see Pearl (2000), Section 1.2.3..

To actually discover complicated causal structures, Spirtes et al. (2000) list three major causal as-
sumptions that go beyond statistical reasoning. The first is causal sufficiency, which requires that all
common causes of processes in a network are included in the analysis. Inversely, causes that are not
common may be neglected and treated as independent noise. The second is the causal markov condi-
tion, which states that d-separation of two processes on the graph by one of their parent sets implies
conditional independence of the two processes given the same parent set. This also means that condi-
tional dependence of the two processes given either parent set implies they are not d-separated by ei-
ther parent set. The third assumption is faithfulness, which essentially means that, if the causal markov
condition is met, then the converse of the causal markov condition is also met. That is, conditional in-
dependence of two processes given a set of variables implies that the set of variables d-separates the
two processes. To infer causal networks from time series, Runge (2018) adds the assumption of causal
stationarity, which assumes the causal network discovered for one time is the same throughout time.

Many causal discovery algorithms incorporate these three or four assumptions. Some algorithms,
e.g. PC (Spirtes and Glymour 1991), start with a fully connected CN and prune connections of d-

separated variables, while others, like greedy search algorithm (Chickering 2002) or optimal causation



entropy (Sun et al. 2014), start with a minimally connected network and add strong connections. An-
other popular method is PC-MCI, or TIGRAMITE, in which the PC algorithm generates a preliminary
causal network, and then the parent set for each process is reviewed and revised (Runge 2015).

This leads to discussing how to measure the strength of a connection in the first place to determine
whether or not a connection is negligible. Strength can be measured either in an absolute sense or in
arelative sense. Using absolute strength often involves some threshold value for determining whether
or not a connection exists. This is how information theoretic measures are often evaluated.

Using relative strength, by contrast, is often preferable to absolute measures of strength. To show
this, consider linear regression analysis for driver Y and target X. The correlation coefficient, the typ-
ical measure of strength, is given by
Oxy

R= ,
0,0y

(1.1)

where o, and o, are the standard deviations of X and Y, respectively, o is their covariance, and
the value of R is between —1 and 1. Covariance is an absolute measure of strength. Meanwhile, R? is
interpreted as the proportion of variance explained, thereby making it a measure of relative strength.
Suppose X and Y have covariance o ,, =3, and further say that the variance of Y is ai = 1. Knowing
0y = 3 reveals hardly anything about how strongly Y drives X, as the variance of X, 02, remains
unknown. If O'i =9, then the correlation coefficient R =1, and Y completely determines X. If instead
cri =900, then R = 0.1, or R? = 0.01, and we might question if ¥ even causes X. Thus, not only does
R? suggest how completely Y determines X, but it also suggests how complete the physics in a study
is overall.

As the framework in van Leeuwen et al. (2021) is based on information theoretic measures, this
work necessarily focuses on these measures. When using information theoretic measures, we must
first determine whether the target process is discrete or continuous. If the target is discrete, then the
parent set explains the Shannon entropy of the target (McGill 1954). If the target is continuous, then
the parent set explains the total certainty of the target (van Leeuwen et al. 2021). In either case, mutual
information between the target and the parent set is the amount of explanation offered. Dividing by the
appropriate value then shows how complete the parent set is in explaining the target. This contribution
of van Leeuwen et al. (2021) will be made more intuitive in Section 3.1, while Chapter 6 generalizes the

framework to handle variables like precipitation, which are partly continuous with one discrete mode.
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FI1G. 1.3. Comparison of (a) a directed graph and (b,c) directed hypergraphs. In the graph, Y and Z
each have individual edges directed into X. In (b), however, Y and Z instead have a single shared
edge directed into X. In (c), another valid hypergraph, all edges are present

1.3 Coupled Causation

Calculating coupled causation explicitly recognizes that a mechanism which causes a process may
require more than one driver process. To motivate the necessity of coupled causation, consider as
target convective initiation (CI), and as drivers convective available potential energy (CAPE) and con-
vective inhibition (CIN). A standard graph representation is a collider, CAPE—CI+CIN. (See Fig. 1.3
(a), where Y and Z are CAPE and CIN, and X is CI.) The implication is almost that of logical operator
OR, i.e. either CAPE is large enough or CIN is small enough for CI to occur. The reality is that both
thresholds need to be satisfied.

Representing coupled causation requires generalization beyond the standard graph. This requires
introducing directed acyclic hypergraphs, called causal websin van Leeuwen et al. (2021). In the exam-
ple, the causal web would have the standard graph as well as lines exiting CAPE and CIN which come
together at a vertex, and an arrow pointing from this vertex to CI, written as { CAPE,CIN} —CI. (See Fig.
1.3 (b).) It is also possible that shared and individual paths are present. (See Fig. 1.3 (c).) As shown in

van Leeuwen et al. (2021), there are as many such vertices as there are combinations of drivers.



There are few frameworks that attempt to describe this, and only three that use information the-
ory. One framework not using information theory is the sufficient-component cause (SCC) framework,
introduced by Rothman (2017) and named such by Koopman (1981). This framework addresses some-
thing critically lacking in DAG notation: using AND versus OR. A sufficient cause is any process that,
when certain conditions are met, results in a change of state in another process. The sufficient cause
may contain any number of component causes, each of which is equally required for the sufficient
cause. In the above example, CAPE and CIN are component causes to a sufficient cause. Not only
must there be something to convect, i.e. CAPE is nonzero, but CIN cannot be too large. If only one of
these conditions is met in this example, then CI will not occur. The SCC framework focuses on binary
drivers and binary targets, so applying it to earth science would require generalization.

One of the frameworks using information theory is partial information decomposition (PID), pro-
posed by Williams and Beer (2010). PID claims to be able to decompose mutual information into multi-
ple nonnegative components, with unique contributions from individual drivers, synergistic contribu-
tions from combinations of drivers, and redundant contributions from all drivers. Unfortunately, these
terms are not fully defined, so many interpretations exist. While the theory enforces that all terms are
nonnegative, Barrett (2015) show that, with a multivariate Gaussian system with one target and two dri-
vers, many popular interpretations of PID are degenerate and yield that the weakest driver contributes
zero unique information. This suggests that PID is not appropriate for continuous variables in general.

Another framework using information theory is multivariate information, a term proposed origi-
nally by McGill (1954) and later negated and called interaction information. Interpreting interaction
information has been troubled for decades, as it may be positive or negative. Interpretation for two
drivers is relatively straight forward, which I detail in Section 3.2.1. Beyond two drivers, interpretation
is still lacking.

Needless to say, the third framework using information theory to address coupled causation is the
certainty framework. This is introduced in the next chapter, while Chapter 3 details how I have fur-

thered interpretations since van Leeuwen et al. (2021).

1.4 Causal Discovery in the Earth Sciences
Causal discovery methods have benefited the earth sciences for over a decade. For example, causal
discovery can evidence teleconnections in surface pressure anomalies (Runge et al. 2019a; Ebert-

Uphoff and Deng 2012), feedbacks between sea ice and atmospheric patterns (Kretschmer et al. 2016;



Matthewman and Magnusdottir 2011; Strong et al. 2009), between the MJO and the NAO (Samarasinghe
etal. 2021; Barnes et al. 2019), and how ENSO affects temperatures throughout the world (McGraw and
Barnes 2018). This is but a very short list of causal discovery in the earth sciences to date. For a more
complete review, see Runge et al. (2019b). What van Leeuwen et al. (2021) and the present thesis do
differently is explicitly address the issue of variables coupling to drive a target as well as introduce in-
formation theoretic measures to evidence physical completeness of a study. What all the above studies
show is that, while causation is only evidenced until physical pathways are identified, discovering con-

nections via causal discovery in the first place can lead to hypotheses about said physical pathways!

1.5 Information Theory Primer

Information theory was created to study the degradation of information as it is transmitted via
phone lines. Now, information theory has many applications in the sciences, from psychology and
neuroscience to the earth sciences, often to infer causation. Familiarity with information theory is
essential to understand the certainty framework, as there are several information theoretic measures
relevant to the framework. These are Shannon entropy and conditional Shannon entropy, mutual in-
formation and conditional mutual information, interaction information, and Kullback-Leibner (KL)
divergence. I will discuss each of them below. Throughout this primer, X is always the target, and Y
and Z are drivers, all assumed continuous.

Shannon entropy is essentially a measure of uncertainty. The Shannon entropy of X is

H(X):—f p(x)logp(x)dx, (1.2)

where p is the probability density of X. One property of Shannon entropy of continuous variables is

that it depends on the spread of X. For example, if we define X’ = a X, for some a > 0, then

1
H(X)= —J p(x")logp(x')dx’' = —J p(x)log(ap(x)) dx=loga+ H(X). (1.3)
If a > 1, i.e. the spread of X’ is larger than the spread of X, then H(X’)> H(X). If a < 1, i.e. the spread
of X’ is smaller than the spread of X, then H(X’) < H(X). A consequence of this is that, unlike Shannon

entropy of discrete variables, Shannon entropy of continuous variables may be negative.



Conditional Shannon entropy is a measure of uncertainty after conditioning on a variable. Thus,

the conditional Shannon entropy of X given Y is

H(X|Y):—f p(x,y)logp(x|y)dxdy. (1.4)

Note that p(x, y) is used for the weighting, but p(x|y) is inside the logarithm. Whether the variables
are discrete or continuous, conditioning on a variable never increases the entropy, i.e. H(X|Y) < H(X).
Mutual information is a measure of dependence between two variables. One way to define it is the

decrease in Shannon entropy of one variable by conditioning on the other,

p(xly)
dxdy >0, (1.5)
p(x) Y

I(X; Y)=H(X)—H(X|Y)=Jp(x,y)log

with I(X;Y) = 0 only when X and Y are independent, i.e. p(x|y) = p(x) for all x and y. Mutual
information is symmetric, that is I(X; Y) = I(Y; X), and non-negative.
Conditional mutual information is a measure of conditional dependence between two variables

given a third variable. For X, Y, Z, the mutual information between X and Y conditioned on Z is

I(X;Y|Z)= H(X|Z)— H(X|Y, Z) = f px 3, 2og PV E) i az s, (1.6)

p(x|z)
attaining zero only when X and Y are conditionally independent given Z. Unlike with Shannon en-
tropy, conditioning on a variable does not always decrease mutual information.
In fact, studying how conditioning changes mutual information is how interaction information was
first conceptualized (McGill 1954). (The modern definition of interaction information negates McGill’s
definition of multivariate information.) The interaction information of three variables is the change in

mutual information between any two conditioned on the third,
I1IX,Y,Z)=I1IX;Y)-I(X;Y|Z)=1X;Z)—-I(X;Z|Y)=1(Y; Z)—I(Y; Z|X), (1.7)

where /1 is the interaction information. Because mutual information does not always decrease by
conditioning on a third variable, interaction information may be positive or negative. Interaction in-

formation can be generalized to any number of variables as

II(Xy e, X1, X)) = TI(Xy, oo, X)) = TI(Xy ooy X1 1 X0), (1.8)
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where 11(X,...,X,_1]X,,) is a conditional interaction information, and X,, is used as the condition
without loss of generality. Interpreting interaction information is addressed in Section 3.2.

KL divergence is sometimes also called relative entropy. It is a measure of difference between the
observed probability density and some chosen reference density, g. In essence, g defines a base level
of entropy, and any departure of p from q is a source of uncertainty, hence KL divergence is indeed

relative entropy. KL divergence is expressed as

Dic1(pllg) = f p(x)log% dx =—E,(logq)— H(X) 20, 19)

where Ej,(logq) is the cross-entropy and H(X) is the Shannon entropy of X. A KL divergence is zero
only when p = g, and is positive otherwise. Mutual information can also be thought of as a specific KL
divergence, measuring the departure of a variable’s conditional distribution from its marginal distri-

bution.
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CHAPTER 2
The Certainty Framework

Before discussing my work beyond van Leeuwen et al. (2021), this chapter introduces the main
concepts of the framework, henceforth the certainty framework. First, certainty is discussed as an in-
formation theoretic quantity, followed by the standard choice of reference density. Then, the three
decompositions of mutual information are described. Third, normalizing for relative strength is dis-
cussed. Finally, my contributions to van Leeuwen et al. (2021) are made explicit. Throughout this
chapter and the next, X is the target and Y is the set of all drivers.

