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ABSTRACT

PRUNING AND ACCELERATION OF DEEP NEURAL NETWORKS

Deep neural networks are computational and memory intensive applications. Many network

pruning and compression solutions has been introduced to deploy inference of large trained models

in limited memory and time critical systems. We proposed a new pruning methodology that assigns

significance rank to the operations in the inference program and for a given capacity and operation

budget, generate only the important operations to do the inference. Our approach has shown that,

in many classical feed forward classification networks we can maintain almost the same accuracy

as the original inference by executing less than half of the operations in the original program.

We also proposed a methodology to improve the effective implementation of the output sparse

computation, controllable by a threshold variable.
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Chapter 1

Background

1.1 Artificial Neural Networks

Artificial neural networks are computational models inspired from biological neural networks[1].

A biological neuron or brain cell receives electric signals transmitted from other neurons, modify

them and transmit them to their connections. The input connections to the neuron’s cell body are

represented by the dendrites and the output from the cell body are represented by the axons. Sim-

ilarly, an artificial neuron receives its input from other artificial neurons and modify the value and

send the output to the next neurons. Fig.1.1 shows a biological neuron and an artificial neuron.

Figure 1.1: (A) Brain cell and a (B) Artificial neuron (image from [1])

Artificial neurons are the basic building blocks of many artificial neural networks. Similar to

brain cells, Network of Artificial neurons can be trained using supervised learning methods. With

enough number of training information consist of inputs and outputs, the neural network can be

learned to approximately map the input data to the expected output.

Artificial neural network is a collection of artificial neurons connected to perform a specific

task. Collection of neurons forms a layer in the neural network. A typical neural network contains

an input layer, one or more hidden layers and an output layer. Fig.1.2 represents a neural network
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with 2 hidden layers. Input layer represents the initial input data for the network, output layer

represents the results of the neural network for the given inputs and the hidden layers perform the

computations necessary to produce the output layer.

Figure 1.2: A Neural Network with 2 hidden layers

The choice of number of hidden layers and hidden units depends on the problem the Neural

Network tries to address. Having larger network enables the neural network’s ability to learn to

solve complex task, and having too large network will hinder the neural network’s generalizability

when a new unprecedented data is given to solve. Neural networks can be classified into different

categories based on how the neurons are connected. Depending on the problem, some artificial

neural networks better suited to solve the problem than others. Section 1.1.1 discusses commonly

used categories of artificial neural networks.
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1.1.1 Types of artificial neural networks

Classical feed forward neural networks

Feedforward neural networks or multi-layer perceptrons are class of artificial neural networks

where the information flow through the network without any feedback connections. Classical

feedforward networks are composed of multiple fully connected layers. In a fully connected layer,

each input neuron is connected to each of the output neurons.

Cascade Neural Networks is a class of feed forward neural network, where input layer and each

previous layer’s outputs are connected to the output of the current layer. In this work only classical

feed forward neural networks and cascade neural networks are considered for pruning.

Convolution neural networks

Convolutional neural networks are feed forward neural networks where one or more layers in

the network are composed of convolutional layers. Convolutional layer can be trained to extract

space invariant information from the inputs, and commonly used to analyze visual data. Unlike

fully connected layers, each neuron in the convolutional layer is connected to a small region of the

input. This connection enables the network to capture spatial local patterns in the input.

Recurrent neural networks & LSTM

Recurrent neural networks (RNN) able to learn to solve problems where the input size is arbi-

trary. The RNN enables to pass the information from previous steps to current step. This makes

the network to remember things learned from previous inputs and retain information through time,

which enables to analyze time-series information. LSTM (Long Short Term Memory) is an ad-

vancement of RNN, which is used to solve problems requiring to learn long term temporal infor-

mation. It incorporates memory cells to hold information and gates to control when the information

is stored, used and forgotten.
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1.1.2 Motivation for approximate computing of inference

The process of training a neural network for a task is, start by choosing the right type of net-

work to trained. Some types of networks are well suited for certain tasks, for example classifying

an input image based on some features of the input images could be a good fit for convolutional

neural network. Recurrent neural network or long short-term memory is used for task that requires

to remember the past decisions when making new decisions or tasks receives a temporal sequence

data as input, where information about previous input is necessary to decode current input, like

speech audio input in speech recognition. Once the network is chosen, next process is defining

the number of parameters to train the network. The larger the parameter space the more flexible

the network is to learn complex functions, but it may lead to network over-fitting to the training

data and perform poorly when a new data is presented. So selecting the parameter size is impor-

tant to get better accuracy on actual input data after the network is trained. During the training

process, the network classifies the training input data, calculates prediction error and adjust the

network’s parameters thorough back-propagation to minimize that error, so that the network will

be able to minimize the prediction error next time. During the training phase, network learns which

parameters or connection between neurons are important, and which are not important.

Approximate computing in classification problems

In classification problem the output variable is a class predicted from a discrete number of

classes. Examples of classification problems solved using machine learning are classify an image

of handwritten digit between 0-9, classifying a message as spam or not spam etc. All these clas-

sification problems select the best category from a list of possible categories. During the learning

process, the neural network is trained to classify the input in to correct category, by maximizing the

probability of the target category. The network connections or the weight parameters are updated

through backpropagation during the training process to learn the input to target relationship. A

SoftMax layer is commonly used to convert a vector of output results to a vector of probabilities.

In classification neural networks, the index of the highest probability output (argmax) is more rele-

vant than the absolute final output itself. Thus, classification problems are tolerable to approximate
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answers, as long as approximation does not change the highest probability class. This makes the

classification problems a good candidate for approximate computing.

1.2 Related work

Inference of many trained networks can be accelerated via reducing the size of the network

by removing the redundant computations in the network. In many cases, connections between the

neurons can be removed given the connection does not provide significant enough contribution

to the prediction. In other cases, the network structure can be represented by a more compact

format to represent approximated network structure. Researchers also exploiting redundancy in

the representation of bits in network weights, in order to reduce the network size and accelerate.

Pruning

Weight pruning has been used to reduce the neural network size for inference and reduce over-

fitting to make the network better at generalization. LeCun et al. [3] pruned weights that has less

impact on training error estimated using the second derivative of the training objective function.

Once the low impacting weights are removed retrain the network and the procedure is repeated.

