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ABSTRACT 
 
 
 

SPIN MULTIPLETS: THEORY AND APPLICATION 
 
 
 

Transition metal complexes have seen an increased use as photocatalysts for 

organic reactions in recent literature, mostly involving the Ru(II)(bpy)3 family of 

catalysts. Due to the rarity of ruthenium in the Earth’s crust, alternative catalysts using 

Earth abundant materials are desirable. Recent literature has shown that chromium 

based catalysts show great promise as a replacement for ruthenium for some reactions. 

The mechanisms of these first-row transition metal complexes are significantly more 

complex than those of the second and third row. The excited state complexities of first-

row transition metal complexes are challenges for both experimental and theoretical 

research. The complexities of the excited states require theoretical methods beyond the 

standard single reference methods commonly used in the literature. Through the use of 

recent multi-reference post Hartree Fock (HF) methods as well as a new multi-reference 

density functional theory (DFT), insights into the character of chromium-based 

photocatalysts were examined. 

A new multi-determinant DFT method named few-determinant density functional 

theory (FD-DFT) was described. FD-DFT incorporates multiple DFT determinants using 

a finite difference approach to calculate the exchanges between multiple determinants 

for open shell multiplets. The method is implemented in a generalized bond valence 

(GVB) wave function, and can be converged through an SCF procedure. The system 

was benchmarked using oxygen atom and diatomic oxygen as well as atomic systems 
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with more open shell orbitals. The benchmarking shows stability across many different 

functional choices, and gives good excitation energies with and without SCF 

convergence. 

The Cr(III)(AcAc)3 system has been long studied for its unique excited state 

properties that defy the standard cascade model for excited state relaxation. The 

tris(1,3-propanedionato)chromium(iii) (Cr(III)(PDO)3) complex was studied as an analog 

to the Cr(III)(AcAc)3 system to understand the excited state pathway between the initial 

excited 4T2g state and the long lived 2Eg state. Using the FD-DFT method as well as the 

multi-reference spectroscopy oriented configuration interaction (SORCI) method, the 

initial excited state energies were studied compared to previous perturbation theory 

(PT) approaches. Both SORCI and FD-DFT calculate reasonable 2Eg excitation 

energies, an improvement over earlier results. The SORCI method was also used to 

map the potential energy curve between the initial 4T2g excited state and its fully relaxed 

distorted structure. The pathway agrees with previous experimental and theoretical 

studies showing that a transitionless path exists between the quartet and doublet states, 

but spin-orbit coupling calculations suggest that a direct path between the 4T2g and 2Eg 

is possible rather than needing a internal conversion step to the lowest 2Eg state. 

Chromium-based photocatalysts have been recently studied in the literature as 

having a competitive mechanism between the reaction substrate and O2 whereby the O2 

quenches the excited catalyst. Using the combined Cr(III)(PDO)3 • O2 system, the likely 

states by which this quenching event occurs were studied with FD-DFT as well as 

recent multi-reference PT approaches. Comparing the excited state calculated using the 

multi-reference based methods to standards DFT calculations shows the inability of 



 
 

iv 

single-determinant methods to correctly produce the proper excited state character 

even when obtaining somewhat reasonable energies. The excited state responsible for 

the quenching of the excited complex is identified using spin density plots of the 

CASSCF calculations. 

The search for suitable first-row transition metals requires a search across 

possible ligands and metal centers. Using the success of chromium-based catalysts, 

isoelectronic vanadium catalysts were studied to identify any potential differences 

between the complexes as well as identify the utility of vanadium-based catalysts. Using 

a variety of methods, including TDDFT-based absorption spectra, vibrational component 

plots of the excited state distortions, and SORCI potential energy curves (PEC), the 

differences between the chromium and vanadium catalysts were examined. It was 

found that vanadium catalysts absorptions are shifted significantly from chromium 

complexes and the vanadium excited states disperse the unpaired electron over the 

complex instead of localizing it on the metal center. The distortions in the chromium-

based catalysts have a greater amount of asymmetric vibrational character compared to 

vanadium, which shows mostly symmetric behavior. Lastly, the SORCI PECs show that, 

unlike chromium, the doublet curves do not intersect the quartet curves, making a 

transition to a long lived doublet state a significantly slower process. The results 

highlight significant differences between the complexes even with ligand structure is 

controlled. 
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CHAPTER 1: INTRODUCTION 
 
 
 

BACKGROUND: 

Green chemistry has seen increased interest, and a substantial effort has 

focused on the development of new catalysts. Photocatalysts fulfill the green chemistry 

ideals to a large extent, since light energy is harnessed rather than heat as a reaction 

driving force, catalysis leads to reagent reduction, and potential auxiliary agent 

elimination also contributes to waste reduction. An interesting class of photocatalysts 

that have seen increased attention in the literature are transition metal photocatalysis. 

Specifically, the work done on tris(bipyridine)ruthenium(II) (Ru(II)(bpy)3) and its 

derivatives have been implemented to catalyze a large variety of classic organic 

reactions with visible light, effectively ushering a new green chemistry avenue. 

Ru(II)(bpy)3 has been known to catalyze organic reactions since the 1980s with 

the initial work done by Cano-Yelo and Deronzier, but interest in the field shifted to 

electrochemical approaches.1 In the late 2000s, the use of Ru(II)(bpy)3 as a catalyst 

was reinvigorated and caught wide attention. Since then, it has been applied to a large 

variety of reactions including Diels-Alder cycloadditions, dehalogenations, oxidations of 

alcohols, as well many others.2–7 The real advantage that Ru(II) based catalysts have is 

that the diversity of possible reactions only requires a few catalysts. This is 

compounded by the ability of Ru(II)(bpy)3 to undergo both oxidative and reductive 

catalyzing pathways.2 In addition, Ru(II)(bpy)3-like catalysts absorb in the visible 

reaction, making it possible to use cheap irradiation sources for the synthesis. 
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While the advantages of Ru(II)- and Ir(III)-based catalysts are numerous, they 

share one large disadvantage with respect to their natural abundance. The natural 

abundance of ruthenium metal is nine orders of magnitude less than that of silicon and 

iridium itself is two orders of magnitude rarer than ruthenium.8 This is a huge concern 

when attempting to scale these reactions to industrial levels because the cost of the 

catalyst plays a large role in the overall economics of the reaction. Having a total cost 

lower than current methods gives a large incentive to switch to using greener methods 

on a large scale, though novel reactivity is a powerful incentive as well. 

Switching the metal center from ruthenium and iridium to a first row transition 

metal would appear to be the solution to the problem of elemental scarcity since first 

row transition metals are several orders of magnitude more abundant than their second 

and third row counterparts.8 First-row transition metals exhibit significantly different 

properties in complexes than metals in the same period. For example, Fe(II) and Ru(II) 

are both d6 metals, but Ru(II) is always low spin and Fe(II) is either high or low spin 

depending the ligands complexed to the metal. This requires much more care in ligand 

and metal choice when developing a suitable photocatalysts. 

Recent examples in the literature have shown promise in developing 

photocatalysts using first row transition metals. Stevenson et al. used a 

Cr(III)(Ph2phen)3 complex to catalyze a series of Diels-Alder reactions.9 This catalyst 

was found to proceed through a mechanism which is stoichiometric in photons whereas 

the mechanisms using ruthenium based catalysts proceed via radical chain initiation.10 

The work on chromium-based catalysts as an alternative to ruthenium-based 

complexes highlights the challenges presented by first-row based photocatalysts. While 
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it is advantageous to have catalysts that exhibit different properties from the ruthenium 

catalysts, they require effort analyzing many possible mechanistic pathways to 

determine how one particular catalyst works for a given reaction and learn of the 

pathways can be generalized. As shown in the work by Higgins et al in understanding 

the Cr(III)(Ph2phen) photocatalyst’s role for a Diels-Alder mechanism, theory can play 

an important role in unraveling these mechanism pathways.10 

Theory can accelerate the replacement of ruthenium with first row transition 

metals in photocatalysts in two major areas: the catalyst’s role in mechanisms that have 

been discovered experimentally, and proposing new catalysts that share theoretical 

properties with those that function experimentally. For both of the these areas, accurate 

energies are needed for the transitions between the ground state and the relevant 

excited states as well as the structures of the excited states if complexes undergo 

geometry changes upon excitation. The theoretical excitation and emission energies 

give an estimate of the oxidation or reduction potential of a photocatalyst.10 In addition, 

the molecular orbitals and spin density plots can give a picture of whether or not a 

particular catalyst can act as a oxidizing or reducing agent in the reaction by knowing 

where the electron is in a given excited state. This gives some tools to understand 

details about these reactions that are difficult or impossible to measure experimentally. 

Transition metal complexes and their excited states present significant theoretical 

challenges that must be addressed in order to obtain useful energies and therefore 

other properties from these systems. Transition metals themselves are more 

computationally difficult than the traditional organic atoms. The presence of partially 

filled d orbital shells complicate the calculations not only due to the extra unpaired 
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electrons but also the potential for high- and low-spin configurations. The relative d 

orbital energy levels are also sensitive to the ligand nature and solvent environment. 

Replicating the exact solvent environment can be complicated since both implicit and 

explicit solvent may be needed, which can change the electron configuration for many 

first-row transition metal complexes. Larger complexes more representative of 

experimentally useful catalysts can have large, extended ligand structures that can 

interact with several different substrates during a single mechanistic pathway, making 

theoretical studies computationally burdensome. Many different computational 

approaches can be applied to these systems, each with their individual advantages.11 

The theoretical methods used to study the photophysics and photochemistry of 

first-row transition metal complexes must be able to properly model the excited states, 

so that accurate excitation energies can be obtained and the characteristics of the 

excited states in terms of the molecular orbitals and spin densities are representative of 

the excited states. For complexes useful in photocatalytic applications, the excited 

states often consist of spin states that cannot be described by a single Slater 

determinant. While the ground states and some of the excited states are representable 

by a single determinant, many of the important excited states consist of at least two 

determinants. Slater determinants encapsulate the antisymmetric nature of electronic 

wave functions. A three electron 
 
M

s
= ½ Slater determinant and its determinantal 

expansion is provided in Eq. (1.1).  

In Eq. (1.1) 
 
φa

 is a one electron spatial orbital, α  denotes the spin, and (1) 

indicates that is electron 1. The three-electron quartet ground state can be described by 

the determinantal expansion of 
  
φaα 1( )φaα 2( )φaα 3( ),  but the lowest doublet requires 
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φaα 1( )φaβ 2( )φaα 3( )−φaβ 1( )φaα 2( )φaα 3( )  in order to be a proper spin-eigenfunction. 

Many of the staple theoretical tools such as Hartree Fock (HF) and density functional 

theory (DFT) cannot describe these states to an accurate level, which can result in 

excitation energies being several electron volts in error. The rigorous solution to this 

problem is to use wave function methods that are defined in terms of multiple 

determinants. 

 

  

φaα 1( ) φaα 2( ) φaα 3( )
φbβ 1( ) φbβ 2( ) φbβ 3( )
φcα 1( ) φcα 2( ) φcα 3( )

=

φaα 1( ) φbβ 2( )φcα 3( )−φcα 2( )φbβ 3( )( )
−φbβ 1( ) φaα 2( )φcα 3( )−φcα 2( )φaα 3( )( )
+φcα 1( ) φaα 2( )φbβ 3( )−φbβ 2( )φaα 3( )( )

  (1.1) 

This class of multiple determinant methods is known as multi-configuration (MC) 

or multi-reference (MR) methods, where multiple determinants are used in the 

theoretical method such that electronic states consisting of multiple spin determinants 

can be rigorously described. Similarly to single reference methods, a self-consistent 

field (SCF) calculation is needed as the basis for the calculation. Multi-configuration 

self-consistent field (MCSCF) methods incorporate an iterative method to converge a 

wave function that has multiple Slater determinants. The choice of which determinants 

to include in the wave function is a balance between few enough configurations to 

ensure convergence stability and a large enough number of configurations to 

adequately describe the system. A popular choice for the determinants to include in a 

multi-configuration wave function is the complete active space method (CAS), where a 
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number of active orbitals and active electrons are each specified.12 Assuming the 

electrons are counted back from the HOMO, this completely defines which orbitals are 

involved in the active space. The method states that any possible configuration that can 

be formed within just these active orbitals and active electrons is included in the wave 

function. The number of determinants can be seen to increase rapidly with the number 

of active orbitals, so careful choice of the active space is key.13 The electron correlation 

not included in the MCSCF is referred to as dynamic electron correlation. Due to the 

lack of dynamic electron correlation, the energies of MCSCF wave functions are not 

typically used, but are desired as a reference to further post SCF calculations. However, 

MCSCF wavefunctions can be biased towards certain desired states during their SCF 

procedures, which will bias any further calculations.14,15 Therefore, many MCSCF 

routines will average the wave functions over all desired states of interest. This 

produces MCSCF energies that aren’t useful as excited state energies without further 

calculations. This results in a wave function with the proper flexibility with respect to the 

molecular system, but energies that are not reliable until after post SCF calculations.  

An alternative MCSCF method to CASSCF is the general valence bond (GVB) 

theory, which uses multiple determinants in the wave function to handle wave functions 

that give correct dissociation curves for molecular systems.16 GVB wave functions are 

differing from CASSCF wave functions in that the small number of determinants 

included are directly specified. The generalized valence bond perfect pairing (GVB-PP) 

is particularly useful since it is restricted to open shell orbitals and closed shell orbital 

pairs. Since the SCF algorithm is efficient, the GVB-PP method can be used for 

geometry optimizations for modestly large systems.16 Similar to other MCSCF wave 
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functions, it includes no dynamic correlation and relies on post SCF methods to include 

dynamic correlation in the final energy. The lightweight wave function makes GVB 

method a popular choice for reference wave functions for large systems. 

Analogous to HF calculations, additions to the multi-configuration wave function 

are needed to account for dynamic correlation in order to obtain energies that match 

experiment. The two approaches used to account for dynamic correlation are 

configuration interaction (CI) and perturbation theory (PT). CI expands a given wave 

function to a certain number of excitations without changing the wave function orbital 

coefficients according to an energy minimization equation, and solves for the expansion 

coefficients to obtain a new wave function.17 Expanding this methodology to multiple 

determinants in a multi-configuration wave function results in a multi-reference 

configuration interaction (MRCI) calculation. While a full CI solves for all possible 

excitations, the scope of these calculations is only tractable for small molecular 

systems. Instead, only a subset of excitation are included.17 When properly applied to a 

given system, these calculations result in good energies and excited state orbitals to 

analyze since it produces a new wave function.17 However, due to only allowing certain 

excitations within a CI expansion, this method runs into the issues of size 

inconsistency.18 Size inconsistent methods are such that the energy of two molecular 

systems at infinite distance does not equal the sum of the two systems independently.18 

This leads to the method not being reliable for system where the substrate is analyzed 

as a function of distance from the catalyst. 

