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ABSTRACT

STATISTICAL ANALYSIS OF WATER QUALITY DATA 

AFFECTED BY LIMITS OF DETECTION

Many water quality problems are related to substances 

which are present at concentrations too low to be measured 

precisely. Obtaining information from a monitoring system 

which produces many results near the fringes of analytical 

capabilities is not straightforward. This thesis is a dis-

cussion of the concerns one should have when statistically 

analyzing water quality data from such a system. Two general 

approaches are discussed. The traditional approach is to 

regard all measurements as precise or imprecise. Precise 

results are simply numerical responses, for which statisti-

cal analysis may lead to valid and sound monitoring informa-

tion. Imprecise results are reported as "ND", or not 

detected, with criteria for reporting based on categories of 

measurement precision.
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Measurement error which leads to censoring is 

described. The impact of this error on the statistical 

characteristics of water quality data is illustrated using a 

model appropriate for analyte concentrations near the limit 

of detection. It is shown that the statistical properties of 

a set of measurements may not resemble the population from 

which samples were taken. This suggests the use of statisti-

cal methods which acknowledge observation error.

Loss of information due to censoring is demonstrated 

and it is proposed that a numerical result be reported for 

all measurements. It is also suggested that an estimate of 

data precision accompany all results. This would permit the 

data user to censor at levels of uncertainty chosen by the 

user, rather than having information censored by the 

measurement process.

When the number of results with significant observation 

error is small, or when data has been censored and no infor-

mation is available regarding such error is available, 

statistical methods intended for censored data may ap-

propriately be used. Such methods covering a variety of 

water quality problems are reviewed. Numerical examples of 

many methods are provided.

Paul Steven Porter
Department of Agricultural and Chemical Engineering 

Colorado State University 
Fort Collins, CO. 80523 

Fall 1986
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I. INTRODUCTION

Water quality management in the United States, after 

receiving a major legal redirection in 1972 (PL 92-500), is 

evolving into an ongoing and routine management effort. 

Earlier, the emphasis seemed to be on defining problems and 

solving them as opposed to the type of continuous control 

mandated by this legislation. This evolution in management 

has resulted in a re-evaluation of information needs.

Water quality monitoring is managements' major source 

of information regarding progress toward national water 

quality goals, and perhaps its weakest link. Past inade-

quacies of monitoring for water quality management have been 

described (Council on Environment Quality, 1980; National 

Academy of Sciences,1977 ; General Accounting Office, 1981) 

and discussed in detail (U.S. House of Representatives, 

1983). Simple questions such as, "is the environment cleaner 

than it was 15 years ago?", are, in fact, difficult to 

answer. A reason often cited for this is a lack of monitor-

ing information. Witnesses at 1983 Congressional hearings on 

environmental monitoring have testified (U.S. House of 

Representatives, 1983):

- "Unquestionably there is a most serious and 
pervading need for knowledge . . . "

- " . . .  current monitoring does not adequately 
serve the important purposes of evaluating the 
progress of national environmental programs."



" . . .  we don't really know whether we are 
spending this ($50 billion per year) wisely..."

Statistical analysis of water quality data is an impor-

tant aspect of water resource management. This analysis 

depends in part on the integrity of water quality measure-

ments. An active quality assurance effort can often 

guarantee that such measurements reflect a true state of 

nature and not some property of the sampling and analysis 

system. However, many of today’s water quality problems are 

associated with levels of chemicals which are too low to be 

measured precisely by a single analysis.

Advances in analytical technology can extend the range 

of precise measurement, but problems associated with data 

analysis will continue to arise. This is because safe levels 

for many substances are not known, or are believed to be 

zero. In addition, there is a desire for early detection of 

problems in both a temporal and spatial sense. The need for 

more information will continue to result in the monitoring 

of water with arbitrarily low analyte concentrations.

Measurement near the limit of detection is inherently 

Imprecise. It is not possible to provide a response which 

meets the usual information expectations of water quality 

data users, namely a single number which adequately 

describes the contents of a sample. This creates a conflict 

between those who use water quality information and those 

who produce it. Water quality management has a need for 

information regarding trace level results, but the analyst



Currently, the analyst handles this conflict by defin-

ing a limit of detection (LCD) on the basis of analytical 

precision. Results below this limit are reported as "not 

detected" (ND) or "less than" the LCD. Though there is no 

uniformly accepted convention for the LCD, nearly every 

definition has the common objective of determining the 

smallest result which can be regarded as significantly 

different from zero.

Water quality managers have begun to investigate 

statistical methods developed for censored data and to adapt 

them for use in water quality. Developed for survival and 

failure time analysis, these methods presume that uncensored 

results (in water quality, those above the limit of 

detection), are known precisely and that nothing is known 

about results below this level. However, water quality data 

with ND observations is not truly censored in this sense. 

That is, useful Information is recovered during chemical 

analysis that is not reported. This information includes the 

precision of a measurement and is useful in a decision 

making context. This applies to all results, not simply 

those near the LOD.

One can remedy the problem of imprecise results simply 

by raising the censoring level. However, this filters even 

more useful information from the data record. A more mean-

ingful approach is to report with each analysis a result and

cannot produce it In a form that is easily interpreted by

statistical methods now in use.



A. Objectives

an estimate of precision. One could go a step further and

describe the statistical structure of this error.

The major purpose of this thesis is to present options 

for statistically analyzing imprecise data. This requires an 

understanding of the type of errors which lead to data 

censoring and statistical descriptions of measurement which 

convey as much useful information as possible. Specifically, 

the objectives are:

describe the statistical nature of a measurement,

illustrate the effect of random measurement error 
on the statistical properties of a set of data,

present alternatives for the statistical analysis of 
data which acknowledge uncertainty, and

for data which has previously been censored, 
and for statistical problems pertinent to water 
quality, summarize the literature of censored data 
methods.

The effect of measurement error on the statistical 

structure of water quality data is Illustrated using a model 

for measurement error which is appropriate for low analyte 

concentrations. This is developed from theoretical con-

sideration of random signal error in chemical analysis. The 

concept of a LOD is discussed in this context as well. It is 

asserted that any single definition of the LOD cannot meet 

all the information needs of a water quality management 

system.



Statistical methods which acknowledge monitoring system 

error are reviewed, and the concept of monitoring sen-

sitivity is proposed as a means of characterizing the 

ability of a monitoring system to detect change. Finally, 

the literature of methods for censored data is reviewed. 

Modifications are made when necessary to make these methods 

usable for water quality data.

B. Scope

In order to provide a concise discussion of problems 

associated with analytical limits of detection, rather 

simple water quality statistical problems will be addressed. 

Estimation of the mean of a water quality population, and 

describing a confidence Interval for the mean will be the 

primary examples. Given the discussion of the effect of 

measurement uncertainty on the statistical properties of 

data, it is straightforward to develop methods for trend 

detection, two sample comparisons and other types of 

problems in which measurement uncertainty is acknowledged.

To further simplify the discussion, water quality 

random variables will be considered to be distributed log- 

normally, and observations will be considered to be indepen-

dent. In addition, sources of error will Include only 

analytical error associated with detection limit problems. 

Extensions to other types of error will be mentioned.



1) comparisons of water quality with criteria and 
standards,

2) spatial water quality (current water quality 
conditions and variation along a stream or in an 
aquifer), and

3) changes in water quality over time at a given point.

It is felt that these problems can be addressed to some

extent by a fairly small set of statistical methods. The

statistical questions this study will consider are:

estimation of distribution parameters 
goodness of fit tests 
two sample tests of means 
tests for trend

The nomenclature described on page xiii is adhered to 

throughout the first four chapters. Chapter V, however, 

presents a problem in that a large number of methods from 

many references are described. Nomenclature for chapter V is 

defined separately for each method and is adhered to in 

Appendix A. In many cases, the symbols used are the same as 

the original references cited.

The review of methods for censored data relates to the

type of information sought by water quality monitoring. This

frequently includes (Ward and McBride, 1986):



II. THE STATISTICAL NATURE OF THE MEASUREMENT PROCESS

Users of water quality data are often unaware of the 

statistical nature of numbers produced by a laboratory. 

Results are interpreted as arbitrarily accurate representa-

tions of reality. However, this type of confidence cannot 

always be justified. This chapter is a discussion of the 

uncertainty which arises from random analytical noise and 

leads to definitions of the limit of detection (LOD). Models 

for this type of error are suggested and used in subsequent 

chapters to simulate results of analyses.

This discussion does not explicitly include systematic 

error or errors due to sampling and sample preparation. It 

is assumed that systematic error can be detected and con-

trolled by an active quality assurance effort. Uncertainty 

due to sample preparation can be estimated by replicate 

sample preparation and analysis. Similarly, replicate sam-

pling techniques can be used to assess sampling error.

A. Objectives of measurement

Water quality monitoring may be viewed as an informa-

tion system whose purpose is to supply knowledge and under-

standing about water quality conditions. The driving force
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for the flow of information, as depicted in Figure II. 1 

(Ward and McBride, 1986) is the fundamental knowledge 

produced by the sampling and analysis portion of the 

monitoring system. The major objective of sampling is to 

provide representative portions of the water body for 

analysis, while the "aim of an analysis is to reduce the 

uncertainty with respect to the sample to be analyzed", 

which, it is noted, is equivalent to obtaining information 

(Massart et.al..1978).

Reducing uncertainty with respect to a sêunple is hin-

dered by imperfections in the sampling and measurement 

process. At each step, useful information as well as noise 

is Introduced. Ideally the noise is removed without meaning-

ful loss of information. In real situations, however, all 

results contain some noise, and no result preserves all of 

the information in a sample.

In order to assess the extent to which the major goal 

of measurement is accomplished, the system must be 

monitored. This effort of quality assurance has been defined 

as "those operations and procedures which are undertaken to 

provide measurement data of stated quality with a stated 

probability of being right. The measurement system must be 

in a state of statistical control in order to justify such a 

probability statement. This is attained by quality control 

procedures which reduce and maintain random and systematic 

errors within tolerable limits, and by quality assessment 

procedures which monitor the quality control procedures and



Figure II.1 The flow of information in a water quality
monitoring system (After Ward and McBride,
1986).
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evaluate the quality of the data produced" (Taylor and 

Stanley, 1985). "Statistical control" has been defined by 

Wilson (1970a) as meaning that "all the causes of errors 

remain the same".

Statistical control is accomplished by the regular

monitoring of "quality parameters" (Kateman and Pijpers,

1981). Examples of quality parameters which are descriptions

of data quality Include:

accuracy 
precision 
mean error

- calibration sensitivity 
limit of detection 
limit of quantification

Factors which directly affect data quality Include the 

design of the calibration experiment, the quality of chemi-

cal reagents, the condition of the measuring apparatus and 

environment, the possibility of human error, and cost.

Under ideal circvunstances, the objective of reducing 

uncertainty with respect to a sample can be satisfied by 

producing a single number, usually analyte concentration. In 

practice, however, it is more realistic to regard analytical 

results as "probability statements". Such statements require 

that one or more quality parameters be provided in addition 

to the result. In other words, data users should regard a 

result, at a minimum, as an estimate of the expected value 

of an analysis (the result) and its standard deviation 

(precision) .
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B. Random measurement error

Analytical signal noise

Figure II. 2 after Mossotti (in Hiving, 1984) is a 

schematic of the measurement process as an information model 

for a flame emission or flame atomic adsorption system. He 

considers the sample to be an "information generation and 

storage device in which the physical concentration of the 

analyte species is regarded as the informational symbol." 

Analysis is the conversion of chemical information to an 

output signal (say a digital voltage readout). A transducer 

converts the chemical signal into a related property such as 

light emission. A second transducer translates this quantity 

into a readout. The basic information produced by such a 

system is in the form of a property related to the con-

centration of analyte in the sample. Such properties Include 

"emitted or absorbed light, electrical or thermal conduc-

tance, weight, volume and refractive index" (Skoog, 1985).

Because of Imperfections in the measurement system, 

some portion of the observed property (signal) will not be 

related to the analyte, or some portion of the analyte may 

not produce a signal as expected. For example, in the flame 

atomic adsorption determination of sodium (Na) (a schematic 

of this measurement system is shown in Figure II.3), it is 

known that atomic Na absorbs light at a wavelength of 589.6 

nm. Analysis is carried out by measuring the change in 

intensity of a light source emitting only at that
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£L£<rmONIC TRANS- OBSERVATION
DOMAIN DUCER DOMAIN

Figure II.2 The measurement process as an information 
system (After Mossotti in Elving, 1984).