The gain in explaining the evolution of the target X by a set of drivers Y is expressed as
WXIY)=I(X;Y)+ W(X), 2.1)

where W(X|Y) is the total certainty of X and W(X) is the self-certainty of X, as introduced in van
Leeuwen et al. (2021). This equation can be compared to the equation for Shannon entropy, H(X) =
I(X;Y) + H(X]Y), but has the advantage that all terms are always nonnegative. Self-certainty is a

Kullback-Leibner (KL) divergence. That is,
W(X)= Dk r(pxllgx) 20, (2.2)

where py is the true distribution of X and gy is the reference distribution. (For more on KL divergence,
see the information theory primer, Section 1.5.) Mutual information between the target X and the
drivers Y is added to the self-certainty of X to form the total certainty of X. Then, total certainty is also
a KL divergence,

W(X|Y) = Dk (pxyllax) =z 1(X;Y), (2.3)

where pyxy is the distribution of X conditioned on all the drivers. This gives the interpretation that
I(X;Y) is total certainty explained or certainty gain.

Because self-certainty is a KL divergence, a reference probability density must be determined for
X. In van Leeuwen et al. (2021), we suggest the reference density should be as wide and as featureless
as possible. Therefore, we suggest using a Lorentz-Cauchy distribution,

q(x)= ! !

- r 2.4
Y24+ (x —x9)2 24)
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where x; is the sample mean of X, and the spread parameter y = Ve/8nox, where oy is the standard
deviation of X. Using oy ensures that self-certainty is determined only by the shape, and not the
spread, of the target’s distribution.

Included in the certainty framework are three decompositions of mutual information. The first
decomposition is direct influences and coupled influences, called 1links and (multivariate) mlinks in
van Leeuwen et al. (2021). The direct influence of a driver, Y, is the mutual information between it and

X conditioned on all remaining drivers, that is
Iywvyy =Y = X)ipine = s My=I(X; Y[Y\{Y}), (2.5)

where the left two notations are from van Leeuwen et al. (2021) and the M -notation is my invention.
The coupled influence of Y with another driver, Z, is the mutual information they have with X condi-

tioned on all other drivers, minus their individual direct influences. That is,
I = XMy=I1(X;Y,Z|Y —Xp,— X
v,2zn\(v,z} = vy, My=1(X;Y,Z[Y\{Y})— y My— My, (2.6)

where again the leftmost notation is from the paper. In general, for a combination of drivers J CY, its

coupled influence on X is
|j1>0

—X — . X
Iy = ]MY—I(X,]lY\])—Z My, 2.7
jcJ

where I;y,; would be the paper’s notation, and | j| > 0 means that the subsets used in the summation

are not empty. The direct and coupled influences sum to the mutual information between all drivers
and the target, I(X;Y).

The next two decompositions are derived from the direct and coupled influences. The first is

mlinks, called (single-variate) mlinks in van Leeuwen et al. (2021). As shown above, the 1link of a

driver is its direct influence. The 2link of a driver, Y, is the sum of all coupled influences in which Y

couples with exactly one other driver. We can express this as

|JI=2

(Y = X)otinks = Z I My. (2.8)
JeY,Ye)

Note that the summation expresses both that Y isincluded (Y € J) and that exactly one other driver is
involved (| /| =2). In general, mlinks for any m are calculated similarly,

[Jl=m
(Y =X)m= >, SMy, (2.9)
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where m appears wherever 2 did before. The 2links of Y can be seen as the influence that Y has by
coupling with exactly one other driver, whatever driver that is, and so on for higher order mlinks. When
summing all the mlinks of all drivers, each mlink must be divided by m to avoid counting the value
multiple times. This can also be thought of as dividing each coupled influence of m variables by m,
which then is evenly distributed among the mlinks of the m drivers. This is because the m drivers
contribute symmetrically to the value, so the value must be divided evenly among them. Thus, all the
mlinks of all drivers, where each mlink is divided by m, sum to I(X;Y).

The final decomposition is into the total influences, called total contributions in van Leeuwen et al.
(2021). The total influence of a driver, Y, is the sum of all its mlinks that are normalized by the number
m of drivers involved. If there are n drivers in the study, then the total influence of a driver is

n

1
(Y_’X)tomlzzE(Y_’X)mlinks- (2.10)

m=1
The total influences of all drivers sum to I(X;Y).

Normalizing each term by W(X|Y) then expresses each term’s relative contribution to the certainty
of X. Normalizing the coupled influence of a combination of drivers shows how much certainty comes
from that particular combination of drivers. Normalizing a driver’s mlink shows the relative influence
of that driver when coupled with m —1 other drivers. The relative strength of a driver overall is shown
by normalizing that driver’s total influence. Normalizing I(X;Y) measures how complete a particular
set of drivers is. By contrast, normalizing W (X) indicates the relative influence of noise and unknown
drivers.

My second authorship for van Leeuwen et al. (2021) is due to my overall contributions to the frame-
work, involving myself in discussions on reference densities, and being actively involved in editing the
text and formulating replies to reviewers. Specific contributions to the framework include showing
that Shannon entropy cannot be used for normalization when the target is continuous, and develop-
ing equation (2.3). Specific contributions to shaping the reference density include 1) advocating that
the density changes with the sample standard deviation so that distributions with equivalent shape but
different spread will have equal self-certainty, and 2) the width parameter expression for the Lorentz-
Cauchy reference density, which is now standard for the framework. I also implemented the code for

all calculations in the paper, and this implementation is discussed in Chapter 4.
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CHAPTER 3
New developments in the certainty framework

In chapter 1, I outlined causal network discovery (CND). Then, in chapter 2, the certainty frame-
work from van Leeuwen et al. (2021) was introduced. In short, it provides a way to calculate relative
causal strength using information theory for continuous variables, allowing both for easy comparison
of results between studies and for more meaningful representations of the discovered relationships.
Included in the framework are three decompositions of mutual information into contributions from
individual and coupled processes.

In this chapter, I will outline my development of the concepts since van Leeuwen et al. (2021). Sec-
tion 3.1 holds a thermodynamic interpretation of calculating relative strength for both traditional mea-
sures and for certainty. My interpretation of the coupled influences, as well as discussions of single-
variable mlinks and total influences are in Section 3.2. On top of this, a new reference density for highly

noisy variables is introduced and discussed in Section 3.3.

3.1 Certainty: The New Norm

In Section 1.2, I discussed how measuring relative strength is better than measuring absolute
strength. The nature of the relative strength measure introduced in van Leeuwen et al. (2021), however,
is different from most measures of relative strength. To illustrate and justify the distinction, I liken the
differences between traditional measures and certainty to the differences between a heat engine and

a heat pump, respectively, which is shown below.

3.1.1 Relative Strength and the Heat Engine

In a heat engine, a hot reservoir at temperature Ty emits heat energy Qy, some of which the en-
gine extracts and turns into usable work, W. Whatever is not turned into work is passed as waste heat
into a cold reservoir at temperature 1. This process is illustrated in Figure 3.1 on the left. The ther-
mal efficiency of the engine is the ratio of work to emitted heat, W /Qy, which is upper bounded by
(Ty — T¢)/ Ty . Friction in the engine makes it such that the theoretical maximum is never attained, i.e.
W/Qu <(Ty —Tc)/ Tu-

The analogy of the heat engine to traditional methods of measuring relative strength starts with the
observed target in place of the hot reservoir. (See Fig. 3.1, right side.) Some of the analogy is method-

dependent, so I will continue the analogy using linear regression. The observed target has a variance,
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Heat Enginel Information Engine
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Cold Reservoir Unexplained X

FIG. 3.1. Side by side comparison of the heat engine (left) and the analogical information engine
(right). The thermal efficiency of the heat engine is shown as work extracted, W, over the total
emitted heat energy, Qy, with theoretical upper bound of (T — T¢)/ Ty, where Ty and T are the
temperatures of the hot and cold reservoirs, respectively. The information engine diagram shows
the analogical measures for both regression and information theory, where the regression mea-
sures appear above the information theory measures. Note that, while the upper bound of ther-
mal efficiency is less than 1 whenever T > 0, the upper bound for R? and proportion of Shannon
entropy explained is always 1.

equivalent to the emitted thermal energy. The observed drivers are the engine itself, and their covari-
ance with the target is the work extracted. What they fail to explain is equivalent to the waste heat.
This wasted explanation ultimately enters the unexplained target, which is in place of the cold reser-
voir. The relative amount of explanation is the familiar R?, which is the covariance squared divided by
the variances of the target and drivers.

Regardless of the method, there are three main reasons the drivers fail to fully explain the target.
The first is physical, in that the selected drivers are either incorrect or not complete. This means that
some physics in driving the target remains hidden. Just as heat engines are specialized based on their
intended use, using incorrect drivers or an incomplete driver set will not perform well at explaining a
target. The next two reasons are related, as they regard noise in the drivers and target. Noise is inherent
in any data, whether from observation or from numerical inaccuracies. The roles are distinct in this

analogy, though. Noise in the drivers acts as friction in the engine, reducing the ability of the drivers
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to extract the theoretical upper bound of information content. Noise in the target, however, acts as the
temperature of the cold reservoir. Note that the upper bound of thermal efficiency is 1 when T = 0.
Any other temperature, which cannot be negative, yields an upper bound less than 1. Similarly, if the
target has any noise, then even a correct and complete set of noiseless drivers cannot fully explain the
target.

The framework in McGill (1954) uses information theoretic measures to fill these roles. (See again
Fig. 3.1, right side.) Shannon entropy of the target is used instead of variance. The drivers are still the
engine, but they extract mutual information between them and the target as explanation, leaving the

conditional Shannon entropy of the target as wasted explanation.

3.1.2 Relative Strength and the Heat Pump

Using information theory for continuous variables instead of discrete variables requires a new
method for measuring relative strength. The reason is that mutual information between continuous
variables is not upper bounded while Shannon entropy remains finite. This means that Shannon en-
tropy specifically no longer upper bounds mutual information, and so mutual information cannot be
interpreted as Shannon entropy explained. By reversing the arrows in the heat engine analogy, mutual
information again has an upper bound, allowing for calculating the relative strength of explanation.

This is exactly how the heat pump differs from the heat engine. (See Fig. 3.2, left side.) A heat
pump extracts energy from the cold reservoir, adds the work it does to that, and puts the total into the
hot reservoir. Certainty, introduced in van Leeuwen et al. (2021), follows a similar concept. (See Fig.
3.2, right side.) The observed target now acts as the cold reservoir, emitting some self-certainty. To this
self-certainty, the drivers add the mutual information between them and the target as a certainty gain.
Their sum, the fotal certainty, is equivalent to the heat added to the hot reservoir. The more certain
target is then equivalent to the hot reservoir.

Admittedly, this particular analogy with the heat pump is not as exact as for the heat engine. The
issue comes from how heat pumps not only add work to the hot reservoir, but also move heat from the
cold reservoir to the hot reservoir. The difficulty to add heat to the hot reservoir appears as extracting
less heat from the cold reservoir for the same amount of work. In the certainty framework, however,
self-certainty is independent of the certainty gain from the drivers, and the difficulty to explain the

target appears as adding less certainty for the same amount of self-certainty.
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\ Pumped Heat
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FIG. 3.2. Comparison of heat pump (left) and information pump (right). The heat pump moves
heat energy, Q¢, from a cold reservoir at temperature 7 to a hot reservoir at temperature Ty . The
work, W, put into the system from the heat pump may be arbitrarily large, so it has no finite upper
bound. The total heat that the pump puts into the hot reservoir is Q- + W. With the information
pump, there is some background certainty, W(X), that comes from the observation. The drivers,
Y, add an arbitrarily large amount of certainty as mutual information, I(X;Y). Their sum, W (X)+
I(X;Y), is the full, or conditional, certainty about the target, W (X|Y).

The analogy can be corrected, however, when we look at the relative contributions. As heat pumps
create a temperature difference, the drivers create a certainty difference in the target. Just as a heat
pump does little work if the temperature difference is small, the drivers poorly explain the target if the
certainty difference is small. When normalized by the certainty of the more certain target, the relative
contribution of the drivers is small. However, when the contribution from the drivers is large compared
to the self certainty, the relative contribution of the self certainty is small. In this way, the self certainty

does factor into how an information pump works, and so the analogy to the heat pump stands.

