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ABSTRACT 
 
 
 

SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH 

MACHINE LEARNING APPLICATIONS 

 
 Die casting is a highly complex manufacturing system used to produce near net shape castings.  

Although the process has existed for more than hundred years, a systems engineering approach to define 

the process and the data die casting can generate each cycle has not been completed.  Industry and 

academia have instead focused on a narrow scope of data deemed to be the critical parameters within die 

castings.  With this narrow focus, most of the published research on machine learning within die casting 

has limited success and applicability in a production foundry.  This work will investigate the die casting 

process from a systems engineering perspective and show meaningful ways of applying machine learning. 

 The die casting process meets the definition of a complex system both in technical definition and 

in the way that humans interact within the system.  From the technical definition, the die casting system is 

a network structure that is adaptive and can self-organize.  Die casting also has nonlinear components that 

make it dependent on initial conditions.  An example of this complexity is seen in the stochastic nature of 

porosity formation, even when all key parameters are held constant.  Die casting is also highly complex 

due to the human interactions.  In manufacturing environments, human’s complete visual inspection of 

castings to label quality results.  Poor performance creates misclassification and data space overlap issues 

that further complicate supervised machine learning algorithms.       

The best way to control a complex system is to create feedback within that system.  For die 

casting, this feedback system will come from Industry 4.0 connections.  A systems engineering approach 

will define the critical process and then create groups of data in a data framework.  This data framework 

will show the data volume is several orders of magnitude larger than what is currently being used within 

the industry.   
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With an understanding of the complexity of die cast and a framework of available data, the 

challenge becomes identifying appropriate applications of machine learning in die casting.  The argument 

is made, and four case studies show, unsupervised machine learning provides value by automatically 

monitoring the data that can be obtained and identifying anomalies within the die cast manufacturing 

system.  This process control improvement thereby removes the noise from the system, allowing one to 

gain knowledge about the die casting process.  In the end, the die casting industry can better understand 

and utilize the data it generates with machine learning.       
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PREFACE 
 
 
 

Data and machine learning is changing the world and improving our lives.  With or without direct 

knowledge of its influence, it shapes what we purchase, read, and watch every day.  Advancements in 

image recognition and natural language processing created amazing results.  Deepfake videos make one 

question what we can really believe.  Conversations are had with an electronic device sitting in the 

kitchen.  With all these advances, applications of machine learning in manufacturing would seem to be a 

trivial challenge for the power of this technology.  Yet, machine learning has yet to develop a strong 

foothold within industrial applications.  Much research and academic work has shown benefits often with 

small, controlled studies.  There are substantial challenges to overcome when applying this to complex 

production environments. 

This work has combined my passions of the manufacturing world I have worked in for close to 

two decades with the use of data and machine learning.  The goal is to gain an understanding of the 

process that has does not exist today.  I want industry to recognize the complexity that die casting 

deserves to be classified as and then reduce that complexity to manageable parts to better learn from it.  

This dissertation provides a means to share this knowledge.   

Each chapter of this dissertation can ideally be read by itself.  Several of the chapters and case 

studies included are based on publications that have been completed through the years of my study.  The 

organization of the chapters within the dissertation is a much more logical progression than the 

chronological order in which I studied and learned.  It is said that education is not a straight line.  The 

work that comprises this dissertation is additional proof of that.    

Chapter 1 begins with an introduction to die casting and starts to touch on the complexity of the 

die casting process.  A review of die casting process optimization literature is provided that will show 

gaps within the approaches used to date.  Chapter 2 discusses the details of complexity theory within the 

die casting manufacturing system, the need for a systems engineering approach, and ultimately completes 

a data framework for the die casting system.  As will be demonstrated, the volume and velocity of the 
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data generated in die casting needs machine learning tools to help process and identify important 

information. 

Chapters 3 and 4 build on the complexity of the die casting system in two different ways.  

Chapter 3 details a study performed on the stochastic nature of porosity formation in die castings.  The 

work shows porosity formation was random even when variables that the industry typically controls to 

improve part quality were held constant. Chapter 4 discusses the human impact on classification of 

defects and the importance of the Critical Error Threshold (CET) of the casting process.  The CET, 

combined with the high-quality performance of most manufacturing operations, focuses the use of 

machine learning to areas within die casting outside of the traditional supervised machine learning 

approach.   

Chapter 5 entertains the topics of applications of machine learning within a production die casting 

process.  A review of machine learning and some of the challenges associated with manufacturing are 

discussed prior to a review of four machine learning case studies completed at Mercury Marine as part of 

the PhD research.  Chapter 6 concludes the dissertation with a discussion around conclusions learned and 

recommended areas of future studies that can be expanded from this work.   

There is still much work to be done for machine learning in manufacturing to approach the same 

levels of adoption as seen in other industries.  Manufacturing is a traditional industry and is slow to 

change.  The complex nature of manufacturing systems makes it intrinsically harder to successfully apply 

machine learning with success.  Non-traditional uses of machine learning will be required within the 

industry.  Without a strong call to learn and adapt these technologies, machine learning will continue to 

be a dream or academic experiment in manufacturing.  This work provides another voice calling for 

adaption and implementation of machine learning in manufacturing.  The most important element to be 

gained is the additional insight and new knowledge about a process that has existed for more than 100 

years. 

-D. Blondheim, Jr. 
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Chapter 1: Die Casting Introduction 
 

 Chapter 1 describes the manufacturing process of die casting.  Once the reader is introduced to 

the basic process, the complexity of the die casting system is explained.  Next a review of die casting 

optimization literature is reviewed to highlight the deficiencies that exist in academic applications of 

machine learning to die casting process without a thorough understanding of the entire die casting 

system.    

 

INTRODUCTION 

High pressure die casting (HPDC or die casting) is a highly complex manufacturing process.  Die 

casting is composed of multiple systems that control hydraulic, mechanical, and thermal processes to 

produce near net shape castings [1]. The design, setting, and control of these systems dictates casting 

quality and equipment performance.  Historically, the die casting industry has collected and analyzed a 

fraction of the system data to control and optimize the process [2].   

The North American Die Casting Association (NADCA) estimates annual sales of $8 billion for 

aluminum die casting in 2019.  This represents more than 80% of the American Foundry Society’s (AFS) 

forecast in all aluminum castings of $9.67 billion [3].  Current methods for control and optimization in the 

industry produce a median internal scrap rate of 8% of parts produced and equipment utilization of 68%  

[4].  Consider a foundry that has a world-class scrap rate of 2%.  With a 60-second cycle time per casting, 

this manufacturer still produces 1.2 defective parts per production hour.  Improving uptime and reducing 

scrap costs can create significant value within the die casting industry.   

Die casting faces many challenges when it breaks from traditional data collection and moves to 

advanced analytics on large data sets.  One of the first challenges is a fundamental understanding of how 

defects are formed and the classification of casting defects.  The collection, processing, storage, and 

application of large volumes of data are all challenges.  Additionally, the serialization and traceability of 
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castings through the supply chain takes much effort.  Finally, there is a cultural element to the use and 

acceptance of advanced analytical tools that must be overcome [5]–[9].   

  By applying a system engineering approach to die casting, the data generated will be orders of 

magnitude larger than what is traditionally collected.  The industry would transition from dozens of data 

points saved each cycle to millions [2].  This level of data becomes overwhelming to anyone tasked with 

optimizing the die casting process.  For the die casting system, a framework is needed for the data 

generation to understand the data required to solve industrial problems.  The velocity and volume of data 

generated by die casting requires machine learning to understand, optimize, and control the die casting 

system.   

 

DIE CASTING BASICS 

High pressure die casting is a manufacturing process for producing near net shape metal castings, 

typically in large quantities.  The process involves injecting liquid metal into a reusable mold at fast 

velocities and high pressures.  Historically, die casting has been used for small to medium weight parts, 

typically under 20 pounds.  Recent development of equipment and demand for large engine blocks [10] 

and structural die cast components [11] have made 40 pound or larger castings more commonplace in the 

industry.  The die casting process can be broken down into high-level steps as seen in Table 1.   
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Table 1: High-level die cast process steps 

  Step Description 

1 
Spray 

Lubrication of 
the Die 

With the die in an open position, the spray system applies die 
lube to the die surfaces.  This die lube serves as a release agent 
for the aluminum on steel die and provides some thermal cooling 
of the die. 

2 
Closing of the 

Die 
Through a mechanical or hydraulic process, the die halves close 
and lock under tonnage. 

3 Metal Delivery Metal is typically ladled by a robot or delivered with a metal 
pump into the chamber attached to the die. 

4 Metal Injection 
Using hydraulics, the liquid metal is pushed from the chamber 
into the die to form the casting. 

5 
Intensification 

Pressure 

After the mold is filled, the injection system transfers to a high-
pressure phase, used to squeeze the liquid metal into the mold 
during the solidification process. 

6 
Cooling/Dwell 

Time 
Cooling systems are cycled to remove heat from the die, 
promoting solidification of the liquid metal to a solid casting. 

7 Die Open Mechanical/hydraulic system opens the two die halves, with the 
casting remaining on the moving part of the die. 

8 
Casting Ejection 
and Extraction 

Ejection system within the die pushes the casting off the die 
surfaces to be extracted from the cell, typically by a robot. 

9 
Extraction Cell 

Casting 
Processing 

Once out of the die, often additional validation and processing is 
performed on the casting prior to delivery to an operator for final 
inspection and packaging. 

 

Each of these steps contains equipment beyond the die cast machine to perform specialized 

processes, such as metal holding, metal delivery, cooling, and extraction.  These systems interface and 

communicate with the die cast machine to execute the steps required to produce a casting.  Each die 

casting cycle ranges from a few seconds on small castings to two or three minutes on large castings.  

Cycle time is a function of the equipment size and speed, solidification time of the casting, and level of 

automation associated within the process.  Figure 1 is an example layout of a large tonnage die casting 

machine installed and labeled with operational steps as seen from Table 1.    
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Figure 1: Example die cast cell layout  

(photo permission from Mercury Marine) 
 

Aluminum, magnesium, zinc, and zinc aluminum are the most commonly used alloys in die 

casting, although others including tin, brass, copper, and lead are also able to be used in certain 

applications [1], [12], [13].  Products from many different manufacturing industries use die castings, 

including automotive, agricultural machinery, recreation equipment, hand tools, home appliances, office 

furniture, electrical equipment, toys, aircraft, and home hardware [1], [12].  These industries utilize the 

advantages of die casting to create highly complex, near net shape castings.  An example of a large 

aluminum die cast block produced by Mercury Marine can be seen in Figure 2. 
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Figure 2: Example V8 engine block die casting  

(photo permission from Mercury Marine) 

High pressure die casting provides many advantages to designers  [1], [12], [13].  By using high 

velocities and large pressures, the die casting process can fill thin sections over long distances.  This 

provides designers a means to a lightweight part without necessarily sacrificing strength or performance.  

Die casting creates some of the most complex casting designs with highly repeatable dimensional results 

due to the intricate steel die used to produce the casting.  A wide variety of material and alloy choices are 

possible with die casting as previously discussed.  These alloys fit many industrial needs in part design.  

Cycle time is another advantage as the mostly automated process can create castings much faster than any 

other foundry process such as sand casting, lost foam, or permanent mold.  Volumes of thousands to 

millions are common.  Other benefits include surface finish, pressure tightness, reduced machining needs, 

and low part cost. 

As with any manufacturing process, there are trade-offs associated with using die casting.  To 

achieve the quick cycle times and low part cost, companies must make large capital investments into 
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equipment and tooling.  This creates a high hurdle to justify designing for die casting  [12].  Designs 

changes on a casting after the tooling is in production create expensive tool modifications and shortened 

tool life.  In addition, die casting is a destructive process to the tooling used due to the thermal cycling.  

As a result, the costly dies require continued maintenance costs and eventually replacement costs  [14].  

Finally, designs must be created so that the casting can be ejected from the die steel.  This requires 

additional draft on surfaces as well as prevents undercut features from being included [12], [14]. 

The benefits of die casting have continued to outweigh the challenges, which means die castings 

is a widely utilized foundry process for designing and producing components.  With a foundational 

understanding of what die casting is, the focus shifts to the complexity of the die casting manufacturing 

system. 

 

COMPLEXITY OF THE DIE CAST SYSTEM 

Die casting is arguably one of the most complex manufacturing processes.  It involves a phase 

change of metal, design geometry, hydraulics, thermal and heat transfer, die design and assembly, and 

hundreds of decisions to determine machine process settings [1], [14], [15].  A system engineering 

approach has not been published or used within the industry to understand the complexity of the process 

and the data it creates.  This section introduces many of these systems that create this complex process 

with the topic of complexity further expanded in Chapter 2.  These systems will be expanded in later 

chapters to develop a framework for die casting process and data collection. 

METALLURGICAL, METAL HOLDING, AND METAL DELIVERY 

A material phase change is a complex process with changes happening at an elemental level.  Die 

casting involves alloys comprised of many different elements.  Certain elements impact the solidification 

process differently.  As an example, silicon is one of the key alloying elements in aluminum die cast 

alloys.  Silicon (Si) promotes fluidity and castability of the liquid metal but also impacts the solidus 

temperature as it is increased [16].  As a result, a casting at a high Si level can create different filling and 
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solidification processes versus one at a low level.  Si is one of typically six to eight alloying elements that 

are specified in commercial aluminum die cast alloys [14].  Some elements can impact the process while 

others influence the mechanical properties of the material [16].     

Once the alloy is created, it is held in a furnace until it is ladled into the shot system.  The holding 

furnace is a sub-system designed to hold a designated volume of metal at a given temperature and 

interface with the ladle system.  The furnace has a control system to maintain the required metal 

temperatures.  A ceramic filter system is often used to help avoid oxides and other impurities in the liquid 

metal entering the casting.  The ladling system moves the metal from the furnace to the machine for each 

cycle.  Multiple options for metal delivery exist.  Three options, as seen in Figure 3, include a dosing 

pump, a 2-axis metal delivery system, and a 7-axis robotic system. Additionally, a metal delivery system 

replenishes the metal in the holding furnace from a smelting area within the foundry.  Degassing units 

could be installed into the furnace or in the metal replenishment system to help reduce metallurgical 

oxides and defects.  Operators manually skim the holding furnace to help ensure clean metal is ladled into 

the die casting machine by physically removing the oxide film that is created at interface between the 

liquid metal and atmosphere. 

 
Figure 3: Metal delivery: dosing furnace (left), 2-axis ladle (center), and 7-axis robot ladle (right) 

(photo permission from Mercury Marine) 
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The ladle system has many different settings that can affect the casting process.  The goal with 

delivering metal from the furnace to the chamber is to do it quickly to prevent temperature loss in the 

liquid metal but still to pour the liquid metal without turbulence to avoid trapping air in the liquid metal.  

Pour rates, pour angles, ladle start times, metal delivery cycle time, and ladle bucket size are some of the 

variables associated with the process that need to be monitored and controlled.  

Metal holding and ladling are important sub-systems of the die casting process.  Poor quality 

castings can be produced when these two systems impacted the cell’s overall cycle time.  Metal delivery 

is a discrete event.  After each cycle, the level in the furnace drops down the volume of metal removed.  

Pending controls and timer settings, as metal is removed from the furnace, the ladle bucket can take 

longer to reach the liquid metal and fill the bucket.  The more that was removed, the longer to fill.  The 

longer cycle time of the ladle system could become the pacing item in the overall cell cycle time.  The 

increased cycle time creates additional cooling in the die.  This unplanned cooling could create a poor 

thermal condition in the tool, leading to defects within the casting.     

CHAMBER AND INJECTION SYSTEM 

Die casting involves a large hydraulic system used to inject the liquid metal from the chamber 

into the die casting mold to create the casting.  This filling process is often modeled with simulation to 

ensure a uniform injection of the liquid metal through the die during the tool design process.  A chamber 

holds the liquid metal delivered from the ladle to be injected into the die.  This chamber length and 

diameter for the injection system are decided during the tool design process based on part volume and 

target metal pressure.  A diagram of the chamber and shot rod system interfacing with the die is illustrated 

in Figure 4.  The injection process happens in two phases [15].   
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Figure 4: Die and chamber diagram 

 
The first phase is typically called the slow shot.  The slow shot involves moving the tip and shot 

rod forward to compress the partially filled chamber into a solid cylinder of liquid metal.  The goal is to 

avoid entrapping air in the turbulence or waves in the liquid as it is injected into the casting.  An 

acceleration in the slow shot speed is often used to reduce the likelihood of wave formation  [15].  Figure 

5, Figure 6, and Figure 7 are diagrams of wave formations with slow shot speeds that are respectively too 

slow, too fast, and correct.  The second phase is typically called the fast shot.  In the second phase, metal 

is pushed from the chamber into the die at an extremely fast rate.  Fill times of less than 100 milliseconds 

are possible on castings larger than 40 pounds.  The transition point between phase one and phase two is 

called the start of fast shot.   
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Figure 5: Waves entrap air when slow shot speed is too slow 

 
Figure 6: Turbulent waves form when slow shot speed is too fast 

 
Figure 7: Correct wave formation allows all air to escape from the chamber 
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If properly designed, the tool will vent the air out of the mold and begin freezing the metal as the 

injection process is completed.  The injection system then turns on an intensification process that 

pressurizes the remaining liquid metal in the chamber.  The hydraulics of the system continue to push 

liquid metal into the die as the casting is solidifying.  This process assists with filling shrink voids created 

during the phase change.  All these speeds, transitions points, rates of increases, and pressures must be 

determined when designing the process and are subject to limitations of the equipment and the die design.   

There is an infinite number of options that can be selected with many of these combinations capable of 

making a good quality casting.  The speed and pressures achieved with the injection process can be 

influenced by wear of the tip, cooling within the chamber, or failures within the hydraulic system, to 

name a few.   An example of the data typically generated during this injection and intensification process 

is seen in Figure 8. 

 
Figure 8: Example shot injection velocity and pressure graph 

DIE CLAMPING, SLIDE PULLS, AND EJECTION SYSTEM 

Hydraulics and mechanics clamp the die halves together to prevent them from separating during 

the injection process.  Hydraulics are also used during the ejection process of the casting from the die.  

Decisions made during the process design can influence casting quality.  For example, one decision is the 

clamping tonnage used to hold the die halves together.  Machine capabilities and die design restrict the 
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clamping tonnage.  Four tie bars hold together the stationary and moving plates of the die cast machine.  

If the projected area of the casting as designed in the tool is not equally divided among the tie bars, the die 

may struggle to keep closed because more force is on one tie bar than the other.   The die temperature 

increases as it absorbs the heat from repeat cycles.  This growth in the tool steel can also impart more 

clamping force on certain parts of the die than others.   

A dwell time is selected to allow the casting to solidify in the tool.  A casting could explode 

because the walls are not strong enough to hold the high-pressure liquid metal that has yet to solidify in 

the casting if the dwell time is too short.  Consequently, dwell time that is too long could have the casting 

solder or bind onto the die steel.   

The machine opens the die and starts the ejection process once the dwell time is completed.  The 

first step is to pull any die slides that formed the geometry of the castings.  Multiple slides are possible in 

complex part designs.  These slides are controlled with hydraulic cylinders.  An example of a die with 

slides is seen in Figure 9.  The order to pull the slides and the timing associated between slides must be 

calculated carefully.  If too long, cooling of the casting may prevent the slide from pulling from the 

casting surface.  However, pulling all the slides at the same time is not an option since the hydraulic 

power of the system is limited by the pump’s capacity.   
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Figure 9: Die shown with hydraulic cylinders and slides in (left) and out (right) positions 

(photo permission from Mercury Marine, image credit Clay Rasmussen) 

 

Next, the ejection system in the die is hydraulically actuated.  This ejection system is built into 

the die and includes a series of pins that push the casting out of the mold.  A robot often removes the 

extracted casting from the cell.  A hydraulic pressure must be set within the system.  The die must be 

designed with an appropriate number of pins to overcome the force of the casting shrinking onto the die 

steel.  An example of a die with the ejector pins in the out position is seen in Figure 10.  Monitoring the 

pressure profile in the cylinders for ejection and slide pulls provides insight into potential tool failures or 

process changes that may have happened in the system. 
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Figure 10: Die example with ejection pins in the out position 

(photo permission from Mercury Marine, image credit Clay Rasmussen) 

 

THERMAL MANAGEMENT OF TOOLING 

Thermal management of the die steel is critical to casting quality and production rates.  Heat is 

transferred from the liquid metal to the die during the solidification process.  Hot water, hot oil, cold 

water, and high-pressure jet cooling are used to control the die temperature with passages designed into 

the die.  The equipment used are individual sub-systems of the overall thermal management.  The 

equipment interfaces with the die casting machine and receives on/off signals to provide thermal 

management at certain times in the process.  Decisions must be made for temperature settings, when to 

start, and when to stop each of these systems.  In a complex casting system, there could be a dozen 

thermal units, each with multiple control zones, supplying cooling media to hundreds of unique cooling 

passages within the die.  An example of a hot water unit and a jet cool unit can be seen in Figure 11.   
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Figure 11: Hot water unit (left) and jet cool unit (right) in production 

(photo permission from Mercury Marine) 

 

Die spray is another method of controlling temperature in the die.  Unlike the cooling lines, die 

spray manages temperature externally on the surface of the die.  The main objective is to impart a 

lubricant on the surface of the die to allow for easier release of the casting during ejection.  The ratio of 

die lube to water is variable based targeted rates and the mixing and distribution system within the 

facility.  A spray manifold on specialized spray equipment or a multi-axis robot applies the die lube 

within the die casting cell.   

Two approaches are often used for die spray manifolds.  The first is a generic spray manifold that 

has only a few nozzles that typically delivery high volumes of spray and can be used on many different 

tools.  The second approach utilizes a spray manifold with hundreds of nozzles designed specifically for a 

tool to pinpoint spray in critical areas.  Each approach has its benefits and drawbacks in both proper lube 

application and long-term maintenance and performance.  Examples of a 2-axis spray system and a 6-axis 
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robot system can be seen in Figure 12.  The length of time for each nozzle, nozzle direction, nozzle 

blockage, and movement of spray manifold all impact the amount of spray applied to the die.  Flow rates 

and temperature of the lube also change the amount of cooling that occurs.  Tracking these variables can 

help identify issues in the spray system and when process changes happen.  Thermal couples imbedded 

within the die close to the cavity surface or the use of thermal image cameras on the die surface can 

capture die temperatures.   

 
Figure 12: Spray systems: 2-axis manifold (left) and 6-axis robot (right)  

(photo permission from Mercury Marine) 

TOOL DESIGN, ASSEMBLY, AND SETUP 

The design and intricacy of the tooling used in die casting is a large portion of the complexity in 

the process.  A large tonnage die used for a V-block engine (as previously seen in Figure 2) can have 

more than 5,000 unique components required for assembly.  These components must be properly 

designed, manufactured, and assembled into the die cast equipment for each run.  Components can range 

from small fittings to holder block steel that weighs tons.  The smallest fitting can play as important of a 
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role as the largest piece of steel in producing a quality casting.  The design of the die must balance metal 

flow and thermal control to produce a quality casting.     

The flow of metal through the die is dictated by the injection settings, the gating system, the part 

design, and the venting system.  Part design and geometry drives dictates many of the flow decisions, 

including part orientation within the die, areas that can be gates, and the last fill area of the casting.  In 

turn, the designer must plan how the metal enters the die and how the air from the empty cavity leaves.  

For the liquid metal, runners are designed to transition the metal from the chamber to the casting.  The 

metal enters the castings at the gates.  Once inside, it pushes the air from the cavity out of the casting 

mold, through the venting system.  The metal fills the casting and then flows into the overflows, which 

are designed to capture the initial metal front as its pushed through the mold.  The metal slows in the 

venting system, and then is designed to solidify in the vents, which ideally has allowed all the air out but 

none of the liquid metal.  These features can be seen in die model shown in Figure 13 and in an actual 

casting seen in Figure 14.   

 

Figure 13: Key nomenclature of features within the die 

(photo permission from Mercury Marine, image credit Clay Rasmussen) 
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Figure 14: Biscuity, runner, gating, and venting system on casting 

(photo permission from Mercury Marine) 
 

 Flow of air and metal through the casting is a complex problem.  The die casting industry utilizes 

tools such as flow simulation to help design tooling and gain an understanding of how different gating 

and venting systems impact the filling process of the casting.  Multiple iterations of simulations are 

completed to optimize the design.  An example of a fluid flow simulation is seen in Figure 15.  Metal is 

injected from the chamber through the biscuit and runner system into the casting.  This injection process 

typically takes 50 to 100 milliseconds during the injection process.   
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Figure 15: Simulated metal fluid flow during injection  

(photo permission from Mercury Marine) 
 

One of the critical features for design is the thermal management of the die temperature.  The die 

casting industry uses different cooling systems to aid in this process.  These systems introduce cooling 

media through dozens to hundreds of unique passages used to manage the thermal process of the cycle.  

An example of the complexity of these cooling lines can be seen in Figure 16. 
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Figure 16: Complex thermal cooling lines in die design 

(photo permission from Mercury Marine, image credit Clay Rasmussen) 

 

The complexity of the die design makes it prone to human error during assembly and setup of the 

die.  One line hooked up backward could prevent cooling from flowing through the passage, thereby 

affecting the thermal management and porosity formation.  Systems to check the proper assembly and 

setup of the tool are needed.  Flow rates, temperatures reductions, and pressure readings validate the 

consistency of thermal management of the die.  Figure 17 shows an example of a portion of the thermal 

lines on a production tool that must be correctly installed during each setup or maintenance of the die. 
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Figure 17: Example of hot water and jet cool lines on a moving half of a large die  

(photo permission from Mercury Marine) 
 

EQUIPMENT PERFORMANCE AND ENVIRONMENT 

Many of the speeds, pressures, and timing of the die casting equipment depend on the 

performance of the motors and pumps in that system.  Die casting machines typically have two to six 

different hydraulic pumps used to pressure all the hydraulic systems used for clamping, injection, 

ejection, and slide pulls.  Understanding the performance on these parts of the system provides insight 

into possible equipment performance issues or outright failures resulting in process stops and downtime 

events.  Temperatures, revolutions per minute (RPM), and vibration analysis are all data streams that can 

be generated by monitoring this equipment.  Oil temperatures used in the large hydraulic systems can also 

be measured to understand the process.   

Environmental factors also influence the die casting process.  Ambient air temperature, air flow, 

and humidity levels can change the die temperature and associated cooling rates.  Indirectly, air 

temperature can affect plant-wide water systems, which can change the input water temperature and 

recovery times within the cooling units attached to the dies. 
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SYSTEM COMPLEXITY CONCLUSIONS 

Die casting is a complex system.  As such, it deserves a methodical, system engineering approach 

to review and define all the processes and associated systems.  The complexity and systems approach for 

die casting will be further discussed in Chapter 2.  Dissecting the complex process with a systems 

approach will provide the details needed to create a better understanding of the available data.  It 

addresses some of the shortcomings that are seen in current literature regarding die casting optimization 

and the use of machine learning.   

  

PROCESS OPTIMIZATION LITERATURE REVIEW 

There is a history of process optimization research for die casting.  Several authors have utilized 

Taguchi methods to develop optimized process settings to reduce defects [17] [18].  Other authors have 

utilized statistical methods like regression [19] [20] and machine learning algorithms like genetic 

algorithm [21] or neural nets [22] to optimize parameter settings.  Although there is value in these 

approaches and the advantages they can provide to the industry, there are also shortcomings from an 

industrial perspective that need to be understood and addressed.   

In many publications, experimental design inputs are poorly chosen for the experiments.  For 

example, Tsoukalas’ publication uses a second stage plunger speed of 1.2, 2.5, or 3.8 m/s [21].  Given the 

casting volume and plunger area provided in the paper, these speeds translate to cavity fill time of 40 

milliseconds to 127 milliseconds.  Per industry guidelines, porosity and surface finish defects are a trade-

off of fill time.  Increased fill time leads to reduced porosity but poorer surface finish.  Decreased fill 

times lead to better surface finish but poorer porosity performance [15].  It is not a surprise that the 

optimization performed in this publication landed exactly at the same conclusion given the range of 

values tested.  One would reach the same setpoints as the author did without any analytics, 

experimentation, and optimization by using the industrial calculations published by NADCA [15].  In 

most of the literature reviewed, the ranges of inputs were significantly larger than what would be even 
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considered in industry.  In the end, many publications with the optimization method showcased simply 

matched standard industry practice.  

The amount of input parameters generated by the die casting process is significantly larger than 

typically measured.  The most widely accepted data collection system used in the industry measures the 

injection velocity and intensification pressure system  [23].  Typically 20 to 30 inputs are calculated from 

the time-series data collected [2].  Much of the literature published makes initial assumptions on which 

inputs are the most important and only gathers data on that subset.  Three to five inputs were typically 

used  [17] [18] [21] [22].  This approach makes sense given most of this work is done experimentally 

with limited samples produced for research.  This approach ignores potentially significant inputs in the 

optimization process.  Han et al. was an outlier with more than 20 input variables used in the statistical 

analysis for optimization [20], but this too is a tiny subset of the potential data die cating can generate. 

Finally, the actual experimental output differs from the different publications.  Han et al  [20] and 

Zheng et al [22] used a production intent casting design and process to complete their analysis.  However, 

Zheng et al produced about 30 different castings for the analysis, while Han et al used 500,000 castings 

generated during a year of production at Fiat Chrysler Automobiles (FCA) die casting plant.  Other 

authors produced castings, but the casting was a research design of a simple, thin box that could be 

produced in a small die cast machine often associated with academic research [17] [21].  These simple 

box designs are used as easy means of testing density, which is translated into porosity defects based on 

void space.  This approach and casting design is not representative of typical casting geometries used in 

industry.  Their findings have limited industrial application.  The final approach used in the literature did 

not involve making castings at all.  Instead commercially available solidification simulation software was 

used with the different inputs.  Outputs of these simulations were quantified and used as the dependent 

variable to optimize [18].   

The literature found regarding die casting process optimization provides useful methods for the 

industry but lacks the complexity of real world die casting applications for quality prediction.  The 
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optimized solutions reached often match basic recommended calculations for the industry.  A need exists 

for a better data collection and optimization process in die casting. 

   

CONCLUSIONS 

A gap exists between theoretical solutions and actual applications for data gathering and process 

optimization in die casting.  Closing this gap requires a systems engineering approach to the complex die 

casting system.   Additionally, a foundational understanding of defects and classification is needed to  

recognize the most realistic applications machine learning.   

Chapter 2 discusses the details of complexity theory within the die casting manufacturing system, 

the need for a systems engineering approach, and ultimately completes a data framework for the die 

casting system.  As will be demonstrated, the volume and velocity of this data being generated in die 

casting needs machine learning tools to help process and identify important information. 

Chapters 3 and 4 build on the complexity of the die casting system in two different ways.  

Chapter 3 details a study performed on the stochastic nature of porosity formation in die castings and 

demonstrates the variables the industry typically controls to improve part quality did not influence the 

random nature of the porosity formation.  Chapter 4 discusses the human impact on classification of 

defects and the importance of the Critical Error Threshold (CET) of the casting process.  The CET 

combined with the high-quality performance of most manufacturing operations, focuses the use of 

machine learning to areas within die casting outside of the traditional supervised machine learning 

approach.   

Chapter 5 entertains the topics of applications of machine learning within a production die casting 

process.  A review of machine learning and some of the challenges associated with manufacturing are 

discussed prior to a review of four machine learning case studies completed at Mercury Marine as part of 

the PhD research.  Chapter 6 concludes the dissertation with a discussion around conclusions learned and 

recommended areas of future studies that can be built off this work.    
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Chapter 2: Die Casting Data Framework 
 

 Chapter 2 will discuss how Industry 4.0 is helping manufacturers create a cyber-physical 

representation of their process with data.  This representation is important as die casting can be formally 

defined as a complex system.  A systems engineering approach is needed to better understand the die 

casting process and the data that can be generated within each cycle.  A data framework for die casting is 

then presented.  This framework shows the data that exists in die casting to be several orders of 

magnitude larger than what is typically used within the industry.    

 

INTRODUCTION 

 Industry 4.0 and Machine Learning (ML) have become important aspects of manufacturing in the 

21st century [5], [24]–[29]. As outlined by Hoyer et al [30], Industry 4.0 relevance, potential, impact, and 

economic benefit are heavily debated topics.  Companies often lack a clear vision as to what Industry 4.0 

is, which furthers the debate on the topic [30].  The Industry 4.0 concept was introduced in Germany in 

2011[30]–[33].  Although a decade has passed, many companies struggle to understand and apply 

Industry 4.0.  A 2016 McKinsey study showed 6 out of 10 manufacturers face implementation barriers 

that are so strong that they achieved limited to no progress on their Industry 4.0 initiatives [34].  These 

barriers can include financial issues, organizational challenges, lack of employee skillsets, and general 

resistance to change [24].   In 2018, a study of German industry showed that only 9% of companies were 

able to implement a comprehensive Industry 4.0 approach within their organization  [35].  This value 

actually decreased to 8% in the 2019 study [36].  There is a focus on the technological aspects of Industry 

4.0 but not the conceptual use of Industry 4.0.  The conceptual context of Industry 4.0 is when 

technologies are used to create connected business environments for improved, efficient decision making 

[30].  Instead, many companies adopting Industry 4.0 have a specific project focus and have yet to 

consider Industry 4.0 on a broader, organizational scale [30], [35].   
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 A systems approach is needed due to the complexity of both Industry 4.0 and manufacturing 

environments [25], [30], [32], [33], [37]–[39].  The focus of this work is to gain a better understanding of 

the die casting manufacturing system through data and analytics.  The die casting process, the type of data 

that exist in the process, and the scale of data the process generates can be defined in a data framework 

through a systems approach.  This framework creates a roadmap for the die casting industry to reduce and 

monitor the complexity within the system.  The framework, combined with Industry 4.0 data collection 

and machine learning analytics, creates the opportunity to solve die casting’s critical problems in quality 

and uptime.   

As will be demonstrated, the velocity and volume of data generated within a die casting system is 

big.  This data is not the normal “big data” associated with the large number of rows of data.  Instead, the 

die casting process generates an extremely wide dataset for each cycle.  This introduces a host of 

challenges for machine learning applications.  Demonstrating the ability to create value in these datasets 

becomes the final challenge of this work. 

Data creates the connection between the physical and cyber worlds.  When applied to 

manufacturing, data provides endless opportunities to better understand and improve.  Before the data 

framework is defined, a review of the complexity of manufacturing and the need for a systems 

engineering approach is discussed. 

 

COMPLEXITY AND DIE CASTING  

 The term “complexity” is readily used in die casting to explain the system.  NADCA publications 

on fluid flow [40], part design [41], conformal cooling [42], die design and construction [41], [43] , heat 

transfer [44], and the overall die casting process [9], [45], [46] reference the complex nature of an 

individual technology or sub-system.  The different systems, environment, technologies, and people all 

interact to create a complex process.   

As known and used as the word “complex” is within the industry, there are no publications to be 

found connecting the die casting process with the complexity theory of systems.  A thorough review of 
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literature was completed with several discussions on manufacturing systems and plants but no 

publications on complexity theory applied to the die casting process.  A brief review of complexity theory 

is needed to help understand the need for a systems engineering approach to solve complex problems like 

die casting.   

Like many different scientific terms, “complexity” and “complex system” have no universally 

agreed upon definition [47]–[49].  In 1978, Vemuri described complex systems as those being large 

structures that adapt through time and contain a behavioral element [50].  These definitional elements 

have been built on throughout numerous publications.  Mitchell [47] proposed a definition of a complex 

system as “a system in which large networks of components with no central control and simple rules of 

operation give rise to complex collective behavior, sophisticated information processing, and adaptation 

via learning or evolution.”  Johnson [48] described many key components of a complex system that 

include many interacting objects, objects have memory or feedback, objects can adapt their strategies, the 

system is open and influenced by its environment, the system appears to be alive, the system exhibits 

emergent phenomena, emergent phenomena arise in the absence of any sort of central controller, and the 

system shows a complicated mix of order and disordered behavior.  Sillitto [49] breaks complexity down 

into 2-by-2 matrix, where there is complexity to do with the problem/solution on one axis and the 

subjective/objective complexity on the other axis, thereby creating multiple types of complexity.  Finally, 

Warren [51] proposed several theoretical foundations to complexity that include: dynamics, nonlinearity, 

nonlinear dynamics, and connections/emergence.  

Not looking to enter the fray of definition discussion, the publications reviewed highlight many 

key themes that are appropriate to use when considering the die casting system.  Four components will be 

used to describe the complex die casting system: 

• Network Structure 
• Adaptive 
• Self-Organizing 
• Nonlinear System 
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NETWORK STRUCTURE 

 Complex systems are large, interconnected network structures.  Many interconnected networks 

comprise a die casting foundry and allow it to function.  Equipment, casting design, die cast dies, 

priorities, utilities, metal delivery, maintenance, humans (operators/technicians/management) all are 

unique systems that interact and make decisions that impact the quality and output within the foundry.  

Investigating an individual cell simplifies the complexity of a the overall die casting system.  However, 

this individual cell remains a complex system, given the interactions and effects that environment 

(factory) has on that individual cell.   

Here is a theoretical example of how the many systems in die casting interact with an individual 

cell.  Imagine the individual die casting cell is at the end of the line for plant air, so its pressure varies in 

the cell based on usage elsewhere.  This means the flow rate for the die lube being sprayed is inconsistent, 

changing the heat removal rate based on the amount of die lube applied each cycle.  Schedule priorities 

changed within a shift, so the cell that was idle needs to start producing product.  Warmup-cycles begin 

on a cold die, and production starts.  The temperature of the air, the production pace of the operator, and 

the number of stops caused by maintenance issues or breaks all affect the die thermal temperature.  The 

cell stops because the metal-hauler did not arrive in time for a metal delivery.  Not only does the operator 

need to reset all the robots within the cell due to this unexpected stoppage, but the die was open, which 

allowed additional heat to escape.  This heat loss was especially significant, because the operator left the 

door next to the machine open, since it was hot in the plant and the cool fall breeze felt good.  The cooler 

weather also impacts the water cooling towers for the cold-water system within the die.  Consider an 

overnight operator who started the cell and began the shift struggling with casting quality issues.  The 

frost that occurred over the weekend also reduced the cooling water temperature lower than normal.  As 

the machine cycles through the struggles of startup, the water temperature warms and the quality issues 

subsided.  However, this change did not happen before the operator made some adjustments to the 

machine trying to fix the issue, thereby altering the process for future cycles.   
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Die casting is a network of connected systems of equipment, humans, environment, and 

processes.  Individually, these processes could easily be broken down and modeled precisely. This 

modeling becomes inherently more complicated as the network of interactions is considered between the 

systems.   

ADAPTIVE 

 A complex system changes, adapts, and evolves over time.  It truly is a dynamic system.  Die 

casting is also a highly dynamic system.  Process settings, die construction, equipment wear, and 

hardware updates are a portion of the system that adapt, evolve, and change.   

 As will be discussed, there are more than 100 individual settings that must be entered into a 

typical die cast machine for it to have enough information to cycle.  Each of these settings controls a 

portion of the overall cycle.  The timers control the overall cycle time and the amount of cooling used 

within the die.  Velocity set points control the fast and slow shot speeds of the injection.  Slide pull 

sequencing controls the order of movement of slides prior to ejection.  Individually, certain settings could 

have a larger impact on part quality than others.  However, the interaction of all of them create the overall 

cycle time, which manages the thermal process within the die.  In foundry environments, changes to these 

settings occur.  From a difference of opinion between operators on which settings the machine runs best 

to quality issues that occur due to specification changes, the process will be modified through time.  Much 

like evolution, some of these changes may improve the process, while others may not.  Changes that 

occur are sometimes immediately seen in the visual casting quality from the die casting machine.  

However, many quality issues are discovered weeks or months after the change once the casting is 

machined in post processing.  Because humans help develop and control the settings, humans also change 

these settings to make the process better.   

 The die casting die, another node of the network, evolves and adapts through time via process and 

human interaction.  The die casting process is a violent process caused by the injection of liquid metal at 

high flow rates into a steel mold.  The liquid aluminum chemically prefers to create an intermetallic bond 
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with the steel.  A die will see repair work throughout its life.  Areas of the steel will get soft and piece out, 

requiring the tool to be welded, heat treated, and re-cut to size.  The gates see extremely high flow rates as 

the metal is injected.  Through time, these gates will wear larger.  The area where the cavity was 

originally machined may differ significantly halfway through its life without any modifications.  This 

degradation can change the process slowly as technicians try to counter the changes that the machine sees 

due to this.  Humans also cause the die to change.  A part revision will create the need to modify the die 

steel to accommodate the design change.  A quality problem uncovered after multi-year testing may drive 

additional cooling lines to be added to improve the solidification.  The modifications led by humans are 

often significant and a step change in performance of the die from one run to the next.  This information 

is important to monitor within the system.   

 The equipment used within die casting also evolves through time caused by general use and 

therefore wear.  Valves and fittings in hydraulic systems will wear and fail.  Solenoids, cylinder seals, 

bushings, motors, and pumps have a given life before they stop functioning as intended.  Although some 

will dramatically fail and stop production on the entire machine, others will fail slowly.  This may cause 

issues with machine performance for weeks or months before troubleshooting uncovers the failure.  

Replacing the component alters the performance of the system which can change the process 

performance.  Typically, evolution brings the ideology of steady and slow improvement to mind.  In die 

casting, the evolution that occurs is a steady decline in performance that needs to be detected and 

replaced.  This creates a complex system. 

 When a component fails, it’s replaced with a new component that changes the performance of the 

system.  Not all equipment changes are done based on maintenance replacements.  Die casting technology 

has evolved through time.  This affects the hardware and the materials used within the process.  As an 

example, chemicals in die lube from 50 years ago have been banned and are illegal due to environmental 

and health concerns.  The chemistry of the lube has evolved, so spray processes used in the past become 

obsolete and need to be completely redone.  Hardware has the same evolution.  Spray manifolds on 

booms that move only in two directions are being replaced by 6-axis robots with fewer nozzles that are 
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highly programmable.  When implemented, the technology shift fundamentally changes the spray 

process, thereby altering the thermals of the die.  Technology changes in today’s Industry 4.0 world also 

typically provide more options for control and monitoring as compared to the past.  Spray is one example.  

Many other pieces of hardware often change within a die casting cell through the years.  Thermal units, 

robots, dies, hydraulic components, and even the oils and lubes used will all evolve.   

All these evolutions and changes make the entire die cast system highly complex.  The 

information from the machine this production run may or may not be fundamentally different due to 

changes since the last run.  The number of components or sub-systems involved add further complexity to 

this dynamic system.  In the end, the process will change through time, which means the data will change 

as well.  Understanding this dynamic, complex system is important.  A detailed record and understanding 

of the data created from system settings to output performance is useful to reduce the complex system 

into more manageable pieces.  

SELF-ORGANIZING 

 Complex systems often experience self-organization within the system.  Self-organization can be 

defined as the “emergence of global structure out of local interactions” [52].  On the surface, this self-

organization may seem counter to the top-down management style of many manufacturing organizations.  

The plant manager or supervisor makes a decision, and the staff blindly executes.  This, of course, is not 

true in all plants.  Even in plants where this façade exists, a level of self-organization will still occur.  

Technology, process, or system improvements tested in one area can be adapted throughout a plant with 

no formal directive.  One operator talks to the next, and the network within the system can pass 

information and organize itself to a different state.  Ideally, feedback loops within the system drive the 

system to an improved state with less disorder.   

My experience has shown self-organizing to be alive and well within a die cast foundry.  Most 

foundries have top-down directives of setups and schedules.  However, many decisions are made at the 

local level and drive this self-organization.  A theoretical example would be a die casting technician 
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making a quality improvement by increasing the slow shot speed on a given casting.  This technician talks 

to another during a break about the improvement just experienced.  The second technician struggling on a 

different job, tries a similar approach that is successful as well.  These two examples with positive 

feedback loops drive the change to other areas.  The progress continues to spread at the local level until 

all parts are adjusted.  No one directed this change, but it evolves through the network and improves the 

overall system.  This is just one example within die casting.  Other examples where self-organization 

likely occurs, and the author expeirned, are changes within tool design, how equipment is maintained, 

technology improvements (spray, chambers, extraction), and process approaches.           

In the long-run, these self-organization systems drive improvements and reduce disorder within 

the system.  Occasionally the feedback loop may be extremely slow.  A change could be made and spread 

locally throughout the organization only to learn there is an issue that increased scrap rates or downtime 

on a machine.  The speed of undoing this change will depend on the severity and scale of the issue.  A 

top-down directive could quickly undo the process.  If not fully understood by management, the feedback 

loop, will eventually drive the individual to make changes to bring the system back to its previous state.  

The die casting system shows self-organization which makes it complex.   

NONLINEAR SYSTEM 

 The final topic used for complexity is nonlinear systems.  In a nonlinear system, the effects of an 

input are not proportional to the size of the output.  This can be seen in both positive and negative 

feedback loops.  A positive feedback loop in a nonlinear system can be extremely sensitive to its initial 

conditions.  Wild changes can occur within these sensitive nonlinear systems, making prediction 

impossible.  The concept of mathematical chaos is driven from these types of systems.  That is the 

challenge of complex systems: they exist between simple, orderly systems that are fully predictable and 

chaotic systems that are completely unpredictable.  A complex system will show features of both given 

their nonlinear components.  
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 Fundamentally, die casting has several non-linear features.  The basic process of die casting is 

fluid flow and heat transfer.  The nonlinear Naiver-Stokes equations model fluid flow within a three-

dimensional space.  The injection process of molten aluminum into the die presents countless 

opportunities for varying initial conditions of tool temperatures, surface conditions, and timing when 

comparing cycle-to-cycle.  Heat transfer within the die casting system is the other key process involving 

nonlinear systems.  The radiation equation has temperature of the environment and feature both raised to 

the 4th power [53].  Any variation in initial conditions between cycles could have meaningful differences 

within the process shot-to-shot.  Beyond radiation, many of the conductive and convective heat transfer 

equations are simplified with a static heat transfer coefficient.  However, the thermal conductivity is a 

function with temperature thus making the traditionally linear heat transfer equations now nonlinear.  

Beyond heat transfer within the die, the energy and heat released with the phase change of the metal is 

nonlinear [53].  The latent heat required at phase change is not linear during these transitions.  Again, 

depending on stating conditions, the amount of heat removed from a die can vary with different initial 

conditions.       

 Die casting is a complex process because the nonlinearity of fluid flow and heat transfer 

associated with the process.  The die casting process is sensitive to its initial conditions.  With data 

capture, these initial conditions can be collected and stored to help analyze what impact they may have to 

the die casting system and how one can help reduce the chaos associated with die casting.     

COMPLEXITY CONCLUSIONS 

 Die casting is a complex system.  Many different nodes within a network of interactions comprise 

the die casting system.  Die casting adapts and evolves from the feedback within the system.  Processes 

will self-organize based on these best practices experienced in different areas of the plant.  Finally, die 

casting is nonlinear and outcomes will be dependent upon its initial conditions.  Figure 18 is an overview 

diagram of these components in the complexity of the die casting system.   
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Figure 18: Complexity in Die Casting 

 
Comprehension and appreciation of the complex nature of die castings is the first step to 

improved process knowledge.  The next steps are utilizing the tools needed to analyze a complex system.  

Systems engineering and a systems approach will dissect the complex nature of die casting into 

manageable pieces that can be analyzed and understood.  The next section discussions this systems 

approach needed to create a die casting data framework.   

 

SYSTEMS APPROACH 

 Systems engineering (SE) is a disciple designed to address highly complex systems [54]–[57].  

The toolset that exists to break down and evaluate systems creates improvement and understanding of that 

system.  Both Industry 4.0 and die casting represent two unique complex systems.  Logic would initially 

lead one to believe that the combination of two complex systems would create a larger, even more 

complex system.  Although this may be the case, an argument can be made the addition could reduce the 

overall complexity.  The complexity of one system can reduce the complexity of another [58] by 
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providing the feedback needed to better control the original system.  Before that argument can be made, a 

background of the systems engineering is needed. 

SYSTEMS ENGINEERING APPROACHES 

 Traditionally, systems engineering (SE) is an approach used to engineer and implement complex 

systems [54]–[57].  Each textbook published has its own systems engineering definition.  Many share 

traditional SE concepts of complex systems, life-cycle analysis, engineered systems, and risk 

management.  The words of each definition may be different, but the goal is the same.  For simplicity, the 

author will reference the definition provided by the International Council on Systems Engineering 

(INCOSE), a not-for-profit membership organization and professional society for systems engineering : 

“Systems Engineering is a transdisciplinary and integrative approach to enable the 
successful realization, use, and retirement of engineered systems, using systems 
principles and concepts, and scientific, technological, and management methods.” [59]  

 
 One concept in most definitions of systems engineering is the system lifecycle.  SE focuses on the 

design, development, testing, implementation, and end-of-life of a system [54].  Methodologies exist that 

provide an approach for engineering and implementing complex systems.  One of the most used in SE is 

the “V” diagram.  This diagram shows the decomposition of requirements during design and the 

integration during the validation.  The “V” diagram stresses the connections between the requirements 

during development and validation.  An example of this diagram can be seen in Figure 19.  
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Figure 19: Systems engineering “V” Diagram based on [60] 

 
 Most frameworks provided within the SE disciple follow this same lifecycle approach.  This is 

extremely useful when designing a new system, but it is not particularly useful when looking to apply a 

SE methodology to an already existing system, such as a die casting manufacturing system.  The focus of 

manufacturing systems is realistically the long-term application of “operations and maintenance” located 

at the top of the “V”.  If the entire manufacturing system was designed with a systems approach, the 

systems approach would have already been considered.  Unfortunately, most manufacturing systems are 

not designed from a SE perspective.  They are complex systems that have been created and evolved over 

time.  This means one must approach manufacturing systems from an SE perspective differently.  Instead, 

two other concepts from SE will be utilized to help gain an improved system understanding for die 

casting.  These tools include a decomposition of the system hierarchy and a system context diagram.   

Decomposition of a system is a critical component to the systems engineering approach.  The 

entire left side of the “V” diagram involves breaking down the requirements and components of a 

complex system into manageable parts.  This is fundamentally what a SE helps accomplish.  The 

dissection of systems into smaller elements makes them easier to understand, design, and ultimately 

control.  The framework typically used for this decomposition of the hierarchical nature of systems is 

seen in Figure 20.   
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Figure 20: Decomposition of hierarchical systems       

 
A systems context diagram shows a system’s interactions.  Typically, the diagram shows the 

interactions with external entities [54]; however, defining external entities versus internal entities  

depends on how the system is defined.  The approach used to create Figure 21 was based on the key 

process interactions that exist within die casting to the networks of systems involved.  An explanation of 

what a die casting system is must be defined.  For most die casting data frameworks, a die casting system 

will focus on the die casting process within one cell.  As mentioned earlier when describing complex 

systems, the entire foundry likely could be defined as the die-casting system.  The network, evolution, and 

self-organizing nature takes place typically across cells.  However, to create a useful data framework that 

will benefit the industry, the focus will be on one cell.  As a result, Figure 21 is based on this goal with 

the data framework in mind.       
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Figure 21: Die casting context diagram     

   
 As the context diagram shows, many different elements comprise the die casting system.  

Defining these as subsystems or another entire system is difficult given the complexity and nature of work 

involved.  For example, “Tooling Management” associated with the die design, build, maintenance, and 

scheduling could be classified as a system in and of itself, which is integrated into the die casting system.  

To help illustrate this example, Figure 22 was created to show the detail involved within management of 

the die casting tooling.  Similar argument can be made for metal management; plant utility interaction 
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with multiple subsystems like spray, thermal management, and the equipment; and equipment 

maintenance systems.  The integration of systems and the concept of system-of-systems is important 

aspect of SE to review as a data framework associated with the die casting system is constructed.   

 
Figure 22: Tooling Management system diagram 

 
A 2019 publication defines systems-of-systems (SoS) as an approach to understanding highly 

complex, multi-system technologies that interact and work together for a desired outcome [61].  

Similarly, a recent thesis created a framework for distinguishing between a complex system versus a 

system-of-systems, while acknowledging that no universally accepted definition exists for SoS [62].  By 

these definitions, the die casting manufacturing process could qualify for a system-of-systems description.  
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These SoS definitions have grown in complexity from the original publications regarding system-of-

systems.   

Using the SoS terminology for this research came from the original definition of system-of-

systems.  This concept of “system-of-systems” was first used by Boulding in 1956 [63].  He used SoS to 

build an argument that multi-disciplinary work could build a better system than its individual parts.  Both 

Boulding and Ackoff [64] argued for the need to develop a framework of the system to help lead to better 

comprehension and future research opportunities.  In the end, that is ultimately the goal of this research: 

develop a framework defining the multiple systems and subsystems in die casting and the data they 

generate.  This data framework helps create a foundation for machine learning applications within die 

casting from a systems perspective.  Similar to how the periodic table was developed and openings were 

left for elements not yet discovered [63], this die casting framework provides a structure for the industry 

to understand the process that evolves with new learnings and technological advancements.   

