
THESIS

MINIMIZING ENERGY COSTS FOR GEOGRAPHICALLY DISTRIBUTED

HETEROGENEOUS DATA CENTERS

Submitted by

Ninad Hogade

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2018

Master’s Committee:

Advisor: Sudeep Pasricha
Co-Advisor: Howard Jay Siegel

Patrick J. Burns

Copyright by Ninad Hogade 2018

All Rights Reserved

ABSTRACT

MINIMIZING ENERGY COSTS FOR GEOGRAPHICALLY DISTRIBUTED

HETEROGENEOUS DATA CENTERS

The recent proliferation and associated high electricity costs of distributed data centers have

motivated researchers to study energy-cost minimization at the geo-distributed level. The devel-

opment of time-of-use (TOU) electricity pricing models and renewable energy source models has

provided the means for researchers to reduce these high energy costs through intelligent geograph-

ical workload distribution. However, neglecting important considerations such as data center cool-

ing power, interference effects from task co-location in servers, net-metering, and peak demand

pricing of electricity has led to sub-optimal results in prior work because these factors have a sig-

nificant impact on energy costs and performance. In this thesis, we propose a set of workload

management techniques that take a holistic approach to the energy minimization problem for geo-

distributed data centers. Our approach considers detailed data center cooling power, co-location

interference, TOU electricity pricing, renewable energy, net metering, and peak demand pricing

distribution models. We demonstrate the value of utilizing such information by comparing against

geo-distributed workload management techniques that possess varying amounts of system infor-

mation. Our simulation results indicate that our best proposed technique is able to achieve a 61%

(on average) cost reduction compared to state-of-the-art prior work.

ii

ACKNOWLEDGMENTS

I would like to express my special appreciation to my advisors, Prof. Sudeep Pasricha, Prof.

Howard Jay Siegel, and Prof. Anthony A. Maciejewski for the guidance, wisdom, and encour-

agement they provided throughout my time at Colorado State University. Thank you also to Prof.

Patrick J. Burns for agreeing to be a part of my thesis committee.

This thesis was made possible with the help, guidance, and support of many people. I would

like to thank the members of the Embedded Systems and High Performance Computing (EPiC)

research lab that I have worked with: Mark Oxley, Eric Jonardi, Daniel Dauwe, Saideep Tiku,

Vipin Kumar Kukkala, V. Yaswanth Raparti, Dylan Machovec, Varun Bhat, C Sai Vineel Reddy,

Sai Kiran Koppu, and Ishan Thakkar. Their advice and suggestions have been extremely helpful.

Lastly, I thank my parents, Sanjay and Sayali, for their unwavering love and support. This accom-

plishment would not have been possible without them.

This research was supported by the National Science Foundation (NSF) under grant CCF-

1302693. This research used several servers generously donated by Hewlett Packard.

This thesis is typset in LATEX using a document class designed by Leif Anderson.

iii

DEDICATION

To my loving parents

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 4

Chapter 3 System Model . 6

3.1 Overview . 6

3.2 Geo-Distributed Level Model . 6

3.3 Data Center Level . 7

3.3.1 Organization of Each Data Center . 7

3.3.2 Compute Core Execution Rates . 7

3.3.3 Compute Node Power Model . 8

3.3.4 Cooling Power Model . 9

3.3.5 Node Activation/Deactivation Power Overhead 10

3.3.6 Renewable Power Model . 11

3.3.7 Overall Data Center Power Model . 11

3.3.8 Net Metering Model . 11

3.3.9 Peak Demand Model . 11

3.3.10 System Electricity Cost . 12

3.3.11 Co-Location Interference Model . 12

Chapter 4 Problem Formulation . 15

Chapter 5 Heuristics Descriptions . 16

v

5.1 Overview . 16

5.2 Force Directed Load Distribution Heuristics 16

5.3 Genetic Algorithm Heuristic . 20

Chapter 6 Simulation Environment . 25

Chapter 7 Experiments . 29

7.1 Cost Comparison of Heuristics . 29

7.2 Workload Type Analysis . 31

7.3 Scalability Analysis . 31

7.3.1 Data Center Scalability Analysis . 31

7.3.2 GA Run Time Scalability Analysis . 32

7.3.3 Epoch-based Analysis . 33

7.4 Sensitivity Analysis . 35

7.4.1 Net Metering Factor . 35

7.4.2 Peak Demand Price . 36

7.5 Task Arrival Rate Pattern Analysis . 37

Chapter 8 Conclusions and Future Work . 40

8.1 Conclusions . 40

8.2 Future Work . 41

Bibliography . 43

Appendix A List of Abbreviations and Notations . 50

Appendix B Vita . 54

vi

LIST OF TABLES

6.1 Node Processor Types Used in Experiments . 26

6.2 Peak Demand Prices Used in Experiments . 27

7.1 Energy Cost Reduction Comparison . 32

7.2 Impact of GALD-CL Run Time . 33

vii

LIST OF FIGURES

1.1 TOU electricity pricing, PG&E Schedule E-19 [1] . 1

3.1 Data center in hot aisle/cold aisle configuration [2] 8

6.1 Location of simulated data centers overlaid on solar irradiance intensity map (average
annual direct normal irradiance); wind data collected but not shown [3] 25

6.2 Renewable power available at eight locations . 27

6.3 Baseline task arrival rate and TOU prices at two sites (New York, Los Angeles) over
24 hours . 28

7.1 System energy costs for each heuristic over a day for (a) hybrid, (b) CPU-intensive,
and (c) memory-intensive workloads, for eight data center locations 30

7.2 System energy costs for each heuristic over a day for epoch-based analysis, for a con-
figuration with (a) four, (b) eight, and (c) sixteen data center locations running the
hybrid workloads . 34

7.3 System energy costs for each heuristic over a day for net metering factor sensitivity
analysis, for eight data center locations running a hybrid workload 35

7.4 System energy costs for each heuristic over a day for peak demand price sensitivity
analysis, for eight data center locations running a hybrid workload 36

7.5 Comparison of normalized cumulative task arrival rates for (a) sinusoidal and (b) flat
patterns; comparison of system energy costs among heuristics over a day for (c) sinu-
soidal and (d) flat workload arrival rate patterns; all results are for eight data center
locations running a hybrid workload . 38

viii

Chapter 1

Introduction

The success of cloud computing has resulted in data center operators expanding and geograph-

ically distributing their data center locations, e.g., Google [4] and Amazon [5]. Distributing data

centers geographically offers several benefits to the clients such as low latency due to shorter com-

munication distances and service resiliency. A strong motivating factor for data center operators

to geographically distribute their data centers is to reduce operating expenditures by exploiting

time-of-use (TOU) electricity pricing [6]. Electricity prices are not constant, but rather follow a

TOU pricing model where the cost of electricity varies based on the time of day as demonstrated in

Figure 1.1. Electricity prices are higher when total electrical grid demand is high, and fall during

periods when electrical grid demand is low [7, 8]. Beyond the TOU electricity costs, most utility

providers also charge a flat-rate (peak demand) fee based on the highest (peak) power consumed

at any instant during a given billing period, e.g., month [9, 10]. Reducing electricity costs has

been a major focus of data center management, and has continued to grow in importance as the

annual electricity expenditure for powering data centers has, in some cases, surpassed the costs of

purchasing the equipment itself [11].

Figure 1.1: TOU electricity pricing, PG&E Schedule E-19 [1]

1

Relocating workloads among geo-distributed data centers is one effective approach to curb

electricity expenditures. Workloads can be migrated to data centers located in different times

zones with the goal of concentrating the workload in regions with the lowest TOU electricity and

peak demand pricing available at that time. The allocation of workloads within a data center can

also reduce electricity cost by exploiting dynamic voltage and frequency scaling (DVFS) and any

heterogeneity across compute nodes (e.g., different power and performance characteristics).

Due to the ever-increasing electricity consumption of data centers, the use of on-site renew-

able energy sources, e.g., solar and wind, has grown rapidly in recent years. Several data center

operators have already built or announced plans to build “green” data centers, i.e., data centers,

that are completely (or at least partially) operated with the help of renewable energy. For example,

a portion of Apple’s data centers in North Carolina are powered by a 60 MW solar plant [12].

McGraw-Hill operates a data center using a 14 MW solar array [13]. Similar to these examples,

major global data center providers, e.g., Microsoft [14], Google [15], and Facebook [16], have in-

vested in green energy facilities. Some data center providers have begun to use locations with large

amounts of renewable energy available to reduce energy costs, or even exploit net metering. Net

metering is a billing mechanism that gives renewable energy customers credit on their utility bills

for the excess clean energy they sell back to the grid [17]. Adding on-site renewable power and ex-

ploiting net metering can reduce electricity costs [18], peak grid power costs [19], or both [20,21].

This can provide additional opportunities for geographical load distribution (GLD) techniques to

reduce overall electricity costs.

The goal of our research is to design techniques for geographical load distribution that will

minimize the energy cost for executing incoming workloads considering many aspects of the over-

all system. We use detailed models for data center cooling power, co-location interference, TOU

electricity pricing, renewable energy, net metering, and peak demand pricing distribution to pro-

vide the most-accurate information possible to the geo-distributed workload manager. Co-location

interference is a phenomena that occurs when multiple cores within the same multicore proces-

sor are executing tasks simultaneously and compete for shared resources, e.g., last-level cache or

2

DRAM. Our work is highly useful for environments where historical execution information about

the types of tasks executed is readily available. Examples of such environments exist in industry,

e.g., commercial companies (DigitalGlobe, Google), military computing installations (Department

of Defense), and government labs (National Center for Atmospheric Research).

By considering data center cooling power, co-location interference, TOU electricity pricing,

renewable energy, net metering, and peak demand pricing distribution models, we design three

new workload management techniques. These techniques assume varying degrees of co-location

interference characteristics to distribute or migrate the workload to low-cost data centers at regular

time intervals, while ensuring that all of the workload is completed. We compare these techniques

to a state-of-the-art method [22], and our previous work [23], and show that our best proposed re-

source management heuristic can, on average, achieve a cost reduction of 61%. Key contributions

in our work can be summarized as follows:

• a hierarchical framework for the GLD problem that considers cost-minimization oriented

workload management at both the geo-distributed and local heterogeneous data center level;

• a new detailed data center model that exploits net metering and peak shaving, i.e., peak

power reduction, by considering information about heterogeneous compute node-types, P-

states, compute node temperatures, cooling power, TOU and peak demand pricing, renew-

able power sources, and performance degradation caused by co-location interference;

• the design of three resource management heuristics that possess varying degrees of co-

location interference prediction information to demonstrate and motivate the use of detailed

models in workload management decisions.

The rest of the work is organized as follows. In Chapter 2, we review relevant prior work.