Han et al. [4] initially trained the network to learn the important connections first, then pruned the

connections below a threshold and finally retrain the network to gain back the accuracy. Through

pruning and retraining a network compression of 9x - 13x was achieved on VGGNET and AlexNet

without loss in accuracy. Polyak et al. [5] prune the insignificant channels in the convolutional

layers which does not contributes to relevant information extracted.

Structural sparsity

Regular pruning of connections in neural networks will result in sparse structure that will per-

form poorly due to the unstructured connections. Alternative training methods have been used to

overcome the implementation issues of sparse structures. Wen et al. [6] proposed structured spar-

sity learning to regularize the neural network parameters such as filters and channels to improve

the performance of the deployed network. Liu et al. [7] regularized the channels through imposing
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a scaling factor on the channel output and pruned the channels with the smaller trained scaling

factors. Li et al. [8] pruned the convolutional kernels with smaller sum of absolute kernel weights

to drop less important filters and retrained the network.

Layer decomposition

Layer decomposition exploits the redundancy in the network by low rank approximation.

Sainath et al.[9] proposed low rank matrix factorization to reduce the number of parameters in

the large final layer of speech recoginition networks to improve the training speed. Denton et al.

[10] used low rank approximation to exploit the redundancy in the convolution kernels and reduced

the number of parameters.

Bit representation

Studies have shown efficient training and implementation of Neural Network on lower preci-

sion environments than the traditional single precision floating point. Gupta et al. [11] proposed

16 bit fixed point with stochastic rounding for training on CIFAR 10 dataset. Wang et al. [12]

trained 8 bit floating point models of ResNet, AlexNet while maintaining the accuracy. Han et al.

[13] proposed a compression method, which prunes the less important connections and then train

the remaining connections. This was followed by quantization of connections to compress even

further and retrain the quantized network again to gain the accuracy back.
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1.2.1 Our Approach

In this work we proposed a methodology to accelerate a fully connected deep neural network

inference by executing only the significant operations. For a given pre-trained network, we rank all

the operations in the inference program by their importance or significance to the output accuracy,

and skip the insignificant operations by executing the high ranked operations only. Since this

method executes only the operations that are significance to the output prediction, executing subset

of operations leads to smaller inference network with little or no accuracy loss.

Figure 1.3: Framework overview

Fig.1.3 shows the overview of the proposed methodology where the input inference program

is reordered into set of operations where Set 1 have operations higher in rank than Set 2 and Set 2

operations are higher in rank than the operations from Set 3 etc. Depending on the deployment the

user has the flexibility to specify the number of operations to be executed in the output program.

Chapter 2 discuss about the ranking of operation by significant contribution and producing sets of

operations based on the rank. Chapter 3 discuss about generating a better vectorizable program

from the program generated from Chapter 2, which leads to better implementation.
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Chapter 2

Network Pruning

2.1 Overview of Pruning

2.1.1 Purpose

When training deep neural networks for a classification task, the accuracy of the neural net-

work prediction varies depending on the neural network structure chosen. Choosing a very deep

neural network for a simpler task may lead to poor performance of the neural network after train-

ing. This is because, training too many parameters than required will over-fit the neural network

to get best performance on training dataset, once training is completed and test dataset is fed to

the neural network, it does not perform very well. Similarly choosing a smaller and shallow neu-

ral network, may not be sufficient enough to extract the critical features required to perform the

accurate classification.

AlexNet, GoogleLeNet, VGG Net, ResNet are some of the deep convolutional neural networks

excelled at ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in the past, which

are trained to classifying a subset of ImageNet datasets into 1000 classes. But one of the main

challenge in efficiently implementing the neural network is, these networks are very deep and

require large number of parameters to define the network connections. The AlexNet uses 60 million

parameters to classify the ImageNet with top 5 error rate of 15.3%. Similarly, VGG Net uses

more than 130 million parameters on very deep convolutional network to classify images with top

5 error rate of 7.3%. Implementing such large network on modern processors with very limited

cache memory or on-chip memory is challenging. In-order to improve performance on large neural

networks, it is necessary to have the network parameters within the cache and avoid main memory

accesses as much as possible. In other words efficient program reduce the number of off-chip

memory. AlexNet trained with floating point weights will requires 340MBytes of memory to store

the parameters, similarly VGG Net trained with floating point weights will requires 520MBytes
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of memory. Such large networks cannot be able to fit into on-chip memory or caches, and require

significant off-chip access to main memory every time run an inference. Network compression

and pruning of neurons have been used to make larger neural networks fit into on-chip memory

[14]. These methods exploit the inherent redundancy in the deep neural networks and remove

the weaker connections to reduce the overall network size to fit into on-chip memory. During the

training phase, Neural Network will learn which parameters or connections are important for the

classification task, and the important connections will have significant value once trained.

Most of the times weak connections or insignificant parameters may not contribute to the fi-

nal classification result. In many cases, those weak connections can be removed without having

penalty in the prediction result. In classification tasks prediction result does not depend on the

exact value of the output, rather depends on the probability value with respect to other classes.

In the case of a neural network, classifying MNIST handwritten digits into 10 classes of digits

from 0 to 9, final prediction digit depends on the argmax of the 10 class outputs or SoftMax of the

output vector. So the network is resilient to small perturbations to the output value. Hence it does

not produce wrong prediction if the probability of the digit predicted change from 1 to 0.95, after

removing some insignificant parameters. So, the pruned network will end up in much smaller net-

work parameters or smaller footprint of weight and a smaller number of computations, since we are

not computing redundant connections. Another benefit of pruning is, it alleviates the over-fitting

problem of trained neural networks. Since during pruning process less important connections are

eliminated, the number of parameters defining the network are reduced, and the pruned network

can be more generalized for the test data set.

In this work, we developed a framework that will reorder the individual operations in a classical

feed forward network or multi-layer perceptron (MLP) by their significance towards the prediction

result, and prune the insignificant computations to prevent executing insignificant computations.

The major goal of this framework is to let the end-user to decide the amount of computation and

memory footprint affordable for the inference, and make the network fit their resource budget

while minimizing the accuracy loss. For example, an MLP network is trained to read license
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plates. Suppose it requires 1 million FLOPs to detect a license plate image with 99% accuracy, and

requires 4MB to store the network parameters. If only 10% of the operations are affordable, the

target of the framework is to choose the right 0.1 million operations out of the 1 million operations

available, while maintaining the prediction accuracy closer to the original network.

