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Canonical Coordinates and the Geometry of
Inference, Rate, and Capacity

Louis L. Scharf, Fellow, IEEE,and Clifford T. Mullis

Abstract—Canonical correlations measure cosines of principal
angles between random vectors. These cosines multiplicatively de-
compose concentration ellipses for second-order filtering and addi-
tively decompose information rate for the Gaussian channel. More-
over, they establish a geometrical connection between error covari-
ance, error rate, information rate, and principal angles. There is a
limit to how small these angles can be made, and this limit deter-
mines channel capacity.

Index Terms—Canonical coordinates, canonical correlations,
channel capacity, filtering, information rate.

I. INTRODUCTION

T HE STANDARD view of estimation theory and communi-
cation is illustrated in Fig. 1. The -dimensional message

and the -dimensional measurementare components of the
source vector . We think of as Mother Nature's message and

as Father Nature's measurement. In the Shannon picture [1],
the measurement is a “noisy” version of the message.

The problems we consider in the context of Fig. 1 are as
follows.

• How accurately can the message be estimated from the
measurement?

• What is the linear dependence between message and mea-
surement?

• What is the rate as which the measurement carries infor-
mation about the message?

• What is the capacity of the measurement to carry informa-
tion about the message?

Our aim in this paper is to answer these questions by showing
how thecosinesfor principal anglesbetween the message and
the measurement determineerror covariance, information rate,
andcapacity. These cosines are just thecanonical correlations
between thecanonical coordinatesof the message and the mea-
surement. This suggests that the system ofcanonical coordi-
nates is the appropriate coordinate system for analyzing the
Gaussian channel. As a preview of our results, we offer Fig. 2,
which is a redrawing of Fig. 1 in coordinatesand . The trick
will be to determine the transformationsand that make
and canonical.
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Fig. 1. Source of message and measurement in standard coordinates.

Fig. 2. Source of message and measurement in canonical coordinates.

In the canonical coordinate system, the Gauss–Markov the-
orem decomposes the MMSE estimator of the message into a
transform coder, anequalizer filterfor estimating canonical co-
ordinates, and atransform decoder. The error covariances for
the canonical coordinates are determined by cosines of principal
angles. These cosines also decompose the information rate into a
sum of canonical rates, each of which measures the rate at which
a canonical coordinate of the measurement carries information
about a canonical coordinate of the message. Capacity is deter-
mined by the maximum canonical rates that can be achieved,
and these are determined by the maximum direction cosines or
minimum principal angles that can be achieved.

This paper is a companion to [2]. Our aim is to further ex-
plore the algebraic, geometric, and statistical properties of the
Shannon experiment [1]. Since completing this paper, we have
discovered a relatively obscure paper by Gel'fand and Yaglom
[3], which contains some of our results.

II. GEOMETRY AND CANONICAL COORDINATES

We begin our development by defining the source vector
consisting of the messageand the measurement

(1)

We will assume that and have zero means, in which case the
second-order characterization ofis determined by the covari-
ance matrix

(2)

Whenever we need to assign a probability distribution to, we
will do so by assuming it to be Gaussian, and we will denote this
distribution as . In this case and are marginally
Gaussian, that is, . It is customary to think of the
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elements of the cross-covariance matrix as inner products
in the Hilbert space of second-order random variables:

inner product between and (3)

If and are now replaced by their corresponding “white”
or “unit” vectors, then the whitened source vector is

(4)

where , and . The
covariance matrix for this whitened vector is

(5)

where is called thecoherencematrix. The elements of the
coherence matrix are cosines in the Hilbert space of second-
order random variables:

cosine of angle between unit variance
random variables

(6)
This language is evocative, but until we resolve the coherence

matrix into an appropriate coordinate system, we have no con-
crete picture for the underlying geometry. In order to develop
this picture, we now determine the singular value decomposi-
tion (SVD) of the coherence matrix, namely

and

and (7)

We then use the orthogonal matricesand to transform the
unit source vector into thecanonicalsource vector

(8)

The covariance matrix for the canonical source vector is

(9)

where the cross-covariance matrixis the diagonal matrix of
singular values determined from the SVD:

diag (10)

The matrix is called thecanonical correlation matrix
of canonical correlations , and the matrix is
called the squared canonical correlation matrix of squared
canonical correlations [4], [5]. These squared canonical
correlations are eigenvalues of the squared coherence matrix

Fig. 3. Geometry of canonical coordinates.

or, equivalently, of

the matrix , as the
following calculation shows:

(11)

These eigenvalues are invariant to the choice of a square root for
.