3.2 Coupled Influence, Mlinks, and Total Influence
All the decompositions of certainty gain from van Leeuwen et al. (2021) were shown in the previous
chapter. Since van Leeuwen et al. (2021), I proved that coupled influences are actually interaction in-

formations. (Proof in Appendix A.5.) Interaction information was introduced in McGill (1954) to show
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how drivers interact to yield more or less predictability of a target. The trivariate interaction informa-

tion of X, Y, Z can be expressed as

IHHX,Y,Z2)=1(X;Y)-I(X;Y|Z2)=1(X; Z2) - I(X; Z|Y)=1(Y; Z) - I(Y; Z|X), (3.1)

where I1 is the interaction information. The symmetry of the decomposition is clear. If X was the

target of Y and Z, we could express this instead as

My =I(X;Y,ZIY\{Y, Z}) = I(X; Y|Z,Y\{Y,Z) - [(X; Z|Y,Y\{Y, Z}) (3.2)
=I(X;ZIY\{Y,Z})—-1(X;Z|Y,Y\{Y,Z}) (3.3)
=II(X,Y,Z|[Y\{Y,Z}), (3.4)

where I used the relation I(X; Y, Z|Y\{Y,Z} ) =I(X; Y |Z,Y\{Y,Z})+ I(X; Z|Y\{Y, Z}). The result for
two drivers was already shown in van Leeuwen et al. (2021). In general, the coupled influence of ] CY

on X is the interaction information of X and every driver in J, written
IMy=T1(X,JIY\T), 35)
the proof of which is in Appendix A.5.

3.2.1 Interpreting Coupled Influences from Two Variables

The physical interpretation of coupled influences in van Leeuwen et al. (2021) was only evidenced
by examples, and there is no strong link to underlying forms of equations. Because measures of infor-
mation are conserved under bijective transformations of a single variable, a link to equations might not
exist. For example, for drivers Y and Z and target X, the information measures for x = y z are equal
to those for log x =log y +1log z when the noise is small relative to the influences of Y and Z. Thus, to
make an interpretation for coupled influences, I will simply use an additive form x = f(y)+ g(z)+n,
where 1) represents noise and f and g are some functions of Y and Z, respectively, noting that many
forms of equations are represented by this one. For the rest of this section, I will use Y and Z as drivers
of target X.

Assuming drivers Y and Z are independent, the graphical representation of x = f(y)+ g(z)+n
is Y — X « Z, a standard collider. By the equation and the graph, we can and should conclude the

effects of Y and Z are separate. In terms of mutual information, we observe I(Y;Z)=0 because Y and
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FI1G. 3.3. Standard graphs where Y and Z are dependent, which would yield less negative coupled
influence from them. On the left, they have a common cause, where the dashed lines imply W is
not included in the study. On the right, Y mediates the indirect effect of Z.

Z are independent. Meanwhile, since Pearl (2000) shows conditioning on a target makes its parents

dependent, I(Y;Z|X)> 0. This yields I(Y;Z) < I(Y; Z|X), so the coupled influence of Y and Z
aMy=11(X,Y,2)=1(Y;Z)—1(Y; Z|X)<0 (3.6)

is negative.

We should also expect this from the equation. When Z, for example, is not included in the analysis,
it looks like noise. That is, x = f(y)+(g(z)+ n), in which the variability of Z is clearly part of the un-
certainty of the effect of Y. Conditioning on Z means that we instead study the effect of Y on X while
keeping Z constant, repeating this for each value of Z. This removes the variability of Z from the equa-
tion for X and thereby decreases the uncertainty of the effect of Y. This decrease in the uncertainty of
the effect of Y appears as an increase in its mutual information with X, so I(X;Y) < I(X; Y|Z). This
argument also holds when calculating the mutual information between Z and X and conditioning on
Y instead. Thus, when Y and Z are independent, the system x = f(y)+ g(z)+ n will yield negative

coupled influence, which shows that the effects of Y and Z are separable from each other.
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To understand when coupled influences will be less negative and possibly positive, we again need

the interaction information decomposition. That is,
Y)Z(MY:II(X,Y,Z):I(Y;Z)—I(Y;Z|X), 3.7

where it is obvious that Y§M y < I(Y;Z). When Y and Z are dependent, so I(Y,.Z) > 0, their coupled
influence is less negative and possibly positive. They may be dependent in many ways. Pure chains, like
Y —-Z—-XorZ—Y — X, are not allowed, however, as we would see the middle process d-separates
its parent from X, which appears as a 1link or direct influence that is zero for the root process. Instead,
Y and Z may have a common ancestor W, yielding the graph Y «— W — Z and Y — X « Z. (See Fig.

3.3 (a).) This means that y = hy(w)+n, and z = hy(w)+ 1, so

x = f(m(w)+ny)+glh(w)+n,)+n. (3.8)

Conditioning on Z will again remove its variability. But, since the variability of both Y and Z contains
the variability of W, conditioning on Z will decrease the variability of Y, thereby decreasing I(X; Y |Z).
By a similar argument, without conditioning on Z, the variability that Z has in common with Y is
attributed instead to Y, thereby increasing I(X; Y). The amount of change in I(X; Y|Z) and I(X;Y)
is dependent on the strength of both W — Y and W — Z. If one or both connections are weak, then
Y and Z will be weakly dependent, so their coupled influence will likely remain negative. But, if both
connections are strong, then Y and Z will be strongly dependent, likely yielding I(X; Y) > I(X; Y|Z),
or positive coupled influence. Since W is excluded from the study because {Y, Z} d-separates it from
X, the effects of Y and Z are inseparable.

Another possibility is that, instead of Y and Z being dependent because of a common ancestor,
suppose Z has a direct effect on X as well as a mediated effect through Y. The graph would be Z —
Xand Z — Y — X. (See Fig. 3.3 (b).) If Z — Y is weak, then Y and Z are weakly dependent, so
I(X;Y|Z) > I(X;Y). And, if Z completely determines Y, then I(X;Y|Z) = 0, meaning Y would be
removed from the study. But, if Z — Y is strong yet not deterministic, then their strong dependence
willyield I(X;Y)> I(X; Y|Z), evenif Y — X is strong. Again, the effects of Y and Z appear inseparable,
but there is no other process to condition on to separate their influences.

This leads to an important discussion regarding causal sufficiency. Causal sufficiency, again, re-
quires that the common cause of two or more variables must also enter the analysis. Yet, the above

argument states that W, the common cause of Y and Z, should be removed from the analysis because
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itis d-separated from X. This does not go against causal sufficiency, however, because the effects of the
W are still captured by Y and Z. If the direct influence of W was nonzero, then the certainty framework
requires that an arrow connects W directly to X. If the direct influence is instead zero, including it in
the study jeopardizes the analysis because the coupled influences W has with Y and Z would give W
causal significance. In this way, causal sufficiency can be restored by calculating the coupled influence
of Yand Z.

The current interpretation is clear for the two-driver case. Negative coupled influence indicates
that the effects of the drivers are separable. Inversely, positive coupled influence indicates that the
effects are inseparable, mostly because the drivers themselves are dependent. The more negative or
positive the coupled influence is, the more separable or inseparable the effects are, respectively.

For now, this interpretation is carried over to coupled influence terms of more than two drivers.
As of yet, however, exactly how the value reflects the structure of the causal web is unknown. Possible

interpretations are explored in the discussion portion of the thesis (Section 7.1.2).

3.2.2 Mlinks and Total Influence

Coupled influences are combined to form both mlinks and total influence for individual variables
(van Leeuwen et al. 2021). An mlink shows how inseparable an individual driver is at a given level of
coupling. Because an mlink involves multiple coupled influences, it can indicate how active a driver is
at a certain level of coupling. If a driver’s largest influence comes from its 1link, then it is mostly active
alone, and its effect is generally separable. If, however, the driver’s largest mlink is its 2link, then it is
most active when coupled with exactly one other driver, and its effect is generally inseparable.

As stated in van Leeuwen et al. (2021), the total influence of a driver is the sum of its mlinks. Since
van Leeuwen et al. (2021), I proved that a driver’s total influence is nonnegative. (Proof in Appendix
A.4) This means that, even though coupled influences and mlinks may be negative, the total influ-
ences constitute a nonnegative decomposition of mutual information. A nonnegative decomposition
is important because it implies that information attributed to one driver is not also attributed to an-

other driver.
3.3 Choice of reference

In the certainty framework, the choice of reference density is the only explicitly subjective com-

ponent. We have yet to determine clear recommendations for users of the framework. In fact, many
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possible densities are explored in van Leeuwen et al. (2021). There will probably always be some re-
maining subjectivity no matter what we do.

Of special interest to the application to tropical cyclone rapid intensification (TCRI), in Chapter 5,
is areference density designed specifically for high noise targets. Since noise in any process diminishes
the total mutual information, the presence of high noise may artificially make relevant drivers appear
irrelevant. This problem is made worse when the self-certainty is large. Because the reference density
to alarge extent determines the size of the self-certainty, the reference density should be different when
the target is believed to have high noise and the drivers are believed to be relevant. This is intended
simply as a correction so that the results more truly evidence the relevance of the drivers.

Using the TCRI data, I experimented with many different reference densities. Gaussian references
with varying spread were tried, but they all yielded a very low self-certainty. For example, using a Gauss-
ian reference with the same variance as the target yielded W(X) = 0.0113. Since self-certainty is a KL
divergence, a measure of departure of the target’s density from the reference density, I concluded the
target was too Gaussian-like to use a Gaussian reference, which is evidenced in the examples in van
Leeuwen et al. (2021). Ultimately, the Lorentz-Cauchy distribution seemed to be preferable given that
itis not a Gaussian and that it is featureless. After experimenting with the width-parameter expression,

the expression resulting in the minimum self-certainty was

| e
Y= EO-X’ 3.9

where 0 x is the standard deviation of the target. This is simply double the original expression.
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CHAPTER 4
Implementing the Framework

Implementing the framework in code is a feat of combinatorics. The number of (conditional) mu-
tual information terms is exponential with the number of drivers. To be exact, if the driver set, Y, has
n drivers, the number of information terms is 2" — 1. When including the self-certainty of the target,
W(X), the total number of information theoretic calculations is 2”. The 2" —1 information calculations
are recombined into 2" —1 coupled influence terms. These coupled influence terms are recombined
according to the amount of linkage into n? mlink terms, which themselves are summed over each dri-
ver to make 7 total influence terms. Everything is normalized by the conditional certainty, W(X|Y),
which is calculated as the sum of W(X) and I(X;Y).

The entire framework is implemented in C++ using double precision arithmetic. The main reason
is that I can use C++ fluently, allowing me to quickly write the implementation. Beyond this, object ori-
entation allows for easy transition from concepts to code, and C++ offers potentially the most compu-
tational efficiency for object orientation. Also, compiled code is automatically faster than interpreted
code, and most C++ compilers additionally offer a lot of optimization. A Python wrapper as well as a
FORTRAN implementation are future projects.

The rest of this chapter is organized as follows. First, estimating mutual information is discussed in
Section 4.1. Combining the mutual information to calculate coupled influences is discussed in Section
4.2, while calculating mlinks and total influences is discussed in Section 4.3. Finally, calculating self-

certainty is discussed in Section 4.4.

4.1 Calculating Mutual Information

Calculating mutual information for the framework entails two main parts. The first is determining
which drivers are active and which are conditioned on. To do this, the drivers are first given a set order.
(One such ordering is detailed at the end of Section 4.1.2.) Then, to efficiently populate the active
set, the implementation loops through the integers between 1 and 2" —1 inclusively, where 7 is the
number of drivers. In the computer, bits are either ON or OFE The integer 1 is represented by only the
smallest bit being ON, in which case only the first driver in the driver set is active and all other drivers
are conditioned on. The integer 2 is represented instead by only the second smallest bit being ON, so

only the second driver is active and all other drivers are conditioned on. The integer 3 has both the
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smallest and second smallest bits ON, so the first two drivers are active and the rest are conditioned
on. The integer 2" —1 has the first n bits ON, so all drivers are active and the condition set is empty.
The other main part is implementing the mutual information estimators themselves. The imple-
mentation uses k-nearest neighbors (kNN) estimators as developed by Kraskov et al. (2004) (mutual
information) and Vejmelka and Palu$ (2008) (conditional variant). Specifically, the mutual informa-

tion estimator follows the first algorithm in Kraskov et al. (2004),
I(X;Y)~ (k) +yp(N)—<y(n, +1)+y(n, +1)>, 4.1)

where 1 is the digamma function, k is the nearest-neighbors parameter, N is the length of the time
series, and n, is the number of neighbors in X within the kNN distance of the set {X, Y}, and likewise
for n, and Y. The kNN distance, €, from each point, (x;, y;), in the time series is the the k™ smallest
distance to any other point (x;, y;). We chose the Chebychev, or maximum, norm to calculate distance.
Finally, the values of y(n, +1)+1(n, +1) are averaged over all points (x;, ;), yielding the term < (n, +
D+y(n, +1)>.