An extension of this concept is to do inference in an incremental fashion. Take the previous

example, instead of executing all 1 million operations, start by executing sets of 10% significant

operations at a time, until prediction outputs have a prediction confident in output prediction val-

ues. At the beginning, multiple classes can have similar probability, after executing few sets of

operations the probability of the other will be reduced, and execution of buckets can be stopped

once the required confidence level is reached. In the first example the number of computations for

inference is fixed at 0.1 million, in the second example the number of computations is depended

on the prediction confidence and varies from input to input.

True significance of an operation is a depended on the input to the network and the network

parameter, and the input is only known at run-time of the algorithm execution. Calculating the

significance of operations at run-time is not a feasible solution in most of the ML deployment

situations and has to be computed at compile time. As the solution approximating the significance

of operations can be evaluated at compile time, as shown in Section 2.3, and the approximate

pruning and ordering of operations can be done based on the approximated significance.

2.1.2 Types of pruning

Pruning can be done at different levels depending on the type and size of the neural network.

The larger the network is, the larger connections the network has, and typically more redundant

connections to be pruned. Most of the execution time in classification networks are spent in con-

volutional layers and fully connected layers. The convolutional layer applies the convolution filter

over a small portion of the input activation at a time, and produces multi-channeled output to

be used by the following layer. The fully connected layer, as the name says, takes all the input

activations from previous layer and produce output activations to be used by subsequent layers.
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Whenever training a neural network for a specific task, the optimal network structure (number of

layers, number of neurons in each layers) is typically unknown at training time. If the network

structure chosen for training is larger than required the network will be forced to train redundant

connections and over-fit for the training data.

Pruning of connections can be achieved at different levels in a neural network. It can be done

by pruning a neuron and all the connections to/from the neuron (multiple connections at a time) or

connection between two neurons (single connection at a time).

2.1.3 Multiple connections at a time

In a convolution operation, input activation and filter or kernel are element wise matrix multi-

plied to produce new output. Different filters used to generate different output channels from the

same input. Usually the input image is larger than the filter size, so the filter is slid to different

parts of the image to perform convolution. The purpose of the convolution operation is to search

for specific features in the input image, which features to search is learned during the training

phase. Together with multiple convolution layers, a convolution layer can be able to extract high

level features from the previous convolution layers.

Choosing the filter size and the number of output channels is challenging. Large number of

output channels may lead to extracting features that are not required for classification and small

number of output channels may not be able to extract all the necessary features required for clas-

sification. Since convolution is compute intensive, pruning unnecessary channels can speed up the

inference by avoid extracting unnecessary features.

Pruning multiple connection at a time is efficient in many convolutional layers. When a feature

extracted by the convolutional layer from the input activations are less important for prediction, we

can prune the particular feature extraction completely and eliminate the connections required for

that feature extraction.
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2.1.4 Single connection at a time

In fully connected layers, each output activation is connected to all the activations in the pre-

vious layer. The output is produced by a matrix multiply between the layer weights and input

activation vector and followed by adding a bias vector to the result. Stronger the connection sig-

nificant the weight values will be. Connections that are not strong have less significant impact on

the network prediction. Those individual weak connections can be pruned to reduce the overall

network size and the computation done without reducing the prediction quality significantly. Fully

connected layers are used exclusively or together with convolution layers in many neural networks.

Unlike convolutional layers, there is no parameter reuse in fully connected layers for non-batch

inputs. Since they only used once, minimizing the number of parameters required for the inference

will minimize the FLOPs required and usually reduce the number of memory accesses.

2.2 Magnitude based pruning

This simple pruning method is used as a technique in machine learning to learn the important

connections while training a large model. When training, the initial training phase focuses on

learning the necessary weights or connections for the network to predict right, all the weights

below certain threshold were ignored. After pruning the unnecessary weights, the sparse network

is retrained with only the important connections to gain the accuracy back [13].

Below is the magnitude based algorithm used to prune the network connections.

2.2.1 Pruning algorithm

The following algorithm uses an intermediate representation of the neural network is stored in

a CDAG format explained in Section 2.3.1.

12



Algorithm 1: magnitude based pruning

Input : CDAG,Percentage

Output: pruned.Network

thresholds[ ]=calculate.threshold(CDAG,Percentage)

foreach layer in CDAG do

foreach node in CDAG[layer] do

if node.weight < threshold[layer] then

pruned.Network← node

end

end

end

Algorithm 2: calculate threshold

Input : CDAG,Percentage

Output: threshold[ ]

order(node1,node2)=true: if | node1.weight| ≥ | node2.weight|

foreach layer in CDAG do

newOrder=sort(CDAG[layer],order)

value=newOrder[size(layer) × Percentage]

threshold← value

end

The algorithm takes the original neural network and the pruning percentage, and for each per-

centage (p%) of pruning given to the program, first calculate the threshold value of weights in

each layer, from which any weights below will be pruned such that the remaining network will be

containing %p of the original network.

It prunes nodes in a layer independently from the other layers, it is useful in the early stages

of training to figure out which connections in each layer learns important information and focus

on training those important connections from thereafter. By learning only important connections,

the iterations to train accurate model will be reduced and the trained network will be less likely to

suffer from over-fitting.
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Our experiments show, in fully trained network without retraining, magnitude based pruning

suffers from significant accuracy loss. So, an efficient pruning for deployment neural networks

must consider the significance of the operation to the final accuracy than just the magnitude of the

weights.

2.3 Significant based pruning

Each node or operation in the inference program has a significant value towards final prediction.

Significance of each node in the CDAG is depended on the weight and the input to that node.

Approaches that consider only the weights will not identify the significant operations in the CDAG.

In order to determine the significance of the operations, the input and the weight value are required.

Consider the following example program.

y = y + w1 ∗ x1

y = y + w2 ∗ x2

Figure 2.1: example program

In the above example, the first operation computes the value of y which is depended on the

weight w1 and input value x1 and the previous value of y. Similarly the second operation computes

the value of y from weight w2 and input x2 and the previous value of y. If we want to prioritize the

significant computation for the output y we need to compare the significance of both operations.

In order to compare the significance of the operations above, we need the values of w1,w2,

x1,x2. We have the value of the weights in a trained network, but the input values x1, x2 are known

at run-time only. Calculating significance at run time is not a feasible solution, significance need

to be estimated at compile time before deployment. In order to evaluate the significance at compile

time, we are estimating the approximate significance of the operations. In other words, we have
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to estimate the approximate value of the inputs (x1,x2) to the operations, which is explained in

Section 2.3.2.