The other main multi-configuration addition to a MCSCF wave function is to add 

a perturbation to the energy expression. Many methods are available that add different 
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perturbations to the MCSCF wave function, NEVPT2 being one of the more recent and 

popular methods.19–21 While each method can have its own stability challenges, they 

can provide very reasonable energies for each excited state. However, PT approaches 

only improve the energy of the system, not the wave function itself. Any orbital analysis 

is performed on the MCSCF wave function, which may not be the best representation of 

the state of interest. Any multi-configuration approach also suffers from the problem of 

the required computational resources needed. For all but the smallest organic 

molecules, geometry optimizations are infeasible. Therefore, any geometry including 

excited state distortions must be calculated with a different approach. 

Due to the complications and computing resources needed for multi-configuration 

methods, many researchers turn towards DFT to study transition metal complexes. The 

reasoning behind this choice is obvious. DFT is not significantly slower than HF 

calculations, but produces improved energies and geometries that match experimental 

results very well. In addition, time-dependent density functional theory (TDDFT) can 

describe single excitations better than the HF equivalent methods. The key is that 

density functional provides electron correlation through the functional’s form, and the 

variety of available functionals allows the functionals themselves to be tuned to work the 

best for certain molecular systems. In addition, all modern chemistry software packages 

implement DFT in the form similar to Hartree-Fock such that the implementation 

algorithms have become highly efficient due to advances in single Hamiltonian SCF 

accelerators.22 Many packages have analytical first and second derivatives for DFT and 

TDDFT as well as GPU support for integral calculations (the most time intensive portion 
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of any SCF routine) such that optimizing ground and TDDFT excited state structures 

can be accomplished by anyone with a modern workstation. 

For these systems, the major hurdle with DFT excited state calculations is that 

DFT is a single determinant method, making it incompatible with many important excited 

states. Unlike HF where one can add additional wave function contributions in a CI 

expansion, a CI expansion of a DFT wave function results in double counting of electron 

correlation contributions. The DFT functional already includes static and dynamic 

correlation, so the addition of CI excitations adds correlation that has already been 

added to the wave function. This is the heart of the “double counting problem” for multi-

reference DFT. Many different strategies have been proposed to implement a DFT form 

that obtains better excited states for non-single determinant electronic configurations 

while avoiding any double counting issues. 

The earliest strategies revolve around broken symmetry approximations. Broken 

symmetry refers to breaking the symmetry of the alpha and beta electrons by allowing 

the electrons to occupy potentially different orbitals. For example, a spin-restricted 

singlet O2 calculation would put both electrons in one of the  π *  orbitals. However, a 

lower energy configuration is found by allowing each electron in the HOMO to occupy 

one  π *  orbital. The unrestricted representation breaks the symmetry between the alpha 

and beta wave functions. This alone does not fix the issue in that the broken symmetry 

wave function is still not a multi-determinant representation, but several methods have 

used this broken symmetry wave function to provide an approach that mimics a multi-

determinant wave function. 
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Many different approaches have been suggested to obtain better energies from 

broken symmetry calculations. All of these approaches are looking for solution to the 

equation for the coupling energy between determinants represented by the Heisenberg 

Hamiltonian 

 
    
H

coupling
= −2J

ab
S

a
i S

b
  (1.2) 

where 
  
S

a
 and 

  
S

b
 are the total spin operators for the two spin states and 

 
J

ab
 is the 

effective exchange integral between the determinants averaged over all orbitals.23,24 

The form of 
 
J

ab
 has been treated as mostly empirical, and several different forms of 

 
J

ab
 

have been suggested. The most popular 
 
J

ab
 form that was developed to obtain better 

energies from broken symmetry calculations is the Noodleman projection, which has the 

form 

 
  

J
ab
= −

E
HS

−E
BS( )

S
max

2
  (1.3) 

where 
 
E

HS
 and 

 
E

BS
 are the energies of the high spin and broken symmetry DFT 

calculations respectively and
  
S

max

2  is the  total spin for the state with the highest spin.23 

Another popular form of 
 
J

ab
 is the Soda projection where 

 
J

ab
 is defined as 

 
  

J
ab
= −

E
HS

−E
BS( )

〈S2 〉
HS

− 〈S2 〉
BS

  (1.4) 

where 
  
〈S2 〉

HS
 and 

  
〈S2 〉

BS
  the total spin angular momentum for the high spin and broken 

symmetry calculations.24 A further discussion of broken symmetry methods is included 

in Appendix A. 

All of these broken symmetry projection methods do improve the excitation 

energies obtained compared to the broken symmetry calculations, but a general 
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consensus on which form of 
 
J

ab
 is the best for all cases is not available. The only 

benchmarks comparing all methods have been limited to small cases where full-CI 

calculations are feasible.24 These broken symmetry methods also rely on the converged 

SCF states for the high-spin and broken-symmetry calculations to be suitable for the 
 
J

ab
 

approximations. While these methods are convenient to apply to many systems, more 

rigorous methods that converge multiple determinants simultaneously are more 

desirable. 

Rather than improvements to only the energy, several proposed theories have 

been suggested to bring multi-configuration character to DFT. The primary obstacle is 

handling the double counting problem without large alterations to the functionals 

themselves. The double counting problem is centered around how different methods 

add different types of correlation to their calculations. Multi-configuration wave functions 

add static correlation to a wave function while CI and PT methods add dynamic 

correlation. DFT correlation functionals contain static and dynamic correlation, which is 

not seperable.25 Thus, adding DFT correlations to each wave function in a MC wave 

function would be double counting correlation effects, causing additional errors in the 

energy expression. 

The earliest attempt at MC DFT approach rely on a modified form of CASSCF 

that is compatible with DFT by Leininger et al. and Miehlich et al.26,27 These methods 

rely on a partition of DFT correlation contributions to ensure the wave function does not 

collapse back to a single determinant.26–29 These methods do show an improvement 

over standard DFT calculations and are comparable to CI methods for atoms and 



 
 

12 

diatomic systems, but can still suffer from double counting errors of static correlation 

originating from two separate sources.28,29 

An ensemble reference approach has been suggested as a way of introducing 

DFT correlation into highly correlated systems. The most popular version of this 

ensemble approach is the spin-restricted, ensemble-referenced (REKS) DFT method.30 

Using a combination of differences between multiple single determinant DFT wave 

functions, they arrive at a wave function that incorporates effective differences between 

certain spin states for two coupled orbitals.30 This method has been expanded to four 

coupled orbitals and linked to GVB-PP formalism.31,32 This method is successful in 

improving energies for highly correlated systems, but is only rigorously defined for two 

and four orbitals and only for coupled closed shell orbitals, not singly occupied orbitals. 

Recent MCDFT approaches have employed the idea of using only HF exchange 

terms so that inter-determinant exchange is handled analogously to post-HF methods. 

The density-functional-based valence bond (DFVB) method by Ying et al. uses a 

valence bond wave function combined with DFT correlation functionals.25 The idea 

behind this combination is that VB wave functions have no dynamic correlation, so the 

use of DFT correlation functionals can provide an inexpensive means to providing 

dynamic correlation compared to PT or CI approaches without significant double 

counting.25 However, analogous to PT and CI methods, the DFT correlation is added 

onto a fixed VB wave function. While the density used to calculate the correlation is 

allowed to change until self-consistency, the VB coulomb and exchange contributions 

do not. 
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Similar approaches to DFVB have been tried using other MCSCF wave functions 

as the reference.33 A recent approach has been detailed Manni et al. where a CASSCF 

wave function is used with a DFT correlation functional applied on top non-self 

consistently to form the multiconfiguration pair-density functional theory (MC-PDFT).34 

While the authors used improvements to the DFT functionals by forming pair-density 

functionals from traditional popular functions, the correlation is not treated with a SCF 

approach.34 This is different from traditional DFT methods (by which DFT functionals are 

benchmarked and tuned) where coulomb, HF exchange, and DFT exchange/correlation 

contributions are converged simultaneously. These methods do lead to an improvement 

over their counterparts without the DFT correlation, but still have significant errors with 

respect to excitation energies for O and O2. 

SPECIFIC AIMS OF THIS RESEARCH:  

In chapter II, I will describe a new DFT method named few determinant density 

functional theory (FD-DFT) meant to overcome the double counting issue while 

providing multi-determinant character to DFT calculations. As the name suggests, the 

method focuses on including only the determinants needed to provide static correlation 

to the calculation while leaving out any determinants that contribute to local dynamic 

correlation already included in the correlation functional. The concepts introduced in this 

chapter describe a generic form for combining multiple determinants coherently, and will 

be implemented in terms of excited state multiplets using a general valence bond (GVB) 

theory framework. The method is applied to benchmark cases to show its utility. 

In chapter III, the excited states of a Cr(III)(AcAc)3 analog are calculated using a 

MRCI based method named spectroscopy oriented configuration interaction (SORCI) as 
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well as FD-DFT. Cr(III)(AcAc)3 systems have been long studied as they exhibit unique 

properties in their excited states, such as intersystem crossing (ISC) rates that exceed 

vibrational cooling rates. This system is analyzed in detail to understand the fast 

intersystem crossing rate and benchmark the viability of this method for understanding 

other first-row transition metal complexes in terms of their excited states. 

In chapter IV, the quenching of Cr(III) catalysts by O2 is studied in order to 

understand the mechanism of this quenching event. Using single determinant DFT, FD-

DFT, and CASSCF with NEVPT2, the excited states of this system are explored to find 

the excited state by which this quenching event occurs. The importance of using 

methods with multi-determinant properties is highlighted by comparison with standard 

DFT calculations by analyzing the excited states through the spin-density plots of each 

excited state. 

Chapter V focuses on a comprehensive theoretical study of chromium and 

vanadium complexes to demonstrate the large differences between isoelectronic 

chromium and vanadium complexes with identical ligand structures. Using TDDFT 

excitation spectra, spin density plots, vibrational component plots of excited state 

distortions, and SORCI excited state potential energy curve plots, the surprising 

differences between these chromium and vanadium complexes are explored. The 

theoretical results agree with experimental observations related to vanadium complex 

reactivity, highlighting the importance of metal center choice in transition metal 

photocatalyst design. 
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CHAPTER 2: FEW-DETERMINANT DENSITY FUNCTIONAL THEORY (FD-DFT), 

SPIN MULTIPLETS AS PROOF OF CONCEPT 

 
 

INTRODUCTION: 

From molecular oxygen to classical coordination complexes, compounds with a 

set of degenerate or nearly degenerate partially filled orbitals provide unique radical 

stability as well as unique electronic spectroscopy due to low lying excited states of 

reduced spin multiplicity. Theoretical calculations of these systems is complicated by 

the need for multiple determinants to adequately describe these states. 

Systems where a set of n electrons are described by n intrinsically orthogonal 

orbitals have degenerate ground states where the ground state degeneracy can be split 

by a magnetic field into   n +1 states. This degenerate set of states is referred to as a 

spin multiplet. Examples of spin multiplets include most atomic systems such as 3P 

oxygen atom, molecular systems such as  
3
Σ  O2 and 3B1 methylene, and an abundance 

of first-row transition metal coordination complexes. Spin recoupling amongst multiplet 

electrons leads to low lying excited states. While the 
  
M

s
= S

max
 ground multiplet state 

can be described by a single Slater determinant, the lower MS microstates as well as 

the low-lying electronic excited states require more than one determinant. The multi-

determinant nature of multiplet states, as well as the challenges posed to density 

functional theory have been long recognized.1–8 

For example for O2, while the 
  
M

s
= ±1 components of the ground state triplet 

multiplet can be described by a single determinant, the 
  
M

s
= 0  component of the ground 

state as well as each of the excited state configurations require two determinants. As
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recognized in 1977, this poses a challenge for single determinant density functional 

models.9 Within DFT, the 
  
π

x

* , 
  
π

y

*  αα ground state, a 
  
π

x

* , 
  
π

y

*  αβ  broken symmetry wave 

function (described in Appendix A), and a 
  
π

x

* , 
  
π

x

*  αβ  configuration can be computed. 

The broken symmetry solution underestimates the energy of the  
1
Δ  state by 0.5 eV. 

Estimates for the  
1
Δ  state can be provided by a sum rules model9. Electron correlation 

amongst the multiplet set of electrons is well described by a Hartree-Fock wave 

function. The Pauli Principle dictated wave function antisymmetry correlates electrons of 

the same spin. 

Ranging from the multiplet structure of open shell transition metal coordination 

complexes to the dissociation of chemical bonds, there are a number of important 

problems that are intrinsically multi-determinant, yet pragmatically require the dynamic 

correlation easily described by density functional theory (DFT). Here we sketch a few-

determinant density functional theory approach (FD-DFT) that has been developed and 

applied to magnetic interactions10 as well as low lying excited states of coordination 

complexes.11 The current approach builds off the sum rules approach from the 1970s9 

as well as the more recent spin-flip approaches.12,13 By reformulating the problem as a 

linear combination of a small number of Slater determinants a variational treatment of 

the wave function/density can be achieved for multiplet systems.  

THEORY: 

FD-DFT THEORY: 

In the FD-DFT approach described here inter-determinant coupling terms are 

evaluated using a finite difference approach. As has been long recognized, 

incorporation of a spin restricted exchange-correlation term is an unmet challenge.14 At 
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least two determinants are needed and the non-separability of density functional 

exchange is an issue, see for example the work by Pérez-Jiménez et al.15 In Hartree 

Fock the total exchange energy, 
 
E

x
, is a pairwise sum of individual exchange integrals, 

whereas in DFT the total exchange energy cannot be separated into individual terms.  

The Restricted Open shell Kohn Sham (ROKS) approach of Russo, Martin, and 

Hay16 provides a hint as to how to proceed. In the ROKS model a density functional 

exchange-correlation term is variationally incorporated into an open shell spin restricted 

model by computing α  and β  exchange-correlation potential matrices forming linear 

combinations and adding them to the α  and β  Fock matrices. For example, for a 

system of  n  closed shell electrons and 
 
n
α
− n

β
 open shell electrons Eq. (2.1) and (2.2) 

result.   

   

 

   

Fα = h
core

+ 2J j −K j( )
j=1

nβ

∑ + J j −K j( )
j=nβ +1

nα

∑ + Vα
xc

Fβ = h
core

+ 2J j −K j( )
j=1

nβ

∑ + J j

j=nβ +1

nα

∑ + Vβ
xc

  (2.1) 

 

   

FC =
Fα +Fβ

2
= h

core
+ 2J j −K j( )

j=1

nβ

∑ + 1

2
J j −K j( )

j=nβ +1

nα

∑ + J j

j=nβ +1

nα

∑ + 1

2
Vα

xc
+ Vβ

xc( )

FO = Fα + Vα
xc

  (2.2) 

In order to see how to proceed to the general multiplet system, consider a 

system of two electrons and two orthogonal orbitals (
 
φ

a
 and 

 
φ

b
). Single determinant 

  
M

s
= 0  and 

  
M

s
= 1 wave functions are given in Eq. (2.3) and (2.4). 