REDUCING COMPLEXITY WITH FEEDBACK 

 The goal of systems engineering is to reduce complexity within a system.  Complex systems 

maintain equilibrium with feedback control [65].  Feedback is a fundamental systems engineering 

principle and is an essential component when working with complex systems [66].  Typically, one thinks 

of feedback control as the process used to monitor and control equipment.  Cruise-control on a vehicle is 

an often-cited example of a feedback control application.  The goal with feedback is for the controller in 

the system to adjust inputs based on results from outputs to maintain a targeted output.  Traditional 

control systems would see feedback control as the cruise-control adjusting the fuel going into the engine 

based on the reduction of speed going up a hill.  Alternatively, feedback within a biological system is a 

plant wilting to conserve water when the plant’s feedback system shows a shortage.  The cruise control 

system can be modeled mathematically and executed in the controller and sensors that comprise the 

system.  The feedback process in biological systems can be represented mathematically but is biologically 

controlled.  Both types of feedback are important in die casting.      
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 Feedback control already exists in much of the die casting equipment.  Examples of control 

systems include the feedback loop on the injection system, the temperature control on thermal units to 

maintain a set water temperature, and the chiller on the hydraulic unit of the die casting cell starting once 

the hydraulic oil reaches a certain temperature.  In these cases, sensors take measurements of the system.  

With this information, the controller of the system initiates a response within the system.  Other feedback 

systems beyond equipment exist in die casting as well.  Typically, quality of the casting is a feedback to 

the process.  If an operator sees a casting defect on the parts coming out of the cell, he or she will likely 

make an adjustment to the process to help eliminate it.  Sometimes, this feedback loop has a large time 

delay due to additional post processing, so the castings with the quality issue may be discovered long 

after the production run is done.  The feedback would be used for an improvement in a future production 

run.  Both systems are close-looped feedback.  A generic diagram of close-looped feedback can be seen in 

Figure 23. 

 
Figure 23: Generic closed-loop feedback system  

 
 Review of the close-loop diagram shows several critical pieces of data needed to help with the 

control.  The initial input into the system  needs to be understood.  In die casting, and in the upcoming 

data framework, this comes in two different forms.  The first is setting information associated with the 

equipment.  At the start of injection process, the hydraulic system is stopped.  The system initiates and 

says the pressure must be increased in the cylinder since its current measurement is at zero.  The 
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controller opens the valve allowing hydraulic oil to enter the cylinder, raising the pressure.  These initial 

settings are critical for a complete system understanding of how the equipment is performing.  The other 

critical data is the sensor measurement in the feedback loop.  This tells the story of the output of the 

system and helps explain the actual process that was performed.  The setting input parameters and the 

measured output values are two of the four types of data that will be discussed in the next section. 

 At the component level within the process, the feedback system is straightforward.  When looking 

at the system of die casting, this feedback system becomes fuzzy and, at times, conflicting.  The need to 

hit production schedules may override the desire to perform needed maintenance to fix a leaking 

hydraulic hose creating a small puddle on the floor.  Individual systems may be monitored and controlled, 

such as temperature on a hot water thermal unit, but there is often no measurement or feedback system to 

ensure the water is properly setup and flowing as needed.  The system relies on humans to perform many 

of these tasks.  The casting quality is then used as feedback to the system, but as will be shown, it can 

take days, weeks, or even months for that feedback.   

 The lack of complete system monitoring of the die casting process creates many of the issues that 

cause poor quality and downtime within die casting.  Feedback loops monitor and control the system.  

Data collection associated with Industry 4.0 is creating the opportunity to get this feedback in die casting.  

As stated previously, Industry 4.0 is a complex system.  Most companies that implement it do so with 

point solutions.  Limited companies are attempting system-wide Industry 4.0 implementations.  However, 

the benefit of having a complete picture of input settings and output variables collected, stored, and 

monitored outweigh the added complexity of implementation.  Industry 4.0 will reduce the complexity of 

the die casting system by providing feedback on the entire die casting system.  Industry 4.0 is a worthy 

endeavor for the die casting industry.   

SYSTEMS CONCLUSIONS 

Die casting, a complex manufacturing system, contains the four key components of complex 

systems.  Die casting is a network structure.  It is a dynamic system, able to adapt and evolve through 
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time.  Foundries will self-organize and improve through time without top-down directives.  Finally, many 

of the processes for fluid flow and heat transfer are nonlinear, and small changes with the input can result 

in significantly different outputs.   

Defining die casting as complex from a systems perspective provides a toolset from the systems 

engineering discipline to understanding the system.  Traditional SE tools like a “V” diagram are useful in 

designing and developing new systems but require an altered approach when applied to manufacturing 

systems.  Utilizing tools like the decomposition of the die casting system and context diagrams allow one 

to apply the SE toolset to an “in-production” system compared to the traditional new system design 

project.     

A statement from Schneider et al [58] summaries the need within die casting well:  “a system can 

only control something to the extent that it possesses sufficient requisite variety to form a representation 

of that thing.”  Without full understanding the process and data being generated, control of the system is 

not possible.  A systems analysis and resulting data framework allow for better understanding and control 

of the die casting system.  The data can be used to provide feedback for this control.  The feedback and 

control can remove the variation that naturally occurs in the process that would otherwise be unknown.  

Reduction of variation helps create a consistent thermal cycle within the die by eliminating process 

variation and improving equipment uptime.  These reductions improve casting quality and equipment 

utilization, two struggles in the die casting industry.   

In the end, the goal of the data framework provides a means to improve the die casting system by 

better defining it.  This definition will improve the complex system in four categories: performance, 

stability, robustness, and flexibility [65].  The first will be to improve the performance of the system to a 

cost constraint.  Die casting achieves better performance with increased production throughout, quality 

improvements, and downtime elimination.  The second category is to increase the stability of the die 

casting system.  Stability is defined in the mathematical sense.  As such, a data framework will provide a 

better understanding of initial conditions and how the nonlinearity of die casting is influenced by these 

conditions.  The third category is robustness of the system to work across a wide range of operating 
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conditions.  Being able to develop a more robust process in manufacturing starts by understanding where 

the operating conditions are today.  Having data gives the industry this knowledge.  The last improvement 

to be made to the system is with flexibility. The framework provides insight into the type of data collected 

and the opportunities that exist from the current system and subsystems in die casting.  As technology or 

equipment change, the framework needs to flex along with the improvements to still provide guidance on 

critical processes and data.  Improving the performance, stability, robustness, and flexibility of the die 

casting system is critical to improve the output of the system.  The next section reviews and provides the 

process and data framework within die casting to help achieve these goals. 

 

DATA FRAMEWORK 

 By utilizing a systems approach, the different types of data from the die casting system can be 

defined and a framework built around the process.  This section will provide the framework for die 

casting data and tables containing the data that can be generated, collected, and stored to aid in the 

feedback and control of the process.   

It is important to realize the exact number of variables and the data generated within die casting is 

an estimate only.  The die casting industry continues to evolve.  Technology continues to evolve the die 

cast equipment (3-plate machines versus 2-plate machines) and demands for products change the size of 

machines used.  In 2014, a NADCA survey showed the vast majority of North American die cast 

machines were 400 to 1,500 tons, with less than 50 machines being larger than 2,500 tons [4].  In the last 

several years, record-setting die cast machines have been put into production.  It started in 2017 when a 

4,500-ton die cast machine was implemented for production of engine blocks [67].  Then, in 2018 a 

6,100-ton machine was announced and started production in 2020 [68].  Most recently, a 8,000 ton 

machine was announced in 2021 [69].  Directionally, the framework will capture much of the data, 

although it must be understood this will not be all encompassing and the data available will change 

through time.  The goal here is to show the complexity, depth, and detail associated with possible data 
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collection in die casting.  With this volume of data, analytical tools like machine learning will be required 

to process the data and control the process.       

 Different types of data can be generated from the die casting process.  The die casting industry 

has popularized descriptive statistics of time-series data.  Average fast shot velocity, average slow shot 

velocity, and average intensification pressure are all values that are calculated from the time-series data 

collected during injection.  This data has existed the longest within the industry and is often the focus of 

research.  As this section will show, these statistics are a small subset of data that exists within the die 

casting process.  A system-wide review of the types of data is needed to truly gain a better understanding 

of the process.   

 To understand the need for different types of data, one must consider the types of problems trying 

to be solved.  Costs associated with scrap castings, quality, or the prediction of defects within the casting, 

is important.  A linear thinking approach to this problem may focus on the injection data given the focus 

and publication on the topic.  Casting quality, however, is comprised of much more than the flow of metal 

into the die as system thinking shows.  A poor die design will create poor quality regardless of the 

injection parameters.  The placement of cooling lines within the die will directly affect the die surface 

temperature, altering the thermal neutral axis and where porosity is likely to form.  If these cooling lines 

are blocked due to hard water deposits, the flow rate and calcified lining will not remove the same amount 

of heat as a clean die.  A spray cycle with a leaking nozzle can leave excess liquid in the die cavity that 

will create gas porosity in the casting.  The settings associated with the machine dictate the machine’s 

movements and thereby the cycle time of the different sub-systems.  Wear or failure of pumps or motors 

may prevent the machine from performing properly.  These are just a few examples of why system 

thinking is needed to optimize the die casting process.  Collecting data and focusing on only one sub-

system of the process will cause frustration and a lack of progress in improvement.     

 There are five unique groups of data types identified in the die casting process.  Each type of data 

serves a different purpose.  Many of these groups interact throughout the process.  Some of the data 

comes from physical dimensions of tools within the process, while others are settings for the PLC within 
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the die cast machine to use for executing the process.  All the data types are important for a systems 

understanding of die casting.  These five groups are seen in Table 2. 

Table 2: Data types found within die casting 

Data Types 

Design Parameter Data 

Input Settings Data 

Output – Discrete Data 

Output – Time-Series Data 

Cycle Time Analysis Data 
 
The part design, and corresponding die based on the part design, controls the casting quality.  The 

die is often thought of as a fixed component, but it will change through time.  From wear associated with 

metal flowing through gates to casting design changes implemented by product design groups, the tool is 

modified throughout time.  As a result, these modifications are critical to track.  For example, imagine all 

the process data was stored for the 20,000 cycles that were put on the die to date.  Feedback from 

machining of the casting shows a higher than anticipated scrap rate for a porosity found in a cast feature.  

To address this concern, an additional water line was added to the tool and a gate area was increased to 

provide better intensified pressure to the area.  The two changes eliminated the scrap issue, but a problem 

exists in the data.  The additional water line means additional water flow rates for the cooling lines.  The 

larger gate area will impact the fast shot velocity, as there is less restriction when trying to inject the 

liquid metal.  If the data associated with this change is not recorded, then one would look back and say the 

scrap problem was addressed by increasing water flow and changing the fast shot speed.  The reality is 

these items changed because of modifications to the design of the die.  This is an important distinction 

that can be lost in the complexity of the die casting process and highlights the need for good data tracking 

on design parameters. 

Input settings for the die cast machine are also a critical data source.  Input settings include all the 

values and parameters that must be entered into the equipment for it to function.  They involve timers, 
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target values, limits, sequencies, speeds, and pressures for the machine.  This data must be referenced as 

changes within the process outputs are seen.  For example, if a change in slow shot speed it identified as 

an output, the first review should be to see if changes to the input settings caused the change in the output.  

Did the operator change the target velocity for that zone?  Did the start point of the velocity average 

window change?  Did the speed control get changed from an open loop to a closed loop system?  Ideally, 

these values should remain fixed, but in practice any of those changes could happen by a technician.  

Without ruling those changes out, time will be wasted investigating other potential failures such as 

verifying the hydraulic valving or testing for leaks in a cylinder seals.  Additionally, if one verifies none 

of these settings changed, yet the output has changed, the data points to a potential machine failure to 

address.  Input data to the process provides the backbone for examining the outputs that are gathered 

during the casting process.  This is critical data that must be stored during the cycle. 

Output data is typically the focus of data collection efforts.  Understanding how the machine 

performs is needed to validate process control.  Output data exists in two forms – discrete data and time-

series data.  Discrete data is individual readings of a specific output.  The furnace temperature at ladling is 

an example of a discrete data point.  Time-series data is a variable that changes through time.  Velocity 

during the injection process is an example of time-series data.  Many time-series data sources exist within 

die casting including shot velocity, cylinder pressures, water flow rates, die lube spray flow rates, and 

pressures of slide pulls.  Time-series data is often simplified with descriptive statistics like averages 

across periods of time.  These single data points are easier to visualize trends cycle-to-cycle.  Output data 

is sometimes measured back to input data such as limits that are expected.  If an output crosses a limit 

threshold, the casting could be deemed as scrap by the machine.  Output data of both the process and the 

machine need to be collected.  Output data on the process can assist with optimizing the casting process.  

Output data from the machine can provide insight into predictive maintenance and downtime avoidance.  

Discrete and time-series outputs comprise the largest share of the data generated by the die casting 

process.          
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The last data type to consider is cycle time data.  Cycle time data refers to the time difference 

between multiple steps within the die casting process.  The part-to-part cycle time is important in the die 

casting process for both financial and quality reasons.  Cycle time of the equipment determines the cost of 

the casting.  Improving cycle time reduces costs.  Additionally, because die casting is a thermal process 

associated with transforming liquid metal to a solid casting, the cycle time also affects the heat transfer 

within the process.  Troubleshooting and optimization of the die casting process comes a thorough 

understanding of the process cycle time.  Optimization must consider quality changes from thermal cycle 

adjustments balanced with financial improvements form cycle time reductions.  As will be discussed, this 

is done by collecting time data associated with each movement and process within the die casting system.   

The interaction and complexity of die casting make all these data types important.  Defining the 

types of data also creates a better understanding of the potential data to be gathered during a system 

review of die casting.  These types also help shape some of the groupings that will be presented.  The goal 

for the remainder of the chapter is to define many of the critical systems, inputs, variables, and processes, 

so a detailed data framework for each of these groups can be created.  It must be noted the variety 

associated with die casting, from the equipment used to the parts produced, drives significant variation in 

the amount of data that can be generated.  The framework provided is meant to be a guide to foster the 

systems approach to thinking about data within die casting.  Exact values and number of data points will 

be different from machine to machine and foundry to foundry.  It is not the intention to create a bible of 

the data, but a framework that can be expanded and modified as needed with changes in technology 

within die casting.  The result of this system review is a data set significantly larger than the die casting 

industry has considered in the past.  With this realization, novel approaches such as machine learning 

must be utilized to analyze and gain insight on the data that is generated every cycle.   

The framework groups, per Table 3, represent the key sub-systems associated with the overall die 

casting system.  These were initially referenced previously in Figure 21.  Analyzation of the data 

associated with each of these sub-systems can allow a complete framework of data to be created.  Each 

framework group will be detailed in separate sections.  The section will conclude with a table that will 
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summarize all the data associated within the framework group.  The result will be a full picture of the data 

that can be collected and stored to understand and optimize the die casting process. 

Table 3: Die casting data framework groups   

Data Framework Groups 

Die Design and Build 

Die Cast Equipment Settings 

Injection System 

Die Movement and Clamping 

Equipment Performance and Environment 

Metal and Metal Delivery System 

Thermal Die Management Systems 

Spray System 

Cycle Time Analysis 

Extraction Cell  
 

DIE DESIGN AND BUILD 

The design and build of a die casting die involve hundreds of different decision points.  The goal 

is to design a die capable of produce a high-quality casting with a reliable tool.  Industry standards 

provided by NADCA [15] or die manufacturers often guide the die design process.  

The process of die creation begins with the design of the desired casting.  Geometric, 

dimensional, surface finish, and porosity requirements must all be understood before selecting die design 

features.  The geometry of the finished part dictates orientation of the part in the die, number of slides, 

likelihood of shrink porosity, flow distances across the part, avoidance of unbalanced filling, and best 

areas to gate into the casting.  Dimensional requirements drive decisions such as shrink factor used, 

selection of which part of the casting goes into the stationary versus moving half, variation in tolerances 

created by slides, and tolerances between parting line halves.  Surface finish and porosity requirements 

are opposing needs.  High surface finish parts require fast fill times of the cavity, but this increases the 
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likelihood of gas porosity trapped in the casting.  If porosity and pressure tightness of a machined casting 

are required, a slower fill time is required.  This tradeoff is controlled by the selection of the percent 

solids allowed during injection.  As seen in Table 4 [15], the range of percent solids selected affects the 

surface finish and porosity of the final casting. This percent solid selection is a critical parameter for 

calculating the fill time of the cavity as seen in Equation 1 [15].   

Table 4: Percent solids design selection for different quality requirements [15] 

Percent Solids Quality Requirement 

0% to 10% Highly Decorative 
10% to 20% Decorative 
20% to 30% Some Porosity and Knit Lines 
30% to 40% Low Porosity, Poorer Surface Finish 
40% to 50% Lowest Porosity for Machined Pressure Tight Castings 

 

Equation 1 [15]   𝒕 = 𝒌 ∗ 𝒄𝒕 ∗ (𝑻𝒊−𝑻𝒇+(𝑺∗𝒁)𝑻𝒇− 𝑻𝒅 ) 

    Where: 

    t = ideal fill time (seconds)   
    k = solidification constant (seconds/inch) 

    𝑻𝒊 =  metal temperature at injection (°F) 𝑻𝒇 =  minimum flow temperature of alloy (°F) 

S = Percent Solids Allowed (fraction x 100, ie: 50% = 50) 

Z = Latent Heat Constant per percent solids (°F/%) 𝑻𝒅 =  die temperature at injection (°F) 𝒄𝒕 =  minimum or average casting thickness (inch) 

 

For aluminum die casting on typical H-13 die steel, the solidification constant (k) is 0.866.  

Minimum flow temperatures (Tf ) for aluminum alloys range from 1060 to 1100 °F.  The latent heat 

constant (Z) is 6.8 for typical die cast aluminum alloys.  This information and additional values for other 

die cast alloys can be found in different NADCA publications [15], [70]. 

 With fill time determined, the gate area for the casting to be filled through can be calculated 

based on a series of equations and decisions.  Initially, gate thickness (Gt) must be determined.  This 

thickness will impact the overall length of gate needed but also plays into the trimming and removal of 

the gates from the final casting.  The steps used to determine the gate area will likely be iterative during 

the design process.  With the gate thickness determined, the first step is to determine the atomized 
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velocity (Av) of the liquid metal injected into the die.  This is determined in Equation 2 [15].  The J factor 

constant for aluminum is 400 [15].     

Equation 2 [15]   𝑨𝒗 > ( 𝑱𝑮𝒕 ∗ 𝝆𝒍)𝟎.𝟓𝟖𝟖
     

 

Where: 𝑨𝒗 =  atomization velocity (in/sec) 

    J = J factor constant  

    𝑮𝒕 =  gate thickness (inches) 
    𝝆𝒍 =  liquid metal density  
 

The minimum atomization velocity is then used to calculate the minimum gate velocity (GV-min) which 

includes a flow distance factor (FDF) based on how far metal must flow through the casting to ensure the 

atomization of the liquid throughout the filling cycle.  The minimum gate velocity is found in Equation 3.  

The FDF factor is based on NADCA-supplied tables as shown in Table 5 [15].   

 
Equation 3 [15]   𝑮𝑽 =  𝑨𝒗 ∗ 𝑭𝑫𝑭 

 

Where: 𝑮𝑽 =  minimum gate velocity (in/sec) 𝑨𝒗 =  atomization velocity (in/sec) 

    FDF = Flow Distance Factor per table  

   
 

Table 5: Flow Distance Factor (FDF) for minimum gate velocity equation [15] 

Flow Distance (inches) Flow Distance Factor (FDF) 

0 to 2 1.25 
2 to 5 1.50 
5 to 9 1.75 
9 to 14 2.00 

14 to 20 2.25 
20+ 2.50 

 

 Gate area is then calculated based on minimum gate velocity and the flow rate (Q) required to fill 

the casting.  This flow rate is calculated in Equation 4 [15] based on the fill time calculated in Equation 1 

and the casting volume (V).  The gate area is then calculated based on the flow rate and the minimum gate 

velocity as shown in Equation 5 [15]. 
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Equation 4 [15]:    𝑸 = 𝑽𝒕  

 

Where: 

    Q = flow rate (in
3
/sec) 

V = casting volume (in
3
)  

t = fill time (sec) 

 

Equation 5 [15]:   𝑮𝑨 = 𝑸𝑮𝑽 

 

Where: 𝑮𝑨 =  gate area (in²)     

Q = flow rate (in
3
/sec) 𝑮𝑽 =  minimum gate velocity (in/sec) 

 

 With the gate area calculated and the gate thickness selected to find the atomization velocity in 

Equation 2, the gate length (Gl) is calculated in Equation 6 [15].  The gate length will impact the number 

and distribution of gates selected to feed into the casting.  Based on the casting design, finding enough 

length may require certain part orientations within the die.   

Equation 6 [15]:    𝑮𝒍 = 𝑮𝑨𝑮𝒕  

 
Where: 𝑮𝒍 =  gate length (in)  𝑮𝑨 =  gate area (in²)  𝑮𝒕 =  gate thickness (in)     

 

The equations above walk through an example to find the minimum velocities and flows needed 

for die casting.  The design of the die casting machine determines the range of these values.  The 

hydraulic system, including the injection cylinder piston diameter, injection cylinder rod diameter, and 

working hydraulic pressure, affects the metal pressure during injection.  The minimum metal pressure is 

determined based on the minimum gate velocity previously calculated.  The maximum metal pressure is 

based on a maximum gate velocity.  Gate velocities must be balanced to ensure the atomization of the 

liquid metal.  But if they are too large, the liquid metal will start to erode or washout the gates in the tool.  

This washout will affect the gate area and therefore the other injection parameters.  This erosion also will 

lead to downtime for die repair.  The operating window must be determined based on these trade-offs and 
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limitations.  The industry has a process called PQ² used to help select values within an operating window 

of the machine and the requirements for filling the die.  An example of this will not be reviewed here.  

Instead, readers are referenced to NADCA publications for detailed examples of PQ² calculations [70].  

The important point is the die design must also take into effect the die cast machine.  Die cast machines 

may have different features in the hydraulic injection system, which lead to different injection parameters.   

The cold chamber of the die is designed based on a tip size and a chamber length.  The target 

metal pressure for the casting and the PQ² process also help the designer determine the tip diameter to be 

used in the cold chamber.  The tip diameter and injection velocity determine the flow rate of metal filling 

the casting.  Again, trade-offs must be considered.  A high metal pressure helps reduce porosity found 

within the casting, but it can also lead to flashing of the die.  Flashing of the die occurs when the metal 

pressure becomes larger than the force holding the die closed, causing die components to separate and 

liquid metal to fill the areas.  If the die is poorly constructed or parameters are selected that create 

flashing, the die will likely become damaged and require expensive repair and downtime of the die 

casting machine.  The chamber length is determined by the combination of tip size and shot volume.  The 

shot volume is the total amount of metal poured into the chamber.  This volume of metal must include the 

casting, gating, runners, overflows, venting runners, and biscuit size.   

The designer must make additional decisions on overflows, venting, and vacuum to ensure high 

quality within the final casting.  Overflows are attached to the casting on the outbound side of the metal 

flow.  They are designed to be in areas of the casting that are the last to fill.  Overflows provide a means 

to ensure there is enough metal in the shot to fully fill the casting and allow the leading edge of metal to 

fully leave the final casting.  This leading edge often collects any remaining die lubricant or impurities 

within die that need to be flushed out of the casting.  These overflows are not part of the final casting.  To 

reduce remelting costs, overflows should be small and only used where necessary.  Attached to the 

overflows are vent runners and venting or vacuum.  Venting and vacuum are important as the air within 

the cavity needs to escape while the die is being filled.  If the air does not escape, then it will be entrapped 

in the casting leading to porosity.  A vent allows the air to be pushed out naturally as the metal is injected.  
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A vacuum system creates a vacuum within the cavity once the slow shot is started to remove air from the 

cavity within the die.  Additionally, the vent/vacuum and runner system must also slow down and cool the 

metal, so it will solidify by the time it reaches the vent at the edge of the die or vacuum block.  If the 

liquid does not solidify, it will spit out of a vent thereby reducing the metal pressure within the die.  The 

solidification of the metal in the vent system allows the intensification process of the liquid metal to build 

pressure within the die, thereby feeding voids created during solidification of the casting.  Vent area is 

calculated based on the gate area, gate velocity, and vent velocity.  The speed of sound in air controls the 

vent velocity.  Typically values of 8,000 to 10,000 inches/second are used for die casting [15].  Equation 

7 [15] shows the calculation for vent area for the tooling.  

Equation 7 [15]:  𝑽𝑨 = 𝑮𝑨∗ 𝑮𝑽𝑽𝑽  

 

Where: 𝑽𝑨 =  vent area (in²)  𝑮𝑨 =  gate area (in²)  𝑮𝑽 =  gate velocity (in/sec)  𝑽𝑽 =  vent veolcity (in/sec)  

The casting is removed from the die with ejector pins.  Ejector pins are built into the die and 

placed on non-critical casting surfaces and on the gate running and venting system to push the solidified 

casting off the die steel at the end of the cycle.  The number, size, and location of these pins impacts how 

well the casting is ejected from the die.  These pins are attached to an ejection plate, which is connected to 

the ejection system on the die cast machine.  Many die casting machines have a hydraulic ejection 

cylinder that pushes the ejection plate and pins forward.  If improperly sized or positioned, the casting 

could fail to eject from the die, creating downtime issues and tooling repair.  If these problems arise, it is 

not uncommon to upsize or add additional ejector pins to assist with the ejection process.  These variables 

are important to understand and track along the life cycle of a die as they can influence the data collected 

within the process. 

Like ejector pins, the thermal management system of the die casting die involves many up-front 

decisions.  The tool designer must determine the location, size, and number of thermal lines meant to 
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remove heat and maintain the die at a specific temperature.  As the liquid metal solidifies, heat is 

transferred into the die.  The goal of a properly designed thermal system is to remove the same amount of 

heat as introduced with each cycle, thereby allowing the die to be at a consistent temperature.  Heat 

transfer rates for solidification are based on the liquid metal of the casting and the die temperature.  

Changes in the die temperature, due to improper cooling cycle-to-cycle change the solidification time.  

The changes in die temperature also change where porosity and shrink voids are found within the casting.  

The design of the thermal system is a complicated process given the complex shapes of castings and type 

of thermal management systems.  Internal die temperatures can be controlled with cold water, hot water, 

hot oil, and high-pressure cooling.  Manual calculations and zoning of heat removal are recommended 

through the NADCA publication entitled Thermal Design & Control of Die Casting Dies [71].  Often, 

however, computer simulations are utilized to finalize the design of internal thermal management of the 

die [1], [15], [71].  An example of a die design with complex thermal lines is seen in Chapter 1’s Figure 

16.  Like ejector pins, changes to this system are unlikely, but still can be performed to address specific 

quality issues.  It is important to have detailed understanding of the variables associated with the thermal 

management captured initially, as well as with any changes made in the die design. 

There are many different decisions that must be made during die design.  These decisions 

represent fixed values at a given time.  Cycle-to-cycle, these values do not change.  Run-to-run, however, 

the values could change if the die is modified.  When the tool has to change the gating area or add a 

cooling line, it is fundamentally different in production than before.  This could cause significant 

differences in the data collected from the process.  A changed gate area may mean a different flow rate 

during injection.  A cooling line modification will change the die temperature and flow rate of water 

through the die.  These details need to be recorded, so a technician troubleshooting variation seen during 

production will know if the die has changed or if something else in the system must be investigated.  A 

change in water flow rates may mean an additional line was added, or it could mean a leak is happening 

in the die assembly.  Without this data readily available, the troubleshooting process substantially 
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increases and leads to more equipment downtime.  These are important details to understand and therefore 

need to be recorded.  Table 6 details the critical die data. 

Table 6: Die design data 

Die Design and Build Data Overview Total Data 66 247 468 

Item 
Collection 
Frequency 

Collection 
Time 

Data 
Volume 

Number 
of 

Instances 

# of Data Points 

Low Medium High 

Tip Diameter Fixed On-Change 1 1 1 1 1 

Chamber Length Fixed On-Change 1 1 1 1 1 

Gates                

Length Fixed On-Change 1 1 to 10 1 5 10 

Width Fixed On-Change 1 1 to 10 1 5 10 

Locations Fixed On-Change 1 1 to 10 1 5 10 

Pour Volume               

Casting Volume Fixed On-Change 1 1 1 1 1 

Runner/Gating Volume Fixed On-Change 1 1 1 1 1 
Venting/Overflow 
Volume 

Fixed On-Change 1 1 1 1 1 

Biscuit Volume Fixed On-Change 1 1 1 1 1 

Overflows               

Land Width Fixed On-Change 1 1 to 10 1 5 10 

Land Thickness Fixed On-Change 1 1 to 10 1 5 10 

Overflow Volume Fixed On-Change 1 1 to 10 1 5 10 

Overflow Locations Fixed On-Change 1 1 to 10 1 5 10 

Venting/Vacuum               

Length Fixed On-Change 1 1 to 4 1 2 4 

Width Fixed On-Change 1 1 to 4 1 2 4 

Locations Fixed On-Change 1 1 to 4 1 2 4 

Ejector Pins               

Diameter Fixed On-Change 1 10 to 40 10 25 40 

Locations Fixed On-Change 1 10 to 40 10 25 40 

Thermal Lines               

Type (water, jet cool, etc) Fixed On-Change 1 10 to 100 10 50 100 

Size (diameter) Fixed On-Change 1 10 to 100 10 50 100 

Locations Fixed On-Change 1 10 to 100 10 50 100 

DIE CAST EQUIPMENT SETTINGS 

Like the die design, programming the die cast equipment requires many initial decisions.  These 

settings control the equipment’s timing and performance during the die casting process.  There is a wide 
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range of settings that must be programmed that affect the process, such as injection parameters, clamp 

tonnage, timing of movements, and pressures.  Many of these settings can become result measurements 

collected and stored during the process.   This allows a technician to understand if the machine’s 

performance is degrading or if at some point a setting was changed and the machine responded 

accordingly.  This section will focus on the items that are typically programmed through the die cast 

machine itself.  Settings associated with sub-systems like spray systems, ladle systems, and thermal 

management units will be discussed in this section.   

Data such as program number, tool and part identification, and revision are basic data that will 

allow a user to sort and understand changes that happen through time.  This type of data is the first that 

should be considered for storage when programming a die casting machine.  Additionally, equipment 

identification, typically a machine number, should be stored especially in foundries with multiple die cast 

cells.   

Metal injection is controlled by a hydraulic shot system on a die cast machine.  This hydraulic 

system is built with hydraulic pumps and accumulators, so the liquid metal can be injected in the die in a 

manner to create quality castings.  The injection process contains three main phases:  slow shot phase, fast 

shot phase, and intensification phase. 

The slow shot phase is the first phase of the injection process.  After the ladle system has poured 

metal into the chamber, the hydraulics of the shot end are triggered to start to move the chamber tip 

forward within the chamber.  The chamber will be partially full based on the chamber dimensions and the 

volume of metal required for the casting.  The goal is to compress the liquid metal in the chamber until 

there is no remaining air in the chamber with only metal remaining.  This must be done without creating 

turbulence in the metal.  Too fast of a slow shot, will cause the wave of liquid to crest and entrap air in the 

metal.  Too slow will cause the wave to hit the runner system and bounce back to the tip, preventing the 

gas from exiting the cavity during injection.  Much research was completed in the 1990s [72]–[77] to 

develop a critical slow shot velocity calculation seen in Equation 8 based on the percentage of fill of the 

chamber initially seen in Equation 9 [70]. 
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Equation 8 [70]:       𝒗𝑪𝑺𝑺 = 𝒄𝒄𝒄 [𝟏𝟎𝟎%−𝑽𝒇𝟏𝟎𝟎% ] √𝒅𝒕𝒊𝒑 

 

Where: 𝒗𝑪𝑺𝑺 =  critical slow shot velocity (in/sec)  𝒄𝒄𝒄 =  curve fitted constant (22.8 √in/sec)  𝑽𝒇 =  volume fraction of shot sleeve as initially filled (%)  𝒅𝒕𝒊𝒑 =  shot tip diameter (in)  

 

Equation 9 [70]:  𝑽𝒇 = ( 𝑽𝒍𝒂𝒅𝒍𝒆𝒅𝟎.𝟐𝟓∗𝝅∗𝒅𝒕𝒊𝒑𝟐∗𝒍𝒄) ∗ 𝟏𝟎𝟎% 

 
Where: 

  𝑽𝒇 =  volume fraction of shot sleeve as initially filled (%)  𝑽𝒍𝒂𝒅𝒍𝒆𝒅 = volume of metal ladled into chamber (in3)  𝒅𝒕𝒊𝒑 =  shot tip diameter (in)  𝒍𝒄 =  length of chamber (in) 

 

 At the chamber full position, often call the start of fast shot, the hydraulic system opens the 

accumulators and transitions from the slow shot used to ready the metal in the chamber to the fast shot 

phase.  In this phase, the metal is injected from the chamber, through the runners, gates, casting, 

overflows, and vent runners, until it hits the vents and ideally freezes, which allows back pressure to help 

with intensification, the final phase. The fast shot velocity is based on the flow rate of metal and the tip 

diameter as seen in Equation 10 [15]. 

Equation 10 [15]:  𝒗𝒇𝒔 = 𝑸𝟎.𝟐𝟓∗𝝅∗𝒅𝒕𝒊𝒑𝟐 

 

Where: 

  𝒗𝒇𝒔 =  fast shot velocity (in/sec)  

Q = flow rate (in
3
/sec) 𝒅𝒕𝒊𝒑 =  shot tip diameter (in)  

The calculations for slow shot and fast shot velocities provide targets for the machine to try 

hitting.  These velocities, the transition point, and accelerations are programmed into the die casting 

machine typically with three data set points.  The first set point is the location along the length of the 
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chamber.  Typically, this is mapped out as the x-axis on a graph.  The second set point is a velocity.  

Velocity is controlled either and open or close-loop hydraulic system.  Open-loop command will adjust 

the hydraulic valve without a feedback loop.  Closed-loop will monitor the pressure and adjust the 

hydraulic valve accordingly.   On some equipment, both types of control can be used throughout the 

injection cycle.  The third data point is a command letting the machine know if the second set point is to 

be ran under open or closed loop control.  Typical die cast machines allow 20 to 30 different set points to 

be programmed.  Figure 24 is an example of the set points and corresponding shot profile from a Buhler 

Prince die casting machine. 

 
Figure 24: Example programmed set points for shot profile 

 

Although the injection process is important, there are dozens of additional settings for the balance 

of the die casting cycle that also must be decided and entered.  After injection comes the intensification of 

the casting.  Hydraulic pressure level within the shot intensification system must be selected, which 

combined with the tip diameter and rod diameter of the injection system, determines the final metal 

pressure seen in the cavity.  This pressure must be counteracted by the tie-bar and clamping system 
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holding the die closed.  A target tonnage is entered for the tie bars for the system.  Die height, or physical 

space between die casting platens is selected, which directly impacts the tonnage seen on the tie-bars. 

Settings must also be selected for the die interactions.  In a die casting machine tow areas 

typically set are hydraulic systems that control the core or slide pulls and the cold-water control.  The 

sequencing of the slide or core pulls must be determined for both the inward motion as the die closes and 

outward as the die opens.  The out motion, or pull sequence, can be important from a casting quality 

standpoint, especially on large dies with cylinders that require significant hydraulic requirements.  

Depending on the hydraulic system on the die casting machine and the cylinder size, the system may not 

be able to pull all slides at once with adequate pressure resulting in stuck slides and downtime for the 

equipment.  Sequencing becomes critical to ensure slides are pulled fully before the hydraulic system 

starts the next sequence.  This affects cycle time of the process, as ejection will not happen until all slides 

are cleared.  Cold water is also controlled by the die casting machine.  Water valves are controlled with a 

solenoid based on settings programmed into the machine.  Different quantities of values can be 

programmed, so decisions include which ones to turn on, how long to delay before start, and how long the 

cold water will be on.   

Numerous factors control the die casting cycle time.  Since the die cast machine controls the 

signals going into secondary systems, timers start the ladle process, the spray system, the vacuum process, 

and the extraction of the die cast machine.  Additionally, the dwell timer must be set to determine the time 

the die remains closed to allow the liquid metal to solidify.  Timer settings also control movements within 

the machine.  Delays for die opening, mid-open switch, ejection, slide pulls, and shot tip retraction all 

impact overall cycle time of the process and therefore need to be tracked and recorded. 

   Beyond timers, die cast machines may also contain setup variables for different processes that 

occur within the cycle.  For example, some machines allow for warm-up shots to be defined, so when the 

machine is not running for a set time period, it forces the warm-up process to help protect the die from 

cooling down too much before having the hot metal injected.  These settings can include a series of time 

delays and number of cycles to run this warmup cycle.  The machine will then automatically flag the 
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extraction robot on the warm-up process and treat the ejected parts as scrap versus good production.  

Additionally, tip lubrication is used to help with the tip/chamber system.  Often this lube is controlled by 

the die cast machine, so it can be pulsed on the tip or in the chamber as the machine is cycling.  These 

requirements likely vary by machine manufacturer and tip supplier.  An example machine may have up to 

6 different tip lube pulses, specifying the location within the chamber to fire the pulse, and defining if that 

is on the forward injection stroke or the return stroke.  This example provides 18 different settings that 

must be selected for pulsing tip lube. 

 Finally, during the setup process limits or windows are selected to create flags and warnings 

within the die casting machine.  For example, the technician must select the dimensions to calculate the 

average fast shot speed.  Typically, two different length dimensions are entered based on tip position in 

the chamber.  This represents the window associated with the calculated average.  This data becomes 

important when changes are made.  If average trends are monitored and a pattern emerges where there is 

an increase, the cause of the increase becomes important.  If a range of where this average is calculated 

changed, it may be the cause of the trend change versus a maintenance issue within the machine.  Limits 

are also defined for critical process parameters, so if the average fast shot speed is below a threshold, the 

die cast system will automatically define that casting as scrap and pass that information to the extraction 

robot to scrap the casting versus allowing it in the production population.  Again, operator changes of 

these limits could directly affect the immediate and historical output, thereby making this information 

important. 

Like die design, die casting equipment settings involve numerous decisions that must be made.  

These settings are valuable data to the overall die casting process.  Since operators and technicians set 

these, the parameters can be adjusted by those same people.  Even though it is discouraged in a 

production environment, it is not uncommon for operators on different shifts to have preferred settings 

where they feel the process runs best.  It is important to collect the data from these settings to help 

understand changes that occur in the output variables within the process.  For example, is the die hotter 

due to a broken water line within the die, or did an operator make a change in the water timer reducing the 
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flow?  Is the fast shot speed slower because of a valve issue or binding tip in the chamber, or did the 

operator change the average window or purposefully turn down the speed?  The settings provide 

important details to help rule out possible changes in the process.  This makes them important data points 

to collect and monitor within the die casting system.  Table 7 provides a summary of the data totals for 

the die casting equipment settings as detailed in Table 8 and Table 9. 

Table 7: Summary table for die casting equipment settings 

Summary Table for Die Cast Equipment Settings # of Data Points 

Table Number Name Low Medium High 

Table 8 Die Cast Equipment Settings - Part 1 51 75 99 
Table 9 Die Cast Equipment Settings - Part 2 43 54 65 

Total 94 129 164 
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Table 8: Part 1 of die cast equipment settings data  

Die Cast Equipment Settings - Part 1 Total Data 51 75 99 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number 

of 

Instances 

# of Data Points 

Low Medium High 

Identification Data               

Program Identification Fixed Each Cycle 1 1 1 1 1 

Machine Identification Fixed Each Cycle 1 1 1 1 1 

Tool Identification Fixed Each Cycle 1 1 1 1 1 

Part Revision Fixed Each Cycle 1 1 1 1 1 

Shot Velocity Settings               

Chamber Position Fixed Each Cycle 1 4 to 20 4 12 20 

Value Fixed Each Cycle 1 4 to 20 4 12 20 

Control Unit Type Fixed Each Cycle 1 4 to 20 4 12 20 

Start Testing for End of 
Shot Velocity 

Fixed Each Cycle 1 1 1 1 1 

Target End of Shot 
Velocity 

Fixed Each Cycle 1 1 1 1 1 

Slow Shot Window Start Fixed Each Cycle 1 1 1 1 1 

Slow Shot Window End Fixed Each Cycle 1 1 1 1 1 
Slow Shot High/Low 
Limits 

Fixed Each Cycle 2 1 2 2 2 

Fast Shot Window Start Fixed Each Cycle 1 1 1 1 1 

Fast Shot Window End Fixed Each Cycle 1 1 1 1 1 
Fast Shot High/Low 
Limits 

Fixed Each Cycle 2 1 2 2 2 

Intensification Pressure 
Setting 

Fixed Each Cycle 1 1 1 1 1 

Target Setting Fixed Each Cycle 1 1 1 1 1 

High/Low Limits Fixed Each Cycle 2 1 2 2 2 

Die Height Settings Fixed Each Cycle 1 1 1 1 1 

Tie Bar Tonnage Settings               

Target Setting Fixed Each Cycle 1 4 4 4 4 

High/Low Limits Fixed Each Cycle 2 4 8 8 8 

Other Settings               

Biscuit Size High/Low 
Limits 

Fixed Each Cycle 2 1 2 2 2 

Furnace High/Low Limits Fixed Each Cycle 2 1 2 2 2 

Intensification Rise Time 
High/Low Limits 

Fixed Each Cycle 2 1 2 2 2 

Start of Fast Shot 
High/Low Limits 

Fixed Each Cycle 2 1 2 2 2 

 

 

 

 



 

64 
 

Table 9: Part 2 of die cast equipment settings data 

Die Cast Equipment Settings - Part 2 Total Data 43 54 65 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number 

of 

Instances 

# of Data Points 

Low Medium High 

Warmup Process 

Settings 
              

Warmup Velocity Fixed Each Cycle 1 1 1 1 1 
Warmup Downtime Fixed Each Cycle 1 3 3 3 3 
Warmup Shots Required Fixed Each Cycle 1 3 3 3 3 
Timer Settings               
Dwell Timer Fixed Each Cycle 1 1 1 1 1 
Shot Delay Timer Fixed Each Cycle 1 1 1 1 1 
Tip Lube Timer Fixed Each Cycle 1 1 1 1 1 
Extractor Cycle Timer Fixed Each Cycle 1 1 1 1 1 
Spray Cycle Timer Fixed Each Cycle 1 1 1 1 1 
Ladle Cycle Timer Fixed Each Cycle 1 1 1 1 1 
Open/Ejection Settings               
Ejection Return Delay 
Timer 

Fixed Each Cycle 1 1 1 1 1 

Ejection Plate Forward 
Position Fixed Each Cycle 1 1 1 1 1 

Ejection Plate Return 
Position 

Fixed Each Cycle 1 1 1 1 1 

Ejection Pressure Target Fixed Each Cycle 1 1 1 1 1 

Fast Die Open Position Fixed Each Cycle 1 1 1 1 1 

Fast Die Close Position Fixed Each Cycle 1 1 1 1 1 

Start Core Pull Position Fixed Each Cycle 1 1 1 1 1 

Start Ejection Position Fixed Each Cycle 1 1 1 1 1 

Tip Lube Pulse Settings               

Tip Lube Position Fixed Each Cycle 1 4 to 8 4 6 8 

Tip Lube Direction Fixed Each Cycle 1 4 to 8 4 6 8 

Slide Pull Settings               

Core In Sequence Number Fixed Each Cycle 1 4 to 8 4 6 8 
Core Out Sequence 
Number 

Fixed Each Cycle 1 4 to 8 4 6 8 

Cold Water Settings               

Water On/Off  Fixed Each Cycle 1 2 to 4 2 3 4 

Delay Timer Fixed Each Cycle 1 2 to 4 2 3 4 

Duration Timer Fixed Each Cycle 1 2 to 4 2 3 4 
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INJECTION SYSTEM 

 With the tool designed and built and the settings to control the machine input into the equipment, 

the actual process of making the casting occurs.  One of the subsystems that generates a significant 

amount of data is the injection system.  This process can be considered the most measured part of a 

traditional die casting system.  Initial data collection systems for injection have existed since the 1960s to 

help capture the time-series data associated with injection of the liquid aluminum into the die [78]–[80].  

Often within the industry, this process receives the most focus.  In the 1980s and 1990s, commercial 

systems became available for die cast companies to purchase and install on their machines [81], [82].  The 

heightened popularity of injection monitoring drove die casting equipment manufacturers to include these 

collection systems on machines they sold.  As such, literature often focuses on the parameters obtained 

through this data collection system [17]–[22], [45], [83]–[91] as it is the easiest and most readily available 

data to collect within the industry.   

The oversaturation of use of the injection data should not be mistaken for a lack of importance.  

The injection process is highly critical to the overall part quality.  Therefore, it is important to capture and 

understand this time-series data that is generated.  Most die casting injection processes collect three 

different time-series data sets as the injection process occurs: velocity, head pressure, and rod pressure.  

This output data is often stored with two independent variable components to be plotted: time and 

position.  Typically, the position axis is viewed in a shot-profile graph.  This position corresponds to the 

position of the tip within the chamber.  Some monitoring systems allow a user to toggle between looking 

at the graphs from a time-based versus position-based x-axis.  If vacuum is used to remove the air from 

the cavity, a fourth variable of cavity vacuum can be collected and included in these injection profiles.  

Some monitoring systems also calculate a metal pressure value from the entered tip diameter and 

hydraulic pressure within the injection cylinder.   

The data collected during injection is every 1 to 3 milliseconds.  This occurs from the start of the 

tip moving with the slow shot, through filling the die with fast shot, until the end of the intensification 

pressure process.  This frequency and number of channels creates a large data set of time-series data.  An 
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industry focus on the averages within defined windows reduces the power of the data set and will be 

discussed in more detail later.  Figure 25 shows an example shot profile output generated from a Buhler 

Prince die casting machine.  Table 10 contains a summary of the injection process data.   

 
Figure 25: Example shot profile output 

  

Table 10: Injection system data 

Die Cast Equipment Settings Total Data 25,641 77,589 156,000 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number 

of 

Instances 

# of Data Points 

Low Medium High 

Injection Position 
333 to 

1000 HZ 
15 to 30 
seconds 

Time-
Series 

1 4,995 14,985 30,000 

Injection Velocity 
333 to 

1000 HZ 
15 to 30 
seconds 

Time-
Series 1 4,995 14,985 30,000 

Cylinder Rod Pressure 
333 to 

1000 HZ 
15 to 35 
seconds 

Time-
Series 

1 4,995 14,985 30,000 

Cylinder Head Pressure 
333 to 

1000 HZ 
15 to 35 
seconds 

Time-
Series 

1 4,995 14,985 30,000 

Vacuum Pressure 
333 to 

1000 HZ 
15 to 35 
seconds 

Time-
Series 1 4,995 14,985 30,000 

Squeeze Distance 
333 to 

1000 HZ 
2 to 6 

seconds 
Time-
Series 

1 666 2,664 6,000 
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DIE MOVEMENT AND CLAMPING 

 The die movement and clamping process produces data that can assist with downtime reduction, 

part quality, equipment performance, and cycle time consistency.  This happens through the 

opening/closing process of the die and the output measurements of the die cast machine hydraulic 

interaction with the die. 

 The clamping tonnage target is selected during the setup process.  Die cast machines have strain 

gages on the tie bars that convert the stretch of the bar from the clamping to a clamp load typically 

measured in tons.  Gages exist on all the tie bars, so four measurements of clamping load per tie bar can 

be recorded.  Significantly offset loads on the tie bar are typically due to poor part placement during the 

die design process, which may result in problems holding metal within the die or flashing of the tool.  

These can lead to downtime for tool maintenance or poor part quality.  Additionally, upward trends in tie 

bar loads indicate growth in die steel from increased temperatures.  This could indicate thermal 

management issues in the system or connections.  If systemic, it would also indicate poor die cooling 

designs within the tool.     

 The hydraulic pressures associated with the die cast machine and die create multiple streams of 

data that provide insight into the process.  Specifically, the slide pull pressure and ejection pressure create 

time-series data.  Pressure sensors can be added to the rod and head side of the cylinders used for slide 

pulls and the ejection process.  As the slide cylinders are triggered to be pulled upon opening or returned 

before closing, the hydraulic pressure for that movement provides insights into the movement.  On the 

slide in movement, a sudden increase in pressure could indicate buildup of flash in the die or an overflow 

pocket being stuck.  These can be precursors to downtime events for die maintenance.  The slide out 

pressure can provide insight into potential die sticking.  Similarly, most ejection systems contain a 

hydraulic cylinder that moves either a push plate in the machine or connects to the die with an internal 

ejection plate to push the solidified casting out of the mold.  This time-series data provides insight into 

problems with the casting ejected from the tool, which would result in downtime issues.  On the return, an 
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increased pressure could indicate interference with the ejection pin and the tool.  This information could 

be used to plan maintenance, avoid downtime, and ensure the part is ejected without warping.   

 Data associated with clamping, slide pulls, and ejection provide insight in the interaction of the 

die cast machine with the die.  This information is useful to prevent downtime and die maintenance 

issues.  Table 11 contains details associated with the die movement and clamping process.    

Table 11: Die movement and clamping data 

Die Movement and Clamping Total Data 1,004 10,504 36,004 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number 

of 

Instances 

# of Data Points 

Low Medium High 

Tie Bar Tonnage per Bar Fixed 
Each 
Cycle 

1 4 4 4 4 

Slide Pull Pressure - Rod 
End (full cycle in/out) 

10 to 100  
HZ 

10 to 20 
seconds 

Time-
Series 

4 to 8 400 4,500 16,000 

Slide Pull Pressure - 
Cylinder End (full cycle 
in/out) 

10 to 100  
HZ 

10 to 20 
seconds 

Time-
Series 

4 to 8 400 4,500 16,000 

Ejection Pressure - Rod 
End (full cycle in/out) 

10 to 100  
HZ 

10 to 20 
seconds 

Time-
Series 

1 100 750 2,000 

Ejection Pressure - 
Cylinder End (full cycle 
in/out) 

10 to 100  
HZ 

10 to 20 
seconds 

Time-
Series 

1 100 750 2,000 

EQUIPMENT PERFORMANCE AND ENVIRONMENT 

 The die cast equipment is the heart of the die casting process.  The machine’s performance 

dictates the major systems used for injection, die movement, clamping, and ejection.  Failures within the 

machine’s systems result in poor part quality and equipment downtime.  The heartbeat of the machine 

should be monitored to ensure consistent performance for the process.  Additionally, environmental 

factors also influence the machine and the cycle and must be monitored. 

 Die cast machines often have multiple motors and pumps within the complex hydraulic systems.  

Monitoring the motors with temperature, vibration, and amp draw sensors provides an understanding of 

the machine performance and preventative maintenance planning.  The same can be done for temperature 

and vibration for the hydraulic pumps.  The hydraulic system on the die cast machine is used throughout 

the die casting process:  injection, die open, slide pulls, ejection, slide in, and closing.  As such, time-
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series data of the entire cycle should be recorded and monitored for the sensors on motors and pumps.  

This will generate a large volume of data.   

 Pressure in the hydraulic system and oil temperature is additional data that can be collected 

within the process.  Regeneration rates of these pressure systems may also provide insight into individual 

components within the machine or where issues may arise.  Identification of nitrogen leaks, cylinder 

failures, and valve performance can be achieved by monitoring the pressure within the hydraulic system.  

Die cast machines may contain filter systems to help clean the hydraulic oil.  Monitoring the pressure 

drop across the filter can notify maintenance when filters need to be changed.  By tracking the time 

between filter changes, the need for hydraulic oil replacement could be estimated.  Oil temperature within 

the hydraulic system ideally remains consistent.  A change in oil temperature could indicate a failure of a 

cooling system or potentially the need for replacing oil that has reached end of life.  Often die cast 

machine manufacturers will monitor for high temperature limits, but additional tracking of temperature 

can provide additional insights into the process and equipment.  

 Along with the machine’s performance, environmental factors have an influence on the die 

casting system.  Air temperature and humidity can be monitored.  These factors impact cooling within the 

die casting die through radiation and convection heat loss.  Since die cast foundries are typically hot work 

environments, air make-up units are often installed to improve work environments for employees.  

However, employees will often still open overhead doors or windows to create additional air flow.  

Having a localized air temperature within the area of the die is important since temperature could be 

significantly different machine to machine based on the layout of the plant, movement of air, and 

employee actions.  Additionally, air temperature also impacts many of the plant wide-utility systems.  