2.3.1 Intermediate Representation of the program

In order to process the neural network for significant based pruning, a CDAG (Computational

Directed Acyclic Graph) based internal representation is used to store the original inference pro-

gram. CDAG is used to capture every computation executed in the inference program.

input program trace

The run-time trace of the inference program is used to extract the computations and the weight

values used in the inference program. The inference program is augmented with the printf calls to

output the run-time trace containing computations of the inference program and the weight values

associated with it. Fig.2.2 shows run-time trace of an inference program. Each line in the run-time

trace corresponds to a unique operation in the inference program. Each trace line contains the fol-

lowing fields, unique id corresponding to the operation, iteration vector of the operation, memory

cells accessed by the operands. Unique id expresses the original schedule of the program, iteration

vector specifies the loop iterator’s values including the layer number and memory cell accessed is

used to capture the dependencies in the inference program.

Figure 2.2: example program trace

CDAG representation

CDAG is a 4 tuple of (I, V, E,O), V are the vertices of the graph, I is an input set with no

incoming edges, E is the set of edges between vertices, O is the output set of the graph. V \(O +

15



I) represents the computation vertices. Each line in the run-time trace will be represented by

a computation vertex and the edges between vertices represents the flow of operands in to the

computational vertex. The CDAG representation enables a more detailed program representation

for fine grain optimization.

Figure 2.3: example program

The program in Figure 2.3 represents a Multi-Layer Perceptron(MLP) network. The iteration

vector < l, i, j > represents the domain of the statement S. The address of variables y[l][j] and

y[l + 1][i] are captured in the trace in order to construct the dependencies in the program. The

following notation is used in the explanation below, iteration vector < l, i, j > represents iteration

space of the of the MLP statement S. Lower case letters l, i, j represents variable parameters of the

iteration vector and upper case letters L, I, J represents constant/one instance of l, i, j respectively.

Two important dependency patterns are expressed in the program, First Read After Write

(RAW) dependency of y, where < l − 1, X, j > write to y[l][X] and < l, i,X > read the value

y[l][X], both accessing the same data. In neural network context, each consecutive layer l read

activations from outputs written by previous layer l − 1. So the final schedule must respect this

dependency for correct program execution.

The second dependency pattern is Write After Write (WAW) and RAW found in the reduction

operation within a layer, where two < L, I, j1 > and < L, I, j2 > will read and write to y[l][i]. But

if we assume associative reordering is valid, we can eliminate the dependency of the reduction. In

this work we assume associative reordering is legal, and present a new schedule that is based on

significant computation first.
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Figure 2.4: CDAG representation of example program in 2.3

Figure 2.4 shows the CDAG constructed from the trace in Figure 2.2. For simplicity multiply

operator and the addition operator in the statement S in Figure 2.3 are fused together and repre-

sented as a single multiply-accumulate (MAC) operator. So each line in the trace or each instance

of statement S is mapped to unique vertex in the graph. In Figure 2.4 each vertex is marked by

different color and the dependency pattern constructed from the memory accesses are represented

by the edges in the graph. Each MAC node in the graph has 3 incoming edges for the flow of input

x, weight w and previous value of the output y; and one output edge for the flow of computed value

y + w ∗ x. The dependency patterns are easily observable in the CDAG. x does not has to be the

input image for layers other than 1st layer. If we consider the input edges to a vertex, there is no

dependencies for the weight values since they are read only values, but input edge x may have a

dependency if it has been written by any of the previous nodes, and input y has a dependency from

the previous node’s write operation or output edge.
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2.3.2 Contribution Table

As we seen in the example 2.1, in order to identify which operations are significant for the

neural network, we need to estimate the input values to the operations at compile time. The objec-

tive of the contribution table is to estimate the approximate impact of each input pixel to the final

outputs of the classification network. In classification networks, the last layer is usually a SoftMax

layer. The SoftMax layer transform the output from the previous layer to a probability between 0

and 1.

σ(y)i =
ey1

∑N
j=1

eyj
i = 1 . . . N (2.1)

Eq. 2.1 represents the SoftMax layer, where N is the number of classes in the output layer,

yj is the jth class output. For the significance analysis, we can neglect the SoftMax layer and

work on the outputs before SoftMax yj j = 1 . . . N . So the significant table must represent the

approximated impact of each input pixels on each output yj . Using the contribution table, we can

identify which part of the input image are important to classify the image as class 1, class 2 . . . class

N for a given trained network.

Below is the algorithm to estimate the contribution of the inputs. It generates a table containing

approximated significance of the input to each output class. The table generated has M rows and N

columns, where N is the number of output classes and M is the number of inputs. ith row and jth

element in the table represents the impact of ith image pixel towards jth class. For example, in a

neural network trained to detect handwritten digits, the neural network will be learned to neglect the

dark pixels in the four corners of the image, since they contain no information. So, the contribution

table has lower values for those pixels. More interesting example would be, consider the digit zero

in the handwritten digit dataset. It usually contains dark pixels in the center of the image, So the

contribution table will usually contain lower or negative contribution for those pixels in the table

for output class zero. An important note is, the pixel table is constructed from the given trained

network, so the contributions may vary between two networks because of the way they trained.

The contribution table captures the simplified Saliency map [15] of the network.
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Algorithm 3: contribution table

Input : CDAG

Output: Table[ ] [ ]

foreach pixel in pixels do

foreach output in CDAG(O) do

Table[pixel][output]=output value(forward pass(CDAG,pixel),output);

end

end

CDAG(O) represents the output nodes in the CDAG, and CDAG(I) represents input nodes

to the graph, which are individual pixels in the input image. The contribution is evaluated by

activating pixels and the measuring the output values after a forward pass through the graph. Each

contribution is measured at by activating individual pixels in the image, and the linear relationship

between the input and the output are captured in the contribution table. Approximating the network

with linear function enables to eliminate contribution saturation.

forwaardpass() function does the forward sweep of in the CDAG with the given activated

input pixels. In this case, it can be seen as an image with single pixel active, fed in to inference

network. outputvalue() function returns the output node’s final computation value. ToArray()

function maps the nodes in the graph to an index accessible array of nodes.
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Algorithm 4: forward pass

Input : CDAG,pixels

Output: CDAG

foreach pixel in CDAG(I).pixel do

if pixel ⊂ pixels then

ToArray(CDAG(I))[pixel].Y=ACTIVE

end

else

ToArray(CDAG(I))[pixel].Y=REFERANCE

end

end

foreach n in CDAG(V \(I+O) do

n.X=ToArray(CDAG(V+I))[n.pred_x].Y

n.Y=n.Y + n.W * n.X

n.Significance=n.W * n.X

end

Each pixel in the input images is being activated one pixel at a time and the output class’s

impact is recorded in the table, every other pixel is set to REFERENCE value of the pixel for the

contribution table estimation. The values for the ACTIVE and REFERENCE pixels are taken from

the training dataset. ACTIVE pixel value is the maximum value of the pixel when pixel is on in

the input image, and REFERENCE value of the pixel when the pixel is off in the input image.