 
  
ψMS=0 = φbφaαβ   (2.3) 

 
  
ψMS=1

= φbφaαα   (2.4) 

The 
  
M

s
= 0  single determinant Hartree Fock energy is given in Eq. (2.5) and the 

  
M

s
= 1 

single determinant Hartree Fock energy in Eq. (2.6). 
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EMS=0 = haa + hbb + Jab   (2.5) 

 
  
EMS=1 = haa + hbb + Jab −Kab   (2.6) 

The sum rules singlet energy of Ziegler, Rauk, and Baerends is given in Eq. (2.7) 

 
  
Esinglet = 2EMS=0 −EMS=1   (2.7) 

where substitution of Eq. (2.5) and (2.6) into Eq. (2.7), yields the correct open-shell 

singlet Hartree-Fock energy, Eq. (2.8).9 

 
  
ESinglet = haa + hbb + Jab +Kab   (2.8) 

An alternative development is to take the open-shell singlet wave function as a linear 

combination of the two 
  
M

s
= 0  determinants, Eq. (2.9). 

 
 
ψ Singlet =ψ αβ +ψ βα   (2.9) 

 
  
ESinglet =

1
2

Eαβ +Eβα − 2Hcoupling( )   (2.10) 

 
 
Eαβ = Eβα = haa + hbb + Jab   (2.11) 

 
  
Hcoupling = −Kab   (2.12) 

For a Hartree-Fock treatment, the coupling term, 
 
K

ab
, can be obtained, rather than 

through direct computation, as the difference between the 
  
M

s
= 1, Eq. (2.13), and the 

  
M

s
= 0 , Eq. (2.11), single-determinant total electronic energies, see Eq. (2.14). 

 
 
Eαα = haa + hbb + Jab −Kab   (2.13) 

 
  
Hcoupling = Eαα − 1

2
Eαβ −Eβα( ) = −Kab   (2.14) 

In a DFT formulation of the above two determinant model, 
 
E

αα
 and 

 
E

αβ
 can be simply 

replaced by their DFT counterparts. The energy expressions of Eq. (2.11) and (2.13) 

become Eq. (2.15) - (2.17) where the densities reflect the underlying spin. 

 
 
Eαβ = Eβα = haa + hbb + Jab +E

xc ραβ( )   (2.15) 

 
 
Eβα = Eβα = haa + hbb + Jab +E

xc ρβα( )   (2.16) 
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Eαα = Eβα = haa + hbb + Jab +E

xc ραα( )   (2.17) 

The coupling term analogous to Eq. (2.14) is given by Eq. (2.18). 

 
  
Hcoupling = Eαα − 1

2
Eαβ +Eβα( ) = E

xc ραα( )− 1
2

E
xc ραβ( )+E

xc ρβα( )( )   (2.18) 

Exchange coupling terms for the general case can be obtained from 

determinants that are two spin flips removed from high spin determinant. This allows for 

a linearly independent solution for each of the approximate DFT exchange-correlation 

energy terms using the expression 

 

  

K
ij

xc
= cmn

ij EHS
xc ρHS⎡⎣ ⎤⎦ −Emn

xc ρmn⎡⎣ ⎤⎦( )
m,n

no

∑   (2.19) 

where 
 
no

 is the number of open shell electrons, m and n are the electrons flipped 

relative to the high spin determinant, 
 
c

mn

ij  is the coefficient needed for the spin flipped 

determinant to obtain the exchange-correlation energy for electrons i and j, 
 
E

mn

xc  is the 

DFT exchange-correlation energy for the high spin determinant, 
 
E

mn

xc  is the DFT 

exchange-correlation energy for the double spin flipped determinant,  and 
 
K

ij

xc  is the 

DFT exchange-correlation energy between electrons i and j. In addition to the already 

described two-electron special case other exception to this general method is the four 

open shell electron system due to the existence of only three unique double spin flip 

determinants, this system requires an alternative procedure to obtain the exchange-

correlation energies (see Appendix B). 

In addition to being useful for spin restricted open shell systems, the approach 

can be used for a more general set of wave functions. The total energy for any 

electronic wave function can be described in terms of one and two-electron density 

matrices, 
 
D

i
 and 

 
D

ij
 respectively Eq. (2.20). 
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E = D j
i

i, j

n

∑ hij + Dkl
ij

i, j

n

∑ ij | kl( )   (2.20) 

If the density matrices are reduced to diagonal form the general perfect-pair and 

multiplet energy expression and Fock matrices are given by Eq. (2.21) 

 

  

E = 2 fihii

i

∑ + aijJij + bijK ij( )
j

∑
i

∑

E = fihii + φi

i

∑ Fi φi

  (2.21) 

In the general energy expression, 
 
fi  are the occupation numbers (diagonal one-

electron density matrix elements) for the individual orbitals. For doubly-occupied orbitals 

fi is 1. For singly-occupied orbitals fi is ½ and for paired orbitals fi is the CI coefficient 
  
c

i

2 . 

The 
 
a

ij
 and 

 
b

ij
 coefficients are derived either from the intrinsic multiplet structure of the 

wave function or from variational pair-wise CI coefficients. 

In density functional theory, the corresponding electronic energy expression can 

be written as 

 

  

E = 2 fihii

i

∑ + aijJij + bijK ij

*( )
j

∑
i

∑   (2.22) 

where the exchange energy, 
  
K

ij

*  is a combination of exact exchange and DFT exchange 

terms 

 
  
K

ij

*
= AK ij + 1− A( )K ij

xc   (2.23) 

As described in Eq. (2.19) the DFT exchange energy, 
 
K

ij

xc  can be described by a linear 

combination of determinant-based exchange energies. 

The variational exchange operator, 
   
K

j

*  can be described as a combination of 

exact exchange and DFT exchange operators 

 
   
K

j

*
= AK j + 1− A( )Vj

xc   (2.24) 
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where the DFT exchange operator, 
  
V

j

xc  consists of linear combinations of exchange 

correlation potentials 

 
  

V
j

xc
= cm

j Vj
xc ρm⎡⎣ ⎤⎦

m

∑   (2.25) 

Non-separability leads to the DFT exchange energy, 
 
K

ij

xc  not being equal to the sum of 

DFT exchange operators 

 

 

K
ij

xc ≠ φi cmVj
xc ρm⎡⎣ ⎤⎦

j

∑ φi   (2.26) 

The derivative of Eq. (2.25) with respect to ρα  or ρβ  yields Fock matrix expressions in 

terms of conventional density functional exchange-correlation potentials. Like the 

exchange energies obtained from DFT determinants, exchange-correlation potentials 

between the determinants are needed. However, the presence of separate α  and β  

potentials simplifies separating the potential between determinants. The high spin 

determinant potential can be expressed as  

 

  

V
HS,α

xc
=V

C

xc
+ V

i ( j )

xc

j=1

n

∑
i=1

n

∑

V
HS,β

xc
=V

C

xc

  (2.27) 

where 
   
V

HS,x

xc  is the total 
 
α / β  potential for the high spin determinant, 

  
V

C

xc  is the potential 

for all closed shell electrons as well as the open shell electrons with the core electrons, 

and 
   
V

i( j )

xc  is the potential for open shell electron i on open shell electron j. Each single 

spin flip potential can be expressed as 

 

   

V
I,α

xc
= V

C

xc
+ V

i ( j )

xc

j=1

n

∑
i≠I

n

∑

V
I,β

xc
= V

C

xc
+ V

I( j )

xc

j=1

n

∑
  (2.28) 

where I is the electron that has been flipped to β . 
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While the closed shell potential is trivial to obtain, there are two alternative ways 

to separate the individual open shell potentials. Subtracting the high spin α  potentials 

from the spin flipped α  potential yields the DFT potential for only the single spin flipped 

electron. Using the β  potentials yields the same potential plus a sign change 

 

   

V
HS,β

xc
= V

C

xc

V
HS,α

xc − V
I,α

xc
= V

I( j )

xc

j=1

n

∑

V
I,β

xc − V
HS,β

xc
= V

I( j )

xc

j=1

n

∑

  (2.29) 

The energy and potential expressions in Eq. (2.19) and (2.29) can be used to replace 

the HF exchange terms in any method that can be described with diagonal two-electron 

density matrices. 

GVB IMPLEMENTATION: 

The FD-DFT equations for the energy and potential terms are independent from 

the method used to obtain the total energy. We have chosen to implement the FD-DFT 

method within a generalized valence bond (GVB) formalism. Specifically, the perfect 

pairing (GVB-PP) theory was used as the foundation for the SCF routines due to some 

advantageous properties of the GVB-PP model. First, using the PP simplifications to the 

GVB wave function, the computational effort is less than doubled relative to a ROHF 

wave function implemented through a single effective Hamiltonian. Second, in our initial 

testing, we found a GVB implementation of the FD-DFT scheme more stable for a 

variety of test cases over a single effective Hamiltonian implementation using a direct 

inversion in the iterative subspace (DIIS) optimizer. 

The additions to a GVB-PP wave function implementation are straightforward. 

The GVB formalism used in this implementation is detailed by Bobrowicz and 
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Goddard.17 The GVB wave function is constructed to consist of 
  
n

o
+1 individual 

Hamiltonians where the closed shell (doubly occupied) orbitals occupy the first 

Hamiltonian and each open shell orbital is put into a separate Hamiltonian. Since the 

FD-DFT formalism is only defined for multiplets in this work, each open shell orbital 

contains one electron. 

The GVB algorithm is the same as the standard implementations using HF 

Hamiltonians except for the following additions: calculation of the DFT energies and 

potentials for each determinant, calculating the inter-determinant exchange energies, 

calculating the DFT potentials for each open shell orbital, performing the DFT multiplets 

CI, calculating the 
 
a

ij
 and 

 
b

ij
 scalars (diagonal two-electron density matrix elements) for 

the desired excited state, calculating the total energy, and performing the orbital mixing 

with the DFT open shell potentials. The calculation of the individual DFT determinant 

energies and potentials is performed after the calculation of the HF potentials. For any 

number of open shell electrons, the high spin determinant, all single spin flip 

determinants, and all double spin flip determinants are calculated using standard DFT 

routines, which gives a single energy and 
 
α / β  potentials for each determinant. The 

determinants calculated are independent of the desired excited state. The approximate 

inter-determinant exchange energies are calculated according to Eq. (2.19) by matrix 

inversion. The DFT potentials are calculated according to (2.29). The “α ” form of the 

open shell potentials was chosen for convenience. 

Having obtained approximations for all the energies needed to construct any 

multiplet, all that is needed is to construct the desired state. A small CI scheme that 

involves only the possible spin multiplet combinations without any paired open shell 
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orbitals and no excitations out of the open shell space is used to calculate eigenstates 

of a spin Hamiltonian. The basis set for the Hamiltonian consists of only all possible spin 

flips of the open shell electrons of the high spin determinant. The diagonal elements 

consists of closed shell energy (both Hartree-Fock coulomb and fractional exchange as 

well as DFT exchange-correlation) plus any exchange-correlation energies between 

open shell electrons (HF and DFT) in that state. Any off-diagonal Hamiltonian elements 

in the CI consist of allowed exchange terms that are equal to proper HF and DFT 

exchange-correlation energies. All other elements are zero. 

The resulting Hamiltonian is small, so is directly diagonalized. This directly yields 

the energies and eigenvectors for all possible multiplet states. Selecting the desired 

state from the CI yields the eigenvector that determines the combination of 

determinants needed to recover the DFT energy in subsequent iterations of an SCF 

iteration scheme. The determinant combination provides the DFT portion of the energy 

expressions. This is transformed to the 
 
b

ij
 values by accounting for all valid exchanges 

within the determinant and between individual determinants. All 
 
a

ij
 values are set to 1. 

The total energy is calculated according to Eq. (2.22) with care to remove any 

DFT energy contributions from the DFT potentials due to the consequences of Eq. 

(2.26). The DFT Fock matrices are used to obtain variational mixing between occupied 

and virtual orbitals using OCBSE and between occupied orbitals of different shells using 

rotational mixing, the rotation coefficient given in Eq. (2.30) 

 

   

λ = −
B

0,ij

B
ij ,ij

  (2.30) 

where 
  
B0,ij  is given in Eq. (2.31) and 

  
Bij ,ij  estimated by Eq. (2.32)17 

 
  
B0,ij = i0 Fj0

j0 − i0 Fi0
j0   (2.31) 
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Bij ,ij = i0 Fj0

i0 − i0 Fi0
i0 − j0 Fj0

j0 + j0 Fi0
j0⎡

⎣
⎤
⎦   (2.32) 

However, Eq. (2.32) in the formal GVB-PP formalism contains an extra parameter, 
 
γ

ij

ij . 

The integrals that constitute this parameter have not yet been  

developed for DFT as they are not combinations of coulomb and exchange integrals, so 

it is not included, at this time. 

APPLICATIONS: 

THEORETICAL BENCHMARKING: 

In order to test the validity of this approximation to the interdeterminantal 

exchange energies and potentials for DFT methods, several benchmark cases were 

studied. All calculations were performed using the cc-pVDZ basis set with HF and DFT 

for a variety of functionals chosen to represent commonly utilized methods in the 

literature. The GVB method was chosen for the implementation of the FD-DFT 

approach while unrestricted calculations utilizing a DIIS optimizer were used for the 

broken symmetry energies. All excitation energies were obtained from finite differences 

of the ground and desired excited state. The unrestricted calculations were performed 

using a standard, unmodified SCF routine. The FD-DFT algorithm was implemented in a 

modified GVB module within Gaussian. All calculations were performed using the 

Gaussian 16 suite of electronic structure programs.18 

ATOMIC AND MOLECULAR OXYGEN: 

The magnetic field exposed multiplet structure of oxygen atom led Mulliken to an 

electronic structure description of the  
3
Σ  ground state of O2 as well the observed  

1
Σ  

excited state.19 In analogy to the  
3
P ,  

1
D  (1.96 eV), and  

1
S  states (4.18 eV) of O,20 

Mulliken proposed a doubly degenerate excited state for O2 intermediate in energy 
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between the observed excitation that he ascribed as being from the  
3
Σ  state to the  

1
Σ  

state.19 This predicted  
1
Δ  excited state was subsequently observed providing 

foundational support for molecular orbital theory. 

In addition to being foundational to our understanding of electronic wave 

functions O2 is an active participant in photoconversion processes. The triplet nature of 

ground state O2 leads to competitive quenching of photoactive excited states21 as well 

as contributing to electronic barriers in the final O2 dissociation step in the oxygen 

evolution reaction of water splitting.22 

  
Figure 2.1: Electronic configuration for O2 ground and excited states. 
The term symbols for each true state are given in blue while the single 
determinant states are labeled with the red DFT notation. The spin and 
spatial orbitals are given for each state as well as an identical arrow 
style representation. 