Closed-loop water systems often depend on industrial air-cooled chillers to provide cooling in the 

recycled water.  Air temperatures will impact this final water temperature.  Foundries with seasonal 

temperature changes could find their water systems several degrees cooler in the winter when compared 

to the summer due to the ambient air temperatures.  It is important to monitor this environmental 

information along with the process data to get a true understanding of the die casting system. 
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 The equipment performance and environmental conditions provide data needed to understand the 

entire die casting system.  The equipment data provides needed insights into the machine’s performance 

and potential needs for preventative and predictive maintenance.  Environmental data also dictates 

temperatures associated with system-wide utilities.  A summary of the data from the equipment and 

environment is seen in Table 12. 
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Table 12: Equipment performance and environment data 
Equipment Performance and 

Environment 
Total Data 43,387 785,170 3,067,513 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number 

of 

Instances 

# of Data Points 

Low Medium High 

Equipment 

Performance 
              

Hydraulic Oil 
Temperature 

Fixed Each 
Cycle 

1 1 to 3 1 2 3 

Hydraulic Oil Filter 
Pressures (in and out) 

Fixed 
Each 
Cycle 

2 1 to 3 2 4 6 

Motor Vibration (3 
axial directions) 

100 to 1000 
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

2 pumps x  
3 

directions 
18,000 270,000 900,000 

Motor Amp Draw 
100 to 1000 

HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

2 6,000 90,000 300,000 

Motor Temperature 1 to 5 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

2 60 540 1,500 

Pump Vibrations (3 
axial directions) 

100 to 1000 
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

2 to 4 
pumps x 3 
directions 

18,000 405,000 1,800,000 

Pump Temperature 1 to 5 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

2 to 4 60 810 3,000 

Nitrogen 
Accumulator Tank 
Pressure  

10 to 100  
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 300 4,500 15,000 

Hydraulic 
Accumulator Tank 
pressure 

10 to 100  
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 300 4,500 15,000 

Environment and 

System Utilities 
              

Die Cast Machine 
Water Temp In 

1 to 5 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

2 to 4 60 810 3,000 

Die Cast Machine 
Water Pressure In 

10 to 100  
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 300 4,500 15,000 

Die Cast Machine 
Air Pressure In 

10 to 100  
HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 300 4,500 15,000 

Air Temperature 
(internal and external 
to plant) 

Fixed 
Each 
Cycle 

1 2 2 2 2 

Humidity (internal 
and external to plant) 

Fixed 
Each 
Cycle 

1 2 2 2 2 
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METAL AND METAL DELIVERY SYSTEM 

 Transitioning liquid metal to a net shape part is central to die casting.  The metal and metal 

delivery system therefore provide opportunities to collect and monitor data.  The alloy, furnace, and ladle 

system are the items that must be considered. 

 The alloy composition and cleanliness of the liquid metal is important to the mechanical 

properties of the final casting [92].  Spectrometer equipment exists to measure alloy composition in the 

solid state.  Additionally, liquid metal in furnaces experiences mixing due to the filling process.  Liquid 

metal will be pulled from a large holding furnace or smelter and delivered to a smaller holding furnace at 

a die cast machine.  This individual die casting furnace typically ranges from 1,000 to 6,000 pounds, 

depending the size of the machine and castings being made.  Metal is withdrawn from the furnaces one 

casting weight at a time, thereby lowering the amount each cycle.  Eventually, metal must be delivered to 

refill the die cast furnace.  This alloy composition could be slightly different than the previous batch.  

Because of the testing and holding process, alloy compositions on a per casting basis are near impossible.  

Until technology advances to provide in-line liquid alloy composition measurements, measurements of 

alloy compositions will be limited to lot basis and remain variable for individual castings. 

 The die casting holding furnace does provide opportunities for more complete data framework for 

die castings compared to the alloy.  Foremost is metal temperature.  Thermocouples are put into the 

holding furnace in one or more areas to help monitor the temperature of the liquid metal.  Metal 

temperature will fluctuate through time due to the heating cycle of the furnace.  As metal is delivered to 

the die casting chamber, the temperature can be recorded.  If a ceramic filter is used in the furnace to aid 

with improved metal cleanliness, temperature readings on each side of the filter could provide indication 

of how plugged the filter is based on the ease of liquid metal flowing through the filter.  There are many 

types of furnaces used in die cast foundries.  If electricity is the power source, then data can be collected 

at set points for elements and the individual power use per element.  This data could help predict heating 

element failures.  If gas is used for heating, then gas flow rates can be monitored.   
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 The ladling process to deliver metal from the furnace to the chamber of the die casting machine 

provides another opportunity to collect and monitor data.  Ladling processes can vary significantly.  

Dosing furnaces exist that pump metal down a trough into the chamber.  Robotic ladling systems range 

from simple 2-axis specialized machines to 6-axis standard robots with a 7th axis ladle system attached.  

Examples of these different ladling systems are seen in Chapter 1’s Figure 3.   

The data available varies greatly with different equipment.  The settings used within the system 

and the timing and execution of the process are important data to be collected.  Like the die casting 

machines, ladle systems require technicians to specify the process of filling the ladle, speed of the 

machine, pour angles, and time in pour, to name some of the standard ones.  The goal with these settings 

and the equipment is to reduce the variation of metal within the ladle bucket.  Variation in pour weights 

impacts the chamber full percentage and thereby the injection parameters.  Output data exists within this 

ladling process as well.  Metal level within the furnace can be measured with laser sensors.  This feedback 

can go to the ladling system to aid in movements to the liquid metal surface but also gives an indication 

of potential timing of the sub-process within the overall die casting process.  Additionally, the furnace 

level information could be routed to a centralized point for all machines across the plant and be used to 

aid in metal delivery to the die casting furnaces.   

 The alloy, furnace, and furnace delivery systems provided different types and frequency of data.  

Alloy information with today’s technology is limited to lot sampling.  Furnaces provide an opportunity 

for time-series data.  Ladling systems contain settings that should be captured to monitor changes, as well 

as timing and outputs that provide insight on its overall performance within the die casting process.  The 

data of these systems can be reviewed in Table 13. 
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Table 13: Metal and metal delivery system data 

Metal and Metal Delivery System Total Data 265 1,272 4,029 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Alloy Composition Fixed Per Batch 
~ 10 

elements 
1 Not Included 

Furnace Data               

Metal Temperature in 
Furnace 

Fixed Each Cycle 1 2 2 2 2 

Target Metal Temp 
Setting 

Fixed Each Cycle 1 1 1 1 1 

Metal Level in Furnace Fixed Each Cycle 1 1 1 1 1 

Actual Element 
Temperature 

Fixed Each Cycle 1 2 to 4 2 3 4 

Furnace Output (on/off) Fixed Each Cycle 1 1 1 1 1 

Metal Delivery 

Equipment 

Significant variation will exist in process equipment -  
below is assuming a robotic ladling system 

Angle of Fill Setting Fixed Each Cycle 1 1 1 1 1 

Time in Fill Setting Fixed Each Cycle 1 1 1 1 1 

Pouring position Fixed Each Cycle 1 2 to 6 2 4 6 

Pouring Angle Zones Fixed Each Cycle 1 2 to 6 2 4 6 

Pouring Time Zones Fixed Each Cycle 1 2 to 6 2 4 6 

Positional Output Value 
50 to 200 

HZ 
5 to 20 
seconds 

Time-
Series 

1 250 1,250 4,000 

THERMAL DIE MANAGEMENT SYSTEMS 

 An important part of the die design involves the heat management from the liquid metal into the 

die steel during casting solidification and then out of the tool to maintain proper die temperature.  Within 

die casting, this thermal management is controlled multiple different ways, including cold water, hot 

water, high pressure (jet) cooling, and/or hot oil.  Die temperature is also controlled by the spray process 

that is discussed is a separate section.   

Cold water, hot water, jet cooling, and hot oil are similar in the goal of thermal management 

within the die but have different means to that end and are useful in different applications.  Typically, hot 

water, jet cooling, and hot oil units are stand-alone pieces of equipment that are used within the die 

casting cell.  These thermal units contain a means to heat or cool the liquid, pressurize and flow the liquid 

through cooling channels within the die, control valves to turn flow on and off based on programmed 

settings, and sensors to verify performance within the unit.  Thermal units may contain multiple zones 
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that can be controlled individually.  For example, a hot water unit may have two zones, with two unique 

temperature settings for different time settings.  In Chapter 1, photos of a jet cooling and hot water unit 

are found in Figure 11.     

How the liquid media is used creates the different benefits for each of these sub-systems.  Cold 

water cooling is the traditional type of cooling used in die castings.  These settings are often controlled 

within the die cast machine itself to turn on and off valves to allow water to flow into the die, so they are 

not typically a stand-alone piece of equipment.  The settings were discussed in the previous section, but 

the outputs of flow rates provide additional data that should be collected.  Jet cooling pressurizes to 

hundreds of pounds per square inch (PSI) and is often used in very small cores where traditional cooling 

is not an option due to size.  Jet cooling also provides the ability to extract this heat quickly, which helps 

with solidification.  Hot water and hot oil thermal units are typically identical except for the media used.  

Hot oil has a longer history within die casting and is capable of heating oil to temperatures of 400 to 650 

degrees Fahrenheit.  Often hot oil is used to warm the holder block and chamber and to help maintain a 

constant temperature of the tool steel away from the cavity itself.  Hot water units are used in similar 

ways.  Water, however, is only capable of reaching up to 400 degrees Fahrenheit with a pressurized close 

loop system.  Beyond environmental benefits of the water versus oil, the heat transfer capability also 

differs between the mediums.  Water can increase the die temperature much quicker, and these systems 

can also be used in reverse to pull all the heat out of the die, which provide a benefit to foundries during 

the setup and change-over of the tools.   

Because of the complexity of cooling the die and number of passages, often multiple thermal 

units are used.  It is common for a large tonnage die casting machine to have four to six different hot 

water units each with two zones, a multi-zoned jet cooling unit, and the use of the cold water system from 

the die casting machine.  A combination of number of units and number of flow zones each creates a rich 

opportunity for data collection.  As with the cold water within the die casting machine settings, the set 

points selected on this equipment can be collected to monitor process change.  Delay timers, flow timers, 

temperature settings, and pressures are all settings required for the machines to function.  Collecting this 
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data provides an understanding of process changes that may occur over time.  Additionally, this data 

provides a baseline for how the equipment performance can be measured.  For example, if the goal is a 

hot water setting of 275 °F, but the temperature sensor within the line is returning a value of 200 °F, a 

failure is likely occurring in the thermal unit that requires maintenance support.  Flow rates monitoring 

can provide additional insight into the setup of the die.  If flow rates are greater than previous runs, a leak 

within the cooling system is likely happening, which could lead to water within the cavity.  If a flow rate 

is less than normal, possibly a setup issue occurred or passageways inside the die may be blocked.  

Monitoring flow rates also provides a means to check the equipment, specifically valve performance.  If 

the timer to start flow has not yet occurred, a flow rate of zero is expected.  If the flow rate is monitored 

throughout the cycle, and flow is seen during these downtimes, it can be expected that the valve would 

need to be fixed. 

A large amount of data is created by collecting the settings along with the time-series output data 

such as temperature, flow rates, and pressures per zone across all the different thermal units.  Subtle 

changes within these flow rates or temperatures could create meaningful changes within the die steel and 

the steel’s ability to remove heat during the solidification process.  Data collected within the die possibly 

highlights these changes.  One option is to embed thermocouples within the die steel and then monitor 

their temperature output throughout the cycle.  Ideally, cycle-to-cycle these temperatures should be the 

same.  The trouble with this approach is thermocouple placement.  Often only a few spots on the tool can 

be used to help audit the temperature changes of the die steel due to conflicting use of the space for items 

like cooling lines, ejector pins, or geometrical part features.  These thermal couples are often a distance 

away from the die steel, so exact temperature readings of the surface of the die steel that the liquid metal 

contacts need to be inferred. Another approach used is thermal cameras that take surface temperature 

readings of the die steel.  Each image produces hundreds-of-thousands of data points.  However, these 

cameras have their own set of challenges in production.  Camera placement to the die steel is often 

difficult to get the entire die surface, so parts of it are hidden behind other die components.  Additionally, 

the die cast environment with the spray systems can cover the lens in mist, making readings unreliable.  
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Figure 26 shows one of these thermal imaging cameras inside a case with a shutter, installed in a 

production die casting foundry.  The effects of the die casting environment can be seen within the picture 

on the equipment.  Figure 27 provides example grayscale images captured from this camera system.   

 
Figure 26: Thermal imaging camera in production die cast environment 

(photo permission from Mercury Marine) 

 

 
Figure 27: Example thermal image on stationary half (left) and moving half (right) 

(photo permission from Mercury Marine) 
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No solution exists to provide perfect feedback on the die temperature, but these approaches do 

provide data to help simplify the troubleshooting process when a failure is seen.  For example, if a flow 

rate is low in a zone, the thermal image could pick up that the die is getting hotter in a certain area.  By 

utilizing the cooling line diagrams associated with the die design, the exact line that may not be connected 

could be identified, eliminating the need for hundreds of water lines to be individually inspected and 

tested.   

The scale of the data generated by the thermal management and thermal monitoring systems 

varies greatly based on the number of thermal control units used and the technology used by the foundry.  

This data can be seen in Table 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

Table 14: Thermal die management data 
Thermal Die Management Systems Total Data 1,806 85,370 513,100 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Cold Water               

Water Temperature In Fixed Each Cycle 1 1 to 4  1 2 4 

Water Temperature Out 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 4  150 1,440 6,000 

Flow Rate 
10 to 100  

HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 4  300 9,000 60,000 

Hot Water or Hot Oil 

Units 
              

Set Points (temp output, 
time delay, time length, 
program name/rev) 

Fixed Each Cycle 4 
1 to 20 
zones 

4 40 80 

Temperature in to Die 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 20 
zones 

150 7,200 30,000 

Temperature out of Die 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 20 
zones 

150 7,200 30,000 

Flow Rate 
10 to 100  

HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 20 
zones 

300 45,000 300,000 

High Pressure Jet 

Cooling 
              

Set Points (temp output, 
time delay, time length, 
program name/rev) 

Fixed Each Cycle 4 
1 to 4 
zones 

1 8 16 

Temperature in to Die 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 4 
zones 

150 1,440 6,000 

Temperature out of Die 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 4 
zones 

150 1,440 6,000 

Pressure 
10 to 100  

HZ 

30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 4 
zones 

300 9,000 60,000 

Die Temperature 

Sensors 
              

Thermal Couple in Tool 5 to 10 HZ 
30 to 150 
seconds - 
full cycle 

Time-
Series 

1 to 10 150 3,600 15,000 

Thermal Images of Die 
Halves 

Fixed Each Cycle 
480 x 
640 

image 

2 Pre Spray 
+ 2 Post 
Spray 

Not included in totals 
Example: 4 images would be 

~1.23 million data points 
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SPRAY SYSTEM 

 The thermal management sub-systems integrated with the die are ideally designed to remove all 

required heat from the die each cycle.  The spray application of die lubrication, or die lube, is intended to 

cover the die halves with the lubrication to ease the ejection of the final casting from the die.  Die lube is 

often mixed in high ratios with water (100 to 1).  Industrial practice, however, often uses the die lube 

spray system to assist with cooling of the die along with the thermal management systems.  Given the 

high water ratio and the control of the application process, it is convenient to spray extra die lube on areas 

that are extremely hot or that may not have good internal cooling methods to achieve the appropriate 

temperature on the die.  Both the application of lube and the use of cooling is important to the process.  

Data collected from the spray system can ensure a consistent process and therefore a consistent die 

temperature needed for part quality. 

 There are multiple spray systems used within the industry.  The two most common systems are a 

gantry style 2-axis spray system or a spray system mounted on a 6-axis robot as seen in Chapter 1’s 

Figure 12.  The gantry style spray system typically has a large manifold that contains dozens, if not 

hundreds, of nozzles used to spray lube at specific areas of the die.  When the die opens, this system 

travels in the die open position until it is between the die halves and then will move the manifold down 

between the halves.  The nozzles are often tied to a bank with control valves.  Multiple banks exist, which 

allow a technician to program when each bank turns on and off.  After the application of the die lube, a 

“blow off” cycle is usually completed, where high-pressure air is blasted on the die to remove any 

remaining liquid out of the die cavity.  Liquid in the die cavity creates porosity once it vaporizes when the 

injected metal reaches it.  The 6-axis robot follows a similar process but has more degrees of freedom 

from a programming perspective.  As such, the spray systems are often less complicated.  Manifolds with 

dozens of small nozzles still can be used, which is especially useful on dedicated machines running one 

part number, but may not be preferred given the flexibility gained with the robot.  For machines that run 

multiple part designs, robotic systems have two to eight nozzles in a generic setup.  These nozzles are 
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individually controlled and can be aimed directly at critical areas in the die with the robot.  Again, these 

systems also blow air at the end of the cycle, helping remove any liquid from the cavity. 

 The settings for the different systems vary, but collecting this data allows troubleshooting and 

understanding of changes made.  There are timers associated with a nozzle or bank of nozzles that turn a 

valve on and off.  In many cases, the same nozzle may turn on and off several times throughout the spray 

cycle.  The same is true for the air blow-off at the end of the cycle.  Modifications to these timers directly 

change the amount of lube or air sprayed onto the die.  Different levels of lube result in different levels of 

cooling.  In the end, the die temperature with the change will not match the die temperature from prior to 

the change.  Since spray is often used to help cool the die, especially for areas where it may be hard to get 

internal cooling, it is important to have a consistent process and track the settings used.     

Sensors can be added to collect process data associated with this sub-system.  Die lube flow rates 

and pressures are time-series data that can be tracked through the spray cycle.  This information can help 

identify several potential failures.  Flow rates or pressures higher than typical may represent a leak in the 

system or a valve failure, resulting in die lube not being sprayed as intended in the cavity.  This could also 

create puddling of die lube in the die, which could result in porosity in the casting.  Low flow rates or 

pressures could represent nozzles being plugged or valves not triggering.  In this case, not enough die 

lube may be reaching the cavity, thereby affecting cooling and ejection of the casting.  Because there are 

many different nozzles and banks of nozzles toggling on and off throughout the process, flow rates are 

different when a bank of four nozzles is spraying versus two banks of eight nozzles.  Therefore, overall 

averages of gallons used per cycle may identify system failures but will not specify the exact area of 

trouble like time-series data can.   

 The temperature of the die lube is another process parameter that is critical to collet because of its 

impact on cooling the die.  Die lube is often centralized within the plant and is based on water systems 

used for mixing with the lube.  As such, depending on the plant’s utility system, there is a potential for 

changes in temperature throughout the day or year.  Temperatures at night or in winter could create a die 
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lube temperatures that are significantly colder than during the day or in summer.  This temperature 

difference affects the amount of heat removed from the die and should be tracked. 

 At the end of the die spray process is the blow-off cycle.  Collecting time-series data on the air 

pressure used helps validate a consistent blow-off.  Changes from this normal process likely indicate 

valve failures or leaks.  Again, this value changes based on number of nozzles activated at once, so time-

series data allows for a better understanding of where these potential failures are within the system.  A 

summary of this spray data can be found in Table 15.   

Table 15: Spray system data 

Spray Systems Total Data 410 3,622 9,562 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Significant variation will exist in process equipment - below is assuming a 6-axis robotic spray system 

Settings               

On-Off Timers Settings 
for each spray zone 

Fixed Each Cycle 4 to 20 2 to 8 8 60 160 

Outputs               

Tracking of On-Off for 
each zone 

5 to 10 HZ 
10 to 30 
seconds 

Time-
Series 

2 to 8 100 560 2,400 

Flow Volume of Die 
Lube into System 

10 to 100 
HZ 

10 to 30 
seconds 

Time-
Series 

1 100 1,200 3,000 

Air Pressure into System 
(through blowoff) 

10 to 100 
HZ 

20 to 40 
seconds 

Time-
Series 

1 200 1,800 4,000 

System Data               
Temperature of Die 
Lube 

Fixed Each Cycle 1 1 1 1 1 

Ratio of Die Lube Fixed Each Cycle 1 1 1 1 1 

 

CYCLE TIME ANALYSIS  

The controls and feedback systems within a die cast machine are numerous given the needed 

movements associated with ladling, injection, opening, ejection, spraying, and closing.  Multiple switches 

and sensors exist on the machine to ensure it performs as expected.  These devices communicate to the 

PLC.  When combined with the settings loaded into the die cast machine as previously discussed, the 

system functions execute based on the commands of the PLC and feedback from the sensors. 
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Tracking the sensor signals provides valuable cycle time data regarding the die casting process.  

Consistency is critical with die casting, so the same level of heat transfer occurs to keep the same die 

temperature cycle-to-cycle.  Consistency in equipment movements is also an important and can be used to 

identify wear or pending failure of a component.  Additionally, having a detailed cycle time analysis of all 

movements within the machine also provides quick information on what part of the process changed 

when an overall cycle time is found to be different.  Since the part-to-part cycle time is comprised of so 

many different systems and operations, investigating a cycle time change to find the cause could take 

hours if the data is not already available.  Because these sensors are critical to the machine, the tags 

within the PLC exist.  Some die casting equipment manufacturers provide this cycle time analysis in the 

data the machines display.  For equipment that does not, a start point of the process needs to be 

determined, and a time counter within the PLC is then started.  A collection system within the PLC must 

be put into place, so when every switch within the process is hit, the time counter value is stored with the 

associated switch.     

To better understand what some of this data is and how it can be used, a theoretical example is provided.  

A die casting company starts a timer in the PLC after the ejection complete signal is received, marking 

the start of the next cycle within the die casting machine.  When the switch that records the ejection return 

is made, that time value is stored.  Variation in this time could indicate ejection pin issues with the die.  

The start and stop of the spray cycle are recorded.  Changes in these values influence the overall cycle 

time and could indicate a change to the spray process.  The tip is signaled to return to the full back 

position after spray.  The switch tripped at that full back position is recorded.  The time from when the 

call is initiated to when the switch is hit can be calculated to show the travel time of the tip within the 

chamber.  As a tip wears or binds within the chamber, the time to hit the return switch will increase.  The 

end of spray also starts the closing process of the die and then the ladling process.  Switches as the die 

starts to move are hit, letting the machine know when to close with higher speed versus higher force.  

Inconsistencies here could mean die linkage needs maintenance or the closing cylinder may be leaking.  A 

lower metal level within the furnace may cause the ladle robot to take more time to fill the bucket 
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properly.  As a result, the time the signal comes back saying the robot is ready to pour could cause cycle 

time variation.  This cycle time information continues in more detail than described here and throughout 

the entire process.  Each die cast machine manufacturer has different types and placement of switches.  

Table 16 provides a summary of Table 17 and Table 18.  The latter two tables represent a generic 

example of data associated with equipment movements that would happen regardless of equipment brand.     

Table 16: Summary table for cycle time analysis data 

Cycle Time Analysis Summary Table # of Data Points 

Table Number Name Low Medium High 

Table 17 Cycle Time Analysis - Part 1 19 23 27 

Table 18 Cycle Time Analysis - Part 2 32 40 48 

Total 51 63 75 

 

Table 17: Part 1 of cycle time analysis data  

Cycle Time Analysis - Part 1 Total Data 19 23 27 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Cycle Start Point Fixed Each Cycle 1 1 1 1 1 

Time to Safety Doors 
Closing 

Fixed Each Cycle 1 1 1 1 1 

Time to Spray Start Fixed Each Cycle 1 1 1 1 1 

Time to Spray Complete Fixed Each Cycle 1 1 1 1 1 

Time to Insert Start Signal Fixed Each Cycle 1 1 1 1 1 

Time to Insert Complete 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Shot Rod Return 
Limit Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Slide-In Signal Fixed Each Cycle 1 4 to 8 4 6 8 

Time to Slide-In Limit 
Switch Fixed Each Cycle 1 4 to 8 4 6 8 

Time to Die Close Output Fixed Each Cycle 1 1 1 1 1 

Time to Die Close Mid-
Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Close 
Deceleration Limit Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Lock 
Output/Tonnage 
Confirmed 

Fixed Each Cycle 1 1 1 1 1 
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Table 18: Part 2 of cycle time analysis data 

Cycle Time Analysis - Part 2 Total Data 32 40 48 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Time to Pour Signal Fixed Each Cycle 1 1 1 1 1 

Time to Pour Complete Fixed Each Cycle 1 1 1 1 1 
Time to Vacuum Start 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Shot Start Fixed Each Cycle 1 1 1 1 1 

Time to Water Valve On 
Signal 

Fixed Each Cycle 1 2 to 4 2 3 4 

Time to other Thermal 
Management Unit Signals 

Fixed Each Cycle 1 4 to 8 4 6 8 

Time to Dwell Time Start 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Intensifier Fire 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Dwell Time End 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Open Output 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Open Mid-
Way Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Open 
Deceleration Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Die Fully Open 
Limit Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Water Valve Off 
Signal 

Fixed Each Cycle 1 2 to 4 2 3 4 

Time to Slide-Out Signal Fixed Each Cycle 1 4 to 8 4 6 8 

Time to Slide-Out Limit 
Switch 

Fixed Each Cycle 1 4 to 8 4 6 8 

Time to Ejection Signal Fixed Each Cycle 1 1 1 1 1 

Time to Ejection Forward 
Complete Switch 

Fixed Each Cycle 1 1 1 1 1 

Time to Part Extraction 
Verification 

Fixed Each Cycle 1 1 1 1 1 

Time to Ejection Return 
Signal 

Fixed Each Cycle 1 1 1 1 1 

Time to Ejection Return 
Complete Switch 

Fixed Each Cycle 1 1 1 1 1 

 

EXTRACTION CELL SYSTEM 

 The last section of die casting data focuses on the process immediately after the casting is created.  

The extraction cell is important to the die casting process beyond just removing the casting from the die.  
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Any breakdown in this process directly relates to the overall cycle time of the die casting machine.  A 

failure in any piece of the extraction cell equipment means the die casting process stops.  Beyond the 

financial impact of a lack of production, the thermal balance of the die also changes.  This results in 

wasted warm-up cycles and reduced die life.  Because of the impact to the die casting cycle, a focus on 

the data collection of the extraction cell is a natural progression in the overall cell analysis.  Figure 28 is a 

photo of a production die cast cell at Mercury Marine.  This photo of the extraction cell corresponds to the 

CAD layout of the cell shown previously in Figure 1. 

 
Figure 28: Example extraction cell with multiple robots and post-die cast processing 

(photo permission from Mercury Marine) 

  

The scale of extraction cells varies greatly based on different foundries and castings produced.  

This section assumes robotic automation within the extraction cell.  The simplest cell would be a robot 

extracting the casting and placing it on a conveyor to an operator.  A highly complex extraction cell could 

include multiple robots working together to assist with insert placement (ie. liners for an engine block), 

overflow detection, part serialization, removal of the venting system, sawing of the gating system, and 
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trimming the casting with a trim press.  The data generated in this section will be discussed in more 

generic terms, since collecting data from a saw unit or trim press has some similarities but many 

differences.  The data collected in the extraction cell focuses on part quality and equipment performance.   

The extraction cell often completes several quality-related checks on both the casting and the 

process.  Overflow detection is often completed to verify no pockets are left in the die that could cause 

damage.  These devices range from simplistic proximity laser sensors to 3D profiling cameras.  When 

liners are put into engine blocks, often the extraction cell contains sensors to ensure all the liners made it 

into the casting and did not fall out of the robot or die during the loading process.  This validation data 

should be saved for each casting serial number.  Part quality can also be indirectly identified by some of 

the processes.  If the sawing of the gating system sees a significant spike in amp draw, it could indicate an 

oxide in the casting gating.  A trim press that requires significantly larger force to trim the casting could 

be an indication of a warp or dimensional issue on the casting.  If a casting is laser marked or pin stamped 

with a matrix code, a barcode reader will often validate its readability.  This generates data such as 

contrast ratios, unused error rates, barcode grades, and modulation.  This barcode information is important 

to the casting as its readability in future operations is paramount to the success of connecting results to 

input parameters, which is needed to apply advanced analytics such as supervised machine learning.  

Equipment performance data is also important to prevent downtime within the die casting cell.  

Saw blades wear out, and the amp draw from the motor or vibration on the spindle will be a precursor to 

this failure.  Motors and pumps exist on saws, presses, and shear units.  Time-series data on vibration, 

temperature, pressures, and amp draw provides insight into potential changes.  In some cells, there may be 

a quench tank.  Sensors can tell how full the quench tank is to avoid running out as well as the 

temperature of the water to see if chiller units are functioning as needed. 

The data possibilities in the extraction cell are numerous and have a direct connection to the 

casting.  A thorough review of the process and equipment must be performed to assist with determining 

critical process data that should be collected.  Table 20 and Table 21 provide an overview of data for 

some of the key pieces of equipment found in common extraction cells and is summarized in Table 19.   
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Table 19: Summary table for extraction cell system 

Extraction Cell System Summary Table # of Data Points 

Table Number Name Low Medium High 

 Table 20 Extraction Cell System - Part 1 4,276 53,262 170,320 
 Table 21 Extraction Cell System - Part 2 3,130 31,084 93,178 

Total 7,406 84,346 263,498 

 

Table 20: Part 1 of extraction cell and post die cast process data 

Extraction Cell System - Part 1 Total Data 4,276 53,262 170,320 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Significant variation will exist in process equipment - cells will be comprised of different levels of equipment 

Robots               

Program Number/Rev Fixed Each Cycle 1 1 1 1 1 

Cycle Time Analysis of 
all movements 

Fixed Each Cycle 
10 to 
100 

1 10 50 100 

Part Detection               

Extraction Sensing Fixed Each Cycle 1 1 1 1 1 

Overflow Detection 
Images 

Fixed Each Cycle 
480 x 
640 

image 
1 to 4 

Not included in totals 
Example: 2 images would be 

614,400 data points 

Overflow Detection 
Lasers (pass/fail) 

Fixed Each Cycle 1 1 to 10 1 5 10 

Hydraulic Shears               

Start/Stop Time Signals Fixed Each Cycle 1 1 to 6 1 3 6 

Hydraulic Pressure 
10 to 100  

HZ 

5 to 20 
seconds 
(overall) 

Time-
Series 

1 50 625 2,000 

Saw               

Settings (RPM, Feed) Fixed Each Cycle 2 1 2 2 2 

RPM Output 
10 to 100  

HZ 
10 to 40 
seconds 

Time-
Series 

1 100 1,250 4,000 

Feed Output 
10 to 100  

HZ 
10 to 40 
seconds 

Time-
Series 

1 100 1,250 4,000 

Amp Draw Output 
100 to 

1000 HZ 
10 to 40 
seconds 

Time-
Series 

1 1,000 12,500 40,000 

Spindle Vibration (3 
dimensions) 

100 to 
1000 HZ 

10 to 40 
seconds 

Time-
Series 

1 spindle x    
3 directions 

3,000 37,500 120,000 

Spindle Temperature 1 to 5 HZ 
10 to 40 
seconds 

Time-
Series 

1 10 75 200 
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Table 21: Part 2 of extraction cell and post die cast process data 

Extraction Cell System - Part 2 Total Data 3,130 31,084 93,178 

Item 
Collection 

Frequency 

Collection 

Time 

Data 

Volume 

Number of 

Instances 

# of Data Points 

Low Medium High 

Significant variation will exist in process equipment - cells will be comprised of different levels of equipment 

Part 

Marking/Serialization 
              

Part Marking Start/Stop Fixed Each Cycle 2 1 2 2 2 

Serial Number Marked Fixed Each Cycle 1 1 1 1 1 

Serial Number Verified 
(reader) 

Fixed Each Cycle 1 1 1 1 1 

Barcode Reader 
Verification (contrast, 
unused error correction, 
axial non-uniformity,  
grid non-uniformity, 
modulation, others) 

Fixed Each Cycle 1 5 5 5 5 

Barcode Reader Image 
of Barcode 

Fixed Each Cycle 
480 x 
640 

image 
1 

Not included in totals 
Example: image would be 

307,200 data points 

Trim Press               

Program Number/Rev Fixed Each Cycle 1 1 1 1 1 

Cycle Time Analysis of 
signals and switches 

Fixed Each Cycle 4 to 12 1 4 8 12 

Hydraulic Pressure 
during cycle 

10 to 100  
HZ 

10 to 30 
seconds 

Time-
Series 

1 100 1,000 3,000 

Temperature Sensor for 
casting 

Fixed Each Cycle 1 1 1 1 1 

Hydraulic Pump 
Vibration (3 
dimensions) 

100 to 
1000 HZ 

10 to 30 
seconds 

Time-
Series 

1 pump x     
3 directions 

3,000 30,000 90,000 

Hydraulic Pump 
Temperature 

1 to 5 HZ 
10 to 30 
seconds 

Time-
Series 

1 10 60 150 

Quench Tank               

Water Temperature Fixed Each Cycle 1 1 1 1 1 

Water Level Fixed Each Cycle 1 1 1 1 1 

Quality Checks               

Insert Verification (in 
robot gripper) 

Fixed Each Cycle 1 1 1 1 1 

Insert Verification (in 
casting on extraction) 

Fixed Each Cycle 1 1 1 1 1 

Casting Temperature Fixed Each Cycle 1 1 1 1 1 
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SUMMARY AND CONCLUSIONS  

 The scale of data that can be generated during each die cast cycle is multiple orders of magnitude 

larger than what industry has assumed to date.  The issue within the die industry is the focus is on the 

injection process [23].  Even though this is time-series data, the industry takes these tens of thousands of 

data points and creates 20 to 30 descriptive statistics that are tracked [2].  The longest list of published 

parameters for high pressure die casting was completed based on a European study in 2016.  The MUSIC 

Consortium published 75 parameters that they identified to collect and analyze with machine learning 

algorithms [86].  This is significantly larger than the three to five inputs that were used to apply machine 

learning to die casting in recently published papers [17] [18] [21] [22].  

When taking a systems engineering approach to die casting, the data framework is not three to 

five parameters.  Nor is it 20 or even 75.  The data review completed within this work shows, on the low 

end, about 80,000 data points and on the high end, more than 4 million data points that can be generated 

and saved for each die casting cycle.  Additionally, this does not include the potential for another 2 

million data points from image files that could also be collected.  Table 22 shows a summary from all the 

data framework groups with the low, medium, and high estimates and totals.   

A vast majority of this data can be contributed to time-series data.  A typical approach may be to 

collect this data and then summarize it with a descriptive statistic, like an average, for a range of the data.  

This greatly reduces the amount of data, turning thousands of data points into one.  Statistical summaries 

lose the data context through the calculations.  Without the context, the true process will not be known.  

This will be discussed in more detail with two case studies found in Chapter 5.  
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Table 22: Data framework group summary table 

Die Cast Data Framework Summary 

Data Framework 

Groups 

Estimated Number of  Data Points Images or 

Others Not 

Included 
Low Medium High 

Die Design and Build 66 247 468   
Die Cast Equipment 

Settings 94 129 164   
Injection System 25,641 77,589 156,000   

Die Movement and 
Clamping 

1,004 10,504 36,004 
  

Equipment 
Performance and 

Environment 
43,387 785,170 3,067,513 

  
Metal and Metal 
Delivery System 

265 1,272 4,029 
  

Thermal Die 
Management Systems 1,806 85,370 513,100 1,228,800 

Spray System 410 3,622 9,562   
Cycle Time Analysis 51 63 75   

Extraction Cell  7,406 84,346 263,498 921,600 
Total 80,130 1,048,312 4,050,413 2,150,400 

 

 The optimization and data collection approached used to date have three significant flaws.  First,  

the focus is on quality optimization only and fails to look at any other optimization aspect of the die 

casting process.  With 68% utilization [4], improved machine performance can be a huge financial benefit 

to the industry.  The second flaw is the processes is dynamic.  By not tracking any of the settings or inputs 

of how equipment is programmed, it is unknown if the output changes are driven by humans making 

modifications to the process or equipment starting to fail.  Finally, the scale of parameters used in 

previous optimization publications is inadequate.  Because die casting is such a complex system, it is 

improbable that representing the system with three to five parameters will allow perfect predictions with 

machine learning.  It should not be a surprise that perfect predictions have not yet happened in the work 

done to date.         

The challenge the die casting industry really faces is being able to collect, store, and analyze this 

scale of data.  When many foundries fail to monitor even 20 variables, hundreds-of-thousands will be 
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viewed as an insurmountable task.  Machine learning will help with the analyzation of this volume of 

data.  The thought process on how machine learning is applied must fundamentally change, at least 

initially.  Instead of focusing on quality predictions, machine learning should be utilized to help provide 

feedback and control to the complex die casting system.  The use of machine learning for anomaly 

detection to help understand when the process changes is incredibly valuable to the industry.  

Additionally, the volume of equipment performance time-series data available in die casting means the 

use of machine learning for predictive maintenance could also be a meaningful win for the industry to 

reduce equipment downtime.  Some of the complexity of die casting is removed when one uses machine 

learning to analyze the feedback data to inform humans involved when something has changed.   

Before this work gets into the machine learning case studies within die casting, it is important to 

further understand challenges with machine learning in die casting.  These challenges are highlighted in 

Chapters 3 and 4.  In Chapter 3, the random nature of casting defects is discussed.  Chapter 4 will review 

human misclassification of data and the critical error threshold that creates meaningful challenges with 

supervised machine learning approaches.       
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Chapter 3: Stochastic Nature of Porosity Defects1 
 

Chapter 3 provides an in-depth review of the stochastic nature of porosity defects in die casting.  

Random defect formation is a critical topic to comprehend to understand machine learning applications 

in production die cast environments.  An experimental study was performed where key process 

parameters were held constant through a production run.  Castings were then inspected with 

radiographic equipment.  These X-rays showed meaningful variation of porosity formation within the 

production run.  The process used to produce the best-of-the-best and worst-of-the-worst parts was 

statistically identical.   

  

INTRODUCTION 

Porosity is considered a defect, and it is inherent to aluminum high pressure die casting (HPDC) 

due to the nature of metal solidification [94].  Research completed by the North American Die Casting 

Association (NADCA) shows that porosity concerns are one of the leading contributors to scrap costs and 

the biggest problem within die casting [95].  Approximately 30% of the industry has identified addressing 

porosity as a top concern [96].  There is high motivation to improve porosity scrap given the die casting 

industry has $8 billion annual sales in North America [3] and suffers from an 8% median scrap rate [4].  

Porosity defects can be described by the primary cause: shrink porosity and gas porosity and classified by 

the size: micro porosity and macro porosity [97], [98].  The cause and size provide one high-level 

classification system for porosity, although more detailed defect classification systems exist [95], [99], 

[100].      

Porosity is well documented within the HPDC industry [13], [14], [94], [95], [97].  Shrink 

porosity is caused by volumetric contraction of metals during solidification.  Shrink porosity is often 

 
1 This chapter is an edited version of a paper published in International Journal of Metalcasting, included with permission.   
D. Blondheim, Jr. and A. Monroe, “Macro Porosity Formation - A Study in High Pressure Die Casting,” International Journal of 
Metalcasting, 2021, doi: 10.1007/s40962-021-00602-x [93] 
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irregular, with ragged shapes.  Gas porosity occurs when a gas concentration within the liquid metal is 

higher than the solubility of the metal.  Gas porosity is typically spherical in shape.  The mechanisms 

causing these two types of internal voids can also interact during the solidification of a casting.  This 

interaction is termed gas assisted shrink.  This porosity has shape characteristics of both shrink and gas 

porosity.   

The size of porosity is another distinguishing feature of the porosity formed in castings.  Shrink 

porosity and gas porosity can form in macro and micro size voids.  Micro porosity is often discussed as 

voids that form within the mushy interdendritic liquid  [101].  Macro porosity is typically discussed 

within the industry as visible porosity that is compared to quality specifications.  Macro porosity may 

cause rejects within castings with a radiographic (X-ray) inspection or visual inspection after secondary 

processing, such as machining [12].  A clear definition between micro and macro porosity is lacking and 

will be discussed.    

Micro porosity has been well researched.  The stochastic or random nature of micro porosity 

formation was studied by Atwood [101].  Lee et al. [98] reviewed five different models involving 

complex simulation of micro porosity and microstructure with random nucleation. Several groups of 

authors have studied micro porosity formation and distribution in castings with micro computed 

tomography (CT) equipment [102]–[104].  Cao et al. [105] and Niu et al. [106] studied porosity 

formation on the micro scale with vacuum-assisted high pressure die casting.  In addition to vacuum, Niu 

et al. [106] work also studied other injection parameters to see impact on the mechanical properties with 

micro porosity.  Zhang et al [107] studied micro porosity formation and mechanical properties of both 

entrapped air and shrinkage.    All this work has provided useful insights into how micro porosity forms 

and the impact it has.   

Research on macro porosity is heavily tied to publications on simulations, and it is generally not 

studied mechanistically like micro porosity.  Overall, there is a correlation between porosity results from 

simulations and where it is found in a casting [108]. Macro porosity can be formed by both shrink and gas 

porosity.  Shrink porosity can be reduced by improving feeding paths in both casting and tool design.  
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Gas porosity is affected by the pour rate, slow shot acceleration, venting, and die lubrication 

improvements [95].  Since these features of die and process design are well known, there has not been 

much research on the formation of macro porosity in production environments.  This is an oversight 

because porosity is still a major cause of scrap [4].  Understanding the formation of macro porosity can 

create a better understanding of inspection and classification of casting defects.   

The goal of this work is three-fold.  First, a definition will be provided to help distinguish the 

difference between micro porosity and macro porosity.  This definition will be based on an industry 

perspective within HPDC.  Second, the stochastic or random nature of macro porosity will be reviewed 

with an industrial case study.  Simulation software can predict a zone where porosity is likely to form, but 

it falls short of showing the random formation of voids produced within that zone.  Finally, a review will 

highlight that from first principles macro porosity should be expected to form randomly in unfed liquid 

pockets.  The end results from this work should challenge the accepted analysis of macro porosity in 

HPDC. 

 

BACKGROUND ON MACRO POROSITY  

The transition dimension between micro porosity and macro porosity has ebbed and flowed 

between different authors.  Huang and Conley [109] said micro porosity was from 500 μm to 1 mm and 

macro porosity was from 1 mm to 10 mm.  Lee et al. [98] called voids that have a maximum dimension 

larger than 5 mm as macro porosity.  A different approach used by Liang et al. [110] is to call macro 

porosity anything that can be visibly seen with less than 5X magnification but did not provide a 

dimension.  Zhang et al. [111] used any void less than 300 μm as the transition from macro to micro 

porosity.  Consistency in a definition and the reason for the selected value is lacking from literature.  The 

exact transition dimensions between macro and micro porosity may continue to be challenged; however, 

definitions should be supported by reasoning.  Having a practical definition is needed to provide clarity 

and consistency within industrial research.    
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Given the significant impact that macro porosity has on HPDC foundries, a well-conceived 

definition is needed. The variation seen in the literature is because scope of the definition was too small.  

Three factors should be considered when defining macro porosity:  metallurgical formation mechanism, 

functional part requirements, and ability to inspect the defect.  After considering these factors, the limit of 

detectability in inspection is the best transition between macro and micro porosity for HPDC. 

METALLURGICAL FORMATION MECHANISM 

From a metallurgical perspective, the size where micro porosity transitions to macro porosity is 

based on the secondary dendrite arm spacing (SDAS).  This relationship is due to the different nature of 

the feeding flow of the bulk liquid versus the feeding in the mushy region between the dendrite arms.  In 

the bulk liquid, the dendrite arms are not present and therefore cannot affect the maximum size of the 

porosity. This unconstrained macro porosity is formed when the bulk feeding flow is cut off.  Dendrites 

restrict the feeding flow and constrain the maximum size of the porosity, creating micro porosity [112], 

[113].   

Micro porosity size can vary significantly in different casting processes because SDAS is not a 

constant value for these processes.  This is because SDAS is proportional to the cubed root of the cooling 

rate [112], [114], [115].  Sand casting and permanent mold castings have a wide range of cooling rates, 

making a universal definition of interdentric micro porosity in those processes difficult. HPDC cooling 

rates are different because they are consistently high with an observed SDAS in the range of 10-40 μm 

[116].  The small value means detecting true micro porosity voids in HPDC is often not industrially 

practical.  This suggests that the definition of macro porosity for HPDC should be driven by the 

functional requirements or readily available inspection methods.  

FUNCTIONAL POROSITY REQUIREMENTS 

Functional casting porosity requirements influence a working definition for macro porosity.  

After castings are machined, they are inspected for macro porosity on machined surfaces.  Acceptance 

criteria for given surfaces depend on the required function of the casting [12].  Thresholds are sometimes 
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determined by past practices for a given original equipment manufacturer (OEM) and recommendations 

provided by vendors of assembled components such as piston rings, O-rings, and gaskets.  In other cases, 

thresholds are set by failure points identified in finite element analysis (FEA) for the product.  These 

porosity standards are treated as confidential trade secrets by OEMs; therefore, typical thresholds for 

specific applications are not published.   

The North American Die Casting Association (NADCA) has provided an example of four levels 

of porosity on exposed machined surfaces in Die Casting Porosity Guidebook [94] with a Level 1 

porosity being specified as a maximum size of 0.4 mm.  Experience by the authors has shown typically 

the tightest specifications are a maximum porosity diameter between 0.4 mm to 0.5 mm (400 μm to 500 

μm).  The threshold for macro porosity would have to be smaller than this minimum acceptable porosity 

limit to use functional requirements as a meaningful distinction between acceptable and rejectable levels 

of porosity during inspection.    

INSPECTION ABILITY 

Castings are typically inspected in a raw state with X-ray or computed tomography (CT) 

equipment or by visual inspection after secondary machining.  From an X-ray or CT image standpoint, 

production intent equipment has a pixel size resolution of 100 μm on castings that can fit up to 400 mm x 

400 mm image windows [117], [118].  Specialized micro-CT research equipment exists to capture micro 

porosity resolution of 10 μm to 50 μm on parts typically less than 50 mm cube [102], [119].  This type of 

equipment has significant limitations in a production castings environment based on size and time needed 

to perform analysis.  Therefore, the capable range of micro-CT equipment should not be considered in 

defining an industrial application of macro porosity.  The focus should be given to capabilities of 

industrial, production intent X-ray equipment.     

Visual inspection of castings is the next challenge.  Visual acuity defines what the human eye is 

capable of detecting.  Snellen eye charts, as typically found at optometrists’ offices, were developed based 

on the studies showing human vision can generally resolve a visual target that represents 5 minutes of an 



 

98 
 

arc.  This 5 minutes of an arc is typically referred to as 20/20 vision [120].  The equivalent visual angle of 

a piece of porosity on a casting is determined based on defect size and surface distance as shown in 

Equation 11.  Conversion from degree to minutes of an arc are needed to compare to a Snellen vision 

chart.    

Equation 11  𝑇𝑎𝑛 𝜃 =  𝐷𝑒𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑒𝑦𝑒  ;  𝜃 = arctan ( 𝐷𝑒𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑒𝑦𝑒) 

Table 23 includes a series of calculated equivalent visual angles for different defect sizes and distances.   

Table 23: Equivalent visual angle for different defect sizes and distances 

Equivalent Visual Angle (minutes of an Arc) 

Casting Defect 

Size (mm) 

Distance from defect (mm) 

150 250 500 600 

0.1 2.29 1.38 0.69 0.57 
0.25 5.73 3.44 1.72 1.43 
0.5 11.46 6.88 3.44 2.86 
0.75 17.19 10.31 5.16 4.30 
1 22.92 13.75 6.88 5.73 

 

It has been found that human ability to focus on near objects deteriorates with age.  Typically, 

those in their 20s can focus down to 150 mm from their eyes.  This erodes to 250 mm minimum focal 

distance as they age [121].  Given that 5 minutes of an arc is 20/20 vision [120], selecting 250 μm 

threshold between micro and macro porosity provides a realistic size that humans can inspect either 

without magnification in their youth and with minimal magnification as they age.   

Based on the SDAS of HPDC, the functional specifications used to inspect castings, and the 

ability to detect and identify porosity with X-ray and visual inspection, a threshold of 0.250 mm (250 μm) 

is a defendable choice for the threshold between micro and macro porosity in HPDC.  With a size defined 

and the reasoning supplied, the porosity that causes rejects in HPDC are macro porosity.  The focus can 

now shift to how this macro porosity forms in production castings and what can be learned to improve the 

HDPC process.     

 



 

99 
 

EXPERIMENTAL STUDY 

A small housing casting, produced on a 900-ton die cast machine out of A362.0 aluminum alloy, 

as seen in Table 24, was selected for this experiment.  Previous X-ray audits showed varying levels of 

porosity within this casting even when process parameters remained consistent.  The porosity was located 

near a semi-circular feature on the side opposite the gating.  The porosity level found in this location of 

the casting does not impact overall part quality based on product testing.   

Table 24: A362.0 Chemical Composition Limits 
Si Fe Cu Mn Ni Zn Ti Sr 

10.5-11.5 0.40 0.20 0.25-0.35 0.10 0.10 0.20 0.05-0.07 
 
Once the die was brought up to temperature with the typical start-up process, 100 castings were 

produced at identical process settings.  These settings matched the production settings and had no 

adjustments made for the entire sample run.   The castings were pin-stamped with a serial number in the 

robot extraction cell.  With this serial number, all process data is traced to the X-ray images.  The castings 

were completed in just under two hours.   

Castings were sawed so the area of interest could be easily X-rayed to provide repeatable images 

and remove background features non-critical to this study.  A sample of the sawed casting is seen in 

Figure 29.  One casting was damaged during the sawing process used to prepare it for the X-ray (sample 

number 76).  Its process information was removed from all analysis.  This sample showed no significant 

difference in process values.   
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Figure 29: Sawed sample casting for X-ray 

 
The X-ray equipment used was a Bosello SRE Max with a 225 max KV power rating.  Images 

were registered using open source Fiji imaging software [122] and the selective plane illumination 

microscopy (SPIM) registration plug-in [123].  The X-ray images were reviewed following ASTM E505 

standard [124] to determine porosity cause.  Shrink porosity (ASTM Category C) and gas porosity 

(ASTM Category A) were seen within the castings.  The castings were graded with a 1 (best), 2 

(moderate), and 3 (worst) score.  Figure 30  provides examples of all three gradings.     

 
Figure 30: Example X-ray gradings 1 through 3 

 

RESULTS AND ANALYSIS 

Critical process parameters were collected for all sample castings (n = 99) during the experiment.  

The data was within typical production variation for the casting.  Mean and 95% confidence intervals for 

these parameters are seen in Table 25.  Based on the grading samples on the images, there were 9 samples 
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each identified as Grade 1 (good) and Grade 3 (worst).  These parts that represented the extremes of the 

macro porosity found within the casting were reviewed in detail.   

Table 25: Mean and confidence interval of critical injection parameters 

 Mean 

95% Confidence 

Interval for Mean Units 

Cycle Time 68.0 67.8 - 68.2 second 
Average Slow Shot Velocity 14.16 14.155 - 14.165 inches/second 
Calculated Start of Fast Shot 14.27 14.266 - 14.274 inches 
Average Fast Shot Velocity 141.69 141.61 - 141.77 inches/second 

Intensification Pressure 5124.9 5119.0 - 5130.8 PSI 
Intensification Squeeze Distance 0.174 0.171 - 0.177 inches 

Biscuit Size 1.69 1.65 - 1.73 inches 
 

The best castings showed scattered shrink porosity typically 0.2 mm to 0.4 mm thick and up to 

1.0 mm long.  This porosity was scattered throughout the section in review, with a tendency for it to form 

furthest way from the gating (part is gated from the left side of the X-ray images).  The nine Grade 1 

(best) castings can be seen in Figure 31.    

 
Figure 31: 9 best samples (Grade 1) 
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The worst castings showed a gas assisted shrink with rounder, but irregular shaped voids, 

consistent of gas feeding into a shrink porosity.  Gas porosity within the worst castings grade were 

typically 3.0 mm to 4.0 mm in diameter.  For shrink porosity, the worst castings had 0.4 mm to 0.6 mm 

thick and 5.0 mm to 10.0 mm long porosity voids.  Overall, the worst of the worst (WOW sample - #43) 

had an approximate 8.0 mm diameter void in the casting.  The nine worst castings (Grade 3) can be seen 

in Figure 32. 

 
Figure 32: 9 worst samples (Grade 3) 

 

Shapiro-Wilk normality tests [125] showed the process parameters to be non-normal in the 99 

samples.  As a result, the Wilcoxon Signed Rank test [126] was performed to compare the samples 

between the best and worst groupings.  Table 26 contains all the individual recorded data for the samples.  