Our system model is characterized in Chapter 3. Chapters 4 and 5 describe our specific problem

in detail and the heuristics we propose to solve it. The simulation environment is discussed in

Chapter 6. We analyze and evaluate the results of our approach in Chapter 7. Lastly, we conclude

and discuss future work in Chapter 8.

3

Chapter 2

Related Work

There have been many recent efforts proposing methods to minimize electricity costs across

geo-distributed data centers, with the fundamental decisions of the optimization problem relying

on a TOU electricity pricing model [24]. These models either use data analytics for pricing models

or make predictions of electricity costs. Electricity costs are often much higher during peak hours

of the day (typically 8 A.M. to 5 P.M.). The TOU electricity cost models, sometimes in combi-

nation with a model for revenue generated from computation of a workload, motivates the use of

optimization techniques to minimize energy cost or, if provided a revenue model, to maximize total

profit.

Workload distribution for geo-distributed data centers has been studied in prior work such

as [22, 23, 25–30]. Information about TOU pricing is typically used to either minimize electricity

costs across all geo-distributed data centers, e.g., [22, 23, 25, 27–30], or to maximize profits when

a revenue model is included for computational work performed, e.g., [26]. A quality of service

(QoS) constraint of some form is recognized in most of the aforementioned works. Typically, this

is incorporated into the model as a queuing delay constraint [25, 27, 29]. Other works incorporate

QoS violations into a cost function, where a monetary penalty is associated with violating service

level agreements (SLAs) due to excessive queuing delay [26], latency [28], or migration penal-

ties [22]. The detail of each model varies significantly among approaches in the prior work. Some

works include DVFS in decision making [27], some include power consumption of the cooling

system in addition to the computing system [28, 29], and others consider real-world TOU pricing

data [26, 27].

Our research considers all of the aforementioned modeling aspects to assist in workload man-

agement decisions: (a) DVFS to exploit the power/performance trade-offs of P-states; (b) cooling

system power and thermal properties to reduce cooling cost; (c) TOU and peak demand pricing

data to reduce monetary electricity cost. To the best of our knowledge, our work is the first to

4

integrate all of these aspects within the GLD problem. In addition, unlike any prior work in GLD,

we consider performance degradation caused by co-location interference as part of our load distri-

bution techniques.

With respect to energy usage, some studies have considered renewable energy for energy opti-

mization of geo-distributed data centers [22,23,31,32]. Similar to [21], our work uses information

about TOU electricity pricing, peak demand pricing and peak shaving, renewable energy usage,

and net metering. However, reference [21] proposes a solution for a single data center rather than

for a group of geo-distributed data centers. Moreover, it does not consider heterogeneous compute

node-types, different performance states of cores, compute node temperatures, cooling power, or

co-location interference. Our work considers all these factors at a geo-distributed level. Similar

to our work, reference [31] proposes a workload scheduling technique that uses both peak shaving

and renewable energy prediction models. However, it does not consider net metering and detailed

cooling power and co-location interference models. Similar to [22] and our prior work in [23], our

study considers a renewable energy source at each geo-distributed data center, a cooling system

at each data center, and migration penalties associated with moving already-assigned workloads

to different data centers. We differ significantly from [22] by including TOU electricity pricing

traces, considering DVFS P-state decisions, and integrating interference caused by the co-location

of multiple tasks to cores that share resources in our management techniques. We extend our prior

work significantly from [23] by including a peak demand price model and also exploiting peak

shaving and net metering.

5

Chapter 3

System Model

3.1 Overview
We propose a hierarchical framework for a geo-distributed resource manager (GDRM) that

consists of a high-level manager to distribute incoming workload requests and migrate already-

allocated requests to geographically distributed data centers. The goal of the GDRM is to minimize

the total energy cost of the system while servicing all requests. Each data center has its own local

workload management system that takes the workload assigned to it by the GDRM and maps

requests to compute cores within the data center. We first describe the system model at the geo-

distributed level and then provide further details into the models of components at the data center

level. We provide a list of abbreviations and notations in the appendix.

3.2 Geo-Distributed Level Model
We consider a rate-based workload management scheme, where workload arrival rate can be

predicted over the decision interval called an epoch [33, 34]. In our work, an epoch length T e is

one hour, and a 24-epoch period represents a full day. Over the course of an epoch, the workload

arrival rates can be reasonably approximated as constant, e.g., the Argonne National Lab Intrepid

log shows mostly-constant arrival rates over large intervals of time [35].

We assume that the beginning of each epoch represents a steady-state scheduling problem

where we assign execution rates, i.e., reciprocal of the execution time, of a set of I workload

task-types to D data centers. A task-type i ∈ I is characterized by its arrival rate ARi, and the

estimated time required to complete a task of task-type i on each of the heterogeneous compute

nodes in each P-state. The assignment problem at the geo-distributed level is to assign execution

rates for each task-type i to each data center d ∈ D such that total energy cost across all data

centers is minimized, with the constraint that the execution rates of all task-types meet their arrival

6

rates, i.e., all tasks complete without being dropped or unexecuted. To fulfill this constraint, for

each epoch τ , we assign a maximum data center execution rate ERDC
d,i for each task-type i to each

data center d such that the total execution rate for all task-types exceed (or equal) the corresponding

arrival rate, ARi, thus ensuring the workload can be completed. That is,

D∑
d=1

ERDC
i,d (τ) ≥ ARi(τ), ∀i ∈ I. (3.1)

3.3 Data Center Level

3.3.1 Organization of Each Data Center

Each data center d housesNNd number of nodes that are arranged in hot aisle/cold aisle fashion

(Figure 3.1), and a cooling system comprised ofNCRd number of computer room air conditioning

(CRAC) units. Heterogeneity exists among compute nodes, where nodes vary in their execution

speeds, power consumption characteristics, and number of cores. Cores within a compute node are

homogeneous, and each core is DVFS-enabled to allow independent configuration of its P-states.

The number of cores in node n is NCNn, and NTk is the node type to which core k belongs.

3.3.2 Compute Core Execution Rates

Recall that our GDRM determines the distribution of tasks of each task-type among all data

centers. At each data center d, the sum of execution rates of all cores that are assigned to execute

task-type i must exceed or equal ERDC
d,i (τ). We assume that we know the estimated computational

speed (ECS) of any task of type i on a core of node-type n in P-state p, ECS(i, n, p), determined

using historical, experimental, or analytical techniques [36, 37].

For epoch τ , we assign a desired fraction DFi,k(τ) of time each core k will spend executing

tasks of type i and the P- state PSi,k(τ) each core k is configured when executing tasks of type i.

We assume tasks will run serially until completion. That is, a core sharing its time among multiple

tasks implies that a scheduler will assign different tasks to execute on the core in such a manner

that, over a long period of time (i.e., steady-state), the amount of time a core k spends executing a

7

Figure 3.1: Data center in hot aisle/cold aisle configuration [2]

task of type i would equal its assigned DFi,k(τ) value. The core execution rate ERcore
i,k of tasks of

type i on core k is

ERcore
i,k (τ) = DFi,k(τ) · ECS(i, NTk, PSi,k(τ)). (3.2)

At the data center level, we assign DFi,k(τ) and PSi,k(τ) such that power is minimized (see

Chapter 3.3.3), and the execution rates of all task-types on cores in all data centers equal the arrival

rate ensuring that the arriving workload is fully executed. That is,

D∑
d=1

NNd∑
n=1

NCNn∑
k=1

ERcore
i,k (τ) = ARi(τ), ∀i ∈ I,∀d ∈ D. (3.3)

3.3.3 Compute Node Power Model

The power consumption of a compute node consists of the static overhead power consump-

tion (equal to the amount of power consumed when the system is idle) and the additional dynamic

power consumed when cores are executing tasks. We define On as the overhead power consump-

8

tion of compute node n (a constant value independent of the workload resulting from system com-

ponents such as storage, network interfaces). Let APC(i, NTk, PSi,k(τ)) be the average power

consumed by core k in a node of type NTk when executing tasks of type i in P-state PSi,k(τ)

during epoch τ . The power consumption of node n during epoch τ , PNn(τ), is

PNn(τ) = On +
NCNn∑
k=1

I∑
i=1

APC(i, NTk, PSi,k(τ)) ·DFi,k(τ). (3.4)

3.3.4 Cooling Power Model

The heat generated by compute nodes is removed by the CRAC units. The airflow within

the data center causes heat generated from nodes to propagate to other nearby nodes, thereby

increasing the inflow temperature of those nodes. Using the notion of thermal influence indices [38]

that were derived using computational fluid dynamics simulations, we can calculate the steady-

state temperatures at compute nodes and CRAC units in each data center. Because we assume the

same physical layout for each of the data centers (Figure 3.1), we use thermal influence indices

derived for one data center layout based on an average workload that would be executed by the

data center.

The outlet temperature of each compute node is a function of the inlet temperature, the power

consumed, and the air flow rate of the node. The inlet temperature of each compute node is a

function of the outlet temperatures of each CRAC unit and the outlet temperatures of all compute

nodes of the same data center [2]. The ASHRAE guidelines have designated the inlets of IT

equipment as the common measurement point for temperature compliance [39], and therefore we

consider thermal constraints at the inlets of compute nodes. For all nodes, the inlet temperature of

each node is constrained to be less than or equal to the red-line temperature (maximum allowable

node temperature).

The power consumed by a CRAC unit is a function of the heat removed at that CRAC unit and

the Coefficient of Performance (CoP) of the CRAC unit [40]. Let ρd be the density of air and Cd

be the specific heat capacity of air at data center d. Let TCin
d,c(τ), TCout

d,c (τ), and AFCd,c(τ) be the

9

inlet temperature, outlet temperature, and air flow rate, respectively, of CRAC unit c in data center

d during epoch τ . Then the power consumed by this CRAC unit, PCRd,c(τ), can be calculated

as [40]

PCRd,c(τ) =
ρd ·Cd ·AFCd,c(τ)·

(
TCin

d,c(τ)− TCout
d,c (τ)

)
CoPd

(
TCout

d,c (τ)
) . (3.5)

3.3.5 Node Activation/Deactivation Power Overhead

At each data center, the number of nodes of each node-type that are in-use frequently changes

among epochs. Inactive nodes are placed in a sleep state, but entering and exiting this sleep state

takes some time due to the actions required in both hardware and software to transition the system

between states. Each node that is active is considered to be active for the entire epoch, which

requires that any node transitioning to/from a sleep state do so during the epoch following/before

the current epoch, respectively.