Despite the long history associated with our understanding of the O2 electronic 

wave functions, challenges remain. There are four electronic configurations for two 

electrons in two orthogonal  π
*  orbitals. The electronic configuration diagram for O2 is 

given in Figure 2.1. As described by Mulliken, the ground state of O2 consists of two 

degenerate singly occupied  π
*  orbitals that are triplet coupled. This triplet coupling 

provides three multiplet components (  Ms = −1,0,+1). The lowest excited state, the  
1
Δ  

state, is comprised of two degenerate electronic configurations. As described by Moss 

and Goddard, one component of the  
1
Δ  state can be described as utilizing the same 
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singly occupied orbitals as the ground state  
3
Σ , the electrons singlet coupled rather 

than triplet coupled.23 Triplet coupling in the ground state leads to a favorable exchange 

interaction while singlet coupling in the excited state leads to a repulsive interaction 

involving the same exchange term. The second  
1
Δ  component consists of the negative 

combination of two electronic configurations wherein alternate  π
*  orbitals are doubly 

occupied. The negative sign leads to a favorable exchange interaction. The final state, 

the  
1
Σ  state, is the positive combination of doubly occupied  π

*  orbitals. The positive 

sign leads to an unfavorable exchange interaction. This analysis suggests a nearly even 

spacing between the three low-lying states of O2, see Table 2.1 for the experimental 

excitation energies. 

While the 
  
M

s
= ±1 components of the ground state triplet multiplet can be 

described by a single determinant, the 
  
M

s
= 0  component of the ground state as well as 

each of the excited state configurations require two determinants. As recognized in 

1977 this posses a challenge for single determinant density functional models.9 The 

broken symmetry solution underestimates the energy of  
1
Δ  state by 0.5 eV. The 

experimental O-O bond distances were used for the  
3
Σ  and  

1
Δ  states while the 

average of the two was used for the broken symmetry state. Results are collected Table 

2.1. 

Dating from the Racah parameters of inorganic chemistry, muliplets have 

provided the best experimental measure of intra-atomic exchange interactions.24–26 The 

inability of DFT to describe the multi-determinantal character of multiplets has left only 

indirect measures of exchange. This lack of a foundational reference point has hindered 
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Table 2.1: O and O2 excitation energies from the triplet (3P/3Σ) state to the singlet (1D/1∆) using GVB based FD-DFT, 
broken symmetry, and FD-DFT without SCF on the excited state for a variety of DFT functionals. All energies are in eV. 
For the HF calculations, standard GVB wave functions were employed. 

O  
3
P® 1

D  HF B3LYP B55LYP APF-D BLYP PBEPBE PBE1PBE MN15 Exp20 

FD-DFT (SCF) 2.23 1.51 1.60 1.63 1.37 1.49 1.63 0.99 1.95 

FD-DFT (CI) 2.26 1.51 1.55 1.63 1.36 1.52 1.63 1.78  

Broken Symmetry 1.01 0.72 0.75 0.78 0.68 0.73 0.77 0.87  

O2  
3
S® 1

D         Exp27 

FD-DFT (SCF) 1.33 0.84 0.97 0.87 0.75 0.76 0.87 0.58 0.98 

FD-DFT (CI) 1.34 0.83 0.94 0.80 0.76 0.77 0.86 0.98  

Broken Symmetry 0.73 0.45 0.53 0.46 0.39 0.39 0.46 0.53  
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the study of open-shell transition metal complexes. Future functional development and 

parameterization studies will benefit from the development of FD-DFT.  

 The theoretical excitation energies for O and O2 exhibit some interesting trends. 

As expected, the broken symmetry excitation energies underestimate the excitation 

energy by ~1.0 eV for O and ~0.5 eV for O2 for all DFT functionals tested. By contrast, 

the FD-DFT energies come much closer to the experimental values. The performance 

of the FD-DFT method is better for diatomic oxygen rather than atomic oxygen. 

Interestingly, calculating the excitation energy by CI excitation from the FD-DFT high 

spin wave function provides a reasonable estimation for the excitation energy without 

the expense of a SCF procedure on the excited state. The choice of functional also has 

a large impact on the FD-DFT excitation energy while it has little effect on the broken 

symmetry excitation energy. The relative amount of exact exchange drastically changes 

agreement with experimental excitation energies, while functionals containing only DFT 

exchange terms underestimate the excitation energy by a large amount, although they 

are still improved over broken symmetry estimations from a hybrid functional. 

THREE ELECTRON SYSTEMS, NITROGEN ATOM AND Cr(III) ION: 

While the two electron multiplet is the most common example, three to five 

electron multiplet systems are of interest for earth abundant metal complexes, due to 

the potential for spin-flipped long-lived excited states. Six-coordinate chromium(III) 

complexes with a d3 electron configuration possess a ground state 4A2 (octahedral 

notation) and low lying 2E and 2T1 excited states which are populated by rapid 

intersystem crossing from an excited quartet manifold.28,29 The doublet excited states 

possess lifetimes in the microsecond timescale—far longer than substrate diffusion, 
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making them photochemically relevant.21 The ground state 4A2 as well as the 2E and 2T1 

excited states each place three electrons in the triply degenerate non-bonding t2g orbital 

set. For a number of Cr(III) complexes these doublet states are simply a set of spin flips 

from the ground state. As with O2 the multiplet excited states of Cr(III) require more than 

one determinant for accurate description.  

Progressing from the two active or open shell electrons of oxygen to the three 

electrons of nitrogen yields four 
 
M

s
 components for the quartet state and now two 

orthogonal doublet states each with two 
 
M

s
 components. One of the doublets accrues 

from the two electron triplet spin eigenfunction through addition of a β  electron and the 

other from the two electron open shell singlet spin eigenfunction through the addition of 

an α  electron. For nitrogen the experimental ground state is 4S with 2D and 2P excited 

states at 2.38 and 3.58 eV.30 For gas phase chromium(III) ion the experimental ground 

state is a 4F with low lying excited 4P (1.71 eV) and 2G (1.84 eV) excited states.31 The 

2E and 2T1 excited states of Cr(III) complexes derive from the 2G atomic state. 

Data on the N atom is collected in Table 2.2 and data on the Cr(III) ion is 

collected in Table 2.3. Results for nitrogen atom show similar trends to the oxygen atom 

data. As expected the broken symmetry cases underestimate the excitation energy by 

more than half the experimental value. The FD-DFT excitation energies fall much closer 

to the experimental excitation energy. DFT functionals with higher percentages of HF 

exchange give improved energies and pure DFT exchange functionals perform poorly. 

Interestingly, the MN15 functional, which underestimated the O and O2 excitation 

energies the most, had the closest theoretical excitation energies for nitrogen atom. In 

addition, the two equivalent spin eigenfunctions 
	
2ααβ −αβα −βαα  (2-1-1) and 
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Table 2.2: Excitation energies for nitrogen atom from the 4S state to the 2D state. Two generate spin eigenfunctions are 
given for FD-DFT excitation energies (2-1-1 and 1-1). All energies are in eV. 

N  
4
S® 2

D HF B3LYP B55LYP APF-D BLYP PBEPBE PBE1PBE MN15 Exp30 

FD-DFT (SCF) (2-1-1) 2.88 1.81 1.91 2.00 1.67 1.87 1.99 2.42 2.38 

FD-DFT (CI) (2-1-1) 2.91 1.79 1.90 1.98 1.61 1.82 1.97 2.42  

FD-DFT (SCF) (1-1) 2.88 1.81 1.91 2.00 1.66 1.86 1.99 2.43  

FD-DFT (CI) (1-1) 2.91 1.79 1.90 1.98 1.61 1.82 1.97 2.42  

Broken Symmetry 1.67 1.11 1.14 1.21 1.01 1.14 1.20 1.60  

 
 
Table 2.3: Cr(III) ion excitation energies for the 4F to 2G transition. Two generate spin eigenfunctions are given for FD-DFT 
excitation energies (2-1-1 and 1-1). All energies are in eV. 

Cr3+  
4
F® 2

G HF B3LYP B55LYP APF-D PBE1PBE MN15 Exp31 

FD-DFT (SCF)(2-1-1) 2.94 1.97 2.22 2.04 2.08 1.83 1.81 

FD-DFT (CI)(2-1-1) 2.94 2.03 2.26 1.95 2.14 2.14  

FD-DFT (SCF)(1-1) 2.96 1.97 2.23 2.06 2.08 1.87  

FD-DFT (CI)(1-1) 2.96 2.02 2.27 2.06 2.14 2.08  

Broken Symmetry 1.79 1.29 1.41 1.35 1.36 0.60  
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αβα −βαα (1-1) yield practically equivalent excitation energies under SCF, showing 

good stability and agreement with theory under different degenerate determinant 

combinations. 

As evident from the data in Table 2.3 computing the 4F to 2G excitation energy in 

Cr(III) is challenging. The chromium core 3s and 3p orbitals are nearly the same size as 

the singly occupied valence 3d orbitals. This spatial similarity leads to significant 3p-3d 

electron correlation that is differential between the quartet and doublet states. This 

leads to functionals with less HF exchange to outperform those with higher HF 

exchange like Becke half and half with LYP exchange. Unlike previous functionals, 

MN15 excitation energies fall close to the experimental value, showing the inability of 

one functional to match all systems. Multiplet-derived exchange has not been 

incorporated in any exchange functional development yet. Like nitrogen atom, the two 

doublet states match closely for FD-DFT calculations, and the broken-symmetry 

calculations dramatically underestimate the excitation energy.  

FIVE ELECTRON SYSTEMS Fe(III): 

Iron containing photocatalysts are highly sought after as potential replacements 

for ruthenium based catalysts. While the electronic states of Fe and Ru based 

complexes may seem similar, Fe can occupy a large variety of potential electronic spin 

states due to presence of high and low spin capable d-orbitals whose relative energies 

are sufficiently perturbed the ligands. Therefore, reliable excitation energies are crucial 

to understanding Fe-based complexes potential as photocatalysts, especially with 

increasing ligand complexity. Five unpaired electrons allows for a wide range of 

multiplet states possible so good agreement with experimental results regarding the 
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absolute excitation energy as well as the relative ordering of the multitude of states is 

crucial. 

The lowest quartet transition,  
6
S→

4
G , as well as the two lowest doublet 

transitions ( 
6
S→

2
I, 

6
S→

2
D ) from the ground state sextet state are given in Table 2.4. 

All FD-DFT functional performs well at calculating excitation energies, compared to HF 

and broken symmetry methods for the quartet and doublet, falling within 0.5 eV for both 

the SCF converged and CI techniques. Again, Becke half-and-half with LYP correlation 

performs the best due to the increase in exact HF exchange. The FD-DFT doublet 

energies also agree well with experiment, and FD-DFT is effective at separating the two 

doublets. However, the magnitude of the error with respect to the experimental values is 

not consistent across different transitions and functionals. It is important to remember 

that these functionals were not optimized for the calculation of excited states or open-

shell systems, but rather are tuned such that the best agreement with ground state 

closed shell calculations is achieved. It suggests that additional work is needed to 

develop functionals that can be more effectively applied to excited state calculations 

using FD-DFT. 

CONCLUSIONS: 

We have presented our new method, few-determinant density functional theory, 

which is designed to calculate excited states of molecular systems using restricted open 

shell concepts. The key advantage this method has over competing methods is the use 

of the minimum number of determinants needed to obtain the missing energies and 

potentials not present in single determinant wave functions. This not only reduces the 

computational burden compared to post Hartree-Fock methods, it also avoids double 
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Table 2.4: Fe(III) ion excitation energies for the quartet transition and two doublet transitions for FD-DFT and broken 
symmetry calculations. Only one broken symmetry doublet can be calculated while the two lowest doublets are provided 
for FD-DFT. All energies are in eV. 

Fe3+
 
6
S→

4
G  HF B3LYP B55LYP APF-D PBE1PBE MN15 Exp31 

FD-DFT (SCF) 4.98 3.44 3.80 3.61 3.65 4.16 4.00 

FD-DFT (CI) 5.08 3.40 3.81 3.59 3.64 3.99 
 

Broken Symmetry 3.77 2.65 2.92 2.81 2.84 3.15 
 

Fe3+ Doublets 
       

FD-DFT (SCF)  
6
S→

2
I 7.54 5.19 5.70 5.45 5.50 7.75 5.84 

FD-DFT (CI)  
6
S→

2
I 8.61 5.75 6.48 6.09 6.15 5.13 

 
FD-DFT (SCF)  

6
S→

2
D  8.43 5.80 6.44 6.09 6.15 5.41 6.17 

FD-DFT (CI)  
6
S→

2
D  7.63 5.13 5.70 5.43 5.48 7.59 

 
Broken Symmetry 5.09 3.68 3.97 3.90 3.93 5.92 
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counting of exchange and correlation terms that are already present in the DFT 

functionals. In addition, we have found the method to be stable under SCF iterations, 

which helps it produce better excitation energies even if the excited state wave function 

differs significantly from the ground state. The initial results on O, O2, N, Cr3+, and Fe3+ 

give good indications that method can obtain useful results to compare to experiment. In 

addition, the low computational burden of the method gives promise that it can be 

applied to larger systems, which are too large for many post-HF methodologies. 
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CHAPTER 3: TRIS(1,3-PROPANEDIONATO)CHROMIUM(III) FOR INSIGHT INTO 

Cr(III) BASED PHOTOCATALYSTS 

 

INTRODUCTION: 

The photophysical properties of transition metal complexes have been of great 

interest in the recent literature. Their increasing use as photocatalysts in classic organic 

reactions has presented novel solutions for green chemistry in industrial production of 

critical feedstocks as well as providing new reaction pathways for synthesizing 

alternative reaction products. The majority of transition metal photocatalytic research 

has focused on Ru based complexes, however, the rarity of the material inhibits wide 

spread use, fiscally. New efforts in the literature to replace ruthenium-based catalysts 

have been successful, but first row transition metal photocatalysts are not without 

significant challenges compared to their heavy metal counterparts. 

The complications involved in using first-row transition metal complexes are 

directly related to the significant difference in the photophysical properties between 

second and third-row transition metals and their first-row equivalents. For example, for 

the ubiquitous tris(bipyridine)ruthenium(II) (Ru(bpy)3
2+) a well defined excited state 

manifold is observed in which the primary excitation is metal to ligand charge transfer. 