Table 27 shows the p-values calculated with the Wilcoxon test.  None of the critical process parameters 

showed to be significant. 
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Table 26: Injection parameter data for best and worst samples 

# Grade 

Cycle 

Time 
(s) 

Average 

Slow Shot 

Velocity 
(in/s) 

Calc 

Start Fast 
Shot (in) 

Average 

Fast Shot 

Velocity 
(in/s) 

Intens 

Rise 

Time 
(ms) 

Intens 

Pressure 
(psi) 

Intens 

Squeeze 

Distance 
(in) 

Biscuit 

Size (in) 

6 1 67.0 14.12 14.30 142.18 69 5096.5 0.157 1.89 

13 1 65.8 14.15 14.30 141.34 74 5094 0.167 2.00 

24 1 69.3 14.14 14.27 141.65 75 5108.7 0.177 1.79 

29 1 67.7 14.18 14.28 141.84 70 5108.7 0.177 1.41 

49 1 68.3 14.14 14.28 141.78 71 5123.3 0.157 1.35 

60 1 69.0 14.17 14.26 141.87 67 5145.3 0.187 1.67 

70 1 68.3 14.15 14.28 141.93 71 5125.8 0.187 1.47 

74 1 68.7 14.15 14.27 141.93 72 5164.8 0.177 1.56 

79 1 67.6 14.16 14.26 141.58 70 5150.2 0.157 1.59 

15 3 67.6 14.13 14.30 142.12 74 5072 0.167 1.91 

22 3 67.7 14.15 14.28 141.58 73 5172.2 0.167 1.21 

28 3 69.5 14.14 14.29 141.39 70 5116 0.167 1.72 

38 3 68.4 14.15 14.28 142.12 73 5101.3 0.167 1.72 

40 3 67.8 14.15 14.28 142.12 73 5098.9 0.187 1.71 

43 3 66.8 14.17 14.28 142.06 74 5130.6 0.157 1.04 

52 3 68.4 14.18 14.27 141.5 71 5223.4 0.128 0.92 

67 3 68.5 14.20 14.24 141.14 67 5147.7 0.177 1.76 

84 3 68.3 14.21 14.23 142.15 68 5172.2 0.177 1.59 

 

Table 27: Wilcoxon Signed Rank Test p-values 

 Cycle 

Time 

Average 

Slow Shot 

Velocity 

Calc 

Start Fast 

Shot 

Average 

Fast Shot 

Velocity 

Intens 

Rise 

Time 

Intens 

Pressure 

Intens 

Squeeze 

Distance 

Biscuit 

Size 

p – 

value 
0.496 0.183 0.233 0.910 0.536 1.0 0.611 0.652 

 
The results of the experiment have shown that macro porosity formation is random when industry 

accepted control parameters are held constant in a production environment.  The size and distribution of 

the voids varied significantly throughout the casting run, even though no process settings were changed.  

When comparing the best and worst samples, the process parameters showed no statistical difference.  

These parameters remain important to the process, but they do not fully explain the randomness 

associated with the porosity formation.  As will be discussed in the next section, the general location of 

the porosity formation remained predictable, but the actual macro porosity formation was random.  
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Production controlled processes produce randomly formed porosity.  This random macro porosity should 

challenge many of the accepted analysis and quality implications of porosity in HPDC.       

This experiment could did not determine if the Grade 1 castings were more dense (less porous) 

than the Grade 3 castings.  It simply observes that the levels of macro porosity are higher while no 

process parameters varied significantly.  This leaves open the question of whether the Grade 1 castings 

traded macro porosity for micro porosity that could not be detected by X-ray.  Further study is merited 

and ongoing.   

 

PART GEOMETRY IMPACT ON STOCHASTIC MACRO POROSITY FORMATION 

Predicting the morphology of macro porosity is not a useful exercise.  Macro porosity is easy to 

detect with visual inspection on machined surfaces or X-rays.  Feeding-based rules have been 

successfully developed to manage porosity in sand and permanent mold castings. Macro porosity is 

reduced when an adequately large volume of liquid metal is available to replenish the volumetric 

contraction of the solidifying metal. The feeding volume must be connected by a liquid path throughout 

the solidification of the casting’s cross sections being fed.  From Chorvinov’s rule, it can be surmised that 

thicker sections require more solidification time [113].  

Computer simulations of these feeding rules are effective for identifying where porosity can form, 

but they fail to properly predict the morphology of the macro porosity.  MAGMA was used to compare 

with the experimental results [127].  Six warmup cycles and one production cycle were calculated.  Figure 

33 shows the predicted porosity zone (a) and the pore volume fraction (b) for the studied casting in the 

area that was X-rayed. The porosity zone is the predicted hot spot that is the extent of the unfed liquid 

pocket.  Porosity volume fraction is concentrated into two voids that approximate the center of the 

porosity observed via X-ray.  More porosity is predicted on the right-hand side of the image like the 

experimental results.   
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(a)                                                                         (b) 

Figure 33: Simulated results of predicted porosity zone 

 

Prediction of the macro pore morphology should be nearly impossible.  This is because the 

pressure drop required to homogeneously nucleate porosity is in the giga-Pascal range.  Instead, pores 

require a heterogenous nucleation site such as an oxide bifilm or pre-existing trapped gas pores [108]. 

Filtering, degassing, venting/vacuum, and good furnace maintenance practices can reduce the number of 

heterogenous nucleation sites, but they cannot be eliminated.  Their occurrence will also be stochastic by 

nature. Since the nucleation sites are random, the macro pores also must occur randomly.  The simulation 

software can predict these porosity zones but is incapable of showing the randomness of the size and 

shape of the macro porosity.     

Additionally, HPDC feeds exclusively through the gating system into the part.  Pressure is 

applied to enhance feeding, but gate locations are determined by die design and gate removal 

considerations. A temperature gradient from the thick sections of the casting to the gate cannot be 

ensured. Resulting unfed pockets of liquid create the macro porosity common to HPDC.  Randomly sized 

and shaped macro porosity voids should form in these trapped pockets, but also the size and shape of the 

trapped pockets are random because the solidification during filling and time that pressure is applied to 

the liquid metal after filling is uncertain. Small extension or reduction of feeding will make significant 

changes to the total porosity due to the rapid solidification from the HPDC process.  
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Figure 34 plots the liquid volume in the sample area, as seen in Figure 29 and Figure 33, over the 

entire solidification time of the casting.  Feeding is predicted to be cut off to the sample area at 9 seconds 

after filling, leaving 18.4 cm3 of remaining liquid aluminum.  1.9% of the sample area will contain pores 

with the assumption the aluminum will have approximately 6% shrinkage.  Increasing or decreasing the 

feeding time by 0.25 seconds changes the unfed liquid volume by ±3.5%. These small variations in 

feeding time can come from a host of uncertainties in the process.  For example, cold flakes blocking 

feeding through the gate, spray variation, initial metal temperature and other variables can reasonably be 

assumed to affect the feeding time by 0.25 seconds or more.   

 
Figure 34: Volume of liquid in the sample area as predicted by MAGMA 

 

RECOMMENDATIONS  

The stochastic nature of macro porosity formation over the course of a normal production run and 

the inability to predict it precisely should challenge accepted practices within the industry.  Cross-

functional review of risks associated with the random porosity formation must be considered and 

identified throughout the casting life cycle.  Critical areas that should be rethought include the design of 

castings, inspection of castings, and casting process optimization. 
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DESIGN OF CASTINGS 

Castings free from macro porosity can only exist in a combined effort between casting geometry 

design and manufacturing process.  Manufacturing process will not consistently overcome random macro 

porosity formation in castings designed with a high probability of porosity.  A truly collaborative effort in 

design for manufacturing (DFM) and finite element analysis (FEA) is required for success.  Casting 

simulation software is accurate at predicting location of macro porosity.  However, the random nature of 

its formation may not guarantee a casting with the worst macro porosity condition is evaluated during 

functional testing.  Casting simulation should be a cornerstone to the DFM activities on new casting 

designs.  The risks associated with porosity results should not simply be written off to something the 

process could remove, particularly if inadequate sample sizes are reviewed and tested.   

The design validation process should also be reviewed based on this random formation of macro 

porosity.  Larger lots of testing samples should be a focus during the initial production validation process 

phase.  Functional testing should look at both worst case macro porosity formation and other random 

samples with castings produced with normal production settings.  This will require large X-ray studies to 

help review the amount of macro porosity formation that exist and select the castings that should be 

functionally tested to ensure product performance.   

INSPECTION OF CASTINGS 

Because macro porosity forms randomly, variation should be expected during a typical 

production run.  This should cause one to question traditional audit and inspection processes in X-ray and 

at secondary machining.  Better audit sizes can be determined by understanding the probability of 

uncovering a worst-case macro porosity situation. 

With an exception of some structural automotive parts, in-line X-ray equipment is not typically 

found in most industrial die casting foundries.  The cost of equipment and time to process when compared 

to the risks of porosity typically makes this an uneconomical process.  Instead, audit X-rays are performed 

on randomly chosen samples during the production run.  The number of samples and a defect rate caused 
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by worst-case macro porosity can be used to understand the probability of selecting a sample lot and 

seeing no defects.  The binomial probability function is used to find this probability.  Table 28 shows the 

probability of finding no defects for different defect rates and sample sizes.   

Table 28: Sample Binomial Probabilities 

Binomial Probability of Different Defect Rates and Sample Sizes 

Defect 
Rate 

Number of 
Defects Found 

Randomly Sampled Lot Size 

3 5 10 15 30 50 100 

1% 0 97.0% 95.1% 90.4% 86.0% 74.0% 60.5% 36.6% 
2.5% 0 92.7% 88.1% 77.6% 68.4% 46.8% 28.2% 8.0% 
5% 0 85.7% 77.4% 59.9% 46.3% 21.5% 7.7% 0.6% 
10% 0 72.9% 59.0% 34.9% 20.6% 4.2% 0.5% 0.0% 

 
Understanding this probability should influence how troubleshooting is completed within the 

foundry.  As an example, if a casting truly has a 2.5% scrap rate based on the random macro porosity and 

the X-ray technician randomly pulls 3 castings for inspection, there is 92.7% chance none of the castings 

contain that defect.  If the defect rate and the process remain constant and the inspection has experience 

seeing high probability of all good castings, what happens once that inspector finds a defective part? It is 

slightly better than a coin flip to have a defect occur every two production weeks, based on a three-shift 

operation.  The warning flags in the foundry are sent out and the troubleshooting begins.  Another random 

sample selected could then show all good parts, and the investigation of “what changed in the process” 

may occur, wasting resources because the process has not changed, and the sampling was just poor.   

Worse yet, someone may take the failed inspection results and change the process to try to “improve it.”  

Now the actual defect rate shifts from 2.5% to some other unknown value.  This can lead to a spiral of 

process changes over the production life of a part, with limited knowledge of what scrap rates are 

occurring.   

By having a good working knowledge of actual scrap rates for given castings based on machining 

feedback, one can make an educated decision on how to approach the defective audit sample.  The Bayes 

Success-Run Theorem can be used to help determine a lot size given the historical defect rate and the 

confidence the manufacturing desires [128].     
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CASTING PROCESS OPTIMIZATION 

The randomness of the macro porosity should cause the industry to review the techniques used 

for process optimization.  An appropriate sample size is needed for any optimization process to ensure the 

worst-case scenarios are detected in the macro porosity formation.  Also, additional process monitoring of 

the HPDC equipment, beyond the injection system, is needed.   

Optimization processes are based on feedback from inspection results.  With HPDC, that 

feedback is based on inspection results in either the raw casting state with X-ray images or in a final 

processed state with a visual inspection for porosity.  As discussed previously, lot sizes need to be 

reviewed and appropriately selected based on historical scrap rates.  Without this, samples may not 

capture the potential worst-case stochastic formation of the macro porosity.  This sample size is also 

pertinent when setting up an optimization design of experiments (DOE).  Without the correct sample size, 

the variation that exists due to the random formation could be missed.   

Injection parameters and metal holding temperature are typically the focus of in optimization 

publications in HPDC [18], [21], [22], [129].  This approach is logical given the history and commercially 

available products for the industry to capture this data.  Questions should arise on the focus and priority of 

these process inputs when significant macro porosity variation occurs.  It is clear from simulation that 

injection parameters can influence predicted zones.  This study shows the random formation of porosity in 

these zones.  The injection parameters should remain controlled and monitored; however, data collection 

on additional process monitoring systems should be prioritized [130] to potentially further reduce this 

predicted porosity zone.  These additional systems could include die temperature [9], vacuum [106], and 

equipment cycle time and performance.  Optimization of these additional parameters could reduce the 

predicted porosity zone.  Therefore, the macro porosity that forms in that zone will also be reduced. 

  

CONCLUSIONS 

High pressure die casting suffers from a porosity problem.  By better understanding how macro 

porosity forms, improvements can be made within the industry.  Like micro porosity, macro porosity is 
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randomly formed in HPDC.  Casting design, inspection, and optimization processes are all affected by 

macro porosity.  This random macro porosity formation has been shown by an industrial case study and 

fundamental theory.   

Simulation software uses casting geometry and tooling design to predict porosity zones but 

cannot predict the actual random size and distribution of those voids in the zone.  Understanding this 

stochastic formation should challenge previously accepted practices and improve the comprehension and 

classification of macro porosity defects in die casting.  Specifically, this provides the industry with three 

areas of further study.   

The first area of study is within the industry’s process control approach.  Injection parameters are 

the main focus within the industry and academic research for HPDC process control.  The conducted 

experiment shows castings produced with statistically similar injection parameters, cycle time, and biscuit 

size can produce significantly different levels of porosity as seen in the Grade 1 and Grade 3 examples.  

This work shows the traditional parameters are not fully capable of reducing the randomness that can 

exist in the HPDC process.  Additional research is needed to understand if other process parameters such 

as variability in metal cleanliness, furnace temperature, die temperature before die close, spraying, die 

thermal management, or others could reduce the predicted porosity zone and therefore region where 

stochastic porosity forms.   

The next area to research is the density in the predicted porosity zones between castings.  

Research has shown that density is not a good predictor of mechanical properties [131], [132].  The 

difference levels of void space visible in the Grade 1 versus Grade 3 X-rays leads to questions regarding 

the density of the predicted porosity zones.  Are the densities of these grade differences the same with 

different distributions of size of the macro and micro porosity?  This is a useful question to have answered 

as its impact on quality inspection results (acceptable versus scrap casting) and perceived mechanical 

properties could be misleading to the industry.    

From this work, we know there is randomness in the size and shape of macro porosity.  This 

randomness influences classification of defects and process optimization decisions.  Misclassification of 
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macro porosity can lead to poor predictions of quality when supervised machine learning algorithms are 

used.  In this case, two significantly different outputs on X-ray images are produced from nearly identical 

inputs.  It becomes impossible for machine learning to find a pattern in what fundamentally becomes 

noise in the “results” created by random macro porosity formation.  Furthermore, sample sizes for 

optimization studies must be carefully planned based on these random macro porosity formations.  Small 

sample sizes will have a higher probability that the true worst-case macro porosity formation is not seen, 

thereby providing misleading optimization guidance.  These areas are worthy of additional research. 

In conclusion, the stochastic nature of macro porosity formation within the prediction porosity zone 

should challenge the industry to further research HPDC process in production environments.  By 

researching these topics further, the industry will be better positioned to help improve overall HPDC 

casting design and manufacturing of parts.     
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Chapter 4: Classification Issues and Critical Error Threshold2 
 

 Chapter 4 builds on the randomness demonstrated in Chapter 3, but this time from a human 

perspective.  Production manufacturing environments rely heavily on human inspection for result 

classification, and humans are poor visual inspectors.  Four elements of defect misclassification are 

defined in this chapter.  These misclassifications of results create dataspace overlap within datasets, 

which makes applications of supervised machine learning difficult.  Further, Chapter 4 introduces the 

concept of the critical error threshold.  The accuracy of a supervised machine learning algorithm must be 

greater than this critical error threshold for the algorithm to provide business value.   

 

INTRODUCTION 

Machine learning (ML), a specific subset of technology in the Artificial Intelligence (AI) field, 

has seen an explosion in commercial use in the past 30 years.  From utilizing computer vision to 

recognize hand-written numbers for the post office in the 1990s [134] to current applications to trace and 

treat the COVID-19 pandemic [135], the ability of machine learning to unlock patterns and provide 

insight into data has provided great benefits to society.   

Machine learning has also found increased use in manufacturing and operational systems.  

Industry 4.0 and Smart Manufacturing have driven digitalization of manufacturing operations.  Microsoft 

and Amazon have made large investments in this technology as they partner with manufacturers to 

provide data collection and analytics tools [136] [137].  Estimates show a 10.1% compounded annual 

growth rate of investment into smart manufacturing technologies with a 2024 global spend rate predicted 

at $400 billion USD [138].   

 
2 This chapter is an edited version of a paper published in International Journal of Metalcasting, included with permission.   
D. Blondheim, Jr,  “Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the 
Critical Error Threshold,” International Journal of Metalcasting, 2021, doi: 10.1007/s40962-021-00637-0 [133] 
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This growth of ML within manufacturing comes with trepidation by industry leaders.  A 2021 

survey by KMPG [139] shows 55% of industrial manufacturing business leaders believed AI adoption 

within manufacturing is moving faster than it should.  Within this same survey, the industrial 

manufacturing segment had the largest number of respondents who believed that AI initiatives delivered 

somewhat or significantly less value within the organization, with more than 21% falling in these two 

categories.  There is a considerable challenge to implement ML in industrial settings.  Experience has 

shown many software providers oversell the benefits of ML/AI and downplay the effort needed to 

implement ML to an organization’s executives.  The effort to successfully implement ML should not be 

underestimated.  Many ML projects in manufacturing fail to provide value.  Unfortunately, the KMPG 

survey highlights the gap that exists in leadership ranks of organizations.  Seventy-eight percent of 

executives found value within AI initiatives while only 50% of managers reported finding the same value 

in these projects.  This work will show how misclassifications of product within production environments 

can assist with these ML failures. 

Beyond the leadership survey, research has also highlighted the challenges with applying ML in 

manufacturing.  Wuest et al. [5] describe challenges that manufactures face with ML, including the 

acquisition and pre-processing of data; high dimensionality of manufacturing data; highly unbalanced 

data sets; selection of ML algorithms; and interpretation of the results.  Baier et al. [6] interviewed 

multiple industries, including manufacturing, to identify the most significant challenges in implementing 

ML.  They identified challenges existing in three key areas: 

1. Pre-deployment stage:  companies must gather the right quality data in sufficient amounts. 

2. Deployment stage:  challenges are associated with gathering large amounts of data and ensuring 

hardware and software systems can handle the volume of data.   

3. Non-technical items:  acceptance of ML models for people who have no background in data 

science and people questioning the practical value ML can provide in manufacturing. 
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The pre-deployment stage is critical to ensure the data used for ML training is correct.  

Misclassification of training data can lead to errors, specifically within supervised ML algorithms.  

Supervised and unsupervised ML are the most used algorithm types in ML applications.  In supervised 

ML, algorithms are trained from labeled data sets.  Multiple input values are provided to a supervised ML 

algorithm to find a pattern to help accurately predict a future result.  The algorithm is trained on both the 

inputs and results.  It is then tested against a data set that the algorithm was not trained on to see how well 

the model can predict results [140], [141].  As will be discussed, misclassification of products occurs in 

production manufacturing environments.  This noise introduced into the supervised ML algorithm leads 

to poor modeling, prediction failures, and ultimately ML not being implemented.  In unsupervised ML, no 

results are known in the data sets.  Only the input parameters are provided for the algorithm to detect 

patterns.  Unsupervised ML focuses on clustering analysis and anomaly detection  [140], [141].  The 

focus of this work is on supervised ML as it is commonly used in manufacturing applications of ML.  

Supervised ML would be used in classification predictions, such as predicting part quality.  However, due 

to some of the shortcomings associated with misclassification of data used in manufacturing, applications 

of unsupervised ML will be discussed in the recommendations.  

Challenges with applying ML in the metal casting industry have also been studied.  Sun et al. [7] 

discusses unbalanced data sets, sporadically labeled data, and how metal casting data is not seen as the 

“big data” associated with ML given that some casting processes can take years to generate tens-of-

thousands of rows of data.  Traceability and classification of castings are challenges in a production 

environment [8].  Classification of casting quality is of high interest when attempting to optimize the 

process within the foundry.  The technical process to serialize parts is not as difficult as the actual process 

of collecting and tracing these parts through multiple manufacturing operations, facilities, and companies 

within the supply chain [9].  Often a human is at the end of this process inspecting the casting and 

classifying the results against print specifications.  Studies have shown that humans are inconsistent 

visual inspectors, missing 20% to 50% of defects in various manufacturing processes [120], [142]–[146].    
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Misclassification of results causes data space overlap in machine learning.  This overlap can 

fundamentally diminish the results of supervised ML.  Overlap occurs when multiple classifications of 

training data results occur in the same dimensional data space [147].  A simple 2-dimensional example of 

data overlap is found in Figure 35.  The left side of the figure shows why it is difficult for ML 

applications to find a pattern in noisy, overlapped data.  ML can build models that accurately predict the 

situation with the limited overlap as seen on the right side of Figure 35.  Misclassification of results, 

either done by human error or by process variation, is a significant contributor to overlap within 

manufacturing data sets.         

 
Figure 35: Example of overlapping data space 

This work will show how defect classification systems used in product manufacturing influence 

ML models.  Misclassifications of defects can make applications of supervised ML exceed a critical error 

threshold (CET) rendering the model financially useless.  Proposed are four elements of defect 

classifications in production environments that cause these issues for ML: 

1. Binary Acceptance Specifications 
2. Stochastic Formation of Defects  
3. Secondary Process Variation 
4. Visual Defect Inspection 

These four elements will be reviewed from the high pressure die casting (HPDC) perspective.  

Due to the modularity of these elements and the generality of the CET, these concepts have applications 

in other manufacturing processes such as sand casting, permanent mold casting, machining, painting, and 
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assembly.  Finally, the issues with the misclassification will be discussed in terms of data space overlap, 

which creates a bias shift while training supervised ML.   

The goal is to help organizations understand and avoid the pitfalls commonly misclassified 

manufacturing data can have on ML.  With this knowledge, organizations should drive to improve data 

classification process especially when there is an intention to implement ML.  At a minimum, this work 

can provide insights into why some applications of ML may have failed in the past due to poor, but 

commonly used, practices of data collection in manufacturing. 

 

BACKGROUND IN HIGH PRESSURE DIE CASTING 

High pressure die casting (HPDC) is composed of multiple systems that control hydraulic, 

mechanical, and thermal processes to produce near net shape castings with short cycle times in complex 

metal molds [1].  HPDC typically focuses on large production volumes due to the capital investment in 

equipment, tooling costs, and short production cycle times.  

The design of the casting and tooling, combined with the setting and control of the manufacturing 

system, dictates casting quality and equipment performance.  The North American Die Casting 

Association (NADCA) estimates annual sales of $8 billion USD for aluminum die casting in 2019.  This 

represents more than 80% of the American Foundry Society’s (AFS) forecast in all aluminum castings of 

$9.67 billion USD [3].  Based on a 2014 NADCA study, current methods for control and optimization in 

HPDC produce a median scrap rate of 8% of parts produced and equipment utilization of 68% within the 

industry [4].  Improving uptime and reducing scrap costs can create meaningful value.  

The process associated with HPDC makes castings prone to defects.  As aluminum turns from 

liquid to solid during the casting process, its volume shrinks by approximately 6% [94], [97].  If unfed, 

the casting will have void space called porosity.  Porosity is typically found in the thickest portions in the 

casting.  HPDC’s goal is to reduce this unfed area by applying high amounts of pressure on the liquid 

metal to continue feeding the casting during solidification [1], [13].  Casting geometry design, gating and 

die design, and equipment size all factor into how well this void space can be fed [14], [94].  In 
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production, all castings will have some level of void space.  It is the goal of the design and manufacturing 

engineers to place this in non-critical areas of the casting.  Unfortunately, as seen in the 8% median scrap 

rate, porosity-related defects continue to challenge the quality and reliability of the HPDC process.  

Porosity is just one of multiple potential defects in HPDC.  Defects can be described both in the 

location as to where they form and the metallurgical cause.  Multiple publications are available that 

describe different classification systems for HPDC defects in these terms [95], [99], [100].  These defect 

classification systems are important to provide consistent levels of defect feedback to the foundry.  It is 

difficult to successfully complete quality control and improvement projects without a common defect 

language [100].  In addition to porosity, the other most common defect types in HPDC include 

laminations, inclusions, leaking, cracks, blisters, soldering, erosion, and deformation.  Although all these 

defects are important, the focus of this work is on the porosity defects.  Porosity is a leading cause of 

scrap within the die cast process [95].  Approximately 30% of the foundries within the industry have 

identified the need to address porosity as top concern [96].  The HPDC community will see great value by 

applying ML to improve porosity and other quality defects.   

Porosity that impacts the quality in production castings is created from entrapped gas, called gas 

porosity, or volumetric shrink, called shrink porosity.  These two types of porosity can combine to form 

gas-assisted shrink.  These defects’ causes and physical descriptions are well published [13], [14], [94], 

[95], [97].  Production examples of porosity defects can be seen in Figure 36.   
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Figure 36: Examples of HPDC porosity 

Porosity defects are commonly internal to the casting.  As a result, the defect is usually uncovered 

after additional processing.  This means manufacturing costs such as trimming, shot blasting, painting, 

machining, testing, and inspection are added to the casting cost prior to the defect being found.  In 

addition to the costs, there is a time delay associated between casting production and when the feedback is 

received.  In the ideal situation, this feedback time is extremely short due to single piece flow.  In real-

world manufacturing facilities, it is common for there to be several weeks, if not months, between casting 

production and defect feedback.  Reasons for these delays include batch processing typical in 

manufacturing; complex, international supply chains; transportation time and safety stock levels; multiple 

vendors performing different manufacturing operations; and insufficient inspection and analysis 

approaches for product.  To minimize this risk, foundries utilize casting simulations; experiments to help 

determine process settings and limits; and radiographic, or X-ray, audits to identify changes to the HPDC 

process which may result in increased porosity. 

Casting simulations have proven to be successful at identifying high-risk areas of porosity within 

HPDC [108].  By simulating the filling and solidification of the given casting geometry and die design, 

software can predict areas of entrapped gas and unfed shrink regions.  These predicted areas represent a 

probability of where porosity is most likely to form in the casting.  Ideally, these areas are eliminated by 
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geometry changes in the casting, changes to the die’s gating or venting system, thermal management of 

the tool, or process changes on the injection of the metal [12], [15], [23], [70], [148].  This cannot always 

be accomplished due to functional requirements of the final part assembly and process limitations.  Since 

die cast tooling is so complex, once a die is created it is expensive, difficult, and risky to make changes to 

tooling while trying to support production volumes.  Additionally, simulations are successful at 

identifying concern areas, but they are not 100% accurate due to the assumptions and generalizations 

made when setting the initial conditions of the simulation.  As a result, the HPDC industry often works in 

less than ideal situations when trying to produce castings free of porosity.      

Foundries will often X-ray inspect production castings to minimize the risk of creating castings 

with porosity.  In the current industrial environment, usually only structural automotive [20] or aerospace 

[149] castings utilize 100% X-ray inspection.  These types of castings can justify the added costs of 

equipment and processing time to inspect every produced casting in critical locations.  In most other 

casting applications, the production cycle time, cost, or functional need creates an economic situation 

where castings will only be sampled for X-ray inspection.  This audit will help identify changes in typical 

porosity levels, which may indicate special cause variation in the manufacturing process.  Examples of 

porosity in X-ray images are seen in Figure 37. 

 
Figure 37: Sample X-Ray images of porosity 
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Even by reducing the possibility of porosity with simulations and control of the process with X-

ray, porosity defects still pass through the supply chain and are identified after additional value is added.  

Without 100% X-ray, porosity scrap is found after machining when the void is exposed with milling or 

drilling operations.  After the machining operation is complete, human operators visually inspect the 

machined castings to determine if they pass a porosity specification.  The decision made is binary.  

Castings will either be classified as acceptable or scrap.  When a scrap part fails to meet porosity 

requirements, a repair method such as welding or epoxy may be allowed in certain applications.  For this 

work, a focus will remain on the primary classifications of acceptable or scrap since the goal is to create 

ML predictions that would help eliminate poor quality regardless of its ability to be repaired.  This binary 

classification of castings contributes to the issues with applying machine learning and will be discussed in 

detail in the next section. 

 

FOUR ELEMENTS OF DEFECT CLASSIFICATION 

In HPDC, obtaining accurate classifications is a challenge that needs to be fully understood.  

Misclassified training data has consequential impact on the training bias of supervised ML.  There are 

four key elements of classification: Binary Acceptance Specifications, Stochastic Formation of Defects, 

Secondary Process Variation, and Visual Defect Inspection. 

BINARY ACCEPTANCE SPECIFICATIONS 

In Juran’s Quality Handbook, a defect is described as “anything that does not meet or exceed the 

requirements of the customer, the business, or the process” and states the “importance to have a realistic 

threshold for what is called a defect” [142].  In manufacturing environments, this threshold is given as a 

quality specification for the product.  The specification is typically set during the design and testing 

phases to ensure the product achieves the functionality intended. 

A formal specification is included in manufacturing prints or as a stand-alone document to ensure 

conforming product is provided to the customer.  This specification becomes an aid during the inspection 
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and will include a threshold of acceptable level of defects.  Parts that exceed this threshold are classified 

as scrap, while parts below are classified as acceptable.  A binary classification is made.     

A common approach used for porosity in a production environment is defining a maximum 

permissible porosity size and number of pores per region [14] .  Figure 38 shows an example of a 

theoretical specification for a casting based on a max pore size of 2.0 mm and a max allowable number of 

pores to be 4 in a 25 mm² area.    

 
Figure 38: Classification issue due to binary acceptance specifications example 

In most applications, some level of porosity is acceptable.  It is common for one casting to have 

varying porosity zones on different part features.  Each zone may have its own unique threshold based on 

functional needs.  Sealing surfaces between machined castings or critical threaded holes might have a 

tighter tolerance than non-functional machined surfaces or clearance bores.  Typically these zones are 

identified on a manufacturing print [14].  No universal standards exist for acceptable porosity levels 

within castings.  Threshold are set based on supplier requirements on assembled products (like sealants or 

o-rings), past design practice, and functional testing.  These thresholds are often deemed proprietary 

information to original equipment manufacturers (OEMs) and are protected through non-disclosure 

agreements.   



 

122 
 

The binary classification process associated with specification requirements creates a problem for 

ML applications.  Defects form along a continuous measure of size.  That important detail is lost when a 

binary acceptable/scrap result recorded.  As seen in Figure 38, a pore with a 2.1 mm size is labeled as 

scrap, but a pore at 1.9 mm is acceptable.  The loss of fidelity on the defect measurement with a binary 

classification creates problems for supervised ML.  Results in the data space may overlap due to this lack 

of distinction with a binary classification.   

STOCHASTIC FORMATION OF DEFECTS 

The injection and solidification of castings follows known physical rules that are modeled in 

casting simulation software.  Rules for fluid flow, heat transfer, feeding, cooling, and many physical 

calculations are factored into the simulations.  As a result, simulations have proven to be good at 

predicting locations or zones as to where porosity defects will occur during the casting process.  Figure 39 

shows an example of this porosity predicted zone produced by MAGMA simulation software [127]. 

 
Figure 39: Example of simulated predicted porosity zone 

In production, this predicted porosity zone does not create the same porosity from casting to 

casting.  There is a stochastic, or random, nature to porosity formation within a casting.  Theory says this 

stochastic formation occurs due to the random formation of dendrites as the metal starts to solidify which 
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cause shrink porosity [101], [150] and the heterogenous nucleation sites for pores that can cause gas 

porosity [97], [101], [150].  Oxides and inclusions are examples of these heterogenous nucleation sites for 

porosity that are randomly distributed through the liquid metal [97].   

This stochastic theory was shown in a recent industrial experiment [93].  In this experiment, one 

hundred castings were produced with no process changes.  These castings were serialized and inspected 

using a Bosello SRE Max with a 225 max KV power rating X-ray unit.  Results showed significantly 

different porosity formation between castings.   Figure 40 shows two castings from this experiment that 

were sequentially produced.  The formation of the porosity was in the simulated predicted zone, as seen in 

Figure 39.  However, the porosity was random and different between sequential castings even with no 

process changes.  That paper showed no statistical difference in the critical process parameters between 

the best nine castings and the worst nine castings.   

    
Figure 40: Sequential castings showing stochastic porosity formation 

If the predicted porosity zone is away from any machined surface, the randomness associated 

with the porosity formation will have no impact on the classification of the final part.  The porosity will 

not be uncovered or seen during visual inspection.  If a hole or machined surface is cut into a zone 

predicted to hold porosity, the machining could potentially expose the porosity, pending random 

formation of the porosity.  Figure 41 provides a visual example of how different stochastic porosity 

formations can alter classifications of the castings. 
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Figure 41: Classification issue due to stochastic defect formation example 

The randomness of the porosity formation directly connects to the ML problem of overlap.  The 

data space of these points will be the same if two castings have identical input parameters.  However, the 

random formation of the porosity causes one casting to be scrap and the other acceptable.  The overlap 

will cause the ML algorithm to struggle and possibly fail at providing meaningful insight.  The collected 

data amounts to noise that the ML cannot pattern. 

SECONDARY PROCESS VARIATION 

Selecting machining tolerances for a casting is a critical part of the product design.  Machining 

tolerances are selected based on process capability, manufacturing costs, quality, life-cycle impacts, and 

functional requirements [151]–[153] .  There are various methods for optimizing the tolerance selection 

that have been studied and published [151]–[156].   

The natural variation that occurs in machining processes and the tolerances associated with the 

feature create allowable differences part to part.  Geometric dimensioning and tolerancing (GD&T) are 

used on manufacturing prints to control the measurement of features.  The ASME Y14.5 standard [157] is 

often referenced for GD&T requirements on prints [158].  The variation associated with the 

manufacturing process by the tolerancing affects the classification of casting defects.  Figure 42 shows an 
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example of the effect tolerancing and machining variation can have on defect classifications for machined 

surfaces and a drilled hole. 

 
Figure 42: Classification issue due to secondary process variation example        

Like the random formation of defects, the variability within the processing of the part has the 

potential to create data space overlap.  This overlap could potentially be avoided if every machined 

dimension was also collected and included into the algorithm.  However, this additional inspection would 

be extremely costly to do in a production environment.  Additionally, it would still not guarantee results 

of the ML prediction since the true condition of the part below the machined surface is still unknown.  

The ground truth needed to train ML algorithms for accurate predictions is not collected by traditional 

means within manufacturing. 

VISUAL DEFECT INSPECTION 

The last element that affects the classification of castings is the visual inspection process.  

Although the technology exists for computer vision inspection in certain applications such as two-

dimensional surfaces [120], [159], [160], cost and product mix within most manufacturing plants prevent 
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this from being widely applied [120].  Humans often complete the inspection and classification of defect 

results.   

Much research has been published on a human’s ability to complete visual inspections on 

machined product.  A person is capable of identifying 50% to 80% of defective machined products with 

100% visual inspection [120], [142]–[146].  Considerable training on visual inspection is needed to 

achieve the high side of this range.  This includes a comprehensive knowledge of defects, planned eye 

scanning paths on parts, and appropriate environmental conditions such as lighting [120], [161], [162].  

Many manufacturing companies do not undertake this considerable effort, even though there are large 

costs associated with poor quality being passed as acceptable [120], [142].  As a result, classification rates 

will be on the inferior end of the range.   

The ramifications of poor classification practices because of visual inspection cannot be 

overlooked for supervised machine learning.  Most manufacturers stay in business because they can 

develop a process that is capable of a high yield.  As a result, the data sets generated are highly 

unbalanced.  Acceptable results greatly outnumber scrap results.  This issue is compounded when 

potentially half the defective product is labeled as acceptable instead of its true scrap classification.   

The adage “garbage in, garbage out” can easily be apply to supervised ML algorithms based on 

visual inspections.  Poor visual inspection leads to incorrect classification of results.  These incorrect 

results create data space with overlap.  Overlap will cause ML algorithms to struggle to find a pattern in 

the noise collected within manufacturing data sets. 

COMBINATION AND SUMMARY  

The four elements described can individually contribute to misclassification of defects.  

Unfortunately, these elements do not act independently of each other.  Instead, they combine and change 

through time to create more classification confusion for supervised machine learning. 

In particular, the Stochastic Formation of Defects and the Secondary Process Variation combine 

to create misclassifications.  In some combinations where the porosity forms and how it is machined, the 
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results are classified as acceptable.  In other cases, the casting may be classified as scrap.  Figure 43 was 

created to visualize these combinations.  The first column in the figure shows different levels of random 

porosity in the predicted porosity zone.  A machined hole is drilled into the casting.  In the first row, the 

parts are classified as acceptable based on a theoretical specification.  In the second row, the parts are 

classified as scrap.  In the second column, the random porosity formations are exchanged between the top 

and bottom row.  Changes to the location of the hole based on machining variation are shown that make 

the previously acceptable parts scrap and scrap parts acceptable.  The true classification is never known 

without a 100% X-ray inspection of each casting. 

 
Figure 43: Combination of elements example 

These two elements can also be combined with the Visual Defect Inspection to further complicate 

results.  Visual inspection is dependent upon the person who is performing the task.  Operator-to-operator 

performance of visual inspection can vary considerably [120], [142], [162].  Proper classification 
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becomes a probability based on the chances of porosity forming, if the machining opens it up, and 

whether the inspection catches the defect. 

All four of these elements change through time.  As previously mentioned, operators who 

perform the inspection task will change shift-to-shift but also will likely change with turnover.  New 

inspectors face a learning curve of defect identification while simultaneously fighting off the repetitive 

nature of the work.  The probability of detecting defective castings changes through time.  Unfortunately, 

the validity of the classification results is unknown as one looks at historical data. 

Specification thresholds can also change based on new suppliers or additional testing.  Perhaps a 

different vendor can allow a slightly larger porosity specification because its o-ring is improved.  Or a 

new part failure has shown the product is used in ways it was not designed.  Now a maximum porosity 

size previously accepted could be rejected.  To build large data sets for ML, this data would need to be 

consistent through time.  This knowledge is lost with the binary classification of scrap.  The previous data 

becomes useless for supervised ML. 

Finally, manufacturing processes vary through time.  Both the casting process and machining 

process change based on equipment maintenance, tool wear, tool replacement, die changes, or process 

setting improvements.  To provide a detailed example, consider tool changes in machining.  Part-to-part 

variation in machining tolerances are often very small, given the repeatability of modern machining 

equipment.  However, once a tool breaks and is replaced by a new tool, there is a functional change in the 

manufacturing system.  Provided the new machined dimension falls within the designed tolerances, 

manufacturing will proceed without a second thought even if the new dimension is a step change from the 

previous tool.  This changes the dynamic of the porosity exposed and the classification of the part through 

time. 

These four elements of Binary Acceptance Specifications, Stochastic Formation of Defects, 

Secondary Process Variation, and Visual Defect Inspection all influence the final classification of a part.  

As discussed, many of these elements can create an overlap within the data space, which ML will struggle 
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to produce meaningful predictions.  This struggle can be compounded by the highly unbalanced data sets 

that often exist in manufacturing.   

A cursory review of current operational practices would suggest manufacturers are collecting the 

needed data to apply ML in production manufacturing settings.  However, without understanding how the 

ML algorithm interprets the results, the user will struggle to gain the promised value from ML 

technology.  The industry may have very clearly defined specifications, but if it only collects 

acceptable/scrap and not the actual size or clustering of the void, valuable information for ML is lost.  A 

surface is machined and then visually inspected.  However, the actual truth is unknown since an operator 

cannot see below the surface to understand if the void still exists in the casting.  Also, dimensions and 

locations of features are not captured on 100% of the product, so that data does not exist for ML to utilize.  

Manufacturers may feel good they inspect 100% of castings to ensure only good parts get to their 

customer but fail to realize the fallacy of human inspection rates in repetitive visual tasks.   

In the end, it is not the complexity of ML technology and implementation that fails the 

manufacturer.  Instead, the data the manufacturer has put considerable effort in to specify, create, and 

inspect parts to prevents the ML from being successful.  The next section will provide insight into how 

the bias-variance tradeoff within ML is influenced by these misclassifications and the importance of a 

critical error threshold with highly unbalanced data that exists in manufacturing.  This will help a user 

understand the financial impact and ML accuracy levels required for successful implementation of ML 

and why they often fall short in providing value in manufacturing.   

IMPACT ON SUPERVISED MACHINE LEARNING 

Supervised machine learning algorithms are trained on input data and the known results to find 

patterns to accurately make predictions [163], [164].   There is limited ability to overcome poor training 

data that does not represent the prediction trying to be made.  Accurate classifications are critical to 

successful ML applications  [165], [166].  The impact of misclassification of results will be reviewed 

within this section. 



 

130 
 

BIAS-VARIANCE TRADEOFF 

The Bias-Variance tradeoff graph is often used to visualize the error associated with supervised 

machine learning models.  The generalization error of a ML model is comprised of three components: 

inherent error, bias, and variance, as described in Equation 12 [164].  The generalization error is the error 

produced by the model when applied to independent test data.   

Equation 12                   𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 = 𝑰𝒏𝒉𝒆𝒓𝒆𝒏𝒕 𝑬𝒓𝒓𝒐𝒓 + 𝑩𝒊𝒂𝒔𝟐 + 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆                   

The generalization error is used to select the tuning parameters during the training of a supervised 

ML algorithm and even which choice of learning algorithm used for a specific data set [164].  The goal is 

to avoid underfitting and overfitting to the training data.  This is done by minimizing the squared bias 

component while ensuring the model can be generalized to future data as represented by the variance.  

The inherent error is error that exists based on the data used and will be discussed in detail later.  This 

bias-variance tradeoff can be seen in Figure 44.     

 
Figure 44: Bias-Variance tradeoff graph 

The accuracy and the generalization error of the ML model are related as seen in Equation 13 

where Accuracy is the fraction of samples correctly classified, with a value of 1 representing perfect 

classification.  When there is a high level of accuracy in the model, then there is a low generalized error 

rate.   

Equation 13                                        𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝑹𝒂𝒕𝒆 = (𝟏 − 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) 
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CONFUSION MATRICES 

A confusion matrix is used in ML classification problems to understand how well the trained 

model performs.  The confusion matrix shows the accuracy of the predictions made by the ML model in 

comparison to the true conditions of the test data.  If the ML model performs well, it will correctly 

identify True Positives (TP) and True Negatives (TN), while only having a small number of False 

Positives (FP) and False Negatives (FN).  The organization of the traditional confusion matrix is seen in 

Figure 45.     

 
Figure 45: Traditional confusion matrix based on counts 

A confusion matrix can be normalized when the individual counts, such as TP, are divided by the 

overall total count.  This normalization process allows the user to understand the percent predictions the 

model makes in each of the categories.  The details of the normalized confusion matrix are seen in Figure 

46.  This normalized percentage for the TP, FP, FN, and TN is carried forward in the balance of the 

equations presented in this work.  The values used in equations are now labeled with a percent sign (%) to 

indicate they are a fraction and no longer a count.  This approach was taken because the discussion 

focuses on error rates and percentages and not a count as traditionally used in a confusion matrix. 

 
Figure 46: Normalized confusion matrix based on percentage 
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Figure 47 was created to help illustrate a generic example of how the counts of a model as shown 

in  Figure 45 are calculated as percentages in a normalized confusion matrix as seen in Figure 46.   

 
Figure 47: Example calculations on traditional and normalized confusion matrices 

The concept of measuring the accuracy of a ML model can be hotly debated.  Multiple types of 

accuracy measures exist to summarize the model in different ways.  Traditional accuracy, balanced 

accuracy, F1 score, or Matthews correlation coefficient are some of the most commonly used accuracy 

metrics [167], [168].  A shortcoming of the traditional accuracy measure is evident in highly unbalanced 

data.  These unbalanced data sets often exist in manufacturing.  A high traditional accuracy value may 

give a user a false sense about how well the model performs.  For example, a recorded accuracy of 95% 

may lead one to believe the model is “good”.  In fact, this could be a result of the model predicting 100% 

acceptable product and the product having a 5% scrap rate.  In this case, the prediction provides no value, 

even though its 95% accurate.  Other accuracy calculations provide a different perspective on the overall 

model accuracy for unbalanced data.  A theoretical example in Figure 48 highlights the value differences 

in the accuracy metrics. 
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Figure 48: Example of different accuracy calculations   

The best calculation of model accuracy is not for this paper to help decide.  Instead, consistency 

must occur when comparing a decision made before and after the implementation of ML.  The traditional 

accuracy approach is used in this work for several reasons.  First, this metric was selected because it is 

commonly used in industry even with its shortcoming for unbalanced data.  Additionally, it is expected 

the ML user reviews the entire confusion matrix and not just an accuracy statistic calculated to truly 

understand the prediction of the ML model.  Finally, the traditional accuracy creates a situation where the 

math is simplified and provides insight into creating the critical error threshold equation.    

Prior to ML implementation, the decision automatically made in manufacturing is all product is 

acceptable, so there are no predicted negative conditions.  The product with actual negative conditions is 

rejected after additional processing.  These are the false positives created by assuming all product is good.  

After ML implementation, the costs associated with False Positives (FP%), False Negatives (FN%), and 

True Negatives (TN%) all must be considered.  The traditional accuracy calculation for normalized 

confusion matrices is used and can be seen in Equation 14.   

Equation 14              𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =    𝑻𝑷%+𝑻𝑵%𝑻𝑷%+𝑻𝑵%+𝑭𝑷%+𝑭𝑵%   =    𝑻𝑷%+𝑻𝑵%𝟏   =  𝑻𝑷% + 𝑻𝑵%  𝒘𝒉𝒆𝒓𝒆:  𝑻𝑷% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑭𝑵% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑻𝑵% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑭𝑷% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 
 

With Equation 14, the generalized error rate in Equation 13 can be simplified to focus on the 

incorrect predictions of the ML model as shown in Equation 15. 

Equation 15      𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝑹𝒂𝒕𝒆 = (𝟏 − 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) = 𝟏 − (𝑻𝑷% + 𝑻𝑵%) = (𝑭𝑷% + 𝑭𝑵%) 
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CRITICAL ERROR THRESHOLD (CET) 

A concept not found in literature to date, but of great importance to applications of ML in 

manufacturing, is understanding a critical error threshold (CET) exists for the generalized error in the 

bias-variance tradeoff graph.  This CET defines applications of trained ML that provide value to the 

organization to implement.  Figure 49 shows the CET updated bias-variance tradeoff graph.  Financial 

value is achieved by the manufacturing organization if a model’s generalized error falls under the CET.       

 
Figure 49: Bias-Variance tradeoff graph with Critical Error Threshold 

CET is a financial review of the accuracy associated with a machine learning model.  The 

prediction accuracy of the ML model, the costs associated with the scrap, and the cost to implement must 

be justified when compared to current scrap costs as seen in Equation 16.   

Equation 16       𝑻𝒐𝒕𝒂𝒍 𝑺𝒄𝒓𝒂𝒑 𝑪𝒐𝒔𝒕 𝑩𝒆𝒇𝒐𝒓𝒆 𝑴𝑳 > 𝑻𝒐𝒕𝒂𝒍 𝑺𝒄𝒓𝒂𝒑 𝑪𝒐𝒔𝒕 𝑨𝒇𝒕𝒆𝒓 𝑴𝑳 + 𝑪𝒐𝒔𝒕 𝒐𝒇 𝑴𝑳  
With details regarding specific current scrap performance, scrap costs, value-add costs, volumes, 

cost for ML implementation, and the percentages from the normalized confusion matrix, Equation 16 can 

be expanded to provide additional analysis in defining the CET as seen in Equation 17.  It is important to 

note that the value-add costs could represent more than scrap costs added to the part before the defect is 

uncovered.  This variable can also represent additional inspection costs, schedule adjustments, additional 

setups, warrantee claims, and other items that drive manufacturing costs due to defective products in the 

supply chain. 
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Equation 17          𝑪𝑬𝑻 →  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝒕𝒉𝒆 𝑴𝑳 𝒎𝒐𝒅𝒆𝒍 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝑭𝑵%, 𝑻𝑵%, 𝑭𝑷% 𝒊𝒔 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕: 
 (𝑺%)(𝑪$ + 𝑽$)(𝑬𝑨𝑼) >  (𝑭𝑵% + 𝑻𝑵%)(𝑪$)(𝑬𝑨𝑼) + (𝑭𝑷%)(𝑪$ + 𝑽$)(𝑬𝑨𝑼) + 𝑴𝑳$    
 𝒘𝒉𝒆𝒓𝒆:  
 𝑪𝑬𝑻 = 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑬𝒓𝒓𝒐𝒓 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅  𝑺% = 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝒄𝒓𝒂𝒑 % 𝒐𝒇 𝑪𝒂𝒔𝒕𝒊𝒏𝒈 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑪$ =  𝑪𝒂𝒔𝒕𝒊𝒏𝒈 𝑺𝒄𝒓𝒂𝒑 𝑪𝒐𝒔𝒕 𝒑𝒆𝒓 𝒑𝒂𝒓𝒕 𝑽$ = 𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝑽𝒂𝒍𝒖𝒆 𝑨𝒅𝒅 𝒑𝒆𝒓 𝒑𝒂𝒓𝒕 𝑬𝑨𝑼 = 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑨𝒏𝒏𝒖𝒂𝒍 𝑼𝒔𝒂𝒈𝒆 𝒐𝒓 𝑽𝒐𝒍𝒖𝒎𝒆 𝑭𝑵% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑻𝑵% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑭𝑷% = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 𝒂𝒔 𝒅𝒆𝒄𝒊𝒎𝒂𝒍 𝑴𝑳$ = 𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑴𝒂𝒄𝒉𝒊𝒏𝒆 𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒔𝒕 

                                       

If there is no optimization within the manufacturing process with the implementation of the ML 

model, then the scrap rate before ML must equal the scrap rate after model implementation.  As per the 

normalized confusion matrix, this scrap rate is the summation of the True Negative condition, regardless 

of prediction as shown in Equation 18.   

Equation 18                       𝑺% = 𝑻𝑵% + 𝑭𝑷%   
The generalized error rate and CET relationship exist per Equation 19.  There is motivation to 

implement ML in manufacturing when the generalized error rate is below the CET. 

Equation 19                                                   𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝑹𝒂𝒕𝒆 < 𝑪𝑬𝑻 

If no optimization has happened with the implementation of the ML model as defined in Equation 

18, the CET value can be simplified as seen in Equation 20.  This is accomplished by solving for the ratio 

between the right and left hand of Equation 17 and substituting the generalized error rate from Equation 

15 and the scrap percentage as per Equation 18. 

Equation 20      𝑪𝑬𝑻 =  𝑻𝑵% (𝑽$𝑪$) + 𝑭𝑷% − 𝑴𝑳$̅̅ ̅̅ ̅̅𝑪$  𝒂𝒔𝒔𝒖𝒎𝒊𝒏𝒈 𝒏𝒐 𝒔𝒄𝒓𝒂𝒑 𝒐𝒑𝒕𝒊𝒎𝒛𝒊𝒂𝒕𝒊𝒐𝒏, 𝒘𝒉𝒆𝒓𝒆:  
 𝑴𝑳$̅̅ ̅̅ ̅̅ = 𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑴𝑳 𝒄𝒐𝒔𝒕 𝒑𝒆𝒓 𝑬𝑨𝑼 (𝒗𝒐𝒍𝒖𝒎𝒆 𝒏𝒐𝒓𝒎𝒂𝒊𝒍𝒛𝒆𝒅) 

The values for FN and FP will vary by tuning and training of the ML algorithm.  The casting cost 

and value-add costs for defects are dependent on the part and processing.  Slight improvements in 
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predictions could yield financially favorable results for highly expensive value-add costs.  If the value-

add costs are low, the accuracy of the model is poor, or the cost to implement the ML is expensive, then 

value gained by implementation will not be justified.  The generalized error must fall under the calculated 

CET for the organization to achieve a financial benefit.  There is no motivation to adopt and implement 

ML within manufacturing if the accuracy of the model prediction does not yield financial benefits.  

Therefore, it is important to understand how the inherent error and squared bias affect the generalized 

error and implication of the CET.   

INHERENT AND BIAS ERROR 

In Equation 12, the inherent error exists because the data used for the prediction does not 

completely represent the ability to predict the output [164].  There likely exists additional input variable 

data that would improve the prediction on the model.  To reduce the inherent error, these additional 

variables would need to be identified and included as predictors in the model.  Within manufacturing, the 

impact of the inherent error may be large.  The data collected may struggle to accurately train the model 

because critical variables are not included.  This would increase the inherent error, thereby increasing the 

generalized error of the prediction.  Additionally, by not including the critical parameter, the data space 

that exists will likely overlap since the true cause for the results are not known.  If the generalized error is 

increased above the CET, as seen in Figure 50, the value of the ML model is not worth the investment. 
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Figure 50: Increased inherent error 

The squared bias term from Equation 12 is described as the amount by which the mean model 

estimate based on the trained data differs from the true mean [164].  Typically, a more complex model 

created from the training data means a lower squared bias term.  The model will be overfit to the training 

data.  When applied to other data beyond the training set, it will perform poorly.  This performance is 

captured in the variance term.  

The squared bias term is directly related to the four elements of classification issues identified 

within this paper.  By misclassifying the training data, the squared bias component shifts upward, 

increasing the generalized error of the model.  The bias term in the graph could be thought of as 

approaching an asymptotic limit of the misclassification rate associated with the training data.  The larger 

the rate of misclassification within the training data, the higher the shift upward in the bias term and the 

resulting generalized error of the algorithm.  If this shift up is substantial enough, the generalized error 

may exceed the CET as seen in Figure 51.   
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Figure 51: Increased bias 

Although machine learning is a powerful tool to help find patterns, the data it is trained on must 

represent the critical parameters required for a good prediction to eliminate data space overlap (inherent 

error) and classified correctly to provide proper training (bias).  The challenge for supervised ML in 

manufacturing is addressing both items.  Data collected in manufacturing is limited and may not capture 

the total data space needed for an accurate prediction.  The probability all the results are properly 

classified, especially from visual inspection, is poor.  The CET calculation could provide a benefit if the 

ML is tuned to focus on false positives or false negatives, provided there is an economic advantage with 

the scrap or value-add costs. 

