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Separation of Multiple Time Delays
Using New Spectral Estimation Schemes

Mohammed A. Hasan, Mahmood R. Azimi-Sadja8gnior Member, IEEEand Gerald J. Dobeck

Abstract—The problem of estimating multiple time delays in then be extracted from the estimated model parameters. The
presence of colored noise is considered in this paper. This prob- reliability of the first step depends on the accuracy of the
lem is first converted to a high-resolution frequency estimation estimation procedure, and that of the second depends on the

problem. Then, the sample lagged covariance matrices of the itivity of the f ies 1o th del ¢
resulting signal are computed and studied in terms of their sensilivity ot the frequencies to the model parameters.

eigenstructure. These matrices are shown to be as effective in Among the well-known approaches to this problem are
extracting bases for the signal and noise subspaces as the stanProny’s method and the maximum likelihood method [4], [5].
dard autocorrelation matrix, which is normally used in MUSIC Prony’s method and its variants are based on the assumption
and the pencil-based methods. Frequency estimators are then a5 pure sum of sinusoids fits an autoregressive (AR)
derived using these subspaces. The effectiveness of the method is . ..
demonstrated on two examples: a standard frequency estimation model whose par_ameters can be determined from a f'n_'te
problem in presence of colored noise and a real-world problem Number of data points. In the presence of measurement noise,

that involves separation of multiple specular components from the accuracy of Prony-type methods deteriorates rapidly. To

the acoustic backscattered from an underwater target. overcome this sensitivity problem, many alternative schemes
Index Terms—Data decimation, spectral estimation, underwa- We€re proposed. Eigenvalue and singular value-based methods
ter acoustics. such as that proposed by Tufts and Kumaresan [5] perform

well for moderate signal-to-noise-ratio (SNR) cases. In most
of these methods, the autocorrelation of a data matrix is
computed, and signal and noise subspaces are then determined

N UNDERWATER target detection using sonar, the pregrsing the eigenvalues and the eigenvectors of this matrix.

ence of the targets can be verified by identifying certainjrst, the number of sources is determined from the number
clues about the target in the backscattered signal [1]-[3]. TBg significant eigenvalues. The corresponding eigenvectors
first step in this process is to separate multiple specular retufRgn form the signal subspace, while those corresponding to
from the backscattered signal so that the residual part cantRg minimal eigenvalues are chosen as a basis of the noise
analyzed more efficiently. Accurate separation can only R@phspace. The MUSIC method [6] is a procedure that utilizes
made possible if the time delays and amplitudes of multiptge noise subspace eigenvectors.

specular returns can accurately be estimated. Depending on thgenerally, modern high-resolution subspace estimation
target geometry, beam width, and surrounding environmeBghemes are of three types.
the backscatter may contain several closely spaced specular rq) extrema searching techniques like spectral MUSIC [6];

turns with different amplitudes. This makes accurate separatiorQ) polynomial rooting techniques such as Root-MUSIC [7]
of these components a very difficult task. and Pisarenko methods [4];

The problem of estimating time delays in the presence Of3) matrix shifting methods such as ESPRIT [8] and matrix
colored noise arises in many different fields such as radar, pencil methods [9].

sonar, seismic, and biomedical applications. The proble.P'l . - o
. . . . . he statistical efficiency of these methods are studied in
is typically transformed into a harmonic retrieval problerrflo] and [11]. Howeverythese methods are computationally

using Fourier transform. In recent years, there has been dan . : . ) .
) o . . . . emanding since they involve the computation of each singu-
increasing interest in model-based sinusoidal estimation. These

. .~ . Tar eigenvector and corresponding eigenvalue. To reduce the
models normally convert the nonlinear problem of estimatin : ; .

- . Lo mputational cost associated with these subspace methods,
the frequencies into a simpler problem of estimating thé

. . . . various alternatives were proposed [12]-[14].
parameters of a linear model. The desired information CaﬁMore recently, Nagesha and Kay [15] have developed a

. . , . maximum likelihood (ML)-based method in which the color
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of the colored noise. They also showed how this bound cahsinusoidsi{, their magnitudesi;, and their frequencieg;

be computed from the conditional likelihood function of theising the noisy datg(k), k = 1,2, ---, N.

observations. Eigenstructure methods [4]-[6] are among the most well-
The goal of this paper is to develop new high-resolutioknown high-resolution sinusoidal estimation methods available

spectral estimation schemes to accurately estimate the timehe literature. The main objective of these methods is to

delays associated with multiple specular components in thenerate orthogonal eigenspaces consisting of the signal and

acoustic backscattered signal from underwater targets. Itnisise subspaces from the estimated autocorrelation matrix.

shown that all the lagged data correlation matrices containErequency estimators such as MUSIC [6] can then be applied

approximately the same information about the noise and sigmalprovide estimates of the unknown frequencies. Here, we

subspaces. This property is used to develop several neriefly review the conventional MUSIC method for frequency

algorithms using high-lag correlation matrices. These metho@stimation in presence of white noise.