For each data center d, letN trans
d,j (τ) be the number of nodes of type j that activate or deactivate

during epoch τ . Let P Sleep
j be the average sleep power for node-type j. Let PD

j be the average peak

dynamic power for node-type j. It is calculated by averaging over all task-types the peak power for

each task-type i executing on node-type j. The average node utilization of node-type j defined as

µj . Let CoP of the CRAC unit at data center d be CoPd. Without loss of generality, we assume that

each data center contains the same number of nodes, however each data center is heterogeneous

in the sense that the number of nodes belonging to each node-type among data centers varies. Let

Jd be the set of node-types in data center d. Let T S be the time required for a node to transition

to/from a sleep state. Recall that T e is the duration of an epoch. The node activation/deactivation

power ADPd for data center d during epoch τ is then calculated as

ADPd(τ) =
∑
j∈Jd

[(
µjP

D
j − P

Sleep
j

)
·N trans

d,j (τ)
]
·
(

1 +
1

CoPd

)
· T

S

T e
(3.6)

10

3.3.6 Renewable Power Model

Each data center is equipped with and partially powered by a renewable energy source. Every

location can have either solar power, wind power, or some combination of both. Solar power P solar
d

and wind power Pwind
d (both have units of kW) are calculated as [41] for each data center d as an

average per epoch τ . The total renewable power, PRd(τ), available at data center d during epoch τ

is the sum of the wind and solar power available at that time. We use these models with historical

data [3] to predict the renewable power available at each data center:

PRd(τ) = P solar
d (τ) + Pwind

d (τ). (3.7)

3.3.7 Overall Data Center Power Model

Let Effd be an approximation of the power overhead coefficient in data center d due to the

inefficiencies of power supply units. Effd is always greater than or equal to 1. The total non-

renewable power consumed throughout data center d during epoch τ , PDd(τ), is calculated as

PDd(τ) =

(
NCRd∑
c=1

PCRd,c(τ) +

NNd∑
n=1

PNn(τ) + ADPd(τ)

)
· Effd − PRd(τ). (3.8)

For epoch τ , PDd(τ) can be negative if the renewable power available at the data center, PRd(τ),

is greater than the cooling and computing power.

3.3.8 Net Metering Model

Net metering allows data center operators to sell back the excess renewable power generated

on-site to the utility company. When the excess power is added into the grid, utility companies pay

a fraction of the retail price. This fraction is called the net metering factor, α.

3.3.9 Peak Demand Model

Most utility providers charge a flat-rate (peak demand) fee based on the highest (peak) power

consumed at any instant during a given billing period, e.g., month. The peak demand price per

11

kW at data center d is denoted as P price
d . We define Pcpeakd (τ) as the highest grid power consumed

since the beginning of the current month, including the current epoch τ . We define Pppeakd (τ) as

the highest grid power consumption since the beginning of the current month until the start of the

current epoch τ . The peak power increase at data center d during epoch τ , ∆peak
d (τ), is then defined

as

∆peak
d (τ) = Pcpeakd (τ)− Pppeakd (τ) (3.9)

if Pcpeakd (τ) ≥ Pppeakd (τ) else it is equal to 0. The peak power increase ∆peak
d (τ) is calculated in

each epoch τ and summed over all epochs in a billing period to calculate total peak power.

3.3.10 System Electricity Cost

The electricity price per kWh at data center d during epoch τ is defined as Eprice
d (τ). Data

center operators can use net metering if total non-renewable power consumed throughout the data

center, PDd(τ), is negative. For such conditions, the total power/electricity cost PCd(τ) for data

center d during epoch τ can be defined as

PCd(τ) = Eprice
d (τ) · PDd(τ) + P price

d ·∆peak
d (τ) (3.10a)

if PDd(τ) is positive. If PDd(τ) is negative then

PCd(τ) = Eprice
d (τ) · α · PDd(τ) + P price

d ·∆peak
d (τ) (3.10b)

where α=0 if net metering is not available. The first term in Equation 3.10 represents the TOU

electricity cost and the second term represents the peak demand cost.

3.3.11 Co-Location Interference Model

Tasks competing for shared memory in multicore processors can cause severe performance

degradation, especially when competing tasks are memory-intensive [42]. The memory-intensity

of a task refers to the ratio of last-level cache misses to the total number of instructions executed.

12

We employ a linear regression model from [43] that combines a set of disparate features (i.e., in-

puts that are correlated with task execution time) based on the current tasks assigned to a multicore

processor to predict the execution time of a target task i on core k in the presence of performance

degradation due to interference from task co-location. These features are, the number of appli-

cations co-located on that multicore processor, the base execution time, the clock frequency, the

average memory intensity of all applications on that multicore processor, and the memory intensity

of application i on core k.

In our linear model, the output is a linear combination of all features and their calculated coef-

ficients. We classify the task-types into memory-intensity classes on each of the node-types, and

calculate the coefficients for each memory-intensity class using the linear regression model to de-

termine a co-located execution rate for task-type i on core k, CERcore
i,k (τ). The total execution rate

for task-type i in epoch τ is therefore given by

CERi(τ) =
D∑
d=1

NCd∑
k=1

CERcore
i,k (τ). (3.11)

Because co-location interference degrades the execution rate of task-types, some tasks may be

unable to finish if task-types are allocated to cores based on Equation 3.2 that does not consider

degradation effects. To allocate tasks to cores when considering co-location interference, some

of our techniques use information about CERcore
i,k to judge actual execution rates more accurately

than techniques that do not consider co-location interference. When considering co-location at a

data center d, the data center execution rate constraint becomes

NCd∑
k=1

CERcore
i,k (τ) ≥ ERDC

d,i (τ), ∀i ∈ I,∀d ∈ D. (3.12)

The linear regression model was trained using execution time data that was collected by ex-

ecuting benchmarks from the PARSEC [44] and NAS parallel [45] benchmark suites on a set of

server class multicore processors that define the nodes used in our study (see Table 6.1 in Chapter

6 for details about each node). This model for execution time prediction under co-location inter-

13

ference is derived from real workloads and machines, and results in a mean prediction error of

approximately 7%.

14

Chapter 4

Problem Formulation

We consider a scenario with multiple data centers sharing a single workload. The system is

assumed to be under-subscribed in the sense that the system is expected to have enough compu-

tation resources to complete the workload without requiring that any tasks be dropped. Though

the system is under-subscribed, individual data centers may be executing at full capacity. The

tasks originate off-site from the data centers, and we make the simplifying assumptions that the

transmission time and cost from a task origin to a data center is equivalent for all data centers.

The objective of a GDRM is to minimize monetary electricity cost of the geo-distributed system

(the sum of Equation 3.10 across all data centers) while ensuring that the workload is completed

according to the constraints defined by Equations 3.1 and 3.12.

The problem is especially challenging when considering the variable amount of renewable

power available at each data center, the heterogeneity of compute nodes within a data center, and

the additional constraint that the entire workload must complete without dropping any tasks. Hav-

ing information about TOU electricity pricing, peak demand pricing, a prediction of the amount

of renewable power, net metering policy at each data center, the incoming workload, and the ex-

ecution speeds of task-types on the heterogeneous compute nodes allows our GDRM to make

intelligent decisions for allocating the workload, as described next in Chapter 5.

15

Chapter 5

Heuristics Descriptions

5.1 Overview
The GDRM allocates the incoming workload not only to individual data centers, but also to

specific nodes within each data center. The GLD problem is NP-hard [22], and therefore we

propose three resource management heuristics for GDRM, with each having different levels of

detail of the system model available to it.

5.2 Force Directed Load Distribution Heuristics
Force-directed load distribution (FDLD) is a variation of force-directed scheduling [46], a tech-

nique often used for optimizing semiconductor logic synthesis. FDLD is an iterative heuristic that

selectively performs operations to minimize system forces until all constraints are met. We adapt

the FDLD approach proposed in [22] to the rate-based allocation environment we have outlined in

Chapter 3, and enhance it to propose two new FDLD based heuristics to solve our problem.

Our baseline FDLD heuristic is the one proposed in [22], which we enhance with simple over-

provisioning (FDLD-SO) to compensate for performance degradation due to co-location. This

allows the FDLD heuristic to meet the execution rate constraint at a given data center. This heuris-

tic over-provisions all task-types equally by scaling estimated task execution rates by a factor φC .

Our first new heuristic improves upon FDLD-SO by using task aware over-provisioning (FDLD-

TAO) to estimate co-location effects for each task-type by a factor specific to each task-type i, φCi .

For both FDLD-SO and FDLD-TAO, the degree of over-provisioning (φC and φCi , respectively) is

determined empirically through simulation studies to provide values that give the system the best

possible performance. Lastly, our second new heuristic uses the co-location (FDLD-CL) models

given in Chapter 3.3.11 to account for co-location effects when calculating task execution rates.

16

Algorithm 1 Pseudo-code for FDLD heuristics
1. allocate an instance of each task-type to every node in every data center in every epoch
2. operations-remaining = true
3. while operations-remaining
4. for each node with tasks still allocated to it
5. for each task-type on the node
6. temporarily remove task-type from node
7. if FDLD-CL
8. estimate execution rates using Equation 3.11 (CERi)
9. else if FDLD-TAO
10. estimate execution rates using Equation 5.3 and φCi
11. else if FDLD-SO
12. calculate execution rates using Equation 5.3 and φC

13. calculate estimated power costs PCE
d (τ)

14. calculate F S from FER and FC

15. if execution rate constraints are not violated (Equation 3.12
for FDLD-CL, Equation 5.4 for FDLD-SO and FDLD-TAO)

16. add to set of possible task removal operations
17. restore task-type to node
18. end for
19. end for
20. if set of possible task removal operations is empty
21. operations-remaining = false
22. else
23. choose and implement the task-type removal operation that would result in the lowest F S

24. end while
25. return final allocation solution

The fundamental operation of all FDLD variants is described in Algorithm 1. To generate the

initial solution, every node in every data center in every epoch is assigned to execute all task-types

(step 1). Each iteration of the FDLD removes one instance of one task-type from a single node,

selecting the task to remove, resulting in the lowest total system force F S (steps 4-23). After

getting the final allocation solution from the heuristic, we calculate the final execution rates and

the system electricity cost by summing the power costs across all data centers. The rest of this

Chapter presents the derivation of the total system force F S , Equation 5.3 (used in steps 10 and 12

in Algorithm 1), and Equation 5.4 (used in step 15 in Algorithm 1).

17

As per Equation 3.2, the task execution rate is a function of the P-state of the node the task

is executing at, but FDLD is not designed to make DVFS decisions to set the execution rates of

task-types, and therefore we assume that it is going to make the decisions based on the node uti-

lization. An average execution rate must be determined for all task-types using the average node

utilization factor µj for each node-type j. Let ERj,i(PMAX) and ERj,i(P0) be the execution rates

of task-type i running on a single core of a node of type j in the highest numbered P-state and

lowest numbered P-state, respectively. Therefore, the equivalent single core execution rate Rj,i of

task-type i on node-type j is

Rj,i = ERj,i (PMAX) + [ERj,i (P0)− ERj,i (PMAX)]µj. (5.1)

The single core execution rate of the application is equal to the minimum execution rate execut-

ing at the highest numbered P-state (first term in Equation 5.1) plus a performance factor (second

term in Equation 5.1). The node utilization will affect the single core execution rate such that the

execution rate will be proportional to the node utilization, e.g., Rj,i will be ERj,i(P0) for µj = 1

and ERj,i(PMAX) for µj = 0.