The algorithm from Vejmelka and Palu$ (2008) closely parallels this. It is,
I(X;Y[Z)mp(k)—<y(ny, +1)+y(ny,, +1)—Y(n, +1)>, 4.2)

where n,, is the number of neighbors in the combined set {X, Z} within the kNN distance of the set
{X,Y,Z}, and likewise for n,, and {Y, Z}.

Choosing the mutual information estimator that parallels the conditional estimator helps reduce
error. Further reducing error can happen by 1) transforming the data, 2) addressing large active sets,
and 3) choosing the optimal value of k. (The transformation for self-certainty estimation is different,

which is detailed is Section 4.4.) These separate parts are detailed below.

4.1.1 Transforming the Data

While kNN estimators do not assume any underlying distribution for the drivers and target, they are
sensitive to highly peaked probability densities. Furthermore, since the Chebychev distance is the max-
imum value in a vector, variables with larger scales are over represented while those with smaller scales
are under represented. Since the true value of mutual information is insensitive to single-variable bi-

jective transformations, applying any such transformation to individual drivers is allowed to fix the
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above issues. Experimentation suggests the estimators yield their maximum values when each vari-
able is marginally Gaussian. Thus, for the information estimation, each variable is transformed to a
truncated standard Gaussian.

The transformation starts with replacing a value in a time series with its overall rank in value in the
time series. Repeated values have the same rank, and the next highest value has a rank that is greater by
the number of repeated values. These ranks are then divided by the length of the time series, making it
approximately uniformly distributed over the interval [0, 1]. From here, the inverse cumulative distri-
bution function of the standard Gaussian is applied to the time series, using the approximation to the
inverse error function in Winitzki (2008), such that the tails of the distribution are equally truncated.
Many amounts of truncation were tried. The estimators were maximized by removing 4.25% of the full

distribution from each tail such that the central 91.50% of the Gaussian distribution is occupied.

4.1.2 Overcoming the Curse of Dimensionality

Dimensionality refers to the number of time series comprising the target and active set. In the
estimators, X, Y, and Z may comprise multiple time series, making implementation very simple at
first. But, with even a few active drivers, the estimators became highly inaccurate, a phenomenon
known as the curse of dimensionality. Kraskov et al. (2004) recognized this and offered an alternate
estimator in such cases, but it is less consistent conceptually with the conditional mutual information
estimator. Furthermore, only one of the information terms is a regular mutual information, and the
other 29 — 2 terms are conditional mutual informations. Therefore, the implementation follows the
original algorithm.

To alleviate the issue, both estimators are a sum of mutual informations with only one target time

series and one active time series at a time. The formula for two active time series Y, ¥, is

(X501, B|Z)=1(X; 1Y, Z)+ 1(X; Y2|Z), (4.3)
and for m active time series Y3,..., Yy,

and similarly for multiple target time series. Any information estimation with more than one active or
target time series becomes a summation of information estimations between one target and one driver

time series at a time.
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Computing the mutual information using this decomposition may over represent strong drivers
and under represent weak drivers in the estimation. The information terms calculated toward the be-
ginning of this decomposition will have more time series in the condition set, while those toward the
end of the decomposition will have less. If a strong driver is active with less processes in the condition
set, the resulting value may be greater than it should be. Inversely, if a weak driver is active with more
processes in the condition set, the resulting value may be less than it should be. The order of decom-
position often changes the final value, showing that the systematic biases do not necessarily cancel.

To address this, the drivers are reordered by their 1links, where the driver with the greatest 1link
is first, and the driver with the least 1link is last. This way, when an estimation is decomposed, the
calculations in which the strong drivers are active will always have more processes in the condition set
than calculations in which the weak drivers are active. This reduces both the over representation of
the strong drivers and the under representation of the weak drivers. Thus, the overall systematic bias

should be reduced.

4.1.3 Determining the Number of Neighbors Parameter

Part of the art of using kNN estimators is figuring out what number of neighbors, k, to use for a given
dataset. The user must tell the program which k to use. The implementation does not automatically
choose the value of k, though the default is k = 3.

But, the implementation does have functionality to suggest a k based on two criteria. The first
criterion was that k is less than 1% of the time series length, based on Kraskov et al. (2004) and Vejmelka
and Palus (2008). The second criterion was that the estimation of the total certainty gain had the least
dependency on the order of decomposition.

This dependency was evaluated in the following way. For each k, the kNN estimators above were
used. This means that the drivers were first reordered based on their 1links for each value of k. Second,
I(X;Y) was estimated, where X is the target and Y is the set of all drivers. Third, for each driver Y €Y,
both I(X; Y|Y\{Y}) and I(X;Y\ {Y}) were estimated, the sum of which should be I(X;Y). Finally, the
code calculated the relative deviation of each I(X; Y|Y\{Y} )+ I(X;Y\{Y}) from I(X;Y), then squared
and summed the relative deviations. The relative deviation for the first driver is always 0. This square
relative deviation evidences how strongly an estimate depends on the order of decomposition, with

greater values indicating greater dependency.

27



When using this functionality of the implementation, the program prints the k that is less than 1%
of the time series length and has the least square relative deviation as described above. The user must

then run the framework and explicitly input the desired value of k.

4.2 Calculating the Coupled Influences
To calculate coupled influences from the mutual information terms, I prove in section A.2 that the
coupled influence of a set of drivers J C Y is

|j1>0

AMy= > (1HIIG IV ). 4.5)
Jj<J

In words, the conditional mutual information between X and every nonempty subset j C J condi-
tioned on all drivers not in j is calculated. Then, the mutual information is added if | j| and | /| are both
even or both odd, or it is subtracted otherwise. Writing the influences as a summation of the mutual
informations removes the dependencies imposed by the framework’s recursive definition of influence.

Instead of finding the subsets of a set, J, to calculate the coupled influence of J, the implemen-
tation finds the supersets of J to iteratively adjust their coupled influences. A superset of a set is the
reverse relationship of a subset of a set. Just as a subset of J is fully contained in J, J is fully contained
by its supersets. The term I(X; J|Y\ J) will not appear in the coupled influence of any proper subset
of J, but it will appear in the coupled influence of J and all supersets of /. The implementation loops
through the sets as previously described. The conditional mutual information for each set is first added
to the set’s coupled influence. Then, the OFF bits are turned ON and OFF in a recursive scheme such
that the supersets are updated in increasing order of their integer representation. When the size of the
set and a superset are both even or both odd, the set’'s mutual information is added to the superset’s
coupled influence, and subtracted otherwise. While other implementations for combining the infor-
mation estimates into coupled influences may be faster, this was the first one that made sense to me,

and I did not explore others.

4.3 Calculating Mlinks and Total Influences
The mlink and total influences are calculated from the coupled influence terms as shown in section
3.2.2. Alternate calculations for mlink and total influences using mutual information terms as basic

units are developed in sections A.3 and A.4, respectively. While these equations might prove useful
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to avoid round off errors from adding and subtracting terms repeatedly, double precision arithmetic
makes such errors negligible. Thus, the implementation no longer uses them.

These results do merit discussion, however, as the result for total influence is important for the
framework. Sometimes the implementation yields negative total influences, which was not expected.
The result for total influences in Section A.4, which uses the result for mlinks in Section A.3, shows that
the true value of total influence can never be negative. Thus, a calculated negative total influence is

due to numerical error.

4.4 Calculating Self-certainty

The self-certainty is a simple KL divergence, written as

Px(X) o - B (logay)—H(X) (4.6)
X

W(X)= Dk r(pxllgx) Zf px(x)log dx (%)

where py is the distribution of X, gy is the reference distribution, and the expectation of loggy is
called the cross entropy while H(X) is the familiar Shannon entropy. To avoid implementing a KL di-
vergence estimator, I used the fact that KL divergence, like mutual information, is conserved under
single-variable bijective transformations. Any such transformation applied to the target’s time series is
a transformation applied to the reference density. Thus, the implementation applies a transformation
to the target such that the cross entropy is zero in the transformed space. Because the implementation
lacks a KL divergence estimator, each reference density must have a separate transformation imple-
mented. Currently, the supported reference densities are the uniform distribution, both the original
and wide Lorentz-Cauchy (LC) distributions, and the Gaussian distribution.

Applying the cumulative density function of the reference density makes the cross entropy zero.
The reference density in the transformed space is then uniform on [0, 1]. As the densityis 1 everywhere,

its logarithm is 0, and so its cross entropy is zero. This leaves
W(X)=—H(Xtransh (4.7)

where X;,,,; is the transformed target. This method is used for the uniform distribution and the LC
distributions.
The transformation for the uniform distribution scales and shifts the data. The minimum observed

value is mapped to zero. The maximum observed value is mapped to one.
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For the LC distributions, the transformation is

1 X —x 1
Xirans = p arctan ” + X (4.8)

where x is the sample mean of X, and 7 is the spread parameter. The formula for 7 is either the original
or the wide variant (from Section 3.3), depending on which the user says to use.

The transformation for the Gaussian reference shifts and scales the data. With Gaussian refer-
ences, the cross entropy is the Shannon entropy of the reference Gaussian, 1/2log(2mec?), where the

implementation uses the variance of the target for o2. Thus, transforming the target to have variance

2

atrans

= (2me)~! makes the cross entropy zero. Because the formula for the cross entropy is known,
the implementation does not need to transform the data. The transformation in this case is only for

the sake of consistency.
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CHAPTER 5
A Case Study of the Rapid Intensification of Hurricane Patricia (2015)

Tropical cyclone (TC) rapid intensification (RI) is defined as an incease of at least 30 knots (about
35 mph or 55 kph) within 24 hours in sustained maximum tangential wind. Predicting whether or
not a hurricane undergoes RI is one part of the problem, though the vast majority do. Assuming the
conditions allow for RI, the questions then become when and by how much the TC will rapidly intensify.
While TC dynamics and thermodynamics are governed by processes at all levels of the troposphere, the
present analysis focuses on processes in outflow and boundary layers.

The importance of the outflow layer is well recognized (Gray 1968; McBride and Zehr 1981; Merrill
1988a,b; Davis and Bosart 2004; McTaggart-Cowan et al. 2008; Kimberlain et al. 2016). While low ver-
tical shear over the center of the storm is preferable to prevent ventilation and loss of heat, the ability
for air to exit the system is critical (Gray 1968; McBride and Zehr 1981). Furthermore, synoptic forcing,
such as interactions with upper-level troughs and ridges, is responsible for the formation and inten-
sification of many TCs (Davis and Bosart 2004; McTaggart-Cowan et al. 2008). In fact, of the several
modes of cyclogensis that McTaggart-Cowan et al. (2008) identify, many involve synoptic forcing of
the outflow layer. The local vertical shear gradients may create large cyclonic vorticity fields to spinup
the TC (McBride and Zehr 1981; McTaggart-Cowan et al. 2008; Kimberlain et al. 2016). Merrill (1988b)
also shows that the "azimuthal mean radial outflow tends to be stronger for intensifying hurricanes...
[than for nonintensifying hurricanes],” implying that intensification entails a net removal of air from
the center of the storm. Many more complex dynamics certainly occur in the outflow layer, but the
importance of the outflow itself cannot be ignored.

The boundary layer also exhibits dynamics and thermodynamics peculiar for TC intensification.
Early studies even suggested that TCs could form solely based on boundary layer dynamics and ther-
modynamics (Gray 1968). Though this was later debunked, the role of the boundary layer remains
important (Ooyama 1969; McBride and Zehr 1981). Specifically, for both intensification and mainte-
nance, TCs need water vapor supplied to the core of the storm by warm oceans, which is well known
since Gray (1968). The friction of the circulation against the ocean induces convergence in the bound-
ary layer, which carries the water vapor toward the center. The core lies within the radius of maximum

wind (RMW), pointing to the importance of the radial wind at RMW in conjunction with water vapor.

31



The thermodynamics of TC development are just as rich. For instance, a mature TC can be viewed
as a Carnot engine, linking TC intensity to the temperature difference between the outflow and the sea
surface temperature (Emanuel 1986, 1991). Later, Emanuel and Rotunno (2011) and Emanuel (2012)
related the outflow temperature to intensification. In an idealized model, Hu and Wu (2020) showed
that high equivalent potential temperature (6,) between RMW and 3 RMW leads to intensification,
while high 6, beyond 3 RMW instead leads to stronger rainbands. Furthermore, Vigh and Schubert
(2009) show that diabatic heating is more efficient at spinning up circulation when applied inside than
outside RMW, stressing the importance of moving high 6, air into the core of the storm. The thermo-
dynamics are much more complex, but this is what is most relevant to this study.