Algorithm 5: output value

Input : CDAG,output

Output: Y

foreach node in CDAG(V) do

if ToArray(CDAG(O))[output].addr==node.rd_addr then

Y=node.rd;

end
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Relationship between input activation and output class

Figure 2.5: Heatmap representation of input contribution for Class 0 of MNIST classification network

Fig. 2.5 shows the heat-map representation of an input contribution for output class 0 gener-

ated from a 5 layer fully connected inference network to classify MNIST handwritten digits. The

network is trained with MNIST data set to classify the centered input image 28px × 28px into 10

different classes ranging from digit 0 to digit 9.

The above figure is the contribution table generated for the output class 0 to classify digit zero.

The input pixels represented as dark in the figure represent that, those pixels will increase the

contribution of class 0 if they present in the actual input image, similarly the lighter pixels in the

figure represent that, those pixels will reduce the contribution to predict class 0 if they present in

the actual input image. The pixels near the edges have lower contributions and less important when

predicting the digit.

Contribution table will assist us to choose the input pixels that are more important to the clas-

sification of image. Significant input activations from the contribution table can be used to ap-
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proximately estimate the run-time input activations. The contribution table used to generate an

approximated input image activation for maximum activation of each classes. The significance

calculated serves as an approximated significance of nodes for each class in the network. Without

approximated contribution table, there will be intractable number of possible significances for each

node, depending on the run-time input present.

2.3.3 Reordering of nodes in the CDAG based on significance

The purpose of the reordering of nodes in the CDAG is to generate an approximated order

of operations based on significance such that most significant operations executed earlier in the

program. In an event of early program termination, get partial inference prediction results as close

as possible to the full inference.

Figure 2.6: example program

We revisit the example program in Fig. 2.3 and consider reordering the computations in the

inference program based on significant. The goal is to find a different legal schedule that respect

that significant operations ordered first. A legal schedule must respect the dependencies on the

original program, but we are relaxing the dependency of the reduction operation, assuming floating

point associative reordering is valid. This assumption gives us the flexibility to reorder operations

based on significance.

Consider the program instance < l = I, i = I, j = J >, the significance of an operation in this

case is the value computed by w[L][I][J ]× y[L][J ]. Calculating the significance requires the value

of w[L][I][J ], which is already known, and y[L][J ]. The value of y[L][J ] depends on the previous

computations that write to it, and those computations led to it. In other words, the significance of

operation at instance < L, I, J > is depended on a sub-graph G1 of nodes of the original CDAG,
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which can be determined by backtracking from the node instance < L, I, J >. Estimating the

value of the y[L][J ] requires populating the contribution from the sub-graph that writes to y[L][J ].

Using the contribution table, mock image IMG1 with only significant pixels can be activated in

the input, which approximates the significant pixels in the input image for the actual classification

at run-time. Now the approximated value of y[L][L] can be calculated by computing the sub-

graph G1(IMG1) for the approximated input IMG1. So the significance of operation at instance

< L, I, J > can be calculated as w[L][I][J ]×G1(IMG1).

Each operation has different significance towards different classes. Some operations are more

significant for some classes than others. So reordering of operations based on significance has to

represent fair number of operations for each class prediction. Otherwise the reordered schedule

may not be able to predict all the classes in the network accurately.

Equal share of operations

In order to implement fair reordering, the operations are not reordered individually, instead

operations are grouped in to buckets and reordering is done based on buckets. Buckets contains

roughly equal number of operations reordered based on significance to each output class. For

example, consider a program with parameters NL=10, NI=100, NJ=1000, and output classes of

100. Total number of operations in the input program is 1 Million. Assume we are reordering the

total number of operations into 10 buckets, so each bucket roughly contains 100,000 operations.

Each of the operations inside a bucket will be split equally to represent significance operations for

the 100 classes. So executing only the 1st bucket from the 10 buckets will lead to executing the

significant 10% operations of the inference program.

In order to generate the mock image IMG1 with significant pixels, a ranking order of pixels

for each class is generated from the contribution table as shown in Algorithm 6. If there are 10

output classes in the network, there will be 10 different ordering of pixels generated.
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Algorithm 6: rank_pixels

Input : Table[ ][ ]

Output: RankedPixel[ ][ ]

order(pixel1,pixel2)=true: if | Table[pixel1][x] |≥| Table[pixel2][x] |

foreach x in CDAG(O).size do

RankedPixel[:][x]=quick_sort(Table[:][x],order);

end

Since these ranked pixels are generated from the contribution table, the rank represents how

important these pixels are in the input image to do the classification right. For example, pixels with

higher rank for class 0 will contribute more towards the class 0 classification.

Once the pixels are ranked, significant operations can be approximated by passing the approx-

imate input image with significant pixels to the inference CDAG. The Algorithm 7 shows the

reordering operations in to set of operations based on significance. The number of sets to execute

are given by the user, and for now assume there are 10 sets of operations to reorder a classification

network with 10 classes. The algorithm first identifies the operations for the 1st set, that is the

most significant 10% operations in the CDAG. In order to find the significance of operations in the

CDAG, the algorithm activates the most contributing 10% pixels of the input image for each class

from 1 . . . NClasses. Since we are using the qual share of operations across classes, each set should

contain equal number of operations towards each of the classes. So the initial significant 10% set

will have significant 1% operations for each of the 10 classes. Note that percentages are based on

the total number of operations in the CDAG.
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Algorithm 7: Reordering

Input : CDAG,Table, NSets

Output: Sets{ }

Ranked_Pixels[ ][ ]=rank_pixels(Table[ ][ ])

NClasses = size(CDAG(O))