which can be viewed as extensions to the MUSIC and Pencil-If y(k) andwv(k) are partitioned into overlapping blocks of

based methods [6], [7], [9], are primarily used for the purposaze L, then (2) can be rewritten in vector form as

of signal-noise subspace decomposition in situations where

the noise is colored. M
This paper is organized as follows. Section Il presents Vi = Z Ai%e(k, f;) + ny, (3)
formulation of the time delay estimation problem as a sinu- i=1

soidal frequency estimation. The MUSIC frequency estimation
scheme is then briefly reviewed. Based on correlation matrice o T
with lags, two new algorithms are developed in Sections Iﬂlﬁer?_y’“ [U'(;) [ggllz) +y§])€ +' '1') o(k er(j]; J: ﬁ)]T 1)(3]1”(’1
and IV. Enhanced resolution using the decimation process affd .~ " _joxks _for(kt1)f —jom (k4 L—1) 1T
: : . ; , f) = e e e I,
correlations of higher order lags are presented in Section

Finally, simulation results on two different examples are'denotes matrix transposition anbl > M. The vector
Y P é(k, f) can be expressed agk, f) = c~2"*/e(f), where

provided in Section VI. ol f) 1= [1 e—i2nf c—i2m2f ... ~i2x(L-DS]T The vectors
{e(f:)}M, are sometimes referred to as the signal vectors.
Il. PROBLEM FORMULATION AND FREQUENCY ESTIMATION As shown in [6], the frequencieg; can be estimated
Let us consider the acoustic backscattered sig(tlin the by decomposing the autocorrelation matii, = Efyry;]
form of into the signal and noise subspaces. Note that here, sample
o averaged statistics are used as approximations to the ensemble
isti i he number of blocks is usually very
2(4) = ha() % 2(t — A 4wt 1) averaged statistics since t .
®) ; i(8) » i)+ ult) ) large. Now, assuming that the eigenvalyes}’., of R, are
] ) . sorted in decreasing order so that > X\, > --- > Ap,
where the first term on the right-hand side represents thgnh corresponding orthogonal eigenvectars vs, - - -, vr,

effects of target specular returns and volume and surfaggpectively, if the noise(k) is white with variances2 and
reverberation, and the second temait) accounts for the j - M, then there exists aM such that\; > Ay > -+ >
effects of additive ambient noise. In the first terim(t), ),, > M4l = --- = A = o2 The ranges of the matrices

i € [1, M] represents effects of media or reverberatioft) v, — [ v2 - wy] and Vo = [vprg1 vmge - i)

is the transmitted or incident signaly; is the unknown gare called the signal and noise subspaces, respectively. In
delay associated with théh component, and is the symbol the noiseless case, the column spaceVefis the signal

for convolution operation. Reverberation results from randogﬁ,bspace of the signal vectaséfy), - - -, e(far). Practically,
distribution of acoustic scatterers due to inhomogeneities aBQ'examining the eigenvalues &f,, we get an estimate for the
roughness at the top and bottom surfaces of the ocean (surfagenost significant eigenvalues, in which cadé, represents
reverberation) as well as those corresponding to biologiafle number of sinusoids contained in the signal part. Once
sources in the water column (volume reverberation). Theis decomposition is done, using, usually, the singular value
effects of media and reverberation can be modeled [3] by @Bcomposition (SVD) algorithm [17], the MUSIC frequency

unknown constant gaiai;. estimator [6] can be applied as
Assuming bandlimited signals, (1) can be transformed into a
sinusoidal frequency estimation problem by taking the Fourier 1 1
transform of (1), dividing byX(w), and sampling the fre- P(f)= = 4)

guency axis to yield e*(fiVaVie(f)  L—e (f)ViVie(f)

M
y(k) =Y A IO™0) L ok), ke[, N] (2

=1

The estimate of the frequencies are generated by plotting
P(f) and identifying the peaks associated with the locations
of the f;'s. Oncef;’s are estimated, the amplitudels can be
wheref; := A;/N. Note that as in [6], the phagg, which is obtained using a least squares (LS)-based estimator.
assumed to be an i.i.d. random variable uniformly distributed In the sequel, we will show how correlations with lags can
over [0, 2r), is included for the sake of generality. Nowbe used to develop new approaches for the estimation of the
the problem is reduced to estimating the optimum numbparameters of complex sinusoids corrupted with colored noise.
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I1l. GENERALIZED EIGENSTRUCTURE OF
LAGGED AUTOCORRELATION MATRICES

the estimates of the frequencies and amplitudes can be done
more efficiently using-,(m). In addition, the effect of phase

In this section, we investigate the eigenstructure of lagg&@eS not appear in this domain, compared with the original
correlation matrices of sinusoids and use some of their prd2Servation domain. This significantly simplifies the computa-
erties to extend the eigendecomposition-based methods 98 Of the amplitudest;s. The next proposition reveals some
that correlations with lags can be used to extract the sigrdjithe useful properties of the auto-correlation maiix(in)
and noise subspaces. The idea is that for a wide ranged§fined asiz(m) = Exxj_,]. _ N
random processes, the higher the lag, the less noisier the dafa/0POSition 3.2: Assume thatz(k) as in Proposition 3.1,
correlations are since the noise becomes more decorrelafd? 0 for ¢ =1, ---, M, andL > M, Then, we have (6),
at higher lags. To understand the eigenstructure of lagg@d Shown at the bottom of the page. Moreover, the following
autocorrelation matrices of sinusoids, assume (@) = relations hold.

z(k) +v(k), wherez(k) = M Ae=2mik(i=¢0) andu(k) 1) Re(m) = FR(m)F”.

=1 <7t

is a random process modeled by sth-order moving average i) Ra(m) = F" Ry (m)F™".
(MA) processu(k) = agw(k)+ajw(k—1)+---+asw(k—s), i) By(m) = FR.(m —1) = Ry(m + 1)F".
where w(k) is a zero mean white noise with varianeg. V) Ra(m) = F"R.(0) = R.(2m)F™™.