Kimberlain et al. (2016) show that Hurricane Patricia (2015), the most rapidly intensifying and
rapidly weakening TC on record for both the northeast Pacific and north Atlantic basins, was highly
favored by synoptic forcing. Even though the initial low was slow to develop, it combined with a tropi-
cal wave and later intensified from convergence of cyclonic vorticity generated by a Tehuantepec gap
wind event. On top of this, the rising branch of an eastward propagating Madden-Julian Oscillation
possibly increased the deep convection of the system prior to RI. More synoptic forcing and steering
occurred to turn this depression into a storm, which was also slow to develop. Then, Patricia finally
passed through an environment with a patch of anomalously warm water, high humidity, and low ver-

tical shear, where it underwent RI. In many ways, Patricia was a very ideal storm to study RI.

5.1 Methodology

5.1.1 Data

The data comes from a 60-member Weather and Research Forecasting (WRF) ensemble forecast
which simulates Hurricane Patricia during its RI, from 21:00 UTC on October 21 to 00:00 UTC on Octo-
ber 23. The horizontal grid resolution was 1km, while there were 42 vertical levels using the eta vertical
coordinate. The ensemble was initialized using data from typical observations as well as data from the
Office of Naval Research Tropical Cyclone Intensification 2015 field campaign. Simulation data was
output hourly, yielding 28 time steps per member. See Tao et al. (2020) for more information on these
simulations.

For each member, two time steps were removed. The initial and final time steps were removed from

the drivers’ time series. The initial time step seemed to experience shock from the data assimilation.
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The final time step was removed because the drivers’ time series lagged the target’s time series by an
hour. Accordingly, the target’s first two time steps were removed. In total, the time series had 26 time
steps per member.

The data was then azimuthally averaged. To obtain the azimuthal averages, the WRF output was
first interpolated to fixed vertical coordinates. Variables derived from potential temperature, pressure,
and/or moisture were calculated after the interpolation but before the azimuthal averaging. A 21km by
21km moving average was applied to the surface perturbation pressure, and the location of the min-
imum was used as the center of the storm. Using the perturbation pressure helped account for any
topographical effects, as higher altitudes are naturally at a lower pressure. From there, the processes

were azimuthally averaged in 1km bins from 1km to 120km.

5.1.2 Selected Processes

Because the time series length was relatively short (26 time steps per member x 60 members = 1560
time steps), we limited the study to considering only four drivers for the sake of accurate information
estimations. Another criterion was proximity to the core of the storm. Thus, the processes were 1) the
upper-level radial wind, u,, 2) the cross-RMW boundary layer (BL) radial wind, u;, 3) the BL equiv-
alent potential temperature at RMW, 6., and 4) the temperature difference between the surface and
outflow layers, AT. The reasoning behind choosing these drivers is described first. Then, generating
the representative time series is described. Defining RMW is detailed in the next section (5.1.3).

Based on the importance of the outflow, u,, was selected as the proxy variable. We experimented
with using the actual outflow, which is the radial wind weighted by mass, instead of the radial wind.
The results are not shown, but u,, was a better predictor than mass outflow. There are two reasons we
think are plausible. The first is that, since the maximum value at each time was chosen, the value for u,,
tended to be closer to the eye, while outflow peaks further from the center because the mass weighting
increases linearly with radius. Proximity to the eye of the storm is crucial when the time lag is only one
hour. The other reason is that, as the storm intensifies, the central pressure drops. Because mass and
pressure are positively related, the decrease in pressure may offset changes in radial wind, meaning
that the net outflow of air may not change much. Directly using radial wind avoids this issue.

To gauge whether or not warm moist air is able to reach the core of a TC, u; was used. There were
some times when u; was directed out of the core. While air may have entered the core at other places

at that time, the azimuthal average indicates that air was ultimately leaving the core.
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Using 6, was based on Hu and Wu (2020). Their study showed that 8, near RMW in the boundary
layer has a high partial correlation with the rate of intensification. Given the strong linear dependence
between 6, and intensification, 8, was included as a potential driver.

Using AT to study intensification was new, as far as we could tell. Again, a TC is a Carnot engine,
so AT is linked to intensity once the storm matures and is in a steady state (Emanuel 1986). But, the
TC also physically links the outflow and surface layers. As with any physical link between two bodies of
different temperatures, the rate of heat exchange is proportional to the temperature difference. Since
the TC does the heat exchange, perhaps AT drives intensification until a steady state is reached. Any
statement beyond this would be mere speculation, but this was why AT was a potential driver.

The time series for these processes were generated in the following ways. First, the value of u,,
was the maximum value of a moving 3km wide by 1km tall average of the radial component u over the
outflow layer. Second, the value of u; was a 3km wide by 1km tall average at the surface centered on
the RMW. Third, the value of 8, was a 3km wide by 1km tall average at the surface centered at RMW.
Finally, the value of AT was the difference between the average BL temperature and the average outflow
layer temperature. The region for averaging the BL temperature was the bottom 1km, from RMW to
RMW+10km, including only where u < 0.95u;. The region for averaging the outflow layer temperature

was wherever u > 0.95u,,.

5.1.3 Choosing the target and the reference

The hourly change in maximum tangential wind, Av,,,,, was the target variable. The hourly in-
tensification is a natural proxy for instantaneous intensification, and the assumed small memory in
the process means its past can be neglected as a potential driver. The maximum tangential windspeed
itself, v,,,,, was defined by first a 3km wide moving average of the tangential windspeed over the 600m
to 1km heights, from which the maximum value was used. The radius where v,,,, occurred was used
as the radius of maximum wind (RMW).

Because Av,,,, was believed to have high noise, the wide Lorentz-Cauchy distribution, as de-
scribed in section 3.3, was used for the reference density. The belief of high noise is because of the
following. Assuming that the errors of the v,,,, time series are independent, the error variance in
AUV, . time series is doubled. Meanwhile, the maximum value of the ratio between Av,,,, and v,
is about /7, meaning the noise-to-signal ratio is roughly 14 times larger for Av,,,, , than for v,,,,. This

and other experiments not shown here suggest that Av,,,, had high noise.

34



5.1.4 Calculating the information quantities
The implementation as described in Chapter 4 was used. To determine the best number of neigh-

bors, k, the criteria in Section 4.1.3 were followed. This yielded k =7 for the number of neighbors.

5.2 Results

The framework yielded W(Av,,,,)=0.1575 and I(Av,,,,,;Y) =0.1316, where Y= {u,, u;,0,,AT}.
This yielded a conditional certainty W(Auwv,,,,|Y) =0.2891, 45.5% of which came from the drivers. The
process u,, accounts for 10.9% of W(Av,,,.|Y), u; for 7.1%, 6, for 16.3%, and AT for 11.2%. Overall,
the drivers left 54.5% unexplained. These totals are shown in figure 5.1.

The causal web (Fig. 5.2) shows the direct and coupled influences normalized by I(Av,,,,;Y). Nor-
malizing by this instead of the conditional certainty helps highlight the origin of the certainty gain itself.
The largest direct influence is from u,, while the smallest is from u;. There are six two-driver coupled
influences. Coupled influences involving 6, were all positive. Specifically, u, or AT coupled with 8,
yielded large influences, 18.0% and 16.1% respectively. The coupled influence of ©; and AT was mod-
erately negative, -8.0%. The other two-driver coupled influences were relatively negligible.

Of the four three-driver coupled influences, two are worth noting for the size of contribution.
Coupling {u,, u;,0,} yielded -9.4%, while {u;,08,, AT} yielded 29.9%. The coupled influence of
{uy, 0., AT} was -1.9%, a small but negative term. This means two of the three three-driver couplings
involving both u, and AT yielded negative values, while the third was weakly positive.

Finally, the coupled influence of all drivers was -17.1%, a large negative value. This is how the
certainty gain, i.e. I(Av,,,,;Y), decomposed into coupled influences.

The mlinks and total influences are shown in table 5.1. Recall they are calculated by summing all
m-driver coupled influences where the driver listed in the row header is included, then divided by the
number of processes. The total influences are the mlinks summed across the row.

Both the smallest direct and smallest total influences come from u;, at 10.4% and 15.7%, respec-
tively. It does contribute roughly as much as its direct influence via its 2link and 3link, but much of
this gain is corrected by the 4link. Most of its moderate 3link comes from the {u;, 8,, AT} coupled
influence. In net, about one third of its total influence comes from interaction terms.

While u,, yields the largest direct influence, it largely acts alone, making it have the third largest

total influence. Its two-driver coupled influences with AT or u; largely cancel, making the coupled
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FiG. 5.1. Axisymmetric cross section of a generic hurricane with total influences superimposed
approximately where the processes were located. Upper-level radial wind, u,, accounted for 10.9%
of our certainty, boundary layer 6, at the radius of maximum wind (RMW) for 16.3%, top-bottom
temperature difference, AT, for 11.2%, and boundary layer cross-RMW radial wind, u;, for 7.1%.
Overall, the processes left 54.5% of the certainty unexplained.

interaction with 6, the main source of its 2link. But, moving from 21.1% in direct influence to 24.0% in

total, u,, contributes least of all via interactions.
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4link: -17.1

FI1G. 5.2. Causal web showing direct and coupled influences as percentages of the 45.5% certainty
explained. The target, Av,,,, and the lag of each driver, which was 1hr, are implied. The direct
influences are shown in the black boxes containing the driver labels. The influences from two dri-
vers are shown in the blue boxes attached to blue lines which connect the two constituent drivers.
The influences from three drivers are shown in the red boxes at the intersection of three red lines,
each line connecting to one of the constituent drivers. The influence from all four drivers together
is shown in the green box below, and not connected to, the rest of the web.

The source of the second largest direct influence, AT, remained second in total influence. Its total
influence is only slightly greater than that of u,, though. But, its coupled influences yield positive
2links and 3links, increasing its total influence by about 13%. Like with u;, the 3link its strongest level
of coupling mostly due to the {u;, 8,, AT} term. In net, interactions increase the influence of AT from

15.8% to 24.5%.
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TABLE 5.1. Table decomposing the certainty gain into mlink influences from each driver. All val-
ues are percentages of the certainty gain. Note that the 1link influences are simply the direct in-
fluences. Meanwhile, the 4link influence is the same for every driver, as it is the coupled influence
of all four drivers divided four ways.

| Process || 1link | 2link | 3link | 4link || Total |

Uy 21.1 | 94 | -23 | -43 || 24.0
uj 104 | 1.3 83 | -43 || 15.7
0, 13.8 | 20.1 | 6.2 | -43 || 35.8
AT 158 | 2.2 | 10.8 | -4.3 || 245

Though 6, contributed the third largest direct influence, it contributed the most in total influence.
It was the only process contributing more via interactions than by direct action. Specifically, it seemed
most active at the 2link level, where all its coupled influences are positive. Almost half of this comes
from its coupling with u,,, with its coupling with AT being another large contribution. Of all the pos-
itive 3links, the 3link from 6, was the smallest, largely because two of its three three-driver coupled
influences were negative. Overall, 8, directly contributed 13.8%, but its total influence accounted for

35.8% of the certainty gain.

5.3 Discussion

The results for u,, appear to corroborate existing narratives. A large upper-level outflow removes
air aloft, thereby decreasing the surface pressure and sharpening the pressure gradient. This sharper
gradient then allows for a more intense storm in order to maintain a balanced state. The storm will also
contract, which will intensify the storm to conserve angular momentum. The large direct influence
from u,, which is the second largest influence in this study, evidences just how important this role of
u,, is for driving intensification.

The role of u,, in this particular ensemble, however, may suggest something more. At the initializa-
tion time of the ensemble, synoptic-scale forcing was present. While this may be the source of u,, at the
beginning, the memory of the synoptic-scale forcing diminishes as the simulation continues. Thus, in
the later stages, when most of the ensemble members experience a second intensification, the simu-
lated hurricane itself may be the source of u,,. This suggests the possibility of a self-intensifying storm
as u, would then feedback to intensify the storm.

If the outflow is at least partially storm-driven, anamolous warming of the core may explain most

of it. This would cause the air in the core to expand, causing pressure to rise aloft. The circulation aloft
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then becomes super gradient. This triggers a larger outflow over the core of the hurricane, thereby
intensifying the storm.