Figure II.3 Schematic of a flame adsorption measurement 
system (After Skoog, 1985).



wavelength, and its intensity after passing through the 

sample, which has been atomized in a flame. Changes in light 

intensity can be due, in part, to: imperfect detectors, 

imperfect light sources, species in the flame which adsorb 

or emit light within the range of the detector, ionization 

of Na in the flame. Imperfect translation of light intensity 

into a readout, and imperfect knowledge of the relationship 

between light absorption and concentration.

Deviations from an ideal measurement process can be 

termed noise. Theoretical studies of noise have led to means 

by which it may be eliminated or reduced. Of particular 

Interest are the statistical structures of various noise 

sources and the dependence of noise strength on concentra-

tion. Theoretical discussion may also be useful for explain-

ing errors which are observed for a particular method even 

though the noise which is observed is a "complex composite, 

which usually cannot be fully observed" (Skoog, 1985).

13

2. Models for random signal noise

Mossotti (in Elving, 1984) presents a stochastic 

representation of analytical signal and noise using the 

example of a flame emission or atomic adsorption system. 

Noise produced by the system can be categorized based on 

dependence on analyte concentration. Noise which is statis-

tically Independent of concentration is termed additive. 

Noise dependent on concentration is termed multiplicative. 

Multiplicative noise is propagated through the measurement 

system along with the signal of interest. It can be further
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categorized as "fundamental" or "nonfundamental" noise. 

Fundamental noise is usually considered to originate in the 

"chemical domain as a quantum characteristic of the chemical 

signal" (Mossotti in Elving, 1984). It is not a property 

introduced during recovery of the chemical signal. Nonfun-

damental noise "originates from temporal perturbations in 

the parameters of the transducing elements in the system" 

(Mossotti in Elving, 1984). Nonfundamental noise is charac-

terized by nonstatlonary statistics, making it extremely 

difficult to model and remove.

Prudnikov(1981) applies theoretical discussion of noise 

to the flame emission determination of lithium in rocks and

minerals. Prudnikov and Shapkina (1984) assert that the
2

variance of an analytical signal [a (e )] can be describeds

by at most five terms:

2 ^ 2  ^ 2  ^ 2  ^ 2(II.1) o (e ) =  a a. + a ij. + Oj. + a ,' 's' add trans mult tnl nl
2

The first term, refers to additive noise, which is

proportional to total instrument noise Independent of signal 

strength. Mossotti (in Elving, 1984) terms this "additive 

channel noise", examples of which are Johnson noise in the 

electronics, "shot noise associated with optical detectors, 

power-line hum , and impulse noise."

Johnson noise is thermal noise resulting from the agita-

tion of charge carriers in the components of an electronic 

system. Johnson noise is described by Skoog(1985):

(II. 2) V = (4kTRAf)^ rms
where is the root-mean-square noise voltage lying in a
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frequency bandwidth of Af Hz, k is Boltzmann's constant, T 

is absolute temperature, R is the resistance of the resis-

tive element.

Shot noise is a result of a charge carrying particle 

moving across a junction (e.g., the movement of an electron 

between the anode and cathode in a vacuum tube) (Skoog, 

1985). Shot noise is expressed (Skoog, 1985) as:

where i is the root-mean-square current fluctuationrms
associated with the average direct current I, e is the

charge of an electron, and Af is as before. Both Johnson and

shot noise are Independent of the particular frequency of

measurement, but not of band width being observed.
2

The term refers to transitive noise associatedtrans

with quant\im-me chan leal shot noise inherent in photoelectric 

detectors. Mossotti (in Elving,1984) terms this "Poisson" 

noise or a component of fundamental noise. It can be con-

sidered a quantum mechanical characteristic of the chemical 

signal. The variance component due to transitive noise is 

proportional to signal strength (Prudnikov and Shapklna, 

1984) .
2

The term multiplicative, or flicker

noise, which is classical-mechanical in origin. Variance due 

to multiplicative noise is proportional to the square of the 

signal power. Methods most prone to this type of noise are 

those in which material transport and or sample atomization 

are required for signal generation (Mossotti in Elvlng,
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1984). Skoog(1985) terms this "1/f" noise, as it is in-

versely proportional to frequency. Flicker, which is an 

example of nonfundamental noise, is a source of long term 

drift observed in some types of electrical measurement 

devices (Skoog, 1985).
2

Prudnikov and Shapkina( 1984) describe (transitive
2

non-linear) and (non-linear) terms proportional to the
rd th3^ and 4 power, respectively, of signal strength. These 

sources are due to non-linear quantum mechanical and non-

linear classical-mechanical noise, respectively.

Noise reduction techniques include both hardware 

devices and signal processing software. Examples of hardware 

items include environmental controls (i.e., grounding of 

equipment, temperature control), low pass and high pass 

filters, signal modulators, and signal "choppers". Software 

methods include "box car" (moving average) filters, smooth-

ing, and ensemble averages. For example, Johnson and shot 

noise can be reduced by lowering the temperature of a 

measuring device or reduction of the frequency bandwidth 

being observed. Signal averaging tends to cancel white noise 

(independent of time, zero mean), of which these are ex-

amples .

Equation (II.l) can be rewritten (Prudnikov and 

Shapkina,1984);

(II.4) + Nrans®

where the k̂  ̂are coefficients related to the sources of
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noise described above, and S is signal power. The can be 

considered constant for a given method.

Considering the case of a linear response, corrected for 

background, S = XC, where X is concentration and C is the 

change in signal produced by a unit change in analyte con-

centration,

(11.5) * I'trans«
4 4

t knlX C

For the case of constant K, one can combine it with the k^ 

and obtain a single constant:

(11.6) ff(ê ) = k + k.X + k,,X̂  + k,X^ + k.X^

One can also define relative standard deviation (RSD) (the 

coefficient of variation) of a signal:

‘̂RSD =

= (k^/X^ + k^/X + k2 + kgX + k^X^)^/C

The signal(S) to noise(N) ratio (S/N) is defined as 

Figure II.4 is a plot of cr___ vs. log X for arbitrary values 

of the kĵ . (see also Figure 1 in Prudnikov and 

Shapkina(1984) and Prudnikov(1981)).

The values of the k^ depend on the analytical method 

and analyte matrix, but the shape of Figure II.4 holds for a 

wide range of methods. Models appearing in the literature, 

which take the form of a linear or squared dependence of 

noise variance on concentration, can be attributed to con-

centration ranges where particular noise sources are 

dominant. An analyst prefers to work in the range where 

is a minimum. In the range represented by the bottom of the



curve In Figure 11.4, (Toer> approximately constant. HereX\oU

one is dealing, for the most part, with transitive and 

multiplicative noise (Prudnikov and Shapkina, 1984). This is 

illustrated by Figure II.5, which shows the relative stan-

dard deviation for the determination of sodium in blood 

serum (Ross and Fraser (1977)), and Figure II. 6 for the 

analysis of trichloroethylene in water by gas chromatography 

(Bell, 1986). Precision estimates for many of the methods 

described in Skougstad, et.al.(1979) also have a linear 

relationship between concentration and standard deviation. 

When relative error increases beyond what is optimal another 

method or concentration range should be selected. However, 

in trace analysis one is forced to work with less than 

optimal precision.
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3. The distribution of random analytical noise

The frequency distribution of analytical noise has been 

the subject of much debate. Usually, it is assumed to be 

normal. Thompson and Howarth(1976 and 1980) describe several 

situations which might cause one to conclude that they were 

dealing with a skewed distribution.

(1) Repetition of a measurement until a positive result 
occurs is a practice which ignores the fact that 
although concentration cannot be negative, results 
can.

(ii) Assigning a constant to data below the detection 
limit has the effect of producing a "folded 
normal" distribution.

(ill) A lack of significant digits produces a
discontinuous distribution of results, which makes 
Identification of a distribution difficult.
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L »f of C*r>c«ntrotion

Figure II.4 Relative standard deviation of an analytical 
signal as a function of concentration.

Figure II.5 Relative standard deviation of analytical 
signal as a function of concentration for the 
atomic adsorption determination of sodium - 
the high precision range (After Ross and 
Fraser, 1977). (Dashed lines are 95% 
confidence limits)

t » 9  o f  C en e o n tfw tle n

Figure II.6 Relative standard deviation of signal for the 
determination of trichloroethylene by gas 
chromatography.
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(iv) Outliers due to a systematic error may cause an 
error distribution to appear skewed.

In addition, a large number of samples are required to

distinguish nearly normal from normal distributions (see

Shapiro et.^.,1968; and Kendall and Stuart,1979).

For purposes of this discussion, random signal error

near the LOD will be assumed to be normally distributed with

mean zero and variance k +k,X. In standard notation,o 1

(II.8) e - N(0, k„ + k.-X) s o x

This model is consistent with theoretical descriptions of 

measurement error near the LOD. It also assumes that signal 

error is unbiased. This is reasonable for any measurement 

process with an active quality assurance effort that detects 

and removes systematic error.

Assumption of a normal distribution permits negative 

results. This does not imply that negative concentrations 

are possible, only that random fluctuations may lead to a 

negative signal. A similar model has been used by Skogerboe 

(1982) for describing the effect of blank contamination on 

trace level analysis. This model was used implicitly by 

Gilliom, et.^. (1984), to generate measurements near the

LOD. Extension of this model to a more general form (higher 

order polynomial or power function) is straightforward.
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Calibration

The calibration problem

The calibration problem refers to the transformation of 

observed analytical signals into estimates of concentration. 

In general, analytical signals can be described by:

(II.9) S = g{X,e)

where S is the analytical signal, X is concentration, 0 is a 

parameter set, and g is a known function (e.g., for a linear 

calibration, S * + B^X and 6 - (B̂ , B^}, the slope and

intercept of the calibration curve).

The objective of calibration is to provide accurate 

estimates of concentration at a low cost, where these es-

timates are given by X = h(0, S ), S is the signal from anm P P
unknown population, 0 is an estimate of 0, and h is some

function of 0 and S„.
P

Several approaches to calibration can be found in the 

literature. Inverse calibration considers the regression of 

concentration on signal. Estimates of unknown concentrations 

are provided by direct application of the regression equa-

tion. A method used more widely in chemical analysis is 

classical regression, where signal is regressed on con-

centration, and estimates of unknown concentration are found 

by inverting the calibration function. Other methods include 

the method of standard additions and Bayesian analysis. The 

method of standard additions is the regression of signals 

from replicate samples, which contain known amounts of added
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analyte, on the concentration due only to the added analyte. 

Estimates of the unknown concentration are obtained by 

extrapolating the regression line to the abscissa, which 

represents the point of zero added standard. Bayesian clas-

sical analysis proceeds in a fashion similar to classical 

analysis, with added assumptions concerning the distribution 

of errors, presumably on the basis of prior knowledge or 

experience. This study will consider only classical calibra-

tion, as it is a very common technique used in water quality 

analytical work. There will also be limited discussion of a 

Bayesian calibration technique.

With regard to calibration, measurement error is in-

fluenced by knowledge of the functional relationship, 

g(X,0), the number and spacing of standard samples, the 

number of replicate unknowns, and the nature of errors 

inherent in the measuring process. Cost considerations can 

be reduced to a question of the number of standard and 

unknown replicate samples. Naturally, a reduced error can be 

obtained at the price of more analyses.

A desirable property of an analytical method is that 

g(X,0) be linear over a wide range (Skoog, 1985). For some 

methods, there is theoretical justification for a linear 

response model. For example. Beer's law, simply stated, 

holds that the attenuation of a light source of a given 

wavelength passing through a solution is proportional to the 

concentration of absorbing species:
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(11.10) A = log{I^/I) = fibX

where A is absorbance, I^ is the initial energy of a light 

source, I the energy of a light source after attenuation by 

a sample, <5 is a proportionality constant, b is the path 

length of the light source in the sample, and X is analyte 

concentration.

For such a relationship, equation (II.9) can be writ-

ten :

(11.11) S = B + B.X + e

where S is analytical signal (absorbance), B^ is the inter-

cept (zero), and B^ is the the slope (<5b). B^ and B^ are 

estimated by analyzing samples of known concentration (X) 

and observing signals (S) and e^ is random signal error.

For some methods, including inductively coupled plasma 

(ICP) analysis of metals, there is a linear relationship 

between the logs of signal and concentration.