The eigenvalues are invariant to block-diagonal transfor-
mation of :

(12)

In fact, the squared canonical coordinates make up a complete,
or maximal, set of invariants for the covariance matrix
under the transformation group

det (13)

with group action . That is, any function of
that is invariant under the transformation is a func-

tion of .
The canonical correlations measure the correlation between

the canonical message coordinates and the canonical measure-
ment coordinates. That is, as illustrated in Fig. 3, is just the
cosine of the angle between the canonical message coordinate

and the canonical measurement coordinate:

cosine of angle between
canonical coordinates and

(14)

The angle between and plays the same role as a principal
angle between two linear subspaces. That is, letting and

represent - and -dimensional orthogonal subspaces of
, the cosines of the principal angles between and

are , which are the diagonal singular values in the SVD
of the matrix [6]:

(15)

This is the deterministic analog of

(16)

thereby justifying our interpretation that the canonical corre-
lation measures the cosine of theth principal angle be-
tween the message and the measurement. Stated yet an-
other way, the canonical correlationsare the cosines of the
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Fig. 4. Source models. (a) Channel model. (b) Filtering model.

canonical angles between the linear subspaces spanned by the
canonical message and measurement coordinates and

. These cosines are invariant to nonsingular trans-
formation of by and by . This is consistent with
our interpretation of canonical correlations as cosines of prin-
cipal angles between the message and the measurement: only
the principal angles matter, not the internal coordinate systems.

We may now redraw Fig. 1 as Fig. 2 to illustrate the canonical
coordinates of the message and the measurement. The connec-
tion between , the standard coordinates of the source, and,
the canonical coordinates of the source, is

(17)

and the corresponding connection between their second-order
descriptions is

(18)

III. FILTERING

The source of Fig. 1 has two equivalent representations. The
first is the channel, or signal-plus-noise, model of Fig. 4(a), and
the second is the filtering model of Fig. 4(b). In panel Fig. 4(a),
the channel noise has correlation , and it is uncorrelated
with the message. The channel model for the source vector is

(19)

and the corresponding block Cholesky factorization of the co-
variance matrix is

(20)

This factorization produces the model for the channel
filter, the covariance matrix for the channel noise, and the
following decomposition of det :

det det det (21)

In Fig. 4(b), the composite source vector is transformed into the
filtering error and the measurement. The error has covari-
ance matrix , and it is uncorrelated with the measurement

. The filtering model for the source vector is

(22)

and the corresponding block Cholesky factorization of the co-
variance matrix is

(23)

This factorization produces the model for the Wiener
filter, for the error covariance matrix, and the following
decomposition of det :

det det det

det
det
det

det (24)

In this decomposition, det and det depend only on
autocorrelation, and det det depends on cross-cor-
relation. We will shortly interpret the inverse of this latter quan-
tity as processing gain.

Now let us see how this picture develops in canonical coordi-
nates. The composite canonical source of Fig. 2 has two equiv-
alent representations. The first is the channel, or signal-plus-
noise, model of Fig. 5(a), and the second is the filtering model
of Fig. 5(b). In Fig. 5(a), the canonical channel noisehas
correlation , and it is uncorrelated with the canonical
message . The channel model for the canonical source vector
is

(25)

and the corresponding block Cholesky factorization of the co-
variance matrix is

(26)
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Fig. 5. Canonical source models. (a) Canonical channel model, (b) Canonical
filtering model.

This factorization produces the model for the canonical
channel filter, the covariance matrix for the
canonical channel noise, and the following decompositions of
det and det :

det det and

det det det det (27)

In Fig. 5(b), the canonical source vector is transformed into the
canonical filtering error and the canonical measurement.
The error has covariance matrix , and it is uncorrelated
with the measurement. The filtering model for the canonical
source vector is

(28)

and the corresponding block Cholesky factorization of the co-
variance matrix is

(29)

This factorization produces the model for the canonical
Wiener filter and for the canonical error
covariance matrix.