This idea is similar to those in [15] and [16]. Let(m) V) Re(m—+7)=F"Re(m)= Ro(m+2r)F"*".
be the autocorrelation function af(k) defined byr,(m) = Vi) For each integem, R.(m) is of rank M.
Elv(k)v*(k —m)]. It can easily be verified that Here, I is the companion matrix of the polynomial whose
s roots hold the unknown frequencies
o2 aaf_,, forme|0, s
N LD D 0. 5
ro(m) =0

holds for the autocorrelation o#(k). Further, we have

A)=2""Mp) =2 vezb L+ ke =0 (79)

form > s wherep(z) = 1M, (z — e=%/), and

ro(—=m) = r*(m) for all m. The white process is obviously 0 1 o -0 0

the simplest case in which,(m) = 0 holds for|m| > 1. This 0 0 r e 00

implies that for this case, the new sequedeg(m)}S_,., £ =1 : : : D : . (7b)
would contain fewer noise effects than the original one. This 0 0 0 e 0 1
observation will be used to develop algorithms for estimating —¢f, —C[_1 —Cf_2 +++ —Cy —C1

the fi'S. . P
Proposition 3.1: Let y(k) = z(k) 4 v(k), with z(k) = Proof: See Appendix A. _
S M Ajemi@kfi=69) andz(k) andu(k) are zero mean and hRemark 3.|1.The approxmate eq_uallty%y(mf) ~ R“”(ﬂr)' ¢
‘ndependent rocess; ther — (m), where Whenm is large, ensures the existence of eigenvalues o
P P en(m) = ru(m) +r.(m) matrix R,(m), which are close to zero. This approximation

M holds well for a large class of stationary noise processes for

re(m) =Y AjAfem?ImS (3)  which r,(m) — 0 asm — co. It must be noticed that when

=1 L > M, matrix F* is singular with one-dimensional (1-D)
andry(m) = Ely(k)y*(k — m)]. null space spanned by the vecfor0 --- cp cpr—1 -+ 1%,
Proof: This result follows directly usingZ[¢?(#—#:)] =  Of course, the ultimate goal is to determine this from the

8(1 — 7). noisy datay(k) or the correlation sequeneg(k) by gaining
The last result implies that fom > s, r,(m) is a sum eigenstructure information concerning. Since r,(m) =

of pure sinusoids but with squared amplitudes. Thus, like thg(m) for m > s, the sequencér,(m)}y_,.; can ideally

original signal, the sequenog,(m), m =0, 1,2, .-, N is be used to determine the's.

formed of a sum of sinusoids and the autocorrelation of theRemark 3.2: Postmultiplying both sides of v) of Proposi-

noiser, (m), which becomes zero fon > s. Consequently, tion 3.2 by W, whereW is any orthogonal matrix such that

r M

Z AiA;ge—Qﬂ'jrnfg

M
Z AZ‘A?G_Qﬂ—j(nl_l)ﬁ

M
Z AiA;ge—Qﬂ'j(rn—L-l—l)fi

i=1 =1 =1
M M M
A‘A*G_Qﬂ—j(nl—i—l)ﬁ A, A*e—2mimfi A‘A*C_Qﬂ—j(nl_ll—i—?)fi
R = | 2H 2 ®

M
Z AiA;ge—Qﬂ'j(rn-l—L—l)fg

Li=1

M
Z AiA;ge—Qﬂ'j(rn-l—L—Q)fi

=1

M
— 27 ’
N A AremzmamS

=1
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F*W = WS and S is upper triangular with eigenvaluescomputed over the complex plane, and the frequencies are
{e72mifi .. em2mifu 0, ... 0}, we obtain R.(m)W = chosen among those close to the unit circle.
Ry(m+r)WS™. Hence,R,(m) = Ry(m+r)WS"W*. Note Remark 3.4:A nonzero eigenvector o’ has the form
that matrice U, = W S"W*},~¢ are independent of.. This  Z; = [1 z --- z- |7, wherez, = ¢=2™/F i € [1, M]
provides a flexibility in choosing: sinceR,(m) is less noisy are the eigenvalues df, i.e., matrixV = [Z, Zy --- Zy]
for largem. This property will be used to develop an algorithndliagonalizesF'. Note that the frequency estimation problem
to recover the signal and noise subspaces, which are then usellices to finding the eigenvalues $f which are the same
to estimate the frequencies. as those oft” since /" and S are similar (Remark 3.2).

Remark 3.3: Note that vi) of Proposition 3.2 implies that if ~Similar results as those of Proposition 3.2 can be obtained
the observed signal has no additive noise &nel M, then the by defining a new matrid, (m, r) = R.(m—7)+R:(m+7).
rank of R, (m) is M for each integer:. When noise is added As can be observed from (6. (m) is Hermitian if and only
to z(k), the resulting autocorrelation data matfy(m) tends if m = 0. However, for numerical advantages, we consider
to have M larger generalized eigenvalues associated with thee Hermitian matrixfz,(m, 0) = R,(m) + Ri(m), m > 0,
signal subspace ang— M smaller eigenvalues associated withvhich has the following properties.
the noise subspace. Thus, by examining the diagonal element€orollary 3.4: Let R,(m, r) and I’ be as defined before;
of S in Remark 3.2, we can estimafd. then, for each integer > 1