(11.12) In S = B + B In X + e , oro  ̂ s

S = ®>B1«’'
I I

where B = exp(B ), and e = exp(e ) o o s s

2. Calibration design for the classical linear case

A number of techniques have been used to interpret 

signal-concentration relationships. Cardone (1986) lists 

many of these. Taylor and Iyer (1986) provide a general 

review of calibration. Buonoccorsi (1986a) reviews several 

approaches to optimizing a calibration experiment. The 

following is a description of classical calibration methods, 

including ordinary least squares (OLS) and weighted least



squares (WLS). Classical calibration refers parameter es-

timation by regressing signal on concentration.

Factors which influence the choice of the number and 

spacing of calibration standards include:

the distribution of analytical signal error

the chance that the response function will not 
be linear over the range of calibration 
standards; and

cost.

For the case of constant signal variance, one has:
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(11.13) S = B + B,X + e o 1 s

where e is normally distributed with mean 0 and variance s '
2 2 a (e ) . The least squares estimators of B , B. , and a (e )

are given by: 

(11.14)
n n n

n 5 n 5
/{n- I X. -( I X . )  } 

i=l i=l
n

(11.15) b, = (n I X
n
I  X.

n
„ - - _ -  ̂ IS. )i,c i,c ^'^1=1

n 5 n 5
/{n- I X^ -( I  X, ^)^} 

i=l i = l

(11.16)

The X. are the calibration standard concentrations and the 1, c
sums are over the number of calibration standards (n) . The 

properties of these estimators are:

b^ - N[B^, a (b^)] 

b^ * N[B^, a^(b^)]

£S , b , and c (b.) are mutually independent

(n-2)(T^(e )/a^[e ) is distributed as
chi-sqSared with n-2 degrees of freedom
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b and b, are uniformly minimum variance 
° unbiased (UMVUE)

2̂ . . 2 . n
o (b̂ ) = a (e^)/ 1 (X. -X ) 

1=1 ^

2 , , ? 2 ^(b̂ ) = a (e^

Estimates (X ) of the unknown, or population X (X ) arelU
given by:

(11.17) X^ = (S - b^)/b^

where Sp is a signal from a sample with unknown concentra-

tion, and b and b, are the estimates of B and B, . This 

estimate is also the maximum likelihood estimate (MLE).

Given the distribution of S , b and b,, it is noted that Xp o 1 m

is a ratio of normal distributions, which is distributed as

Cauchy. The mean and variance of X do not exist because ofni

the finite probability that b^ will approach zero. Descrip-

tions of X take the form of confidence interval construe- m
tion or approximations to the distribution of X̂^̂. Discus-

sions of confidence intervals for the ratio of two normals 

are provided by Fieller(1932), Graybill(1976), Buonaccorsi 

and Iyer(1984), Mulrow(1986), and Satterthwaite(1946). 

Approximate distributions approaches are given by 

Marsaglla{1965), Hinkley(1969), and Hunter and Lamboy(1981). 

Buonaccorsi(1986a) summarizes many of their results.
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From Buonaccorsi (1986a),

X is unimodal if m

(X < or̂ (eg) (5.094) (1/1 + l/n)/B^^

m
- X if X — X

p c p
< X if X < X

p c p
> X if X > X

p c p
where is the mean concentration of the calibration stan-

dards and 1 is the number of measurements per standard.

Therefore, is median unbiased only when the unknown true m

Xp lies in the middle of the calibration range.

As the probability of b^ approaching zero becomes 

small, Xjĵ approaches normality. A guideline for judging 

whether this will occur may be given by the slope sen-

sitivity, which is defined as:

(11.18) Z = b̂ /i7(b̂ )

Unfortunately, there is not much information in the litera-

ture which helps one decide what values of Z should be 

Interpreted as providing a normal X̂^̂, or what estimators

should be used for the mean and variance of X . Neither ism

there much information regarding "typical" values of Z for 

water analysis, though it is usually assumed to be large. 

For a particular gas chromatography analysis of toluene in 

water, Z was 190. For perchloroethylene analysis using the 

same calibration design and apparatus, the value of Z was 

about 50. The calibration experiment consisted of seven 

replicates each at 2, 10, 100, and 500 parts per billion
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(ppb) (Bell, 1986). The value of Z can be expected to be 

smaller near the LOD.

Hinkley (1969) provides an approximation to the dis-

tribution of given and lower and upper bounds for the 

difference between the approximation and the exact distribu-

tion. A simpler approximation is given by Mood, et.al.,

(1974), where X is normally distributed with the mean andm

variance given by:

(11.19) E(X /X ) = X + (X - X )/(VB?)m p p p c " ' l '
(11.20) Var(XjjjZXp) = <7^(eg)(l/m + 1/1 + (Xp-X^) ̂ /V)/B J 

where V is the sum of squares of the calibration experiment
n

-  . 2 .[= Z (X. -X ) ], X. is a calibration standard concentra- ' 1 , c c ■* 1 , c

tion, X is the mean of standard concentrations, 1 is the c
2

n\imber of analyses per standard, and a (e ), B and n are9 X

defined above.

A propagation of error approach, based on a first order 

Taylor series approximation to equation (11.17) results in:

(11.21) E(X^) = Xp

(11.22) Var(X„) = a^(e^) + [a^(b )+2a^(b ,b )Xm s o o 1 p
2 2 2 + tr^(b^)Xp]/B^

Graybill(1976) presents a method for obtaining an 

approximate confidence interval for the unknown parameter, 

Xp, given k  replicate measurements of the unknown concentra-

tions .

( 1 1 . 2 3 )  X = X + h.(S-S)/a  + t {a/2 .ti+k-3) a (e)w c X m c 9

(a(l/n+l//c) + (5 - S^)^/V)^/aHI C
where a = b^ - (e^) t^ ( o/2 ,n+/c-3)/VX s
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5^ and are the mean signals from k  replicate unknowns and

n standard analyses, respectively. As before, X is the meanc
of the calibration concentrations. This is not a true 1-a 

confidence Interval for X^. Instead, it may be said that 

there is a 1-a probability that satisfies equation

(11.23). The confidence for this interval is in fact less 

than or equal to l-o (Grayblll, 1976). (For virtually all 

calibration problems in analytical chemistry, this interval 

will exist.)

Ott and Myers (1968) used a criteria of minimum mean

sc[uared error (MSE), and Naszodi (1978) minimized bias as

optimality criteria. Both result in equally weighted end
2

point designs. This design also minimizes a (b^). Other 

designs may be better if one knows in advance that the 

unknown X^ will lie in a particular region of the calibra-

tion range. This is usually impractical (Buonaccorsi, 1986a) 

because a calibration experiment is designed to cover as 

wide a range as possible of unknown concentrations. In the 

event that unknowns repeatedly fall in a small region of the 

calibration range, and the same calibration experiment is 

reused for all samples, significant bias may accumulate in 

the collection of results (Iyer, 1986).

In practice, few chemists use a design based on 

rigorous criteria. Often, rules of experience dictate a 

design with evenly spaced samples and the same number of 

replicate standards at each concentration. Two point (op-

timal end point) design is often shunned by chemists because
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of a desire to detect a non-linear response. An approach to

calibration design with power against non-linearity would

assign some weight (cost) to power against a nonlinear (say

a quadratic or power) response, and a weight to the relative

error of X (Iyer, 1986). Buonaccorsi and Iyer (1984) com- m
pare methods for finding a confidence interval for for a

quadratic calibration model.

Another approach for overcoming the distributional

problems of X̂^̂ is to modify the presumed distribution of

signal error (e ). For example, Williford, et.al.(1979)s
assume e to be a truncated normal distribution, s

Mulrow (1986) studied the sampling distribution of X^

given an underlying normal population (unlike the other

references in this section, in which X is treated as a
P

known constant). It was assumed that signal errors were 

normally distributed with zero mean and constant variance. 

Several calibration designs were employed which resulted in 

a range of slope sensitivities (Z values). The methods were 

used to construct a confidence interval for the mean of Xp 

given a set of They were denoted "uncorrected",

propagation of errors (POE), and Satterthwaite's improved 

degrees of freedom (SIDE).

The "uncorrected" method is based on the application of 

the commonly used t statistic for computing a confidence 

interval for the mean of a normal population.

(11.24) - t(o/2,#c-l )/(ajjj/V/c)

Here, k  is the number of independent unknown samples from a
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population with mean a and variance a . The sample es-
P P

timates based on measurements are given by:

(1 1 .25 ) =  X =  I X .  / k , andm m j. / m
-2a . 2
m = ^(^i,m-^m)

This method proved to be very poor under a variety of condi-

tions, providing much less than the nominal l-o coverage for 

Z values as large as 100. The exact coverage (r)* given by 

Mulrow(1986), is:

(11.26) r = P[|T1 < t(a/2,/c-l)/(l + e)^]

where T = a student's t random variable

2 2 and where a {e ) is the signal variance, a (b ) is thes o
2

intercept variance, o (^2  ̂ slope variance, and
2

a (b̂ ,bĵ ) is the covariance of the slope and intercept. A

typical result: [for a = 0.05, Z = 100, //, 0.5, V = 1, B.

= 1, Of = 0.005, K = 35, cr(e ) = 0.01] r ("the true coverage) 
P s

= 0.523 rather than 0.95.

Both POE and SIDF were found to behave better, and 

produced true coverage close to 1-a. The POE approach is 

based on the POE estimate of the variance of given by 

equation (11.22), with an additional term due to being a 

random variable.

(11.27) Var(X^) = apK + (e^) / (/cB̂  )

+ [a2(b^)+2a2(b^,b^)iip+a^(b^)A:^]/B^
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(11.28) 1-0 a
n p III o

^2  ̂ ^2 '̂2 2 k
+ 2a2(b^.b,),^ + - ^l)^m^/Bl>

< t(o/2,ic-l)]

SIDF is similar to a t test:

(11.29) r = PnX„-ii„)/{a^//c + [a^{b)m p in o
+ 20 (b^.bj)o^ + o (bi)o„]/Bj)

< t(o/2,/)J

an estimate of the degrees of freedom, /, is given by:

/ = {al/K + [a^(b^) + 2â (b̂ ,b̂ )̂ jĵ

+ ¿^(bi)^^]}^/{o^/[K^(/c-l)] + [a^(b^)

+ 2â (b̂ ,b̂ );jjj + ¿^(b^)i^]^/(n-2) }

The POE and SIDF simulated coverages for the parameters 

which provide a coverage of 0.523 with the uncorrected 

method were both 0.921. The properties of when is a 

random variable will be taken up in more detail in Chapter 

III.

Hunter and Lamboy (1981), with a Bayesian approach, 

suggest that the distribution of X̂^̂ is given approximately

by:

(11.30) 

where S =

S =

m N ( X p , ( s ^ ^ s 22"^®33®22 - = i 2

r
1

0 1 
1

1 2 
L 0 f f^ /1

1
J

r r n ^ ^ i , c
I 1
! L ^ ^ i , c

1 -o
J

0 1

2 ' 
a / I  J

=12 -
2

and Sgg = na 2/d ,
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where 1 is the number of unknown replicates and the sums are 

over the collection of calibration standards.

3. Weighted least squares calibration

32

For many analytical methods the variance of random 
2

signal error [a (e )] is a function of concentration (X), or

heteroscedastic.

(11.31) S = + B.X + e^.O x  s
e /X « N(0, k + k,X + k.X^ + k.X® + k.X^)
S O 1 2 3 4

where the k̂  ̂ are as before. Near limits of detection, the

variance of a signal given X can be modelled by k̂ +k̂ X̂. The
2

best estimates for B , B, , and a (e ) are obtained fromo 1 s

weighted least squares (WLS). Multiplying both sides by W-H

( 1 1 . 3 2 ) w“ ^ s  = W“ ^ X - B  +  W ^ e  ,— -  — — —s W“ ^ e  « N ( 0 ,  — —s  ' — I )  .

w h e r e  X =  Q ^ i , c 3 ' k =  [ k ^  k ^ ] ' ,  W i s  d i a g o n a l w i t h  e l e

ments k +k,X, , and I is the Identity matrix. Rewriting,

with W"^S = S*, etc. ,

(11.33) S* = X*B + e*, ^  » NID(0, I)s s
* *

The least squares estimate of B, based on X and S is 

referred to as weighted least squares (WLS). WLS produces 

unbiased parameter estimates with lower variances than OLS. 