The stable excited state is spin-orbit coupling perturbed triplet, which provides relatively 

long lifetime as the transition back to the singlet ground state is classically forbidden. In 

comparison, first-row complexes exhibit a wide variety of stable ground and excited 

state configurations depending on ligands and environmental conditions. The excited 

state manifolds are complicated and don’t follow the general trends seen in organic and
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heavier transition metal complexes. Juban and McCusker found that Cr(III)(AcAc)3 

exhibited intersystem crossing (ISC) rates that exceeded the vibrational cooling (VC) 

rates, eschewing the traditional hierarchy of VC, followed by ISC, followed by 

phosphorescence.1 The uniqueness of the excited state dynamics of Cr(III)(AcAc)3 has 

increased the research efforts into understanding the photophysics of chromium based 

and other first-row transition metal complexes.2 

The excitation pathway of Cr(III)(AcAc)3 is difficult to precisely define since it 

does not follow the cascade model of vibrational cooling, then internal conversion, then 

intersystem crossing in terms of increasing time scale. The ground state of the complex 

is the 4A2g state. Upon excitation, it populated the 4T2g state. From here, VC and ISC 

compete such that the exact pathway isn’t completely understood. After the ISC, VC, 

and IC events, the complex relaxes to the 2Eg state. This state is the long lived state for 

many octahedrally coordinated Cr(III) complexes by which the complex can act 

catalytically.1 

Theorists have also been interested in studying the photophysics of 

Cr(III)(AcAc)3 complexes, not only to confirm the experimentally observed phenomenon, 

but also to help understand the unique excited state characteristics of the complex. As 

new theoretical methods for excited state systems have been developed, they have 

been applied to Cr(III)(AcAc)3 systems to be better understand them.3,4 While many 

efforts have centered around the use of perturbation theory calculations based on 

multiconfiguration self consistent field (MCSCF) wave functions, the latest theoretical 

results from Ando et al. on the Cr(III)(AcAc)3 system used multiconfigurational 

quasidegenerate perturbation theory (MCQDPT) theory to calculate excited state 
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potential energy surfaces along the path from the 4A2g geometry to the distorted 4T2g 

geometry.5 The authors calculated the distorted state by constraining the structure to 

the C2 symmetry point group and calculating the wave function of orthogonal symmetry 

to the ground state wave function. They found that the initial excited state 4T2g curve 

does cross the 2Eg curve, but determined that the spin orbit coupling (SOC) was weak 

between the states. Instead they claimed that transition to the 2T1g was a more likely 

ISC pathway with an internal conversion to the lower 2Eg state. It should be noted that 

the computed energy gap between the 4T2g and 2Eg states was smaller than that 

experimentally observed, and it is unknown whether that contributed to additional 

crossing between the two states along the distortion path. 

The work presented here contains a few differences in an attempt to gain insight 

into these Cr(III)(AcAc)3 systems. First, it focuses on a derivative of Cr(III)(AcAc)3, 

tris(1,3-propanedionato)chromium(III) (Cr(III)(PDO)3). The PDO is closely related to the 

AcAc ligand in that the methyl grounds in the AcAc ligand have been removed to allow 

for higher level computational methods to be employed. Second, the excited state of the 

Cr(III) complex is optimized to a structure where the second derivatives with respect to 

atomic displacement were positive, resulting in an excited state structure with real 

vibrational frequencies. This ensures the excited state structure is at a true minimum. 

Lastly, a configuration interaction (CI) method, spectroscopy oriented configuration 

interaction (SORCI) method, was used to calculate the excited state manifold. 

The SORCI method, developed by Frank Neese’s research group, was designed 

to overcome challenges faced by traditional CI methods.6 The method focuses on 

including differential electron correlation terms that are associated with the excitation 
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process rather than terms associated with the absolute energies of the excited states. 

This is accomplished by three important improvements to traditional CI methods: use of 

a difference dedicated CI to obtain the excitation energies, combined use of 

perturbation theory with variational CI, and a reduction of the CI space. The difference-

dedicated CI is key to obtaining excitation energies that match experimental values 

because it removes error terms from the CI wave functions that cancel when 

subtracted.7,8 The combined use of CI with Møller–Plesset perturbation theory improves 

the energy of each state in the CI expansion while the variational aspect of the CI 

removes any intruder state problems. The method also takes care to reduce the CI 

space needed whenever possible to allow for an appropriate number of CI states to be 

included to reproduce the correct wave function while keeping computational 

requirements low. 

The use of a CI calculation also allows for the inclusion of spin-orbit coupling 

contributions to be included in the calculation. In the absence of a strong magnetic field, 

first-row transition metal complexes exhibit coupling between the spatial orbital angular 

momentum L and the spin orbital angular momentum S.9 The magnitude of the coupling 

can be represented by the equation 

 
    
H

SOC
= λL i S   (0.1) 

where 
  
H

SOC
 is the spin-orbit operator that couples states that differ in angular 

momentum and spin, λ  is the magnitude of the spin orbit coupling.9 The importance of 

the inclusion of spin-orbit coupling in the calculation is that spin-orbit coupling effects 

can provide an avoided crossing between the two potential energy surfaces since states 

of different spatial orbital and spin may share the same total spin-orbit. This would allow 
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for an avoided crossing between the 4T2g and the 2Eg states, which would allow for a 

fast ISC event. The magnitude of the coupling between states near the crossing of 

these surfaces would provide evidence for a pathway between the quartet and doublet 

states. 

The goals of this paper are to compare accuracy of the SORCI method 

compared to previously cited approaches in the literature as well as map out the most 

likely excited state relaxation pathway to help understand the extreme dynamics present 

in the Cr(III)(AcAc)3 type systems.  

COMPUTATIONAL METHODS: 

STRUCTURE OPTIMIZATIONS: 

The structures of the Cr(III)(AcAc)3 and Cr(III)(PDO)3 complexes 4A2g ground 

state were optimized with the APF-D functional with the cc-pVTZ basis set. The 

structure for the 4A2g ground state was also used to represent the 2Eg state, since the 

structures are quite similar given the shared t2g electronic configuration. The 4T2g excited 

state structure for Cr(III)(PDO)3 was calculated by promoting an electron from the t2g 

orbitals to the eg orbitals while forcing the molecular symmetry to be restricted to the C2 

point group. The resulting change in wave function symmetry under excitation locked 

the wave function to this orthogonal state, and the structure was allowed to optimize 

under C2 symmetry. This resulted in a structure previously found in literature.5 

Additionally, the excited state was allowed to continue optimizing without the C2 

restriction until the second derivatives with respect to atomic displacement were 

positive, resulting in a structure not belonging to the C2 point group. This structure is 

referred to as the vibrational minimum structure. This structure was 0.018 eV lower than 
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the C2 optimized structure and was used as the 4T2g structure for the following 

calculations. All optimization calculations were performed using the Gaussian09 

electronic structure software suite.10 

REACTION PATHWAY: 

For the pathway between the 2Eg and 4T2g states, a linearly interpolated path was 

chosen following the method of Miller et al.11 The specific details are in Chapter IV. 

Briefly, the 2Eg and 4T2g states were aligned such that there existed no net linear or 

angular momentum between the structures. The condition of no linear momentum was 

accomplished by translating each structure to their center of masses. The angular 

momentum constraint was satisfied by numerically solving for the Euler indices that 

satisfy the equation
   

m
i

!
R r

i
×
!
Rp

i( )
i∑ = 0 . Intermediate structures between the optimized 

2Eg and 4T2g were generated by linear interpolation. 

FD-DFT CI: 

The few-determinant density functional theory (FD-DFT) method was also 

applied to both the Cr(III)(AcAc)3 and Cr(III)(PDO)3 systems. The methodology of this 

theoretical method is described in detail in Chapter II. The FD-DFT CI energies of AcAc 

and PDO based Cr(III) complexes were calculated using the APF-D functional and the 

basis sets 6-311+G(D) and cc-pVTZ for the Cr(III)(PDO)3 and Cr(III)(AcAc)3 structures 

respectively. Only the 2Eg was calculated using the FD-DFT method due to the limitation 

of the current implementation of FD-DFT in which only open-shell multiplets states are 

correctly described. All FD-DFT calculations were performed using the Gaussian16 

software package suite using a in-house modified GVB module.12 
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SORCI: 

The excited state energies for the 4A2g/
2Eg, 

4T2g, and all intermediate structures 

were calculated with the SORCI method. The starting guess for the SORCI wave 

function was obtained by a two-step process. Initially, a DFT wave function was 

calculated using the B3LYP functional. This wave function was used as the initial guess 

for a complete active space self-consistent field (CASSCF) calculation using a state-

averaged 3,5 active space. This active space was chosen to capture sufficient character 

of the d orbitals on the chromium metal center for the multiconfiguration wave function. 

The CASSCF wave function was used as the wave function for a SORCI 

calculation. The SORCI calculation included additional core electrons by including core 

orbitals less negative than 4 Hartree, this corresponds to the Cr 3p orbitals. The lower 

bound by which core orbitals were included was determined by comparing the SORCI 

energies to Cr(III) ion experimental excitation energies. The SORCI results were used to 

calculate the excitation energies relative to the ground state as well as the spin state of 

each excited state. This was performed for each geometry along the linear reaction 

pathway. The DFT, CASSCF, and SORCI calculations used the cc-pVDZ basis set 

without polarizing functions on the hydrogen atoms plus the cc-pCVTZ basis set on the 

Cr atom to insure the core orbitals could obtain the proper shape when included in the 

CI expansion. 

For structures that exhibited significant crossing of states along the distortion 

path, additional SORCI calculations were performed that allowed for spin orbit coupling 

contributions to the wave function to be included. This allowed states that exhibited 

mixed spin state character to be identified. The inclusion of spin-orbit coupling effects 
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into the CI wave function adds additional computational time, so the SOC contributions 

were only included in the region of R = 0.5 to 0.75 where significant crossings of the 

potential energy curves were found. All SORCI related calculations were performed 

using the ORCA electronic structure software package version 3.0.3.13 

RESULTS: 

The excitation energies obtained from the SORCI calculations for the PDO and 

AcAc complexes compare favorably to previous calculations of Cr(III)(AcAc)3 as well as 

experimental values. The SORCI excitation energies for the 2Eg state have much better 

agreement with experimental values (1.65 eV vs. 1.94 eV) while the perturbative 

approach more accurately reflects the experimental 4T2g state (2.42 eV vs. 2.27 

eV).3,5,14–16 The FDDFT excitation values are closest in agreement with experimental 

values, falling within hundredths of an electron volt. This highlights the complexity of 

accurately modeling these complexes even when utilizing current state of the art 

methodologies as no single method can reproduce the excitation energies of both the 

4T2g and 2Eg state simultaneously. Interestingly, the SORCI and MCQDPT approaches 

change the energy gap between the 4T2g and 2Eg states. As expected, the modification 

of the AcAc ligand to the PDO ligand minimally impacts the excitation energy of these 

metal center d-d transitions for both the 4T2g (ΔE = 0.31 eV) and 2Eg (ΔE = 0.072 eV) 

states as has been previously noted in literature using other methods.3 The excited 

state excitation energies for the 4A2g state are listed in Table 3.1. 

The SORCI excitation energies along the 4A2g to 4T2g structural distortion provide 

a look into the possible pathway for the fast ISC crossing process (See Figure 3.1). 

Multiple crossings are observed between the lowest quartets with the doublet starting at
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Table 3.1: Excitation energies for the 4A2g geometry for the AcAc and PDO ligands 

 in Cr(III) complexes for various methods. All energies are in eV. 
 4T2g 

2Eg 

Cr(III)(AcAc)3   
SORCI 2.42 1.65 

MCQDPT5 2.27 1.94 
FD-DFT CI - 1.62 

Experimental3,14–16 2.26 1.62 
Cr(III)(PDO)3   

SORCI 2.73 1.72 
FD-DFT CI - 1.59 
CASPT23 2.10 1.93 

 
R = 0.6. Similar excited state behavior was noticed by Ando et al. with the crossing 

computed with MCQDPT occurred at R = 0.45 for the crossing between the 4T2g and the 

2Eg. The two final distorted structures (the C2 symmetry constrained vibrational 

minimum) both exhibited crossing at similar points along the linear reaction path. The 

SORCI and MCQDPT methods for calculating the excited states both give relatively 

similar crossing points that are thought to lead to the ISC event in these complexes 

despite the large difference in the relative positions of the quartet and doublet state 

manifolds of interest as well as differences in the ligands. In addition, similar 

conclusions can be drawn from the curves where the endpoint structures of the linear 

pathways are separate structures. 

The spin orbit coupling contributions to the SORCI calculations provide additional 

insight into the excited state pathways of the Cr(III)(PDO)3 complex. As can be seen in 

Figure 3.2, the quartet and doublet states at the region of crossing exhibit a great deal 

of mixed character. Focusing just on the region between 2.3 eV and 2.9 eV, the states 

which form closer to 50:50 doublet/quartet character form a vertical avoided crossing 

into the doublet states. Since this pathway is completely downhill energetically, an  
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Figure 3.1: SORCI calculations for the linear reaction path between the 4A2g and 4T2g geometries for the C2 symmetry 
and vibrational minimum distorted structures. The purple lines represent the quartet states and the green lines 
represent the doublet states. 
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Figure 3.2: SORCI excited state calculations including SOC contributions for the reaction coordinate range 0.5 to 0.75 
for the linear paths formed from the C2 constrained structure and the vibrational minimum structure. The y-axis range 
has been limited to 2.3-2.9 eV for better clarity in the lowest crossing region. The lines are colored purple for quartet 
states and green for doublet states. Each circle represents a pure doublet/quartet state while the triangles represent a 
state of mixed character whose mixture corresponds to the color bar. 
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avoided crossing would result in a fast ISC rate, which agrees with previous 

experimental work and theory.1,5 

While the SOC mixing picture provides a qualitative pathway to the final 2Eg 

state, the exact states which are most likely to be involved in the ISC were extracted 

from the SOC calculations. We find that not only do the 4T1g states have large SOC 

splittings, which is indicative of strong SOC between states due to Eq. (0.1), we find that 

the 4T2g to 2Eg transition has splitting energies over 250 cm-1 RMS along the path, 

compared to 21 cm-1 previously reported.5 We theorize that many paths are taken since 

the 2T1g and 2Eg exhibit spin orbit coupling amongst themselves near the mixing region. 

While the main path may be the previously suggested 4T2g - 
2T1g - 

2Eg, the direct 4T2g - 

2Eg path is not as improbable as previously thought. 

CONCLUSIONS: 

The SORCI calculations presented here effectively reproduce the behavior 

exhibited by both the experimental and theoretical results previously published. It is of 

particular interest that the crossing of excited state energies and spin orbit coupling 

between the states is still observed when using substantially different theoretical 

approaches and structures. An energy gap between excited states that is larger than 

experimental observed still results in clear spin orbit coupling between the excited 

states. This helps support the use of similar techniques on other complexes without 

concerns of interpretation consistency when using different theoretical methods. 
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CHAPTER 4: UNDERSTANDING Cr(III) PHOTOCATALYSTS QUENCHING BY O2 

 

INTRODUCTION: 

The increased use of tris(bipyridine)ruthenium(II) (Ru(II)(bpy)3) catalysts to 

perform classic organic reactions has seen new research into finding earth abundant 

replacements for ruthenium.1–7 Chromium based catalysts have shown potential as a 

suitable replacement for Diels alder reactions, bring unique and useful advantages 

beyond relative availability.8 The increased complexity of the excited states of these 

chromium-based catalysts allows for advantageous photocatalytic characteristics while 

making mechanic studies challenging. For example, the catalyzed Diels Alder 

cycloaddition using Cr(III)(Ph2phen)3 was found to have O2 playing a significant role in 

the mechanism through competitive quenching of the Cr photocatalyst.8,9 Understanding 

and modeling this quenching theoretically is crucial to studying these catalysts in real 

reactions. 