NInputs = size(CDAG(I))

foreach i in 1 . . . NSets do

foreach j in NClasses do

Sig_pixels{}← Ranked_Pixels[1 .. NInputs * i /NSets][j]

CDAG=forwardpass(CDAG,Sig_pixels)

nodes={ n⊂ Nodes(CDAG(V)):n.rd_addr=ToArray(CDAG(O))[j].addr}

while nodes 6= ∅ do

nodes=select_subgraph(sort(nodes),NSets)

Sets[i]+=nodes

CDAG = CDAG \ nodes

nodes=predecessor_nodes(CDAG,nodes)

end

end

end

Significant operations for each set and output class are evaluated by a forward pass of estimated

significant inputs and backward tracking of operations through the CDAG. The forward pass will

help to estimate the significance of operations in the CDAG for the given Sig_pixels and the

backtracking process will select a sub-graph of operations (select_subgraph) that are significant

at each stage of backtracking. Continuing our previous example case, the backtracking will return

a sub-graph with 1% of the total operations. Fig. 2.7 shows the visualization of the backtracking

process.
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Algorithm 8: predecessor_nodes

Input : CDAG,nodes

Output: predecessor_nodes{ }

foreach node in nodes do

predecessor_nodes+={ n ⊂ CDAG(V):node.predecessor_rs3==n}

end

Algorithm 9: sort

Input : nodes{ }

Output: ordered_nodes{ }

order(node1,node2)= true: if | node1.Significance |≥| node1.Significance |

return ordered_nodes=quick_sort(nodes,order)
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Figure 2.7: Backtracking process

Fig.2.7 (A) is the network state after the forward pass with estimated significant input, (B)

shows the backtracking starting with the connections required for the first output class, (C) select-

ing the connections with higher significance, (D) redo the step (B) with the new neurons found in

step (C) until reach the input neurons. Then follow the same procedure for the next output class.

The procedure removes the selected connections from the network and iteratively select the next

significant connections.
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Chapter 3

Codelets aware pruning

3.1 Overview

3.1.1 Purpose

Reordering based on significance of the operations will provide a schedule that will ensure

that executing a sub-graph of operations to achieve good prediction. But executing sub-graph of

operations does not necessarily produce better performance, compared to executing the original

inference graph. Modern computers support parallel execution of operations using vector units,

and modern compilers take advantage of this vector units by SIMD vectorizing the input program

when available.

The original input neural network before pruning, can be easily transformed into nicely vec-

torized program using a simple loop permutation. Since a pruned network skips insignificant

operations, the program schedule of pruned network has a highly sparse computation pattern.

Due to the sparse structure, the final network will be represented in a sparse structure, which in

turn result in a sparse matrix vector program. Traditional Sparse Matrix Vector (SPMV) programs

stores sparse matrix in Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) for

efficient storage by storing only the non-zero elements of the matrix. Which results in complex

sparse matrix vector product program with indirect memory access functions. Which prevents any

advanced optimizations the compiler tries to do.

28



Figure 3.1: (A) Sparse Matrix, (B) Matrix Vector program

The Fig. 3.1(A) represents a N ×M matrix, where the non-zero elements in the sparse matrix

are represented by red dots and zeros in the matrix are represented by black dots. The program

on (B) is a generic matrix vector product iterate over N × M iteration space. Since the matrix is

largely consist of zero elements, the generic matrix vector program executes useless computations

most of the time. Sparse matrix vector programs overcome this problem by only iterating over

the non-zero elements of the matrix. The operations multiplied with zeros are skipped in sparse

computation. Compressed Sparse Row (CSR) program for the above sparse matrix computation is

shown in Fig. 3.2 below.

Figure 3.2: CSR program

The CSR representation stores only the non-zero elements of the matrix and their positions.

In order to determine the iteration space, the program has to access the stored non-zero element’s

position. For each iteration, the it needs to read 4 memory locations, and the loop bounds are
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determined by the number of non-zeros in a row. Even though the program is now computing only

on the non-zero elements of the matrix, the CSR program is very difficult to analyze. Since the

program is generic for any sparse matrix, the loop bounds are depended on the input sparse matrix

and the indirect memory access patterns, the program vectorizability cannot be determined at the

compile time and makes it difficult for the compiler to apply any advanced optimizations to the

program.

The paper on Generating Piecewise-Regular Code from Irregular Structures [16] presented a

new methodology to generate SPMV programs without accessing any indirect arrays. This method

works by, instead of having a single nested loop accessing the non-zero memory locations in the

original program order, generates a new schedule which comprise of one or more nested loops

accessing the non-zero memory locations. In order to eliminate the indirect array, the approach

partition the iteration space into multiple polyhedra, which can be later represented by affine poly-

hedral expressions. A single polyhedron will represent one or more iteration points in the SPMV. It

eliminates the need for indirect arrays to represent loop bounds, and generates affine loop iterators,

which can be easily processed by the optimizing compiler.

Figure 3.3: Piecewise-Regular program for the sparse computation in Fig. 3.1

Fig. 3.3 shows the new sparse computation generated from piecewise regular structures. The 4

consecutive non-zero computation iterations with i=1 are grouped into a single loop representing

a regular polyhedron, and the remaining 2 no-zero computation iterations represents the leftover

points which cannot be grouped in to any another polyhedra. The loop bounds of the program are
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known to the compiler and the indirect memory access are eliminated, hence the program can be

easily analyzed by the compiler.

Since this methodology tries to find polyhedra from the sparse matrix, the output program is

depending on the input sparse structure that was fed. Having good structured input sparse matrix

will minimize the code size and simplify the polyhedra representation. The performance of the

output program depended on the number of vectorizable operations, and the code size. The less

number of simple polyherda the lower the output code size will be. So the performance will

improve if most of the operations can be represented by vectorizable polyhera.

Since the schedule from significance based pruning has no control over the sparsity structure,

the performance of the pruned inference is difficult to characterize. Codelets aware reordering will

enable to control the structured sparsity within the significance based pruned networks, by making

minimal changes to the pruned network to maximize the structured sparsity.

3.2 Codelets

The codelet is a lattice shape to represent iterations that can be represented by a polyhedron.

Codelet aware reordering will find codelets within the schedule to improve performance. More the

number of codelets, better the output implementation will be.

3.2.1 Codelet shapes

Codelet shape is represented by the number of iterations in each dimension, and the stride

between the iterations along each dimension. In the Fig. 3.1(A), the iteration points presented by

the polyhedron D1={[i,j]: i=1 ∧ 2<= j <=5} can be extracted from the codelet shape of <1,4,1,1>.