Descriptions of generalized (or weighted) least squares are 

given by Grayblll(1976), Draper and Smith(1981), and Box, 

^.^.,(1978). Garden, et.^.,(1980) present a WLS example 

for the atomic adsorption determination of lead and copper. 

The WLS estimates of B^ and B^ are given by:
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(11.34)

(Zw.-Iw.X^ c -

(11.35) bj . ,^-ZWjXj^^Iw^S,^^)

/(Zw,.Iw,X^^^ - (Zw,Xj_^)=)

(11.36) ;^e^) - [ZWjSj-b^rWiSj-bjEWjSj^^Xj^^)]/(n-2) 

where all the sxuns are from 1 to n, the number of standard 

samples. The value of Z, defined In equation (11.18) Is 

calculated from:

(11.37) Z =

Limits of Detection

_1. Concepts of the detection limit

Data users have perceptions of the LCD which may differ 

from that of an analyst. Many mistakenly believe that a 

result of "ND" Is equivalent to zero. Others believe that 

detection below the LOD cannot be accomplished. The "limit 

of detection" of a measurement process Is a statistical 

concept which has meaning only In the context of the use to 

be made of a result. Massart (1978) state that the LOD

Is "one of the most Important performance-characteristics of 

an analytical process". "It should be emphasized that con-

centrations smaller than the limit of detection will some-

times be detected, i.e., the results will exceed the 

criterion of detection. In this sense, the term 'limit of 

detection' Is rather misleading for it suggests that smaller 

concentrations will not be detected. However, without marked
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Defining a LOD is the process of determining with 

reasonable certainty whether a signal from a measurement 

process is caused by analyte or an "uncontrolled chance 

perturbation", to use Kaiser's (1970b) words. It is a conse-

quence of the presence of noise when useful signal due to 

analyte is relatively small. The determination of the LOD 

can also be stated in terms of a statistical hypothesis 

test :

(11.38) H^: Analyte is present vs.

H : Analyte is not presentd

Wilson (1970c) states that the two important aspects of 

LOD determination are: 1) the criterion used to address the 

statistical hypothesis, and 2) the smallest concentration 

that an analyst can claim to be capable of detecting. The 

former aspect is subjective and Includes (Wilson, 1970c): 1) 

the desired confidence level, 2) the distribution of the 

"random fluctuations", and 3) the standard deviation of this 

distribution. The latter pertains to the physical measure-

ment apparatus and a specified measurement procedure. Kaiser 

(1970b) states this another way by stating that the LOD must 

be applied to a "complete analytical procedure" and requires 

a "criterion agreed upon by convention". Suffice to say that 

a criterion is needed, though it need not be agreed upon, 

only reported. "There is no reason why one confidence level

expansion of the term, it is impossible to convey in one

simple title all the statistical and analytical implica-

tions" (Wilson, 1970a).



should be suitable for all analytical work; indeed, quite 

the opposite is true" (Wilson, 1970a). Nevertheless, there 

is a continual effort to standardize the definition of the 

LOD so that methods can be compared on this basis.
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2. Definitions of the LOD

The International Union of Pure and Applied Chemists 

(lUPAC) definition of the LOD is:

^LOD =
where cr_ is the standard deviation of signals from repeated 

blank measurements and is the slope of a linear calibra-

tion function. In this discussion, a blank will be defined 

as identical to unknown samples except that no analyte is 

present.

If the random error is normally distributed and C7g and 

are known, the confidence level provided by this defini-

tion is 0.9987. That is,

(11.40) P(X_ < given that X^ = 0) = 0.9987n XiUJj p

The probability of a type II error is, at the LOD, 0.50.

(11.41) P(Xjjj < X̂ Qĵ  given that X = Xj-̂ ĵ) =0.50

If a- is estimated from a (not large) set of replicateC>
measurements, one must resort to the t distribution to 

calculate a confidence level:

P[5g/(ffg/Vn) < t(l-a,n-l)] = 1-a

and define ^LOD ~ t (1-0 ,n-l )ag/^y , the signal at

Here Sg is the average signal from n blank measurements. If, 

for example, n = 5 and t (l-o ,n-l)/Vn = 3, the confidence 

level is much larger than 0.9987 [t(l-o,4) » 6.71]. To



achieve a confidence level of 0.995,

\ 0 D  4.604.;g/V(5B^)

= 2.06 ¿g/®!

Thus, the relatively simple lUPAC definition results in 

different confidence levels depending on how it is applied. 

One could remedy this by specifying that a large nximber of 

blank determinations be used (say n>30), then combined with 

the central limit theorem, the mean of the measurements 

would approach normality regardless of the true distribution 

of errors, and the confidence level would approach 0.9987. 

There would remain, however, several problems, including:

- low power,

- a confidence level of 0.9987 that is not appropriate 
for all purposes, and,

for purposes of reporting a LOD in concentration 
units, the slope is assumed known.
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Questions concerning power and confidence can be ad-

dressed only by considering the eventual use to be made of 

the data. Wilson (1970c) feels that in order for this deci-

sion to be made by the data user, the criterion for detec-

tion needs to be reported. This includes the "nature and 

standard deviation of the frequency distribution", plus the 

way in which this was estimated (number of blank samples, 

method, etc). This eliminates the need for explicitly in-

cluding calibration information (slope and Intercept and 

their variances), which is usually not obtained for a con-

centration region near the LOD. Calibration information 

depends on the number and spacing of calibration standards.
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Usually, the lower limit of a calibration experiment is well 

above the LOD. It is an undesirable property of the defini-

tion of the LOD that it be influenced by the calibration 

design.

Another problem related to the use of a t statistic, as 

discussed above and in Long and Winefordner (1983), is that 

the hypothesis being tested does not relate directly to an 

analysis of an unknown sample, which is the ultimate use of 

a definition of a LOD. For the example used above, with n = 

5, the confidence level calculated, 0.995, relates only to 

the mean of a population of blank measurements. In order to 

compare the set of blank measurements to a set of unknown 

replicate measurements, one would typically do a two sample 

t test for the means of the two groups, assuming that the 

variances of the two populations are the same. This is 

difficult if there is only a single unknown measurement. A t 

statistic can still be developed, however (Yao, 1984). Let 

{X. }„ be the set of n blank measurement results with mean
X D

(1 and variance and the result of a single un-

known measurement using the same measurement process. For 

the sake of illustration, assume that measurement variance 

is constant. Then,

(11.43) Xg * N(//̂  g,c7̂  g/n)

X^ » N(Aî ,<T̂ ) m p m
/ 1 X"2, 2 2(n-l)a /a„ *m m n—1

Under the null hypothesis that analyte is not present, the 

means and variances of the two random variables are equal,



38

and (11.44) T » (X -X )/[a _(l/n + 1)]^m D X, o

and, (11.45) + 1 ) ]^t ( 1-a ,n-l )

Note that the LOD based on this concept can be ar-

bitrarily lowered by increasing the number of unknown or 

blank replicates. If the measurement variance cannot be 

ass\imed constant one has the difficult problem of comparing 

two samples with different variances.

The EPA (Glaser, ejt.^. , 1981) has endorsed a method

which requires analyte to be present in the samples used to 

determine the LOD. The EPA definition of the LOD is:

(11.46) Xĵ oD * <̂‘t ( l-a = 0.99,n-l) 

where a is the standard deviation of replicate sample con-

centrations which contain analyte concentrations near the 

LOD. This definition is equivalent to the development of the 

two sample t test described above with the 1/n term neg-

lected. The assumptions of the lUPAC definition are inherent 

here. That is, the samples are field blanks, (but spiked 

with analyte concentration near X___) and the slope of theLiQu

calibration is known, so that a can be calculated in terms 

of concentration units. However, there is the added com-

plication of determining the proper spike concentration with 

a recursive method of repeated replicate analyses at dif-

ferent concentrations. This method is tedious. Moreover, 

Wilson(1970c) asserts: "the remaining discussion [concerning 

LCD's] rests on the basis that the standard deviation at 

zero concentration is the fundamental performance- 

characteristic requiring definition and evaluation."
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Long and Winefordner{1983) consider the situation when 

the errors of the slope and intercept are included in the 

determination of the LOD. They also discuss the true statis-

tical level when the distribution of the errors is not 

normal. A lower confidence level of 0.89 is given by con-

sideration of Tschebyscheff's inequality (Larson and Marx, 

1981). Hubaux and Vos(1970) define a LOD based heavily on 

the calibration experiment, using prediction intervals for a 

signal to project a confidence interval at a concentration 

of zero.

Winefordner and Ward(1980) add the constraints that for 

a LOD determination to be valid, the replicates must be 

analyzed at regular intervals, all analytical signals should 

be sampled for equal times, and the total signal sampling 

time should be reported. This is to account for low fre-

quency noise and drift. They conclude that LOD's closer than 

a factor of three are not significantly different.

Skogerboe(1982) discusses the limiting effect of 

reagent contamination on the LOD. This applies to contamina-

tion of field blanks by analyte as well. His argument is 

based on consideration of the RSD and shows that the task of 

determining a LOD is basically a question of differentiating 

a blank from a low level measurement. If the "blank" con-

tains analyte, significantly more analyte must be present in 

a sample in order to differentiate it from the "blank". It 

was shown for trace level measurements that this can be a 

significant problem.



Several concepts have been used to deal with the low 

power at the LOD associated with most definitions of the 

LOD. Nenzies and Kaiser(1969) propose a "limit of guarantee 

of purity" (LOG) which is the purity (probability of absence 

of analyte) which can be assumed for a result below the LOD. 

Massert et.al.(1978) and Kaiser(1970b) both recommend using 

6ct/B^ for this level. For a normal distribution with a 

known :

(11.47) given that X = = 0.9987

Still another problem concerns the quality of measure-

ments near the LOD. One can show, using the lUPAC definition 

of the LOD and the error model given in equation (II. 8) that 

signals at the LOD have a precision no better than 33%.

"rsd “

In some cases, precision is poor for values well above the 

LOD. Thompson and Howarth(1976) illustrate this for a linear 

relationship between standard deviation and concentration. 

This has prompted a need for a "limit of 

quantification"(LOQ). ACS(1980) defines the LOQ as the

"level above which quantitative results may be obtained with 

a specified degree of confidence". They divide the range of 

possible results into three regions.
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Signal Region 

< LOD

LOD < <L0Q

Name

Region of high 
uncertainty

Region of less 
certain quantitation

LOQ < Region of quantitation

Reporting Convention 

ND

"detected" 

numerical result
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They recommend that "quantitative interpretative decision 

making, and regulatory actions should be limited to data at 

or above the LOQ" and suggest that the LOQ be defined as

10.ag.

Currie(1968) proposed this scheme, but included in his 

discussion the "critical level", which is defined by the 

type I error:

(11.49) P(S < S given X = 0) = 1 - ac p

Signals exceeding S indicate detection. He theno

proposes that the LOD be defined as the signal at which a 

desired power (1-|3) for detection is obtained.

(11.50) P(S > Sj.Qg given Xp = X^^^) = 1-^

This is equivalent to Kaiser's LOG.

In svimmary, there are several conventions for dividing 

results into reporting regions. They are all based on con-

cepts of statistical confidence. There has been a great deal 

of effort to standardize the process so that LOD's or LOQ's 

reported for the same method by different laboratories, or 

at different times, would be comparable.

There are two major problems with this approach. One is 

that in order for a LOD definition to be standardized, a 

great deal more than the method and the computing formula 

must be specified. Particularly, the calibration experiment 

used to determine the slope, and the time of analysis of 

standards and unknowns should also be made standard. Ironi-

cally, if results less than the LOQ are to be reported 

simply as "detected" there is no need to determine the slope
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in the region of the LOD except for purposes of calculating 

the LOD. This is implicit in the reporting recommendations 

of Currie (1968) who suggests reporting a quantitative 

result (a single number) only when S >

The second problem is that specification of statistical 

criteria should be done by the data user. In water quality 

management, this is not usually the analyst. ACS(1980) 

recommendations that results below the LOQ not be used by 

data users is an infringement on the decision making 

process. The LOD has no meaning except in this context.



III. THE EFFECT OF MEASUREMENT ERROR ON WATER QUALITY DATA

System error, of which random signal error is a com-

ponent, can obscure the statistical nature of a water 

quality variable. This can limit the amount of information 

on water quality behavior which can obtained from a monitor-

ing system. More significantly perhaps, it may cause data 

users to believe they are observing a natural process, 

rather than a characteristic of the monitoring system. In 

this chapter, the effect of monitoring system error on the 

statistical characteristics of a set of data is illustrated. 