The mechanism of the quenching by O2 is has been suggested to occur via a 

spin conserving energy transfer between an excited Cr(III) complex in the long lived 2E 

state and O2 in the  
3
Σ  ground state.9,10 The transfer results in the Cr(III) catalysts 

returning to the ground state and the excitation of O2 to the  
1
Σ  excited state. The  

1
Σ  

state of O2 is unstable and relaxes down the  
1
Δ  excited state, which is the dominant 

form of singlet O2 in reactions. The  
1
Δ  O2 species can then go on to perform other roles 

in the Diels Alder mechanism. The mechanistic scheme can be seen in Figure 4.1. 

Theoretical studies of this mechanism are complicated by the spin states present 

in this system. While the spin states in Figure 4.1 represent these states as single spin



	

 
 

59 

functions, the true spin eigenfunctions consist of multiple spin determinants for states 

that aren’t the ground state sextet, which is a combination of the chromium 4A2g state 

and  
3
Σ  oxygen state. This is a particular problem for methods like standard Hartree-

Fock and DFT, which are defined in terms of a single determinant. Previous theoretical 

studies have studied the Cr(III) based catalyst with O2 system with DFT11 as well as 

complete active space self consistent field (CASSCF) with second order n-electron 

valence state perturbation theory (NEVPT2).9 However, a DFT approach should not be 

able to properly represent the excitations, yet obtains results that suggest the same 

excited state, the 2E, couples the Cr(III) complex to the O2 molecule. 

In order to elucidate the nature of the excited states of the combined 

 
Figure 4.1: Reaction scheme for the quenching of chromium (III) 
 based catalysts with O2. The interaction of the chromium complex in the 2Eg 
state excites the O2 molecule up to the 1Σg state, quenching the chromium 
complex. The spin configuration for each state is given next to transition. 
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Cr(III)(PDO)3•O2 system, we compared both DFT and NEVPT2 approaches to 

understand why the DFT approach gives rise to a quartet state that isn’t representable 

with a single determinant. We have chosen to use the tris(1,3-

propanedionato)chromium(III) (Cr(III)(PDO)3) complex as our Cr(III) complex due to its 

similar experimental excitation energies to Chromium(III) acetylacetonate as well as 

being computationally less time consuming. We have also included the few-determinant 

density functional theory (FD-DFT) method to compare to single determinant DFT to 

evaluate whether the DFT method with a proper multi-determinant treatment can 

replicate the NEVPT2 level of theory with less computational cost. 

COMPUTATIONAL METHODS: 

The structure of the Cr(III)(PDO)3•O2 system was calculated for the sextet 

ground state using DFT with the APF-D functional and the 6-311+G(D) basis set. The 

Cr – O2 distance converged to a van der Waals complexed 3.66 Å. This structure was 

used for all subsequent calculations on the system. The lowest quartet and doublet 

states energies were calculated using the same approach as the optimization, but also 

employed a SCF stability check to ensure the lowest energy quartet and doublet states 

were obtained. These calculations were performed using the Gaussian09d software 

package suite.12 

NEVPT2 calculations were performed on the Cr(III)(PDO)3•O2 system. The initial 

wave function guess was obtained using DFT with the B3LYP functional. This wave 

function was used as the starting guess for a state-averaged CASSCF calculation with a 

9,9 active space. The active space was chosen to include the d-orbitals on the 

Cr(III)(PDO)3 complex as well as the π  and  π *  orbitals on the O2 molecule. The basis 
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set used for all NEVPT2-related calculations was the cc-(p)VDZ basis set, where all 

atoms except hydrogen have additional polarizing functions d, for all atoms except 

chromium where the cc-pCVTZ basis set was used. All NEVPT2 related calculations 

were performed using the ORCA program suite version 3.0.3.13 

The FD-DFT calculations (described in Chapter II) were performed on the 

Cr(III)(PDO)3•O2 with the APF-D functional and 6-311+G(D). The initial guess for the 

FD-DFT calculations was obtained by calculating the restricted open shell wave function 

using the same DFT functional and basis set and the restricted open shell Kohn Sham 

method.14 The FD-DFT CI excitation energies were obtained for all 32 possible states 

for 5 singly occupied orbitals. All FD-DFT related wave functions and energies were 

performed using the Gaussian 16 suite of programs with a in-house modified GVB 

routine.15 

RESULTS: 

The results of the calculations help us understand the states present in this 

system as well as look at why certain methods get the excitation energies wrong (See 

Table 4.1). The NEVPT2 calculation correctly models the Heisenberg ladder that makes 

up the first doublet/quartet/sextet states with the doublet being the lowest. In addition, it 

also correctly calculates the first excited state above the Heisenberg latter, and 

achieves good agreement with experiment.  

The single determinant DFT calculations poorly estimate the excitation energies. 

The quartet state within a Heisenberg spin ladder is significantly higher than expected. 

The first excited quartet state energy is more than 0.45 eV above the ground state, 

while the doublet is 0.001 eV above the sextet. In addition to being counter to 
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Table 4.1: Cr(III)(PDO)3 • O2 excitation energy comparison for several theoretical 
methods. The excitation energies are all relative to the lowest sextet state. All excitation 
energies are in eV. 

 DFT FD-DFT CASSCF NEVPT2 
Heisenberg Quartet 4.50e-1 1.76e-1 -6.00e-5 -1.70e-4 
Heisenberg Doublet 1.18e-3 2.94e-1 -8.00e-5 -2.70e-4 

1
∆ O2 (Quartet) - 9.44e-1 7.87e-1 1.07 

2E Cr(III)(PDO)3 • O2 (Quartet) - 1.72 1.50 1.96 

experimental intuition, it is much higher than what other methods predict. The order of 

the Heisenberg ladder is out of order for the single determinant calculations compared 

to the CAS and NEVPT2 calculations, highlighting the need for more sophisticated 

methods to describe these states adequately. 

The FD-DFT CI excitation energies are a mixture in terms of correlating with 

experiment and perturbation theory. Like the single determinant DFT calculations, the 

FD-DFT energies for the Heisenberg ladder states are out of relative order and 

overestimated. The combination of determinants used to calculate the quartet and 

doublet Heisenberg ladder states are similar to those used in the CAS wave function, 

but the requirement of the current FD-DFT implementation to have orthogonal open-

shell orbitals prevents the FD-DFT excitation energies from having the proper state 

ordering. 

Spin density plots were constructed for a number of excited states using the DFT 

and CASSCF calculations. The spin density plots were were calculated using an iso 

value of 0.003. Only the DFT and CASSCF calculations provides spin density plots 

since the NEVPT2 only improves the energies of the CASSCF excitations with the 

orbitals remaining unchanged. Meanwhile, FD-DFT implemented in the GVB framework 

does not consider separate α  and β  spins. However, the excited states for both FD-
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DFT and NEVPT2 were correlated with the CASSCF states by analyzing the 

determinantal composition of the CASSCF states. All spin density plots were generated 

using the Gausview visualization package version 6.0.1.2. 

Looking at the spin density of the DFT and CASSCF calculations for the 

Heisenberg ladder states highlights the inadequacies with using single determinant 

methods to describe these states. The sextet spin densities look similar, however this is 

the only state where the spin eigenfunction is a single determinant (See Figure 4.2). For 

the doublets, the spin density plots are similar, but the densities are contracted for the 

CAS case, giving rise to the slight difference in energy. The largest discrepancy comes  

 

 
Figure 4.2: Spin density plots for the Heisenberg ladder statesfor Cr(III)(PDO)3 • O2 
generated from single determinant DFT and CASSCF calculations. The blue and 
green surfaces represent the unpaired α and β spin densities respectively. For each 
state and method combination, the spin determinants combinations are given. 
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from the quartet Heisenberg states, where DFT spin density for the quartet state has 

broken symmetry on O2 molecule compared to the CAS state that displays a triplet O2. 

This higher order wave function structure on the O2 is the cause of the 0.45 eV increase 

in DFT excitation energy for the Heisenberg quartet over the other CAS based methods. 

This is in contrast to previous studies based on DFT calculations that claimed this 

Heisenberg quartet state is the active excited state in photocatalytic processes since its 

energy was found to be approximately 0.56 eV.11 Great care must be taken to make 

sure that the method being employed can correctly model the systems being studied, 

otherwise theory being used for systems too complex for the theory to handle can lead 

to erroneous assignment of states. The determinants included in the CASSCF quartet 

suggest a Cr(III) 
 
M

s
=½ quartet coupled with a O2 

  
M

s
= 0  triplet state. 

While the Heisenberg ladder states are a useful benchmark to exemplify the 

reason why single reference methods are inadequate for these systems, the interesting 

states involved in the quenching of Cr(III)(PDO)3 by O2 are in the 1-2 eV range. 

Experimentally, the 2Eg state of Cr(III)(AcAc)3 like complexes and the 
  

1
Σ

g
 state of O2 

are both around 1.5 eV, these are the states that are expected to be mixed to result in 

Cr(III) quenching.  The excited states representing this mixed 2E state is found for FD-

DFT, CASSCF, and NEVPT2 as shown in Table 4.1. All three methods get approximate 

values of this state, but do have a wide 0.4 eV range in excitation energies. In addition, 

the total system state comprised of the 
  

1
Δ

g
 state of O2 coupled with the 4A2g state of 

Cr(III)(PDO)3 is also found in the NEVPT2, CASSCF, and FD-DFT calculations. 

The spin density plots of these states provide additional insight into why the 

mixed 2E state is where the quenching occurs. Looking at the CASSCF excited states 
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that represent the  
1
Δ  and  

1
Σ , states we see only symmetric α  density on the chromium 

metal center, suggesting that we are seeing only an excitation on the O2 molecule (See 

Figure 4.3). These states would not support an energy transfer between the complex 

and the O2 since the state by which the O2 and Cr(III)(PDO)3 transfer energy must 

couple the states together. However, the 2E states do show electron density on both the 

O2 and the Cr complex. The most interesting of these states involves the first 2E state 

shown in Figure 4.3 where we see β  electron character on the complex. This β  

electron surface is much smaller than would be expected for a localized beta electron in 

the t2g orbitals on the metal center, and suggests that spin is reduced by coupling to the 

O2. This state would support spin transfer between the O2 and Cr(III)(PDO)3 complex. 

 

 
Figure 4.3: Spin density plots for the excited quartet states for Cr(III)(PDO)3 • O2 
above the Heisenberg ladder quartet state using CASSCF. The unpaired α spin 
density is shown as the blue surfaces and the unpaired β spin density is represented 
by the green surfaces. The states show the presence of unpaired spin density on 
oxygen and complex for the 2E state. 
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This agrees with experimental results on larger Cr(III) based complexes where the 2E 

state lifetime is significantly shortened by the presence of O2.
9,16 

CONCLUSIONS: 

Theoretical methods in this study supports the experimental observation of Cr(III) 

based catalysts being quenched by ground state O2 molecules. The FD-DFT and 

NEVPT2 can produce excitation energies that are reasonable for this quenching 

process, and both can model the proper combination of determinants that represent the 

state. The CASSCF spin density plots help visualize the states involved and confirm 

that the 2E state is the likely state by which the chromium complexes are quenched. 

Also visualized is the complexity of the states involved and shortcomings of traditional 

DFT in modeling these states. Continued development is needed on modern DFT 

methods to produce techniques that can model complicated transition metal 

photocatalysts in a computational inexpensive manner. 
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CHAPTER 5: COMPARISON OF EXCITED STATE PROPERTIES OF CHROMIUM(III) 

AND VANADIUM(II) COMPLEXES: POTENTIAL AS PHOTOCATALYSTS1 

 

INTRODUCTION: 

Across all chemical industries there is a push for more environmentally friendly 

and sustainable processes. Photocatalysis has become an attractive prospect for 

chemical transformations that conventionally rely on harsh reaction conditions and 

stoichiometric reagents generating waste. Many research groups have shown that 

photocatalysts can me used to mediate traditional synthetic reactions. Yoon et al. 

showed that visible light could actually be used as a reagent with a Ru(bpy)3
2+ 

photocatalyst for [2+2] cycloadditions.1 However, this reaction as well as other 

successful phototransformations have relied on the use of metal catalysts made up of 

ruthenium and other rare metals such as rhenium and iridium which are not sustainable 

or economically viable in large scale application.2 

There is a need for a more earth abundant alternative to these rare metals. First 

row transition metals are several orders of magnitude more abundant than rare metals. 

There is potential for first row transition metal photocatalysts. Stevenson et al. showed 

that a chromium(III) complex was capable of photooxidizing catalyzed Diels-Alder 

cycloadditions. It is theorized that rare metal complexes can be substituted by earth

																																																								

1 The work in this chapter was done by Jacob M. Nite and Collette M. Nite. Jacob M. 
Nite calculated the vibrational distortion plots, including the structure alignments for the 
chromium and vanadium complexes.. He also calculated the PDO distortion pathways 
for chromium and vanadium as well as performed the SORCI calculations including the 
generation of the potential energy curve plots. Collette M. Nite performed the geometric 
optimization calculations for all complexes with in the chapter. She also performed all 
TDDFT excited state calculations and generated all absorption spectra. Both authors 
contributed equally to the text of the chapter. 
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abundant first row transition metal complexes for phototransformations on a much 

broader scale. However, pursuit of this goal requires in depth theoretical and 

experimental research, as first row transition metal complexes behave differently than 

second and third row transition metal complexes.  

First row transition metal complexes are much more labile than second and third 

row metals, yielding much more reactive and less stable catalysts.  In addition, first row 

metals are electron spin active, resulting in wildly different chemistry with complicated 

excited state manifolds and thus difficult characterizations. There is much more 

interplay between first row transition metals and their ligands, requiring a higher degree 

of care in their complex design than second and third row counterparts.  

The choice of ligand is therefore very important when designing these catalysts. 

Ligands are often noninnocent and can have a drastic effect on the photoabsorption of a 

complex. Ligands often dictate the spin state of a metal in a given complex, determining 

if the complex will be high- or low-spin. Substitution of a different metal in the same 

ligand can yield very different results, because metals interact differently with ligands. 

The differences between metal-swapped complexes can be more abrupt than changes 

to the ligands due to the limited metal center candidates combined with the substantial 

difference in properties of the metal centers. Compared to an enormous range of ligand 

design choices, the handful of metals in the first-row dictate that careful selection of the 

proper metal is crucial. 

In this paper we focus on vanadium and its potential for photocatalysis. V(II) is of 

d3 electronic configuration, just as Cr(III). While Cr(III) has beneficial properties such as 

long excited state lifetimes and demonstrable photocatalytic ability, it is not the most 
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desirable metal for environmental concerns. V(II) is not readily oxidizable into 

carcinogenic species. Comparing the photophysical and photochemical between V(II) 

and Cr(III) may lead to insight on how the properties of the ligand dictate the total 

complex properties when electronic configuration is held constant. In this paper we use 

theoretical methods in order to compare Cr(III) and V(II) complexes on the basis of their 

photophysical and photochemical properties in order to elucidate their differences and 

vanadium’s potential as a photocatalyst. 