Where the first two numbers represent the number of iteration points along each dimension i,j; and

the next two numbers represent the stride between each iteration along each dimensions.
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Figure 3.4: Sparse iteration space with regular structures

Fig.3.4 shows a 2-dimensional space with sparse iterations with non-zero weights marked in

red points. The colored areas A and B represents 2 codelet found in the sparse iteration space. A

represents a vector of 5 iterations along j dimension with codelet shape of <1,5,1,1>, B represents

a 4×2 vector with stride of 2 along j dimension with codelet shape of <4,2,1,2>.

3.2.2 Codelets aware reordering

The original reordering based on significance of operations generates a SPMV program, In or-

der to improve the SIMD performance of the significant based reordered schedule, we can make

small changes to the schedule such that it will generate better structured SPMV with better vec-
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torizability. When executing the reordered program, the user will specify the number of sets to

execute. If the user specifies 30% operations to be executed, the operations are divided in to 10

sets by significance and the first 3 sets out of 10 will be executed. Since the significant based

schedule is executed by sets of operations, reordering operations within a set is allowed and will

not change the prediction accuracy. When reordering operations across sets, it can change the pre-

diction accuracy. For example, in the previous example when moving an operation from 4th set

in to 3rd set, the new schedule will have a less significant operation from 4th set and a significant

operation from 3rd set will be pushed out from the executed schedule.

Reordering based on significance of the operations only will result in a total order that may

have highly irregular sparse computation. In order to optimize the final trace for better perfor-

mance, implementation of efficient codelet aware reordering of operations in the final total order

in necessary. A threshold of maximum allowed perturbations or edits to the reordered operations

is set, in order to limit the loss after reordering.

Algorithm 10 is used to generate a new schedule which is aware of codelet in the final reorder-

ing. For a given reordered operations based on the significant contribution, the algorithm perturbs

the original ordering, allowing operations to move from the less significant set to significant set in

order to maximize the number of codelets in the final reordering. A perturbation threshold (edit

distance) is applied to control deviation from the original significant based reordering.

Each edit moves one operation up in the significance based reordered set of operations, where

top operations are more significant than the bottom operations. Fig. 3.5 shows the codelet aware

reordering trading off between structured sparsity and significance based total ordering.
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Algorithm 10: codelets finding

Input : nodes{ },Shapes{ }, MAX_EDIT_DISTANCE

Output: reordered_nodes{ }

N=nodes.size()

totalEditDistance=0

for i in 1 .. N do

for S in Shapes do

t{ }←nodes.toArray([i:i+1+MAX_EDIT_DISTANCE])

codelet=findShape(S,node[i],t)

if (codelet!=NULL) then

e=editDistance(codelet,node[i])

if e+totalEditDistance<=MAX_EDIT_DISTANCE then

insert(codelet,nodes)

totalEditDistance+=e

end

end

return nodes

It takes the previously generated schedule based on significant as input and a file containing

codelet shapes to explore.

Algorithm 11: findShape

Input : Shape S,node1,nodes{ }

Output: nodes{ }

t{ }← node1

foreach n in nodes\ node1 do

if validMember(n,node1,S) then

t{ }← n;

code=getValidCodelet(t,S) if code!=NULL then

return t

end
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Algorithm 12: validMember

Input : new_node,node1,S

Output: bool

foreach d in S.dimension do

if |new_node.index(d)-node1.index(d)|>S.length(d)× S.stride(d) or

(new_node.index(d)-node1.index(d)) (mod ) S.stride(d) !=0 then

return false;

end

return true

Algorithm 13: getValidCodelet

Input : nodes{ },Shape S

Output: nodes{ }

t{ }← LexicographicSort(nodes)

code={ }

foreach n in nodes do

code← n

foreach m in nodes\n do

if (m.index(d)-n.index(d)) <S.length(d)×S.stride(d) : ∀d ∈ S.dimension then

code← m

end

if code.size()==Shape.size() then

return code

else code={ }

end
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Algorithm 14: editDistance

Input : codelet{ },baseNode

Output: distance

d=0

foreach n in codelets do

d+=n.rank-baseNode.rank

end

return rank

Algorithm 15: LexicographicSort

Input : nodes{ }

Output: ordered_nodes{ }

order(node1,node2)= true: if node1.index ≺ node1.index

return ordered_nodes=quick_sort(nodes,order)
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Figure 3.5: Codelet aware reordering

In the above Fig. 3.5, the plot (A) shows a single layer network, and the iteration space of

sparse computations in 2-D space before and after codelet aware reordering. Ordering (B) repre-

sents the total order of the operations before and after codelet aware reordering the same network.

Operations in red represents the 1st significant set, operations in blue represents the 2nd significant

set and operations in green represents the 3rd significant set. Assume we only execute the 1st set,

then the iteration space will only have A,B,C,D,E points in the 2-D space. Now consider moving
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the operation G from 2nd set to 1st set. The new ordering is now has a codelet of <4,1,1,1>, but

the operation E has to be moved from 1st set to 2nd because each set must have equal number of

operations, which implies the the new 1st set now traded off a significant computation to have a

codelet shape. The codelet aware reordering will trade off between significance based schedule

and efficient codelet based schedule based on the threshold provided. Moving is allowed between

next significant set only and moving operations across multiple sets is prohibited to prevent huge

accuracy drops.
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Chapter 4

Evaluation of Network Pruning

4.1 Experimental setup

The prediction quality results showed in this section were from the neural networks to clas-

sify the MNIST handwritten digits [17]. The MNIST dataset contains 60,000 images and labels

of handwritten digit images for training and 10,000 images and labels for testing. Each digit is

centered and image is size normalized to 28px × 28px single channel gray-scale image as shown

in Fig. 4.1. The label value is between 0 to 9.

Figure 4.1: Example collection of images from MNIST database[2]

The Classical Feed Forward Neural Networks are used in the experiment to classify the MNIST

images into 10 classes. Classical Feed Forward Neural Networks with different number of layers

with varied number of hidden units are trained with PyTorch framework [18]. The input image is
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standardized before training. Mean and standard deviation of the training data set are calculated

for each image pixel, and the standardized input is used in training and testing of the network

as shown in Algorithm 16. The prediction accuracy is evaluated after pruning to 33%, 50% and

67% of connections of the original networks or 3X, 2X and 1.5X compression of the network

respectively.