This pushes the burden of explanation onto finding a source for the anamolous warming, and
preferably one driven by the storm itself. Once the eye forms, there is subsidence within the eye, which
could serve to further warm the eyewall. But as Vigh and Schubert (2009) showed, diabatic, i.e. la-
tent, heating in the eyewall itself efficiently drives intensification. This is evidenced by the coupled
influence of {u,,, 8.}, which is the third largest contribution to our certainty gain. A large u, over the
eyewall allows high 6, air to enter and rise. As it rises, the water condenses and releases large amounts
of heat into the upper layers. This high 6, air could not have been as effective if u, was not also acting
simultaneously to remove air aloft, which would explain the large coupled term. The positive coupled
influence from u; and 6, also supports this warming narrative.

The radial winds were expected to be very inseparable because of how the secondary circulation
is defined. Instead, the winds are only weakly inseparable, possibly due to where the variables are
defined. The location of u; is always defined by the RMW, making it always part of the secondary
circulation. Meanwhile, the location of u,, is sometimes over the eyewall, and it is sometimes within the
eye. When it is over the eyewall, u,, is part of the secondary circulation, thereby making it inseparable
from u;. When it is within the eye, however, u,, represents air moving out of the center, and therefore
is not part of the secondary circulation. This effect is therefore separable from the effect of u;, so their
overall effects are only weakly inseparable.

There is an interesting narrative involving u,, u;, and 8,. Note that the two-driver couplings
{u;, u,}, {u;, 6.}, and {u,, 6.} all suggest inseparable effects, but the effects of {u,, u;,0,} are sepa-
rable. This implies that the effects of two-driver couplings themselves are separable, even if the effects
of the drivers involved in each two-driver coupling are not separable. This suggests that #; and u,, each
couple with 8,, but these two-driver coupled effects are separable. Physically, this may mean that u,,
and u; each present valid pathways for high 8, air to enter the core, and they do not need to cooperate
to govern the flow of high 6, air. That is, the effect of u; bringing high 6, air into the core is separable
from the effect of u,, allowing the air to rise. There also may be a more complex story based on the
timing of events like there was with u,, and u;.

The direct influence of AT evidences its possible role of determining at least the maximum rate of

intensification. And, this could in turn suggest that the view of a hurricane as a Carnot engine, while
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correct, is incomplete. Of course, more explicitly physical studies are necessary to test this. One pos-
sible nonphysical explanation is that AT is a proxy for the vertical motion of the secondary flow. Note
that u,, and u; are components of the secondary flow. The two-driver coupled influences of AT with
either u, or u; are negative, while their three-driver coupled influence is positive. Unlike what hap-
pened with u,, u;, and 8,, the two-driver coupled effects are inseparable even though the effects of
AT are separable from either u, or u;. Thus, the three drivers together are inseparable, suggesting
they may together represent the secondary circulation.

Despite the enigmatic role of AT, it is involved with by far the largest contribution toward the cer-
tainty gain. In fact, this could also evidence that AT contains information about the vertical motion in
the secondary circulation, as that dictates the path of high 8, air beyond the boundary layer. What this
term does clearly evidence, along with the large term from {6,, AT}, is that thermodynamics played
an important role in Patricia’s RI.

Aside from the four-driver coupled influence, the other negative coupled influences arise when
u, and 6, are coupled with either u; or AT, and when AT is coupled with either u, or u;. Together,
they may evidence the changing importance of processes during the RI of Patricia. When Patricia was
first starting, the mechanical driving, and so dynamical variables like u©, and u;, may have been more
important. Later, when Patricia was formed and the dynamics were stable, the thermodynamics, rep-
resented here by 8, and AT, gave her a second wind. These modes of driving are vastly different, which
could lead to the large negative values.

In the end, however, 8, proved to be the most responsible of these four for driving intensification.
It drove RI mostly be being worked on. The hot, humid air did little on its own, as evidenced by only one
storm in the same region four months prior to Patricia (Kimberlain et al. 2016). But, with u,, allowing
it to rise, u; directing it into the core, and AT governing the connection between the boundary and
outflow layers, the hot humid air was able to realize its full potential. This agrees strongly with the
findings by Hu and Wu (2020).

One thing that needs mention is the relatively large self-certainty of the target. With 45.5% of our
conditional certainty coming from the drivers, they failed to explain even a simple majority. This does
not, however, reduce the above discussion to nothing. For example, having only 45.5% come from
certainty gain does not change the fact that 8, was responsible for 35.8% of that gain. It just means
that 6, is only 45.5% x 0.358 = 16.3% of the full story. And overall, the above discussion is only about

45.5% of the full story, hinting that there is still much more physics to be had.
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5.4 Conclusions and Moving Forward

Despite having only four azimuthally averaged drivers and a noisy target, the drivers explained
about 45.5% of W(Av,,4.|Y). The framework yielded 2*—1 = 15 direct and coupled influences, together
yielding explanations of Patricia’s RI that were rich in physics. How I(Av,,,,;Y) decomposed appears
to agree with most of the existing literature. Namely, the solo action of outflow drives intensification
mechanically, while high 6, air in the boundary layer at RMW drives the hurricane thermally.

Specifically, the influence of 8, by and large comes from its inseparability. Without the secondary
circulation, the hot, humid air did little to directly act. But, with the secondary circulation, the air was
then in a position to drive intensification by warming the core. Such interactions showed that 8, is
actually the responsible for most of the certainty gain.

Some of the possible physical explanations were new to this analysis. For one, given the nature of
the simulations, the concept of self-driven intensification was plausible. For another, the hypothetical
view that a TC not only acts like a Carnot engine, but also serves as a physical bridge between the
boundary and outflow layers, seems plausible given the importance of the direct, coupled, and total
influences of AT.

There are many ways to improve upon the current study. For example, azimuthal averages, like all
averages, are great summaries that smooth over many of the features which contain vital information.
To increase the extractibility and availability of information content, we could perform principle com-
ponent analysis and use the resulting principle components instead. This is still a summary, but it is
more of a summary of information-containing features rather than smoothing over features. It would
also implicitly include more drivers in the same number of time series.

Another possibility for improvement could come from using v,,,, instead of Av,,,, as a target.
This would require including v,,,, as a potential driver, which might result in excluding one of the
drivers in the present study in order to preserve the accuracy of information estimation. But, the noise-
to-signal ratio will be decreased potentially 14 times, thereby yielding a much higher availability of
information content. This might also serve to increase the reliability of the information estimators.
The only concern with this would be that the target is not as direct a proxy to intensification as Av,,,, ,
is.

On top of this, we are still discussing if 45.5% is an acceptable amount of explanation. Currently,
we are of the opinion that the study is not diminished. In fact, we are hopeful that this drives more

research to reduce the 55.5% of unexplained certainty!
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CHAPTER 6
Generalizing the Certainty Framework to Precipitation-like Targets

To motivate generalizing the certainty framework to noncontinuous targets, consider precipitation.
Either there is no precipitation, or there is some continuously distributed value of precipitation. In
other words, precipitation is partially discrete and partially continuous, or quasidiscrete. Precipitation
is not the only example of a noncontinuous variable. Discrete variables, too, are a type of noncontinu-
ous variable, examples of which include some implementations of transfer coefficients in convection-
permitting models and categorizing phenomena like El Nifio Southern Oscillation as strong, weak, neu-
tral, or La Nifia. The rest of this section will be devoted to treating precipitation.

The distribution (pdf) of precipitation can be represented continuously as

pr(r)=ad(r)+(1—a)prso(r), (6.1)

where r is the amount of precipitation, 0 < a < 1 is the proportion of the observations without precip-
itation, pps¢ is a true probability density, i.e. integrates to 1 and is nonnegative everywhere, which is
zero when r <0, and ¢ is the Dirac delta. The Dirac delta is the continuous equivalent of the Kronecker

delta, with the property
o0
f f(r)o(r—ry)dr = f(r), (6.2)
—00

where 7, is some value in the domain of R. In other words, the value of the entire integral is the value
of whatever is multiplied by the Dirac delta whenever the Dirac delta’s argument is zero. This property
means that the probability density of precipitation (Eq. (6.1)) integrates to 1, making it a true distribu-
tion.

The joint pdf of precipitation and a driver, Y, becomes

pry(r,y)=ad(r)py(ylr =0)+(1—a)prso,y(r,y). (6.3)

The mutual information between R and Y is then

pR,Y(r) J’)
r

drd (6.4)
v(¥) ray

I(R; Y)=f Pr,y(1,y)log orl

a6 (r)py(ylr=0)+1—a)prso,y(1,y)
[ad(r)+(1—a)prso(r)lpy(¥)

ZJ [a&(r)py(yIr =0)+(1—a)prso,y(r, y)]log drdy.

(6.5)
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This integral splits into two parts: one where r = 0, and another where r > 0. In the former, only the
Dirac delta part of pr remains because the continuous portion of the distribution is zero. Similarly, in
the latter integral, only the continuous portion because the Dirac delta is zero. Thus,

ao(r)py(ylr=0)
[ao(r)]py(y)

(1—a)prso,y(r,y) .
[(I—a)proolpy () Y

I(R;Y)=f(a6(r)py(y|r:0))log drdy

+f(1—a)PR>o,Y("»J’)108 (6.6)

In the logarithm of the first integral, the ad(r) terms cancel in the limit as r — 0, while in the logarithm

of the second integral, only the (1 —a) terms cancel. This leaves

IR ¥)= f (@s(rpy(yir =o)iog 2T =D 4 gy
py(y)
Pr>o,v(1, )
+1 (11— L y)log————drd 6.7)
J( 0 y(r,Y) OgPR>o(r)PY(J/) ray
=aDg1(py|r=ollpy)+(1—a)lpso(R; Y). (6.8)

In the first integral, the Dirac delta returns py(y|r = 0) whenever r = 0. This means the first integral is
the KL divergence of the conditional pdf of Y when there is no precipitation from the marginal pdf of
Y, multiplied by the proportion of observations lacking precipitation. The second integral is clearly a
mutual information between continuous variables, multiplied by the proportion of observations with
precipitation.

The KL divergence comes from when precipitation is discrete, while the mutual information comes
from when it is continuous. This shows that the framework itself, when applied to precipitation, can
be split into a discrete portion and a continuous portion! To combine the two parts, the results from
the discrete part are simply multiplied by the probability of a dry observation, and the results from the
continuous part are multiplied by the probability of a wet observation.

To calculate relative influence for the discrete results, the framework uses Shannon entropy like in
McGill (1954), but only the part of the Shannon entropy coming from dry observations. That is, instead
of thinking of dry observations themselves as a separate unary variable, i.e. having only one possible
value, the dry observations are part of a binary variable. More plainly, even though the dry portion of
precipitation is the target of the discrete part of the framework, the dry observations are not the only
observations in the discrete portion of the framework. While this may seem incorrect, note that the

marginal pdf of Y is used in the KL divergence. Since the marginal pdf still contains wet observations,
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wet observations are considered in the dry part of the framework. Furthermore, the Shannon entropy
of a unary variable is always zero, while the KL divergence coming from the discrete portion of the
framework may be positive, meaning normalization is impossible in this case. For these two reasons, I
argue that partial Shannon entropy is the correct normalization for the discrete part of the framework.

To calculate partial Shannon entropy; first treat precipitation as a binary (wet or dry) variable, and

use only the portion of the Shannon entropy that comes from when it is dry. In other words,
Hp—o(R)=—aloga = aDk(py|r—ollpy) + Hr=o(R|Y), (6.9)

where Hp_(R)is the partial Shannon entropy. Thus, the physics of the dry observations that is captured

by the drivers is

aDg 1(py|r=ollpy) 1
T b - ’ 6.10
Hp—o(R) loga k L(Py|r=0llPy) (6.10)
while the unexplained forcing is
Hp—o(R|Y) 1
B : D = ’ 6.11
Hooo(R) _ loga 08¢+ PrilPyir=ollpy) G

The generalized certainty framework differs from the original only in calculating relative influence.
The framework can now be applied to quasidiscrete targets with only one value that is considered dis-
crete. More work is needed to generalize the framework further. For example, if a quasidiscrete variable
has more than one value at which it is discrete, the question is whether the discrete values should be
analyzed together or individually. If the discrete modes are analyzed together, then the results for a
completely discrete target follow the framework from McGill (1954) exactly. But, if the discrete modes
are analyzed individually, then each mode has a separate analysis that is normalized by its partial Shan-

non entropy. Which form of analysis is better requires future investigation.
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CHAPTER 7
Concluding Remarks and Moving Forward

This thesis expanded upon the certainty framework proposed by van Leeuwen et al. (2021). A
thermodynamic interpretation of the differences between entropy and certainty was introduced. The
concept of separability of effects was introduced, and two-driver coupled influences were shown to
evidence the separability of the effects of two drivers, with negative numbers implying separability
and positive numbers implying inseparability. Furthermore, a new reference density was introduced
specifically for targets with high noise. Different expressions for coupled influences, mlinks, and to-
tal influences are proven in the Appendix. Of great importance was that the theoretical value of total
influence is nonnegative, making the decomposition of mutual information into total influences non-
negative.