This is further compounded by the highly unbalanced nature of manufacturing data.  Consider an 

example in a ML algorithm created to improve the click-rate for web advertising.  Success in this 

application could be achieved by increasing from a 2% click rate to a 5% click rate.  This can also be 

considered as utilizing ML to move from a 98% error rate to a 95% error rate.  Getting under the CET 

may be easy in this advertising case.  Compare this to a manufacturing example where the success of 

product being produced is theoretically 95% with a 5% scrap rate.  The goal of ML is to increase this to a 

near perfect prediction.  Because quality yield rates within manufacturing are typically good, the ability to 

implement ML requires perfect data collection and process knowledge.  It should not be a surprise to see 
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this technology fail to produce meaningful results in many manufacturing settings.  The generalized error 

rate is above the CET needed due to this imbalance of the data, missing data, and misclassified results.   

 

RECOMMENDATIONS AND FUTURE STUDY 

The work presented here should challenge the typical approaches for classification and use of 

supervised ML within the foundry and manufacturing industries.  A systems approach is needed to gather 

all data parameters within the process to minimize the generalization error.   If the CET is crossed, the 

supervised machine learning model adds no financial value to the operation.  There are three 

recommended areas of study or improvements needed. 

SYSTEMS APPROACH TO PROCESS DATA (INHERENT ERROR) 

Although briefly discussed in this paper, there is a critical importance in reducing the inherent 

error for the model.  Those interested in applying supervised ML in manufacturing must ensure the proper 

input variables are included in the model.  The inherent error within manufacturing is likely a large 

portion of the generalized error.  Limited data collection systems exist for the entire manufacturing 

system.  There is a long-standing history with shot injection parameters within HPDC.  However, the 

industry lacks commercially available or widely adopted data collection systems for thermal balance of 

the tooling, cycle time analysis of the entire process, and overall machine equipment performance.  Even 

though the importance of thermal equilibrium in the tool is known [94], the industry is left to make 

assumptions and focus on what is easily measured.  Quality performance of an 8% median scrap rate, as 

described at the beginning of this paper, highlights the results of current practices. 

Correct data and process understanding is needed to reduce the inherent error.  Adding variables 

that help pattern the prediction and eliminating variables that do not contribute will reduce the generalized 

error of the model.  Understanding the entire die casting system is the first step to know all the process 

data available.  A systems approach is needed to review and document all possible parameters associated 

with the process.  There are many sub-systems within die casting creating data to be collected and 
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studied.  Some of these sub-systems include the thermals of the die, the variation in the lube spray system, 

and the equipment performance.  This is an area of research that needs continued focus to ensure the 

correct variables and data are available for ML models.  The data collected within the industry to date has 

not solved the quality problems die casting faces.  Additional research is needed in this area to document 

all sources of variability introduced into the HPDC process.   

FOUR ELEMENTS OF CLASSIFICATION ISSUES (BIAS) 

As described, there are four key elements that impact classification of casting: Binary Acceptance 

Specifications, Stochastic Formation of Defects, Secondary Process Variation, and Visual Defect 

Inspection.  These misclassified results create data space overlap thereby shifting the bias of the model 

and potentially making the model useless.  This challenge is complicated further with the highly 

unbalanced data sets associated with manufacturing and the CET associated with the process. 

To ensure bias is reduced, the classification of the result variables in the data collected must be 

accurate.  This will be a challenge and must be addressed through equipment and training.  An accurate 

model requires eliminating the binary classification of scrap.  Acceptable and scrap classifications will 

not be sufficient.  Even multiple classifications for different types and location of scrap have limited 

benefit given the continuous nature of the random defect formation and secondary processing.   

Technologies like in-line X-ray equipment must be considered in applications where ML is 

applied.  The bias associated with ML models would be improved by knowing the amount and location of 

the defect 100% of the time.  This would also eliminate the delay of quality results from machining to the 

foundry.  Additionally, it could reduce the human visual inspection of X-ray images if technologies like 

automatic defect recognition are used. 

Without investment in X-ray equipment, the largest component of classification issues given the 

historical performance researched, is the visual inspection of final product.  If only 50% to 80% of the 

defects are properly identified, a portion of results are being misclassified as acceptable.  The ML 

algorithm cannot overcome this overlap.  Additionally, ML is faced with challenges regarding highly 
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unbalanced data sets from the manufacturing process.  As a result, considerable effort must be given with 

defect inspection.  Texts regarding how to improve visual inspection for castings are published and 

provide guidance to train and improve operators [120].   

Because humans are fallible, the inspection task should also be investigated for automation.  

Computer vision systems utilizing ML present opportunities to automate a large portion of this visual 

inspection.  Even with technology limited to 2-dimensional surfaces, implementing this can reduce the 

required workload on human inspectors.  This can allow inspectors to focus just on hard to capture areas, 

such as holes where visions systems may not be as successful.  In addition, the resultant images gathered 

from these vision systems would be combined with the process data to provide additional ML 

opportunities.   

UNSUPERVISED ML AND FEATURE IMPORTANCE 

The challenges with supervised machine learning are considerable due to the limitations of data 

collection of the process (inherent error) and misclassification of training data (bias).  Unsupervised ML 

is an approach that can provide value in manufacturing.  Unsupervised ML is learned on data inputs 

without any knowledge of the results.  It typically focuses on clustering and anomaly detection 

algorithms.  Data processing and process control are two areas where unsupervised ML can benefit 

manufacturing today.   

Manufacturing processes are highly complex systems.  If collected, the volume and velocity of 

data that can be produced by equipment is extremely large.  Manufacturing can produce more columns of 

data with the complex system than individual rows of events.  In HPDC, it has been estimated that there 

are hundreds of thousands of possible columns due to the time-series nature of some variables used such 

as speed, pressure, and temperature [2].  Often reducing these time-series down to an overall statistic 

loses critical information.  The use of unsupervised ML to complete anomaly detection is highly 

advantageous.  Unsupervised ML can be used to help identify when process data [45], images [9], and 

time-series data [169] are outside normal ranges.   



 

142 
 

A human operator working in the manufacturing cell could not handle the level of data the cell 

produces.  A computer with ML could manage the process control analysis and alert the operator when 

there are anomalies.  The anomaly thresholds are set by the ML algorithm based on past performance of 

the process much like the control limits are set on a statistical process control (SPC) chart.  Traditionally, 

shot monitoring system limits are human driven by past operator experience or limited developmental 

experimentation and can be considered a specification limit for that parameter.  Unsupervised ML can 

take a high-dimensional SPC approach to data analytics, unlike traditional shot monitoring systems.  An 

additional benefit of unsupervised ML anomaly detection is it can apply to time-series data sets to detect 

changes in the entire profile of the time-series set.  Traditional shot monitoring systems only monitor 

statistics such as average fast shot speed calculated from those profiles.  This creates the potential to miss 

subtle changes in the profile, such as additional braking done at the end of the shot to prevent flashing, 

which could have consequential implications on the casting quality.   

The other machine learning application that can be utilized is feature importance.  Related to 

supervised ML, feature importance is the process of utilizing machine learning to identify which variables 

have the most important influence on the prediction.  Feature importance can provide an advantage even 

by identifying the few process parameters to investigate with a design of experiment (DOE).  This DOE 

could optimize the process and reduce the scrap even if the ML model is incapable of creating a highly 

accurate model.  Additional study is needed on the impact of misclassification of results on feature 

importance, but it appears a promising ML tool to assist manufacturing applications.   

 

CONCLUSIONS 

Supervised machine learning is a powerful tool that has been successfully applied in many 

industries.  There have been substantial advances in ML domains such as image classification and natural 

language processing.  Comparing these to applications of supervised ML in manufacturing is like 

comparing apples and oranges.  Both use ML, yet they are distinctly different and must be treated 

accordingly.   
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The challenges of supervised machine learning in manufacturing are significant due to 

classification issues and limitations in data collection.  The four elements proposed (Binary Acceptance 

Specifications, Stochastic Formation of Defects, Secondary Process Variation, and Visual Defect 

Inspection) influence the final classification of a part.  Misclassification creates data space overlap.  This 

overlap alters the bias in the training of supervised machine learning, possibly rendering the model 

financially useless in a production environment.  Understanding the critical error threshold provides 

economic guidance on when ML can be successfully applied.   

Until manufacturing can establish system-wide gathering of process variables and eliminate 

classification issues, the success of supervised ML will be limited to highly controlled research or 

academic experiments.  Much noise exists in the system today.  This does not mean ML is to be 

abandoned, but instead different approaches are needed for manufacturing to see the benefit.   

Beyond traditional uses of supervised ML, feature importance and unsupervised ML provide 

entry points for manufacturers looking to enter and start using machine learning.  The potential time 

savings and guidance on critical input parameters feature importance can provide needs to be better 

understood and utilized within manufacturing.  This could be a noteworthy savings in experimentation 

and the optimization process for die casters.  Additionally, utilizing unsupervised ML for process control 

and anomaly detection allows for the use of machine learning in manufacturing while creating the 

foundation needed for future supervised ML.  This foundation is created when a company improves its 

classification of parts produced (reducing the bias and overlap) and optimizes the data that could improve 

the prediction model (reducing the inherent error).  In the end, these changes will position manufacturing 

to benefit from accurate predictions of supervised machine learning while obtaining an improved 

understanding of the process. 
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Chapter 5: Machine Learning Case Studies 
 

 Chapter 5 is comprised of two main sections.  The first section introduces machine learning 

concepts for the reader and then highlights the challenges associated with applications in complex, 

production manufacturing systems.  Although industry tends to focus on quality prediction, the challenges 

identified in this work and the opportunities that exist in the data should guide the production user to 

focus on unsupervised machine learning for data processing for anomaly detection and process control.  

The second section of this chapter is a set of four case studies of machine learning applied in a die 

casting foundry.  These case studies are published works presented at the North American Die Casting 

Association (NADCA).  The case studies review topics like process optimization, thermal image analysis, 

and anomaly detection of time-series data.  Significant value can be created by appropriate use of 

machine learning within the die casting industry.    

  

INTRODUCTION 

 Artificial intelligence (AI) is one of the key pillars of Industry 4.0 [92], [170]–[172].  The term 

artificial intelligence was coined in the 1950s defining a machine system that could learn and match the 

intelligence of a human [173], [174].  This generic definition still holds true today for uses of AI.  

Artificial intelligence consists of multiple components: language processing, knowledge, reasoning, 

problem-solving, and planning [174].  Today, the reasoning and problem-solving components of AI are 

typically referred to as machine learning.  Machine learning is a subset of AI.  Machine learning is often 

defined as the act of a computer learning specific patterns in data without being explicitly programmed 

[140], [141].  Applications of machine learning within die casting is the focus of this work.  Machine 

learning is not comprised of just one method; instead there are a large range of algorithms that comprise 

machine learning.  The algorithm that has gained much popularity recently is Deep Learning (DL), which 

is a neural network algorithm comprised of many neuron layers in efforts to mimic the human brain [175].  

Figure 52 shows the hierarchical relationship between AI, machine learning, and deep learning.     
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Figure 52: Artificial intelligence, machine learning, and deep learning hierarchy 

 

 Machine learning is comprised of three significant categories of algorithms: supervised learning, 

unsupervised learning, and reinforcement learning [140], [176].  These algorithm categories are used for 

different purposes.  Supervised learning uses labeled data to learn the pattern in the input variables to 

predict future unlabeled datasets.  Unsupervised learning uses unlabeled data and instead looks to cluster 

or group data based on input variables.  The third category of algorithms is reinforcement learning.  

Reinforcement learning are algorithms based on an agent interacting with its environment to try to 

maximize a reward.  Details of the three different categories of learning algorithms can be found in Table 

29.   

   Table 29: Details for Supervised, Unsupervised, and Reinforcement Learning 

 
Supervised  

Learning 

Unsupervised 

Learning 

Reinforcement 

Learning 
Data Type Labeled data Unlabeled data Learn from environment 
Types of  

Problems 
Regression and 
classification 

Clustering and anomaly 
detection 

Exploitation or 
exploration 

Goal Predict outcomes Discover groupings 
Learn a sequence of 

decisions to maximize 
reward 

Algorithm 

Examples 

Decision Trees, Support 
Vector Machines,  
Neural Networks 

K-Means Clustering, 
Autoencoder,  

Apriori 

Q-Learning,  
SARSA,  

Deep Q Network 



 

146 
 

The focus of the case studies provided is unsupervised learning, although supervised learning was 

initially attempted in the first case study and will be discussed.  There are applications of reinforcement 

learning published within manufacturing, such as robotic programming [177] or scheduling [178].  

However, reinforcement learning has more specialized applications and fell outside of the scope of this 

research.  Publications discussed in Chapter 1 are all supervised learning applications [17]–[22].  

Supervised learning dominates the publication space of machine learning applications in die casting.  

Beyond the author’s work presented in 2017 through 2021 in the upcoming case studies [9], [45], [169], 

[179], only one other publication was located within the die casting industry.  Žapčević and Butala 

utilized unsupervised learning to data mine previous production parameters to build dynamic knowledge 

rules [180].  This work, however, presented questionable data that could be representative of a setup or 

sensor issue.  The Tablet Thickness was exactly 0.0 for the first approximately 15,000 cycles of 56,000 

cycles used in analysis.  After approximately 15,000 cycles, the balance of the variable showed normal 

process variation.  This leads one to believe the 0.0 data was incorrectly collected and likely should have 

been not included in the analysis.  Regardless, the clustering helped identify an issue within the process, 

thereby highlighting an argument that will be made that a focus on unsupervised learning can provide 

value to the die casting industry.   

There are many different components and definitions that need to be understood when discussing 

supervised and unsupervised learning.  Entire textbooks have been written on these machine learning 

topics.  The balance of this section provides a high-level overview of components and nomenclature 

needed when discussing machine learning.   

• Algorithm: An algorithm is a set of instructions and logic used in machine learning 

programming to learn from the data presented to typically provide predictions on future 

data.  Different algorithms have unique approaches on how to pattern data to help make 

predictions.  Numerous algorithms exist such as linear regression, logistic regression, 

naïve bayes, neural nets, decision trees, random forest, support vector machines, k-means 

clustering, etc.  
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• Input Data: Input data is represented by the variables used to describe the process that the 

machine learning algorithm will try to learn from.  Input data is often described as the “x-

axis” variables that lead to some dependent “y-axis” output or Results.  Another name 

used for input data is “features.”  

• Results: Results are the output from a process with the input data.  Results are the “y-

axis” output based on the “x-axis” inputs.  Results are sometimes called “labeled data” 

since in the training data, the inputs contain a labeled output.  Results can be a 

classification or a predicted value.   

• Data Pre-Processing: Raw data gathered for machine learning applications often needs 

some level of data pre-processing before it can be used within an algorithm.  Some of this 

pre-processing is basic such as formatting or removal of rows of data with missing 

values.  Other pre-processing operations are more advanced, such as normalizing or 

scaling input values, which is required for some algorithms. 

• Training Data: Training data is the data used to train the machine learning algorithm. For 

supervised learning, this data set includes both the input data and results.   

• Validation Data:  Validation data is data separated out of the training data that the 

algorithm does not use during the initial training.  The term often used is this validation is 

that this data is held back from training.  After training is completed, the validation data 

is used to help tune the hyperparameters of certain machine learning algorithms.  There 

are multiple approaches for developing the validation data including the hold-out method, 

k-fold cross validation, and bootstrapping.   

• Test Data: Test data is data that has not been seen by the algorithm during any training or 

validation process.  Test data is the final test to see how well the machine learning 

algorithm performs and if it was trained effectively.  It is typically called an unbiased 
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evaluation of the algorithm since the model has not seen any of the data prior to the 

testing.       

• Confusion Matrix: A confusion matrix is used to help evaluate the performance of a 

classification machine learning model.  The confusion matrix compares the actual target 

values of the test data compared to the algorithm predicted values.  Ideally, the 

predictions will match the actuals to provide a high level of accuracy within the model.  

Terms true positive, false positive, false negative, and true negative are used to describe a 

two-class confusion matrix as seen in Figure 53.  Additional details on confusion 

matrices can be found in Chapter 4.    

Confusion Matrix 
Actual Condition 

Positive Negative 

Predicted 

Condition 

Positive True Positive False Positive 
Negative False Negative True Negative 

Figure 53: Example 2-class confusion matrix 

 

• Neural Net: Neural net is a popular type of machine learning algorithm based on neural 

connections like the human brain.  A neural net is comprised of connected neuron layers 

that learn to pattern the input data to make a prediction.  Deep learning is a neural net 

with many different layers.  An autoencoder is an unsupervised version of a neural net.   

• Over-Fitting: Over-fitting is a term used in machine learning when the algorithm creates 

a prediction that performs extremely well on test data but does not with the test data.  In 

these cases, the algorithm over-learned the parameters within the test data and no longer 

has the generalization needed to accurately predict data on which it was not trained.  An 

example of an overtrained graph can be seen in Case Study I in Figure 66. 

• Anomaly Detection: Anomaly detection is the process of finding outliers within a data set. 

Anomaly detection can be accomplished through supervised learning if the result labels 

are known or via unsupervised learning if anomalies are unknown within the data set.  
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Anomaly detection can provide insight and control into the system that is generating the 

data.     

With a basic understanding of critical machine learning terms and concepts, a review of machine 

learning in complex and challenging manufacturing systems is needed.  After understanding these 

challenges, approaches for utilizing machine learning in production die casting applications will be 

reviewed before the case studies are presented.       

 

CHALLENGES OF MACHINE LEARNING IN DIE CASTING 

 Implementing machine learning for any type of application can be challenging.  Success is never 

guaranteed.  As the complexity of a system increase, the challenges of success follow suit.  With a 

systems engineering mindset, by breaking down the difficulties and risks one expects to see within the 

system, actions can be taken to mitigate the potential challenges.  It is important to understand the 

technical and non-technical challenges associated with applying machine learning in die casting.  Based 

on publications within manufacturing and experience gained through the last five years, there are six key 

challenges faced when trying to implement machine learning in die casting.  The six challenges are seen 

in Figure 54 and described in detail thereafter.   

 
Figure 54: Six challenges of machine learning in die casting  
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DATA COLLECTION 

 Collecting data from manufacturing is the basis of Industry 4.0 and is a prerequisite for any 

machine learning application.  Die casting is a data-rich environment as shown by the data framework 

described in Chapter 2.  Collecting the volume and velocity of data generated within die casting comes 

with challenges.  These challenges present in three different phases.  The first is the physical act of 

collecting the data from the equipment.  The second phase is the traceability of the product throughout the 

life cycle.  The final phase is ensuring data is stored and preprocessed, so it can be linked and accessible. 

 Communication protocols that have become popular with Industry 4.0 have simplified the process 

of connecting equipment within manufacturing plants.  OPC UA (Open Platform Communications 

Unified Architecture) and MQTT (Message Queuing Telemetry Transport) are two popular types of 

industrial communication protocols, although others exist [181], [182].  Determining which protocol 

works for both current and future equipment is one of the first decisions a foundry must make.  This is a 

balancing act, as the age and type of equipment may make these connections difficult [27].  Additionally, 

having resources with the knowledge to implement this technology along with machine learning is often a 

constraint within manufacturing [7].  Additionally, selecting and then connecting the sensors, hardware, 

and network equipment provides more decisions and effort that must be undertaken prior to collecting 

manufacturing data.  Cyber security adds another layer of challenges within this entire process.  

Implementation of cyber security within Industry 4.0 is critical to reduce the threat of an intrusion, loss of 

data, or ransomware attack [172], [183]–[185].  Finally, the last challenge with collecting the data is 

ensuring it is the right data that will provide value within a machine learning prediction.  This can be the 

most challenging, as often companies focus on the data that is easy to collect versus what may be 

controlling the process [5], [27], [186], [187]. 

 Assuming the initial data can be collected and stored as the product is created, the next challenge 

is traceability and collection of data within the lifecycle of the manufactured part.  Serialization and 

traceability become key components for tracking results and labels throughout the processing.  A unique 

identifier on the manufactured part is the initial step required to create a training dataset with results.  
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Additionally, time and effort must be taken to collect and store the inspection and processing feedback of 

the part throughout the supply chain.  These efforts are considered large enough that a separate section 

entitled “Inspection” was created.  The process of creating a serialized number on a die casting can be a 

difficult task.  The location must be agreed upon by the designers, so it will not interfere with any part 

function.  The foundry team must agree, so the casting can be put into the proper orientation within the 

extraction cell to be marked.  Also the machinists must agree as they will need to read the serial number 

to collect quality and inspection data on the casting as it is processed.  Oftentimes, castings are shot 

blasted and painted, so having a serial number survive and be read is a necessity [8].  Figure 55 shows an 

example of a 2D laser barcode etched on a die casting.  Serialization and traceability provide additional 

technical hurdles that need to be overcame to have data available for machine learning.   

 
Figure 55: Example 2D laser barcode on a die casting 

(photo permission from Mercury Marine) 

 The final challenge of collecting data comes with storage and preprocessing.  Data storage 

presents a host of additional decisions a company needs to make.  One of the problems that exist is there 

is a plethora of solutions that exist for data management within a company [186].  Determinations must be 

made on types of data storage (SQL, JSON, BLOB, or Oracle) and location of the data (cloud based, 

server based, or local) [188], [189].  Data accessibility from these locations must be selected, and often a 

hierarchy is built to accommodate hot, warm, or cold storage of data [190].  Additional challenges come 
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from data linkage.  Value is created when data is connected.  For machine learning to work, the data from 

the casting variables stored in the foundry’s database must be able to connect to the results from the 

postprocessing of the casting.  If this is one company, this may not pose a challenge.  However, with a 

typical supply chain, there may be two or more companies involved with the casting, shot blasting, 

painting, and machining of a casting.  If this data cannot be connected and supplied, then supervised 

machine learning cannot be implemented as no results will exist.  Additionally, supply chains like this can 

take significant time to process castings.  Month-long delays from casting to machining result feedback 

are commonplace.  Finally, as data is being stored, and for sure before being used in machine learning 

algorithms, data often needs to be preprocessed [171], [188].  Data preprocessing includes elimination of 

missing data, determining mislabeled data, dealing with sporadically labeled data, detecting outliers, and 

normalizing data [5], [7].   

Mayr et al suggests that data preparation takes up to 70% of time in a machine learning project 

[27].  The time commitment alone on the collection, storage, and processing of the data provide many 

challenges for implementing machine learning within manufacturing.  When traceability and serialization 

are added throughout a multi-company supply chain, it becomes even more difficult.       

DATA TYPES 

 As stated previously, collecting the right type of data is important to successfully implement 

machine learning.  Die casting creates several different types of data in both the information generated in 

the process and the size of terms of length and width of the data set.  Additionally, die casting produces 

highly unbalanced data sets, which will be discussed. 

 As shown in Chapter 2, die casting data with more than hundred thousand data points per cycle 

produces an extremely wide dataset.  Die casting data suffers from Bellman’s curse of dimensionality, 

which makes applications of machine learning more difficult [92], [191].  Especially for supervised 

learning, if the training data set is extremely wide but not long, there will not likely be enough rows of 

data to determine which features are the important ones to use to pattern from.  This can lead to poor 
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performing algorithms when tested in real life.  The Hughes Phenomenon is named after Gordon Hughes.  

In his publication, Hughes stated “with a fixed design pattern sample, recognition accuracy can first 

increase as the number of measurements made on a pattern increases, but decay with measurement 

complexity higher than some optimum value” [192].  This phenomenon is visually depicted in Figure 56. 

 
Figure 56: Hughes Phenomenon visually depicted 

 

Additionally, with a fixed number of rows in the training dataset, additional features included reduce the 

fraction of samples in any given input space due to the increasing number of dimensions [193].  If there 

are not enough rows of data for each given example, the algorithm will not be able to determine which 

features are the important ones to use to pattern.   

The curse of dimensionality would go away if enough additional samples are collected that the 

dataset ends up longer than the length of all the features included.  However, this too poses a significant 

challenge in die casting.  Although die casting is often tied to high-volume production, the datasets that 

are created are not the “big data” that is typical of machine learning applications.  Sun et al describe 

research performed on datasets in the metal casting industry only producing 300 to 7,000 rows of data per 

year for a given part number [7].  Even with multiple years of data, these parts will never produce big 

data.  In some automotive applications, the potential for hundreds of thousands of rows of data exist [85], 
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but these could be spread out across multiple machines and tool designs with meaningful differences 

between them.  Machine learning applications within the die casting environment will need to find 

success in “small data” without the luxury of millions of rows of data.   

Part of the challenge with the huge width of data available is determining which data is important 

to solve the problem at hand.  Tools exist for data reduction and feature engineering to help reduce the 

curse of dimensionality, but those items also bring with them additional resources, machine learning 

knowledge, and possible lack of understanding of how to optimize the results given the data reductions on 

features included.  Making an accurate prediction with machine learning is the goal and beneficial, but the 

end state for manufacturing is using that prediction to help optimize the process to never have the 

negative state occur again.  Understanding the type of data is important within die casting.  The data 

presented in Chapter 2 was classified into five categories: design parameter data, input settings data, 

output – discrete data, output – time series data, and cycle time data.  It is important to state that even 

though the data framework identifies hundreds of thousands of potential data points, it is not expected that 

a user incorporates all this data into one model.  In fact, to reduce the challenges associated with machine 

learning in die casting, understanding the problem will point to the data that is needed.  If one is trying to 

predict quality, then the output data types would likely be the focus.  However, the data provides many 

other opportunities for machine learning, specifically in the predictive maintenance arena and with 

anomaly detection for process control.  This will be discussed in more detail later in this chapter.  The key 

point though, is one of the challenges of applying machine learning in manufacturing is understanding 

what data is available and how that data can be used to solve the problem at hand.  Subject matter experts 

are more important in this conversation than data scientists programming the algorithms. 

 Finally, the last challenge associated with die casting data is the unbalanced nature of the results, 

specifically for quality predictions.  For manufacturers, it is a financial positive they can produce such a 

high yield within their process.  However, from a machine learning perspective, this greatly skews the 

number of samples of defective parts that an algorithm can use to train [5], [7], [133], [194].  When this is 

combined with smaller data sets, and larger number of data features, the unbalanced nature can be 
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overwhelming.  Some have used SMOTE and other oversampling techniques to train algorithms in this 

unbalanced area [7].  Having highly unbalanced data sets is challenging, but what compounds this 

problem is the inspection process used to label the results used in the algorithm.    

INSPECTION 

Another important challenge when implementing machine learning in manufacturing is the 

inspection of product through the supply chain.  Inspection determines the classification of the given part.  

This classification becomes the label for the dataset, provided the serial number of an individual casting is 

included with the inspection results.  If results are not recorded, the opportunity for supervised machine 

learning does not exist.   

Many different potential failure points exist in the inspection process.  Results data will not exist 

if serialization information is not on the casting.  The serial number marking must survive any post 

processing operation of the casting.  Then, this serial number must be read and the appropriate inspection 

result recorded.  Manufacturing facilities often track cases of defective product, but machine learning also 

requires the tracking of all product.  This is needed so classification algorithms can also know the data 

patterns that exist for the good castings as well as the defective ones.  This approach is not typical of the 

industry.  Additionally, the entire serialization of castings is almost nonexistent within the industry.  From 

a 2014 NADCA study, 55% of foundries surveyed store the injection parameter data from the process.  

Only a small number of these foundries identify the casting with a serial number [4].  One of the biggest 

challenges the industry has is serializing the data to link results to parameters.  The final potential failure 

point is the connection of the process data collected at the casting creation with this inspection data.  

Often this data exists in multiple databases, and in many cases, this data could belong to two separate 

companies.   

Merging the process data with the results data must happen for successful supervised machine 

learning.  Beyond technical challenges of traceability with serial numbers and linking different databases, 

time creates additional difficulties or delays in preparing data for machine learning.  Inventory 
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management through the supply chain becomes an important part of building complete data sets.  Since 

die casting is typically a batch process [1], [13], foundries could run weeks to months of inventory ahead 

of post-processing operations.  This means it takes weeks to months to start getting initial data available 

to merge between the process parameters and the results of the inspection.  This could mean months to 

years to start building big data typically required for machine learning.   

Finally, as discussed in detail in Chapter 4 [133], the inspection process for most quality 

requirements is a human performing visual inspection.  This visual inspection has long been studied 

within manufacturing and has demonstrated a person is capable of identifying 50% to 80% of defective 

machined products with 100% visual inspection [120], [142]–[146].  This misclassification of product has 

meaningful impact on the ability for machine learning algorithms to be successful.  Dataspace overlap 

becomes a concern when trying to obtain accurate machine learning predictions [133].   

Obtaining highly accurate results data is a challenge when implementing machine learning.  

Historically, the industry has not serialized castings, let alone tried to track the results of acceptable and 

defective parts throughout the entire supply chain.  The industry also relies heavily on human inspectors, 

which are unreliable.  Culturally, there is significant hill for the industry to climb to overcome the 

challenge of inspection for machine learning.          

PROCESS 

As reviewed in detail in Chapter 2, die casting is a highly complex system.  This complexity 

presents multiple challenges when implementing machine learning including the number of sensors 

needed to collect the data, the environment where the sensors are implemented, human error and 

intervention throughout the process, dynamic system changing due to improvements and changes, and the 

ability to test and optimize while trying to produce production castings.   

Collection of hundreds of thousands of data points requires hundreds of sensors implemented 

throughout the die casting system.  This means adding or reading sensors from multiple equipment 

manufacturers, sensor brands, and age of equipment.  This is a considerable controls engineering 
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challenge when implementing for the first time.  Additionally, the die casting environment is harsh.  

Liquid metal, die lube mist, hydraulic oil, and large temperature variation await most sensors placed 

within the die casting cell.  This results in an additional level of maintenance for sensors, even after 

implementation is completed.  It also results in failed sensors that may provide incorrect data.  

Additionally, not all sensors are static within the system.  Sensors added for flow rates or temperature 

readings within the die add another level of complexity to the process.  Not only do the setup personnel 

need to correctly install the die casting tooling correctly, but each sensor that moves into and out of the 

cell must now be properly identified and connected, so the data remains consistent setup to setup.      

The die casting process is heavily influenced throughout the system by human intervention and 

error.  The complexity of die casting produces thousands of potential failure points for humans.  Some of 

these failures are catastrophic, while others may go unnoticed within the process.  Fortunately, the 

industry has checks and balances within most foundries to minimize catastrophic failures that destroy 

tooling or equipment.  Unfortunately, the unnoticed failures add noise and variation into the process data 

that make it difficult for machine learning algorithms to be successful.  The idea with the die casting data 

framework is to identify areas where data can be collected to help ensure strict process control and 

identify potential human mistakes within the system, but this concept takes much effort.  In addition to 

the human errors, die casting is ripe with a continuous improvement methodology.  Casting defects and 

part engineering changes drive improvements to the tooling and process even while parts are in 

production.  Changes to physical aspects of the process, like the die, could make previously collected data 

irrelevant to future machine learning applications.   

The complexity of die casting also requires the conversation of initial conditions for each cycle.  

It has been shown that heat transfer and fluid flow are sensitive to these initial conditions, thereby making 

the thermal balance of the die casting die subject to these nonlinear equations.  The industry uses warm-

up cycles to get the die to a steady state temperature, so it is well understood these initial conditions 

change through time.  Additionally, Miller has argued that die casting reaches only a quasi-steady state 

[44], meaning the temperature remains dynamic for most of the production run.  The thermal temperature 
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of the die surfaces dictates the location where porosity defects form in the casting.  Tracking and 

collecting all this data is difficult.  Advanced technologies like thermal imaging cameras taking images 

for every cycle can accomplish this task but come at large financial costs with significant time 

commitments to implement.  Additionally, the type of machine learning algorithm becomes more 

complex as well.  In these cases, a recurrent neural network that considers sequence and time-series data 

is required.  This creates the need for additional data for training and testing of the algorithm before it can 

be implemented.   

The final challenge to discuss about the process is the range of settings used on the die casting 

machine during production.  Die casting is a capital intensive process.  Millions of dollars are invested 

into one large tonnage die casting die.  Given the constraints of program launches, the development of 

these tools in a production system may not be as detailed as needed to help with optimization.  

Additionally, if a process is found that appears to produce high-yield production, the motivation to search 

larger setting ranges becomes a challenge.  If time is not allowed during a testing phase with the process 

development, the data generated and stored is limited from a domain standpoint.  Instead of a larger 

dataspace of ranges, the data stored are limited to the process setting that was successful initially.  Other 

ranges of input parameters go untested.  To be clear, the ranges suggested differ from the approaches 

described in the literature reviewed back in Chapter 1.  Some publications have created optimization 

models and tested input parameter ranges that would not be considered from an operations standpoint.  

Tsoukalas was one of these publications that uses a second stage plunger speed of 1.2, 2.5, or 3.8 m/s [21] 

which is an unrealistic range based on production experience.  The concept proposed here is varying a 

speed determined to produce high yield castings, such as 2.5 m/s from 2.1 to 2.9 m/s to provide realistic 

production values for to the machine learning algorithm to pattern.        

DEPLOYMENT 

 Even if 70% of the effort for a machine learning project is completed with the data preparation 

[27], it still means there is a significant portion of effort left in the deployment of machine learning.  With 
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this effort comes challenges within the deployment process.  These challenges come from selecting the 

right algorithm, knowing when to update and modify the algorithm, and making IT decisions including 

hardware/software architectures and cyber security for the entire system.   

 Selecting the correct machine learning algorithm is a challenge for any machine learning 

implementation, regardless of the type of industry [5], [6].  The data collected dictates which types of 

machine learning algorithms can be considered for deployment [5].  If data is unlabeled, without any 

results, only unsupervised algorithms can be considered.  If data has categorial values, a tree model may 

be considered.  Selecting the correct type of algorithm can be a difficult task for those not extremely 

familiar with machine learning.  Unfortunately, many manufacturers and die cast foundries fall into this 

category.  Selecting the right algorithm may require some level of trial and error or use of a third-party 

vendor, thereby making it more difficult within manufacturing.   

The complexity of the algorithm itself poses another challenge.  Algorithms like neural nets are 

described as a black box, since the process used to make a prediction is not clearly understood or easily 

interpreted by humans.  This is different than a decision tree, in which the algorithm clearly can be 

interpretated to understand the logic behind the classification [6], [28], [171], [195]–[198].  As described 

by Paleyes et al, often model selection ends up being simplified to assist with the understanding and 

acceptance of the algorithm, as well as to reduce the hardware requirements to perform the calculations 

[196].   

The challenges do not end when the algorithm is selected, trained, or implemented.  Maintenance 

during deployment also must be considered.  Changes within the process and the data being collected will 

require modifications of the implemented solution.  The question of when to update the algorithm must be 

considered by the team.  This is not always an easy decision to make.  Additionally, maintenance is not 

only on the trained algorithm.  The hardware and software associated with the solution must also be 

considered.  From network and computer hardware to software delivery systems, there are many 

interconnected parts that need to work together for a long period of time to implement machine learning 
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within die casting.  Given the harsh environment of die casting, quick and easy replacement of hardware 

must also be factored into the decision-making process.   

As mentioned in the previous paragraph, a significant portion of deployment comes with the IT 

hardware and software used to deliver a machine learning project.  Managing the IT process can be as 

challenging as managing the data collection through the OT (Operational Technology) process [199], 

[200].  Hardware and software architecture becomes another series of decisions when implementing 

machine learning in die casting.  Location of hardware must be considered.  Is the timing critical that an 

edge device is needed and integrated into the data collection system to run streaming machine learning on 

the data?  If time is not that critical, then an architecture with data pulled from the cloud or an on-premise 

storage may be adequate.  Each decision becomes an investment with technology implemented in 

production.  A generic example of a hardware and software architecture for a machine learning solution 

implemented on a factory floor can be seen in Figure 57.  The challenge is making the right IT decision.  

Implementing a solution and then seeing downtime, usability issues, or outright failure with the hardware 

and software would likely cast doubts on the entire machine learning approach. 
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Figure 57: Generic IT architecture for machine learning implementation 

The final challenge to review in deployment comes with the ever-increasing cyber security threat 

on connected equipment [31], [33], [199]–[203].  The increase in intrusions, ransomware, data 

interception, denial of service (DoS) attacks, and malware has made cyber security on the OT and IT 

devices a critical piece of the overall machine learning implementation [200]–[203].  This becomes 

another complex system layered in with the complexity already discussed involving the die cast process 

and data collection from Industry 4.0 efforts.  Specialized skillsets in cyber security are needed to 

implement and maintain this technology.  Finding and maintaining these resources becomes another 

challenge for the foundry.       

NON-TECHNICAL 

 Technical challenges with data collection and the implications of machine learning in die casting 

are numerous.  The non-technical portion of adaption and use of this technology is also noteworthy.  

Foundries face four key non-technical challenges when implementing machine learning.  These 
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challenges include a data-driven decision-making culture, interpretation and transparency of the models, 

experience where machine learning solutions developed in research have minimal or no real-world value, 

and the skills gap that exists between manufacturing and data science fields [6].   

 Using data to make decisions within manufacturing is a challenge that intuitively seems like it 

should not exist.  Unfortunately, the manufacturing industry has a history of a no common data delivery 

platform, lack of data in some applications, uncertainty of what data to utilize, and trust issues with data 

[204], [205] .  With these shortcomings, it should be no surprise that data-driven decision-making culture 

is not deeply embedded within manufacturing.  This is compounded by lack of transparency and 

interpretation of machine learning models in research publications having minimal value in real-world 

applications.  

 As discussed in the Deployment section, the black box nature of some algorithms makes it hard 

for the humans involved to accept the results.  Nunes and Jannach argued the lack of transparency and 

interpretation of complex machine learning algorithms prevent humans from trusting them [206].  This is 

echoed by Rudin and Wagstaff, stating a predictive model, regardless of how accurate it is, cannot be 

useful unless a human understands it [207].  Many of today’s most popular machine learning algorithms, 

like neural nets or deep learning, suffer from this negative black box effect.  It can be argued that lack of 

interpretability in some algorithms is additionally problematic for the die casting industry.  In a real-world 

application, accurate predictions are not the end game.  Machine learning is really being used to 

optimization of the process by predicting and eliminating quality issues and downtime events.  The 

interpretability of the machine learning models is paramount for this success.  Without the transparency, 

this becomes another hurdle for die casting to overcome with machine learning applications. 

 As initially reviewed in Chapter 1, and one of the motivations of this dissertation, literature and 

research that has been published to date on machine learning applications to die casting have minimal 

real-world value to the industry.  The scope and approaches used were narrow and did not follow industry 

norms.  This problem does not just apply only to die casting but also the lack of real-world machine 

learning value has also been experienced in the medical field [208] and computer networking [209].  
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Boutaba et al built on this by stating one of the problems with machine learning research is the use of 

synthetic data that does not reflect the complexity of real-world settings [209].  The lack of demonstrated 

value achieved by machine learning within the die casting industry only continues to challenge further 

cultural acceptance of it.  As such, the focus of machine learning applications needs to shift to gain 

successes within the industry.     

 Finally, the last non-technical challenge with machine learning applications within die casting is 

the skillset gap that exists within the industry [85], [92].  Machine learning within die casting has seen 

limited publications.  The die cast industry has also not been actively pursuing data scientists to 

implement this technology.  This may be a fortuitous situation since there is likely a shortage of machine 

learning researchers available [207].  A skills gap of data science and machine learning knowledge exists 

within foundries.  This is a large, non-trivial, non-technical challenge for the industry to overcome.  Small 

steps are being taken within the industry.  The 2021 North American Die Casting Association Congress 

and Exposition will have a technical session dedicated to machine learning [210].  Additionally the 

Advanced Casting Research Center (ACRC) and The Minerals, Metals & Materials Society (TMS) have 

been advancing training and conferences on topics of machine learning and AI withing the metals 

industry [7], [211], [212].  However, this challenge still exists, and much work remains to continue 

increasing the die cast industry’s use of machine learning.  The skills gap will remain wide for a while, 

which will be challenging for those trying to use the technology.       

SUMMARY 

 Upon completing this section, the reader may feel a bit overwhelmed or, believe that the task of 

implementing machine learning within die casting is hopeless.  That is not the intent or argument being 

made with this work.  The die casting industry is dealing with a complex system.  To be successful within 

a complex system, all the risks need to be identified and then mitigated.  These challenges all present risks 

that must be thought through to be successful at machine learning applications in foundries.  The research 

completed for this work points at a non-traditional machine learning approach to assist with this 
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application.  As will be discussed next, the die cast industry must focus on the correct applications of 

machine learning to add value.   

 

ADDING VALUE WITH MACHINE LEARNING 

The challenges of applying machine learning in a complex system are numerous.  However, these 

challenges are not insurmountable.  Value is created by understanding the correct applications of machine 

learning within die casting.  To find the correct applications, it is worthwhile to consider predictions in 

complex systems in general.  Even though Friedrich Hayek, in his 1974 Nobel Prize Lecture [213], was 

talking about economies, his idea can be applied to other complex systems: 

“Organized complexity here means that the character of the structures showing it depends not 
only on the properties of the individual elements of which they are composed, and the relative 
frequency with which they occur, but also on the manner in which the individual elements are 
connected with each other. In the explanation of the working of such structures we can for this 
reason not replace the information about the individual elements by statistical information, but 
require full information about each element if from our theory we are to derive specific 
predictions about individual events. Without such specific information about the individual 
elements we shall be confined to what on another occasion I have called mere pattern predictions 
– predictions of some of the general attributes of the structures that will form themselves, but not 
containing specific statements about the individual elements of which the structures will be made 
up” – Friedrich Hayek 1974 

 
Hayek argues that without perfect information about each individual element of the system, it is 

impossible to make precise predictions.  Instead, one is left to only predict general patterns, and it 

becomes an illusion to chase precision [213] :    

“Allow me to define more specifically the inherent limitations of our numerical knowledge which 
are so often overlooked. I want to do this to avoid giving the impression that I generally reject the 
mathematical method in economics. I regard it in fact as the great advantage of the mathematical 
technique that it allows us to describe, by means of algebraic equations, the general character of a 
pattern even where we are ignorant of the numerical values which will determine its particular 
manifestation. We could scarcely have achieved that comprehensive picture of the mutual 
interdependencies of the different events in a market without this algebraic technique. It has led to 
the illusion, however, that we can use this technique for the determination and prediction of the 
numerical values of those magnitudes; and this has led to a vain search for quantitative or 
numerical constants. This happened in spite of the fact that the modern founders of mathematical 
economics had no such illusions. It is true that their systems of equations describing the pattern of 
a market equilibrium are so framed that if we were able to fill in all the blanks of the abstract 
formulae, i.e. if we knew all the parameters of these equations, we could calculate the prices and 
quantities of all commodities and services sold. But, as Vilfredo Pareto, one of the founders of 
this theory, clearly stated, its purpose cannot be “to arrive at a numerical calculation of prices”, 
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because, as he said, it would be “absurd” to assume that we could ascertain all the data. Indeed, 
the chief point was already seen by those remarkable anticipators of modern economics, the 
Spanish schoolmen of the sixteenth century, who emphasized that what they called pretium 
mathematicum, the mathematical price, depended on so many particular circumstances that it 
could never be known to man but was known only to God.” - Friedrich Hayek 1974 

 
  

The connection of Hayek’s statements to the complex die casting system has become clear 

through this work and experience within industry.  The call for more data to improve the quality 

predictions of supervised machine learning is likely the absurd assumption that Hayek describes.  To gain 

full knowledge of every element in the system in die casting, one would have to know the exact atomic 

placement of all the alloy elements as they are poured into the chamber and injected into the cavity.  

Knowledge about the miles of cooling lines and pipes would have to be captured, so any plugged line or 

hardwater build-up that changes the heat transfer within the die is captured.  One would have to figure out 

how to capture the data associated with air evacuation of the die during the injection.  Human influence 

on the process, including the setup of the thousands of individual tooling components and decisions on 

classification of scrap, would need to be fully detailed for these predictions.  These are all highly complex 

and chaotic processes that influence part quality in die casting.  Much of this knowledge is physically 

impossible to collect while still producing quality castings.  Others are financially unjustifiable to gather.  

The goal with collecting more data is not to gain a perfect and precise quality prediction. 

The concept provided in Chapter 4 for the Critical Error Threshold creates an economic threshold 

when a manufacturer should apply machine learning.  Manufacturing systems must perform at a high 

yield rate to be profitable, so the datasets produced are highly unbalanced.  The goal of manufacturers is 

to increase this unbalance by decreasing the scrap.  To do this, machine learning must be applied 

differently.  If the accuracy of the prediction does not reduce the cost, then it is not financially viable to 

implement the technology.  This hurdle becomes harder to clear as quality improves and the critical error 

threshold reduces.  As seen in Figure 58, the accuracy of the prediction model must get increasingly 

higher to create a generalized error rate that is below the Critical Error Threshold (CET).  The high yield 

of manufacturing creates accuracy thresholds that demand near 100% prediction precision.  As shown in 
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the work throughout Chapters 2, 3, and 4, die casting is a highly complex system with randomness and 

human intervention.  Perfect predictions in die casting are not likely.  Therefore, the calls for more data to 

capture the single additional variable that will create this perfect prediction is likely a fool’s errand.   

 
Figure 58: Reducing scrap rates drives a need for increased accuracy and a lower CET target 

 

The goal with collecting more data from die casting should not be focused on applications of 

supervised machine learning to predict quality.  Using machine learning to predict part quality will not 

likely create the value or motivation needed for mass adoption of this technology within die casting.  

Instead, more pragmatic applications of machine learning are needed to create real, tangible value for 

foundries.  This requires machine learning approaches that are not new in theory but novel in their 

application within die casting system.  The industry needs the data as outlined in the framework from 

Chapter 2 to provide the feedback to the die casting system to reduce variation and noise that exists today.    

Machine learning is needed for handling the volume of data to validate process control.  

Substantial knowledge and financial value can be created within the die casting industry by using 

unsupervised machine learning.  The volume and velocity of data generated within this system requires 
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machine learning.  Humans will never be able to analyze hundreds of thousands, if not millions, of data 

points every few minutes.  This problem has always plagued the industry.  Time-series injection data of 

velocity and pressure that has existed for decades.  The industry simplifies this down to a handful of 

averages.  To make matters worse, the lack of traceability and serialization makes collecting meaningful 

result data nearly impossible.  Based on current practices, the die casting industry is not set up for 

supervised machine learning success.  Accurate and meaningful quality predictions based on data 

currently available for most foundries is highly improbable, nearing the point of impossible.  Again, if it 

was just one more sensor to add or variable to collect and control, the industry would have found and 

exploited it already.   

The problem the die casting industry has is it’s trying to control a highly complex process, with a 

handful of feedback variables.  The rest of the system is assumed to be controlled and therefore ignored.  

This is the fallacy within die casting that needs to change.  The industry must understand the entire 

system and be able to collect feedback data on the full process to comprehend the actual level of process 

control that exists.  This work puts forth an effort to solve this problem by defining the data framework 

for feedback on the system and providing examples on how unsupervised machine learning can provide 

the analysis needed on that data.  The first phase of die castings foundry and machine learning 

combination is utilizing unsupervised machine learning to review the feedback data, detect anomalies, 

and provide process control.  With the complex system fully understood and in control, efforts at that 

point can be taken to predict quality with supervised machine learning.  Without control, noise will 

dominate the data, and predictions in real-world settings will not provide value.  The right application of 

machine learning is where the value is created for die casting. 

Before the unsupervised machine learning case studies are explored, we return to Hayek’s lecture 

one last time [213]: 

“If man is not to do more harm than good in his efforts to improve the social order, he will have 
to learn that in this, as in all other fields where essential complexity of an organized kind prevails, 
he cannot acquire the full knowledge which would make mastery of the events possible. He will 
therefore have to use what knowledge he can achieve, not to shape the results as the craftsman 
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shapes his handiwork, but rather to cultivate a growth by providing the appropriate environment, 
in the manner in which the gardener does this for his plants”  

The goal of this work is to cultivate the use of machine learning in die casting.  Unsupervised machine 

learning is appropriate for this environment.  By understanding the process and reducing the noise in the 

system, the die cast industry has the best chance to leverage this technology.     

 

CASE STUDY OVERVIEW 

 The balance of this chapter is comprised of four case studies of machine learning applications 

applied at Mercury Marine aluminum die casting plant in Fond du Lac, Wisconsin.  These case studies are 

publications from the past four years of this dissertation work through the North American Die Casting 

Association (NADCA).  Each publication was included in this dissertation with the content as published 

through NADCA, with updates for figures and table numbers, references, and formatting to align with the 

rest of this dissertation. 

 The first case study was the initial publication in 2017 based on the earliest applications of 

machine learning at Mercury Marine to help predict part quality and optimize the process.  This study 

really became the foundation for much of the rest of this dissertation.  As will be seen, the applications of 

supervised learning did not yield useful results.  Instead, unsupervised clustering was used to group input 

parameters.  After the fact, results were applied to the clusters and found that certain clusters performed 

better than others.  As a result, the process was optimized and scrap was reduced, although an accurate 

supervised quality prediction was never achieved.  These findings provided much motivation in the study 

of the challenges of supervised machine learning in complex systems.   

 The second case study was published in 2018.  This work focuses on the use of unsupervised 

machine learning applications for anomaly detection in thermal images.  As described in Chapter 2, 

thermal images of die surfaces can be taken that contain millions of points of data.  Being able to develop 

a process to review and detect changes within the images is important to help detect process changes 



 

169 
 

within die casting.  This case study reviews an approach to analyze and provide anomaly detection 

feedback on die temperatures that is novel and a first of its kind within the industry. 

 The third case study was completed in 2019.  This work focused on time-series data related to the 

injection system, which has been the main focal point of process data within the die casting industry.  The 

aim was to find other means to evaluate the entire time-series of data points versus descriptive statistics 

like average fast shot speed used in the industry.  By developing a modified cosine similarity function, 

anomalies could be detected within the data.  An Azure web-based app was developed and implemented 

to assist with the communication of these anomalies directly to foundry operations. 

 Finally, the last case study was presented in 2021.  This study built on the use of time-series data 

with the use of autoencoders for anomaly detection.  The goal in this case study was similar to the third 

case study: to demonstrate the evaluation of the entire time-series data stream is critical within die 

casting.  The difference was the use of a neural-network based algorithm that has become popular in the 

machine learning field and the application on time-series data beyond the injection data.  In this case 

study, the volume of die lube used during the spray cycle was evaluated to find anomalies between cycles.  

Since this technology is so new to the die casting industry, a major portion of the paper walks through an 

example using handwritten digits before applying it to the die casting data.  This was done to educate the 

industry by providing a visual representation of what is happening with an autoencoder and how the 

anomaly detection process works. 

 The outcome of all four of these case studies has been the same: value was added to the die 

casting foundry without the use of supervised machine learning to predict quality.  These works also show 

the wide breadth of process data used and available within die casting.  Additionally, many of these 

algorithms have applications outside the examples given.  Much of the volume of data from the 

framework in Chapter 2 is time-series based.  The use of autoencoders can detect changes in the motor or 

pumps that can fix equipment downtime issues as well as it can detect flow changes in the spray cycle.  

The key lesson learned from these case studies is the right applications of machine learning within die 

casting can help the industry better understand the process and changes that happen within it.  The 
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feedback of the complex system can be monitored by machine learning and can inform humans when 

something has changed that needs attention.  Given the complexity of the process and the volume of data 

it can generate, this is a huge step within the industry.    

CASE STUDY I: INITIAL DEVELOPMENT OF MACHINE LEARNING 

ALGORITHMS TO PREDICT CASTING DEFECTS IN HIGH-PRESSURE DIE 

CASTING 3 [45] 

Data giants like IBM, Google, Amazon, and Facebook have been using big data and machine 

learning algorithms for years and, in some cases, decades to help drive extraordinary results and insight 

for their companies and customers [214].   The high-pressure die cast industry lives in a data-rich world.  

A review of the die casting process reveals hundreds to thousands of variables that may affect the process 

or equipment, and therefore, the quality of a casting.  Some of these variables are easily measured, while 

others are technically difficult. 

This chapter will review an initial approach used at Mercury Marine’s Casting Business Unit (a 

division of Brunswick Corporation) to experiment with big data from the high-pressure die casting 

process and then test its application in machine learning algorithms to improve the understanding of the 

casting process.  Data sources for the analysis include thermal images of die steel after spray and shot end 

process parameters collected during the production cycle.  The results of these initial algorithms will be 

reviewed to show the effectiveness of utilizing the data to help predict casting defects and what future 

areas of development, data collection, and improvement are needed.   

INTRODUCTION 

E.A. Herman stated in the preface of Die Casting Process Control that the “revolution of process 

control” had ended and that the degree of control that could be applied to die casting is orders of 

magnitude better than it was just a few years earlier [23].  Fast-forward to today and all manufacturing, 

 
3 This section is an edited version of a conference paper, included with permission from the North American Die Casting 
Association.  D. Blondheim, Jr. “Initial Development of Machine Learning Algorithms to Predict Casting Defects in High-
Pressure Die Casting,” 2017 NADCA Congress and Tabletop, Atlanta, GA, Sep. 2017  
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not just die casting, faces a revolution.  This is a cyber-physical system revolution, connecting 

manufacturing equipment to the digital world.  There is no shortage of buzzwords that encircle this 

momentous change we face: Industry 4.0, Industrial Internet of Things (IIoT), Smart Factory, Digital 

Revolution, and the 4th Industrial Revolution.   