We may summarize by illustrating the channel and filtering
models for the source vectorin canonical coordinates. These
models, which are illustrated in Fig. 6, show that the canon-
ical correlation matrix , which may be interpreted as a di-
agonal equalizer filter, determines the canonical channel filter

and the channel noise covariance , as well as
the canonical Wiener filter and the error covariance matrix

. With these insights, the standard Shannon picture
[1] of Fig. 7(a) may be redrawn as the canonical Shannon pic-
ture of Fig. 7(b) to show that the transmitter consists of the
whitening transform coder , and the receiver consists
of the canonical Wiener filter followed by the coloring trans-
form decoder . The canonical Shannon picture isauto-
maticallya spread-spectrum picture.

Fig. 6. Source models in canonical coordinates. (a) Channel model. (b)
Filtering model.

Fig. 7. Shannon's picture. (a) Standard. (b) Canonical.

In canonical coordinates, the Wiener filter and error covari-
ance matrix may be written as

and

(30)

The concentration ellipse for the filtering errors has volume
proportional to det , and the concentration ellipse for the
message has volume proportional to det . Their ratio
measures therelative volumesof these concentration ellipses,
and this ratio, which depends only on the canonical correlations
or direction cosines, is the same as it is in the canonical coordi-
nate system:

det
det

det

det
det

(31)
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A physical interpretation is that the canonical coordinate trans-
formation replaces the original composite source by a parallel
combination of uncorrelated sources, each of whose error co-
variance is . The error covariance for the parallel combina-
tion is diag , and the determinant is .
In a very real sense, the inverse of the ratio in (31) determines
“processing gain,” and it depends only on direction cosines:

PG
det
det

(32)

As processing gain is invariant to nonsingular transformation,
this is also processing gain for the original experiment.

Example: Signal Plus Noise. The interpretation of canonical
coordinates is illuminating when the composite source is a
signal-plus-noise source. In this case, the measurement is

and . Then, the composite correlation
matrix is

(33)

For reasons to become clear, we will define the “signal-to-noise
ratio” matrix as

(34)

Then, with a little algebra, the error covariance matrix may be
written as

(35)

and the “squared” canonical correlation matrix as

(36)

This latter identity tells us that the eigenvalues of the SNR ma-
trix —call them —are related to the squared canonical co-
ordinates as

or (37)

This means that the relative volume of concentration ellipses is

det
det

(38)

and the processing gain is . The processing gain
is when for all .

IV. L INEAR DEPENDENCE

The standard measure of linear dependence for the composite
random vector is the Hadamard ratio inside the inequality

det
(39)

This ratio takes the value 0 iff there is linear dependence among
the ; it takes the value 1 iff is diagonal, meaning the
random variables are all mutually uncorrelated and therefore
orthogonal. From the second identity of (27), this ratio may be
written as

det det
det

det
(40)

This decomposition of the Hadamard ratio bears comment.
The first term measures the linear dependenceamong the
random variables , and the third term measures the
linear dependenceamong the random variables ; the
middle term measures linear dependencebetweenthe random
variables and . It does so by measuring the error
covariance when estimating the canonical message
vector from the canonical measurement vector

. This error covariance det is also the
canonical decomposition of det det .

V. RATE AND CAPACITY

Shannon [1] defines the information rate of the source of
Fig. 1 three ways, each of which brings its own interpretations.

i) : message entropy minus equivoca-
tion ;

ii) : measurement entropy minus noise
entropy ;

iii) : message entropy plus measure-
ment entropy minus shared entropy .

For the Gaussian source of Fig. 1, entropy is

det (41)

and these rate formulas become

i)

det det

ii)

det det

iii)

det det

det

Using the determinantal identities of Section III, we may write
equivocation, noise entropy, andinformation rateas

i)

det

det

ii)

det

det
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iii)

det

That is, the rate at which the measurementbrings information
about the message is just the sum of the rates at which the
canonical measurement coordinates carry information about the
canonical message coordinates:

(42)

rate at which canonical
measurement coordinate
carries information about
canonical message coordinate

(43)

A physical interpretation of this result is that the transformation
to canonical coordinates transforms the Gaussian channel into
a parallel combination of independent Gaussian channels, each
of which has rate . The total rate is the sum, and as rate is
invariant to linear transformations, this is the rate of the original
channel.