LetNNd,j be the number of nodes of type j in data center d. Let Sd,j,n(τ) be the set of instances

of different task-types placed on a node n of node-type j in data center d during epoch τ . An in-

stance of a task-type is a task that belongs to the specific task-type. Let Qd,j,i(τ) be the equivalent

number of nodes of type j running task-type i in data center d during epoch τ . We assume that

the compute time of each core on a node is evenly divided among its assigned tasks. Therefore

the equivalent number of nodes Qd,j,i(τ) represent the compute time allocated to task-type i on

node-type j for data center d, given by

Qd,j,i(τ) =

NNd,j∑
n=1


1

|Sd,j,n(τ)| if i ∈ Sd,j,n(τ)

0 otherwise
. (5.2)

18

For example, for a data center with twelve nodes and three task-types assigned, each task-type

would get the equivalent of four nodes out of twelve, i.e., 1⁄3 of the available compute resources.

This will be assigned such that each task-type gets 1⁄3 of the execution time of each of the twelve

nodes.

To compensate for performance degradation due to co-location effects, node over-provisioning

is accomplished by the factor φ. Let Kj be the number of cores in a node of type j. The average

estimated execution rate ERE
j,i(τ) of task-type i on node-type j during epoch τ , when using either

the FDLD-SO or FDLD-TAO versions, is given by

ERE
j,i(τ) =

D∑
d=1

∑
j∈Jd

Kj ·Rj,i · φ ·Qd,j,i(τ) (5.3)

subject to the constraint

ERE
j,i(τ) ≥ ARi(τ) ∀i ∈ I. (5.4)

Where φ is replaced by either φC or φCi in Equation 5.3 when using either FDLD-SO or FDLD-

TAO, respectively.

Let Z be the term that is replaced byCERi(τ) when considering the FDLD-CL heuristic and is

replaced by ERE
j,i(τ) when using either FDLD-SO or FDLD-TAO. The execution rate force FER

is calculated using

FER(τ) =
∑
i∈I

[
e

(
Z

ARi(τ)
−1

)
− 1

]
. (5.5)

Observe that FER(τ) will decrease to zero as the ratio of Z to ARi(τ) decreases to 1.

Let PE
d,j,n be the estimated average power for node n of node-type j in data center d, calculated

as

PE
d,j,n =


P Sleep
j if |Sd,j,n(τ)| = 0

µjP
D
j + P S

j otherwise
. (5.6)

19

For all FDLD variants, let PDE
d (τ) be the estimated non-renewable power consumed at data

center d during epoch τ , calculated as

PDE
d (τ) =

∑
j∈Jd

NNd,j∑
n=1

PE
d,j,n ·

(
1 +

1

CoPd

)
+ ADPd(τ)

 · Effd − PRd(τ), (5.7)

For all FDLD variants, let PCE
d (τ) be the estimated power cost at data center d during epoch

τ . PCE
d (τ) is calculated as shown in Equation 3.10, where PDd(τ) is replaced by its estimated

version, i.e., PDE
d (τ).

Let PCmax
d (τ) be the maximum real power cost possible at data center d, calculated using

PCmax
d (τ) = Eprice

d (τ) ·
∑
j∈Jd

NNd,j ·
(
µjP

D
j + P S

j

)
+P price

d ·∆peak
d (τ) . (5.8)

The cost force FC can then be calculated with

FC(τ) =
D∑
d=1

[
e

(
PCEd (τ)

PCmax
d

(τ)

)
− 1

]
. (5.9)

Observe that the value of FC goes to zero as the ratio of PCE
d (τ) to PCmax

d (τ) decreases to zero.

Let N τ be the total number of epochs being considered. The total system force across all

epochs, F S , is calculated as

F S =
Nτ∑
τ=1

FER(τ) + FC(τ). (5.10)

5.3 Genetic Algorithm Heuristic
We designed a third heuristic: genetic algorithm load distribution with co-location awareness

(GALD-CL). The Genitor style [47] GALD-CL heuristic has two parts: a genetic algorithm based

GDRM (Algorithm 2) and a local data center level greedy heuristic (Algorithm 3) that is used to

calculate the fitness value of the genetic algorithm.

20

The initial population for GALD-CL (Algorithm 2) is generated by randomly partitioning the

global arrival rate ARi for each task-type i in the epoch across all of the data centers (step 1). Each

data center d gets a desired fraction of arrival rate DARd,i for each task-type i such that,

D∑
d=1

DARd,i(τ) = ARi(τ), ∀i ∈ I. (5.11)

Each chromosome is a matrix of I x D genes, where each gene is a DARd,i and d pair, rep-

resenting the desired arrival rate of each task-type i at each data center d. We perform selection,

crossover, and mutation that alter existing chromosomes to generate new offspring chromosomes

(step 3). We use a roulette wheel selector, a two-point crossover, and a simple real range muta-

tor [48]. After the generation of two offspring, for each new chromosome, a local greedy heuristic

discussed in the next paragraph is used to perform allocations at the data center level (steps 4-6).

After the greedy heuristic, the fitness value (total energy cost including CRAC energy) for each

chromosome is calculated (step 7). The population is trimmed to its original size by eliminating

the least-fit (highest cost) chromosomes (step 8). After reaching the time limit, the algorithm ends

and the final allocation of arrival rates is obtained from the best (lowest cost) chromosome.

Algorithm 2 Pseudo-code for GALD-CL heuristic
1. create an initial population of chromosomes
2. while within time limit
3. perform selection, crossover and mutation to create new chromosomes
4. for each new chromosome
5. use greedy heuristic to perform allocations at data center level
6. end for
7. find the fitness values (total energy costs) of the population
8. trim population to its original size by eliminating the least-fit chromosomes
9. end while
10. return best chromosome from population and use final allocation from it

21

Local Greedy Heuristic: This greedy approach (Algorithm 3) is similar in concept to “Min-min”

in [49, 50] and is used to assign the desired arrival rate DARd,i of each task-type i to cores in data

center d. For this heuristic, cores are dedicated to a single particular task-type, i.e., a core cannot

execute more than one task-type at a time. Our greedy heuristic iteratively assigns task-types to

cores to find the most efficient mapping, where we define efficiency EFFi,k for a task mapping of

type i on a node of type NTk in P-state PSi,k(τ) as

EFFi,k(τ) =
ECS(i, NTk, PSi,k(τ))

APC(i, NTk, PSi,k(τ))
. (5.12)

For each data center, we start this greedy heuristic by finding the task-type/node-type pair

with the highest EFFi,k(τ) value (Equation 5.12) among all possible pairs (step 2). Our heuristic

uses the most efficient P-state for a given task-type/node-type pair. All I x Jd task-type to node-

type pairs are then sorted by their efficiency in descending order to create a list (step 3). At each

iteration of the heuristic, the first (most efficient) pair is selected (step 5). Then the heuristic checks

if any unassigned cores within the selected node-type exist (step 6). If so, we assign fraction of

the DARd,i for the selected task-type to a core in the selected node-type (based on ECS(i, n, p))

(step 7) and that core is removed from consideration (step 8). The CRAC outlet temperatures are

set to the red-line temperature, and then the outlet temperatures of all CRAC units are iteratively

decreased by one degree until the thermal constraint (the inlet temperature of the node, with the

selected core, should be less than the red-line temperature) is met (step 9). After the assignment,

the execution rate ERDC
d,i is updated (step 10). If the ERDC

d,i for the selected task-type exceeds

its DARd,i (step 11), all task-type/node-type pairs with that task-type are removed from the list

(step 12). The heuristic uses Equation 3.11 to estimate core execution rates with constraint defined

by Equation 3.12. If no unassigned cores within the selected node-type exist (step 13), that task-

type/node-type pair is removed from consideration (list) (step 14). This iterative part (steps 4-15)

of the heuristic stops when there are no more task-type/node-type pairs to consider.

After mapping the desired arrival rates DARd,i of each task-type i to cores in each data center

d, if the DARd,i exceeds the data center assignment ERDC
d,i (checked for each task-type in each

22

Algorithm 3 Pseudo-code for local Greedy heuristic
1. for each data center
2. find most efficient task-type/node-type pair among all possible pairs
3. sort all task-type/node-type pairs by efficiency in descending order
4. while sorted list is not empty
5. select first task-type/node-type pair
6. if unassigned core within selected node-type exist
7. assign fraction of DARd,i for the selected task-type

to a core from the selected node-type
8. remove that core from future consideration (assigned)
9. set CRAC outlet temperatures to highest temperatures such

that node inlet temperature is less than red-line temperature
10. update ERDC

d,i

11. if ERDC
d,i for the selected task-type exceeds its DARd,i

12. remove all task-type/node-type pairs with that task-type
13. else //no more cores from node-type exist
14. remove that task-type/node-type pair from the list
15. end while
16. end for
17. for each data center
18. for each task-type
19. if DARd,i exceeds the data center assignment ERDC

d,i //solution invalid
20. adjust DARd,i value by reducing it by 10% for data center where solution is invalid
21. normalize DARd,i values to modify chromosome

until valid solution reached, return to step 1
22. end for
23. end for

data center), the solution is invalid (step 19). If so, we adjust DARd,i value by reducing it by 10%

for the data center at which the solution is invalid (step 20). To calculate normalized arrival rate

value DARnorm
d,i , we then normalize the DARd,i values such that the sum of DARnorm

d,i values for

each task-type matches the global arrival rate ARi

DARnorm
d,i (τ) = DARd,i(τ) · ARi(τ)∑D

d=1DARd,i(τ)
. (5.13)

We then replace DARd,i with DARnorm
d,i for all data centers d with the given task-type i to modify

the chromosome until a valid solution can be reached (step 21), i.e., ERDC
d,i exceeds (or equals)

DARd,i.

23

In summary, the GALD-CL heuristic addresses two potential shortcomings of the FDLD vari-

ants. First, the nature of the decision making within the FDLD variants prevents them from making

any kind of DVFS decisions, therefore a single P-state is chosen for each node-type regardless of

the tasks executing on the node. The greedy heuristic within the GALD-CL approach chooses the

most efficient P-state for each task-type on each node-type [2]. Second, the FDLD variants are

susceptible to becoming trapped in local minima. The genetic algorithm portion of the GALD-CL

approach intrinsically enables escape from local minima, allowing a more complete search of the

solution space.