THEORETICAL METHODS: 

The complexes studied were comprised of the V(II), Cr(III), Mn(II), Fe(III), Co(III), 

and Zn(II) metal centers paired with several ligands: a Schiff base tripodal ligand with a 

bridgehead nitrogen, a salen derivative, bipyridine, and 1,3-propanedionato(PDO). 

STRUCTURE OPTIMIZATION AND THEORETICAL SPECTRA: 

The structures of each complex were optimized using DFT with the APF-D 

functional and the 6-311+G* basis set. The time-dependent density functional theory 

(TDDFT) excited states were calculated for the first 24 excited states of each complex 

to insure all relevant excited states were included. Convoluting each TDDFT transition 

with a Gaussian line shape with a linewidth of 0.093 eV at the full-width half-maximum, 

theoretical absorption spectra were plotted. The linewidth was chosen to approximate 

average excited state linewidths. The lowest excited doublet state was obtained by 

broken-symmetry DFT. The spin density plots were calculated using Gausview using a 

course grain cube and an isovalue of 0.003 to insure optimal visualization of the 

differences between the chromium and vanadium complexes. All DFT calculations were 

computed using the Gaussian 09d software suite.3 
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Cr / V(PDO)3: 

Additionally, the complexes with the ligand 1,3-propanedionato (PDO) were 

studied to gain an insight into the excited state behavior of Cr(III) and V(II). The 

electronic states are references to an Oh point group to remain consistent with the 

literature.4 The 4A2g ground states of Cr(III)PDO3 and V(II)PDO3 were optimized using 

the same DFT approaches used above. The lowest excited state structures of the Cr(III) 

and V(II) complexes were calculated corresponding to the Jahn-Teller distorted 4T2g 

state constrained to the C2 symmetry point group. These structures are analogous to 

the Cr(III)(AcAc)3 
4T2g cited previously in literature.4 We aligned the ground state and 

excited state structures to form a linear pathway in the form of Miller et al. and formed 

linearly interpolated structures along path.5 

The excited states of each structure along the distortion coordinate were 

calculated using the spectroscopy oriented configuration interaction (SORCI) method to 

construct the excited state pathways between the ground state and relaxed excited 

state. The initial wave function for each structure was calculated using the B3LYP 

functional with a cc-(p)VDZ basis set for all atoms except the metal center which used a 

cc-pCVTZ basis set. Each wave function was refined using a complete active space 

self-consistent field wave function (CASSCF) with a 3,5 active space and state 

averaging. All SORCI calculations utilizing the CASSCF wave functions were done 

including additional core electrons beyond the CASSCF active space. The B3LYP DFT, 

CASSCF, and SORCI calculations were computed using the ORCA 3.0.3 electronic 

structure suite.6 
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VIBRATIONAL PROJECTIONS: 

The vibrational contributions to the difference between the ground state and 

excited states of Cr(III)bpy3 and V(II)bpy3 were calculated using a vibrational mode 

projection scheme used by Ando et al.4 Briefly, the vibrational normal modes of both 

Cr(III)bpy3 and V(II)bpy3 were calculated for the ground state geometry. The excited 

state structure was aligned to the ground state structure using the same criteria used for 

the linear reaction pathway in the SORCI calculations where any translational and 

angular momentum were removed from the structure. The excited state center of mass 

was translated to the center of mass of the ground state and the excited state structure 

was rotated by the Euler indices that satisfy the equation 

 
   

m
i

!
R r

i
×
!
Rp

i( ) = 0

i

∑   (0.1) 

where i is over all atoms, 
 
m

i  
is the mass of atom i, and 

  

!
R

i
is the Cartesian coordinates 

of atom i.5 The resulting structures were examined to ensure that the alignment did not 

contain any unphysical atom movements between the structures. This ensures that no 

vibrational modes are projected onto differential distortions due to translations or 

rotations of the whole complex. 

The frequency calculation of the ground state includes the eigenvalues and 

eigenvectors of the diagonalized Hessian, which describe the vibrational energies and 

mode motion in terms of atom displacements, 
  
L

gs
. A Duschinsky vector, 

  
K

gs
, is 

calculated using the formula 

 
  
K

gs
= ML

gs
R

d
  (0.2) 

where M is a matrix containing the masses of each atom and, 
  
R

d
 is the difference 

vector of atomic coordinates between the ground and excited states.4 This results in a 
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vector, 
  
K

gs
, that describes a relative amount of each vibrational mode resulting from the 

distortion between the ground and excited states. 

RESULTS & DISCUSSION: 

TDDFT: 

When first analyzing potential ligand frameworks for photocatalysis, the focus 

was first on Schiff base moieties, a class of ligands containing a nitrogen-carbon double 

bond with the nitrogen bonded to an alkyl or aryl group. These ligands were known for 

straightforward syntheses with the ability to stabilize many different metals. The 

structure of the Schiff base moiety and the theoretical absorption spectra of the Schiff 

base ligand complexed various first row transition metals are shown in Figure 5.1. What 

was particularly intriguing when comparing the spectra of varying metals was the unique 

spectral feature of the V(II) complex (in purple) at around 630 nm. No other metal 

exhibited a broad intense peak at the low energy visible region.  

 

Figure 5.1: TDDFT(APF-D/6-311+G*) spectra of various first row transition metal Schiff 
base complexes. 

Spectra of complexes of the salen Schiff base-derived ligand were also 

computed and analyzed for photochemical properties. The salen ligand is known for its 
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two imine nitrogens and two oxygen atoms complexed to the metal center. In Figure 

5.2, a structural derivative was analyzed with amido groups substituted for the oxygen 

atoms. The theoeretical spectra of the given complex with different first row metals are 

in Figure 5.2.  

 

Figure 5.2: TDDFT(APF-D/6-311+G*) spectra of various first row transition metal salen 
type complexes. 

Again, the V(II) salen derivative complex (in purple) had intense absorption in the 

low energy visible region marked by a broad peak centered around 610 nm. Notable 

also is the almost identical broad structural feature of the Cr(III) salen complex (in red), 

which is red shifted from the V(II) complex centered at around 690 nm. This spectrum 

led to the promising hypothesis that a d3 V(II) metal complex could have similar 

photochemical properties as a d3 Cr(III) metal complex, and therefore vanadium could 

be exploited as an alternative photocatalyst. 

SPIN DENSITY PLOTS: 

Electronic structure calculations were then used to explore potential differences 

between Cr(III) and V(II) complexes. Spin density shows where the unpaired spin 

electron is with respect to the metal and ligand of the complex. Spin density plots for a 
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few Cr(III) and V(II) complexes for their ground quartet states (left column) and their 

excited doublet states (right column) are shown in Table 5.1, Table 5.2, and Table 5.3. 

Looking at the Cr(III)trisbipyridine case, the quartet state is immediately evident 

as the three unpaired alpha spin electrons are represented by the blue (alpha spin) 

cubic structure centered on the Cr(III) metal. In the doublet case, there is nodal beta 

spin character (represented in green) now on the metal where there is now one 

unpaired spin. Similar behavior can be described for the V(II) d3 metal, where the spin 

density on the metal looks very similar to the Cr(III) case. However, a notable difference 

is the presence of spin density out on the bipyridine ligands in both the quartet and the 

doublet cases for vanadium. The importance of this density on the V(II) complex is 

related to the decreased quartet-doublet energy difference for the V(II) complex 

compared to the Cr(III) complex (1.08 eV versus 1.62 eV). The beta electron density on 

the ligand and energy differences suggests that the doublet state is more stable for the 

V(II) complex compared to the Cr(III) analog, decreasing the available chemical 

potential to catalyze reactions. 

Another common photocomplex structure, the podand ligand complex, was 

compared. For the Cr(III) case there was again similar quartet and doublet behavior on 

the metal, with most spin density centered around the metal. In the V(II)pod complex 

doublet case, a large portion of the unpaired spin is again pushed out far onto the ligand 

structure.  

Ester groups were added to the pod ligand structure in order to try inhibit the 

ligand from containing significant amounts of unpaired spin density. The trend still held 
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Table 5.1: Spin density plots of quartet and doublets statesof the Cr(III)bpy3 and V(II)bpy3 photocomplexes. 

 Quartet Doublet 

Cr(III)bpy3 

 
  

V(II)bpy3 
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Table 5.2: Spin density plots of quartet and doublets statesof the Cr(III)pod and V(II)pod photocomplexes. 

 Quartet Doublet 

Cr(III)pod 

 

  

V(II)pod 
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Table 5.3: Spin density plots of quartet and doublets statesof the Cr(III)esterpod and V(II)esterpod photocomplexes.

 Quartet Doublet 

Cr(III)esterpod 
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with Cr(III) complex keeping much electron density centered on the metal while the spin 

density of the V(II) complex was again displaced out onto the ligand.  

As evident from these spin density plots, there is a strong difference where the 

lone electron is going following excitation to the doublet state in the Cr(III) and V(II) 

case. In the V(II) case there is significant delocalization of the quartet spin on the ligand 

as well as the doublet state with antiparallel spin. In fact, increasing donating ligands by 

methyl substituting the pyridine ligands didn’t make much of a difference. There seems 

to be favorable exchange for the quartet state, but in the case of the doublet state for 

V(II), the α  and β  electrons want to be delocalized as much as possible. The d orbitals 

on the vanadium metal are much larger than the d orbitals of the chromium metal due to 

d orbital expansion. Therefore this delocalization decreases the magnitude of excitation 

for the vanadium complexes, which greatly hinders its potential as a prominent 

photocatalyst. 

VIBRATIONAL PROJECTION SPECTRA: 

The vibrational distortion projection plots highlight additional differences between 

the Cr(III) and V(III) complexes by comparing the vibrational normal mode components 

that make up the distortion from the ground state to the excited state. Comparing the 

plots for Cr(III)(bpy)3 and V(II)(bpy)3 shows a two to six times larger dependence on 

very low modes less than 100 cm-1 for the V(II) complex compared the Cr(III) complex 

(See Figure 5.3). For V(II)(bpy)3, the dominant modes are those that consist of 

symmetric ligand wags, symmetric torsions between the pyridines, and symmetric 

ligand stretches with the metal center. Many of the Cr(III)(bpy)3 dominant modes are 

shared with V(II)(bpy)3 such as the symmetric ligand wags and stretches, but also 
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Figure 5.3:  Vibrational distortion projection plot between the ground state and 
excited state quartet structures for Cr(III)(bpy)3 and V(II)(bpy)3. The units of the K 
elements are in Å amu1/2. 
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includes an asymmetric pyridine torsion, asymmetric ligand wag, and an asymmetric 

ligand-metal center stretch. In addition, an intraligand stretch on a single ligand is also a 

dominant mode. This implies that not only are the excited state structures different 

between the two metal center based ligands, the excited state pathway that the complex 

takes upon excitation is very different. Whether the different pathways lead to an 

intersystem crossing event requires additional measurements to determine. However, 

these results suggest that Cr and V isoelectronic complexes with identical ligands 

cannot be assumed to behave similar in their excited states. 

SORCI: 

The excited state potential energy surfaces of the PDO ligand complexes for 

Cr(III) and V(II) provide additional insight into the differences between the two metals 

within similar complexes. The Cr(III)(AcAc)3 complex has been widely studied in 

literature. The complex ground state is 4A2g. Upon initial excitation, the complex is 

promoted to the 4T2g state. The complex rapidly relaxes to the 2Eg, a long-lived state that 

is thought to be primary state through which the complex performs catalytic functions. 

Plotting the excited states of each state along the linear path between the 4T2g 

and 2Eg excited states, an immediate difference is seen between the Cr(III)(PDO)3 and 

the V(II)(PDO)3 complexes, see Figure 5.4. For the Cr(III) complex, a prominent feature 

of the plot is the crossing of the lowest excited quartet states with the lowest doublets 

around R = 0.67 along the distortion coordinate. This provides a low barrier pathway to 

the 2Eg state since the states in the crossing region do exhibit mixed doublet/quartet 

character when spin-orbit coupling contributions are included in the calculation. This 
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Figure 5.4: Plot of excited state energies of X(PDO)3 complexes where X is Cr(III) or 
V(II) along a linear distortion reaction coordinate between the 4A2g and 2T2g optimized 
geometries. The purple lines represent the quartet states and the green lines 
represent the doublet states. The V(II) and Cr(III) complexes show strikingly different 
behavior along the distortion coordinates, where the Cr(III) complex shows a 
complete crossing several doublet and quartet states while the V(II) complex shows 
minimal places where the states are degenerate. 
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agrees with experimental results demonstrating the fast intersystem crossing to the 2Eg 

state in Cr(III)(AcAc)3.  

The excited states along the distortion coordinate show a different trend for the 

V(II)(PDO)3 complex. The lowest excited quartets rise in energy with the doublets as the 

structure distorts towards the stable 4T2g state. This contrasts the Cr(III) complex where 

the lowest excited quartets decrease in energy as a function of distortion. This causes 

no crossings between the excited quartets and doublets in the V(II) complex. While the 

difference between these two excited state pathways is not definitive proof that 

V(II)(PDO)3 is unable to reach the 2Eg state, it does suggest that V(II) complexes may 

be significantly less likely to reach a stable doublet state upon excitation compared to a 

Cr(III) analog. Without a complete map of the potential energy surface, it is not known 

whether other low barrier quartet to doublet transitions exist, but the most direct path 

does not contain one. 

CONCLUSIONS: 

We have highlighted the substantial differences exhibited by various transition 

metal complexes with Cr(III) and V(II) with respect to their excited states. The 

absorption spectra demonstrate the wide range of excited states that are populated 

upon vertical absorption, which can lead to shifts of more than 100 nm in the visible 

range. This is a very useful property to try to exploit to obtain catalysts that absorb in a 

desired range. However, the change in absorption also implies a change to excited 

state dynamics as well. The spin density plots, vibrational distortion plots, and SORCI 

derived excited state potential energy curves demonstrate a significant change to the 

excited state dynamics from the substitution of Cr(III) with V(II). Having a complex with 
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desirable excited state properties is critical to a photocatalyst’s ability to participate in 

redox chemistry. Evidence demonstrating that V(II) based photocatalysts do not easily 

form a long-lived excited state through intersystem crossing reduces their utility as 

photocatalysts. 
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CHAPTER 6: FUTURE DIRECTIONS 

 

This work presented shows the formalism of FD-DFT as well as its applications 

and utility in studying first-row transition metal photocatalysts. In its current state, it has 

shown promise as being a useful method for the calculation of excited state multiplets, 

which are common in long-lived excited states in transition-metal complexes, with low 

computational cost. However, while the foundational work on FD-DFT has been 

established, many further improvements are envisioned which would improve the 

stability, applicable molecular system excited states, non-energetic calculations. 