Buzzwords aside, the benefit of the technology now available is massive amounts of data for any 

manufacturing process and equipment.  This is on a scale significantly larger than ever before, especially 

in die casting.  We no longer live in the world described in Die Casting Process Control where 

“continuous measurement records are impractical” and “a reasonable number of measurements is the 

goal, and that is usually between 50 and 150” [23].  The technology exists today to collect tens of 

thousands of measurements across each of the thousands of parameters that may affect the die casting 

process and equipment.  Die cast companies are no longer challenged to collect data, this technology 

exists.  Instead, the issue is trying to process massive amounts of streaming data and, more importantly, 

learning how to improve the casting quality and equipment reliability based on this data.   

The die casting industry has entered naturally entered the world of big data by pursuing short 

cycle times with a highly automated process.  Die casting is also a complex process, with many 

subsystems that must work together to produce a high-quality casting.  Data streams are available 

throughout the entire casting process as well as the subsequent inspection process.  Examples of 

subsystems that can provide critical data include the: 

• Furnace and metal delivery 
• Die lube/spray  
• Shot end of the die cast machine 
• Clamp end of the die cast machine 
• Thermal regulation units (cold water, jet cooling, hot water, and hot oil) 
• Internal die sensors 
• Thermal imaging of dies and castings 
• Vacuum and venting process 
• Input parameters used for machine control 
• Cycle time data of every signal generated by the die casting machine 
• Cycle time data of the extraction process 
• Die and tooling design metrics 
• X-ray or CT images  
• Dimensional inspection data 
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• Ambient environment data (temperature, humidity, etc.) 
 

Our ability to generate manufacturing data in die casting outpaces many other industries with 

significantly longer cycle times or less complex processes.  A recent multi-million dollar European Union 

research project outlines more than 75 unique process parameters that were collected and analyzed to 

make improvements to high-pressure die casting [86].  These 75 parameters are just the tip of the iceberg, 

given the ability to incorporate thermal images and time series data in advanced analytics.   

Traditionally, data is seen of as columns of unique parameters, with rows for individual parts.   

Often these unique parameters are calculated statistics that simplify a larger data set.  For example, the 

average slow shot speed during a cycle is usually a singular number stored by a data collection system to 

summarize a time-series measurement.  Many data collection systems store time-series information, like 

shot velocity and pressure throughout the shot cycle.  A means to quickly and automatically analyze the 

entire string of time-series data has not been commercialized or embedded into the industry.  Collection 

of hundreds to thousands of data points is realistic given the systems collect time-series data millisecond 

increments.  Also consider the data difference between collecting die temperatures with a few 

thermocouples throughout the die versus thermal images of each die half offering 640 x 640 resolution of 

the entire surface (or almost 1 million pixels of data when the moving and stationary half images are 

combined).  In short order, the die cast industry will be measuring an exponentially increasing amount of 

data versus, what should now be considered, a small number of traditional die cast parameters in a 

columned table. 

This data is extremely important to the die casting industry.  There is significant room for 

improvement with benchmark median values of equipment utilization at 68% and scrap rates at 8% [4]. 

Traditional statistical methods, such as statistical process control (SPC), have moved the industry to 

where it is today.  Not clearly identifying or understanding the interactions of parameters in traditional 

SPC charts limits how effective they are for multivariate data such as die casting parameters.  Big data 

combined with advanced methods of data analysis, anomaly detection, image recognition, and other 
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machine learning algorithms will drive the next big step for improvement.  Consider what could be 

defined as a world-class manufacturer producing castings with a 60-second cycle time and a 2% internal 

scrap rate.  This process, which would require a high degree of control to establish and hit the world-class 

standard, is still producing scrap at a rate of 1.2 parts per hour.  Optimizing and controlling the die casting 

process is a large challenge due to the complexity, variation, and interactions of multiple subsystems, 

along with the overall stochastic nature of metal casting.  Helping to solve this problem is the motivation 

behind this experiment. 

EXPERIMENT 

One of the initial challenges of a large-scale data collection project is automating the means of 

collecting and storing data in an operation that runs 24 hours a day, 7 days a week.  Commercialized 

systems and equipment manufacturers often have solutions on data collection for the shot-end process, 

which are readily accepted and widely used within the die cast industry [4].  Storing that data, on the 

other hand, is currently only done by 55% of the industry [4].   Experience has shown gathering data 

beyond the shot monitoring systems requires much internal development.  Thermal images, subsystem 

cycle time data, thermal management systems, and even input parameters used to set up the die cast 

process are all typically independent systems.  Pulling and then finding a means to store all that data in a 

database can be difficult.  Although this chapter focuses on processing once the data is collected and not 

the collection process, the collection is recognized as a significant challenge a foundry will face when 

trying to collect non-traditional die cast process data.  

The next challenge faced is part traceability.  To solve the problem of “1.2 scrap piece an hour,” 

data is needed down to the specific part for both castings deemed as good and scrap.  Data published in 

2014 stated that only a small number of the 55% of foundries that store shot monitoring data identify the 

castings produced with serial numbers for traceability [4].  Part identification and downstream data 

collection on casting quality is another significant hurdle a foundry must overcome to get meaningful 

data.  Castings are often deemed scrap after machining and leak testing.  Die cast companies that cast and 
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machine in house gain a significant advantage in achieving quality data collection.  In the case of this 

experiment, it has required years’ worth of work to automate part traceability to the thermal image and 

shot data collection systems.  Part traceability is another significant hurdle to complete the data analysis.   

Knowing the challenges of data collection, as this experiment was launched, a casting and a die 

cast machine needed to be selected.  The desire was to collect as much data as possible on a casting.  A 

high-volume casting was needed, so the plant could run the product through multiple shifts, days, and 

weeks to experience all the normal process disruptions.  This was not to be a controlled experiment, 

allowing any variation in parameters as established during the part approval.  In the end, an external 

customer’s casting was selected because of its volume, the plant’s ability to collect the quality data with 

on-site personnel, and the home machine that had a thermal imaging systems installed.  Not all the desired 

data-collection systems were in place at the time of the experiment, but the systems used established a 

baseline of what learning could be gained from a large data set and machine learning algorithms. 

Casting, Process, and Equipment Details 

The casting selected was a crankcase half made of A380 Aluminum.  The finished casting weighs 

approximately 13 pounds and has been produced by the foundry for several years.  The scrap rate from 

the foundry and machining due to casting defects, but not including warm-up scrap, typically ranges from 

3% to 6%.  The casting includes an isolated heavy section that is machined and unable to be fully cored 

due to part design.  Porosity in this area is the leading contributor to scrap.  An example of this porosity 

can be seen in Figure 59. The next largest contributor of scrap is gate break-in defects that are repairable 

after machining depending on size and location relative to the split-line edge as seen in Figure 60 
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Figure 59: Porosity defect uncovered after machining 

 

 
Figure 60: Gate break-in defect 

 

The machine that ran the experiment is a 1200 ton IdraPrince manufactured in 2001.  The 

machine has a 7.5-inch shot cylinder diameter and a 1:1 charged accumulator for intensification with a 

max 4500 PSI.  The hydraulics of the shot end are controlled by an Olmstead Control Valve with a 

Textron Servo.  The electronic controls are Prince Profiler and Prolink.  The plunger tip size used to 

produce the part has a diameter of 4.25 inches. 

Two thermal imaging cameras with an image collection system are installed on the die cast 

machine.  This system was developed as a collaboration between Mercury Castings and a third-party 

integrator.  The camera system takes thermal images of each die half after the spray cycle is completed, 

immediately before the die is closed for the next shot to be fired.  Thermal image files are stored on the 

network and saved with the serial number information in the file name.  Figure 61 shows a picture of the 

camera system mounted on the die cast machine. 
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Figure 61: Thermal imaging system installed on die cast machine 

 

The thermal image system saves two types of TIFF files.  One file is a standard TIFF format that 

shows a grayscale thermal image that can be viewed with any generic image viewer.  The other file saved 

is a TIFF image that stores the raw temperature measurement, in degrees Kelvin, as read by the camera.  

This format can be uploaded into several programming languages, including R [215], which was used for 

analysis in this experiment.  The key difference is the actual raw temperature reading in this second TIFF 

file versus only a 0 to 1 pixel intensity value that is typically stored as an image file.  This upload 

converts the image file into a matrix of numbers based on pixel location.  Figure 62 shows an example of 

the thermal image and the data it produces for analysis. (Note that this is not the tool used in the 

experiment.) 
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Figure 62: Thermal image example with data conversion 

Finally, in the extraction cell, a pin-stamp unit was used to put on a 2D barcode and a human 

readable 11-digit serial number to complete the part traceability.  Unfortunately, a programming error at 

the start of the experiment left the 2D barcode with no useful information, but the human readable code 

was in place.  Data was manually collected instead of using bar-code scanners to track what serial 

numbers were shipped to the machining house.  Figure 63 shows an example of the serial number used 

during the experiment. 

 
Figure 63: 2D barcode and serial number example 

 

The casting experiment took approximately one week to complete in the die cast cell.  The 

experiment spanned two work weeks and all three shifts of regular production.  A fortunate set of 
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unpredicted events occurred: the equipment on the machine experienced two issues throughout the 

experimental run, an operator created a third issue, and a hydraulic gate-break issue created a fourth issue.   

The first issue that reoccurred several times throughout the run was a sticking hydraulic valve in 

the shot system.  This caused a much larger-than-normal variation in slow shot speed and fast shot speed.  

The second issue was an intensifier pressure leak, which caused a much larger range of intensified 

pressure throughout the run.  The third issue near the start of the experiment was caught and corrected by 

the operator.  The die cooling water was not turned on after the warmup cycles for the die, causing the die 

to get extremely hot.  The final issue during the experiment was the hydraulic gate break operation caused 

a much higher level of gate break-in issues than normal.  In all cases, castings were audited and passed X-

ray inspection to continue with the experiment.  Machining feedback on these castings was viewed as 

critical to help understand and learn the impact of parameter changes and its effect on quality.    Figure 64 

highlights the variation that resulted from one of these operational issues.  In the figure, acceptable 

castings were labeled as Good = 0 and castings that were either scrapped or reworked due to a foundry 

issue as Bad = 1.   

 
Figure 64: Intensification Pressure data over experimental run 
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High-Level Scrap Results 

After casting, secondary trim operations were performed within the plant.  Then castings were 

shipped to the external machine house, where they were machined and reviewed with a binary pass/fail 

criterion.  Any casting that had a foundry defect, even those repairable, were deemed Bad in the study.  

Any casting that passed all porosity and leak requirements at machining were labeled Good.  A total of 

1873 serial numbers were recorded with results.  Serial numbers belonging to castings scrapped as warm-

up shots per our regular production process were not included in the analysis.  Castings that were 

scrapped due to unrelated trim press or robotic trimming issues were also excluded from the study, since 

quality regarding the final machined product was not available.  This scrap was insignificant compared to 

the total population of experimental castings.  A breakdown of the scrap data can be seen in Table 30. 

Table 30: High-level scrap results of experiment 

Result Quantity Percentage 

First Pass Good Castings 1761 94.02% 

Gate Break - Scrap at Foundry 29 1.55% 

Gate Break - Repair at Machining 55 2.94% 

Isolated Heavy Section Porosity 28 1.49% 

Total 1873 100.00% 

 

Initial reactions to the yield were mixed given the known issues experienced during the 

experimental run.  Gate break scrap and repairs were on the high side of normal, while the porosity in the 

isolated heavy section was a bit lower than normal.  Data tables containing the critical shot information 

were updated with the binary machining results (Good = 0, Bad = 1), and that data was combined with the 

thermal image information to begin the process of applying different machine learning algorithms to the 

data. 

MACHINE LEARNING BACKGROUND 

Machine learning can be defined as the development of computer algorithms with statistical 

methods applied to large data sets to provide insight and help predict a future outcome [216], [217].  

Google, Facebook, and Amazon use machine learning algorithms to improve the experience of their 
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customers as well as their own bottom line [214].  The goal in machine learning is to utilize different 

statistical and mathematical algorithms to help detect complex patterns in data that are either too difficult 

for humans to understand or so large that it is too time consuming for people to complete the analysis.  

Algorithm are trained on big sets of data and gain insight from that data to make accurate predictions 

about future data.       

Many textbooks have been dedicated to the study of individual machine learning algorithms.  

Additional books have been published regarding the programming and implementation of these 

algorithms in multiple software languages.  Any summary on the topic of machine learning provided here 

should be considered an extremely high-level, basic introduction only.  It is included to provide a baseline 

of information for the rest of the analysis. 

One way to understand the process used by different machine learning algorithms is to look at a 

simple regression example.  Input values along the X-axis can be used to help predict a result along the 

Y-axis.  We can then use a machine learning algorithm to try to explain what is happening in the data and 

then use that explanation to make future predictions based on new input values.  A predictive model is 

created based on the users selection of an algorithm, in this case regression, to be applied and any tuning 

parameters that need to be defined.  In Figure 65 and Figure 66, the number of polynomials need to be 

determined for the regression.  This is an example of a tuning parameter for an algorithm.  Typically, data 

sets are split into two different, but representative, groups.  The first set is called a training set and is used 

to train the machine learning model.  The second set is called the test set, which is used to validate how 

well the model produced will make future predictions.  Ideally a model will predict future results with 

good accuracy and is not subject to over-fitting.  Over-fitting is seen when a model is highly complex and 

may explain all the data used to train the predictive model but does not really provide a good future 

prediction.  See Figure 66 for an example of over-fitting.   
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Figure 65: Example of a linear regression model 

 

 
Figure 66: Example of an overfitted model 

 

Most machine learning algorithms build on these concepts using a variety of different 

mathematical means and complexity.  Although the approach may seem simple, the execution is not.  In 

die casting we have multivariate inputs ranging from shot end measurements to thermal images.  

Sometimes this data is highly correlated, which can have an impact on certain algorithms.  We also have 
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some values measured in milliseconds and others that are measured in thousands of PSI.  For many of the 

algorithms, the data needs to be pre-processed to be normalized so that the algorithms are not incorrectly 

affected by large values over small values.  Normalization of the values typically follows Equation 21, but 

others are available. 

Equation 21                𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑫𝒂𝒕𝒂 =  𝒙− 𝝁𝝈  𝒙 = 𝒔𝒂𝒎𝒑𝒍𝒆 𝒗𝒂𝒍𝒖𝒆      𝝁 = 𝒔𝒂𝒎𝒑𝒍𝒆 𝒎𝒆𝒂𝒏     𝝈 = 𝒔𝒂𝒎𝒑𝒍𝒆 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 

 

Also with machine learning, there is an important discussion of feature selection: how do we 

select which features to keep in the algorithm that provide insight and which ones we can remove.  Means 

such as Principle Component Analysis (PCA) reduce the data features to find linear combinations that 

capture as much possible variance, but then lose meaning in the parameters and implementation and 

optimization become harder to comprehend.  PCA was not used for this experiment, but could be a useful 

tool with highly correlated features. 

Finally, the algorithms themselves can vary greatly.  One big distinction is the definition of 

supervised versus unsupervised learning algorithms.  In supervised learning, the results are known on the 

data set, and the algorithm is trained to that result.  In unsupervised learning, the result is unknown, and 

the algorithm is grouping items together based on their input variables.  Table 31summarizes some of the 

algorithms by describes groupings of algorithms, names of individual algorithms, and the type of learning 

used.  This table is only a sample of the algorithms available. 
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Table 31: Summary table of machine learning algorithms 

Algorithm 
Group 

Learning Type Examples 

Clustering Clustering k-Means Clustering, EM Clustering, KNN 

Trees Classification and numeric Decision Trees, Regression Trees, Random 
Forest, Bagged Trees, Boosting Trees 

Regression 
Numeric Linear Regression 

Classification Logistic Regression 

Support Vector 
Machines (SVM) Classification and numeric 

Classification SVM, Regression SVM, Class 
One SVM (unsupervised) 

Neural Networks 
(NN) Classification and numeric 

Forward Feed NN, Back Propagation NN, 
Recurrent NN, Bayesian NN 

 

Each of these models has its own set of strengths and weaknesses.  There is no right model when 

trying to complete predictive analytics.  Often multiple models need to be set up and evaluated to see 

which one works best for the data at hand.  This becomes an iterative process, which was learned first-

hand during this experiment.   

ALGORITHM IMPLEMENTATION 

With the 1873 results available, the data from the shot monitoring system (24 process parameters) 

was combined with the furnace temperature and the thermal images of both die halves.  Also combined 

into this data set was a calculated count from the last machine stop.  This data would determine if the 

shots taken soon after a start-up had a higher potential for being scrap.  All data and thermal images were 

pulled from SQL tables or network locations and combined into one data-frame in R using custom 

programming scripts.  Thermal images were also cropped and scaled as needed in R to reduce the number 

of pixels and therefore input parameters.  The data was normalized with scaling and centering using the 

caret package in R [218].   

The goal was to utilize machine learning algorithms to properly classify acceptable castings 

compared to any type of scrap or rework caused by casting defects.  The hypothesis was that a 

combination of two or more parameters was trending to one section of their natural variation all at the 
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same time.  This interaction between the multiple inputs would cause the defect, which would occur 

infrequently throughout the course of the production run.  Therefore, if the critical input variables could 

be understood, a process could be targeted to help stay in the zone that produced only good castings.   

Complex Algorithm Results 

Given the complex nature of the die casting process, testing initially started on the more complex 

machine learning algorithms.  The data was randomly split into two sets, a training set and a test set.  

Different splits were tested ranging from 70%/30% to 95%/5%.  

Neural nets (NN), which are designed to mimic the brain neuron activity, were first tested.  

Neural nets have an input layer, multiple layers of hidden neurons or nodes, and then an output layer.  

Weights are summed and calculated through an activation function.  Weights are then calculated and 

modified based on the entire training set of data.  Figure 67 provides a visual of neural net structure. 

 

Figure 67: Example of a neural network structure 

 

R packages of nnet [219] and neuralnet [220] were used to test forward feed and back 

propagation NNs.  The networks of multiple sized hidden layers and neurons per layer were tested with 

different activation functions.  The results of these trained models were the first indication of a problem 

with the experimental data sets and machine learning.  The predictive model created by any training set 

always predicted 100% Good product.  Although this model was correct to a very high percentage (given 

the yield rate of the castings), it produced a false positive result for all Bad castings in the testing sets.  
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With this data set and the initial testing completed, the neural net models could not accurately classify the 

castings produced. 

The next algorithm tested was a support vector machine (SVM) with the e1071 package in R 

[221].  An SVM uses vectors to create divisions between different classes of items.  These vectors can be 

non-linear to help solve highly complex data-sets.  The vector used maximizes the distance between data 

classes and can be tuned with a cost function that can allow the user to program the amount of cost 

associated with an incorrect classification.  An example of a simple SVM is seen in Figure 68. 

 
Figure 68: Example of a SVM classification in two dimensions 

 

The result of the SVM was similar to the neural net.  Everything was predicted as Good castings 

thereby poorly classifying Good and Bad results in the test data set.  Unfortunately, comparable results 

were seen when applying Random Forest and CART tree models as well as regular Logistic Regression.  

None of the complex models could correctly classify the Bad castings from the Good castings with the 

data that was collected with the experiment.  After this point, the approach in analyzing this data was 

changed. 

Clustering Algorithm 

Clustering analysis is typically done on data whose results are typically unknown, which is also 

called unsupervised learning.  The purpose of clustering algorithms is to group related items based on all 
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the input parameters.  The k-means clustering algorithm works by dividing a sample of size n into k 

different clusters, where each sample is measured to the nearest mean value that serves as an average or 

representative sample of that cluster.  The number of clusters the sample is to be divided into is a user-

defined value or tuning parameter.  Observations are assigned to each cluster to reduce the within cluster 

sum of squares or variance.  Mathematically this is defined in Equation 22. 

Equation 22      𝑮𝒊𝒗𝒆𝒏: 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑 … 𝒙𝒏) 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 = 𝒌 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝒔𝒆𝒕𝒔 = (𝑺𝟏, 𝑺𝟐, 𝑺𝟑 … . 𝑺𝒌) 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆: 𝐚𝐫𝐠 𝐦𝐢𝐧 ∑ ∑‖𝒙 − 𝝁𝒊‖𝟐 = 𝐚𝐫𝐠 𝐦𝐢𝐧 ∑|𝑺𝒊| 𝑽𝒂𝒓 𝑺𝒊𝒌
𝒊=𝟏𝒙∈𝑺𝒊

𝒌
𝒊=𝟏  𝑾𝒉𝒆𝒓𝒆: 𝝁𝒊 𝒊𝒔 𝒕𝒉𝒆 𝒎𝒆𝒂𝒏 𝒐𝒇 𝑺𝒊 

 

The k-means algorithm needs an initial set of cluster mean values.  There are multiple ways to 

provide this.  One option, which was used in this experiment, is to randomly select k number of points in 

the data set and use them as the initial cluster means.  An iterative process of two steps then takes place: 

• Assignment Step:  Assign a sample to the cluster with the nearest Euclidean distance to the 
cluster mean. 
 

• Update Mean Step:  With samples assigned, calculate a new mean value for that cluster.   

• Repeat steps until there are no new assignments of points to new clusters; at this point the 
algorithm has converged.  
 

A k-means algorithm will converge to a local minimum, but there is no guarantee that the 

solution found will be the global minimum because of the randomly assigned initial starting values.  To 

help overcome this issue, k-means clustering algorithm is typically ran multiple times with new random 

initial weights at each start to help find the global minimum [222].  Because Euclidian distance is used for 

assignment, data needs to be normalized before applying the algorithm. 

For this experiment, the Elbow Method was used to help determine the number of clusters that 

would be used in the analysis.  The Elbow Method involves plotting the ratio of the within cluster 
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variation compared to the total variation of all samples.  As more clusters are added, additional variation 

is explained within the clusters and therefore approaches the total variation of the sample.  With the 

Elbow Method, the ratio of within variation to total variation is plotted among clusters sizes to see 

approximately where increasing the number of clusters provides a diminishing return on additional 

variation explained, the “elbow” of the graph [216]. 

Figure 69 shows the Elbow plot created with all the experimental data.  The R package stats [215] 

contains the kmean function used to complete this analysis.  The parameters were pre-processed to 

normalize them.  Clustering was based on the data set containing Good castings and porosity in the 

isolated heavy section.  Castings with gate break-in issues were removed due to known issues with the 

casting extraction process.  Analysis was ran with a maximum number of step iterations to be 4000, and 

each cluster size used 400 iterations of randomly selected starting points to find the best local minimum.  

The variance ratio was calculated through a value of k = 30. 

 
Figure 69: Elbow Method for determining number of clusters 

 

Because there was no strong elbow point in the plot, individual analysis of clusters was 

performed ranging from 5 to 12 clusters.  The analysis performed on the clusters combined the 

unsupervised clustering algorithm with the known results of the experiments.  A table was created for 

each cluster listing the number and percentages of Good and Bad castings.  The intent was to understand 
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if any clusters performed significantly better than others and then determine what those clusters had in 

common.  Also, it was the goal to keep the number of samples within each cluster statistically significant, 

with ideally several hundred samples falling within each cluster.  Based on these requirements, a final 

number of 7 clusters was selected.   

This cluster arrangement yielded several interesting results.  Cluster 4 had only 4 samples in it.  

These were all castings with cycle times significantly longer than normal by a factor of 3 or 4 times the 

mean cycle time, driving a unique cluster just for that parameter.  Another interesting result was Cluster 2 

had 329 samples with zero Bad castings.  Cluster 5 and 6 show the highest level of scrap percentages.  

Cluster 1 and 3, each with a large number of samples, showed good performance: more than 99.2% yield.  

Table 32 provides the details on the count and percentages of the cluster assignment.  A graph of the 

cluster assignments can be seen in Figure 70, showing when the clusters were assigned throughout the 

time-ordered sample run.   

Table 32: Cluster Assignment Counts and Percentages 

Cluster Count Percentage 

 Good Bad Good Bad 

1 255 2 99.222% 0.778% 

2 329 0 100.000% 0.000% 

3 416 3 99.284% 0.716% 

4 4 0 100.000% 0.000% 

5 341 12 96.601% 3.399% 

6 362 10 97.312% 2.688% 

7 54 1 98.182% 1.818% 
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Figure 70: Cluster Assignment with 7 Clusters 

 

An interesting realization found in Figure 70 is that during any 150-piece consecutive run, 

castings from at least 4 of the 7 clusters will show up.  150 castings represent approximately 4 hours of 

production.  The clusters identified by the algorithm are independent to parameter drift or process 

problems that were experienced during this sampling.  Using traditional SPC methods on individual 

process parameters is inefficient at identifying when multiple parameters may be moving together or 

interacting with each other.  Utilizing the clustering algorithm quickly provided process insight that did 

not previously exist.       

Cluster Visualization 

With a final cluster model complete, visualization on the input parameters was completed using 

box-plots, individual value plots, and scatter diagrams to identify differences in the parameters per 

clustered group.  From the box-plots, differences between cluster 2, 3, and 1, the best quality clusters, can 

be seen when compared to 7, 5, and 6, the worst quality clusters (numbers are ordered with increasing 

scrap percentages).  Values for the Average Slow Shot Velocity and Intensification Pressure can be seen 

in Figure 71.   
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Figure 71: Boxplot and Individual Plots of Average Slow Shot Velocity and Intensification Pressure 

 

 
Figure 71 shows Cluster 2 (the best quality cluster) has a significantly lower mean intensification 

value when compared to the other clusters.  However, intensification pressure itself is not the key between 

good and bad, since Cluster 1 and 3 with around a 99.2% yield are approximately equivalent to Cluster 5, 

6, and 7 with the worst yields.  Reviewing the box and individual value charts of the input parameters, it 

is clear there are interactions between the parameters that result in better quality castings.  A scatter 

diagram matrix was produced with the key input parameters.  Two diagrams were created.  Figure 72 

shows the different clusters each identified in the matrix.  Figure 73 shows the same matrix but 

highlighting Good = 0 versus Bad = 1.   
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Figure 72: Matrix scatter plot of key parameters by clusters 

 

With these matrix scatter plots, a clear area of interest became evident.  An L-shape of Bad 

castings show up in the scatter plot of Intensification Pressure versus Average Slow Shot Speed.  Inside 

this L-shape is a region that yielded 100% Good castings, absent of porosity in the isolated heavy section, 

as detected by machining results.  This area is comprised mostly of Cluster 2 (the best cluster) as well as 

Cluster 1 and 3.  Figure 74 shows the scatter plots discussed. The other parameter scatter plots did not 

show any other significant areas of interest.  Average Slow Shot Velocity and Intensification Pressure 

became the two key parameters to validate in this experiment.   
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Figure 73: Matrix scatter plot of key parameters by result (Good v. Bad) 

  

  
Figure 74: Scatter plots of intensified pressure versus average slow shot velocity 

RESULT VALIDATION 

Two different means were used to help validate or provide directional guidance on the results 

from the cluster analysis.  Initially a computer simulation was performed to test the relationship between 

the Average Slow Shot Velocity and Intensification Pressure.  Then a historical review of the data from 

those castings found to have the same defect was compared to process parameters of the different clusters. 
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Casting Simulation 

A casting simulation design of experiments was performed varying the Average Slow Shot 

Velocity and the Intensification Pressure between simulations.  Based on mean values of the clusters, the 

Average Slow Shot Velocity ranged from 5 inches per second up to 11 inches per second.  The 

Intensification Pressure ranged from 3800 PSI hydraulic pressure to 4100 PSI. 

The results of the simulations showed an improvement in the Fraction Solid results as well as the 

Hot Spot result with the increased slow shot velocity.  There were no quantifiable differences when 

looking at the increased intensification pressure in the given area between experiments.  The positive 

influence on the faster Average Slow Shot Velocity follows standard practice given the higher range 

brings the speed up closer to the Critical Slow Shot Velocity [70].  Overall, it was found to be difficult 

understanding the results of the simulations showing 97% yield rates versus 100% yield rates, since 

changes in the results were minor.  The fidelity of the simulation may be lacking at this detail without 

significant knowledge from actual castings.  Additional steps were taken to look at actual casting data 

since the results of the simulations were not conclusive. 

Historical Review 

A review of historical data for a previous six-month period was completed to see if additional 

insights could be gained regarding the process.  The current practice in place is to record all serial 

numbers that are scrapped at the external machine house.  This information is stored in a database with 

the defect reason.  The current gap with this process is only scrap castings are recorded.  Assumptions 

could be made about other serial numbers being machined and passing as Good based on a duration from 

the cast date.  In this case, this assumption could be very inaccurate, since the inventory levels and work-

in-process changes significantly with this product. 

The database was filtered to find the historical data for just the isolated heavy section porosity to 

create a new data set.  A total of 432 scrap castings were identified.  With these serial numbers, the shot 

data for intensification and average slow shot speed was pulled and combined with the cluster analysis 



 

194 
 

data.  The box plots and individual value graphs were created with the 7 clusters and an 8th group added 

for historical scrap (HIST).  These graphs can be seen in Figure 75.   

The graphs show similar speeds and pressure used in the HIST scrap group when compared to the 

worst yielding clusters 5, 6, and 7.  Graphically, the historical results confirm the findings in the 

clustering algorithm, in that both average slow shot velocity and intensification pressure impact the 

quality of this isolated heavy section.  What appears to be academically interesting is that it requires a 

lower intensification pressure to produce the best castings, provided the slow shot speed is within an 

acceptable range. 

 
Figure 75: Boxplot and Individual Plots of Average Slow Shot Velocity and Intensification Pressure 

comparing clusters with historical scrap data 

FUTURE STEPS 

Machine learning algorithms were applied to big data seeking scrap rate improvements.  Results 

have provided many learning opportunities for Mercury Castings and additional work and research areas 

have been spawned by this project.  Many of the lessons can be applied for those interested in leveraging 

big data for die casting.  This section will review the eight key points from this experiment.     
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Data Collection and Processing 

The data collection and data processing portion of this type of project is not to be underestimated.  

This effort is worth mentioning again since the data is what drives any of the machine learning 

algorithms.  Manual processes for data collection are prone to human error.  Pin stamped 5 can often look 

like a 6, and a 6 can look like an 8 when a human is recording hundreds of these serial numbers on paper 

each day.  These errors caused hours of lost time reviewing, verifying, and cleaning the data prior to using 

it, which itself is subject to error.  The intention was to automate the collection using a 2D pin-stamped 

bar code, but a programming error at the start of the study left the barcode unusable.  In cell verification 

of 2D barcodes would have immediately found this error.   

One result of this experiment was the installation of 2D barcode readers in critical cells where 

barcoding of castings has been deemed important.  When scanned, 2D barcodes provide error and contrast 

measurements letting the user know how easy the barcode was to scan.  This additional data is now 

collected and stored with each casting to help identify thresholds of readability allowed and help predict, 

using machine learning, potential failures or maintenance needs for the pin stamp unit.         

Sample Verification 

It was originally intended to complete a second experiment with targeting process settings based 

on the results of the clustering algorithm.  When the initial experiment was completed, the tool used to 

produce the casting was near the end of the life.  Once results were compiled, the tool used in the 

experiment had been retired and replaced with a new model casting.  The gating of the new tooling was 

different than the tool used in the experiment.  Core changes in the area of concern also happened with the 

new tool design.  A direct comparison between the two tools may not be accurate given these changes.   

With the new tool being used, process settings were set given the lessons learned from the 

clustering algorithms.  The process has a targeted average slow shot velocity similar to the experiment 

and reduced intensification pressure to the targeted 3800 PSI from the best cluster.  Initial results from X-

ray and machining feedback were promising.  After 2.5 months with the new tool and process changes, a 

total of 42 castings have been scrapped due to porosity in the isolated heavy section.  A 76% scrap 
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reduction for this defect is seen in comparison to the 6-month historical scrap of 432 castings.  The 

improvement may be contributed to a combination of new tool design and process settings. The exact 

breakdown is not known, but directionally the results are promising.  In future experiments planned, a 

direct resample will be built into the analysis to provide more accurate verification. 

Binary Results 

In hindsight, an issue with this experiment was the binary classification of the results.  Good 

versus Bad may explain why the complex machine learning algorithms first applied failed to yield any 

classification results.  The true results, especially with the porosity in the isolated heavy section, are only 

partially known with this binary approach.  We learned which castings did not exhibit the porosity after 

they were machined versus the ones that did.  However, as the experiment was set up, it failed to show if 

the porosity was eliminated with the different process settings or simply just shifted out of the area the 

casting is machined. 

Additional data needs to be collected to eliminate this binary result.  Initial thoughts include X-

ray images or CT models to have a continuous variable for the measurement of quality.  This could 

provide the needed information to help more advanced algorithms perform well on the input data.  

Developing ways to quickly collect and assess these items are difficult, but manageable.  X-ray images 

could be processed in software to provide quantitative measurements of porosity size and location.  

Regardless of the solution, it leads to more data collection and processing requirements to apply the 

machine learning algorithms.  Finding ways to automate this will be critical for success. 

Probabilistic Outcomes 

Building off the binary results, another key lesson learned was to understand ranges in process 

parameters should be seen as changes in the likelihood of producing 100% acceptable castings.  Within 

the multiple dimensions of input parameters, there are interactions happening that impact casting quality.  

Even if process limits are set using statistical process control (SPC), parameter values that produce 100% 

good product at target values may result in lower yields as they approach the limits.  This reduction may 

be limited to 1% to 2% scrap increases, or it could be a cliff, increasing scrap rates more than 20%.  It is 
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not economically feasible for any die caster to test all these limits when setting up the process for a new 

tool.   

Utilizing clustering algorithms provides a potential insight into the likelihood of scrap based on 

past results.  More on this topic is in the next section on K-Nearest Neighbor.  The future way of thinking 

about process parameter changes may be understanding that the process parameters is producing at X% 

yield, and by moving the parameters to this new target, the operation will now yield Y%.  This does 

assume that nothing else in the process changes.  Water lines that leak or cooling lines not turned on may 

result in step changes that may not be predicted with any learning algorithms, unless this could be 

detected through thermal image anomaly processing.                   

K-Nearest Neighbor  

Tied to the previous section, applying a machine learning algorithm called K-Nearest Neighbor 

(K-NN) may be helpful to understand the probabilistic nature of yield rates based on process settings.  K-

NN is similar to the k-means clustering analysis that was completed here.  In this algorithm, the training 

data set is used as a benchmark with known results.  A new sample is then put into the algorithm and 

applies a distance measurement to its k number of points that are dimensionally closest to the new sample.  

The k value is selected by the user creating the algorithm.  Based on the outcome of these k closest results, 

a prediction is made about the results of the sample [195]. 

This approach could be used to produce an item that may be useful for die casters.  If one chooses 

a large k, say close to 100, what is being calculated is a yield rate within that sample point using a 

statistically significant number of nearly identical sample parts.  With a large value, we could look at the 

probability of yield percentage based on the sample around it.  If K-NN is applied on the factory floor, 

every shot could have a yield prediction associated with it.  Another way of thinking of this is that it could 

create a profile or gradient of scrap rates throughout the parameter limits.  Parameters could be selected to 

reduce the likelihood of scrap or, at a minimum, a sound business decision could be made as to why the 

change is necessary.   
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Thermal Image and Shot Profile Learning 

During this experiment, statistics of the shot profile and thermal image were used.  One of the 

critical lessons learned from this was the variation of slow shot speed that was experienced.  In the typical 

position versus velocity shot profile, the difference between an average of 5 inches per second compared 

to 10 inches per second is not visually as significant as when a fast shot velocity scales the entire graph.  

Looking at these results on a time versus velocity graph will show considerable time delays in the slower 

speed.  One of the future areas of investigation is applying the entire shot profile through a machine 

learning algorithm to better detect changes that may have an impact on the process.  One area where data 

is lacking in the standard statistics used from shot end-monitors is the application of “low impact” or 

“braking the shot rod” at the end of the filling cycle.  This can be visually seen on a profile trace, but 

lacks a parameter statistic.  Use of the entire profile may help with future predictions. 

The same logic can be applied to the thermal images.  In this study, the images were summarized 

with a median statistic in the cavity area.  Additional development in programming and means to detect 

image anomalies is needed to make this additional data even more robust.  Those types of programming 

scripts were not a major focus here but present many opportunities for further improvement.  

Future Machine Learning – Complex Algorithms 

Although the more complex machine learning algorithms like neural nets and support vector 

machines failed to produce useful results in this experiment, this does not mean they should be ignored 

for future work.  These algorithms can handle highly complex data sets and provide excellent predictions 

and insight.  Additional images and time-series data, as discussed in the previous section, are prime 

sources of data sets that may provide the insight needed to make accurate predictions. 

A user of machine learning should become familiar with all these different tools and be able to 

apply them as needed.  This was an introduction of the topic to a die caster with no familiarity with the 

topic.  The amount of open source information, knowledge, and programs on machine learning can be 

overwhelming.  This is a result of the vast use of machine learning algorithms by large, technology based 

companies.   
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Lower Pressure = Better Castings? 

Perhaps the most interesting casting process learning from this experiment was the results of the 

intensification pressure on Good versus Bad castings.  The results from the experimentation showed that 

lower intensification pressure created a higher yielding casting after machining.  When dealing with a 

porosity in an isolated heavy section within the casting, this approach seems counter-intuitive from 

everything discussed in die casting and feeding shrink areas.   

This concept is one of the areas where additional research and experimentation will be completed 

to see if this hypothesis holds true over multiple casting designs that struggle from an isolated heavy 

section.  Further analysis is needed to understand why this may be happening form a metallurgical 

standpoint or if it is just an anomaly of this casting and tool design.  Regardless, this result does present 

an intriguing finding from the experiment worthy of greater study.  

CONCLUSIONS 

This experiment has demonstrated that using machine learning algorithms can provide additional 

insight into the process.  Machine learning was shown to assist with finding patterns in the data when they 

otherwise are unclear.  Gaining this insight and moving beyond world-class scrap rates was the 

motivation for this work.  Improving scrap is a challenge because die casting is a highly complex, 

multivariate, stochastic process of transforming liquid metal into a near net shape casting.  This type of 

problem would have been already solved if it only involved a singular parameter that could be applied to 

any machine and tool combination.  Instead, there is an infinite number of parameter choices to make as 

different castings have their process developed.  The issue is finding a way to efficiently cycle through all 

this data to make sure die casters consistently make the best choices for the process.  Machine learning 

algorithms can help solve this problem.  This work should spark additional conversation, research, and 

development within the industry to continue to improve die casting with a more robust process.         
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CASE STUDY II: UNSUPERVISED MACHINE LEARNING AND STATISTICAL 

ANOMALY DETECTION APPLIED TO THERMAL IMAGES 4 [9] 
 

Processing and analyzing continuous data is a challenge in the die cast industry.  Standard 

practice is to collect discrete performance data on a small number of variables.  Decisions are often made 

from a portion of this small data set on a variable-by-variable basis.  Analytics become exponentially 

more challenging with two-dimensional (2D) data sets, such as thermal images of the dies or X-ray 

pictures of castings.  Instead of tens or hundreds of variables, these 2D data sets can create more than a 

million data points for each casting.  Significant changes in the images are easy to detect, but slight 

anomalies or trending can be challenging or time consuming for people to identify.  It is possible to 

efficiently evaluate this type of data through machine learning. 

This chapter will review an unsupervised clustering, semi-supervised training, and a statistical 

analytics algorithm to automate the analysis of images data sets.  Thermal images of die halves taken 

before the die is closed for a shot will be used in this analysis.  A three-step algorithm will be 

implemented that reviews every thermal image to detect and identify anomalies without requiring detailed 

results of thousands of images.  This algorithm could also be applied to X-ray and other 2D data sets 

within the industry.     

INTRODUCTION 

Die casting is a hydraulic, mechanical, and thermal process [1].  Arguably, all three have a 

significant importance in producing high quality castings.  The hydraulic and mechanical portions of the 

process have an advantage, since data collection systems monitoring these processes have existed for 

decades.  The industry is familiar with reviewing data such as cycle time rates, tie bar tonnages, velocity 

profiles, and pressure profiles.  Dedicated suppliers provide hardware and software for this data collection 

that is standard on new equipment investments.   

 
4 This section is an edited version of a conference paper, included with permission from the North American Die Casting 
Association.  D. Blondheim, “Unsupervised Machine Learning and Statistical Anomaly Detection Applied to Thermal Images,” 
2018 NADCA Congress and Exposition.  Indianapolis, IN, Oct. 2018  
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The thermal portion of the die casting process has lagged in data collection and analysis.  

Measuring temperature and flow rates of cooling lines provides information on the heat removed from the 

die by cooling lines, but this does not directly translate to die surface temperatures or incorporate the 

spray cycle impact.  Embedded thermocouples in dies have been used to detect temperature changes 

within the internal die steel at specific locations.  However, they fail to collect the surface temperatures 

that will be in direct contact with the liquid metal at injection.  Hand-held infrared cameras can provide a 

more complete picture of the die surfaces, but they require stopping the machine, so the die can remain 

open for the images to be taken.  The impact to the cycle drives these hand-held thermal images to be 

infrequent audits of the process.  The continuous data the industry is familiar with, such as velocity 

profiles, has not existed in the past for thermal images.   

More recently, there has been some early adoption in mounted thermal cameras that take thermal 

images during every cycle [45], [223].  Use of this type of mounted thermal camera system in a 

production setting highlights a few difficulties with the typical approach of data analysis on images.  

Typically, software provided with these thermal camera systems allows users the ability to create a region 

(square, circle, rectangle, etc.) on the image and trend the minimum, maximum, and average temperatures 

within that area.  For some features, like a critical jet cool core, it is easy to understand and select this 

region as one to track and trend with the software.  What is more difficult to identify are other, more 

subtle critical areas within the thermal process.  It is near impossible for a user to know where to select 

regions and tie them to specific water cooling channels or die lube spray nozzle paths, especially with 

hundreds of potential water lines in a die and spray nozzles within a spray manifold.   

Another difficulty is understanding the variation that occurs within the die naturally.  Steady state 

conditions in the die may be better classified as “quasi equilibrium,” since small temperature changes 

within the die may accumulate over time [44].  The inputs to the thermal process are also not the 

constants that are assumed in most simulations.  Furnace temperature of the liquid metal typically follows 

a sine-wave pattern.  Cooling water flow rates vary based on usage throughout the plant.  Die lube 

temperatures may be impacted by the external climate.  These variables, as well as countless others, all 
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impact the ability of the die to hit a steady state surface temperature condition.  This variation makes it 

difficult to understand which temperature changes seen on the thermal image are part of the normal 

process variation (common cause variation) and which are due to a failure within the thermal cycle 

(special cause variation).  If this understanding does not exist, setting up thresholds for warnings in the 

regions the user selects is exceedingly difficult and therefore often left incomplete. 

The final difficulty to mention is not an issue with the thermal camera system itself but a problem 

of part tracking and data collection systems.  In the ideal situation, all the parts produced would be 

properly tracked through the supply chain and accurately documented with rejection and acceptance data.  

With these results, advanced supervised machine learning algorithms can be applied to the image files to 

ideally predict potential failures based on the thermal images.  Getting this ground truth data on the 

thermal images is costly, time consuming, and difficult to implement due to the amount of effort. 

Large image analysis projects are a challenge for human vision.  Sudden changes in a small area 

of an image can be easily detected by humans.  However, gradual changes of an image are not easily 

observed due to our ability to adapt to brightness changes.  It is impossible for humans to extract specific 

measurement temperature data out of thermal image files [224], whether the image is in grayscale or 

shades of color.  Because of these difficulties, an innovative approach in image analysis is needed, 

reducing the effort required for the die cast industry to utilize these types of technologies.  Outlined here 

is a three-step anomaly detection algorithm that can be used on thermal images.  The approach is general 

and can also be used on other repeatable image files such as x-ray images.   

ANOMALY DETECTION ALGORITHM  

A three-step anomaly detection algorithm was developed to detect and identify regions within the 

thermal image that are statistical anomalies from a known condition.  The first step in this algorithm is to 

complete an unsupervised k-means clustering on a representative training data set.  A minimum of several 

hundred images should be used.  Ideally, several days or weeks of production should be reviewed, which 

would represent thousands of parts.  Once clusters are identified through the first step, they would be 
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reviewed by subject matter experts.  The semi-supervised training occurs when the expert selects the 

cluster grouping that represents the steady state condition of the die.  With the steady state cluster 

selected, a statistical model is created to which any future image can be compared for anomaly detection.  

Figure 76 shows the anomaly detection algorithm, the needed inputs, and the output.   

 
Figure 76: Three-step algorithm for anomaly detection 

 

Clustering Algorithm 

K-means clustering algorithm is an unsupervised clustering algorithm that can be used to group 

similar unclassified data sets.  Other clustering algorithms exist, and in some situations, may be more 

appropriate.  However, they were not reviewed here because the simple k-means clustering algorithm 

proved to be successful in the testing done during the algorithm’s development.  The k-means clustering 

algorithm works by dividing a sample of size n into k different clusters, where each sample is measured to 

the nearest mean value that serves as an average or representative sample of that cluster.  The number of 

clusters the sample is to be divided into is a user-defined value.  Observations are assigned to each cluster 

to reduce the within cluster sum of squares or variance.  Mathematically this is defined in Equation 23. 

Equation 23 𝑮𝒊𝒗𝒆𝒏: 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑 … 𝒙𝒏) 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 = 𝒌 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝒔𝒆𝒕𝒔 = (𝑺𝟏, 𝑺𝟐, 𝑺𝟑 … . 𝑺𝒌) 
 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆: arg min ∑ ∑‖𝑥 − 𝜇𝑖‖2 = arg min ∑|𝑆𝑖| 𝑉𝑎𝑟 𝑆𝑖𝑘

𝑖=1𝑥∈𝑆𝑖
𝑘

𝑖=1  𝑾𝒉𝒆𝒓𝒆: 𝜇𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑆𝑖 
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The k-means algorithm needs an initial set of cluster mean values.  In this example, a random set 

of k points is used as this initial set.  An iterative process then takes place: 

Assignment Step:  Assign a sample to the cluster with the nearest Euclidean distance to the 
cluster mean. 

 

 Update Mean Step:  With samples assigned, calculate a new mean value for that cluster.   
 

Repeat: Repeat steps until there are no new assignments of points to new clusters; at this point, 

the algorithm has converged.  

 

A k-means algorithm will converge to a local minimum based on the initial assignment step.  

There is no guarantee that the solution found will be the global minimum because of the randomly 

assigned initial starting values.  To overcome this issue, the k-means clustering algorithm is ran multiple 

times with new random initial values at each start.  This usually ensures that the global minimum is found 

[222].  In this work, 100 sets of random initial values were used. 

The difficult decision within the k-means algorithm is to determine optimum cluster size k.  The 

method used here is called the F-Score Approach.  The F-Score is similar to the F-test completed during 

ANOVA analysis.  The Sum Square Error (SSE) is calculated both within the clusters and between the 

clusters.  Using the SSE and the degrees of freedom (DF), a ratio is created to provide an F-Score.  This 

score is calculated using Equation 24 by looping through the k-means calculations for multiple cluster 

sizes.  The cluster size that produces the maximum F-score is selected as the optimum and would be used 

for the analysis [225]. 

Equation 24    𝑭 =  𝑺𝑺𝑬𝒃 𝒅𝒇𝒃⁄𝑺𝑺𝑬𝒘 𝒅𝒇𝒘⁄  

 

Where: 𝑆𝑆𝐸𝑏 = Sum Squared Error between the clusters 𝑑𝑓𝑏 = degrees of freedom between the clusters 𝑆𝑆𝐸𝑤  = Sum Square Error within the cluster 𝑑𝑓𝑤 = degrees of freedom within the cluster 
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Semi-Supervised Training 

The second step is referred to as “semi-supervised training.”  This step requires a subject matter 

expert to review the cluster assignment data to determine which of the clusters best represents the steady 

state condition of the process.  This is the step that requires human input into the algorithm.  There are 

several types of data to be reviewed to assist with determining the steady state cluster.     

The output of the clustering step is an assignment list of the thermal images to assigned clusters.  Through 

programming, these images can be turned into image stacks, which represent all the images for each 

cluster.  A stack becomes a three-dimensional array of data with the first two dimensions being the image 

width and height and the third dimension being the set of images that belong to that cluster.  With the 

images in a stack, mean and standard deviation matrices can be calculated for all the pixels within the 

image.  Statistics and histograms calculated from these matrices are used to help identify differences 

between clusters and which cluster represents the steady state.  For example, a production cycle during 

the warm-up process will have a significantly lower mean temperature distribution than a steady state 

production part.  

Another set of data that can be reviewed to identify steady state is cluster size and occurrence.  In 

the ideal process, the cluster size for steady state would be significantly larger than all the other clusters 

identified because it should be the default condition of the tool in production.  Clusters should identify 

warmup conditions, since the dies are significantly cooler during these times, and potentially a transition 

period from a cold die at start of warmup cycle to a moderately hot die that is not yet fully at steady state.  

The time series occurrence of the cluster assignment is another indication as to which cluster represents 

the steady state condition.  Ideally, the steady state condition will appear consistently throughout the 

entire series of data being reviewed. 

A third option to review would be trended points on the die surface across the series of images.  A 

graph could be produced that shows the temperature readings with different colored points to represent 

the different cluster assignments.  Since the k-means algorithm does not supply direct output describing 

which input values were used to cluster, this approach may be a bit more “guess and check” than desired.  
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Detailed knowledge of the part and tool may eliminate this “guess and check” method.  It may be 

preferred to complete analysis of the standard deviation matrix and its corresponding histogram to gain 

insight on variation of the steady state cluster.   

These are just a few examples of data to review to determine the steady state cluster.  Other data 

such as time between shots may also be reviewed and used to assist with the selection.  The key 

understanding is that the steady state cluster selection is a critical step in the algorithm to ensure the rest 

of the algorithm is built to properly detect anomalies.  It is reliant on input from a human with domain 

knowledge in processing of die castings.  

Statistical Anomaly Detection 

With a steady state cluster identified, the last step in the algorithm is to produce an anomaly 

detection model, which can be used to review any new images that are produced in production.  This 

anomaly detection model was based on a Shewhart statistical process control (SPC) chart [226].  The 

typical SPC chart plots one variable over time.  This approach would be too time consuming and difficult 

to comprehend with a 2D image file that contains thousands of pixels requiring analysis. 

With a thermal image, a creative new way to implement an SPC approach was developed for 2D 

data sets to visualize where anomalies occur on the image.  Mean and standard deviation matrices are 

calculated from the steady state image cluster.  These matrices would reflect the average and typical 

levels of variation in the temperature readings of each pixel within the thermal image.  Figure 77 provides 

a visual example on the mean and standard deviation matrices. 
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Figure 77: Visualization of steady state image stack with mean and standard deviation matrices 

 
With these matrices in place, a statistical z-score can be calculated on a pixel-by-pixel basis for 

any new image input into the algorithm.  The z-score represents the number of standard deviations a 

sample is from the mean and is calculated from Equation 25. 

Equation 25                               𝐳𝒙,𝒚 =  (𝐓𝒙,𝒚−𝛍𝒙,𝒚)𝛔𝒙,𝒚  

Where: z𝑥,𝑦 =  𝑍 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑚𝑎𝑔𝑒 𝑎𝑡 𝑝𝑖𝑥𝑙𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) T𝑥,𝑦 =  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑚𝑎𝑔𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) μ𝑥,𝑦 = 𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) σ𝑥,𝑦 =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) 

 

A z-score value that is zero would represent a pixel that is at the mean of the steady state cluster 

and would be considered similar to the steady state.  Statistically speaking, the null hypothesis that the 

new image is the same as the steady state cluster could not be rejected.  As the new pixel temp value 

moves away from the mean, either positively or negatively, it would represent a larger magnitude z-score.  

Therefore, it would be less likely the new pixel temperature is from the same distribution as the steady 

state image.  Outside certain z-score boundaries, the null hypothesis that the new image and the steady 

state are the same would be rejected.     
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Much like the traditional SPC charts, a threshold needs to be set to represent the number of 

standard deviations from the nominal that is allowed before the value is considered out of control or an 

anomaly.  Often in SPC charts, a threshold of 3 standard deviations (also commonly referred to as 3σ) is 

used.  ±3σ from nominal represents 99.7% of the area under a normal distribution curve.  In the code 

developed, this threshold is programmable by the user so that he or she can test different threshold ranges.  

The results here are based on a threshold z-score of ±3. 

The result of this step is a matrix of z-scores representing each pixel of the thermal image.  This 

alone does not provide value to visualize where the anomalies occur since an image of z-scores will look 

nothing like the die in question.  Additional mathematical modification is required to convert the original 

thermal image into an output image that highlights the anomalies.         

Output Mathematics 

The output of this final step needs to combine the z-score matrix produced in the previous step 

with the original tested thermal image to provide an image file a human can view.  The required output is 

a grayscale thermal image based on the temperature readings that would highlight areas of the die that 

were statistically hotter (in red) or colder (in blue) than the steady state cluster.  To do this, the original 

grayscale image needed to be replicated into three layers to represent the Red, Green, Blue (RGB) used in 

color image processing.  Then all three layers layers need to be modified with the z-score values above or 

below the threshold value to create an image that remains grayscale for areas within the threshold limits, 

but blue in areas below the negative threshold and red in areas above the positive threshold.  This would 

produce an image that can easily be reviewed and understood by operators. 