Implementing the framework was detailed. The choice of computer language was discussed, as
was the choice of algorithm for mutual information estimation. To make the estimators more accu-
rate, the k-nearest neighbors (kNN) algorithms of Kraskov et al. (2004) and Vejmelka and Palus$ (2008)
were refined, the data in the time series were made marginally Gaussian, and new criteria for determin-
ing the parameter k were developed. Combining the information estimations to calculate the coupled
influences, mlinks, and total influences was detailed. Calculating self-certainty without explicitly im-
plementing a KL divergence estimator was described.

The framework was applied to study the rapid intensification of Hurricane Patricia (2015). To re-
duce numerical error in the implementation due to the curse of dimensionality, the study was limited
to four drivers. These were radial wind in the outflow layer (,,), radial wind in the boundary layer (BL)
at the radius of maximum wind (RMW) (u;), the equivalent potential temperature at BL RMW (6,),
and the difference in temperature between the BL and outflow layer (AT). The target was the hourly
change in maximum tangential wind between the heights 600m and 1km. The drivers explained 45.5%
of the target’s total certainty.

Decomposing the certainty gain into coupled influences evidenced rich physics based on the sep-
arability and inseparability of the drivers. The largest direct contribution was from u,,, which together
with relatively weak mlinks was interpreted as u,, decreasing the central pressure and thereby allowing
the storm to intensify. The only large coupled influence of u,, was with 8,, which was interpreted as

u,, allowing high 6, air to convect in the eyewall. Other direct contributions were not nearly as large.
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By considering more than one coupled influence, more complex physics was evidenced. For ex-
ample, the three-driver coupled influence from {u,,, u;, 8,} evidenced separability of the effects of the
three constituent drivers, but the coupled influence of any two of these three drivers evidenced insep-
arability. This was interpreted as the two-driver effects themselves being separable, specifically that
the pathway of u, and 6, acting together is separable from the pathway of u; and 8, acting together.
For another example of this kind of reasoning, there was another three-driver coupled influence, from
{uy, u;, AT}, thatinstead suggested inseparability of the three drivers, even though the two-driver cou-
pled influences AT had with either u,, or u; suggested separability. This was interpreted that all three
drivers together might represent one process, namely the secondary circulation, which was not evi-
denced by considering the above two-driver coupled influences alone. For a final example, it was sug-
gested that the coupled influences that were negative evidence that the mode of Patricia’s RI changed
from a dynamic to a thermodynamic origin during the RI.

The framework was generalized to handle variables like precipitation. Precipitation time series in
this generalization were either zero or some continuously distributed positive value. The framework
was split into studying the one discrete value separate from the continuous part of the distribution. In
doing so, partial Shannon entropy was introduced to normalize the discrete portion of the framework.
Further generalization to variables with more than one discrete value was mentioned but not evaluated

further.

7.1 Future Work

7.1.1 Hurricane Patricia

With the study of Hurricane Patricia, other drivers or targets should be considered for network
discovery. For example, studying v,,,,, . is different from studying Av,,,, .. Since the time series for v, ,
is less affected by uncertainty, however, recovering the analysis of Av,,,, from the analysis of v,,,
would be convenient. Other drivers many include principal components from principal component
analysis, which could potentially capture the structure of the hurricane and determine what structures
lead to intensification.

At the same time, the results from the current study already provide interesting leads for future,
more focused studies. For instance, whether of not the simulated u,, came from synoptic forcing needs

to be determined to verify or reject the hypothesis of self-driven outflow. Also, whether or not AT was
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FI1G. 7.1. Algebraic link diagram of Borromean rings. Note that cutting any one ring leaves the
other two rings unlinked. Image made public domain by David Eppstein via Creative Commons.
Image URL https://commons.wikimedia.org/wiki/File:Algebraic_Borromean_link_diagram.svg.

active or passive, or even just a proxy for another process, needs to be determined. These future studies
should be designed to determine the physical mechanisms which led to these results, which will in turn

provide feedback on the abilities of the framework to detect physical phenomena.

7.1.2 Interpretations and Results in the Framework

As stated in Section 3.2.1, the interpretations of two-driver coupled influences may not hold for
coupled influences from more than two drivers. Two potential interpretations need to be studied fur-
ther. The results in the TCRI application hint at an interpretation related to Brunnian links, a concept
from knot theory. A famous example is a set of Borromean rings, which are three rings that are three-
wise linked but not pairwise linked. (See Fig. 7.1.) This interpretation is evidenced by showing that the

coupled influence of three drivers Y,Z, W on X is

vrwMy=1I1(X,Y,Z,W)=11(X,Y,Z)—1I(X,Y,Z|W)= ;5 My (w)— y»My, (7.1)

where Y)Z(M v\{w} is the coupled influence of Y and Z if W was not included in the analysis. When
vziwMy > 0, this means > Mvy\qw} > %My, which does not show if either %My} or ;5 My are

positive or negative. That is, the effects of Y and Z become more inseparable when W is excluded

47



2‘dim,‘t’6 3 dim

i)

FIG. 7.2. An annotated evaluation of the Lorenz 1963 system. In region A, the system clearly ex-
hibits two dimensional behavior despite being represented by three variables. In region B, the
system transitions between being two and three dimensional. In region C, the system is clearly
three dimensional. The dimension of the system overall is 2.4013 (Kuznetsov et al. 2020). Image
annotations by me. Original image made public domain by Wikimol via Creative Commons. Orig-
inal image URL https://en.wikipedia.org/wiki/File:Lorenz_system_r28_s10_b2-6666.png.

than when W is included, whether or not the effects of Y and Z are separable. But, because this
value is symmetric for Y, Z, W, excluding any one makes the other two more inseparable, suggest-
ing the three variables are three-ways linked so that the effects of one is marginalized into the others.
Inversely, a negative three-driver coupled influence implies that excluding any one driver makes the
other two more separable, suggesting that the drivers are not three-ways linked, so the effects of one is
not marginalized into the others. As evidence for this interpretation in the physical world, I cite the in-
terpretations used for the TCRI study. In general, an m-driver coupled influence may suggest whether
or not the drivers are m-linked in the topological sense.

Another possible interpretation involves joint action by multiple drivers. I have yet to clearly define
action, let alone joint action and how it relates to coupled influence. But, one of the properties of joint
action is a reduction in overall dimension of the system. For example, consider the classical Lorenz
1963 system using standard parameter values (Fig. 7.2). While it is represented using three dimensions,
the Hausdorf dimension of the global attractor, i.e. the attractor on the region with stable oscillations,

is 2.4013 (Kuznetsov et al. 2020). A reduction of dimension may evidence joint action, and how this
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joint action appears in coupled influence should be investigated. Whether or not joint action relates
to sufficient-component causation should also be investigated.

Another topic to study is how results change when a driver is removed from the analysis. If a driver’s
direct influence is zero, removing it from a study does not change the certainty gain. Furthermore, a
zero direct influence means the driver is d-separated by the other drivers. But, when a driver’s 1link
is nonzero, how the results change if the driver is removed is unknown. Early evidence (not shown)
suggests that, when a driver has a small relative total influence, removing it did not change the order
of the total relative strength of the remaining drivers. Inversely, removing a driver with a large relative
total influence dramatically changed the final order of importance. Furthermore, how the causal web

changes upon removal of any driver would need to be studied.

7.1.3 Implementation

Making the implementation faster is always a positive result, so long as accuracy is not compro-
mised. Speed gains could be realized by implementing the framework in FORTRAN, as the language
performs vector and matrix operations faster than any other language. Based on the same reasoning,
designing a graphical processing unit-friendly version could offer an even faster implementation.

The information estimators themselves could be improved, both for speed and accuracy gains. In-
stead of recombining (conditional) mutual informations to calculate the coupled influences, designing
an estimator for coupled influences directly would be both faster and potentially more accurate. The
information estimator from Kraskov et al. (2004) is extendable to interaction information by another
formulation they introduce, but there seems to be no existing estimator for conditional interaction in-
formation, which is what the coupled influences are. The norm used for kNN distance may also affect
the results. While the maximum norm is simple and efficient, perhaps using another norm would make
the estimators more efficient.

Speed and accuracy gains could also come from transforming the joint distribution of the target
and drivers to be multivariate Gaussian. There are analytic equations for information theoretic terms
for variables that are multivariately Gaussian distributed. The Shannon entropy of a set X, assumed to

be multivariate Gaussian system, or a subset thereof, is

1
H(X)= Elndet(ZneEX), (7.2)
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where Y is the covariance matrix of X. We can use this directly in information calculations, as
I(X;Y)=HX)+H(Y)—H(X,Y)and I(X;Y|Z)=H(X,Z)+H(Y,Z)—H(X,Y,Z)—H(Z). (7.3

These equations were used to rigorously test the information estimators, and being able to use these
equations would also greatly speed up the framework. This shows the need to develop a fast algorithm
for multivariate Gaussianification such that the theoretical value of mutual information is preserved,
if such a transformation exists.

Needless to say, KL divergence estimators will be implemented. The self-certainty estimation is
as accurate as the Shannon entropy estimator, but a KL divergence estimator may still be better. Fur-
thermore, in order to implement the generalized framework, a KL divergence estimator is absolutely

needed. Previous implementation attempts had large systematic errors.
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APPENDIX A

A.1 D-Separation Example

D-separation is a concept for directed acyclic graphs (DAGs) with statistically measurable conse-
quences. Specifically, if two variables are d-separated by a set of variables on the same DAG, then
the two variables are conditionally independent given that set. The set that is conditioned on may be
empty, implying the two variables have no common ancestors.

To illustrate a more complex example for d-separation, consider the DAG in Figure A.1. Variables
Z and W are d-separated by the empty set, meaning they are unconditionally independent. Similarly,
because U is a child only of W, Z and U are d-separated by the empty set. The variable Y d-separates
X from the rest of the graph. Variables U and V d-separate Y from W, and U and V are d-separated
by W. Meanwhile, V with either W or U d-separates Y from Z.

It is tempting to say V, as the only child of Z, d-separates Z from the rest of the graph. Indeed,
conditioning on V blocks the forward path from Z. But, because V is a collider for Z and W, condi-
tioning on V opens a path between Z and W. This path is blocked by adding either W or U to the

conditioning.

-
Z——V

W U

FIG. A.1. Standard directed acyclic graph with six nodes, two of which are root nodes.
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A.2  Rewriting Influence as Sum of Mutual Informations

The development below is what the current implementation uses to calculate the coupled influ-
ences, as discussed in section 4.2. Calculating coupled influences is actually a newer addition than
calculating the mlinks, even though this result is used to prove the next result. The reason is that the
influences come from a combination of drivers, while the mlinks revolve around one driver acting with
a few others. Before developing the representation of a combination by an integer (Section 4.2), it was
difficult to loop through the combinations. This made calculating and storing the values in memory
conceptually easier for mlinks.

Another product of this result is to simplify the dependencies that arise from the recursive defini-
tion, shown in equation (2.7). These dependencies create difficulty from constantly checking whether
or not a coupled influence has been calculated in order to use it. And, coupled influences from large
sets naturally have lots of overlapping dependencies. This result pushes the burden off of the recursive
definition and onto already calculated mutual informations. Section 4.2 finishes discussing how this
result is ultimately used.

Suppose Y is the set of considered variables. The coupled influence of a set / CY on a target X as

|j1>0
i<t

where (?IY) = I(X; J|Y\ J) is introduced as a convenient shorthand. Note that the notation leaves

conditioning on the remaining drivers in Y implied, which will be absent in the case of J =Y. Below, I

prove by induction that

|jI>0
IMy= > ) (X1y). (A.2)
Jj<J
To start, for J CYsuch that|J|=1,
1j1>0 .
XMy =(X1y)= Z(_l)lll—ljl ();IY)_ (A.3)
j<J
For J CY such that | J| =2, then
|jI>0 [jI>0 [j1>0 .
IMy=(S1y)=-> AMy=(51y)- > ($1y)= > ($1y). (A.4)
jcI i<l i<t
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Now, suppose that, for all K c Y such that |K| <k,

|k|>0

My = Z (—D)KEF(X ). (A.5)

kCK
Then, for K CYwith |[K|=k+1,

|k|>0

AMy=(XIy)= D My (A.6)
kcK
|k|>0|k’|>0

=(X1y)- Z Z ()X ). (A.7)

kcK k’Ck

I will rewrite the double summation. First, consider the summation of the influences of all sets

k c K such that |k|=|K|—1 = k. For each k, thereis 1 = ((II‘<I|(—|I)‘EIICI) term which yields a positive (i[y).