As indicated in vi) of the last result, wheh > M, matrix ) Ru(m,0) = FR,(m, 1) = R.(m, 1)F*;
R.(m) is singular. Its null space is determined next, where jj) R.(m,0) = F'Ry(m,r) = F:(m, )T

the notationV'[R.(m)] denotes the null space dt.(m). Proof: This follows from the observation that,(m) +
Proposition 3.3: Assume thatL > M; then, R,(m) is R*(m) = FRy(m — 1)+ [Ro(m + 1)F*]* = FRy(m—1)+
. « L—M - T T T
singular for eachm > 0, and MR, (m)] = N(F*"™™) = FRe(m +1) = F[R,(m — 1) + R:(m + 1)]. Corollary 3.4ii)
span of columns of7, where follows from iterating i). Q.E.D.
Multiplying both sides if Corollary 3.4ii) byW*, where
M CMo1 e 1 0 0 ... 017t *W = WS, yields
0 CM CpM—1 *°° 1 0 - 0 _ i
G = : : : : : : S R.(m, OW = R_(m, r)WS" 9
0o - 0 0 cv em—1 - 1 ®) or equivalently
Additionally R.(m, 0) = F:(”% U,
N[R:(m)] = N[R,(m)] = column space of. whereU, = WST™W*. As in the case of?,(m), matrix U,

is independent ofn.

This result, along with Proposition 3.2, shows thgt(m)
andR,(m, r),form =1,2,-..,andr =0, 1, -- -, contain as
much information about the signal and noise subspaces as the
convenience, matrixB is typically chosen so thaGB is conve_ntional correlat_ion matrik,,(0) in tha'_[ all of these can
orthogonal, as in the case of MUSIC [6]. The practicat?e utlllz.ed to _determméV. The nonzero elgenyectors of the
significance of Proposition 3.3 lies in the fact that it can b%enerallzed eigenvalue problem (9) are s defined above.

used to estimate the frequencies by estimating the coefficiengs 'V In (9) be partitioned as” = [, W»] such thativ,

¢; of A(z) defined in Proposition 3.2. To see this, l6t= corresponds to the most significatft eigenvalues of”, and
’ s . ' W, corresponds to the least significaht— M eigenvalues
1z - 2L, andh(z) = Z*GG*T Z; then

of S”, respectively. Sincé; is in the signal subspace;;, =
Wi (WiW1)~IW; Z;, and thus, Z* Wy (Wi W)Wy Z = L
h(z) =[p(z*), 2*p(z*), -+, 27 p(z")] if and only if Z is in the signal subspace that is spanned
Ap(2), zp(2), -+, 2 (2)]F by the Z;'s. Similarly, Z:Wy(WsWo)~'Ws2Z; = 0 if and
L—1 only if Z is a linear combination of th&Z;’s. By plotting
= |p(z)|2{z |z|2i} Py(z) = 1/[L - Z*W(W;W,)~tW; Z], the frequencies will
=0 be close to the locations of the peaksHf z). An algorithm
that utilizes the ideas of Corollary 3.4 is presented next.
wherep(z) is defined in (7a). Practically, it is not numerically Algorithm 1:
feasible to comput&r; however, an orthogonal matrix that i) Choosem sufficiently large such thatn > s + L,
has the same column space can easily be estimated using r > 1, and estimate the lagged sample correlations

Proof: See Appendix B.
Note that the column space &f and GB are the same
for any M x M nonsingular matrixB. For computational

the SVD decomposition. When is on the unit circle, then R,(m) and R,(m + r) of the data sequencgk) for
h(z) = L|p(z)|*. This implies thath(z) = 0 if and only if k=1,---,N.

p(z) = 0. In the MUSIC algorithm [6],1/h(z) is typically i) Solve the generalized eigenvalue problem
plotted for z on the unit circle, and peaks are observed for zRy(m, 0w = Ry(m,r)w, and form the

their locations. In ROOT-MUSIC [7], the zeros &f ) are decompositionR, (m + )W = R,(m)WS".
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i) Let W; andW, be the columns of¥ that correspond R%:(m)] = N[R,(m)] = N[R:(m)]. An algorithm that
to the most significanl/ eigenvalues of5™ and the utilizes this idea is presented next.
least significanf. — M eigenvalues of™, respectively.  Algorithm 2;

iv) Let Pi(f) = L— e (f)Wi(WiW1)"'Wie(f) = j) Estimate the sample correlation matrix of the data
e*(f)W2(W3W2)"'Wie(f). Then, the zeros of sequencey(k) for k =1, ---, N.
Py(f) are the estimated frequencies. Note thatjj Compute the eigenstructure of the Hermitian matrix
if W1 has orthogonal columns, thed (f) = Ry (m) + R:(m) 50 thatR, (m) + R:(m) = USU* =
e* (YW1 Wte(f). Orthogonal matrices can be au- [0, Us][Z 0 |[U: Us]*, wherelU; and Us are or-
tomatically generated if the QZ algorithm [17], [18] 0 oy '

thogonal whose columns span the signal and the noise
subspaces, respectively. Hedg,, holds theM prin-
cipal most significant eigenvalues, ahg, holds the
IV. EIGENSTRUCTURE OFCORRELATIONS L — M nonprincipal least significant eigenvalues of
WITH HIGHER ORDER LAGS R,(m).