The error model appropriate for analyte concentrations near 

limits of detection will be used to generate "results" of 

analyses. The effect of calibration design and the distribu-

tion of the population being sampled on water quality data 

will be discussed. This approach can be extended to other 

sources of error.

The statistical properties of a set of measurements is 

influenced by system error. This can be illustrated in 

several ways. First, the moments of the conditional and 

unconditional distribution of measurements can be described 

using the propagation of errors (POE) approximation to a 

measurement . The POE approach provided accurate con-

fidence intervals for X for classical calibration coveringn

a wide range of calibration sensitivities (Mulrow, 1986). It
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is shown by simulations that the POE approximation is also 

quite good for estimating other properties of (mean,

variance and skewness and kurtosis), for a particular 

weighted least squares (WLS) calibration design. It is also 

shown how the statistical properties of a set of data can be 

dominated by normally distributed measurement error.

A. Description of the measurement system

In this chapter, analytical signals (S) will be 

described by:

(III.l) S = B + B,X + e

eg = N(0, k^ + k^X)

where the terms are defined in Chapter II. Weighted least 

squares will be used to estimate B^ and B^. The weights will 

be (k^ + kĵ X) and k^ and k^ will be assumed known. Es-

timates (X ) of unknown concentrations (X ) will be given m p

by;

(III.2) X^ = (S - b^)/b,, S = B^ + B,X^ + e^ m o 1 o 1 p s

The POE approximation of the PDF of X^ given X^ is:

(III.3) « N{X^, a^{e)/(KBhn p p s X
+ [(T^(bQ)+2£72(b^b^)Xp + <7^(b^)X^]/B^)

2
where o (Cg) Is the variance of random signal error, and b^

and b^ are estimates of slope (B̂ ) and intercept (B̂ ) for a
2

linear calibration. The a (•) terms are the variances of the

parameter estimates (variances of b^, b^ and the covariance
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A large number of variables are needed to describe the 

properties of a set of measurements. One must specify 

parameters of the measurement system (k̂ , k̂ ,̂ and B^),

the calibration experiment (number and spacing of standard 

samples), and the distribution of the population being 

sampled. The number of descriptors can be reduced by con-

sidering fundamental characteristics of the measurement 

system.

Fundamental characteristics should include measurement 

sensitivity and a description of the population being 

sampled. For this chapter, measurement sensitivity will be 

expressed by slope sensitivity (Z), given by equation 

(11.19):

(111.4) Z = B^/a(h^)

The object of the illustration is to study the 

properties of measurements which are Inherently Imprecise. 

Therefore, the calibration experiment should be designed to 

provide information about results near limits of detection. 

A calibration range of [0, , where LOQ refers to "limit

of quantification", covers the range in which results are 

not considered precise enough to report (ACS, 1980). The LOQ 

is defined here as the point at which the relative standard 

deviation (RSD) of a signal is 10%:

(111.5) RSD « <r(e )/Ss

0.10 . * >'i -Xl o q>’‘̂ Sj,oq

of b and b,), X is the estimate of X (the true concentra-o I ' m  p

tion) and k is the number of replicate unknown samples.
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where S___ is the signal produced by a sample with con-liOCj
centration X__^. The calibration design should also reflectiiUQ

practical considerations. In practice, equally spaced, 

equally weighted designs are often employed. Such a design 

with 2 points has minimum variance, but no power to detect 

non-linear functions. Therefore, a 3 point design with 

points at [0, Xĵ q q/2, was chosen. Without loss of

generality, the true calibration slope and intercept were 

set to 1 and 0, respectively, and the LOQ was set to 1. Each 

measurement was derived from a separate calibration experi-

ment .

For this design and the error model of equation 

(III.l), slope sensitivity is described completely by a 

ratio of multiplicative to additive error, standardized by 

the slope of the calibration function.

(III.6) R = k^/{k^B2)

Then,

(III.7) Z = [1250n/(50R+3)]([0.04-(lOOR+1)•(25R+1)

+0.2-R^*(25R+l)^(100R+3)]/[l+50p]}

where,

p = R + (R̂  + 0.04R)^

For R large,

(III.8) Z = (50n)^

The minimum value occurs at R = 0, where Z = (50n/3) .

Figure III.l shows the relationship between Z and R for 

three different values of n (number of calibration
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0.2 0 .4 0.6 o.a

Figure III.l Slope sensitivity (Z) vs. the ratio of 
multiplicative to additive error (R) for 3 
point equal weight, equal spaced design

Figure III.2 Slope sensitivity (Z) vs. number of standard 
samples (n) for 3 point equal weight, equal 
spaced design



48

standards). Figure III.2 shows slope sensitivity as a func-

tion of the number of standard samples (n) for two different 

R values.

Lognormal distributions with skewness coefficients 

ranging from 0.1 to 5 were chosen to represent water quality 

random variables. (See chapter V for further discussion of 

the distribution of water quality random variables.) The 

mean and coefficient of skewness were chosen so that a 

variety of "censoring" conditions would exist and results 

could tentatively be compared with methods developed for 

censored data. Nominal censoring conditions were expressed 

as the fraction of true concentration below the LOD (FC) and 

the LOQ (FBQ). Most water quality data is currently censored 

at the LOD and it has been suggested in this thesis that the 

LOQ might be a more appropriate censoring level. The term 

"FC,FBQ" is used to describe the fraction of a sample which 

would be censored under each convention. For example, FC,FBQ 

= 0.5,1 refers to a distribution which would be ap-

proximately 50% ND's if censored at the LOD and ap-

proximately 100% ND's if censored at the LOQ. Specifying the 

FC, or FBQ, along with the population coefficient of skew-

ness, fixes the population mean. Plots of the PDF's for the 

distributions used can be found in appendix C.

The measurement system can now be specified by describ-

ing the slope sensitivity (or, equivalently, R) , the number 

of standard samples (n) , the FC or FBQ of the population, 

and the population coefficient of skewness. Note again that



Z is completely determined for R and n. Therefore, a variety 

of simulation conditions can be described (using the POE 

approximation) as a function of R and n for a given R

may also be interpreted as the relative size of com-¿jUD

pared to For large R, ^lOD'^^LOQ zero. For

small R, this ratio approaches 0.3. R is a characteristic of 

the measurement system that is independent of calibration 

design. Values used for simulations are summarized in Table 

III.l. Parameters were chosen in order to provide a range of 

populations (coefficients of skewness), measurement systems 

(range of R values), and censoring conditions (FC,FBQ 

values).

B. The POE approximation to properties of measurements

The variance terms of equation III.3 are estimated as 

follows:
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(III.9) a (b ) 
o

<7‘(b, ,b̂ )1 o

D =

n 2 
2 w.X. /D 
i=l  ̂
n

- I w.X. /D 
i=l  ̂
n
I w ./D 
i = l ^
n n 2
Z w^ Z w^X. 
i=l  ̂i=l ^

( I w X ) 
i=l ^
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Table III.l Summary of simulation conditions

a. Simulation conditions

R X (FC,FBQ) X Skewness

1.0 1 1.0 , 1.0 1 0.1
0.1 1 0.5 , 1.0 1 0.5
0.01 1 0.0 , 0.5 1 1.0
0.001 1 1 3.0

1 I 5.0

b. Error Parameters

R k k.- -LOD —o -1

1.0 24 0.0297 0.00009805 0.009902
0.1 22 0.0869 0.00083920 0.009161
0.01 18 0.1854 0.00382000 0.006180
0.001 15 0.2563 0.00729800 0.002702

c. Distribution parameters

FC,FBQ =1,1; R = 1.0
std.dev. £

R
1.0

skew.
0.1

2a
0.00111 -3.6i7

a
0.8269 8.031-7

_ from In 
22 LOQ

0.0811 108.6

of : 
LOD 
3.0

0.5 0.02691 -4.009 0.0184 9.24e-6 0.0273 24.4 3.0
1 0.09877 -4.459 0.0122 1.53e-5 0.1038 14.2 3.0
3 0.512 -5.663 0.0045 1.34e-5 0.6686 7.9 3.0
5 0.8468 -6.277 0.0029 1.lOe-5 1.3322 6.8 3.0

0.1 0.1 0.00111 -2.543 0.0787 6.87e-6 0.0011 76.3 3.0
0.5 0.02691 -2.935 0.0538 7.9 e-5 0.0273 17.9 3.0

1 0.09877 -3.386 0.0356 1.31e-4 0.1038 10.8 3.0
3 0.512 -4.590 0.0131 1.15e-4 0.6686 6.4 3.0
5 0.8468 -5.204 0.0084 9.3 e-5 1.3322 5.7 3.0

0.01 0.1 0.00111 -1.785 0.1679 3.1 e-5 0.0011 53.6 3.0
0.5 0.02691 -2.177 0.1149 3.59e-4 0.0273 13.3 3.0

1 0.09877 -2.628 0.0759 5.97e-4 0.1038 8.4 3.0
3 0.512 -3.832 0.0280 5.23e-4 0.6686 5.4 3.0
5 0.8468 -4.446 0.0179 4.27e-4 1.3322 4.8 3.0

0.001 0.1 0.00111 -1.461 0.2321 5.9 e-5 0.0011 43.9 3.0
0.5 0.02691 -1.854 0.1588 6.87e-4 0.0273 11.3 3.0

1 0.09877 -2.304 0.1049 1.14e-3 0.1038 7.3 3.0
3 0.512 -3.508 0.0387 1.OOe-3 0.6686 4.9 3.0
5 0.8468 -4.122 0.0248 8.16e-4 1.3322 4.5 3.0
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Table III.l (continued) 

FC,FBQ = 0.5,1;
std. dev.

R skew. 2a a
- from In 

73"̂ LOQ
of : 
LOD

1.0 0.1 0.00111 -3T?17 0TB297 9.80Ì-7 0.0011 105.6 0.0
0.5 0.02691 -3.517 0.0301 2.4 e-5 0.0273 21.4 0.0
1 0.09877 -3.517 0.0312 1.Ole-4 0.1038 11.2 0.0
3 0.512 -3.517 0.0384 9.84e-4 0.6686 4.9 0.0
5 0.8468 -3.517 0.0454 2.74e-3 1.3322 3.8 0.0

0.1 0.1 0.00111 -2.443 0.0870 8.390-6 0.0011 73.3 0.0
0.5 0.02691 -2.443 0.0881 2.110-4 0.0273 14.9 0.0
1 0.09877 -2.443 0.0913 8.650-4 0.1038 7.8 0.0
3 0.512 -2.443 0.1123 8.430-3 0.6686 3.4 0.0
5 0.8468 -2.443 0.1327 2.350-2 1.3322 2.7 0.0

0.01 0.1 0.00111 -1.685 0.1855 3.820-5 0.0011 50.6 0.0
0.5 0.02691 -1.685 0.1879 9.630-4 0.0273 10.3 0.0
1 0.09877 -1.685 0.1948 3.940-3 0.1038 5.4 0.0
3 0.512 -1.685 0.2395 3.830-2 0.6686 2.4 0.0
5 0.8468 -1.685 0.2831 1.070-1 1.3322 1.8 0.0

0.001 0.1 0.00111 -1.361 0.2564 7.300-5 0.0011 40.9 0.0
0.5 0.02691 -1.361 0.2598 1.840-3 0.0273 8.3 0.0
1 0.09877 -1.361 0.2693 7.530-3 0.1038 4.3 0.0
3 0.512 -1.361 0.3311 7.330-3 0.6686 1.9 0.0
5 0.8468 -1.361 0.3914 2.040-1 1.3322 1.5 0.0

FC.FBQ = 0 
1.0 0.1

, 0.5 
0.00111 0 1.0006 1.110-3 0.0011 0.0 105.6

0.5 0.02691 0 1.0135 2 .8O0-2 0.0273 0.0 21.4
1 0.09877 0 1.0506 1.15 0.1038 0.0 11.2
3 0.512 0 1.2918 1.12 0.6686 0.0 4.9
5 0.8468 0 1.5271 3.11 1.3322 0.0 3.8

0.1 0.1 0.00111 0 1.0006 1.II0-3 0.0011 0.0 73.3
0.5 0.02691 0 1.0135 2 .8O0-2 0.0273 0.0 14.9

1 0.09877 0 1.0506 1 . 15 0.1038 0.0 7.8
3 0.512 0 1.2918 1.12 0.6686 0.0 3.4
5 0.8468 0 1.5271 3.11 1.3322 0.0 2.7

0.01 0.1 0.00111 0 1.0006 1.110-3 0.0011 0.0 50.6
0.5 0.02691 0 1.0135 2 .8O0-2 0.0273 0.0 10.3

1 0.09877 0 1.0506 1.15 0.1038 0.0 5.4
3 0.512 0 1.2918 1.12 0.6686 0.0 2.4
5 0.8468 0 1.5271 3.11 1.3322 0.0 1.8

0.001 0.1 0.00111 0 1.0006 1.110-3 0.0011 0.0 40.9
0.5 0.02691 0 1.0135 2 .8O0-2 0.0273 0.0 8.3

1 0.09877 0 1.0506 1.15 0.1038 0.0 4.3
3 0.512 0 1.2918 1.12 0.6686 0.0 1.9
5 0.8468 0 1.5271 3.11 1.3322 0.0 1.5
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n
(III.10) Z w, = n[l/k +2/(2k +k,X^)+l/(k +k.X^)]/3J. O O I C  O i . C

n
= nXJl/(2k^+kjX^) + l/(k^+kiX^)]/3 

' nx2{l/(4k^+2kjX^) + l/(k^+kjX^)l/3

«1 = (I'o
-1

where Xi,c refers to the n calibration standards, and k^ ando

k ^  a r e  r e l a t e d  t o  t h e  v a r i a n c e  o f  a n  a n a l y t i c a l  s i g n a l ,  a s  

d e s c r i b e d  i n  C h a p t e r  I I .