In its current iteration, FD-DFT can successfully converge to a stable wave 

function through an SCF procedure using a GVB wave function for relatively simple 

systems. Large systems that represent photocatalysts in synthetic applications are not 

stable under SCF iterations. One hindrance towards SCF stability is the GVB wave 

function itself, which is not as efficient as a single effective Hamiltonian with a direct 

inversion in the iterative subspace (DIIS) optimizer. Since the FD-DFT equations do not 

depend on the GVB formalism, an implementation in another wave function type may 

help convergence. In addition, the functionals themselves do not display even SCF 

convergence speed among test cases. The functionals used in this work were chosen to 

represent common and recent functionals in literature. Functionals designed to work 

with the finite difference approach in this dissertation could improve SCF convergence 

as well as excitation energies. 

FD-DFT is currently only rigorously implemented for excited state multiplets. The 

initial states of interest for the chromium catalysts could be described adequately by 
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multiplet states. However, closed shell pairs are of interest as well. For example, the 

second degenerate  
1
Δ  and the  

1
Σ

+  states of O2 are comprised of two orbitals in a 

closed shell pair. The addition of pairs is well described in the GVB-PP formalism, and 

FD-DFT can be used for these wave functions. The  
1
Δ  and the  

1
Σ

+  states of O2 do 

converge to their proper states if the aij and bij coefficients are given, but the current 

limitation is the lack of a iteration scheme to solve for optimal a and b coefficients. Small 

modifications to the current perfect pair solving scheme would be sufficient to allow for 

the inclusion of perfect pairs in a FD-DFT wave function. 

The final large improvement to the FD-DFT method would be the addition of 

analytical gradients to the converged FD-DFT wave function. The addition of the 

gradient to the FD-DFT calculation would allow for post SCF calculations such as 

geometric optimizations based on excited states. As seen with Cr(III)(AcAc)3-like 

systems, geometric distortions are a key component of understanding the excited states 

of transition metal complexes. Analytical gradients are particularly desirable due to the 

increase in computation speed over numerical gradients. Fortunately, GVB wave 

functions as well as DFT potentials both have well-defined analytical gradient methods 

implemented in modern electronic structure codes. Use of the same FD-DFT equations 

should yield expressions to obtain analytical gradients for any FD-DFT wave function. 
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APPENDIX A: BROKEN SYMMETRY WAVEFUNCTIONS  

 

Since the 1970s the energies of single determinant descriptions of different 
 
M

s
 

states have been combined to provide estimates of the DFT energies of spin-restricted 

open shell systems. Approaches that have been commonly used are the broken 

symmetry spin-projected (BS S-P) approaches, which are formulated in terms of a 

Heisenberg spin Hamiltonian, Eq. (A.1) or the sum rules (SR) methodology of Ziegler, 

Rauk, and Baerends.1 

 
   
E = −2J

!

Sa •

!

Sb   (A.1) 

The Noodleman and Davidson broken symmetry spin-projection approach for 

obtaining J is described in Eq. (A.2) where 
  
E

HS
 and 

  
E

BS
 are the total energies for the 

high spin and lowest 
 
M

s
 wave functions, and 

  
S

max
 is for the high spin wavefunction.2 

 
  

J = −
EHS −EBS

Smax

2
  (A.2) 

An alternative, the approximate spin projection (AP) from Yamaguchi, incorporates S2 

for the broken symmetry state as given in Eq. (A.3).3 

 
  

J =
EHS −EBS

〈S2 〉HS − 〈S2 〉BS

  (A.3) 

While these approaches provide an estimate of the energies for proper spin 

eigenfunctions, neither provides a variational treatment of the wavefunction. In the BS 

S-P approach the energies of a high-spin determinant and a single lowest-spin 

determinant are computed and used to provide an estimate for the proper lowest spin 

energy.  

For three-electron doublets there are three distinct 
 
M

s
=½ determinants which, 

for non-symmetry constrained systems, may differ in energy. These three determinants
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need to be combined into two orthogonal doublets. For both the BS S-P approach and 

the SR methodology, there is no guarantee that the individual determinant models are 

orthogonal, nor is there a mechanism for treating the coupling between spin 

eigenfunctions. Frank, Hutter, Marx, and Parrinello have reported a spin-restricted open 

shell singlet treatment wherein they constructed the Fock matrices from a linear 

combination of high-spin and broken symmetry energy expressions.4 

For the strongly correlated/weakly interacting systems of interest where 

antiferromagnetic coupling may dominate and more that two electrons are involved, a 

perfect pairing description is not adequate, nor is a description involving orthogonal 

singly occupied orbitals. Since the 1970s, broken symmetry descriptions have been 

used for antiferromagnetically coupled systems since α  and β  are not required to be 

spatially orthogonal in a spin unrestricted wavefunction.5  

Starting in the early 1980s Noodleman popularized the use of a broken symmetry 

unrestricted Kohn-Sham (UKS) wave function to compute magnetic interactions 

between weakly coupled electrons.2 This model was demonstrated to serve as a 

computationally viable approximation to the proper many configuration wave function for 

magnetic systems. The model has also proven useful for describing bond breaking 

processes. Here the model is summarized for a two-electron system. 

Consider bonding 
 
φ

b
 and antibonding 

 
φ

a
 molecular orbitals. In the context of 

multiplets, the triplet which places one electron each in 
 
φ

b
 and 

 
φ

a
 has been considered 

the ground state. For a discussion of broken symmetry models, used by DFT for 

multiplet systems as described in Chapter II as well as for antiferromagnetically coupled 
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systems, we consider the four possible two-electron configurations, see Eq. (A.4) to 

(A.7).  

 
  
ψ

S
1

= φ
b
φ

b
αβ − βα( )   (A.4) 

 

 

ψ
T
= φ

b
φ

a
−φ

a
φ

b( )
αα

αβ + βα

ββ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  (A.5) 

 
  
ψ

S
2

= φ
b
φ

a
+φ

a
φ

b( ) αβ − βα( )   (A.6) 

 
  
ψ

S
3

= φ
a
φ

a
αβ − βα( )   (A.7) 

The two molecular orbitals, 
 
φ

b
 and 

 
φ

a
, and four states, Eq. (A.4)-(A.7), can be written in 

terms of non-orthogonal atomic spatial orbitals 
 
φ

l
 and 

 
φ

r
, placed on left and right 

centers respectively, see Eq. (A.8). 

 

  

φ
b
=

φ
l
+φ

r

2+ 2S
lr

2

φ
a
=

φ
l
−φ

r

2− 2S
lr

2

  (A.8) 

Substitution of the representations in Eq. (A.8) into Eq. (A.4)-(A.7) provides localized 

orbital descriptions of these four states, see Eq. (A.9)-(A.12). 

 
  
ψ

S
1

= φ
l
φ

l
+φ

l
φ

r
+φ

r
φ

l
+φ

r
φ

r( ) αβ − βα( )   (A.9) 

 

 

ψ
T
= φ

l
φ

r
−φ

r
φ

l
( )

αα
αβ + βα

ββ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  (A.10) 

 
  
ψ

S
2

= φ
l
φ

l
−φ

r
φ

r( ) αβ − βα( )   (A.11) 

 
  
ψ

S
3

= φ
l
φ

l
−φ

l
φ

r
−φ

r
φ

l
+φ

r
φ

r( ) αβ − βα( )   (A.12) 

Configurations 
  
ψ

S
1

 and 
  
ψ

S
3

 are of the same symmetry and hence can interact to lower 

the energy of the system. In a GVB representation the wave function is taken as the 

variational linear combination, see Eq. (A.13) 
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ψ = c1

2ψ S1̀
− c2

2ψ S3
  (A.13) 

In the limit of weak overlap yield, the simple minus combination prevails and the two-

configuration molecular orbital description collapses to a simple valence bond 

description, see Eq. (A.14). 

 
  
ψ

S
1

−ψ
S

3

= φ
l
φ

r
+φ

r
φ

l( ) αβ − βα( )   (A.14) 

This wave function and the 
  
M

s
= 0  triplet component, Eq. (A.10), are quite similar and 

can be expanded into spin orbitals, see Eq. (A.15) and (A.16), and then combined, Eq. 

(A.17) and (A.18). 

 
  
ψ

S
1

−ψ
S

3

= φ
l
φ

r
αβ −φ

l
φ

r
βα +φ

r
φ

l
αβ −φ

r
φ

l
βα   (A.15) 

 
 
ψ

T
= φ

l
φ

r
αβ +φ

l
φ

r
βα −φ

r
φ

l
αβ −φ

r
φ

l
βα   (A.16) 

 
  
ψ

S
1

−ψ
S

3

+ψ
T
= φ

l
φ

r
αβ −φ

r
φ

l
βα = Aφ

l
φ

r
αβ   (A.17) 

 
  
ψ

S
1

−ψ
S

3

−ψ
T
= φ

r
φ

l
αβ −φ

l
φ

r
βα = Aφ

r
φ

l
αβ   (A.18) 

The resulting localized wave functions, Eq. (A.17) and (A.18) place one spin on 

the left and one on the right yielding molecular orbitals that individually do not possess 

the symmetry of the molecule, hence the term broken symmetry. Further, while they are 

both 
  
M

s
= 0  states, they are not eigenfunctions of   S

2 , but rather spin-unrestricted wave 

functions. As 
 
φ

l
 and 

 
φ

r
 delocalize onto the alternate center (as a function of distance or 

overlap) the original 
  
ψ

S
1

 is recovered.  

Energies, relative to two hydrogen atoms, of the various two electron wave 

function models of H2 are collected in Figure A.1. The energy of the two-configuration or 

GVB model rises as RHH increases, dissociating properly to two hydrogen atoms. The 

overlap between the non-orthogonal orbitals of the GVB pair, Eq. (A.19),  
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Figure A.1: H2 dissociation curve in terms of 
total energy in kcal/mol and GVB overlap 
 

 
  

S =
c1 − c2

c1 + c2

  (A.19) 

is also provided in Figure A.1. The overlap is around 0.8 at the equilibrium RHH distance 

and smoothly drops to zero as the bond breaks. In contrast the RHF model, 
  
ψ

S
1

 in Eq. 

(A.9), rises above the atomic limits, dissociating into equal parts ionic and covalent. The 

energy of the repulsive triplet state, 
 
ψ

T
 in Eq. (A.10), rises as RHH decreases. At short 

distance the energy of the broken symmetry model, Eq. (A.17) or (A.18), tracks the 

energy of the RHF model. At about 1.5 Å it deviates from the RHF model and 

dissociates into two hydrogen atoms. This separation point is referred to as the 

Coulson-Fischer point.6 As discussed in Chapter II, the energies of broken 

symmetry/single determinant models and high-spin descriptions can be combined to  
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Figure A.2: H2 molecule total energy as a 
function of overlap. 
 

obtain estimates for proper multi-determinant spin models of multiplets. This is 

illustrated in Figure A.2 where the binding energy for GVB, triplet, broken symmetry, 

and F-D models of H2 are plotted versus overlap, for the small overlap region. Relative 

to the GVB model, the single determinant broken symmetry model underestimates the 

binding energy of the singlet state, whereas the F-D model tracks the GVB description.  
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APPENDIX B: FD-DFT INTERDETERMINANT DFT EXCHANGE ENERGY FOR FOUR 

OPEN SHELL ORBITALS 

 

As mentioned in chapter II, the case of four open shell electrons is special 

because the configuration only has three unique double spin flips when six unique spin 

flipped determinants are needed. However, using the four single spin flips, it is possible 

to solve for the six DFT exchange energies that couple the four open shell orbitals. The 

eight unique DFT energy determinants are:  

 

  

E
DFT,HS(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,1(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,2(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,3(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,4(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,1,2(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,,1,3(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,1,4(4)

= K
closed

+K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

  (B.1) 

where 
  
E

DFT,HS(4)
 is the high spin DFT exchange/correlation energy, 

  
E

DFT,i (4)
 is the 

exchange/correlation energy for a single spin flip of orbital i, 
  
E

DFT,i, j (4)
 is the 

exchange/correlation energy for a double spin flip of orbitals i and j, 
  
K

closed
 is all 

exchange/correlation energies between the core orbitals, and 
  
K

i, j
is the 

exchange/correlation energy between orbitals i and j. 

Subtracting the high spin determinant from all spin flip determinants in Eq. (B.1) 

gives:
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E
DFT ,HS(4)

−E
DFT ,1(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,2(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,3(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,4(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,1,2(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,1,3(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT ,HS(4)

−E
DFT ,1,4(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

  (B.2) 

This leaves seven equations for six unknowns. The system of equations is over 

determined, so we have chosen to combine the single spin flips in the most symmetric 

form possible: 

 

  

E
DFT,HS−1(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,HS−2(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,HS−3(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,HS−4(4)

= K
1,2
+K

1,3
+K

1,4
+K

2,3
+K

2,4
+K

3,4

E
DFT,C

1

= E
DFT,HS−1(4)

+E
DFT,HS−2(4)

−E
DFT,HS−3(4)

−E
DFT,HS−4(4)

E
DFT,C

2

= E
DFT,HS−1(4)

−E
DFT,HS−2(4)

+E
DFT,HS−3(4)

−E
DFT,HS−4(4)

E
DFT,C
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= E
DFT,HS−1(4)

−E
DFT,HS−2(4)

−E
DFT,HS−3(4)
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DFT,C
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− 2K
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E
DFT,C
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3,4

E
DFT,C

3

= 2K
1,2
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1,3
+ 2K

1,4
− 2K

2,3
+ 2K

2,4
− 2K

3,4

  (B.3) 

where 
  
E

DFT,HS−i (4)
 is the difference between the high spin energy determinant with the 

single spin flip determinant for orbital i from Eq. (B.2) and 
  
E

DFT,C
j

 is the 
  j

th  single spin 

flip combination. 

Combining the three single spin flip combinations, 
  
E

DFT,C
i

, from Eq. (B.3) with the 

three double spin flip determinant energies, 
  
E

DFT,HS−i, j (4)
, from Eq. (B.2) gives a set of six 

equations for the six unknown interdeterminant DFT exchange energies.
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E
DFT,C

1

= 2K
1,2
+ 2K

1,3
+ 2K

1,4
+ 2K

2,3
+ 2K

2,4
− 2K

3,4

E
DFT,C

2

= 2K
1,2
+ 2K

1,3
+ 2K

1,4
+ 2K

2,3
− 2K

2,4
− 2K

3,4

E
DFT,C

3

= 2K
1,2
+ 2K

1,3
+ 2K

1,4
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3,4

E
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= 2K
1,2
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1,3
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2,3
+ 2K

2,4
+ 2K

3,4

E
DFT,HS−1,3(4)

= 2K
1,2
+ 2K

1,3
+ 2K

1,4
+ 2K

2,3
+ 2K

2,4
+ 2K

3,4

E
DFT,HS−1,4(4)

= 2K
1,2
+ 2K

1,3
+ 2K

1,4
+ 2K

2,3
+ 2K

2,4
+ 2K

3,4

  (B.4) 

The equations are linearly independent. These equations are solved via matrix inversion 

to obtain the individual exchange energies for four open shell orbital multiplet systems. 