As mentioned in Section Ill, the main motivation behind iii) Let Py(f) = e*(f)Ux(UsUz) " Use(f) = L —
using higher lags of correlations lies in the idea of suppressing  e*(f)U(UjU1) " Ufe(f) and plot 1/P(f). The
the effects of colored noise. This leads to a more efficient peaks indicate the locations of thg's.
and practical way of estimating the desired unknowns. In thisRemark 4.1—Choices dfand M: As shown previously,
section, we extend the eigendecomposition-based methodsysghe noise-free case, the matiik, (m) has rankM, regard-
that correlations with lags can be used to extract the signats of ., as long asl, > M. Generally, the performance of
and noise subspaces, as shown in the following result.  the estimators is largely dependent on the accuracy of signal

Proposition 4.1: There exist matriced/ = [U; Uz] and and noise subspace estimation from the correlation matrix of
upper triangular matrix' such thatk,(m)U = UH,,, where the noisy datak,(m). For largeL, the columns of¥; tend to
Ui = VB and Uz = GBy, and H,, = [ gl, where pe closer to the signal vectoed;), and the smalles — M
V=12 - Zy] andG are as defined in (8), anh, and ejgenvalueg \;}%,,., tend to cluster around zero. This can
B, are nonsingular matrices, i.d/, and U, span the signal pe justified from the following observation. if is chosen such
and noise subspaces #t.(m), respectively. that L = N, then the matrix(1/v/N)V is orthogonal, each

Proof: It is shown in Appendix A thatR.(m) = column of which is an eigenvector d,(m) with eigenvalue
VDS™D*V* and R,.(m)G = 0, and it follows that |A;|2. Thus, for sufficiently largel, we may expect that the
eigenvalues and eigenvectors Bf.(m) will be close to the

is used.

R.(m)[V G]=[VDS"D*V*V 0] signal vectorge(f;)},. The effect of the parametéron the
DS™D*V*V 0 performance of MUSIC is studied in [11], where it is shown
=V G]{ 0 0} that a choice ofL such thatN/3 < L < N/2 would give

reasonably good estimates.
Let Q be a nonsingular matrix that upper triangulizes '© €xamine the effect o/, let M, be an estimate of the
DS™D*V*V, i.e., Q-1DS™D*V*VQ is upper triangular; actual number of sinusoids such the, > M. Let U; be a

then matrix of the most significand/, eigenvectors, and |éf, be
q 0 a matrix of the least significant — M; eigenvectors. Then,

Rm)lVQ G]=[VQ G][ e O} both Pa(f) = e*(/)T2(UsU2) " Tse(f) = 0 and Qs(f) =
e* (U (U U)"tU e(f) = L hold. While underestimating

where H,, = Q-'DS™D*V*V(Q is upper triangular. M1 implies thatU, has signal vectorsp, will display r
The conclusion follows by setting; = V@ and U, = Misestimated peaks, where@s will display M; — r peaks.
GB,. Q.E.D. This suggests that to obtain an estimatébfwe can pick any

The practical value of Proposition 4.1 is that the eigenvaludé and compute the zeros of both and@.. The number of
of R,(m) are the same for ath and that the signal subspacePeaks in both cases /.
is spanned by the columns bf = V B; for some nonsingular Using similar analysis to that of [6], we can show that for
matrix B, and the noise subspace is spanned by the null spé@@e L andM, the accuracy may indeed improve significantly.
given by the columns fof7, i.e., the null space is generatedl he effect ofM on the MUSIC frequency estimator is studied
by U, = GB, for any L — M x L — M nonsingular matrix3,. in [10] and [11], where it is demonstrated that overestimation
In the presence of noise, tid most significant eigenvectorsof M leads to cleaner noise eigenvectors Bf(m). It is
of R,(m) span a perturbed version of the signal subspadegted from simulations that this method is insensitive to the
whereas the leasf. — M significant eigenvectors span aoverestimation ofi{. In most applications, the number of
perturbed version of the noise subspace. This observation sérusoids}M is not known aa priori. The numberd can be
be utilized to develop an algorithm that can be considered @stimated using higher order lags by using the decomposition
be an extension of MUSIC. Owing to numerical robustne$s ii) of Algorithm 2 above and examining the eigenvalues of
reasons, the Hermitian matrj®, (m) + R;(m)]/2 is used in the diagonal matrix..
the next algorithm to determine the signal and noise subspaceRemark 4.2—Estimation of the Amplitude®nce the fre-
that are the same for alin. In particular, N[R.(m) + quencies are estimated, the amplitudgs - - -, A,; are then
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estimated by solving Vandermonde systems of equations. w(k) is a white process, then if the poles ofare inside
1 1 1 the unit circle, we havéim,, ... r,(m) = 0, which leaves
o—27if1 o—27if =273 fae ry(m) as a sum of pure sinusoids for sufficiently large In
the standard MUSIC algorithm, the matri.(0) is used to
extract the noise and signal subspaces. If the correlation of
the noise is an exponentially decaying sequence, it is expected
A 7,(0) that the disturbance of the noise on the correlafitif0) will
|42/ _ ) be less severe since the correlation mattjX0) will be close
: : to a diagonal matrix, i.e., decimation plays a role of whitening
| Aps|? ry(N —1) the noise and thus improves the performance of the MUSIC
) algorithm. However, whem > 0, the elements af?,,(m) tend
to obtain to be relatively small, and thug.(m) is a slightly perturbed
1= . version of R,.(m).
N 2"y (k) i € [1, M]. As mentioned before, decimation may result in aliasing,
k=0 particularly when the decimation factor is large. To alleviate
Here, z; = ¢~2%//:. Note that this can not be applied to théhe problem of aliasing, we can use this decimation process to
raw data because of the presence of the phase terms.  estimate the™>™/¥"’s and thec~>/(¢+1)/"’s, which requires
solving two problems. The main result concerning the retrieval
of the f;’s using a decimation factod is given in the next

theorem.