But, for each k’ ¢ K such that |k’| = |[K|—2 = k — 1, there are 2 = ((I I|<I|<—|T)|ﬂ|k’|) sets k that contain k’,
meaning that summing all )]gM y yields —2 ( ff/ I Y). It should be clear that summing all iM y where k ¢ K
and [k| =|K|— 1=k will yield (~1)IK=1-KI( WEIEL )(X 1) for all k' € K.

Next, consider the summation of the influences of all sets k ¢ K such that |k| =|K|—2=x—1. There

is1= ((”l(Il(_l;)lfIkl) term which yields a positive (X Iy). For each k’ ¢ K such that |k’| =|K|—3 = k—2, there

are 3 = ((I I|<I|<—‘5)|E]|k’|) sets k that contain k’. In general, there are ((I Illfl;)lf]l,c,l) sets k C K that contain each
set k' c K with |[K'| < |k|=|K|—-2=Kk—1.

Finally, by continuing this process, we have that, for some 0 < i < |K| =k + 1, summing all ﬁM Y
where k ¢ K and |k| = i yields (—1)""¥' (llfll,lc’fl/l)(fjly) for each k’ c K such that |k’| < i. Then, by

collecting similar terms across all values of i,

|k[>0k'[>0 , k>0 K= |K|—|k|
> > v = 3 ()| > o a9
kcK k’Ck kck i=|k| i

(IKI=1)— Ikl

. . . K|—k
We can rewrite the inner summation as 1) ' ' ! I

. Lemma 1 in Aupetit (2009) proved
i=0

n
that Z(—l)i('}) =0. Instead, we have

(IKI=1)-IK] IK
Z - )(IKI Ikl)

i=0

*Ikl
A ()

i=0
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Substituting this into equation (A.8) yields

k[0 K1 K| || k|0
> | 2w () Jo e a0

kcK i=|k| kcK

Finally, equation (A.6) becomes

|k|>0
KMy =(§1y)+ > (1) (1) (A.11)
kcK
|k|>0
= )EHE ), (A.12)
kCK

meaning that the supposition for all sets with k processes implies the supposition for a set with k + 1
processes.
Since the supposition was true for all sets with 1 or 2 processes, by the principal of mathematical

induction, forall J CY,
|j1>0

XMy = Z(_1)|1|—|j|()§IY)_ (A.13)

s

A.3 Rewriting mlink Influence as Summation of Mutual Informations

Writing mlink influences in terms of mutual informations allowed for the original implementation
for calculating them, as stated in section 4.3. This was before the implementation calculated the cou-
pled influence terms, which are now used to calculate mlink influences. The result at the end, however,
is used in the next result, which is critical to the framework as a whole.

Let Y be the set of all considered drivers, with [Y| = n. The mlink influence of driver Y €Y on target

Xis
[JI=m—1
(Y > X),=— Z My, (A.14)
JE(W\{Y})
Using the previous result, this is
Ulzm=1 | 1jl>0 _
m(Y - X),, = Z Z (—1) I+l (ﬁly) . (A.15)

JEW\{YY [ jeuiY]

To find J, note Y is already in the active set. So, m —1 other variables are chosen from n —1 other

(n—l)—(m—l)) _ (n—(|]|+1)

imim—1)) = Gm—ii7in)) set

variables. Thus, in the inner summation of equation (A.15), there is 1 = (

that can contribute a positive ( ])151 Y) and a negative ()§ I Y). For each j c(Y\{Y})such that|j|=m—2,
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—(j+1)

(nfl)*(m%)) _ ( n—(|jl+1)
-2 —(jl+D)

there are (i, )} () = (i)

I Y) and (m__l|]]||__ 11) copies of positive (X.I ) This pattern continues until | j| =0, i.e. j is

) sets J that contain j, so the inner summation yields ( ) copies

of negative (]u{y}

empty. In this case, the inner summation yields ("~} ) copies of (—1)"! (XIy).
Therefore,

—1

X 0<|J|<m . n—|J|—1 R .
_J(YIY)+ Z (1) )(m ||_1)[(]Y1Y)_(]1Y)]. (A.16)

n
m(Y - X),, =(—1)’"‘1( S
m JSY\ Y]

A.4 Total Influence is Nonnegative

The need for total influence to be nonnegative is discussed briefly in section 4.3. One of the first
applications, before even explicitly storing the coupled influence terms, was studying the time series
data from Christman field. It was a really long time series, so we were certain that the estimators would
be accurate. The results came the day before I presented them, but they contained negative total in-
fluences. Unfortunately, this seemed to be what generated the most discussion after my presentation.
At that time, I could only intuit that total influence was nonnegative.

To prove this, start from result from the mlinks. Then, I develop a coefficient for each mutual in-
formation in the summation that is not expressed as a summation. This is then combined with an
inequality of mutual informations at the end to prove the measure is indeed nonnegative.

The total influence of a driver Y €Y on target X is the sum of all mlinks from Y to X. That is,

n

(Y = X)ior = D, (Y = Xy, (A.17)

m=1
where the mlinks have already been normalized by m. Using the previous expression and then collect-

ing terms, this becomes

[Jl<m
. N1 7+ ”—(|f|+1)) X

n o<|J|<m n_|]|_1
+Z_ Z (_l)m—lfl(m )()}IY) (A.18a)
)

m=1 ™ jciniyy —l1-1
" [71£0 3 x
_ X
- Z Ay Iv)+ Z B, (N 1y), (A.18b)
JE(W\{Y}) JS(Y\{Y})
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vl

Y] _ (=0 WUHD Y(1T|+1) Y] _ _ AlY] Y]
where A = Z =" iy ) and B;; =—A, ;. We need to show A} > 0.
m=|J|+1
For the sake of brevity, Tuse k =|J| >0 and n =Y|, so
(1)1 (o —(k+1)
Al = - . A.19
k _Z: m m—(k+1) (A.19)
m=k+1

A well known result is

"1 L (—1)m—1(n)
Z 2 ) (A.20)
m m m

m=1 m=1
Thus, for k =0and any n €N,
n —
()™ (n—1
Al = A.21
k mzzl m (m—l) ( )
—1rl E—ym 1 p—1
—( ) + ) (n ) (A.22)
n - m m—1
m=1
-1 n—1 n—1 -1 m—1 -1
g )
n - m m m
m=1
n(—1)yn-1 nol_qym—1 -1
:Z( ) (”)_ =D (" ) (A.24)
— m m —_ m m
m=1 m=1
n 1 n—1 1
=> —-> = (A.25)
m:lm m:lm
1
_ (A.26)
n
n T
=|(k+1 . A.27
EN nan
& m—(k’+1) 1
Now, assume A}, = Z %( ((Ilcc,ill) [(K"+1)(%,)] for0<k’<k<n-—1.Again, this is
=k’+1
for any n > 1. Then, "
n —
(—1)"k+2) [ —(k +2)
Al = —_ A.28
kel mzk:ﬂ m \m—(k+2) (A.28)
1 —(k+2) n—1 -1 m—(k+2) —(k+2
_E=0" N Z (—1) (n (k+ )) (A.29)
n By m m—(k+2)
—1 n—(k+1) n—l —1 m—(k+1) —(k+2
__ (=D = i (” (k-+ )) (A.30)
n e m m—(k+2)
—1 n—(k+1) n—l —1 m—(k+1) —(k+1 —(k+2
0 Kn (k+ ))_(n (k+ )) AsL)
n e, m —(k+1) m—(k+1)
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From here, the lower bound in the summation is decreased by 1 to m = k+1. When this value is used in
the summation, the bottom part of each combination term will be zero. This makes the value of each

combination term 1, so their difference is 0. Thus, the value of the summation does not change. So,

g e =y E T (k+ D)) (n—1)—(k—1)

k+17 n _m:Zk:H m [(m—(k+l))_( m—(k+1) )] (A-32)
o N (k1)) S DY (-1 —(k+1)
__m:Zk:H m (m—(k+1))+mzzk+l m ( m—(k+1) ) (A.33)
=—A} +AZ*1 (A.34)

n \T" n—N\T"
T (k+1)(k+1) |l +1)(lc+1) (-39
-1

= (k+2)(ka)] ) (A.36)

where the final equality comes from a bit of algebra. By the principal of mathematical induction,

n oso EDED (k1)) n
A= Z m (m—(k+1))_ (k+1)(k+l)

m=k+1
To prove the total influence is nonnegative, an important relationship is that, for any processes

-1
>0, forallneNand0< k< n. (A.37)

X,Y,Z, W (where W may be empty),
IX;Y,ZIW)=1(X;Y|Z, W)+ I(X; Z|W)> I(X;Y|Z, W). (A.38)

So, for process Y € Y and any nonempty subset J CY\{Y}, (,5Iy) > (¥ Iy). Rewriting (A.18) shows

71£0

1 -1
==t > oy ") (Fm-Grle e

JE(W\{Y})

as desired.

A.5 Coupled Influence is Interaction Information

The development in this section shows that coupled influence is a version of interaction informa-
tion. Interaction information has been researched extensively since McGill (1954) introduced it. Thus,
with this proof, we are able to use and even add to this already rich body of research, as demonstrated

in section 3.2.1.
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Assume that we have a target X and a set containing atleast 2 driversY={Y, Z,...}. Then, following

equation (2.7),

VMY =I(X; Y, ZIY\{Y, Z)— I(X; ZIY\ {Z}) — I(X; Y Y\ {Y}) (A.40)
=I(X; YIY\{Y, Z})—I(X; YIY\{Z}) (A41)
=I1(X,Y,Z[Y\{Y,Z}), (A.42)

which is the interaction information between X, Y, Z given all other drivers. Note that I(X; Y|Y\{Y,Z})
excludes both Y and Z from the condition, while Z is not active. We can rewrite this term as )1§M AT
SO

veMy= 3 My z)— ¥ My. (A.43)

I will prove a similar relation for all coupled influences.
Now, for some K C Y such that |K| > 2, suppose that for any nonempty k ¢ K and any process
WeY\k,
ewMy = Mywy — tMy. (A.44)

This implies also that, for any partition of K = kU{W}, XMy = { My w}— 5 My. Then,

|k|>0
ceMy=(eily)— D> (iMy) (A.45)
kc(Ku{w})
|k|>0
=(xindy) = (3 Iv) = D (s My + 5 My)— XMy (A.46)
kcK
|k|>0
=(XInqwy)— D EMyywy — §My+EMy)— $My (A.47)
kcK
|k|>0
=(XInwy)— D CiMywy) — ¥My (A.48)
kcK
= xMy\(w) — x My. (A.49)

Thus, the supposition holds when joining one process W € Y\ K to K.

By the principle of mathematical induction, for all f cYand any Z €Y\ J,

JyMy =" My\(z;—; My. (A.50)
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The definition of n-variable interaction information follows a similar recursive definition, e.g. for 4
variables I(X,Y,Z,W)=I1(X,Y,Z)—-I1(X, Y, Z|W). We may arbitrarily add conditions as we add drivers
to the study. In our case, we now require at least 3 drivers Y={Y,Z, W,...}. Since we already showed

the two-driver coupled influence is a three-variable interaction information, it is easy to show that

vzwMy= vy My wy— 5 My (A.51)
=II(X,Y,Z, WIY\{Y,Z, W}). (A.53)

Now, assume that, for some nonempty K CY,
*My=II(X,K|Y\K). (A.54)

Note that, as in the 2link case, if any driver not in K is removed from Y, this merely redefines the uni-

versal set of drivers, so the above equation holds. Then, for any process W € Y\ K,

My =g My\wy— xMy (A.55)
—I1(X,K|Y\ (K U{W})—TII(X,K|Y\K) (A.56)
—I1(X,K, WY\ (K U{W}). (A57)

Thus, even by joining one process W to K, the assumption still holds.

By the principle of mathematical induction, for any J CY,

IMy=T1I(X,]IY\])). (A.58)
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