Algorithm 16: Standardization

Input : image[ ], mean[ ], std[ ]

Output: InputImage[ ]

foreach pixel in image[ ] do

InputImage[pixel]=(image[pixel]-mean[pixel])/std[pixel];

end

return InputImage[ ]
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4.2 Magnitude based pruning accuracy

The network connections are pruned based on the algorithm in Section 2.2, where the con-

nections below certain threshold are pruned. Fig. 4.2 compares the accuracy of the network after

pruned based on magnitude and pruned based on the significance Sec. 2.3. The reference network

is the original network without pruning any connections. The L2N50 represents a trained network

with 2 hidden layers and 50 hidden units within a layer.

Figure 4.2: Prediction accuracy comparison between magnitude based pruning and CDAG based insignifi-

cant pruning

The Neural Networks A-E represents fully connected classical neural networks; F, G and H

represents cascade neural networks. When 3X compression applied, the accuracy of the networks

pruned based on magnitude only is on average 9.3% below the reference network. The Network D

with 7 layers with 20 hidden units after 3X compression (33% of original connections remaining)

shows 79.9% accuracy on the test dataset, which is 14.8% accuracy loss compared to the original

inference accuracy of 94.7%. Whereas 3X compression after significance based pruning shows
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92.2% accuracy with only 2.5% accuracy loss. Once stepped down the compression ratio to 2X

(50% of the original connections remaining) the significant based pruning accuracy loss dropped to

less than 1% from the original inference. Han et al. [4] used L1 normalization and L2 Normaliza-

tion to separate the unimportant connections from important connections in Convolutional Neural

Networks, and used magnitude based pruning to remove the unimportant connections and retrain

pruned network to gain the original accuracy back. Our method on significant based pruning re-

moves the important connections from the inference computational DAG and keep the accuracy

loss minimal compared to magnitude based pruning without any retraining.

4.3 Significant based reordering accuracy

Figure 4.3: Prediction accuracy comparison between different pruning ratios

The Fig.4.3 shows the Fully connected classical Deep Neural Network’s accuracy after sig-

nificance based pruning, Q=33% is obtained by reordered the network into 3 sets of operations

and executing the 1st significant set and Q=40% is obtained by executing the first 4 sets from the

program reordered into 10 sets. 100% represents the original inference program without pruning.
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LxNy represents x layers classical fully connected deep neural network. The network L4N25

when pruned to 33% predicts with 96%, which is better than the original inference accuracy of

95%, which is achieved from less over-fitting which is a side effect of pruning.

Figure 4.4: Prediction accuracy comparison for Cascade Network

The Fig.4.4 shows the prediction accuracy of the cascade neural networks. Where L4N10

describes a network with 4 hidden layers and each layer has 10 output neurons. In cascade neural

network, each layer’s output is fed into all the subsequent layers. Eg. 1st layer is fed from the input

image, the 2nd layer in the cascade network is fed from the input image and the 1st layer’s output,

and the 3rd layer is fed with input image and 1st and 2nd layers output.

In most of the cascade networks, we can achieve very similar accuracy as the original inference

program while executing less than 50% of the operations. Since the L4N10 has smaller number

of parameters than other networks to classify the image, pruning 2/3 of the computations results

in larger accuracy drop than others. Other larger networks have more redundant computation and

pruning 2/3 of the computations is still sufficient to classify the image.
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4.4 Codelets aware reordering accuracy

Fig. 4.5 shows the accuracy when executing the first 33% operations from codelet aware re-

ordering while modifying the edit distance on 5 networks (Table 4.1). Edit distance 0 shows the

original significance based reordering.

Figure 4.5: Accuracy of codelet aware reordering for Q=33%

By controlling the edit distance, the number of iterations that can be fit into codelets can be

controlled. Which gives the flexibility to produces better implementation of piecewise regular

program 3.3 with some accuracy loss. In network C, the total number of iterations that can be fit

into codelets (Table 4.2) can be increased almost 3X by loosing 4.2% accuracy.

Table 4.2 lists the codelet shapes explored. The codelet shape contains 7 values, dimension

of the codelet, followed by length of codelet in each dimension and lastly the stride along each

dimension of the codelet. Consider Fig.4.6, codelet shape represents iterations in first dimension

(l), second dimension (i) and the third dimension (j). The first shape in Table 4.2 represents 8

iterations along i in the inference program.

Figure 4.6: Example Inference
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Network Number of Connections in the original network

A:L5N50 47410

B:L6N50 49960

C:L6N40 38370

D:L5N40 36730

E:L5N70 88570

Table 4.1: Network information

codelet shape ed=0 ed=1000 ed=5000 ed=8000

3,1,8,1,1,1,1 2 2 19 76

3,1,8,1,1,2,1 2 4 27 43

3,1,1,8,1,1,1 23 22 39 40

3,1,1,8,1,1,2 1 3 6 11

3,1,4,4,1,1,1 1 1 0 0

3,1,4,4,1,2,2 0 0 0 0

3,1,4,1,1,1,1 87 108 178 216

3,1,4,1,1,2,1 59 61 107 124

3,1,1,4,1,1,1 108 107 108 87

3,1,1,4,1,1,2 14 14 21 24

Table 4.2: Codelet shapes found in Network C for different edit distances

Codelet aware reordering reorder operations based on the codelet shape provided, and the order

of the shapes in the file impact the output reordered program.
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Chapter 5

Conclusion

The scope of artificial neural networks have been growing drastically in the recent years. While

the neural networks becoming more powerful, the network requires more memory and computa-

tion resources, The future applications demanding low power, higher throughput and low latency

implementations on embedded resource constrained environment. The network pruning provides

a solution to reduce the network size and efficient implementation on resource constrained envi-

ronments.

We present a new methodology to reduce the inference network size by removing insignifi-

cant computations. We assign rank to each computation in the network based on the contribution

significance to the final result and depending on the resource constraint or operation budget, we

generate a size reduced inference program from the high ranking operations. We have showed in

some classical feed forward networks, after removing more than half of the operations from the

fully connected layers, the network still be able to classify with minimal accuracy loss. We also

presented a method to control the standard structures sparse network, which enables to control the

trade off between accuracy and implementation performance.

Future work includes, extending the significant based pruning to convolutional layers and ex-

plore the impact of channel level, filter level pruning, quantization and fixed point implementation.
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