T h e  v a r i a n c e  o f  X  g i v e n  X  c a n  b e  w r i t t e n  a s  am p
p o l y n o m i a l  i n  X ^ :

( I I I .  11) V a r ( X j j j Z X p )  =  r  +  s X ^  +  t X ^ ^

w h e r e  r  =  ( k ^ / «  + I w ^ X ^  ^ / D ) / B ^

s  =  ( k ^ / / c  -  2Z w ^ X ^
n  2

t  =  Z  w . / ( D B . )  
i  =  l  ^ ^

In terms of R, for k «1, B^ = 0, B ĵ = 1, and X^ = ^loQ ~ 

(III.12) r = (k^/Bj)(l + (2.5/n)-[l + 30p]/[l+25p]) 

s = (k^/B^)(l - [l/(25n)]-[3 + lOOp] 

/[p(l+25p)]}

t = 2•[R/(625n)]•[3 + 150p + 1250p ]

/[p^+25p®]

p = R + (R + 0.04R)'
2 2As n becomes large, r ■* k /B, , s -► k,/B, , t - 0 ando 1 1 1

(III. 13) Var(Xjjj given X^) - (k^+k^Xp)/B^

Figure III.3 shows the relative standard deviation of a

measurement as a function of X for two different R values.
P

Figure III.4 shows the relative standard deviation of X̂^̂ as
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Figure III.3 Relative standard deviation of X as a
function of X ®

P

Figure III.4 Relative standard deviation of X as a
function of the number of standard samples (n)
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a function of n for X = 1/2 for the same two R values.
P

These figures illustrate, for a limited number of cases, the

influence of calibration design on data quality. Simulations

were done, treating X as a constant, to evaluate the as-
P

svunption of normality for X^ given Xp. A given value of X^

was 'measured' 1000 times for each measurement system. A

Kolmogorov-Smirnov test for normality of X̂  ̂given Xp passed

at the 80% confidence level.

The unconditional PDF of X can be expressed in in-in
tegral form:

(III.14) n x j  = |D^(X„/Xp)-/(Xp)dXp

where D represents the domain of possible values for Xp.

When X is distributed normally with mean fi and variance 
P P

(III.15) /(X^) = /[2«»^j"’'exp(-)([(X„-Xp)/<,^]^

.(2)tĉ )‘’‘exp(-)i[(Xp-«p)/<7p]^)dXp

where the integration is from to +<». For this and all but

very simple distributions, the expression must be evaluated

numerically. However, evaluation of the moments of /(X^) ism

relatively straightforward. The first moment about zero is 

simply the mean. The variance can be found by expressing 

/(X^) as a product of and /(Xp) and integrating.
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(III.16) War(X^) =

= E(X^^) - [E(X )]^ m in

- 'i/v<V='p'^<='p>'5V='p)^

- 'i^<='p>t|V<V>'p'“ mJ“ pi^

= |/(Xp)[(E(X^/Xp))^]dXp - l//(Xp)E(X„/Xp)dXpJ^ 

= j/(Xp)[Var(X„/Xp)+(E(X„/Xp))^ldXp - (E(Xp))^ 

' |/(Xp)tr-fsXp+tX^+X^)ldXp - i.\2
‘P

2 2= r + s/̂ p + (t + l)ap + "t'Aip

For X normally distributed with mean and variance 
P P

2
Pp, the coefficient of skewness is given by:

(III. 17) Coef. of Skewness = 3a^(s + 2;u t)/<r̂
Xr lU

For X lognormally distributed with mean a and 
P P

2
variance 6 ,

P
(111.18) Coef. Skewness = 37j^a^[s+J7̂ a (1/3 + t)

P P P P
+ rjp«p( l+t)+2at]/a^

where 17 = $ /a . Similarly, the coefficient of kurtosis is
P P P

given by:

(111.19) Coef. kurtosis =

{ [3- (s^+2rt+2r)+6s(3t+l )Ai +18t^Ai^]a^
P P P

+ 3(3t^+6t+l)CT^+3t( t-2)):ẑ +6s( t-1 )Aî
P P P

+ 3(s^+2rt-2r)7/^ + 6rs/z + 3r^))/a^
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for X normally distributed, and 
P
(III.20) Coef. kurtosis =

(3-a^* (rĵ +1) • [s^+2r(t+l)-4a s+2(t+l)a^3

+ 2-Op, (rjp+D®. [3s(t+l)-2ap(3t+D ]

+ Op. (73p+l)®. [3t^+6t+l]

+ 3(r^ + 2rso + 2so^ - 2o^r - a^))/a^
P P P p' m

for Xp log-normally distributed.

Sample properties (mean, variance, and coefficients of 

skewness and kurtosis) calculated using the POE approxima-

tion were compared with those based on simulations. The 

unconditional properties of X̂^̂ were determined by "sampling" 

and "analyzing" from a given distribution 1000 times. The 

calibration design described above with n = 12 was used in 

all cases.

Figures III.5 through III.13 compare POE approximations

with simulated results, for the coefficient of variation,

skewness, and kurtosis. Figures III.5 through III.7 compare

the POE estimate of the coefficient of variation of X (them

expression for standard deviation given by equation III.16 

divided by the population mean) with that from simulations. 

Figures III.8 through III.10 compare skewness coefficient 

calculations from equation III.18 (based on the POE es-

timate) with the simulated coefficient of skewness of the 

measurements. For large amounts of censoring (FB:FBQ = 1,1), 

the POE approximation is not too good, but skewness values 

are small. For all other conditions examined, the POE based
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population eooffletont of okownoa* iBurad  ̂ POE astimata

Figure III.5 Comparison of the POE estimate of the measured 
coefficient of variation with simulated values 
for FC, FBQ =1,1

population aoafflelant of akawnaaa maoaurad + POE aatimata

Figure III.6 Comparison of the POE estimate of the measured
coefficient of variation with simulated values
for FC, FBQ = 0.5,1



58

Figure III.7 Comparison of the POE estimate of the measured 
coefficient of variation with simulated values 
for FC, FBQ = 0,0.5

population ooofflelont of okownoos isurod POE ••timato

Figure III.8 Comparison of the POE estimate of the measured
coefficient of skewness with simulated values
for FC,FBQ = 1.0, 1.0
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Figure III.9 Comparison of the POE estimate of the measured 
coefficient of skewness with simulated values 
for FC,FBQ = 0.5, 1.0

O
"c

population eoofflolont of akownoao lourod 4- FOE ootimato

Figure III.10 Comparison of the POE estimate of the
measured coefficient of skewness with
simulated values for FC,FBQ = 0.0, 0.5
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Figure III.11 Comparison of the POE estimate of the 
measured coefficient of kurtosis with 
simulated values for FC,PBQ = 1.0, 1.0

population ooofflolont of okownooo moaourod POE ootimato

Figure III.12 Comparison of the POE estimate of the
measured coefficient of kurtosis with
simulated values for FC,FBQ =0.5, 1.0



approximation was quite good. Figures III. 11 through III.13 

compare the same information for the coefficient of kur- 

tosis.
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Ot

population ooofflotont of okowno»»Boourod POE ootimato

Figure III.13 Comparison of the POE estimate of the
measured coefficient of kurtosis with 
simulated values for FC,FBQ = 0.0, 0.5
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C. Comparing measurement and population properties

The simulated properties of were also compared to 

Xp. These results are summarized in Figures III.14 - III.20. 

The effect of normally distributed measurement error on the 

observed, or measured data can be striking. For example, in 

the absence of measurement error, the unconditional variance 

becomes, simply, the population variance. Skewness becomes
3

zero for the normal case, and lognormal case, 

as expected. However, when measurement error dominates, the 

properties of X^ approach those for a normal distribution 

regardless of the population distribution.

Figure III.14 shows the fractional bias in the mean as 

a fraction of the true mean for each of the simulation 

conditions.

(III. 21) Frac. Bias = (measured - true mean)/true mean 

Significant negative bias occurred for populations with 

skewness coefficients of 3 and 5. Bias increases as the 

population median moves further from the center of the 

calibration curve. Positive bias occurs for the population 

with the largest mean because most samples are from the high 

end of the calibration curve. A quantitative expression of 

bias is given by equation 11.20.

Figures III.15 and III.16 show the coefficient of 

variation of X̂^̂ as a function of the population coefficient 

of variation. Figure III.16 shows populations with different 

'FC,FBQ' values. Solid lines indicate where measured values
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would equal population values. Figures III.17 through III. 20 

show similar Information for the coefficients of skewness 

and kurtosis, respectively.

Measurements made near limits of detection do not have 

the same statistical properties as the population. These 

figures can be used to classify systems (combinations of 

measurement error and water quality distributions) as being 

dominated by measurement error (moment estimates approximate 

those for a normal distribution) or by population fluctua-

tions (moment estimates approximate those of the 

population).

One begins to see the problem with inferences regarding 

a population when measurement error becomes very much larger 

than population variance. In some cases numbers would be 

reported and used even though what is being observed bears 

little resemblance to the water quality variable.
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1.0,1.0 pepuiatlon eo«fftet«n1 of sk«wn«»s + FC:FBQ - 0.5,1.0 0.0.5

Figure III.14 Fractional bias of the estimate of the mean
for the conditions described in Table III.l
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O•no

Figure III. 15 The coefficient of variation of measurements 
as a function of population coefficient of 
variation for several R values.

O*co

1. 0 . 1.0
population eoofflelont of variation rc. FBQ « 0.5. 1 O. 0.5

Figure III.16 The coefficient of variation of measurements
as a function of population coefficient of
variation for several FC,FBQ values.
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O 1.0 population eoofflelont of skov 
0 . 1 R B o 0.01 0 . 0 0 1

Figure III.17 The coefficient of skewness of measurements
as a function of population coefficient of 
variation for several R values.

Oo
23mOo
E

1.0 . 1.0
population eoofflolont of okown« h FC, FBQ » 0.5, 1.0 O. 0.5

Figure III.18 The coefficient of skewness of measurements
as a function of population coefficient of
variation for several FC,FBQ values.
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Figure III.19 The coefficient of kurtosis of measurements 
as a function of population coefficient of 
variation for several R values.
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Figure III.20 The coefficient of kurtosis of measurements
as a function of population coefficient of
variation for several FC,FBQ values.



IV. STATISTICAL ANALYSIS WHICH INCLUDES MEASUREMENT ERROR

It has been suggested that statistical data analysis 

should in some way acknowledge observation error. This 

chapter uses an example of estimating a population mean from 

a set of observations to illustrate this.