24

Chapter 6

Simulation Environment

Experiments were conducted for three geo-distributed data center configurations containing

four, eight, and sixteen data centers. Locations of the data centers in the three configurations were

selected from major cities around the continental United States to provide a variety of wind and

solar conditions among sites and at different times of the day (see Figure 6.1).

Figure 6.1: Location of simulated data centers overlaid on solar irradiance intensity map (average annual
direct normal irradiance); wind data collected but not shown [3]

Experiments for the configuration with four data centers used locations one through four from

Figure 6.1, while experiments using configuration with eight and sixteen data centers used loca-

tions one through eight and one through sixteen, respectively. The sites of each configuration were

selected so that each configuration would have a fairly even east coast to west coast distribution to

better exploit TOU pricing, peak demand pricing, net metering, and renewable power. Each data

25

center consists of 4,320 nodes arranged in four aisles, and is heterogeneous within itself, having

nodes from either two or three of the node-types given in Table 6.1, with most locations having

three node-types and per-node core counts that range from 4-12 cores. For CRAC units, the red-line

temperature was set to 30°C, which is on the high end of ASHRAE’s temperature guidelines [39].

Table 6.1: Node Processor Types Used in Experiments

Intel processor # cores L3 cache frequency range

Xeon E3-1225v3 4 8MB 0.8 - 3.20 GHz
Xeon E5649 6 12MB 1.60 - 2.53 GHz
Xeon E5-2697v2 12 30MB 1.20 - 2.70 GHz

Nodes placed in a sleep state by a heuristic are considered to be in the Advanced Configuration

and Power Interface (ACPI) node sleep state S3, where RAM remains powered on. Sleep state

S3, also commonly referred to as suspend or standby, allows greatly reduced power consumption

while still possessing a small latency to return to an active operating state. Sleep power for all

nodes is calculated as a fixed percentage of static power for each node-type, assumed to be 16%

based on a study of node power states [51]. The average node utilization factor used during FDLD

allocations, µj , is set as 0.75. The Coefficient of Performance (CoP) of the CRAC unit was deter-

mined empirically by simulating workloads with different memory intensity classes at each data

center location, and its value ranges between 1.43 and 2.08 for different configurations. The time

of each epoch τ was set to be one hour. The time required to transition a node to or from a sleep

state, T S , was conservatively assumed to be five minutes.

The electricity prices used during experiments, as shown in Figure 1.1, were taken directly

from Pacific Gas and Electric (PG&E) Schedule E-19, which is for commercial locations consum-

ing between 500kW and 1MW [1]. The peak demand prices per kW are given in Table are 6.2.

We assume that each data center has peak renewable power generating capacity equivalent to

its maximum power consumption [12, 13, 52]. Renewable power at each location was either wind

26

Table 6.2: Peak Demand Prices Used in Experiments

data center peak demand data center peak demand
location price ($/kW) location price ($/kW)

New York 11.04 Detroit 14.54
Chicago 3.82 Las Vegas 8.25
Denver 6.75 San Francisco 13.01
LA 8.91 Seattle 3.29
Atlanta 8.11 Tampa 10.25
Baltimore 3.84 Kansas City 6.39
Dallas 11.88 Oklahoma City 6.20
Indianapolis 10.57 Nashville 5.09

power, solar power, or a combination of the two. For example, a location with high average solar

irradiance but low average wind speed would be restricted to having solar power only. Solar and

wind data was obtained from the National Solar Radiation Database [3]. An example of the renew-

able power available at different locations is given in Figure 6.2.

Figure 6.2: Renewable power available at eight locations

27

In net metering, data centers send excess power back to the grid and utility companies pay

back the customer a fraction of retail price α. In most cases, the net metering factor α is 1; in

very few cases, it is less than 1; and in some cases, it is 0, i.e., net metering is not available at that

location [17, 53].

Each task-type used in our experiment is representative of a different benchmark from the

PARSEC [44] and NAS parallel [45] benchmark suites. Task execution times and co-located per-

formance data for the task of the different memory intensity classes were obtained from running

the benchmark applications on the nodes listed in Table 6.1 [43]. Synthetic task arrival patterns

were constructed and the baseline pattern is shown in Figure 6.3. For reference, the figure also

shows TOU prices for an east coast and a west coast site.

Figure 6.3: Baseline task arrival rate and TOU prices at two sites (New York, Los Angeles) over 24 hours

28

Chapter 7

Experiments

7.1 Cost Comparison of Heuristics
Our first set of experiments analyzes the total system energy cost for each heuristic described

in Chapter 5 with and without peak shaving and net metering. For each heuristic, we evaluate

four variants: (1) without both peak shaving and net metering, (2) with net metering only, (3) with

peak shaving only, and (4) with both peak shaving and net metering. Heuristic variants that are

referred to as “without peak shaving” do not include the peak demand pricing factor in their objec-

tive functions but consider it while calculating the total monthly electricity cost at the end of the

billing period. These experiments use a data center configuration consisting of eight locations and

a workload that was a hybrid mix of memory-intensive and CPU-intensive task-types (discussed

in Chapter 7.2). The system energy costs are estimated over a duration of one day. The results are

shown in Figure 7.1(a).

For each individual heuristic, considering both net metering and peak shaving produced the

best results, while experiments without these produced worse results. This validates our consider-

ation of peak shaving and net metering during geo-distributed data center workload management,

to more effectively minimize energy costs. It can also be observed that the FDLD-CL heuristic, us-

ing the co-location models, performs the best among the FDLD variants. The FDLD-SO heuristic

performed the worst, severely over-provisioning nodes and resulting in high operating costs. The

GALD-CL heuristic with net metering and peak shaving outperformed all other approaches. This

heuristic has complete information about the entire system model, including the co-location mod-

els and task-node power (DVFS) models, allowing it to make better placement decisions. With

additional execution time and a larger population of chromosomes even better solutions can be

found.

29

������

������

������

������

������

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

������

������

������

������

������

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

������

������

������

������

������

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�	
	��
 �	
	���
 �	
	��
 ��
	��

��������������������������� ���!���

���� ���!������"#

�	
	��
 �	
	���
 �	
	��
 ��
	��

�	
	��
 �	
	���
 �	
	��
 ��
	��

(a) hybrid workload

(c) memory-intensive workload

(b) CPU-intensive workload

���������������"#

��������������������� ���!���

Figure 7.1: System energy costs for each heuristic over a day for (a) hybrid, (b) CPU-intensive, and (c)
memory-intensive workloads, for eight data center locations

The decision option related to DVFS P-states gives the GALD-CL heuristic a strong advantage

over the FDLD variants but it also takes longer to execute. The GALD-CL heuristic was limited

to a run time of approximately one hour per epoch simulated. Alternatively, the FDLD heuristics

completed in approximately six minutes per epoch simulated. While not performing as well as the

30

GALD-CL, the FDLD variants have the advantage of reaching a solution more quickly, which may

be beneficial in some cases.

7.2 Workload Type Analysis
The previous experiment used a workload that was a hybrid mix of memory-intensive and

CPU-intensive task-types. Figure 7.1 shows experiments for all of the FDLD and GALD-CL

heuristics for a group of eight data centers where two additional workload types were evaluated:

one where all of the tasks are highly memory-intensive (using data from canneal, cg, ua, sp, and

lu benchmarks), and one where the tasks are highly CPU-intensive (using data from fluidanimate,

blackscholes, bodytrack, ep, and swaptions benchmarks) [44, 45]. The composition of data cen-

ter workloads can vary greatly and can impact the resource requirements, and these experiments

show that the techniques presented in our work will perform well for a variety of workload types.

Observe that the CPU-intensive workload typically costs the least as it experiences the least co-

location degradation and therefore requires fewer nodes. However, the memory-intensive tasks

cause performance degradation because they compete for shared memory in multicore processors.

7.3 Scalability Analysis

7.3.1 Data Center Scalability Analysis

In this experiment, we analyze heuristic performance for additional problem sizes. Simula-

tions running hybrid workloads were conducted for four and sixteen data center configurations in

addition to the previously discussed eight data center configuration. For each configuration, the

average performance improvement of each heuristic over the FDLD-SO heuristic with no peak

shaving and no net metering is given in Table 7.1. The GALD-CL heuristic was limited to a run

time of approximately one hour. FDLD heuristics for four, eight, and sixteen locations completed

on average in two, six, and eighteen minutes per epoch simulated, respectively. These experiments

confirm that all FDLD heuristics can perform well for smaller and larger problem sizes but the

31

GALD-CL heuristic consistently performs the best for all problem sizes.

Table 7.1: Energy Cost Reduction Comparison

heuristic no PS and NM PS PS and
no NM only only NM

FDLD-SO 0.0% 0.2% 23.4% 23.6%
4 data FDLD-TAO 12.3% 14.5% 33.4% 34.0%
centers FDLD-CL 15.0% 15.7% 36.7% 37.9%

GALD-CL 49.5% 58.2% 67.3% 75.8%

FDLD-SO 0.0% 0.3% 20.8% 21.1%
8 data FDLD-TAO 16.9% 16.8% 31.5% 32.5%
centers FDLD-CL 19.6% 20.8% 36.9% 38.3%

GALD-CL 40.9% 45.7% 54.5% 60.8%

FDLD-SO 0.0% 0.4% 21.7% 24.5%
16 data FDLD-TAO 11.1% 12.2% 30.9% 32.9%
centers FDLD-CL 14.2% 16.1% 33.4% 36.6%

GALD-CL 33.1% 36.4% 44.0% 46.6%

PS = peak shaving, NM = net metering

7.3.2 GA Run Time Scalability Analysis

Table 7.1 shows similar energy cost reduction results for all FDLD variants in the cases of the

data center configurations containing four, eight, and sixteen data centers running hybrid work-

loads. But for GALD-CL, we notice that the energy cost reduction decreases with the increasing

number of data centers. Here, as the number of data centers in the group grows larger, the problem

size increases and the number of GALD-CL generations that can take place within the time limit

(one hour by default) decreases, which decreases the performance of GALD-CL.

To better understand how the GALD-CL solution quality is impacted by the heuristic’s run

time, we increase the GALD-CL run time in proportion to the increase in number of data centers.

We execute GALD-CL for about one hour for four data centers, about two hours for eight data cen-

ters, and about four hours for sixteen data centers. The results from Table 7.2 show that GALD-CL

is capable of performing well for larger problem size, when given more time. For comparison, the

32

Table 7.2 also includes results for GALD-CL executed for about one hour for a group of four, eight,

and sixteen data centers. It should be noted that, even when allowing the GALD-CL to execute for

one hour, it still provides the system a significant energy cost reduction in comparison to the all

FDLD heuristics as shown in Table 7.1.