Colored images require matrix values between 0 and 1.  The first step is to convert the 

temperature readings from the new test image to this 0 to 1 range using an assigned minimum and 

maximum value from the entire range of images as seen in Equation 26 .  

Equation 26 𝒑𝒊𝒙𝒆𝒍 𝒓𝒂𝒏𝒈𝒆 [𝟎, 𝟏] = (𝒕𝒆𝒔𝒕 𝒊𝒎𝒂𝒈𝒆 𝒑𝒊𝒙𝒆𝒍 𝒕𝒆𝒎𝒑−𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒈𝒍𝒐𝒃𝒂𝒍 𝒕𝒆𝒎𝒑)(𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒈𝒍𝒐𝒃𝒂𝒍 𝒕𝒆𝒎𝒑−𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒈𝒍𝒐𝒃𝒂𝒍 𝒕𝒆𝒎𝒑) 
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If both die halves are used and combined into one image, which was done for this work, separate 

minimum and maximum values may be required for the moving and the stationary die half images to 

provide the correct visualization of the die halves.  If one of the die halves has a narrow temperature 

range, it will appear washed out or undefined compared to the other half.  Different minimum and 

maximum values between halves can fix that problem.  It is important to note that the image produced is 

no longer an actual temperature output.  The images are converted for a visual image for the operator 

only.  Once this range adjustment is made, this matrix, which is called [GS] (original Gray Scale), with 

the z-score matrix, which will be called [Z], is used for remaining matrix math to create the RGB layers.  

An “identity type” matrix of 0s and 1s is developed based on the different z-scores for the different layers.  

This is done to turn on or off the coloring to get the red and blue anomaly highlights as described in the 

previous section.  Entire matrices will be labeled in brackets [ ], an individual location within that matrix 

will be listed without the brackets (ie: Z versus [Z]).  When there is a multiplication, it is assumed to be 

an elementwise multiplication between matrices (also called Hadamard product or entrywise product – 

represented in several programming languages as:   .*) and not matrix multiplication.  This mathematical 

code is seen in Figure 78. 
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For the Green layer matrix [G], the math to complete the section follows: 

Let [ZG] = [Z] 
IF ZG is > threshold, THEN change ZG value to 0 
IF ZG is < (-1*threshold), THEN change ZG value to 0 
IF ZG is >=(-1*threshold) AND ZG is <= threshold, THEN change ZG value to 1 
[G] = [GS] .* [ZG] (elementwise multiplication) 
 

For the Blue layer:  

Let [ZBNeg] = [Z] 
IF ZBNeg >= (-1*threshold), THEN change ZBNeg to 1 
IF ZBNeg < (-1*threshold), THEN change ZBNeg to 100,000  
Let [ZBPos] = [Z] 
IF ZBPos <= threshold, THEN change ZBPos to 1 
IF ZBPos > threshold, THEN change ZBPos to 0 
[B] = [Z] .* [ZBNeg] .* [ZBPos] (elementwise multiplication) 
IF B > 1, THEN change B to 1 
 

For the Red layer: 

Let [ZRNeg] = [Z] 
IF ZRNeg >= (-1*threshold), THEN change ZRNeg to 1 
IF ZRNeg < (-1*threshold), THEN change ZRNeg to 0 
Let [ZBPos] = [Z] 
IF ZRPos <= threshold, THEN change ZRPos to 1 
IF ZRPos > threshold, THEN change ZRPos to 100,000 
[R] = [Z] .* [ZRNeg] .* [ZRPos] (elementwise multiplication) 
IF R > 1, THEN change R to 1 
 

Figure 78: Mathematical code for different anomaly identification per color layer 
 
The final image file is created by the combination of the [R], [G], [B] matrixes. 

Data Collection and Pre-Processing 

The thermal images used to develop this algorithm were gathered using an infrared camera 

system created with the assistance of a third-party integrator.  Two cameras are mounted on opposite 

sides of the die cast machine in an enclosure, that opens for the images to be taken immediately before the 

die closes.  Figure 79 shows the camera system mounted on the moving half side, pointed at the stationary 

half die. 
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Figure 79: Thermal image camera system install on die cast machine [45] 

 

The camera system stores a TIFF file for both die halves.  This file saves the actual temperature 

reading of the die instead of a scaled 0 to 1 grayscale value typical of image files.  This prevents the TIFF 

file from being opened in most Windows based image viewers but allows a full matrix of temperature 

readings to be uploaded into analytics software such as R [215].  R and other software can automatically 

scale a matrix from 0 to 1 based on values of the matrix to allow it to be viewable.  Figure 80 shows an 

example of the gray scale image produced from the temperature matrix. 

 
Figure 80: Thermal image temperature matrix and grayscale image 

 
To be successful with the image analysis, it is critical to understand that the camera system taking 

the images must be fixed and produce a repeatable image.  The clustering algorithms used are simplistic 

and do not search through an image like a convolutional neural net (CNN) would.  This makes it 
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significantly easier to train and implement but requires dedication to the stability of the images.  Image 

registration, or alignment to a target image, can help with drift or repositioning of the camera, but it was 

not required within this application due to the camera mounting.   

Before the clustering algorithm was ran, the image files were preprocessed as follows: 

1. Cropping of both stationary and moving half images individually 
2. Pixel scaling of both stationary and moving half images individually 
3. Combining the two cropped and scaled images into one matrix file 
4. Vectorizing the 2D matrix to a 1D vector labeled with a serial number tag 

Original image files were 480 pixels x 640 pixels x 2 images = 614,400 data points per casting.  

Due to lenses required and the camera mounting locations, a portion of the image file does not contain 

useful cavity temperatures.  These areas were cropped out to reduce the amount of data to be processed.  

An example of this cropping is seen in Figure 81.   

 

 
Figure 81: Pre-crop versus post-crop thermal image (stationary half) 

 
After cropping, the images were scaled to 90 x 90 pixels.  A 3x3 or 2x2 average was calculated 

on the image to produce the scaled pixel image.  Image pixels were scaled to allow for data dimension 

reduction, but more importantly, this would also average out any small image shift that could occur image 

to image.  Figure 82 shows an example of pixel scaling used.     
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Figure 82: Comparison of scaled pixel thermal images (moving half) 

 
Finally, the two images were merged into one matrix of size 90 x 180 pixels or 16,200 data 

points.  This was a significant data reduction from the original image files, but the critical cavity 

temperature data was maintained.  A for-loop was programmed to cycle through all the images to create 

this combined image, which was then vectorized into a 1D data string and merged with all the other 

images. A data set was created that contains a serial number label and a vectorized temperature list.   

With this data set, the k-means clustering algorithm is ran to assign serial numbers to a cluster.  In 

a clustering algorithm, the data columns typically represent multiple input variables with different value 

ranges.  These different variables are required to be normalized before running the k-means algorithm.  

This is done because the k-means clustering is dependent on distance calculations and would be 

incorrectly influenced on large values.  Normalization does not need to happen with this application of 2D 

images.  The thermal image is one set of temperature inputs located across a 2-dimensional surface of the 

die.  Normalizing would affect each pixel location individually, and it would lose its relationship with 

other areas on the die.     

For this algorithm, an R software script was created to complete the operations of loading the 

images, cropping, pixel scaling, combining, and clustering.   
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RESULTS  

To validate this algorithm, thermal image data was pulled from the production system and 

analyzed through the steps.  A total of 894 images were used to develop the algorithm.  This represented 

production over multiple shifts on a Friday and Monday.  During this time, there were several downtime 

events during production, including a shutdown over a weekend.  As a result, several warmup cycles 

happened during this time range. 

Clustering 

The R package stats [215] contains the kmeans function that was used to complete the clustering 

analysis.  Initially, cluster sizes of k = 2 to k = 30 were looped through the package to cluster the images.  

The k-means clustering algorithm was set up to run with 100 random starting points to help find the 

global minimum.  The algorithm was also programmed to stop at 500 iterations of the algorithm if an 

optimal solution was not found.  After the clustering was ran, the algorithm found a stopping point 

typically within 6 to 9 iterations, so the 500 maximum iterations was adequate.  With the kmeans 

function, the data required to complete the F-score for each cluster size is extracted and saved.  A graph 

of the F-score per cluster size can be seen in Figure 83.  Based on this, an optimal cluster size of k = 4 

was selected. 

 

Figure 83: F-Scores per cluster size 
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Semi-Supervised Learning 

The next step is to identify the cluster that best represents the steady state temperature profile of 

the die.  The clustering process will produce statistically unique groups based on minimizing the distance 

within the cluster of the input variables.  In this example, these input variables are the thermal picture 

pixel location temperature measurements.       

Since there were no major, purposeful, thermal changes made to the process during this run, the 

clustering algorithm worked extremely well identifying a steady state cluster based on size of the cluster 

assignment alone.  Table 33 shows the complete breakdown of the 894 images to each cluster assignment, 

with cluster #1 having the largest assignment of 738 parts. 

Table 33: Cluster Assignment Sizes 

Cluster Assignment 

Number 

Number of 

Samples in Cluster 

% of Total 

Population 

#1 738 82.6% 
#2 121 13.5% 
#3 21 2.3% 
#4 14 1.6% 

 
Beyond the number of occurrences, it is useful to look at the sequence of cluster assignments.  

Ideally one would like to see clusters grouped in a meaningful way, such as a cluster of cold images 

showing up every time there is a downtime event.  Figure 84 shows a straight sequence based cluster 

assignment (1 to 894), while Figure 85 is the cluster assignment based on a date and time stamp of when 

the image was taken.  Figure 85 helps highlight downtime events, such as the weekend, and how clusters 

are assigned near these events. 

To validate correlation to warmup shot conditions, a table showing the number of warmup cycles 

per cluster was created.  Warmup shots are the immediate three castings produced after a downtime event.  

A downtime event is defined as any time the cycle took more than 10 times the standard cycle time.   

Table 34 shows this data.  Cluster #3 had almost 81% of its cycles classified as part of the warmup 

process after a downtime event.  Cluster #1 had two shots classified as warmup.  Further review of these 
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two shots found they both were shot number 3 during a shorter downtime event period.  This has led to 

further investigating of the heuristic rules regarding the warmup process.      

 
Figure 84: Sequence of cluster assignments 

 

 
Figure 85: Time-based sequence of cluster assignments 
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Table 34: Cluster Assignment Versus Warmup Shot Counts 

Cluster Assignment 

Number 

Number of 

Samples in Cluster 

Number of 

Warmup Shots 

% of Warmup 

Shots 

#1 738 2 0.27% 
#2 121 0 0.0% 
#3 21 17 80.95% 
#4 14 0 0.0% 

 
From this information, a convincing argument can be made that cluster #1 is best defined as the 

steady state cluster.  To further validate this claim, image stacks of this cluster can be created, and a 

grayscale image of the mean and standard deviation of each pixel location can be calculated.  By plotting 

these as a grayscale image, additional visual insight can be gained when compared to other clusters or 

differences between clusters.  The critical point to remember is that a grayscale image will have the 

lowest number assigned as “black” and the highest value as “white.”  The rest of the image is scaled gray 

between these, so it is not possible to compare directly two different grayscale images.  Figure 86 shows 

the mean and standard deviation matrix of the cluster #1.  The mean image will highlight the general 

temperature gradient, while the standard deviation image will highlight areas on the die that see the 

largest temperature variation in lighter shades of gray to white. 
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Figure 86: Mean and standard deviation images for cluster #1 

 
Another useful way of comparing cluster mean images is with a histogram of the different 

temperature points.  The shape and distribution of the histogram can provide insight that image 

visualization loses due to the scaling properties of images.  In Figure 87, the histogram of cluster #1 has 

significantly more points at the hotter temperature range when compared to the histogram of cluster #3.  
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Cluster #3’s histogram has most of its temperatures near the 320 to 330 range. Given that cluster #3 is 

tied to the warmup process (as seen in Table 34), this shift in temperature readings is expected.      

 
Figure 87: Histogram of mean image of cluster #1 versus cluster #3 

 
As previously mentioned, the graphs and images used in this section are some ways the data 

available can be used to select the steady state cluster.  This assignment is a critical step in the algorithm.  

Cluster selection becomes the basis for the model used to compare all future thermal images.  Selecting a 

poor representative cluster will mean incorrect statistical anomaly detection.  In the multiple sets of 

images ran through the algorithm in preparation for this work, it has been straightforward to find the 

steady state cluster for the set of thermal images in review.  This may not be the case in all situations.   

Along with the steady state condition (cluster #1) and the warm-up cycle condition (cluster #3), 

the unsupervised algorithm also detected two other clusters.  Cluster #4 was a situation where the die got 

extremely hot.  A manual water valve was accidently turned off prior to starting up.  The result was an 

extremely hot die.  This failure was identified through shift notes that were captured the day of the testing.  

Cluster #2 presented a different challenge, since it was not readily identifiable as to why this group 
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existed.  This highlights the importance of having this process real time on the production floor to better 

troubleshoot these types of anomalies.     

Statistical Anomaly Detection 

With the steady state cluster now identified, the last step of the algorithm can be completed.  An 

image stack is created from the thermal images assigned to the steady state cluster.  The mean and 

standard deviation matrix for each of the pixel locations within the image are calculated.  This creates two 

matrices of data, which will be used to calculate z-scores.  Each pixel location is assumed to be normally 

distributed within a cluster, and a z-score calculation will provide the statistical probability that a new 

image would belong to the distribution of the steady state cluster.  If there is a large z-score, beyond the 

defined threshold, it is assumed the given pixel location is an anomaly to the process.  It will then be 

appropriately flagged in the image.   

The z-score calculation is straightforward.  Creating the color image from an input temperature 

matrix and the z-score matrix created is more difficult due to the multiple layers required for a color 

image.  Following the equations defined earlier will ensure all the color layers are appropriately created.  

With a script created containing the mean matrix, the standard deviation matrix, and the layer color code, 

one can almost instantaneously select an image file and produce a thermal image with anomalies colored 

red or blue to highlight statistical temperature differences.  Figure 88 shows a standard warmup shot after 

an extended downtime when compared to the steady state cluster.  Figure 89 shows a casting from cluster 

#4 where the water was identified as being turned off.  The thermal camera is quick to pick up the 

temperature changes within the die, while the algorithm was able to correctly classify this as a separate 

group of parts. 
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Figure 88: Anomaly detection on warmup shot 

 

 
Figure 89: Anomaly detection on die with water turned off 

 
It is important to note in Figure 89 is that emissivity becomes a critical component in 

understanding the thermal images.  At certain temperatures, oxidation amounts of die surfaces, and polish 

levels, the infrared thermal camera may not be able to accurately read the temperature.  NADCA 

publications have discussed emissivity in thermal images in more detail [223], [227].  In this case, the 

reflective areas near the extreme high-temperature zones in Figure 89 appear to be significantly colder (in 
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blue) than typical.  Although this is not a correct measurement by the camera system, this still highlights 

the power of the anomaly detection algorithm to identify changing temperature regions. 

Benefits 

The goal was to walk through this three-step anomaly detection algorithm to show how it can be 

utilized in an effective manner to gain valuable insight on complex, 2D, unsupervised data sets, such as 

thermal images in high pressure die casting.  There is an initial commitment required for the image 

collection system and programming, but once it is in place, the processing time to review anomalies on 

new thermal image is almost instantaneous.  Minimal effort is required to make modifications of the 

script for new parts (mainly to preprocess the image files with cropping and pixel scaling).  This script 

becomes a powerful image processing tool that can allow a user to visualize and clearly communicate 

anomalies on image files.   

One of the significant benefits of this approach is there is no requirement to have pre-labeled 

image files.  Part traceability and data collection throughout the supply chain is time consuming.  This 

approach provides valuable data regarding the process without the need for traceability of castings.  

Additionally, this algorithm requires domain knowledge to select the proper steady state cluster.  Several 

types of analysis can be used to assist a user in selecting the steady state cluster, but it still relies on 

human input.  The benefit is that the human is only looking at a significantly smaller portion of the data 

that the machine learning algorithm compiled.  In this example, the human is required to understand the 

four unique clusters found via the clustering algorithm versus the original 894 images.  This automation 

of data analysis while providing insight needs to be the goal of applying machining learning to 

manufacturing. 

FUTURE APPLICATIONS 

With this algorithm developed and proven on thermal images, two areas of future applications are 

currently under development.  The first is the industrialization of this algorithm on the shop floor.  The 
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second is the use of this three-step anomaly detection algorithm on other images data sets, specifically x-

ray images. 

Development is underway with software providers to industrialize this algorithm on hardware 

located at the die casting cell.  The goal is to make the algorithm “real time” to detect the anomalies 

identified within the die casting thermal process.  Hardware will be implemented on the floor and 

interfaced with the thermal imaging system.  Thermal images will be stored long-term on the network for 

future analytic modeling, as well as pushed to the hardware for real time analysis.  The system will have 

programmed scripts to execute the image preprocessing and the SPC anomaly detection model 

calculations.  The output image, with the blue and red anomaly highlights, will be displayed for the 

technician at the die cast machine.  This image provides a visual tool to aid in troubleshooting any 

thermal issues within the die.  Finally, a feedback loop from the hardware back to the die cast machine 

will provided an alert or stop the machine if a certain threshold of anomalies is detected.  The idea is to 

prevent the machine from producing suspect product before making the casting.  Plans are in place to 

have this system operational by mid-2019.     

Along with industrializing the solution for thermal images, the three-step anomaly detection 

algorithm can also be utilized in other image analysis applications.  Detection of changes in porosity on x-

ray images was the next potential use investigated.  Because x-rays are interpreted by humans, there is 

subjectivity on the interpretation of the images.  The use of the three-step anomaly detection algorithm 

helps removes this subjectivity.   

Initial experiments with the x-ray images yield some noteworthy results.  First, it was quickly 

found that the x-ray fixturing used to locate parts was not repeatable enough.  Image files were shifted 

significantly one part to the next.  This prevented the immediate implementation of the algorithm.  Image 

registration needed to be completed on x-ray images to align them prior to clustering.  At the time of this 

publication, experimentation with the anomaly detection portion was still underway.  However, several 

cases of creating a mean and standard deviation matrix and grayscale image were completed.  This was 

done to understand the condition of the average part and where variation in porosity tended to form.  A 



 

224 
 

second application of the mean and standard deviation images was a comparison between two different 

process settings to understand if there was a visual improvement in the average porosity from the x-ray.  

Although neither of these cases utilized the full algorithm, they highlight the additional insight gained 

form image stack data.  With further development and an improvement in image repeatability, the same 

colored anomaly detection algorithm can be applied to the x-ray images.  Figure 90 shows an example of 

a mean and standard deviation grayscale image created using a registered image stack of x-ray images. 

 
Figure 90: Mean and stand deviation images of two process settings 
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CONCLUSIONS 

The three-step anomaly detection algorithm provides an extremely useful means of analyzing 

large volumes of images with relatively low human effort.  Instead of manually reviewing and classifying 

thousands of images, a clustering algorithm creates a small number of groups to review.  A subject matter 

expert can invest a small amount of time understanding and classifying these clusters.  Once an optimal 

cluster is selected, the image stack is used to create mean and standard deviation matrices.  These 

matrices become the SPC model for anomaly detection in any future image when compare to this optimal 

cluster.  Areas beyond the selected threshold value can be highlighted and represent anomalies that are 

easily understood and visualized by humans. 

As more data becomes available to manufacturing with the additions of sensors and cameras, it is 

becoming increasingly difficult to process this data in a timely matter to solve manufacturing problems.  

Machine learning must be put into practice within the industry to aid this data analysis.  If anomalies can 

be detected and responded to in real time, the cost of poor quality will be significantly reduced.  The goal 

of machine learning applications must be to automate the vast majority of data analysis.  The algorithm 

proposed here helps achieve this goal for repeatable image data sets.    

 

CASE STUDY III: TIME-SERIES ANALYSIS AND ANOMALY DETECTION OF 

HIGH-PRESSURE DIE CASTING SHOT PROFILES 5 [169] 
 

For decades, the die cast industry has boiled down the thousands of data points collected in the 

time-series shot profiles to a handful of statistics such as average fast or slow shot velocities.  These 

statistics are then trended and provide valuable process control information but averaging loses valuable 

data stored in the large set of time-series data. The approach of only using statistics from shot velocity 

and pressure profiles is no longer appropriate with the technology and computing power available today. 

 
5 This section is an edited version of an article published in Die Casting Engineer, included with permission from the North 
American Die Casting Association.  D. Blondheim and S. Bhowmik, “Time-Series Analysis and Anomaly Detection of High-
Pressure Die Casting Shot Profiles,” Die Casting Engineer, p. 14-18, Nov. 2019.    
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A collaborative effort between Mercury Castings and Mercury Digital Services created an 

innovative approach to storing and analyzing shot profile data on Mercury Casting’s BuhlerPrince die cast 

machines.  The end solution was a real-time Azure App that can be accessed by employees via mobile 

devices on the foundry floor.  This application provides both anomaly detection of a time-series profile as 

well as all the traditional statistics the foundry is used to reviewing.   

This case study will review the benefits of analyzing time-series data, provide an overview for 

anomaly detection, and show an operational application solution.      

CRITICALITY OF SHOT PROFILE 

The importance of the shot profile or shot trace to produce quality castings has been a technical 

topic covered by many through the years.  Slow shot velocity, fast shot velocity, fast shot deceleration, 

and intensification pressure are parameters people have researched and published on.  Each impact the 

overall casting quality.  These parameters are found in the velocity and pressure time-series profiles 

associated with high-pressure die casting.    

In the 1990s, much work was done by Thome at Ohio State University showing the importance 

slow shot speed plays in cold chamber die casting. The research presented how a controlled, parabolic 

acceleration to a critical slow shot velocity reduced turbulence and minimized the air entrapment during 

the casting process [76].  Fast shot velocity is another critical parameter to the creation of high-quality 

castings.  Fast shot velocity is calculated from flow rates established in PQ² calculation.  As a result, fast 

shot velocity ties into the atomization and filling time of the die casting die [15].  In 2017, Miller and 

Monroe showed the benefits and limitations of varying fast-shot profiles to create prefill and reduce 

average cavity air pressure [90].  The importance of fast shot deceleration and the potential reduction of 

the impact pressure is discussed in both overflow design [228] and hydraulic control of the die cast shot 

system [87].  A rapid deceleration at the end of the shot can reduce the impact spike and prevent flashing 

of the die.  This could lead to a reduction in downtime issues that improves the thermal cycling of the 
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tool.  Savage et al also discussed the impact pressure as well as the static and intensification pressures in a 

2001 NADCA paper in producing quality castings [88]. 

CURRENT MEASUREMENT ISSUES 

Decades of research in die casting show the injection velocity and pressure profiles are critical to 

the overall casting quality.  Yet, when publications associated with process control during this same time 

are reviewed, a focus exists only on statistical parameters from this time-series data [19], [20], [23], [45], 

[89].  Often, the shot profile parameters generated by the data collection system ignores the acceleration, 

deceleration, and impact pressures, which have been shown to influence casting quality.   

Most of the high volume of data collected during the injection process is reduced to a few 

averages.  Technicians set points that act as ranges for average calculations in the shot profile collection 

system.  An example of ranges set for slow, intermediate, and fast shot velocities are seen in the yellow 

circles of Figure 91.    The need for consistent averages often drives the selection of these points.  Setting 

a point too close to a transition would create averages viewed to be inaccurate or inconsistent.  A small 

subset of the data available is used for a parameter average.   

 
Figure 91: Typical range point settings for slow and fast shot velocities 

 
Between these points, averages are calculated and shown as parameters used for process control.  

Lost in this average is anything associated with the change of rate associated with the profile.  An average 

does not show if a planned constant acceleration in the slow shot is occurring.  Information is lost unless 
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one investigates the entire time-series string of data, often visually one shot at a time.  Potential 

information loss is highlighted in the four different alternatives presented in Figure 92.  Here, all four 

profiles have the same exact average of 152.5 inches per second (IPS) throughout the profile; however, 

the profiles are all significantly different: constant acceleration, constant deceleration, velocity step, and 

noisy or repetitive signal.  

 

 
Figure 92: Four example profiles with the same average 

 
Along with missing rate changes within the averages the shot monitoring systems provide, a 

typical commercially available shot monitoring system will also lack parameters for some of the critical 

process settings used.  Impact pressure plays a significant role in casting quality as well as the ability to 

run the die.  If a foundry is using hydraulic brakes to help control the impact pressure at the end of the 

shot, it would be critical to watch this.  Visually, it is easy to see on a pressure profile.  However, the data 

collection system lacks parameters around this impact spike to trend with the other parameters it collects.  

The parameter requires human review to ensure the process does not change over time. 
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The motivation within Mercury Castings to develop a new approach to review and analyze the 

entire time-series shot profiles led to the collaborative effort between Mercury Castings and Mercury 

Digital Services to store, process, and run this data analysis. 

TIME-SERIES ANOMALY DETECTION METHOD 

Anomaly detection methods are used to identify unusual patterns in data.  Introduced here is a 

method to detect anomalies within time-series data including velocity and pressure profiles.  Additionally, 

the process discussed can be used to find anomalies within other domains containing multidimensional 

data. 

The velocity or pressure of a shot through time can be represented as a one-dimensional vector of 

real numbers. Consider a vector A, representing the shot velocity over n steps, such that A ∈ Rn.  For k 

castings, the mean velocity vector can be calculated.  Per Equation 27, let M be the mean velocity vector 

such that: 

Equation 27    𝐌 = 𝟏𝒌 ∑ 𝑨𝒊𝒏𝒊=𝟏      

 

Having found the mean velocity vector from a set of k velocity vectors, an algorithm can be used 

to find the anomalous velocity vectors.  Each new velocity profile is compared to the mean velocity 

vector.  Their similarity is calculated per the procedure below, and the least similar profiles are identified 

as anomalies.   

Similarity Measure – Cosine Similarity 

Cosine Similarity is commonly used as similarity measure for a vector of continuous numbers. 

The magnitude of shot profiles can vary significantly, but the overall pattern detected similarity is 

determined by the magnitude at each position of the vector and not the magnitude shift.  Cosine Similarity 

is suited for this application as it is magnitude invariant but is sensitive to the overall pattern [229].  

Equation 28 shows the standard Cosine Similarity calculation used for multidimensional vectors.  
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Equation 28      𝑪𝒐𝒔𝒊𝒏𝒆 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝐜𝐨𝐬(𝜽) =  𝑨∙𝑴||𝑨||𝟐||𝑴||𝟐 =  ∑ 𝑨𝒊𝑴𝒊𝒏𝒊=𝟏√∑ 𝑨𝒊𝟐𝒏𝒊=𝟏 √∑ 𝑴𝒊𝟐𝒏𝒊=𝟏  

 
A set of sample velocity data was reviewed to determine fitness of the standard Cosine Similarity 

equation.  The sample data was then passed through the anomaly detection algorithm, which is based off 

the Z-Score of the Cosine Similarity values.  The Z-Score calculation can be seen in Equation 29. 

Equation 29                         Z-Score  =   (x – μ) / σ 

 
This anomaly detection procedure is explained in detail in the next section.  Figure 93 shows 

most data identified as normal with a few profiles with patterns not consistent, marked as anomalies.   

 
Figure 93: Anomaly detection using Standard Cosine Similarity 

 
A velocity profile, which has the same pattern, but a difference in magnitude, was not identified 

as an anomaly.  To help detect these types of anomalies, a modification was made to the standard Cosine 

Similarity formula.  A penalty term was added to penalize large magnitude shifts.  Equation 30 shows the 

updated formula with this penalty term.  In the equation, 𝛽 is a very small constant. Selection of 𝛽 is 

dependent on the nature of the time-series data. For the data set reviewed here, it has been found 𝛽 < 

0.0001 works best.     
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Equation 30           𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑪𝒐𝒔𝒊𝒏𝒆 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝐜𝐨𝐬(𝜽) =  𝑨∙𝑴||𝑨||𝟐||𝑴||𝟐 − 𝜷||𝑨 − 𝑴||𝟐 

 
Using the proposed modified Cosine similarity as the similarity measure, the same sample results 

were ran through the anomaly detection algorithm.  Figure 94 shows the results for the modified equation, 

which now accurately detect the similar pattern, but magnitude shifted profile, as an anomaly.   

 
Figure 94: Anomaly detection using Modified Cosine Similarity 

 

Unsupervised Anomaly Detection Method 

Upon comparing each velocity vector A with the mean velocity vector M, a vector of Cosine 

Similarity scores is obtained.  Since it is unknown up front which profiles are normal and which ones may 

be anomalies, an unsupervised approach is needed for anomaly detection.  The first step is to calculate a 

Z-Score based on the Modified Similarity Cosine calculation with each vector A to the overall mean M of 

all vectors.  The distribution of Z-Scores will likely be non-normal and skewed like the 0 to 1 cosine 

similarity values.  This distribution should be analyzed to determine where appropriate Z-Score thresholds 

should be to represent a statistically significant difference in a profile.  In a normal distribution, a Z-score 

of -3 to 3 would represent 99.7% of the population.  With a skewed data set, this percentage does not 
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directly apply.  As a result, the Z-Score needs to be determined through analyzation of the calculated 

Cosine Similarities.  Figure 95 shows a distribution of Cosine values used in this example problem.   

 
Figure 95: Distribution of Cosine Similarity calculation values 

 
The analysis done here took a two-phase approach.  Initially, it was determined that any Z-Score 

less than -5 would be removed from the list of cosine similarities and the corresponding shot profiles are 

identified as anomalies. With the new values, a second iteration of Z-Scores is calculated.  Now any 

vector with a Z-Score less than -3 is defined as an anomaly.  Only the negative Z-Score threshold is used, 

since the positive threshold would represent vectors that are almost identical to the mean vector.  These 

positive anomalies can be ignored.  If a significant number of shot profiles are identified with Z-Scores 

outside the identified threshold value, an investigation of the profiles should be completed to identify if 

any process shifts or changes may have happened during the data collection. 

With M and Z-Scores established using unsupervised methods, it can now be compared to future 

shot profiles.  If the Z-Score of the new cycle is below the negative threshold, the profile would be 

identified as an anomaly.  This unsupervised method of anomaly detection works well in finding 
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anomalous shot profiles and is computationally inexpensive allowing a web-based application to be easily 

built to run stored shot profile data.  

APPLICATION IMPLEMENTED 

An automated method to collect, store, and analyze time-series shot profiles was needed to 

successfully launch this advanced analytics method in a production environment.  The initial focus of this 

project was relatively new BuhlerPrince die cast machines installed at Mercury Castings.  Current work is 

underway to connect to other machine formats and create a single web-application that would function 

regardless of die cast manufacturer.   

With this initial development, the shot profile data was already being stored into a network SQL 

database using BuhlerPrince’s Pro-Supervisor system.  The time-series data was stored in a compressed 

format, so the first step was to develop a Microsoft Azure Function Application that runs a script to 

decompress the time-series data and store it as a JSON file in Microsoft Azure Blob Storage.  Azure Blob 

Storage is unstructured cloud storage, which is often used for video and image storage.  The unstructured 

nature of blob storage differs from traditional structured storage of SQL databases.  JSON files are a type 

of file format that uses text to store data often in array or time-series format.   

With the time-series profiles decompressed and stored as JSON, Databricks service was used to 

build the anomaly detection model.  This model is deployed on a Python microservice and callable via 

HTTP calls. A web application is written to display the data on a browser and make use of the anomaly 

detection microservice to detect anomalous shot profiles in real time. Also, the web application provides 

additional features such as multiple shot overlay, display of traditional shot parameters, and the use of 

defining a visual “master profile” that can be used as a visual comparison to each new shot profile.  By 

using Azure Web Application and Office 365 login, any approved user can have access to the “Shot 

Profile App” on a device connected via Office 365.  This approach provides true mobile connectivity to 

the die cast operations.  
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Figure 96 is the home screen of the application showing multiple machine profiles.   Figure 96 

shows an intensification pressure anomaly detection identified.  The application compares the four 

different profiles with the anomaly detection algorithm and communicates which of the profiles are 

anomalous to the user. 

 
Figure 96: Home screen of Azure web page showing multiple machines running 

 

 
Figure 97: Detailed shot screen with anomalous shot detected 
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CONCLUSION 

Time-series data collected during the die casting injection cycle provides significantly more data 

than traditionally used within the industry.  Utilizing averages pulled from the profile does not provide the 

entire story of what is occurring with the shot.  Accelerations, steps, and hydraulic brakes can all be 

missed with this approach.  Published research shows that these can have a significant impact to overall 

casting quality, yet this is largely ignored in the data collection and processing systems that exist today.   

The new approach presented utilizes the increase in data processing power and cloud applications 

to create user-friendly application that executes a sophisticated anomaly detection system on time-series 

data.  By doing so, the entire shot profile is analyzed and compared to determine anomalies versus only 

averages calculated from the profiles.  The application and algorithm provide many benefits to the 

foundry and will be further improved as additional research continues to determine the sensitivity of the 

anomaly detection algorithm in a production environment.   

Technologies exist today to push the envelope on how the industry defines “Process Control.”  As 

data becomes easier to collect, store, and analyze, the industry must change its approach in how it 

analyzes data to generate quality improvements in the die casting process.   

 

CASE STUDY IV: UTILIZING MACHINE LEARNING AUTOENCODERS TO 

DETECT ANOMALIES IN TIME-SERIES DATA6 [179] 
 

INTRODUCTION AND BACKGROUND   

High-pressure die casting (HPDC) is a manufacturing process capable of producing high-speed, 

large-volume data sets [2].  The industry is familiar with and has history of collecting the velocity and 

pressure profiles during the injection process of the casting.  Because the data is stored as a paired time 

and measurement, it is defined as a time-series data set.  Initial shot monitoring systems from the 1960s 

 
6 This section is an edited version of a conference paper, included with permission from the North American Die Casting 
Association.  D. Blondheim, “Utilizing Machine Learning Autoencoders to Detect Anomalies in Time-Series Data” 2021 
NADCA Congress and Exposition.  Indianapolis, IN, Oct. 2021 
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included using transducers, signal conditioning equipment, and a physical recording device using pen on 

graphing paper collecting date at half-second intervals [78]–[80].  Improvements to data collection came 

in the 1980s, and 1990s, as the adoption of PCs and PLCs digitized the data collection process [81], [82].  

By the early 2000s, most North American die casters utilized shot monitoring systems [230].  The access 

of the data then brought the use of advanced analytics.  Publications on the use of machine learning on 

shot profile data became more evident in the late 2000s, 2010s, 2020s [21], [22], [45], [83]–[85].  

Additionally, the acceptance of Industry 4.0 or Smart Manufacturing has driven the availability of sensors 

and data collection in all manufacturing [231].  The technology of data collection and monitoring has 

significantly improved, creating a great opportunity for advanced analytical tools.          

Although the shot profile is a critical aspect of the die casting process, it is not the only 

controlling factor of how well the equipment runs and the quality of parts produced.  A comprehensive 

review from a manufacturing system perspective generates many other time-series data streams that can 

be monitored and used to improve process control in die casting [2].  Table 35 contains a list of processes 

or equipment where additional time-series data can be collected.  By monitoring these processes in a 

similar fashion as the shot monitoring systems, additional insight, control, and process understanding can 

be achieved within the industry.   
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Table 35: Additional time-series data in HPDC 

Process/Equipment Data to Be Collected Potential Benefits 

Die Cast Machine Motor 
Amp Draw, Vibration, 

Temperature 
Downtime Prevention, Equipment 

Maintenance 

Hydraulic Pump Vibration, Temperature, 
Pressure 

Downtime Prevention, Equipment 
Maintenance 

Nitrogen  Pressure Recharge Rates, Tank Leaks 
Closing Cylinder during 

Open and Close 
Pressure Equipment Maintenance, Prevention of 

Tool Damage 
Thermal Management: Hot 
Water Units, Hot Oil Units, 

Jet Cooling Units, Cold 
Water  

Temperature, Flow Rates, 
Pressure 

Part Quality, Thermal Management, 
Equipment Maintenance, Process 

Consistency 

Ejection Cylinder Pressure 
Part Quality/Part Warp, Downtime 

Prevention/Stuck Part 

Slide Pulls Pressure 
Part Quality/Part Warp, Downtime 

Prevention/Stuck part 
Die Spray System: Lube 

and Air Pressure, Flow Rate 
Part Quality, Lube Reduction, Process 

Consistency 

Furnace Temperature, Amp Draw, 
Fill Level 

Part Quality, Downtime Prevention, 
Equipment Maintenance 

Sawing Equipment 
Amp Draw, RPM, Feed 

Rate 
Downtime Prevention, Equipment 

Maintenance 

Trim Press Equipment Hydraulic Pressure Downtime Prevention, Equipment 
Maintenance 

 

After data is collected, some level of analysis must be completed to create the value in collecting 

the data  [29].  Two approaches for analyzing time-series data [23] are: 

• Trending of descriptive statistics via statistical process control (SPC)  
 

• Visual comparison to another profile, completed by the operator  

Both these approaches have shortcomings.     

Average fast shot velocity is an example of a descriptive statistic that is familiar to the industry.  

Average fast shot velocity is an average of the time-series data calculated between two set points selected 

by the user.  These points are selected in a shot monitoring system by specifying locations within the 

chamber to start and stop the averaging.  An example of the set points for average slow shot velocity (red 

points) and average fast shot velocity (blue points) can be seen in Figure 98. 
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Figure 98: Set points for shot profiles 

 

Based on the set points, an average of the time-series data is calculated and used to describe that 

larger data set.  This statistic creates a simplified view of the complicated data.  It is easy to trend over 

time with the use of statistical process control (SPC) tools [23], [226].  Unfortunately, this statistic also 

represents a significant loss of data.  Additional data should be collected to provide it context, such as the 

set points to see if they change over time as well.  A shift of the velocity average may not be caused by a 

process change, but instead it could represent the set points being modified by a technician.  The 

knowledge of this change is lost without the additional details being stored and analyzed along with the 

average.  An example of this issue can be seen in Figure 99.  This figure contains a theoretical ramped 

slow shot velocity profile with different set points, which result in different averages.  These differences 

are especially evident in ramped portions of the shot.  Ramped velocity is often used during the slow shot 

to help reduce defects [76].  Similar average differences can also occur if the flag is near a transition 

point, such as the end of the fast shot. 
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Figure 99: Changing setpoints on a ramped slow shot velocity profile 

 

Additionally, by using a descriptive statistic, the data values collected between the set points are 

not fully utilized.  An example of this can be seen in Figure 100 where four significantly different 

velocity profiles all produce the same statistical average between the set points of 5 and 15 inches.  

Relying only on descriptive statistics can lead to incorrect assumptions about the process.   

 

 
Figure 100: Examples of identical slow shot velocity averages with different profiles      

 

One way to overcome these incorrect statistical assumptions is for an operator or technician to 

complete a visual review of each time-series profile.  This is done regularly within the industry when 
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developing and troubleshooting a process.  It is one of the reasons why shot monitoring systems are 

popular.  Differences can be visually determined and can trigger investigation and troubleshooting into 

the process or equipment.  Additionally, there are aspects of the process like low impact at the end of the 

shot or tip wear showing up in the slow shot that can be missed in the descriptive statistics, but easily 

recognized by a well-trained technician visually inspecting the profile.       

The issue with this visual inspection is two-fold.  First, humans tend to perform poorly on visual 

inspection tasks that are repetitive and mundane.  Studies have shown that humans miss 20 to 50% of the 

manufacturing defects during visual inspections they perform [120], [142]–[146].  When an operator is 

required to monitor every shot profile, in addition to the job requirements associated with HPDC, this 

miss rate will likely worsen.  The second issue faced with human inspection is the skill level of the 

operators themselves.  The shortage of skilled and knowledgeable HPDC operators exasperates the 

situation [232].  In addition to training on equipment, operators will need to spend time training on 

process control, monitoring, and inspection of velocity and pressure profiles.  This is far from an ideal 

situation, given the current shortage of workers and the amount of training a new worker needs [233].    

The HPDC industry is at a crossroads from the data perspective.  Traditional data collection 

systems like shot monitoring exist and are accepted by the industry, but they only provide meaningful 

value for a portion of the overall HPDC process.  These systems rely on descriptive statistics or visual 

operator inspection and have the potential to miss changes in the process that can affect part quality or 

equipment failure.  The growth of Industry 4.0 or Smart Manufacturing provides a catalyst for foundries 

to collect and store additional time-series data without commercialized systems.  Once the data is 

collected, it can quickly feel like an insurmountable task to analyze, given its volume and velocity.  The 

systems that have been used to date will not be sufficient for the data that will be generated moving 

forward.  The shot profile, along with the flow rates in spray, the slide pull pressures, the ejection force, 

the vibration in the motors and pumps, and many other data streams must also be analyzed.  Foundries 

will start to collect these additional sources to gain better process knowledge but will need tools to 
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analyze the volume and velocity of the data.  Machine learning approaches are needed to analyze the 

volume of time-series data generated within HPDC.   

One method for analyzing time-series data in HPDC is the use of a modified cosine similarity 

function to determine anomalies [169].  The traditional cosine similarity function uses the dot product of 

two vectors and the vectors’ magnitudes to calculate the degree the vectors overlap or are similar.  The 

drawback of the traditional cosine similarity function is that although it can detect differences based on 

vector orientation, it has limited ability to find anomalies based on its magnitude [234].  This was 

addressed by modifying the cosine similarity function with a penalty term for the magnitude differences 

[169].  The penalty term included a tuning parameter, beta (β), the user would have to set based on the 

data set.  The modified cosine similarity function comparing new vector A with a mean vector M is seen 

in Equation 31 [169].   

 

Equation 31         𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑪𝒐𝒔𝒊𝒏𝒆 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝒄𝒐𝒔(𝜽) =  𝑨∙𝑴||𝑨||𝟐||𝑴||𝟐 − 𝜷||𝑨 − 𝑴|| 𝟐 

 
Because the beta value in the modified cosine similarity function requires a degree of interaction 

with the processing of the data, other approaches should also be considered for anomaly detection.  

Machine learning neural networks have been used for time-series data analysis [140], [175], [235].  

Typically, neural networks are used to make predictions of results (supervised machine learning) [175].  

Autoencoders are a special case of neural networks that do not require results to be trained (unsupervised 

machine learning).  This work will explore the use of autoencoders for anomaly detection in time-series 

data sets generated in HPDC.   

Since the use of machine learning is novel to most foundries, a theoretical example using hand-

written digits will first be reviewed to explain the process of building an autoencoder.  This hand-written 

digit example provides images to allow someone unfamiliar an easier means of visualizing the process.  

After the theoretical example, a case study on time-series flow rates of the die casting spray cycle will be 

reviewed.  This will show how two weeks of data can be used to build and test an anomaly detection 

autoencoder.   
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In the end, the goal of this work is to eliminate the notion that implementing machine learning 

within a foundry is an insurmountable task.  The process to train an autoencoder for time-series data is 

straightforward.  Although purchased software packages exist, all the work completed here was done 

using open-source programming languages and packages.  Applying machine learning analytics is an 

attainable objective for foundries.  This work will provide a framework for utilizing autoencoders to 

detect anomalies in time-series data.   

 

AUTOENCODER 

Background 

 

An autoencoder is an unsupervised machine learning technique that can be utilized to detect 

anomalies within time-series data [175], [235].  Machine learning (ML) can be defined as a subset of 

Artificial Intelligence (AI) in which algorithms are used to learn patterns within the data without 

explicitly being programmed  [140], [236].  Two common types of ML are supervised ML and 

unsupervised ML.  In supervised ML, both the input variables and the results are known.  It is the goal of 

the supervised ML to learn the patterns between the input variables and the results in the training data to 

accurately predict the result or classification on future data sets.  In unsupervised ML, there are no results 

available.  Training only occurs on the input variables.  Unsupervised ML focuses on clustering and 

anomaly detection within data sets [140].  An autoencoder is one of several types of unsupervised ML 

algorithms and utilizes the power of a neural network to develop models for complex, non-linear data 

[235].   

A neural network is a type of ML algorithm that is based on the connection of neurons within a 

brain.  Neural networks are made up of interconnected neurons that attempt to learn and detect patterns in 

the data that is presented [235].  A simple neural network with one input layer containing four variables, 

one hidden layer of three nodes, and two-class output layer is shown in Figure 101. 
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Figure 101: Simple neural network   

 

As computing power has increased, the depth and complexity of neural networks has followed.  

Deep learning (DL) has become widely used in ML for image classification [237] and autonomous 

driving [198].  DL is a neural network which contains multiple hidden layers, thereby making it deep 

when compared to a traditional neural network [175].  Figure 102 shows an example of a DL neural 

network.   

 
Figure 102: Deep learning example 

 

An autoencoder is a specialized type of neural network with a specific function.  The goal of an 

autoencoder is to learn the pattern within a given data set that allows the algorithm to recreate a given 

instance of data through an encoding and decoding process.  An autoencoder becomes a compression 

algorithm.  Interestingly, an autoencoder is purposefully designed not to be perfect at reconstruction.  If it 

did learn to be perfect, the algorithm would be able to copy data, but not learn.  Instead, an autoencoder is 
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forced to learn the key patterns of the input data that will generalize a reconstructed output [175].  

Learning these patterns is how an autoencoder becomes useful for anomaly detection.  Autoencoders are 

unsupervised since there are no results associated with the training.  The goal is simply to recreate the 

output data to minimize the error with the true input data. 

An autoencoder is comprised of five key components:  input variables, compression layers 

(encoder), code layer, decompression layers (decoder), and recreated output layer [175], [238].  These 

components can be seen in Figure 103.  Multiple layers within the encoder and decoder can exist, giving 

an autoencoder the multiple hidden layers like deep learning.  There will only be one input layer, output 

layer, and code layer.  An autoencoder will often have a mirrored number of layers and nodes associated 

with the encoding and decoding process, but this is not required [175].     

 

 
Figure 103: Autoencoder components   

 

An autoencoder learns and adjusts the weights within its neurons based on the error produced 

between the input data set and the output data set.  The algorithm’s goal is to minimize the error or 

difference between the input and output through the entire batch of training examples it is provided.  

Entire textbooks are dedicated to the mathematics and programming behind neural networks [175], [235].  
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These references should be reviewed if there are additional questions regarding terminology used in this 

work including topics like activation functions, epochs, batch-sizes, optimizers, and loss functions.    

 

Application and Theoretical Example 

 

Creating, training, and implementing an autoencoder can be completed through many different 

software packages.  Some softwares like MatLab, Wolfram Mathematic, and Neural Designer require 

licenses to be paid to utilize the software.  Many other packages, such as Keras, PyTorch, and 

TensorFlow are open-source software requiring no financial investment.  Likely the largest hurdle for 

most HPDC foundries to implement this technology is the programming skillset needed to complete the 

code.  Python, C++, and R are programming languages commonly used by these packages.     

It is highly probable that someone new to the ML field will become confused with how these 

packages work and interact.  There is no one right approach to take to implementing this type of 

technology within manufacturing.  Success can be reached through many different programming 

languages and software packages.  A walk through of the software used for this paper helps highlight the 

complexity and interconnectedness of this software for those not familiar.  This work utilizes the R 

programming language and the Keras package for R.  Keras provides a neural network library through a 

Python interface while using the TensorFlow library.  The benefit of Keras is that it provides a user-

friendly programming interface to train and run a neural net.  The approach used here should not be 

considered superior or inferior to other approaches.  This path was selected because of the author’s 

familiarity with the R programming language and the desire to easily implement an autoencoder using 

modern deep learning technology.  A different path through other programming languages and software 

packages will follow a similar process and should achieve comparable results.   

To explain at a high level, the programming associated with an autoencoder can be broken down 

into four key steps.  These steps include: 
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• Step 1 – Prepare Data: The data must be prepared to be accepted by the machine learning 
packages 

• Step 2 - Define the Autoencoder: Parameters of the autoencoder including number of 
inputs, number of layers, size of layers, and activation functions must be determined. 

• Step 3 - Train the Autoencoder: Training data is passed into the algorithm with the required 
loss function and optimization method.  

• Step 4 - Test the Autoencoder:  Test data, which the algorithm was not trained on, is used to 
compare the performance of the trained model.   

 

A theoretical example utilizing the MNIST handwritten data set [239] will be reviewed ahead of a 

HPDC case study to show the four steps.  The MNIST handwritten data set is commonly used in the ML 

algorithm testing and development.  This data set is comprised of both training and test data.  The training 

data is 60,000 handwritten digits between 0 and 9.  The testing data set is 10,000 additional digits, not 

included in the training data set.  All digits are stored as a 28 by 28 pixel image or matrix, for a total of 

784 data points per digit.  Images are stored with a 0 to 255 value in a format typical for grayscale images 

[239].  The labels of the images are not needed with an autoencoder as the goal is to simply replicate the 

original input image.  Figure 104 shows examples of random MNIST handwritten digits used in training. 

 

 
Figure 104: Example MNIST handwritten digits 

 

Step 1: Prepare Data 

 
The initial step in creating an auto-encoder is preparing the data.  For this MNIST example, the 

data needed to be both scaled and vectorized as described below.  Some of these steps may not be needed 

for time-series sensor data.  The format of the data will depend on the software packages used, so this is 

just an example. 

As stated earlier, the images are stored with values from 0 to 255.  It is easier to work with raster 

image files in R when the values are scaled from 0 to 1, instead of 0 to 255.  This is easily done by 

dividing the training and testing data by 255.  Now 0 represents a pure black pixel and 1 represents a pure 

white pixel.  With this conversion, the process to plot the image is a one line code as seen in Figure 105. 
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Figure 105: Plot raster example 

 

In addition to the scaling, the MNIST data is a three-dimensional array.  The two dimensions of 

the image are straightforward to understand.  The third dimension is the stack of 60,000 training and 

10,000 testing images that exist.  For this simple example in Keras, the individual example data needs to 

be vectorized into a one-dimensional data stream.  Then they need to be combined as multiple rows to be 

consumed during the training of the algorithm.  This is the data preparation work that is specific to 

different languages and packages.  

 

 
Figure 106: Data preparation   

 

For time-series data, this type of data preparation may not be needed, yet other steps may be 

required, such as vectorizing a compressed field or transferring the data from one file type into the 

required shape.  The exact level and type of data preparation varies by languages and packages.  

However, it is not overly complicated, nor should it discourage a foundry from to analyze data with ML.   
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Step 2: Define the Autoencoder 

 

With the data prepared for the package, the next step is to define the structure and activation 

functions of the autoencoder.  For those unfamiliar with autoencoders and neural networks, this step could 

seem overwhelming.  Decisions made at this point will drive the length of training and the overall 

accuracy of the model prediction.  The benefit is that this is done electronically, so even if a poor decision 

is made, the testing of the algorithm will identify poor performance.   

To provide several examples, a range of structures for the autoencoder was selected to show the 

impact on training time and test results.  These ranges included different number of layers, the neurons 

per layer, and neurons in the code layer.  The Leaky ReLu activation function was used for all hidden 

layers, and the Sigmoid function was used at the output layer to recreate a value between 0 and 1.  The 

input and output layers are set based on the input size of 28 by 28 pixels or 784 variables.  Table 36 

shows the ranges used within this theoretical example.     

 

Table 36: Ranges of structure used for autoencoder example 

Example 
Number 

Example 1 Example 2 Example 3 Example 4 Example 5 

Input 

Layer Size 
784 784 784 784 784 

Output 

Layer Size 
784 784 784 784 784 

Structure 

of Encoder 
1st layer = 300 1st layer = 400 

2nd layer = 100 

1st layer = 500 
2nd layer = 300 
3rd layer = 100 

1st layer = 500 
2nd layer = 300 
3rd layer = 100 

1st layer = 600 
2nd layer = 500 
3rd layer = 400 
4th layer = 300 
5th layer = 200 

Code Layer 10 20 20 50 100 

Structure 

of Decoder 
1st layer = 300 

1st layer = 100 
2nd layer = 400 

1st layer = 100 
2nd layer = 300 
3rd layer = 500 

1st layer = 100 
2nd layer = 300 
3rd layer = 500 

1st layer = 200 
2nd layer = 300 
3rd layer = 400 
4th layer = 500 
5th layer = 600 

Hidden 

Layer 
Activation 

Functions 

Leaky ReLu Leaky ReLu Leaky ReLu Leaky ReLu Leaky ReLu 

Output 

Activation 
Function 

Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 
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Step 3: Train the Autoencoder 

 

Once the autoencoder is defined, the next step is to complete the training for each example.  

Because this is an unsupervised autoencoder, the input data will also be the target data used to measure.  

In other words, the neural network is being trained to compress and decompress the input value to 

minimize the difference between the predicted final output.  To do this, again several decisions must be 

made by the user.  For this example, a batch size was set to 300 samples.  After some testing, 50 epochs 

were used in the training for all samples.  The RMSPROP optimizer was used along with a loss 

minimization function of Binary Cross Entropy.  The training was completed on the CPU of a laptop 

computer with 32 GB of memory and an Intel Core i7-6820HQ 4 core at 2.70 GHz CPU.  The training 

time it took for each example is seen in Table 37.    