A. Estimating the mean of a normal distribution

The most simple problem considered in this section is 

the construction of a confidence interval about the mean of 

a normally distributed population given normally distributed 

independent observation error. The problem is made more 

complex by acknowledging that measurements are calibrated 

and as such are not normally distributed. Still another 

approach to this problem is to estimate and remove com-

ponents of variance due to the observation error. The object 

of this is to draw information from the data which pertains 

to the underlying population. This is a departure from 

solutions which do not distinguish measurements from true 

population values.
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Confidence Intervals when system error is included

Assume that a water quality random variable is normally
2

distributed [X » ,  ̂ )]• Were it possible to make
P P P

observations without error.

(IV.1) = tt and a = m

A 1-a confidence interval for is given by:

(IV.2) Cl = ± t(l-a,n-l)-ajjj/Vn
“2 -  2where <7 = £ (x. -X ) /(n-1), and n is the sample size,
m 1 = 1 i ®  ro

The information content of the sample with regard to 

this problem is related to the size of the confidence inter-

val. Observation error decreases information by Increasing

the variance of X and therefore a . For example, if onem m
admits to an unbiased error (e) independent of Xp and nor-

mally distributed,

(IV.3) X„ = X^ + e, m p
e » N[0, a^(e)]

X„ « N(;z , a‘) m p m
2a = 
m

2 2 a + <7 (£)
P

fi = X , and a is as before, p m  m

then, 

where

A 1-a confidence Interval given by equation (IV.2) would be 

larger than before.

A more quantitative expression of information content 

for this problem may be given by the relative efficiency 

(RE) of #/p. The efficiency of the sample mean of error-free 

observations relative to those which contain error is given 

by:

(IV.4) RE = a^/o^p m
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Water quality observations, however, are calibrated

results. The distribution of X given X is Cauchy. Not onlym p
will the confidence Interval for using equation (IV. 2) be 

larger than for error free data, it will not be with con-

fidence 1-a but something less. Mulrow (1986) showed that 

for and signal error normally distributed, it is more 

accurate to calculate a confidence interval using the POE 

approximation or SIDF. These are given by equations (11.29) 

and (11.30), respectively. For the POE approximation, and a 

single unknown measurement per sample, the efficiency of fi
P

relative to error free estimates is given by:

(IV.5) RE = a^/(a2 + [(72(b^)+2 (b^ , b^ ) ( b̂  ) /bJ }

2. Removing components of variance due to system error

Using SIDF or POE helps to eliminate the problem caused 

by assuming the wrong distribution for X̂ .̂ However, one is 

left with a larger confidence interval and a low relative 

efficiency for X^ as compared with error free observations. 

One could alleviate this problem by estimating and subtract-

ing components of variance due to observation error. One can 

write:

(IV.6) a =m
2 2a + a (£) 
P

2a = 
P

2 2 , . a - <7 emthen,

Satterthwaite (1946) and Gaylor and Hopper (1969) 

discuss the distribution of linear combinations of variance 

estimates (sums of squares). This forms the basis for the 

SIDF approach. Satterthwaite shows that a linear combination
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of sample variance estimates can be approximated as chl- 
2

squared (x ) with "Improved" degrees of freedom, e.g.,

“2 “2 ■'2 22,^
(IV.7) a ® ^2^2 ~ ^

‘2"2

where / = (a^aj + /:f ̂ + (a2ff2)^//2^
* 2and and degrees of freedom of the estimates

'• 2
and â , respectively. This estimate Is valid for positive 

a^. (See Satterthwalte (1946), Mulrow (1986), and Welch 

(1947)) .

Satterthwalte (1946) cautions against using this ex-

pression when some of the â  ̂are negative. Gaylor and Hopper 

(1969) examine this In more detail. Consider:
"2 "2 '2 

(IV.8) = <7̂ - CTg

2̂The object Is to approximate a by:

(IV.9)

= a^xj^/yi - ay^^/f2 

and to approximate / by:

(IV.10) / = (Q-1)^/(Q^//^ + I//2 ) where Q = a\/al

On the basis of a simulations study, Gaylor and Hopper

(1969) suggest that equations (IV.9) and (IV.10) are good

' 2approximations, with fewer than 2.5S5 negative a results, 

If:

(IV.11) Q  ̂F(/2'/i '0-975)-F(/^,/2^0.50)
thfor é 100 and  ̂ i^/2, where F(a,b,p) Is p percentile 

of the F distribution with a and b degrees of freedom. Note

also that 0 ¿ ¿ .
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If the above conditions are met, one can construct a

new confidence interval for ti :
P

(IV.12) Cl = X ± -a /in-1)^,
- 2 - 2 ■'2where a = a - ale)p m

This will, in general, be smaller than the confidence inter-

val given by the POE or SIDF approach described by 

Mulrow(1986). If data fall this criteria, they suggest 

increasing and/or /g performing more analyses).

Gaylor and Hopper (1969) also investigated the dis-

tribution of /, providing estimates of the coefficient of 

variation of / for 2 <  ̂500. In general, the

coefficient of variation of / is rather large. However, it 

is still useful for calculating a confidence interval using

the t statistic. As / increases the size of a confidence

" 2interval decreases, but o will also tend to Increase with
P

larger /. Gaylor and Hopper (1969) consequently demonstrate

that the confidence Interval remains about the same size,

given widely varying estimates of /.

This approach is valid when both variance estimates are
2

distributed as chi-square (z ). (That is, Xp and e are 

normally distributed.) One can estimate observation error by 

making k replicate measurements of each unknown sample.

Then,

(IV. 13) = (7̂ + ff̂ (e)//cm p

.2 n 2
= Z (X.. - X..) /(n-1)

P 1 = 1 ^

(e)
n

= (X^ j - X^. )"/[n(/c-l)]
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where

n

and

1=1

=  n  -  1

= n(K - 1)

This problem has been extended to the construction of 

tolerance limits by Hahn (1982), Mee (1984), Jaech (1984), 

and Mee, et.^., (1986). The problem they address is 

analogous to problems in water quality. One wishes to es-

timate the probability that a product is out of specifica-

tion, but must base the probability estimate on a set of 

measurements. The crucial element is the desire to estimate 

the true probability of a product out of specification (or, 

in the context of water quality monitoring, a violation of a 

standard), not the probability of a measurement exceeding a 

specification. This is depicted in Figure IV.1, which shows 

a normally distributed population with observation error 

causing an increase in the variance of measurements, and the 

true Cauchy distribution of measurements. This figure exag-

gerates the difference between these distributions which one 

might expect, but even small differences between the true 

and assumed distribution can cause a large difference in the 

size of a confidence interval.

Jaech (1984) considers criteria for using the SIDF 

method of estimating / for tolerance intervals. The two 

criteria are similar. Mulrow (1986) evaluated tolerance
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Figure IV.1 The PDF of a water quality random variable 
compared with the PDF commonly assumed for a 
measurement and the true PDF of a measurement.

Intervals using SIDF when data were calibrated and found 

that they were conservative as compared to the nominal 

confidence levels. This is the opposite of what occurred 

when forming confidence intervals.

A numerical example of the use of Satterthwaite's 

method for computing the confidence interval of the mean can 

be found in appendix B.



75

B. Estimating the mean and variance of a water quality
random variable

Unlike the random variables used as examples in the 

foregoing discussion, water quality random variables tend to 

be non-normal and have observation error which is dependent 

on concentration. This section provides small sample and 

asymptotic efficiencies for estimates of the mean given a 

lognormally distributed population and the error model used 

in Chapter III. Asymptotic results are compared with methods 

intended for censored data. The removal of components of 

variance due to measurement error is also illustrated. One 

objective of this is to show some of the difficulties with 

extending results from the previous section to data which 

more closely resembles water quality data.

Small sample properties of estimates for the mean were 

studied by taking samples of size 10, 20, and 40 from 

several of the population-measurement systems summarized in 

Table III.l. Coefficients of skewness values of 0.1, 1.0, 

and 5.0, and R = 0.001 were chosen.

Results are summarized in Table IV. 1 and Figures IV. 2 

through IV.5. Figures IV.2-IV.4 show the efficiency of 

estimates for the mean relative to observations made without 

error. When data has a large relative error (FC, FBQ = 1,1), 

efficiencies are low for all sample sizes. Efficiencies are 

also small for all sample sizes for coefficients of skewness 

= 0.1. This is because this population has a large relative 

observation error {variance of observâtions/variance of
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Table IV.1 Summary of simulation results for small samples 
(R = 0.001)

n = 10
population

coef.
FC,FBQ skew. mean var.mean variance var.var.
1.0,1.0 0.1 0.232 6.109E-06 6.041E-05 8.401E-10

1.0 0.105 1.168E-04 1.169E-03 6.012E-07
5.0 0.025 8.879E-05 9.176E-04 6.667E-06

0.5,1.0 0.1 0.257 7.461E-06 7.378E-05 1.253E-09
1.0 0.270 7.700E-04 7.706E-03 2.611E-05
5.0 0.398 2.219E-02 2.294E-01 4.166E-01

0,0.5 0.1 1.001 1.136E-04 1.123E-03 2.904E-07
1.0 1.054 1.172E-02 1.173E-01 6.051E-03
5.0 1.551 3.379E-01 3.492E+00 9.654E+01

measurements

coef. RMSE
FC.FBO skew. mean var.mean variance var.var. mean
1.0,1.0 0.1 0.232 1.064E-03 8.920E-03 1.850E-05 0.128

1.0 0.105 1.554E-03 9.591E-03 2.405E-05 0.464
5.0 0.024 1.378E-03 9.586E-03 3.246E-05 1.278

0.5,1.0 0.1 0.257 1.079E-03 8.941E-03 1.863E-05 0.128
1.0 0.270 3.026E-03 1.534E-02 8.692E-05 0.153
5.0 0.398 2.902E-02 2.327E-01 3.652E-01 0.385

0,0.5 0.1 1.004 1.928E-03 1.262E-02 4.128E-05 0.037
1.0 1.057 1.877E-02 1.245E-01 7.215E-03 0.110
5.0 1.555 3.670E-01 3.478E+00 8.233E+01 0.378



n = 20
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Table IV.1 (continued)

FC.FBQ
1.0,1.0

0.5,1.0

0,0.5

population

coef. 
skew. 
0.1 
1.0 
5.0

mean
0.232
0.105
0.025

var.mean 
2.868E-06 
5.483E-05 
3.896E-05

variance 
6.059E-05 
1.157E-03 
8.322E-04

var.var. 
3.648E-10 
2.456E-07 
2.091E-06

0.1
1.0
5.0

0.257
0.270
0.393

3.503E-06
3.614E-04
9.738E-03

7.400E-05 
7.625E-03 
2.080E-01

5.440E-10 
1.067E-05 
1.307E-01

0.1
1.0
5.0

1.001
1.051
1.534

5.333E-05 
5.501E-03 
1.482E-01

1.126E-03 
1.161E-01 
3.167E+00

1.261E-07 
2.472E-03 
3.028E+01

measurements

FC.FBO
coef. 
skew. mean var.mean variance var.var.