Data decimation or downsampling has been consideredryaorem 5.1: Assume thatl, > M, and letF, and Fiy,
before in the context of spectral estimation [19], [20]. Thga the matrices that minimize the two problems
main advantage of this technique is that only part of the

measured data is used, which results in a large reduction in {

2RI (N=Dfi g=2mi(N=Dfe ... 27i(N=Dfu

|4i|* =
V. FREQUENCY ESTIMATION USING DATA DECIMATION

the computations. However, the main disadvantage of using r5ce

data decimation is that it works only if the frequencies occupy

a relatively small region; otherwise, for a large decimation

factor, aliasing will occur, leading to ambiguity in resolving,,q

frequencies. To alleviate this problem, the frequency range

could be divided into sub-bands and filter out those outside the

band of interest. However, this will not completely eliminate Trace{z [Yk(d-i—l) - Fd-l—lY(k—l)(d-i—l)]

aliasing since it is very difficult to implement an ideal passband &

filter. In this section, a data decimation technique in con-

junction with signal and/or noise subspace methods discussed [Vk(a+1) — Fd+1Y(k—1)(d+1)]*}

earlier is developed. The decimation or downsampling of

the input data sequence stretches the frequency scale by

the decimation factorl, thus offering better isolation of the respectively. Then, in the noiseless caBg,is similar toFd,

neighboring frequencies and thereby reducing the interfereng®d F,, , is similar to F¢+1, whereF is as defined in (7b).

caused by the proximity of other frequency components. Proof: The proof follows from Proposition 3.2 and (7a)
To understand the effect of decimation, assume as befeiigd (7b).

that the signaly(k) = 12, A;e7@7Ri=¢) 4 y(k) is I Ry, (k), the correlation matrix for the decimated signal is

decimated with decimation factof so that the decimated of rank M then, this problem has a unique minimizer obtained

signal is (k) = y(kd) = S0, A;e/@mi=0 4 y(kd). by setting

Thenr.(m) = E{y(kd)y[(k — m)d]*} = r,(md). Therefore,

Z [Yrd = Fay (k—1)al[¥ kd — FdY(k—l)d]*}
*

we have (10), shown at the bottom of the page, and -1
R.(m) = Ry(md) + Ry(md). Fy= %{Z R;Sd(k)Ryd(k)}
k
As shown before, ifs(k) is a colored noise process modeled
by an sth-order ARMA procesa/(k) = biv(k — 1)+ -+ + . {Z (R, (B)Ry,(k+1) + R, (k+ 1)Ryd(k)}.
bov(k —r) +wk) + aqw(k — 1) + - - - + a;w(k — s), where k

R.(m) = Elyrayfy_myal = (10)
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However, sinceM is not known for most applications, we TABLE |

solved the generalized eigenvalue problem VARIOUS FREQUENCY ESTIMATORS. DATA: Two COMPLEX
SiNusoIDS AT FREQUENCIES0.2 AND 0.6 IN COLORED

Noise. SNR= 5,0, —5,—10 dB, DIMENSION OF DATA
% L =30, D S Su M =2
2 Z de(k)Ryd(k) F ECTORS IMENSION OF SIGNAL BSPACE !
% Lagged Matrix | SNR h o5 f2 G4,
R,(0) 5 dB | 0.2144 | 0.0008066 | 0.6076 | 0.0006751
— R (DR, (k+ 1D+ R (E+ DR, (K5 1 R,(1) 0dB |0.2145| 0.0027 |0.6079 | 0.0014
{zk:( yd( Ml ) y“( My (k) . (11) R,(1) -5dB | 0.2129 | 0.0398 [0.6102 | 0.0120
R, (1) -10dB | 0.2354 | 0.10330 | 0.6262 | 0.0800
The solution of (11) can be obtained by an algorithm analogous ™ &,(2) 5 dB [ 0.1941 | 0.0008825 | 0.6148 | 0.0008912
to that in Algorithm 2. R,(2) 0dB {01947 | 0.0018 ]0.6146 | 0.0017
The eigenvalues ofF,; and Fy., are ¢ 24 and 2&/(;) ‘?0‘133 g-;(l)gg g-%gé g-gég; 8'(1’351’513
e~2mild+1)fi | respectively, fori € [1, M]. Unfortunately, «(2) - ' ' ' d
these matrices are not simultaneously diagonalizable; thus A,(3) 5dB | 0.2078 | 0.0008529 | 0.3873 | 0.0008161
- ’ y diag N > R(3) 0dB | 02123 | 0.0281 |0.5873| 0.0016
nonsingular matrice§); and Q41 have to be determined so &,(3) 5dB 102191 | 0.0587 05977 | 0.0400
that Q7' FyQq = diage™?%), and Q7} Fyp1Qur1 = E,(3) 10 dB | 0.2425 | 0.0999 | 0.6153 | 0.1117
diage=2(4+1)f) We can employ all the sub-bands of R,(I)+R,(3) | 5dB_[0.2036 | 0.0007355 | 0.5983 | 0.0005541
downsampling (which are sometimes referred to as polyphasdt(l) + R,(3) 0((111}33 0.2031 | 0.0014 | 0.5984 | 0.0017
components) to obtain more reliable estimates offthee., by (1) + Fy(3) | -5 0.2147 ] 0.0451 |0.6046 | 0.0544
S X ; R,(1) + R,(3) | -10dB | 0.2056 | 0.1032 | 0.5990 | 0.1103
considering all the subsampled signglék) = y(kd +i — 1),
i=1,--,dand computing the unit circle. After the noisy signal is decimated, the new
o d characteristic polynomial becomes
R.(m) = Z Ry, (dm) M K
[T [T - ui).
where i=1 j=1