In summary, rate is determined solely by squared canonical
correlations . However, the are just direction cosines
between the linear vector spaces spanned by the canonical mes-
sage and measurement coordinates, or direction cosines for the
principal angles betweenand . This fundamental decompo-
sition illustrates the geometry of rate and the fundamental role
played by canonical coordinates in its computation and interpre-
tation. It also raises the question of just how small the principal
angles can be or, equivalently, how large the direction cosines
can be. This is the capacity question. We can define capacity to
be

set of admissible message covariances (44)

but we can only calculate it for concrete channels. We turn to
this question in the following section, where we evaluate rate
and capacity for the circulant Gaussian channel.

VI. CIRCULANT GAUSSIAN CHANNEL

The circulant Gaussian channel is an example that allows us
to compute canonical correlations and direction cosines and to
derive Shannon's celebrated capacity theorem in the bargain. Let
the measurement be the sum of the messageand
the channel noise. Assume that and are circulant:

...
...

...

...
. . .

...

and (45)

These circulant matrices have DFT representations

and

and (46)

in which is the DFT matrix, and and are diagonal
line spectrummatrices:

diag and diag

and

(47)

The coherence matrix in this case is also circulant, and the
canonical correlation matrix consists of ratios that might
loosely be called voltage ratios.

diag (48)

The direction cosines and direction sines are power ratios

(49)

These formulas are special cases of those in (37), and they
show the connection between canonical correlation and
signal-to-noise ratio. The error covariance matrix for esti-
mating from is

diag

diag (50)

and the rate at which carries information about is

det

(51)

The question that now arises is “what is the maximum rate (or
channel capacity) at which the measurement can bring informa-
tion about the message?” To answer this question, we maximize
the rate under the constraint that the average signal power is

and the average noise power is:

u.c. and

(52)

The maximizing choices for the spectral line powers are

(53)
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These are, of course, the spread-spectrum solutions that equalize
the signal-plus-noise power across the band. The corresponding
capacity is

(54)

and the corresponding error covariance matix for estimating
from is

diag (55)

When the noise is white, meaning , then the ca-
pacity is

(56)

and the corresponding error covariance matrix is

diag (57)

Under this capacity condition, each canonical measurement co-
ordinate carries information at the same rate

, all direction cosines are equal, and all error
variances are equal.

When only certain DFT frequencies can be used, thenis
replaced by (the dimension of the resulting message), and the
capacity formula is

(58)

which is Shannon's capacity formula.
The asymptotic versions of these formulas are straightfor-

ward. For the error covariance matrix , we have

(59)

where is the squared coherence spectrum.

(60)

For the rate, we have

det

(61)

If the usable part of the channel has bandwidth and the noise
power is constant on this band, then the capacity is

(62)

TABLE I
SUMMARY OF FORMULAS FORINFERENCE ANDCOMMUNICATION.

and under this capacity condition, the coherence spectrum, error
spectrum, and signal-plus-noise spectra are flat.

(63)

These formulas illustrate the fundamental role played by canon-
ical coordinates in the computation and interpretation of rate and
capacity, and they illustrate the geometry underlying the spec-
tral formulas of [7].

VII. CONCLUSION

Evidently, the canonical coordinate system is the right system
for analyzing second-order filtering and communication over
the Gaussian channel. In this coordinate system, concentration
ellipses are multiplicatively decomposed, and the information
rate is additively decomposed into a sum of canonical rates, each
of which measures the rate at which a canonical measurement
coordinate carries information about a canonical message co-
ordinate. Furthermore, each canonical rate depends only on the
direction cosine between a canonical message coordinate and its
corresponding canonical measurement coordinate. In the canon-
ical coordinate system, the question of capacity is clarified, and
its computation is simplified. In a related paper [2], canonical
coordinates are used to solve the rate distortion problem for uni-
form rounding quantizers.

After all is said and done, the diagonal error covariance ma-
trix determines all performance measures of interest
for second-order inference and Gaussian communication. These
measures are summarized in Table I.
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