Table 7.2: Impact of GALD-CL Run Time

GALD-CL no PS and NM PS PS and
epoch no NM only only NM

4 data 1 hour 49.5% 58.2% 67.3% 75.8%
centers

8 data 1 hour 40.9% 45.7% 54.5% 60.8%
centers 2 hours 46.7% 55.2% 62.5% 72.2%

16 data 1 hour 33.1% 36.4% 44.0% 46.6%
centers 4 hours 40.1% 49.4% 61.6% 69.9%

PS = peak shaving, NM = net metering

7.3.3 Epoch-based Analysis

For most of our experiments, we analyzed the total system cost for each heuristic over one day.

Figure 7.2 shows a more detailed view of the system operating cost at one-hour intervals over the

course of a day for four, eight, and sixteen data centers executing a hybrid workload. The four

resource management heuristics in this study consider both peak shaving and net metering.

Net metering causes the plots to go into the negative region in certain epochs, which represents

the case when the system earns money by selling excess renewable power back to the utility com-

panies. The operating cost for each heuristic is very high during the first epoch because the period

for which the results are shown represents the first day of the month where the initial peak demand

cost is added. This effect would not be present for other days of the month. After a few epochs,

the performance of the FDLD-CL came close to the GALD-CL, but was not able to surpass its

performance.

33

(a) four data centers
����

���

��

���

���

����� 	���
��� ����� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

	

�

��������

�

�����

������

������

�

�

�

�

�

�

	
�
�
� 	
�
���� 	
�
��� ���
���

(c) sixteen data centers

�

	�����

�����

�

�

�

�

�

�

	
�
�
� 	
�
���� 	
�
��� ���
���

�
��

�
��

���

���

�����

����� 	���
��� ����� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

	

�

��������

�
��

����

���

��

���

����� 	���
��� ����� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

	

�

��������

�

������

	�����

�

�

�

�

�

�

	
�
�
� 	
�
���� 	
�
��� ���
���

(b) eight data centers

���

��

����

��

����

��

Figure 7.2: System energy costs for each heuristic over a day for epoch-based analysis, for a configuration
with (a) four, (b) eight, and (c) sixteen data center locations running the hybrid workloads

34

7.4 Sensitivity Analysis

7.4.1 Net Metering Factor

Renewable power generation changes throughout the year. The amount of renewable power

generated at a data center also depends on its location. As discussed in Chapter 6, data centers

generate different amounts of renewable power at each location. Different states have different net

metering laws and utility companies from those states have different energy buy-back rates for net

metering. In this Chapter, we analyze the impact of net metering (with no peak shaving) and study

how the net metering factor impacts energy costs and the behavior of the heuristics. For these ex-

periments, we consider a configuration with eight data centers executing a hybrid workload. The

experiments analyze the total system cost for each heuristic utilizing only net metering. Peak shav-

ing is ignored because this study focuses only on the sensitivity analysis of the net metering factor.

������

������

������

������

��	�
�� ��	�

�� ��	�
�	 ��	�
�	

��
��
�
�
��
�
�
�	
��

�
��
��

�

������������������������ !� "

��#�$%�&��'� �'��#�$(�&��') �')�#�$��#�%

Figure 7.3: System energy costs for each heuristic over a day for net metering factor sensitivity analysis,
for eight data center locations running a hybrid workload

Net metering factor values for data centers were randomly sampled (with uniform distribution)

from three value ranges, where buy-back costs for renewable energy are low (0 ≤ α1 < 0.4),

medium (0.4≤ α2< 0.7), and high (0.7≤ α3≤ 1). Furthermore, we consider five simulation runs

35

for each set of values and plot standard deviations as shown in Figure 7.3. In the figure, the system

energy costs decrease, but not dramatically as the net metering factor values increase. However,

we can observe that GALD-CL is able to exploit net metering better than the other heuristics as α

values increase.

7.4.2 Peak Demand Price

As discussed in Chapter 6, the set of data centers we are considering for these experiments

are heterogeneous and therefore consume different amounts of peak power. Utilities at different

locations have different peak prices as shown in Table 6.2. In this Chapter, we analyze the impact

of peak shaving (with no net metering) and study the impact of peak demand price. For these ex-

periments, we consider eight data centers executing a hybrid workload. The experiments analyze

the total system cost for each heuristic utilizing only peak shaving. Net metering is not considered

because this study focuses only on the sensitivity analysis of the peak demand price.

������

������

������

������

������

������

	�����

���
��
���
���
���
�� ����
��

��
��
�
�
��
�
�
�	
��

�
��
��

�

������������������ �!�"�#$ #%

��&�'��(�	 	�&�'��(��� ���&�'��&���

Figure 7.4: System energy costs for each heuristic over a day for peak demand price sensitivity analysis,
for eight data center locations running a hybrid workload

Peak demand pricing values for data centers were randomly sampled (with uniform distribu-

tion) from three value ranges, where these values are low (3 ≤ p1 < 7), medium (7 ≤ p2 < 11),

36

and high (11 ≤ p3 ≤ 15). Furthermore, we consider five simulation runs for each set of values and

plot standard deviations as shown in Figure 7.4. As expected, the system energy costs increase as

the peak demand pricing values increase. We observe a significant cost change across p1, p2, and

p3 because peak demand cost is one of the two major components of the total system cost (see

Equation 3.10) and peak demand pricing has a major impact on the peak demand cost component.

The wide standard deviation for peak shaving shows that the system is highly sensitive to the

peak demand price. By comparing both net metering factor and peak demand price sensitivity

analyses, we can observe that peak shaving has a bigger impact on system cost than net metering.

The major reason behind this is realistic assumptions of renewable power generation capabilities

at each data center. If we consider self-sustainable green data centers [12, 13, 52] and the trend

of increasing on-site renewable (solar/wind) power farms, more renewable power will be available

for net metering which will have a more significant impact on the system.

7.5 Task Arrival Rate Pattern Analysis
All of our experiments so far have assumed a sinusoidal task arrival rate pattern as shown

in Figure 6.3. This kind of pattern exists in environments where workload traffic depends on

user/consumer interaction and follows their demand during the day, e.g., Netflix [54], Facebook

[55]. However, for the environments where continuous computation is needed and the workload

pattern is non user/consumer interaction specific, the task arrival rate pattern is usually flat (nearly-

constant). Examples of such environments exist in military computing installations (Department

of Defense), government research labs (National Center for Atmospheric Research), etc. We con-

ducted a set of simulations to analyze the impact of varying the task arrival pattern. We consider

a configuration with eight data centers executing a hybrid workload with both sinusoidal arrival

pattern shown in Figure 7.5(a) and flat arrival rate pattern shown in Figure 7.5(b).

Recall that each task-type is characterized by its arrival rate and the estimated time required

to complete the task on each of the heterogeneous compute nodes in all P-states. The four GDRM

heuristics map execution rates to minimize total energy cost across all data centers with the con-

37

������� �������� �����	�
����	�

��
���
����������

�������������������
���
�����

���

!��

"��

#��

���

$��

������� �������� �����	�
����	�

��
��
�
�
��
�
�
�	
��

�
��
��

�

�������������������������
���
�����

�����������������

�!��% $��% �!�&% $�&% �!��%

��������

 '!

 '#

 '$

 '(

�

�!��% $��% �!�&% $�&% �!��%

�
�
��

�
��
��
�
�

�
�
�
��
��
��
�

��
��
��
��
��
�
��
��
��

)�*����+�������,����������

���)-*�.��
�,����������

���

)/*����+�������,����������

���)�*�.��
�,����������

���

Figure 7.5: Comparison of normalized cumulative task arrival rates for (a) sinusoidal and (b) flat patterns;
comparison of system energy costs among heuristics over a day for (c) sinusoidal and (d) flat workload
arrival rate patterns; all results are for eight data center locations running a hybrid workload

straint that the execution rates of all task-types meet their arrival rates (see Equation 3.1). Therefore

the assignment of execution rates alters with the change in arrival rates, which further affects the

system cost. The results shown in Figure 7.5(c) and Figure 7.5(d) indicate that the geo-distributed

system responds differently for sinusoidal and flat arrival rate patterns.

Overall system energy cost is higher for the sinusoidal workload arrival pattern because it pro-

duces higher peak data center power, which further increases the peak demand cost, than the flat

workload arrival pattern. Peak shaving significantly reduces the energy costs for both workload

patterns. The sinusoidal workload arrival pattern roughly aligns with the pattern of the renewable

power generation (see Figure 6.2), allowing data centers to utilize all of the available renewable

power.

38

The flat (nearly-constant) workload arrival rate pattern does not align with the pattern of the

renewable power generation. This leaves data centers with excess renewable energy in the second

half of the day, which allows heuristics to exploit net metering heavily and produce more cost sav-

ings. Thus, heuristics that consider net metering perform better for the flat arrival rate pattern as

compared to the sinusoidal arrival rate pattern.

39

Chapter 8

Conclusions and Future Work

8.1 Conclusions
We studied the problem of minimizing the energy costs for geographically distributed hetero-

geneous data centers with the constraint that all tasks complete without being dropped. Renewable

energy, peak demand, and co-location interference at data centers have a significant impact on

energy consumption. We capture these effects by including net metering, peak shaving, and co-

location models in our workload distribution techniques. We analyzed several techniques that

possess varying degrees of co-location interference prediction information: (1) a force-directed

scheduling technique, FDLD-TAO, that uses task aware over-provisioning to estimate co-location

effects for each task-type, (2) a force-directed scheduling technique, FDLD-CL, that uses co-

location models when calculating task execution rates, and (3) a genetic algorithm combined with

a local search technique, GALD-CL, that has information about the co-location models and DVFS

P-states.

The primary contributions of our research are to provide analyses of the aspects of the prob-

lems and solutions associated with renewable energy, peak demand, and co-location aware resource

management in heterogeneous computing systems. We used new peak demand and net metering

models that directly consider real-world peak demand prices and net metering policies in calcula-

tion of the system electricity cost, and a new co-location interference model created from a linear

regression technique using data from real servers. We demonstrated that including this additional

information in the decision process of the resource management heuristics resulted in a lower en-

ergy cost. This is achieved by reducing or eliminating node over-provisioning while still meeting

all required workload execution rates. Ignoring interference effects altogether can be especially

detrimental to overall performance and energy overheads when task execution times deviate far

from those expected due to interference. We also demonstrated the importance of net metering

40

and peak shaving by illustrating the impact of the awareness of these factors on reducing operating

costs for geographically distributed data centers.

We compared our techniques across various workload profiles, performing a scalability assess-

ment, examining sensitivity to renewable power availability and peak demand pricing parameters,

and testing system behavior for different task arrival patterns. Our proposed FDLD-CL and GALD-

CL heuristics resulted in 37% and 61% lower operational costs on average than an approach from

prior work (represented by the FDLD-SO heuristic) [22]. However, to implement our approach in

a real system, it needs to be used with some form of a workload prediction technique, e.g., [56,57].