This shows that the poles corresponding to the noiseless
signal arez¢, which still lie on the unit circle, whereas those
In the next algorithm, we incorporate the decimation processrresponding to the noise ai§. Sincew;’s lie inside the unit
with Algorithms 1 or 2. circle, their powers get smaller in magnitudedagets larger.
Algorithm 3: This demonstrates that the effect of noise diminishes as the
i) To apply decimation for resolution improvementdecimation factorl becomes large. Thus, decimation, together
choose the decimation factaisd-+1, and consider the With correlations of higher order lags, will have the advantage
new signalz(k) = y(kd) = Ef\il A;e—i@rkdfi—¢:) 4 of significantly reducing the effects of noise. However, this

Ry, (dm) = E[de+i—1y2(k—nl)+i—l]'

v(kd). entails the solution of two optimization problems, which is
i) Compute the covariance matrixR.(m) = offset by the_ reduced number of computations associated with
E[Yka¥ eyl the decimation process.
iii) Apply Algorithms 1 or 2 to estimate the frequencies
fi(d) and fi(d+1)' VI. EXPERIMENTAL RESULTS
iv) Computew; = [fi(d) + ki1]/d and v; = [fi(d“) + In this section, we illustrate the performance of some of the
ko]/d+1fori=1,..-, M andk; =0, ---,d— 1, algorithms developed in this paper on two different examples.
ko =0, d. Example 1: Consider the data sequence generated by the

v) Choose the set with the best matching betwags equation
andwv,’s, i.e., |u; — vj,| = min; {|u; — v;|}. Then, the A jomfik J27 fok
frequencies can be estimated &s= (u; + vj,)/2. y(k) = Ave e (k)
vi) Compute the amplituded; as in Remark 4.2. where fi = 0.2 and f; = 0.6, andk = 1,2, ---, 60. The
Remark 5.1: To examine the effect of decimation on theéémplitudes of the sinusoids wer¢; = 1.0 and A = 1.0.
sensitivity of parameters, consider a decimation facfor The SNR for either sinusoids is defined Hslog,o(02/02),
Assuming the noise is modeled by an AR model with poleghere z(k) = A;e/2™/1h + Aye/27/2k and o2, o2 are the

w;, j = 1, ---, K, the polynomial that governs the poles okariances of signal k) and colored noise(k), respectively.
this problem before decimation is The lagged correlation matrices are constructed using forward-
o X backward method to increase the robustness. The size of each
matrix is chosen to bel( = 30), which in the absence of
[[G-2) [TG-w

noise has effective rank two. The QZ routine on MATLAB is
employed for the computation of the generalized eigenvectors
where thez; represents the poles of the signal, and the and eigenvalues required to implement Algorithm 1. The mean
represents the poles of noise. It will be assumed, as in mestues and standard deviations of the estimated frequencies
applications, that the poles of the noise are strictly insidge given in Table | for a set of 40 random experiments

i=1 j=1
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for different SNR (SNR= 5,0,-5,—10 dB) and different backscattered return was generated using (1) and (2) with
lagged correlation$ R, (m)}2,—;. The dimension of the signal v(k) = Ele b;w(k — 1) and w(k), which is a white noise
subspace is considered to B¢ = 2, using the correlation with zero mean and unit variance. The coefficiehtsand
matrix R, (0). It is noticed that the performances in these caség were taken to bé; = 0.7071 and b, = 0.7071 so that
are close to those obtained using the correlation matjig0). 7 + b3 = 1. The purpose of this study was to analyze the
The last four rows consider the case where combination pérformance of Algorithm 2 under various conditions such as
lagged correlation matrices, namelit, (1) + R,(3) is used. low amplitude and closely spaced specular components in the
The results show some improvements over those uBif(d), simulated backscattered signals. Three simulated backscattered
R,(2), or R,(3) alone. It is also noted that false peaks wilkignals were generated with the actual time-delays shown in
appear ifM > 4. Table Il. In all cases, the FM incident signal was of length
Example 2: Next, we consider the time-delay estimatiod096 samples. These cases contained four components with
problem and test the performance of Algorithm 2 describewnuniform separations.
in Section IV. We examined several data sets consisting ofln the first case, there were four delays, as shown in Table I,
an incident and simulated backscattered signals. The inaiith amplitudes4d; = 0.7, A; = 1.0, A3 = 0.8, andA, = 0.8
dent signal was a wideband linear FM, and the simulatedth zero phase. When data vector lendth= 40, A = 10,
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Fig. 3. Incident and simulated backscattered for Case 3 with spectral peak at=d&lay, 465,797,2082.
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Fig. 4. Incident and real backscattered for Case 4 with main spectral peak at=cleélag.