 

Table 37: Training times for each example 

Example 
Number 

Example 1 Example 2 Example 3 Example 4 Example 5 

Training time 

(minutes) 
2.28 3.36 4.89 5.16 9.58 

 

 

Step 4: Test the Autoencoder 

 

The testing of the model is the last step in building an autoencoder.  In the testing, a data set that 

the model was not trained on will be processed by the algorithm to show how well it can do at predicting.  

An autoencoder is different than traditional supervised ML testing, as instead of a predicted value, the 

predicted output is compared to the actual input.  The algorithm tries to minimize the difference between 

the two.  The unsupervised ML autoencoder cannot use traditional accuracy or quality metrics of 

supervised ML, such as Confusion Matrix or ROC graphs.  As such, a graphical display of random digits 

selected will be shown along with a mean absolute error calculation between the input image and the 

output image.   

The visual display of the testing, as seen in Figure 107, highlight that an autoencoder loses 

information when it goes through the encoding and decoding process.  The algorithm is not designed to 
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be lossless compression.  In Example 1, several of the digits have blacked out areas where information 

was lost between the input and output.  Visually, the autoencoder does a good job of replicating the input 

to the output in all the examples.       

 

 
Figure 107: Digit predictions per example 

 

For a calculated error value, the mean absolute error (MAE) was calculated based on Equation 

32.  Averages of those error rates by digit are seen in Table 38.  Based on these averages, digits exhibit 

different levels of error.  Typically, the digit 1 performed the best, while the digit 5 performed the poorest.  

The shared features between digits likely degrade the overall performance of the autoencoder.  For 

example, the physical differences between the digit sets 3/8 and 5/6 are limited, which makes it harder for 

the ML.  These values likely could be further improved by additional improvements of the autoencoder 

structure and testing of different loss functions and optimizer used.  However, the goal of this theoretical 

example is not to make a perfect autoencoder for handwritten digits, but rather to provide the foundation 

of how this technology can be used to help detect anomalies in complicated time-series data.     

 

Equation 32         𝑴𝑨𝑬 =  ∑ |𝒚𝒊−𝒙𝒊|𝒏𝒊=𝟏 𝒏  
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Table 38: Average mean absolute error rate for examples 

Average Mean Absolute Error by Digit and Overall 

Digit Example 1 Example 2 Example 3 Example 4 Example 5 

0 0.243 0.153 0.172 0.157 0.172 

1 0.125 0.091 0.093 0.095 0.104 

2 0.288 0.191 0.210 0.195 0.220 

3 0.262 0.171 0.189 0.185 0.211 

4 0.218 0.164 0.185 0.167 0.198 

5 0.271 0.190 0.210 0.198 0.234 

6 0.226 0.163 0.175 0.165 0.189 

7 0.201 0.154 0.174 0.166 0.192 

8 0.262 0.176 0.204 0.187 0.226 

9 0.191 0.143 0.164 0.152 0.183 
Total 

Average 

Error 

0.227 0.158 0.176 0.166 0.191 

 

Steps 2 through 4 is an iterative process.  If the results of the testing are not ideal, changes in the 

autoencoder design may be required.  This would result in new training and then new testing.  Developing 

ML algorithms for implementation often requires much effort in this iterative space.  Again, this effort 

should not discourage foundries from testing and implementing machine learning technologies, as there is 

significant value to be gained.        

 

Anomaly Detection 

 

A shortcoming for an autoencoders as an anomaly detection device stems from the training 

process.  As seen in the MNIST example, the autoencoder was trained on many different digits.  It could 

learn the pattern for all the digits in the neural network, so it could redraw the input with minimal error 

regardless of the digit.  For an autoencoder to detect anomalies in a process, it would have to be trained on 

the acceptable or standard process that is expected.  By training just on what is expected, the neurons will 

learn the pattern associated with what an acceptable input will look like and be able to recreate the output 

with minimal error.  When an anomaly is introduced into the autoencoder, the algorithm will struggle 

with recreating the input, and the error rate will be higher.  Based on the training and testing data, an error 

threshold can be selected to trigger anomaly alarms. 
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The tactical problem with this process is selecting a data set with only known acceptable data.  In 

the MNIST example, the data was already labeled with the digits, which meant a person had to look at 

and label all 60,000 training and 10,000 test images.  This is time consuming and prone to human error.  

It is counter-intuitive of the goals of machine learning implementation.  Foundries would not want to 

gather 10,000 pressure profiles of the spray system, to then go through each one individually and identify 

if it is acceptable or normal for training or an anomaly that should not be trained.   

To help solve this problem and reduce the timeframe needed to review the data, another 

unsupervised ML algorithm can be used.  K-Means clustering algorithm can be ran to group the rows of 

data into similar clusters.  These clusters can then be reviewed to determine which cluster best represents 

the standard or normal process.  The autoencoder would then be trained only on the given rows of data 

that represent that cluster, thus making it capable of learning that process.  When an anomalous data 

string is entered into the autoencoder, it would have a higher error rate between the predicted and input 

data, thereby triggering an anomaly.  

This clustering and training will likely be iterative.  The first clustering may not separate out all 

the anomalous data.  As a result, after the auto-encoder is trained, the error rates on the data used for the 

training should be reviewed.  Any error rates that are significantly higher than the rest should be reviewed 

and possibly eliminated.  These likely represent anomalies.  If the decision is made after the review to 

eliminate the data because it was an anomaly, then the autoencoder would need to be retrained on the 

cleaned data set.      

To finalize the theoretical MNIST example, a new autoencoder will be trained only on the 5s of 

the handwritten data set.  The digit 5 was selected since it typically had the highest error rates as seen in 

Table 38.  In this example, it is easy to accomplish the separation without special ML sorting, since the 

digits label for both testing and training data sets were provided.  The K-Means clustering step will be 

completed in the Case Study reviewed in the next section.   

By limiting the data the autoencoder is trained on to only 5s, the model will learn how to properly 

encode and decode 5s better than other digits, since it will never have seen any of the digits to learn from 
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prior to the testing.  The goal with this is to build the autoencoder with the ability to reproduce the 5s well 

but struggle to produce other digits.  If it cannot produce other digits well, the error rate when comparing 

the input versus output will be large, representing an anomaly.  The level of accuracy of this process is 

highly dependent on the consistency of the data used to train.  In this case, the 5s it was trained on vary 

considerably as illustrated in Figure 108.  Ideally, in a controlled die cast process, the variation will be 

significantly less than handwritten digits by thousands of different people. 

 
Figure 108: Example 5s from training data set 

 

The autoencoder was built matching the structure of Example 2 as seen in Table 36 as it provided 

the lowest overall average error from the examples tested as per Table 38.  The autoencoder was trained 

on all 5421 example 5s pulled from the 60,000 digit training set.  The mean absolute error rate by digit is 

plotted in Figure 109.  This shows that the lowest level of error is on the digit 5s, which would be 

expected.  All other digits showed a higher level of error, although the box plots show overlap.   
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Figure 109: Mean absolute error (MAE) based on autoencoder trained on 5s only 

 

 

Figure 110 shows the performance of the trained autoencoder from both a visual and error 

standpoint.  The figure shows the original test image next to the reconstructed or predicted image the 

autoencoder created.  The resulting mean absolute error for the prediction to the test is also shown for 

each example.  It becomes clear that the autoencoder is trained well at producing 5s, as every input 

example that was tested had a prediction that visually looks like a 5, although some of them were faded 

and missing portions. 
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Figure 110: Visual and error examples from test data 

 

Based off Figure 109, with the mean and standard deviation of the error rates for the performance 

on known digit 5s in the test data set, a threshold error rate of 0.42 was selected to see how well the 

autoencoder would perform in this theoretical example.  If the error rate was above 0.42, code was 

developed to mark the image as an anomaly.  Anything below that value would be marked as normal.  

The performance of the anomaly detection varied significantly based on the different digits.  Digits like 3, 

6, and 8, which have many physical features like a 5, performed much poorer than digits like 1, 2, 4, and 

7, which are physically different.  Table 39 shows the details of the test counts and percentages for the 

10,000 test data samples.   
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Table 39: Anomaly Detection performance of autoencoder trained on 5s 

Test Digit 

Test Samples 

Identified as 

Anomaly 

Test Samples 

Identified as 

Normal % Anomaly % Normal 

0 600 380 61.2% 38.8% 
1 916 219 80.7% 19.3% 
2 992 40 96.1% 3.9% 
3 377 633 37.3% 62.7% 
4 892 90 90.8% 9.2% 
5 45 847 5.0% 95.0% 
6 516 442 53.9% 46.1% 
7 928 100 90.3% 9.7% 
8 491 483 50.4% 49.6% 
9 500 509 49.6% 50.4% 

          

Overall 

Anomaly 6212 2896 68.2% 31.8% 
Overall 

True 5 45 847 5.0% 95.0% 
 

There were 45 different 5s that performed so poorly within the autoencoder that they were also 

identified as an anomaly.  Figure 111 shows a portion of these poor performing 5s.  Upon review, it is 

clear the variation in hand-written digits between people increases the probability of some of these being 

marked as anomalies by the autoencoder.   

 

 
Figure 111: 5s identified as anomalies by autoencoder 

 
 

Theoretical Example Conclusions 

Admittedly, the performance of this theoretical example may be considered marginal.  It performs 

better on certain digits as compared to others, but if this was a production setting, just over 30% of 

anomalous digits would have not been detected.  The differences in hand-written digits by many people 

creates considerable variation that affect the training of ML algorithms.  Many manufacturing processes 



 

257 
 

with sensors collecting data produce more repeatable data than human handwriting.  It is expected that an 

in-control process would be able to detect anomalies much better than this theoretical example.  

Additionally, selecting only one digit out of ten as a “normal” and all other digits being anomalies, means 

a highly unbalanced data set where normal is a small percentage and anomaly is a high proportion.  This 

typically would not match most manufacturing examples.  Finally, different error functions could have 

been reviewed to penalize differences more, which could lead to better performance of the anomaly 

detection.    

This theoretical example with the MNIST digits was important to review to provide a clear, visual 

understanding of how an autoencoder functions.  Handwritten digits are easy to understand and visually 

see the differences.  It also provides a straightforward way for someone who may not have experience 

with ML to gain the basic understanding of the process of building an autoencoder.     

An important take away from this example is how an autoencoder has the power to learn multiple 

different patterns.  When training for all digits, the autoencoder was able to learn how to recreate 10 

different digits all within the one encoder.  This is extremely important from an anomaly detection 

perspective.  The goal is not to recreate an anomaly with minimal error, but instead have a significant 

error so it is detectable.  Selecting which data to train the algorithm on is a critical step when applying this 

to data generated within manufacturing.  The next section will walk through these steps again, using an 

example of time-series data from a HPDC process.   

 

CASE STUDY 

 

This autoencoder anomaly detection approach can be performed on time-series data that is 

captured within the HPDC process.  A case study was performed at Mercury Marine die casting plant in 

Fond du Lac, Wisconsin.  A flow rate sensor was installed to the die lube spray system to measure the 

flow rate during the spray cycle.  This sensor was a Keyence brand clamp-on sensor, model FD-R.  The 

sensor was attached to the die cast machines PLC, where flow rate data was collected every half second.  
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Ignition software from Inductive Automation was used to pull the data from the PLC and write it into a 

SQL database as a comma separated value (CSV) within a database column.  The first 45 seconds of the 

spray program are spraying, and the remainder is time used for air blow-off of the die.  Figure 112 shows 

an example flow rate profile from the data collected from spray.  The same steps of the theoretical 

MNIST example were followed for this case study.  Additionally, some theoretical flow rate profiles were 

tested on the autoencoder built to see how well it would perform on potential failures within the system. 

 

 
Figure 112: Example spray flow rate profile 

 

The data used in this case study represented two consecutive weeks of production.  The first week 

was used in the training of the autoencoder, while the second week was used for testing the autoencoder’s 

anomaly detection capability.  In total, approximately 1,500 profiles were used for training and 1,300 for 

testing. 

  

Step 1: Prepare Data 

 

The data required pre-processing and cleaning before it was ready to be used.  The pre-processing 

of the data involved structuring it in a means that is friendly for analysis.  The data was stored as a CSV 



 

259 
 

string within the database, along with other information like serial number, date, time stamp, and string 

length as seen in Figure 113.  As seen in the MNIST example, data flowing into an autoencoder needs to 

be separated out to individual columns.  Code was written to convert this CSV string field into separate 

columns of data to represent each time interval.  With that pre-processing completed, the data was now in 

a format that could be reviewed with plots. 

 

 
Figure 113: Raw SQL data storage examples 

 

Two steps were needed to clean the data.  First, the data was corrected for shifting associated with 

the PLC trigger point.  Due to signals, some of the data stored would start collecting before the spray 

would begin.  As a result, the profiles would appear delayed.  This was corrected within the data as the 

first step of the cleaning process.  The length of the CSV string is 200 digits, as predetermined in the PLC 

sampling.  The next cleaning step is to trim the columns to match the actual process of blow-off for 45 

seconds or 90 intervals.  Based on this analysis, improvements to the data collection process are 

forthcoming to minimize this pre-processing and cleaning of the data.  The formatting of data to prepare it 

for ML can be a time-consuming process.  Storing and formatting the data in a consistent manner for 

analysis will reduce the time spent preparing the data in this stage. 

To determine the fitness of the training data to remove anomalies so the autoencoder does not 

pattern on those examples, a K-means clustering algorithm was ran on the training data.  K-means is an 

unsupervised ML algorithm that groups data by the commonality of its input data [222] .  Cluster sizes 

from 2 to 11 were reviewed, and based on assignments, a cluster size of 5 was used to separate the 

training data.  An average of the profiles for each cluster was created and then plotted in Figure 114. 
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Figure 114: Training data clusters 

 

 

Upon review of the cluster assignments, Cluster 1 was two cycles in which the die lube hose 

broke off the robot and flooded the die.  Cluster 3 was a separate case where the airline to the valve broke, 

preventing the opening of the nozzle to spray for 3 cycles.  These are precisely the types of anomalies for 

the autoencoder to detect.  The 1556 parts comprising of clusters 2, 4, and 5 were selected for the 

autoencoder to be trained.  The data was scaled between 0 and 1 by dividing by 2500.  Max value within 

the training data set was 2054.      

 

Step 2: Define the Autoencoder 

 

A simple autoencoder structure was selected for this time-series data.  The input and output layers 

are 90 neurons, given the 90 intervals that exist in the trimmed data set.  A code layer of 20 was selected 

along with one hidden layer of 40 for the encoder and decoder.  Sigmoid activation functions were used 

throughout the example.  Table 40 contains the details of the autoencoder built for the spray lube case 

study. 
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Table 40: Case study autoencoder structure 

Input Layer Size 90 
Output Layer Size 90 

Structure of Encoder 1st layer = 40 
Code Layer 20 

Structure of Decoder 1st layer = 40 
Hidden Layer 

Activation Functions 
Sigmoid 

Output Activation 

Function 
Sigmoid 

 

Step 3: Train the Autoencoder 

 

Because the overall number of samples was low with 1556 profiles, a batch size of 2 was selected 

for the data to be trained with an epoch of 100.  The Keras optimizer Adam was selected along with a loss 

function of absolute mean error.  The training time was 2.13 minutes on the same computer hardware that 

was utilized for the MNIST example.  There was a significant number of iterations associated with 

defining the autoencoder, training, and testing to get to the published results. This would be typical of 

developing an ML algorithm.    

 

Step 4: Test the Autoencoder and Anomaly Detection 

 

To test the autoencoder and build anomaly detection, the profiles from the second week were 

utilized and pre-processed identical to the training data.  There was a total of 1283 test samples.  This 

testing data was processed by the autoencoder, and a regenerated time-series profile was created for each 

example.  Figure 115 shows one the original input and the recreated profile from the testing data.   
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Figure 115: Original input and recreated profile 

 

The mean absolute error (MAE) for the example in Figure 115 was 40.7.   The MAE was 

calculated for all the test samples.  A plot of the MAE over time can be seen in Figure 116.   

 

 
Figure 116: MAE of test samples 
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Based on the graph of the individual MAE values, it appears as if a there is a threshold at a score 

of approximately 100.  To test this, the mean and standard deviation of the entire test data set was 

compared to the mean and standard deviation of just the samples under 100 MAE.  Based on the statistics 

presented in Table 41, the anomalies identified by the autoencoder add significant amounts to the standard 

deviation and drive up the average value.  As such, the thresholding should be based on statistics of the 

non-anomalous readings.  Although the MAE results were non-normal, one general approach is using the 

mean plus three standard deviations to create an upper threshold.  This works well for normally 

distributed data.  This same approach can be used as a general guideline for distributions that are near-

normal.  In this example, the threshold would be 59.0.  Anything above 59.0 would be flagged as an 

anomaly within the spray process.      

 

Table 41: Test samples MAE Statistics 

Test Data Set Statistics 

All Data 

# of Samples 1283 
Mean MAE 48.4 

Standard Deviation of MAE 68.53 

Under 100 

MAE 

# of Samples 1237 
Mean MAE 35.9 

Standard Deviation of MAE 7.7 
 

 

To illustrate the anomalies, four samples were chosen to represent the range of MAE scores.  One 

value was chosen at the upper edge of the under 100 mark.  Then samples were selected between 200 to 

300, 300 to 400, and 400 to 500.  The error value for each along with the actual versus predicted graph is 

shown in Figure 117.   
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Figure 117: Illustrations of anomalies 

 

 

Overall, the autoencoder performed well at identifying anomalies in the test data.  Except for the 

488.5 MAE profile which represents a spray cycle that was stopped, the rest of the anomalies detected 

represented shifts in the time-series data.  This shift detection was typical of most of the anomalies 

detected by the algorithm.  This was accounted for by a data collection trigger issue with the PLC that 

was longer than the corrected value that was done at the pre-processing.  To further see how well the 

anomaly detection performs, additional theoretical testing will be performed in the next section. 

 

Theoretical Anomaly Detection Testing 

 

By their nature, anomalies do not often happen within the process.  A set of theoretical failures was 

produced to test the performance of the autoencoder to detect anomalies.  Two different sets of anomalies 

with three varying conditions were tested.  These conditions include: 
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• 15%, 25%, and 35% flow rate reduction throughout the process – representing reduced pressure 
in the system 
 

• 15%, 25%, and 35% flow rate reduction in the high flow cycle – representing a blocked or 
partially blocked nozzle  

 

The original profile that was used as a baseline in this theoretical example, along with the modified 

profile that represents the anomaly and then the predicted value from the autoencoder were all plotted for 

comparison in Figure 118.  Visually, the autoencoder did not perform well when the entire profile was 

scaled.  It did perform well at identifying the anomaly when only the high portion of the flow rate was 

reduced.       

 
Figure 118: Theoretical anomaly detection profile graphs 

 

 

The MAE was calculated for all six examples and the result can be seen in Table 42.  The MAE 

values ranged from 45.5 to 144.9.  Utilizing the statistical driven threshold of 59.0, all the profiles with a 

reduced high flow rate period would have been detected as an anomaly.  However, only one out of the 

three shifts of the entire profile would have been identified as anomalous.  Once the triggering issue on 

the PLC is corrected, further work will be done on this data to improve the training of the autoencoder.  

With more consistent training data, the anomaly detection for the autoencoder should improve beyond the 

results shown here.   
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Table 42: MAE Values for six different theoretical examples 

Name MAE Value 

15% Entire Profile 45.5 
25% Entire Profile 61.4 
35% Entire Profile 58.4 

15% Reduced High Profile Only 67.5 
25% Reduced High Profile Only 104.0 
35% Reduced High Profile Only 144.9 

 

CONCLUSIONS 

 

The HPDC process contains many different potential time-series data streams.  From the typically 

reviewed velocity and pressures associated from the injection process to the flow rates of die lube during 

spray, the HPDC process can generate extraordinary amounts of data.  This volume and velocity of data is 

too much for a human to analyze.  The use of machine learning techniques provides opportunities to 

streamline the data analysis and help the operator know when important changes have occurred within 

time-series data.   

The data being generated by the process must be analyzed to provide value to the user.  

Descriptive statistics involving a portion of the time-series data can be calculated and trended.  This is an 

excellent first step and is currently utilized in many shot-monitoring systems throughout the HPDC 

industry.  This descriptive statistics approach can help a foundry dial in its process and provide a high-

level monitoring system for injection.   

The shortcomings of descriptive statistical analytics need to be understood.  Important 

information, such as slopes, noise, and other changes within the data will be lost with averages.  Different 

profiles may have the same average, but not produce the same quality casting.  Beyond shot monitoring, 

there is limited commercially available systems that allow a HPDC foundry to follow these steps for other 

time-series data.  Approaches are needed to help analyze changes throughout the time-series data and flag 

irregularities when detected.  Autoencoders provide a useful means for helping detect these types of 

anomalies.  
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Autoencoders utilize machine learning neural networks for time-series anomaly detection.  As 

shown in the case study, these autoencoders can be quickly trained in a matter of minutes on typical 

computer hardware, utilize free open-source software, and be able to develop an effective anomaly 

detection algorithm on a limited size data set that can be created within a foundry in less than a week.  

The use of autoencoders can provide real benefit for advanced analytics within die casting.  Autoencoders 

can also help remove the data processing from the operator or technician and provide warnings when the 

process is changing.  This review of the data becomes more important as the industry sees increasing 

number of retirements and the skills gap that exists with newer employees.  The use of machine learning 

to analyze the data, like autoencoders, could help foundries overcome the knowledge gap that exists 

between new employees entering the field and seasoned technicians heading to retirement. 

It is also important to understand some of the shortcomings associated with autoencoders to set 

proper expectations with the technology.  First, the input sample length must be fixed.  In this example, 

changes in spray time where additional data is being collected, would error out any previously produced 

autoencoder because of the fixed input layer.  In the case study, this input layer was 90 because of the 0.5 

second time intervals and 45 seconds of spray.  If a tool change drove a longer spray time, then the entire 

autoencoder would have to be rebuilt based on the new input data.  Additionally, if known changes to the 

process occur, such as changes of when and how many nozzles spray, the autoencoder would need to be 

retrained.  Otherwise, it may just detect everything as an anomaly based on the previous process when it 

was trained.       

In conclusion, huge data sets and serialized product with detail part quality tracking are often the 

initial idea when considering machine learning implementation within manufacturing.  There are 

considerable challenges to this type of analytics, which may not be the right first step for a foundry.  

Utilizing an autoencoder to detect anomalies can be viewed as a foundational building block to advanced 

foundry analytics.  It provides an opportunity to collect additional time-series data while applying 

unsupervised machine learning to detect anomalies.  Additionally, autoencoders can be developed on 

open-sourced software languages and packages, without the need for huge data sets.  This use of 
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autoencoders is just one of many opportunities for a foundry to engage in machine learning and Industry 

4.0.  Taking the first step in trying these technologies, is often the hardest.  The goal of this work is to 

show the HPDC industry the challenge of implementing machine learning is not as insurmountable as one 

may imagine it to be.   
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Chapter 6: Conclusions and Future Work 
 

 Chapter 6 concludes this work and provides direction for future work for others to further 

explore this field.  A summary of the chapters is provided before key conclusions resulting from this work 

are discussed.  This chapter also contains a detailed list of the author’s contributions that have been 

made during this PhD endeavor.  Finally, a review of future areas of work are discussed in detail. 

 

 REVIEW 

 Two colliding factors are fundamentally and rapidly changing manufacturing: the manufacturing 

labor shortage and the digitization of manufacturing with Industry 4.0.   

The COVID-19 pandemic has greatly accelerated the manufacturing labor shortage [240].  A 

recent study predicts that by 2030, the United States will have 2.1 million unfilled manufacturing jobs.  

Because manufacturing has the highest multiplier effect of any economic sector, these unfilled positions 

could negatively impact the US economy by more than $1 trillion USD by 2030 [241].  Businesses will 

need to become creative when trying to solve the labor shortage. Automation will assist with the shortage 

of manufacturing workers, but it will not fill the gap completely.  Instead, companies must investigate 

means to increase productivity.  Industry 4.0 provides tools that help improve productivity. However, this 

digitization of factories creates additional labor requirements.  Creating and working within cyber-

physical manufacturing worlds requires a skillset significantly different than the one possessed by the 

traditional manufacturing employee.   

Data drives value in the cyber-physical manufacturing world of Industry 4.0.  Data can be used to 

optimize processes, improve quality, reduce downtime, provide predictive maintenance, stop production 

equipment before it fails, automate scheduling, and provide insight on the entire manufacturing system.  

The improvement in productivity and quality could help offset labor shortages.  However, as discussed in 

Chapter 2, Industry 4.0 is a complex system being added into an already complex manufacturing system.  

Many organizations have limited success, even after years of work.   



 

270 
 

The labor shortage and implementation of Industry 4.0 will change manufacturing.  Factories 

must respond to the challenges and opportunities these two factors present.  High pressure die casting is 

no exception to this change.  This work presents a roadmap for the die casting industry to better 

understand the manufacturing systems that exists in its factories. 

In Chapter 1, an introduction to die casting was provided.  Additionally, the chapter highlighted a 

knowledge gap that exists.  Although die casting is well studied and published, the research provides 

many shortcomings with optimization and application of machine learning.  Much of this research is done 

in academic settings and even completely with simulation.  The ranges used within the optimization 

algorithms often are not realistic and values would never be used within production industry.  In other 

words, an experienced die casting engineer could look at the casting and the ranges being studied and 

select likely the best option without any advanced analytics.  Applications of machine learning within 

production settings are limited and provided motivation for this work. 

Chapter 2 provided the groundwork for understanding Industry 4.0 and complex systems to lead 

to the die casting data framework for future machine learning opportunities.  Die casting contains the four 

characteristics of complex systems: network structure, adaptive, self-organizing, and nonlinear.  The 

complexity of die casting requires a system engineering approach.  A systems review has not been applied 

to production die casting to date.  This decomposition of the die casting system provided the data 

framework, and the 10 different framework groups that were defined.  The volume of data defined in the 

framework was orders of magnitude higher than ever discussed or considered within the industry 

previously.  This volume of data requires machine learning to help humans process it in the short cycle 

times of die casting.   

Before machine learning can be applied, additional research was completed into reasons why 

applications within production environments may failed.  In Chapter 3, the stochastic nature of casting 

defects was reviewed.  Defining macro versus micro porosity provided a foundation for then studying the 

macro porosity that mostly impacts part quality in production casting environments.  Castings are judged 

to porosity specifications at a macro scale.  Therefore, it is important to understand the formation of this 
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macro porosity.  The case study in Chapter 3 showed that although the porosity predicted zone could be 

established and was reliable with simulation, the precise prediction of size and location of macro porosity 

was randomly distributed within this area.  Chapter 3 provided the foundation for a more thorough review 

of classification issues within die casting in Chapter 4.  The random formation of porosity is one of four 

elements that impact defect classification.  Combined with binary acceptance specifications, secondary 

process variation, and visual inspection, the level of misclassified castings in a production environment 

cause issues with machine learning applications.  Misclassification creates data space overlap, which 

leads to poor machine learning accuracy.   

In addition to describing the four misclassification elements for die casting, Chapter 4 also 

introduced an important topic in machine learning accuracy: the Critical Error Threshold.  Because die 

casting and most other manufacturing processes produce high levels of quality (~95%), the accuracy of a 

machine learning algorithm applied must be near perfect to provide value for the investment.  This 

accuracy level becomes a challenge.  To provide perfect predictions, all critical input data must be 

available.  Without a systems approach to the data and process (Chapter 2), algorithms would not have all 

the necessary information.  The challenging part is even with all the critical input data, the accuracy of the 

machine learning algorithm still may not be at 100% due to the complex and stochastic nature of die 

casting.   

Chapters 3 and 4 provide a frame of reference for applications of machine learning within a 

production environment.  Knowing the shortcomings of machine learning applications is important 

because that provides insights into areas where machine learning can add significant value such as 

anomaly detection within the process.  Chapter 5 highlights four different case studies of actual machine 

learning applications within a production manufacturing environment.  Use of unsupervised machine 

learning, such as clustering and autoencoders, provided means to identify changes within the process.  

They also helped control and improve the part quality and productivity.  Adding actual value with the use 

of machine learning in a production setting achieved the goal set at the onset of this work.   
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In summary, this work provides a roadmap for the die casting industry to assist with better 

understanding the process.  Ideally, this will benefit not only the die cast industry, but manufacturing in 

general, confront the challenges of the future.  Much was learned during this work with the key 

conclusions summarized in the next section.   

 

CONCLUSIONS 

 Complexity and data are the two themes that run throughout this dissertation.  Not surprisingly, 

these two items are related.  Large volumes of data are needed to monitor and provide feedback because 

of the complexity of die casting.  Control of the system can be improved with this feedback.  In the end, 

these two themes create five key understandings: 

1) Die casting is a complex system. 
2) A systems engineering approach is needed for die casting. 
3) The scale of data that can be generated is unlike anything discussed to date for die casting. 
4) Because of complexity, 100% accuracy for machine learning models is improbable.   
5) The focus of machine learning should be to detect anomalies and control the process.  

By formal definition, die casting is a complex system.  Die casting is a network structure of 

different systems interacting with each other to produce near net shape castings.  The die castings system 

is a system-of-systems.  Die casting adapts and evolves over time.  The physical nature of die casting with 

wear and erosion of the tooling causes changes.  Technology and humans within the process also make 

the system evolve.  Die casting foundries will self-organize.  Many improvements that are undertaken in a 

foundry are not top-down mandates.  Instead, lessons learned by a technician in one area will be applied 

to other areas.  Finally, die casting is nonlinear, and therefore, small changes within the system inputs can 

cause significant differences in the output.  The physics of fluid flow as the metal fills the die and heat 

transfer as thermal balance is created within the process are examples of nonlinear systems in die casting.  

This nonlinearity can help explain the stochastic nature of porosity formation found in the macro porosity 

case study.  Additionally, human input also provides a level of nonlinearity within die casting.  In a 

technical sense, a casting with porosity should always be identified as such during quality inspections.  
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This input should match the output expected.  However, fallible humans regularly misclassify castings.  

In real life, the classification input to output relationship does not follow a linear relationship.  This 

research shows how technically complex die castings is.  

 The second takeaway is a logical approach once die casting is defined as a complex system.  

Systems engineering exists to create successful complex systems.  Systems engineering tools are needed 

to improve the die casting process.  Looking at a portion of the die casting process will not create the 

overall quality and production improvement that the industry could achieve.  The entire system needs to 

be defined, analyzed, and controlled.  The systems approach of fragmenting a system into smaller and 

smaller components provides the needed detail to capture the data that can be generated within the 

process.  The data generated is really the feedback cycle of the system that is missing in today’s industry.  

The industry knows the injection parameters well, since it is the only system that has had data collection 

associated with it for several decades.  The same cannot be said for the thermal management of the tool, 

which is critical to part quality, nor understanding the die cast machine health in terms of maintenance, 

unplanned downtime, and production losses.  By collecting the data within the die casting system, 

feedback can be monitored and applied to the system to improve control.  This improved control will 

drive the business metrics the industry needs to make positive change. 

 The systems approach of defining this data creates a scale of data within die casting that has not 

been discussed before within the industry.  Experience and publications have shown the industry may not 

be ready for this volume of data.  The NADCA publication on Die Casting Process Control [23], stated 

the “revolution of process control” has ended and then describes only a handful of parameters to monitor.  

A multi-million dollar study by a European consortium defined a total of only 75 data parameters in die 

casting [86].  The industry has a short-sighted focus on output variables as they are tied to casting quality.  

The industry also fails to leverage the available data.  For decades, large time-series data sets on the 

injection process have been collected and effectively thrown away, as only a few statistical averages are 

typically reviewed and monitored within the industry.  The industry overlooked the benefits of the data.  

As described in this work, there are multiple types of data that need to be considered including design 
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data, input setting data, output data (time series and discrete) and cycle time data.  Without a complete 

view, the feedback and control for the entire die casting system will not be successful.  This data 

generates multiple orders of magnitude larger data sets than the industry currently uses.  Fundamentally, 

the industry must change to process and monitor this data. 

 Predicting casting quality is the holy grail of machine learning.  Unfortunately, the focus provided 

by research on this topic is misleading for the die cast industry.  Publications showing the applications of 

supervised machine learning to predict quality in small, academic exercises may paint a picture that it can 

be easily done.  Having large scale software companies echoing these comments, but often lacking 

detailed examples, makes it challenging for those working on the front lines of die casting data.  This 

work should make one question the feasibility of supervised machine learning for quality predictions in a 

traditional manufacturing setting.  There are two items confounding this feasibility.   

First, the die casting industry has a great quality track record.  A high percentage of parts are 

produced at acceptable quality levels even with a complex system with limited feedback and control.  

Industry survey shows an 8% median scrap rate.  Although there is room for improvement on this value, 

another interpretation is the high yield rate means the industry already has great knowledge of the 

process.  For machine learning to create value for the organization, the Critical Error Threshold states the 

accuracy must be higher than the yield rate of the process.  This drives the supervised machine learning 

accuracy to be near 100%.  This level of accuracy is not possible without a complete understanding of the 

entire process.   

The second item confounding this quality prediction is the complexity of die casting.  Complex 

systems are non-linear and sensitive to initial conditions.  As such, applications of modeling complex 

systems are driven to achieve a pattern that the complex system creates, not a precise prediction.  Without 

a precise prediction, there likely is no benefit in predicting quality in die casting.  The exception to this 

statement is if the process is producing terrible scrap rates, for example 40% scrap.  This is where 

machine learning could potentially provide some benefit but is the wrong tool for the job.  At scrap rates 

above 40%, either the casting design, tool design, or process settings selected are likely outside industry 
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standards.  Instead of trying to optimize with advanced analytics, the faster path to improvement is by 

addressing the issues with the part or tool design.  In most cases with poor scrap rates, the technicians and 

engineers associated with the casting already know what needs to be done to fix it.  The challenge is 

getting the customer to agree or the time to complete it.  Machine learning will not likely fix these 

situations.   

The question this work should pose is if quality prediction is possibly not feasible, then how can 

machine learning still be used to add value within the die casting industry.  This becomes the final 

takeaway from this work.  Today, instead of focusing on predicting part quality, machine learning should 

be used as a tool to process the large volume of data that is generated from die casting.  Machine learning 

can be used to improve anomaly detection, and ultimately, improve process control.  The case studies 

provided within Chapter 5 highlight some approaches that can be utilized.  By controlling the process, the 

metrics of quality and productivity will improve, which is ultimately the goal.  To get to this point, the 

industry must collect the data per the framework.  With this data in place, then utilizing clustering, 

autoencoders, and other anomaly detection tools becomes the final step in creating value with machine 

learning.  Fortunately, this anomaly detection approach can be piecemealed within a plant.  A complete 

data framework approach could take years to achieve for a single machine.  By utilizing the framework 

and starting the process on one system, anomaly detection algorithms can start to be applied as soon as 

the data is available.  Unsupervised machine learning generates value immediately, which creates a 

culture of using these advanced tools within the industry. 

As stated previously, quality prediction is the holy grail.  There is potential to achieve value, but 

the complexity of die casting is likely to prevent success.  However, the approach outlined with this work 

(collecting the system-wide data for die casting and utilizing anomaly detection to improve process 

control) creates the data foundation needed to better control the process and reduce the noise that exists in 

complex, human-dependent systems.  The best opportunity to predict quality is to have a complete 

understanding of every system associated with die casting and make it as repeatable as possible.  This 
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work provides an outline for this, and shows how to use this data in a means that creates value 

immediately.   

 

CONTRIBUTIONS 

 Research and learnings gained in a vacuum provide no benefit to society.  The knowledge must 

be shared, discussed, and further developed.  I have learned much from the work completed over the past 

four years and taken many different opportunities to share within the foundry industry through various 

formats including papers, presentations, and industrial organizational groups.  My goal with this 

participation is to voice the tangible benefits of machine learning in complex, production focused 

manufacturing facilities.  This is where real value can be added.  Improving castings quality and reducing 

costs in processing is the goal of any manufacturing facility.  I believe the work presented here provides a 

roadmap for others to follow on this journey.   

 Below is a list of the contributions made to date and future work planned based on the knowledge 

learned during this PhD endeavor: 

CONFERENCE PAPERS AND PRESENTATIONS 

• D. Blondheim, Jr., “Initial Development of Machine Learning Algorithms to Predict Casting 
Defects in High-Pressure Die Casting,” presented at the 2017 NADCA Congress and Tabletop, 
Atlanta, GA, Sep. 2017. [Online]. Available: 
http://www.diecasting.org/archive/transactions/T17-073.pdf 
 

• D. Blondheim, Jr., “Unsupervised Machine Learning and Statistical Anomaly Detection Applied 
to Thermal Images,” presented at the 2018 NADCA Congress and Exposition, Indianapolis, IN, 
Oct. 2018, vol. T18-071. [Online]. Available: 
http://www.diecasting.org/archive/transactions/T18-071.pdf 

o Won NADCA 2018 Die Casting Congress & Exposition Paper of the Year 
 

• D. Blondheim, Jr., “Utilizing Machine Learning Autoencoders to Detect Anomalies in Time-
Series Data,” presented at the 2021 NADCA Congress and Exposition, Indianapolis, IN, Oct. 
2021, vol. T21-082. [Online]. Available: 
https://www.diecasting.org/docs/congress/congress21/papers/T21-082.pdf  
 

http://www.diecasting.org/archive/transactions/T17-073.pdf
http://www.diecasting.org/archive/transactions/T18-071.pdf
https://www.diecasting.org/docs/congress/congress21/papers/T21-082.pdf
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• D. Blondheim, Jr., “Understanding the Critical Error Threshold for Applying Machine Learning 
in Manufacturing,” IJMC paper presented at the 2021 NADCA Congress and Exposition, 
Indianapolis, IN, Oct. 2021, vol. T21-081. [Online]. Available: 
https://www.diecasting.org/docs/congress/congress21/presentations/T21-081ppt.pdf  

JOURNAL ARTICLES AND OTHER PUBLICATIONS 

• D. Blondheim, Jr. and S. Bhowmik, “Time-Series Analysis and Anomaly Detection of 
High-Pressure Die Casting Shot Profiles,” Die Casting Engineer, pp. 14–18, Nov. 2019. 
 

• D. Blondheim, Jr. and A. Monroe, “Macro Porosity Formation - A Study in High Pressure Die 
Casting,” International Journal of Metalcasting, Apr. 2021, doi: 10.1007/s40962-021-00602-x. 
 

• D. Blondheim, Jr., “Improving Manufacturing Applications of Machine Learning by 
Understanding Defect Classification and the Critical Error Threshold,” International Journal of 

Metalcasting, Jun. 2021, doi: 10.1007/s40962-021-00637-0. 

PRESENTATIONS 

• D. Blondheim, Jr., “Introduction to Machine Learning for Die Cast Manufacturing,” presented at 
2018 NADCA Plant Management Conference, Minneapolis, MN, May 2018. 
 

• D. Blondheim, Jr., “Smart Manufacturing: Data Analytics, Statistics, and Machine Learning in 
Die Casting,” presented at NADCA Chapter 12 Meeting, Slinger, WI, Nov. 2019. 
 

• D. Blondheim, Jr., “Artificial Intelligence, Machine Learning, and Data Analytics: Understanding 
the Concepts to Find Value in Die Casting Data,” presented at 2020 NADCA Executive 
Conference, Clearwater, FL, Feb. 2020. 
 

• D. Blondheim, Jr., “Challenges and Approaches for Machine Learning in Manufacturing,” 
webinar presented as part of TMS Artificial Intelligence in Materials: Research, Design, and 
Manufacturing Webinar Series, Feb. 2021. 

ORGANIZATIONAL INVOLVEMENT 

• Peer review for International Journal of Metalcasting from 2017 to present. 
 

• Reviewer and moderator the Quality/Machine Learning section of the 2020 NADCA Virtual 
Congress and Tabletop. 
 

• Initiating member of the American Foundry Society (AFS) Working Group: Data Collection and 
Storage, part of AFS Engineering & Smart Manufacturing Division, Jul. 2021 to present. 
 

• Initiating member of the American Foundry Society (AFS) Working Group: Data Analytics, part 
of AFS Engineering & Smart Manufacturing Division, Jul. 2021 to present. 

https://www.diecasting.org/docs/congress/congress21/presentations/T21-081ppt.pdf
https://doi.org/10.1007/s40962-021-00602-x
https://doi.org/10.1007/s40962-021-00637-0
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FUTURE CONTRIBUTIONS 

• Instructor for TMS online course Artificial Intelligence in Materials Science and Engineering, “ 
Module 5, AI/ML for Materials Manufacturing: Understanding the Applications, Building 
Predictive Modeling, and Uncertainty Quantification,” Nov. 2021.  
 

• Abstract submitted for TMS First World Congress on Artificial Intelligence in Materials and 
Manufacturing (AIM 2022),  “Effects of Complex Die Cast Manufacturing Systems and the 
Critical Error Threshold on Applications of Machine Learning in Production” Pittsburg, PA, Apr. 
2022, potential publication in journal Integrating Materials and Manufacturing Innovation 

 

FUTURE WORK 

 For me, one of the most challenging aspects of writing a dissertation on systems engineering is 

knowing what to include, but possibly more important, what to omit.  A systems approach looks at the big 

picture.  As such, it was difficult to know when to stop research and exploring.  The challenge is that each 

connection made to the die casting cell meant a new dataset was stored.  This new data became another 

rabbit hole to get lost in.  At some point, though, I had to shelve certain ideas.  Below is a series of ideas 

that provide a possible framework for future research.  Some of these challenges I know I will continue to 

explore within my role at Mercury Marine to help improve the industry.   

 The concept of complexity in die cast is a topic that can be further explored.  The main point I 

had within this work is to show that die casting is a complex system.  As a complex system, it needs a 

systems engineering approach to solve.  It also will suffer from a model that only predicts the pattern and 

not the precision.  This concept needs further exploration so a realistic expectation can be set within the 

industry.  Today, executives are bombarded by software companies promising to solve all their problems 

with AI or machine learning.  Fancy presentations and one-off case studies are reviewed to show the 

millions in savings they can help generate.  In certain cases, this is possible.  For most, however, it creates 

an unrealistic expectation.  Because machine learning is so new to manufacturing, it’s often overhyped 

and glamourized.  This dialog within the industry could be improved through investigation and 

publication on complex system and model accuracy.   
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 Weaved into this topic of complexity is the holy-grail conversation of quality predictions within 

die casting.  Realistically, if the process is poor enough, machine learning could provide insight into the 

process for optimization.  Could is the key word.  To gain insight, a range of input parameters must be 

tested, and that data tracked to part quality.  Experimenting with ranges of input parameters does not 

always happen in production settings.  Focus and priority are often given to production output versus the 

non-production time needed to test and improve the process.  This becomes a catch-22.  Building on that 

issue, in cases with a significant quality issues, there likely is a list of actions the engineers and 

technicians want to accomplish to help fix the problem.  However, they are not allowed the time to 

execute the improvements because of production needs.  The question must be asked: What are the ranges 

of scrap where quality prediction becomes valuable and worth the effort, even if it is not 100% accurate?  

At 30% failures, I would argue fundamental die cast knowledge should be applied ahead of machine 

learning for improvements.  What happens if the scrap rate is 20%?  Or 10%? Less than 5%?  Is there a 

cut-off that can be found that provides guidance?  At what scrap level should the focus be on ‘Die Casting 

101’ versus machine learning?  The Critical Error Threshold provides insight into the economics of 

quality prediction, but there is much work to accomplish to help select applications that are best suited to 

attempt predicting quality with machine learning.     

 The macro porosity study from Chapter 2 also presents a future work opportunity in better 

understanding die casting porosity.  The work that went into that paper was extremely useful in showing 

that even with identical process parameters, the results of the porosity can be significantly different.  An 

interesting question exists with these parts regarding their density.  How does the density of the Best-of-

the-Best (BoB) and the Worst-of-the-Worst (WoW) parts compare?  An initial theory based on limited 

density testing shows that there is no statistical difference in BoB and WoW castings even though 

visually the porosity is significantly different in X-Ray.  A colleague at Mercury measured the specific 

gravity of the 9 BoB and 9 WoW parts, and they showed no statistical difference.  Details on some of the 

parts can be seen in Figure 119.  In this figure, a BoB and WoW casting are shown with identical specific 

gravities (2.635), even though visually the void space is different.  The third part in the figure is another 
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WoW casting with a higher specific gravity than the two others, even though visually it appears worse.  

Further study in this area is needed to understand how porosity and casting density are related based on 

this work.  This could provide insight into the porosity formation within castings and help explain the 

randomness associated with results seen in x-ray or visual inspection of machines surfaces.  This 

knowledge would be helpful in looking to build better machine learning quality predictions.   

 
Figure 119: Specific gravity measurements and X-ray images on select BoB and WoW castings 

 
Truly understanding process control is another phenomenon that builds off the predictive quality 

conversation.  Experience has shown that many increases in scrap rates for a given casting can be 

attributed to special cause variation.  Hundreds of water connections are made when setting up the die.  If 

the inlet and outlet of a water fountain are connected in reverse, water stops flowing through that one 

cooling line.  Is it enough to make a difference?  The answer is usually not, until it does.  At which point, 

the casting quality seems to fall off a cliff in terms of scrap percent.  This is one example and hundreds or 
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thousands more likely happen daily within the process.  A study in production foundry environment 

researching the percentage of scrap generated by special cause variation versus defects generated from 

common cause variation would be beneficial to the industry.  The industry tends to focus on the common 

cause variation defects, whereas I believe the special cause variation is a higher percentage and creates a 

much larger disruption to the production environment.  Studies in this area would help guide the 

conversation to a better understanding of process control.  This work provides the roadmap to machine 

learning applications for process control and anomaly detection through the data framework and the case 

studies.   

 In die casting, the thermal temperature profiles in the die steel drive the casting quality.  Die steel 

temperatures can lead to changes in porosity locations, creation of blow-hole defects, and generate 

sticking or soldering of castings.  The industry talks about steady state temperatures, with the assumption 

that after a limited number of cycles (typically 3 to 10), the die gets up to a set temperature and then 

remains at that temperature until the next downtime event.  This thinking is flawed on both theoretical and 

practical levels.  Miller argued in a 2016 NADCA paper that dies really enter a quasi-steady state 

equilibrium and can take hundreds of cycles to reach this steady state [44].  Practically, this assumption 

does not consider many of the different inputs into the die casting system.  Metal temperatures delivered 

are not a flat temperature.  The furnaces at the die cast machines go through heating cycles to try 

maintaining a set metal temperature.  If left undisturbed, these cycles show a sinewave of readings.  Its 

amplitude will be based on the design of the furnace controller to  maintain a setpoint.  In production, 

there is metal being delivered to that furnace as it is being removed by the casting process.  The 

temperature of the metal add will vary based on how many stops the metal hauler had before getting to 

that furnace.  This sinewave is reset each metal delivery.  Figure 120 is data collected from Mercury 

Marine on a 2500T die casting machine during production.  This is far from a flat line that goes into many 

of the assumptions on the die temperature reaching a steady state.         
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Figure 120: Example furnace temperature data              

  
 Furthering the study of die temperature understanding was an area of high interest to me after the 

2018 NADCA paper [9].  Thermal imaging provides a significant amount of data and insight into the die 

surface temperature immediately before closing and the injection process.  This is a powerful tool in 

better understanding thermals.  In 2019, I presented at the November meeting of the Chapter 12 NADCA 

group on the topics of data and advanced analytics in die casting.  In that presentation, I included the 

following two slides in Figure 121 that show some of the challenges with die temperature.   
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Figure 121: Slides author presented at November 2019 NADCA Chapter 12 meeting 

 
The temperature of the die after spray seems to follow a sinewave but with a different period as 

the furnace temperature.  This finding sparked my interest, and I pushed to have an advanced camera 

system installed on one of Mercury Marine’s newest die cast machines at the beginning of 2020.  Multiple 

vendor and IT delays have impacted this project.  A solution is close to implementation and with the 
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responsibility of schoolwork soon to be in the rearview mirror, this will be an area I plan to work on to 

help the industry gain a better understanding of die casting.  Others, like Miller, have already discussed 

these types of topics, but with the data collected tangentially with this work, more effort should be given.  

The additional insights that can be gained from better data collection throughout the die casting process 

from the data framework provide a foundation to expand. 

Finally, there are four areas of machine learning applications within die casting that I believe are 

due further investigation.  The first of these is the concept of feature importance.  In the conclusions of 

the International Journal of Metalcasting article that comprises Chapter 3 [133], an argument was made 

that feature importance could provide value in machine learning even if the prediction accuracy is not 

useful when compared to the CET.  I believe the topic of feature importance could be expanded upon 

within die casting to help identify critical process parameters for a given casting.  The data framework 

provided here again helps create that foundation.  The second concept worth future endeavors is in 

predictive maintenance.  The data from the equipment performance is by far the largest section of data 

from the framework.  The vibration and amp draw sensors, at their high frequency rates, generate 

hundreds of thousands of data points.  This data provides insights into the equipment health or 

performance.  There has been no research published to date specifically focusing on predictive 

maintenance on die casting equipment.  Since downtime is a large factor in die casting, studies in this area 

would yield meaningful benefits for the industry.  Finding the ground truth in casting quality is the third 

area of research that is needed.  As detailed in Chapter 4, misclassification of casting quality has 

significant impacts on supervised machine learning.  One means to get to the ground truth of porosity in 

casting is with CT (computed tomography) scanning.  An example of a CT scan on the casting used in 

Chapter 3 is seen in Figure 122.  Industrializing this CT process for in-line inspection is key to gathering 

large volumes of data needed for supervised learning.  Currently, the time it takes commercial equipment 

to create a CT scan of a casting significatnly longer than the cycle time of the die casting process.  The 

CT equipment is also usually limited on the size of the castings it can scan.  Research and improvements 
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in this technology would drive a better ground truth result classification of castings for machine learning 

applications.  The challenges to overcome are cost and processing time.   

 
Figure 122: CT scan of porosity in casting from Chapter 3 study 

 

The last opportunity is linked to the earlier conversation about steady state and die temperatures changing 

through time.  The die casting cycle is not a unique, independent event.  Previous cycles influence the die 

temperature.  That is the entire reason the industry goes through a warm-up cycle and regularly scraps so 

many parts until the die is elevated to production temperatures.  Therefore, as the understanding and data 

collection on temperatures improve within the industry, the use of machine learning tools like recurrent 

neural networks that carry information through time must be studied within die casting.  This connection 

through time may provide the key insight into fully understanding the die casting process. 

 

EPILOGUE 

 In my experience in the die casting industry, I have witnessed people always looking for the 

silver bullet.  If I implement this piece of new technology, all my problems go away.  If I use this new 

steel within my die, all my tool issues will end.  If I collect this one more bit of data, I will prove this is 

the cause of all my defects.  Prior to starting this work, I was convinced that it was not that simple.  I used 
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probability to reason to my position.  If it is just one missing piece that solves all die castings problems, 

then someone, by chance, would have stumbled across it in the past 100 years.  This person would have 

monetized the solution, and the entire industry would be performing at world-class levels.  

 The hard truth is there is no silver bullet in die casting.  There is no “one more parameter” that 

one can start collecting today and use to solve all casting problems.  There is no technology or material 

that will make the problems of die casting go away.  Through this work I have learned die casting is, by 

definition, a complex system.  Complex systems do not have simple solutions.  If they did, they would not 

be complex.   

The current die cast mentality must be replaced with a system thinking approach.  Looking at the 

problems the industry faces with the entire system in mind changes how problems are approached.  Issues 

would no longer be siloed and passed between departments.  The system is reviewed, analyzed, prodded, 

tested, and changed to arrive at a solution.  All areas are involved because everyone is an important piece 

in the overall system.  Collecting the data from the system helps drive these types of system 

improvements, as the feedback from the system is known.  This is easy to proclaim in a few statements 

within a paper.  It is orders of magnitude harder to physically implement in a foundry.   

This new approach requires different skillsets than exist today in most foundries.  The analytics 

portion alone drives the need for data science skillsets.  A recently graduated data scientist likely does not 

have a die cast foundry on the top of his or her future employer list.  There are other issues to address as 

well like PLC programming, sensor connections, data storage, cyber security, considerations for 

technology within the manufacturing process, and systems engineering.  All these require new skills not 

well known to foundries.   

This work has also shown me that machine learning is as extremely useful as it is overhyped.  I 

have found the challenge with machine learning does not come from the code writing and data 

preparation.  Instead, success of machine learning comes from knowing where, when, and how to apply 

the different algorithms to different real-life problems.  Success is also achieved by knowing where to say 

“no” for machine learning.  The complexity of die casting, and manufacturing in general, provides a 
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highly fascinating space to sensibly apply machine learning.  I hope as an industry, die casting can 

achieve this.         

Taking a systems approach with the addition of machine learning in die casting requires a culture 

change.  Changing the die casting industry will take considerable time and effort.  The punishment will be 

harsh for those that choose to stand on the sideline and wait for the silver bullet.  The rewards will be 

significant for those foundries able and willing to make the investment.   

There is no silver bullet in die casting.   
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