Additionally, due to scalability issues of GALD-CL, we recommend using FDLD-CL with a work-

load prediction technique in systems where the workload profile changes rapidly and therefore re-

quires short epochs, e.g., a few minutes. When the workload profile is not changing rapidly and

the workload distribution decisions are provided more time, e.g., an hour, using GALD-CL with a

workload prediction technique is a more suitable heuristic.

8.2 Future Work
This study has worked toward minimizing energy use for geographically distributed data cen-

ters by simultaneously considering various system features, such as data center compute and

cooling power, co-location interference effects, time-of-use (TOU) electricity pricing, renewable

power, net metering, and the distribution of peak demand pricing. Our work proposes several re-

source management techniques to address this optimization goal. Some directions for future work

include:

• The proposed resource management techniques consider a steady-state scheduling problem.

For certain real world scenarios, one needs to accurately predict the workload arriving to each

data center. Future work could explore online (run-time) resource management techniques

that work with the previously mentioned system features.

• Another future approach could use offline-assisted online resource management techniques.

For example, a number of solutions, called templates, could be generated offline to assist

41

the online resource manager in making fast thermal-aware resource management decisions

based on the incoming workload and state of the data center facility.

• To build on this work, a model for network interconnects and communication within and

across data centers could be explored. The network performance (bandwidth and latency)

across data centers is strongly related to the geographic distance between data center lo-

cations. The current study focuses on the mainland United States and could be extended

to consider geographic distribution across multiple countries or even multiple continents.

The network bandwidth and latency in a geographically distributed cloud environment is

highly heterogeneous. For example, the network bandwidth within a single geographic re-

gion (country) is usually much faster than the bandwidth across regions (continents). This

work could be expanded by exploring a more advanced network model that considers het-

erogeneous networks.

• Another interesting direction relates to the restrictions on data movements between data cen-

ters. For example, data privacy regulations in certain countries may prevent the movement

of sensitive data to data centers in other countries. Another example could be latency critical

applications that are severely penalized if they are partitioned across data centers, such that

the time for the movement of their associated data is excessive.

• Each application may perform differently on different types of compute node architectures

in terms of energy and execution speed. Future work could study a wider variety of architec-

tures (nodes with GPUs, energy efficient servers, high performance servers, etc.) with a more

diverse set of applications (massively parallel, real-time, machine learning, media/streaming,

etc.).

42

Bibliography

[1] Pacific Gas and Electric Company, “Electric schedule e-19,” http://www.pge.com/tariffs/tm2/

pdf/ELEC_SCHEDS_E-19.pdf. Accessed Apr. 15, 2015.

[2] M. A. Oxley, E. Jonardi, S. Pasricha, A. A. Maciejewski, H. J. Siegel, P. J. Burns, and G. A.

Koenig, “Rate-based thermal, power, and co-location aware resource management for hetero-

geneous data centers,” Journal of Parallel and Distributed Computing, vol. 112, no. 2, Feb.

2018, pp. 126–139.

[3] NREL, “National solar radiation database,” https://mapsbeta.nrel.gov/nsrdb-viewer/. Ac-

cessed Apr. 15, 2015.

[4] “Data center locations,” http://www.google.com/about/datacenters/inside/locations/index.

html. Accessed Aug. 1, 2017.

[5] “Global infrastructure,” http://aws.amazon.com/about-aws/global-infrastructure/. Accessed

Aug. 1, 2017.

[6] Y. Li, H. Wang, J. Dong, J. Li, and S. Cheng, “Operating cost reduction for distributed inter-

net data centers,” in 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing, May 2013, pp. 589–596.

[7] “What is time-of-use pricing and why is it important?” http://www.energy-exchange.net/

time-of-use-pricing/. Accessed Aug. 1, 2017.

[8] “Dynamic pricing,” http://whatis.techtarget.com/definition/dynamic-pricing. Accessed Aug.

1, 2017.

[9] “Demand charges,” http://www.stem.com/resources/learning/. Accessed Aug. 1, 2017.

[10] “Understanding peak demand charges,” https://energysmart.enernoc.com/understanding-

peak-demand-charges. Accessed Aug. 1, 2017.

43

http://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_E-19.pdf
http://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_E-19.pdf
https://mapsbeta.nrel.gov/nsrdb-viewer/
http://www.google.com/about/datacenters/inside/locations/index.html
http://www.google.com/about/datacenters/inside/locations/index.html
http://aws.amazon.com/about-aws/global-infrastructure/
http://www.energy-exchange.net/time-of-use-pricing/
http://www.energy-exchange.net/time-of-use-pricing/
http://whatis.techtarget.com/definition/dynamic-pricing
http://www.stem.com/resources/learning/
https://energysmart.enernoc.com/understanding-peak-demand-charges
https://energysmart.enernoc.com/understanding-peak-demand-charges

[11] C. Hsu, “Rack PDU for green data centers,” in Data Center Handbook, H. Geng, Ed. John

Wiley and Sons, Inc., Hoboken, NJ, Nov. 2014, ch. 29.

[12] “Apple to build a 3rd massive solar panel farm in North Carolina,” https://gigaom.com/2014/

07/08/apple-to-build-a-3rd-massive-solar-panel-farm-in-north-carolina/. Accessed Aug. 1,

2017.

[13] “Solar energy project at McGraw-Hill site recently completed,” http://www.nJournalcom/

mercer/index.ssf/2012/01/solar_energy_project_at_mcgraw.html/. Accessed Aug. 1, 2017.

[14] “Green power: Accelerating the transition to a clean energy future,” https://www.microsoft.

com/about/csr/environment/renewable_energy/. Accessed Aug. 1, 2017.

[15] “Achieving our 100% renewable energy purchasing goal and going beyond,”

https://static.googleusercontent.com/media/www.google.com/en//green/pdf/achieving-

100-renewable-energy-purchasing-goal.pdf. Accessed Aug. 1, 2017.

[16] “Facebook’s Altoona, Iowa data center to be completely wind-powered,” https:

//www.slashgear.com/facebooks-altoona-iowa-data-center-to-be-completely-wind-

powered-13305335/. Accessed Aug. 1, 2017.

[17] “Net metering,” http://freeingthegrid.org/. Accessed Aug. 1, 2017.

[18] I. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart, J. Torres, and R. Bian-

chini, “Greenslot: Scheduling energy consumption in green datacenters,” in International

Conference for High Performance Computing, Networking, Storage and Analysis, Nov. 2011,

11 pp.

[19] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam, “Carbon-aware energy capacity

planning for datacenters,” in IEEE 20th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, Aug. 2012, pp. 391–400.

44

https://gigaom.com/2014/07/08/apple-to-build-a-3rd-massive-solar-panel-farm-in-north-carolina/
https://gigaom.com/2014/07/08/apple-to-build-a-3rd-massive-solar-panel-farm-in-north-carolina/
http://www.nJournalcom/mercer/index.ssf/2012/01/solar_energy_project_at_mcgraw.html/
http://www.nJournalcom/mercer/index.ssf/2012/01/solar_energy_project_at_mcgraw.html/
https://www.microsoft.com/about/csr/environment/renewable_energy/
https://www.microsoft.com/about/csr/environment/renewable_energy/
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/achieving-100-renewable-energy-purchasing-goal.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/achieving-100-renewable-energy-purchasing-goal.pdf
https://www.slashgear.com/facebooks-altoona-iowa-data-center-to-be-completely-wind-powered-13305335/
https://www.slashgear.com/facebooks-altoona-iowa-data-center-to-be-completely-wind-powered-13305335/
https://www.slashgear.com/facebooks-altoona-iowa-data-center-to-be-completely-wind-powered-13305335/
http://freeingthegrid.org/

[20] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini, “GreenHadoop: Lever-

aging green energy in data-processing frameworks,” in 7th ACM European Conference on

Computer Systems (EuroSys ’12), Apr. 2012, pp. 57–70.

[21] I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol and GreenSwitch:

Managing datacenters powered by renewable energy,” in 18th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS ’13),

Mar. 2013, pp. 51–64.

[22] H. Goudarzi and M. Pedram, “Geographical load balancing for online service applications in

distributed datacenters,” in IEEE 6th International Conference on Cloud Computing (CLOUD

’13), June 2013, pp. 351–358.

[23] E. Jonardi, M. A. Oxley, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Energy cost

optimization for geographically distributed heterogeneous data centers,” in 6th International

Green and Sustainable Computing Conference (IGSC ’15), Dec. 2015, 6 pp.

[24] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad, “Opportunities and challenges for data

center demand response,” in International Green Computing Conference, Nov. 2014, 10 pp.

[25] L. Gu, D. Zeng, S. Guo, and B. Ye, “Joint optimization of VM placement and request distri-

bution for electricity cost cut in geo-distributed data centers,” in International Conference on

Computing, Networking and Communications (ICNC ’15), Feb. 2015, pp. 717–721.

[26] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. M. Lau, “Dynamic pricing and profit max-

imization for the cloud with geo-distributed data centers,” in IEEE Conference on Computer

Communications (INFOCOM ’14), Apr. 2014, pp. 118–126.

[27] L. Gu, D. Zeng, A. Barnawi, S. Guo, and I. Stojmenovic, “Optimal task placement with QoS

constraints in geo-distributed data centers using DVFS,” IEEE Transactions on Computers,

vol. 64, no. 7, July 2015, pp. 2049–2059.

45

[28] H. Xu, C. Feng, and B. Li, “Temperature aware workload managementin geo-distributed data

centers,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 6, June 2015,

pp. 1743–1753.

[29] M. Polverini, A. Cianfrani, S. Ren, and A. V. Vasilakos, “Thermal-aware scheduling of batch

jobs in geographically distributed data centers,” IEEE Transactions on Cloud Computing,

vol. 2, no. 1, Jan. 2014, pp. 71–84.

[30] D. Mehta, B. O’Sullivan, and H. Simonis, “Energy cost management for geographically dis-

tributed data centres under time-variable demands and energy prices,” in IEEE/ACM 6th In-

ternational Conference on Utility and Cloud Computing, Dec. 2013, pp. 26–33.

[31] Z. Abbasi, M. Pore, and S. K. Gupta, “Impact of workload and renewable prediction on

the value of geographical workload management,” in 2nd International Workshop on Energy

Efficient Data Centers (E2DC ’13), May 2013, 15 pp.

[32] C. Chen, B. He, and X. Tang, “Green-aware workload scheduling in geographically dis-

tributed data centers,” in 4th IEEE International Conference on Cloud Computing Technology

and Science Proceedings, Dec. 2012, pp. 82–89.