and SNR= 30 dB were used, the result of Algorithm 2shown in Fig. 3 for whernL = 40, M = 10, and SNR= 40
is shown in Fig. 1. This result shows that if the separatiaiB. As can be seen, all the delays are accurately estimated:
between delays is sufficiently large, we can recover the delagigen those with small amplitudes.
very accurately within four samples in this case. The fourth experiment involved a real backscattered signal
In the second case, we also have four delays as showrofnlength 8192. The data was obtained from a submerged
Table | with amplitudesd; = 1.0, A = 0.7, A3 = 0.9, and elastic target that had the form of a tapered notched cylinder
A, = 0.5. WhenL = 40, M = 10, and SNR= 30 dB, the with flattened ends and rivets and an aspect ratio of 4 to 1.
results of Algorithm 2 are shown in Fig. 2. Clearly, one oThe same linear FM incident signal with a time-bandwidth
the delays is missing due to closely spaced second and thprdduct of 7B = 20 was used. The signal was set to
delays. The fourth delay is detected, although its amplitudeveep over the midfrequency band [1]. The returns from each
was smaller than all the others. This is due to the fact that thbject were collected ove360° in 5° increments to produce
fourth time delay is well separated from the others. 72 data records of differing aspect angle per object. Note
In the third case, the amplitudes of the components wetteat 0° corresponds to broadside incident. The measurements
A1 =1, A, = 0.5, A3 = 1, and A4 = 0.6. The results are were performed under controlled operating and environmental
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TABLE I where P := VD, ie
AcTUAL DELAYS VERSUS ESTIMATED ONES FOR THREE CASES ) )
: Al A1627Uf1 A1627U(L_1)f1
Cases Actual Delays Estimated Values A, A262ﬂ.jf2 A, o2mi (L=1)f>
1 250, 370, 460, 550 | 249, 369, 456, 548 P = i ) (A2)
2 200, 270, 310, 400 201, 295, 389 : : :
3 300, 3500, 800, 2100 | 303, 465, 797, 2082 A AMeijfM AMCij(L—l)fM

which is clearly of rankd, providedA; # 0 for ¢ € [1, M].

conditions. It was observed in the results that depending on the
angle of incidence, the number of specular reflections varies.
For the broadside incidence, the only prominent component
was detected around = 650. Fig. 4 shows the results for

this case. The above results indicate the effectiveness of théet G = [gar+1 8o
proposed schemes in detecting multiple specular returns and- M, F*g;, = g;yi, fori = M +1, M +2, .-,

estimating their associated delays.

VIlI. CONCLUSION

Correlations with lags were used to develop new approacl*ﬁs
for the estimation of the time delays associated with multlp[ﬂ

The signal parameters were estimated by using MUSI
like and pencil-based methods. It was demonstrated thro
simulations that when the additive noise is colored wit
unknown autocorrelation function, these algorithms are pal’tlfb
ularly effective in estimating the time delays (or frequencies).
The main advantage of the estimators proposed in this paper
is that using correlations of higher lags significantly reduces
the effects of additive noise, hence leading to more robugt]
estimators. Decimation was shown to improve this robustness
property. Simulation results on the two examples clearlyy)
demonstrated the effectiveness of the proposed schemes.

(3]
(4]
(5]

APPENDIX A
PROOF OF PROPOSITION 3.2

Equation (6) follows from Proposition 3.1. It can easily be

verified thatR,(m) = V.DS™D*V*, where
[6]
1 1 1
—2mjf1 —2=j fa —27j far

v=| © ¢ ¢ 7]
o2 (LD fi g=2mi(L—1)fs 2 (L—=1) fas .
(A1) [8l

D = diag4;, Ay, --+, Ay), and S = diagle= ¥,
et e~2mifx), This decomposition property of [

R.(m) is used to prove i)-vi). Clearly, we hasV = VS
and SS5* I, which give R, (m) VDS D*V*
VSDSTD*S*V* = FVDSTD*V*F* = FR.(m)I™*
Similarly, R;(m+1) = VDS™HD*V* = VSDS™D*V* =
FVDS™D*V* = FR,(m). Analogously, we can show that
R,(m) = R,(m + 1)F*. Items ii), iv), and v) in Proposition [12]
3.2 follow from iterating i) and iii). To prove vi), we have
that the matrix®,(m) is of rank M whenL > M since the
principal M x M submatrix of R,(m) is nonsingular with [13]
determinant 1M, |A; |2~ 25|V |2 (e~ 2™ fr, eIy,
where |V| is the determinant of the matri>V. The last
conclusion can also be seen from the factorization

[10]

[11]

[14]

R.(m) = P*S™P

L=MR.(m+ L — M)*
Oes N(F*E=MYy . N[R:(m)]. Since rankR,(m) and
*(m) are the same, and each equads and the conclusion
llows.

APPENDIX B
PrROOF OF PROPOSITION 3.3

gr]; then, G is of rank
L-1

and F*g; = 0. The last equation means that the null space
of I'* is contained in the null space aR,(m).
easily be noticed thaf**—Mg, = 0,i = M + 1,
Therefore N (F*L=M) c N[R
(m) is of rank M, and hence N[R

mensional. It follows thatV' (F*£—M) = N[R,
specular components in the acoustic backscattered S|gr§rﬁlow that VR (m)]

It can
, L.
.(m)]. From Proposition 3.2,
(m)] is (L — M)-
(m)]. To
N[R,(m)], we have R}(m)
= R:(m — L+ M)F*L=M_ This
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