[33] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson, “Automatic ex-

ploration of datacenter performance regimes,” in 1st Workshop on Automated Control for

Datacenters and Clouds (ACDC ’09), June 2009, 6 pp.

[34] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-aware server

provisioning and load dispatching for connection-intensive internet services,” in 5th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’08), Apr. 2008, pp.

337–350.

[35] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the parallel workloads

archive,” Journal of Parallel and Distributed Computing, vol. 74, no. 10, Oct. 2014, pp.

2967–2982.

46

[36] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic robustness metric

and its use for static resource allocations,” Journal of Parallel and Distributed Computing,

vol. 68, no. 8, Aug. 2008, pp. 1157–1173.

[37] M. A. Iverson, F. Ozguner, and L. Potter, “Statistical prediction of task execution times

through analytic benchmarking for scheduling in a heterogeneous environment,” IEEE Trans-

actions on Computers, vol. 48, no. 12, Dec. 1999, pp. 1374–1379.

[38] H. Bhagwat, U. Singh, A. Deodhar, A. Singh, and A. Sivasubramaniam, “Fast and accurate

evaluation of cooling in data centers,” Journal of Electronic Packaging, vol. 137, no. 1, Mar.

2015, 9 pp.

[39] “Thermal guidelines for data processing environments-expanded data center classes and

usage guidance,” Technical Report, American Society of Heating, Refrigerating, and Air-

Conditioning Engineers, Inc., 2011, 45 pp.

[40] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making scheduling "Cool":

Temperature-aware workload placement in data centers,” in USENIX Annual Technical Con-

ference (ATEC ’05), Apr. 2005, pp. 61–75.

[41] X. Deng, D. Wu, J. Shen, and J. He, “Eco-aware online power management and load schedul-

ing for green cloud datacenters,” IEEE Systems Journal, vol. 10, no. 1, Mar. 2016, pp. 78–87.

[42] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: Quantifying effects of

shared on-chip resource interference for consolidated virtual machines,” in 2nd ACM Sympo-

sium on Cloud Computing (SOCC ’11), Oct. 2011, 14 pp.

[43] D. Dauwe, E. Jonardi, R. D. Friese, S. Pasricha, A. A. Maciejewski, D. A. Bader, and H. J.

Siegel, “HPC node performance and energy modeling with the co-location of applications,”

The Journal of Supercomputing, vol. 72, no. 12, Dec. 2016, pp. 4771–4809.

[44] “PARSEC benchmark suite,” http://parsec.cs.princeton.edu/index.htm/. Accessed Aug. 1,

2017.

47

http://parsec.cs.princeton.edu/index.htm/

[45] “NAS parallel benchmarks,” https://www.nas.nasa.gov/publications/npb.html. Accessed

Aug. 1, 2017.

[46] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis of

ASICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 8, no. 6, June 1989, pp. 661–679.

[47] D. Whitley, “The GENITOR algorithm and selective pressure: Why rank-based allocation

of reproductive trials is best,” in 3rd lnternational Conference on Genetic Algorithms, June

1989, pp. 116–121.

[48] “Pyevolve: A complete genetic algorithm framework,” http://pyevolve.sourceforge.net/0_

6rc1/index.html. Accessed Aug. 1, 2017.

[49] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F. Freund, D. Hensgen, M. Maheswaran, A. I.

Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A comparison of eleven static heuristics

for mapping a class of independent tasks onto heterogeneous distributed computing systems,”

Journal of Parallel and Distributed Computing, vol. 61, no. 6, June 2001, pp. 810–837.

[50] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping of a

class of independent tasks onto heterogeneous computing systems,” Journal of Parallel and

Distributed Computing, vol. 59, no. 2, Nov. 1999, pp. 107–131.

[51] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper, R. Wolford, T. Brey, R. Kantner,

A. Ng, J. Norris, A. Traore, and M. Frissora, “Agile, efficient virtualization power man-

agement with low-latency server power states,” in 40th Annual International Symposium on

Computer Architecture (ISCA ’13), June 2013, pp. 96–107.

[52] G. Cook, T. Dowdall, D. Pomerantz, and Y. Wang, “Clicking clean: How companies are

creating the green internet,” Greenpeace Inc., Washington, DC, Apr. 2014.

[53] “Net metering policies,” http://www.dsireusa.org/. Accessed Aug. 1, 2017.

48

https://www.nas.nasa.gov/publications/npb.html
http://pyevolve.sourceforge.net/0_6rc1/index.html
http://pyevolve.sourceforge.net/0_6rc1/index.html
http://www.dsireusa.org/

[54] “Scryer: Netflix’s predictive auto scaling engine,” https://medium.com/netflix-techblog/

scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270. Accessed Aug. 1, 2017.

[55] “Making Facebook’s software infrastructure more energy efficient with Autoscale,”

https://code.facebook.com/posts/816473015039157/making-facebook-s-software-

infrastructure-more-energy-efficient-with-autoscale/. Accessed Aug. 1, 2017.

[56] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using ARIMA

model and its impact on cloud applications’ QoS,” IEEE Transactions on Cloud Computing,

vol. 3, no. 4, Oct. 2015, pp. 449–458.

[57] J. Xue, F. Yan, R. Birke, L. Y. Chen, T. Scherer, and E. Smirni, “PRACTISE: Robust pre-

diction of data center time series,” in 11th International Conference on Network and Service

Management (CNSM), Nov. 2015, pp. 126–134.

49

https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/

Appendix A

List of Abbreviations and Notations

• φ = either φC or φCi for FDLD-SO or FDLD-TAO, respectively

• τ = epoch

• α = net metering factor

• φC = task execution rate scaling factor

• φCi = task specific task execution rate scaling factor

• ∆peak
d = peak power increase at data center d

• ρd = density of air at data center d

• µj = average node utilization factor for each node-type j

• ADPd = node activation/deactivation power in data center d

• AFCd,c = air flow rate of CRAC unit c in data center d

• APC = average power consumed

• ARi = arrival rate of task-type i

• CERcore
i,k = co-located execution rate for task-type i on core k

• CERi = total co-located execution rate for task-type i

• CRAC = computer room air conditioning

• Cd = specific heat capacity of air at data center d

• CoPd = Coefficient of Performance (CoP) of the CRAC unit at data center d

50

• D = set of data centers

• DARnorm
d,i = normalized desired arrival rate for each task-type i at data center d

• DARd,i = desired arrival rate for each task-type i at data center d

• DFi,k = desired fraction of time each core k will spend executing tasks of type i

• ECS = estimated computational speed

• EFFi,k = efficiency for a task mapping of type i on a node of type NTk in P-state PSi,k(τ)

• ERDC
d,i = maximum data center execution rate for each task-type i to each data center d

• ERE
j,i = average estimated execution rate of task-type i on node-type j

• ERcore
i,k = core execution rate of tasks of type i on core k

• ERj,i(P0) = execution rates of task-type i running on a single core of a node of type j in the

lowest numbered P-state

• ERj,i(PMAX) = execution rates of task-type i running on a single core of a node of type j in

the highest numbered P-state

• Eprice
d = electricity price per kWh at data center d

• Effd = approximation of the power overhead coefficient in data center d

• FC = cost force

• FER = execution rate force

• F S = total system force across all epochs

• GDRM = geo-distributed resource manager

• GLD = geographical load distribution

51

• I = set of workload task-types

• Jd = set of node-types in data center d

• Kj = number of cores in a node of type j

• NCNn = number of cores in node n

• NCRd = number CRAC units in data center d

• NNd = number of nodes in data center d

• NNd,j = number of nodes of type j in data center d

• NTk = node type to which core k belongs

• N τ = total number of epochs being considered

• N trans
d,j = number of nodes of type j in data center d that activate or deactivate

• On = overhead power consumption of node n

• PCRd,c = power consumed by CRAC unit c in data center d

• PCE
d = estimated power cost at data center d

• PCmax
d = maximum real power cost possible at data center d

• PCd = total power/electricity cost for data center d

• PDE
d = estimated non-renewable power consumed at data center d

• PDd = total non-renewable power consumed throughout data center d

• PNn = power consumption of node n, PNn

• PRd = total renewable power at data center d

• PSi,k = P-state each core k is configured when executing tasks of type i

52

• PD
j = average peak dynamic power for node-type j

• P S
j = average static power for node-type j

• P Sleep
j = average sleep power for node-type j

• P price
d = peak demand price per kW at data center d

• P solar
d = solar power at data center d

• Pwind
d = wind power at data center d

• Pcpeakd = the highest grid power consumed since the beginning of the current month, includ-

ing the current epoch τ

• Pppeakd = the highest grid power consumption since the beginning of the current month until

the start of the current epoch τ

• Qd,j,i = equivalent number of nodes of type j running task-type i in data center d

• Rj,i = equivalent single core execution rate of task-type i on node-type j

• Sd,j,n = set of instances of task-type i placed on node n of node-type j in data center d

• TCin
d,c = inlet temperature of CRAC unit c in data center d

• TCout
d,c = outlet temperature of CRAC unit c in data center d

• T S = time required for a node to transition to/from a sleep state

• T e = epoch length (one hour)

• Z = term that is replaced by CERi when considering the FDLD-CL heuristic and is replaced

by ERE
j,i when using either FDLD-SO or FDLD-TAO

• d = data center

• i = task-type

53

Appendix B

Vita

Ninad Hogade received his B.E. degree in Electronics Engineering from Vishwakarma Institute

of Technology, Pune, India. He is currently a graduate student in Computer Engineering at Col-

orado State University, Fort Collins, CO. His research interests include energy aware scheduling

in high performance computing systems and data centers. He is currently a Graduate Research

Assistant for the Summit High Performance Computing system, a joint activity of Colorado State

University (CSU) and the University of Colorado Boulder (CU).

54

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Related Work
	System Model
	Overview
	Geo-Distributed Level Model
	Data Center Level
	Organization of Each Data Center
	Compute Core Execution Rates
	Compute Node Power Model
	Cooling Power Model
	Node Activation/Deactivation Power Overhead
	Renewable Power Model
	Overall Data Center Power Model
	Net Metering Model
	Peak Demand Model
	System Electricity Cost
	Co-Location Interference Model

	Problem Formulation
	Heuristics Descriptions
	Overview
	Force Directed Load Distribution Heuristics
	Genetic Algorithm Heuristic

	Simulation Environment
	Experiments
	Cost Comparison of Heuristics
	Workload Type Analysis
	Scalability Analysis
	Data Center Scalability Analysis
	GA Run Time Scalability Analysis
	Epoch-based Analysis

	Sensitivity Analysis
	Net Metering Factor
	Peak Demand Price

	Task Arrival Rate Pattern Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	List of Abbreviations and Notations
	Vita