RMSE
mean

1.0,1.0 0.1 0.231 5.286E-04 9.017E-03 8.746E-06 0.099
1.0 0.104 7.848E-04 9.891E-03 1.201E-05 0.267
5.0 0.023 6.900E-04 9.691E-03 1.449E-05 1.059

0.5,1.0 0.1 0.256 5.370E-04 9.049E-03 8.840E-06 0.914
1.0 0.269 1.533E-03 1.610E-02 4.459E-05 0.145
5.0 0.393 1.344E-02 2.168E-01 1.227E-01 0.295

0,0.5 0.1 1.004 6.333E-04 1.349E-02 1.975E-05 0.025
1.0 1.055 6.037E-03 1.302E-01 3.114E-03 0.074
5.0 1.539 1.509E-01 3.231E+00 2.923E+01 0.253



n = 40
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Table IV.1 (continued)

population

coef.
FC.FBO skew. mean var.mean variance var.var.
1.0,1.0 0.1 0.232 1.475E-06 6.047E-05 1.880E-10

1.0 0.105 2.839E-05 1.154E-03 1.254E-07
5.0 0.025 2.OOlE-05 8.303E-04 1.031E-06

0.5,1.0 0.1 0.257 1.802E-06 7.385E-05 2.804E-10
1.0 0.270 1.871E-04 7.608E-03 5.447E-06
5.0 0.393 5.003E-03 2.075E-01 6.445E-02

0,0.5 0.1 1.001 2.743E-05 1.124E-03 6.499E-08
1.0 1.051 2.848E-03 1.158E-01 1.262E-03
5.0 1.534 7.616E-02 3.159E+00 1.493E+01

measurements

coef. RMSE
FC.FBO skew. mean var.mean variance var.var. mean
1.0,1.0 0.1 0.232 2.270E-04 9.142E-03 4.088E-06 0.065

1.0 0.104 2.606E-04 1.019E-02 4.764E-06 0.154
5.0 0.024 2.506E-04 9.895E-03 5.329E-06 0.638

0.5,1.0 0.1 0.256 2.274E-04 9.179E-03 4.112E-06 0.059
1.0 0.269 4.267E-04 1.676E-02 1.583E-05 0.077
5.0 0.394 5.325E-03 2.194E-01 6.240E-02 0.186

0,0.5 0.1 1.004 3.203E-04 1.346E-02 8.807E-06 0.018
1.0 1.055 3.212E-03 1.297E-01 1.563E-03 0.054
5.0 1.539 7.792E-02 3.223E+00 1.443E+01 0.182
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Solid lines on these figures indicate asymptotic ef-

ficiencies. The distribution of X when is lognormallym P
distributed is given by equation (III. 15). This distribution

is approximately normal for large observation error and

approximately lognormal for small observation error. The

most efficient estimator for the mean of a sample from a
2

normally distributed population [N(Â p,<7p)] is simply the
2

sample mean, which has variance o^/n. The sample mean for a
2

lognormally distributed population [LN(ju , a ) with mean a
P P P

2 2and variance jSp] has variance |Sp/n, but this is not minimum 

variance. The MLE estimate, given by Finney (1941) and 

discussed by Aitchison and Brown (1957) has minimum variance 

given by:

(IV.14) Variance(ap) = 2) /n

For the simulations, sample means were used, not MLE. 

As a set of values becomes more skewed some loss of ef-

ficiency could be expected because of the use of sample 

means. Asymptotic efficiency of the sample mean of observa-

tions relative to an error free sample mean is given by:

(IV. 15) ARE = iŜ /(k^+k^ap+i3^)

Note from the figures that the small sample efficiency 

rapidly approaches the asymptotic result. Figure IV.5 shows 

the root mean squared error (RMSE) of the sample mean.

population). Also, as censoring decreases, the efficiency

improves.
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Figure IV.2 The efficiency of the sample mean when error 
is present relative to an error free sample 
mean for n=10. Solid lines are asymptotic 
results.

1.1
population eoofflelont of akown« FC.FBQ - 0.5.1.0 0.0.5

Figure IV.3 The efficiency of the sample mean when error 
is present relative to an error free sample 
mean for n=20. Solid lines are asymptotic 
results.
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1.1
population eoofflolont of akownoao + FC:FBQ ■ 0.5,1 O 0.0.5

Figure IV.4 The efficiency of the sample mean when error 
is present relative to an error free sample 
mean for n=40. Solid lines are asymptotic 
results.

population eoofflolont of okownoso 10 + n » 20 o 4̂0

Figure IV.5 The RMSE of the sample mean when error is 
present and n=10. Solid lines are asymptotic 
results.
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The RMSE is given by :

(IV.16) RMSE = [ I (X -a )^/1000]^
i = l “ P

where n is the sample size.

RMSE is an absolute indication of the performance of an

estimator, while efficiency is comparative. For FC,FBQ =

1,1, when data would be 100% censored, RMSE in some cases is

not too bad. For example, when the coefficient of skewness =

0.1 and n = 10, RMSE is about 13%. This means that one knows

fairly precisely what the mean is given this sample, but not

nearly so well as when observations are made without error

(RE about 0.001). An ad hoc 95% confidence interval given by

li ± t(a-l,n-l)cr /Vn gives [0.161 0.303] (where fji and a 
P P P P

are the sample mean and standard deviation respectively, of 

the measurements). Had the data been 100% censored, which is 

likely given the simulation conditions, the most one could 

say about the mean would be that it was less than the detec-

tion limit of 0.256. Moreover, increasing the sample size 

doesn't help much in this case when data is censored, but 

for n = 40, a similar 95% confidence interval when results 

are reported gives [0.201 0.263], a significant improvement.

This point can also be Illustrated by directly compar-

ing censored methods with reporting methods recommended 

here. The asymptotic relative efficiency (ARE) based on MLE 

when all values are reported can be approximated:
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(IV.17) ARE = [«p{‘̂p+‘̂p/2)3/[anj{‘̂^+‘7^/2)]
2

For the POE approximation to X , a = a and |S_ = k + k, am p m m o 1 P
2

+ 8p. The ARE can be determined given a mean and coefficient 

of variation for the population and a value for R.

For censored samples, it is assumed that fi and a are 

estimated using MLE and converted to an estimate of a using 

« = exp(^ + a /2). The variances of n and a are given by 

Cohen(1961b) .

(IV.18) Variance of fi - -a^/nm m m
" 2 Variance of = K(«̂ «)m m m

Covariance of {a fi) = K( a) • a^/nm m  m m m
where the values of the K(*) found in Cohen (1961b) depend 

on the degree of censoring. The variance of can be ap- 

proximated by a propagation of errors argument based on the 

expression for a given above.

(IV.19) Variance of o = â >â [K{fjt )*a^K(o )' o 0 Ai y.  ̂ fi’

+ 2(7 K(Ai_*a )]/n m m m
Figures (IV.6) and (IV.7) show the ARE of the estimate 

for a given above as a function of the fraction which would 

have been censored. Also shown is the ARE of an estimate of 

the mean for a censored sample from a lognormally dis-

tributed population in which the sample contains observation 

error. These are based on MLE for both the censored and 

uncensored samples. These figures show that estimates of the 

mean based on uncensored observations are better than those 

based on censored samples, reinforce what is Intuitively 

obvious, that censoring filters information from data.
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y2

lijcc<

Figure IV.6 The asymptotic relative efficiency for the MLE 
estimate of the mean when error is present, 
comparing censored and uncensored data when 
R = 0.001

O
E

oc<

>r«d fraeflen e«nsor*d A

Figure IV.7 The asymptotic relative efficiency for the MLE 
estimate of the mean when error is present, 
comparing censored and uncensored data when 
R = 1.0.
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As for removing components of variance due to observa-

tion error, the POE expression for the variance of a water
2

quality measurement, when solved for suggests an es-

timator :

(IV.20) |3p = [a^-(r+sap+ta^)]/(t+l)

(IV. 21) 8^ =

The usefulness of (IV.20) as an estimator was studied in the

small sample simulations. Results are summarized in Table

IV. 2. The problem with this estimator, as is true for SIDF

for differences of variance estimators, is the occurrence of
~ 2

negative estimates. The table shows that although jS is
P

unbiased (for large numbers of estimates), a large fraction
- 2

may be negative. Note also the large variance of 8̂ .

C. Monitoring sensitivity

A value of estimating observation error is that it 

allows one to consider the limitations, or sensitivity of a 

monitoring system. Monitoring system sensitivity (MS) could 

be defined simply as the ratio of population variance to the 

variance of observation error:

(IV.22) MS = ffp/â (e)
2

For X normally distributed with mean fi and variance a , 
P P P

and using the POE expression for the variance of X ,m

(IV.23) MS =

= c ^ / [ r  + Slip +

Large values of MS imply that small changes in the mean of a
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Table IV.2 Use of ß as an estimator

n = 10
coef. estimate variance f rac. var.ratio effig^

FC.FBQ skew. pop.var. of est. est.>0 (meas/pop) of
1.0,1.0 0.1 7.32E-05 1.82E-05 0.49 1.48E+02 4.62E-05

1.0 7.78E-04 2.37E-05 0.49 8.20E+00 2.54E-02
5.0 7.27E-04 3.20E-05 0.48 1.05E+01 2.08E-01

0.5,1.0 0.1 7.00E-05 1.83E-05 0.45 1.21E+02 6.84E-05
1.0 6.42E-03 8.56E-05 0.76 1.99E+00 3.05E-01
5.0 2.23E-01 3.62E-01 0.99 l.OlE+00 1.15E+00

0,0.5 0.1 5.43E-04 4.06E-05 0.46 1.12E+01 7.15E-03
1.0 1.llE-01 7.06E-03 1.00 1.06E+00 8.57E-01
5.0 3.44E-I-00 8.15E+01 1.00 9.96E-01 1.19E+00

n = 20
coef. estimate variance f rac. var.ratio effig.

FC.FBO skew. pop.var. of est. est.>0 (meas/pop) of 1
1.0,1.0 0.1 1.73E-04 8.53E-06 0.48 1.49E+02 4.28E-05

1.0 1.08E-03 1.18E-05 0.58 8.55E+00 2.09E-02
5.0 8.32E-04 1.43E-05 0.54 1.16E+01 1.47E-01

0.5,1.0 0.1 1.80E-04 8.62E-06 0.48 1.22E+02 6.31E-05
1.0 7.19E-03 4.38E-05 0.89 2.llE+00 2.43E-01
5.0 2.07E-01 1.22E-01 1.00 1.04E+00 1.08E+00

0,0.5 0.1 1.42E-03 1.92E-05 0.58 1.20E+01 6.57E-03
1.0 1.17E-01 3.05E-03 1.00 1.12E+00 8.09E-01
5.0 3.20E+00 2.89E+01 1.00 1.02E+00 1.05E+00

n = 40
coef. estimate variance f rac. var.ratio effig^

FC.FBO skew. pop.var. of est. est.>0 (meas/pop) of
1.0,1.0 0.1 3.02E-04 4.02E-06 0.52 1.51E+02 4.68E-05

1.0 1.38E-03 4.66E-06 0.72 8.83E+00 2.69E-02
5.0 1.04E-03 5.22E-06 0.67 1.19E+01 1.98E-01

0.5,1.0 0.1 3.15E-04 4.05E-06 0.53 1.24E+02 6.93E-05
1.0 7.85E-03 1.55E-05 0.99 2.20E+00 3.51E-01
5.0 2.09E-01 6.18E-02 1.00 1.06E+00 1.04E+00

0,0.5 0.1 1.40E-03 8.54E-06 0.67 1.20E+01 7.61E-03
1.0 1.17E-01 1.53E-03 1.00 1.12E+00 8.24E-01
5.0 3.19E+00 1.43E+01 1.00 1.02E+00 1.05E+00
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water quality random variable will be detected with high 

confidence. Low values of MS mean that large changes in the 

mean could occur without detection.

This process is easily visualized by considering es-

timates of sample means and variances from the simulation

conditions described above. Typical simulated estimates of 
2

a and /S (the mean and variance of a lognormal distribu-
ir r
tion) are shown in Figures IV.9-IV.12. Figures IV. 9 and 

IV. 10 show insensitive systems, while IV.11 and IV.12 show 

sensitive systems.

Sensitivity which is too poor for a particular manage-

ment objective would presumably result in a shift of 

monitoring resources in an effort to raise the the value of 

MS. This could be done by optimizing the calibration design 

and analyzing more standards and, or unknowns. Specific 

objectives could be related to particular values of MS.

For example, suppose the objective is to state the 

change in the mean of which could be detected with a 

particular power (1-8) and confidence (1-a) given a sample 

size of n. where C is the "critical value" used to reject 

the null hypothesis that the mean has not changed.

(IV.24) P(^p  ̂C given that

has shifted to some value k*A£p)

= 1 - 8

(IV.25) P(^p < C given that has not changed) = 1-a
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Figure IV.8 Simulation result comparing error free mean
with that based on measurements, n « 20, pop. 
coef.skew. ® 0.1, R = 0.001, and FC,FBQ = 1,1,

Figure IV.9 Simulation result comparing error free var-
iance with that based on measurements. n=20, 
pop.coef.skew. = 0.1, R=0.001, and FC,FBQ=1,1



89

Figure IV.10 Simulation result comparing error free mean
with that based on measurements. n = 20, pop, 
coef.skew. = 5, R = 0.001, and FC,FBQ = 1,1.

Figure IV.ll Simulation result comparing error free var-
iance with that based on measurements. n=20,
pop.coef.skew. = 5, R=0.001, and FC,FBQ=1,1.



90

(IV.26) A = - n^)/CoJJn)

The variable A is distributed as a non-central t with n-1 

degrees of freedom and noncentrality parameter , where 

(IV.27)  ̂= Vn(k‘/ip-iip)/ajĵ

= Vn(k-1) p m

Tables (for example see Chemical and Rubber Company, 1985)

provide values of:

(IV.28) 0 = (n/2)^//^(k-l)/ap m

For the sake of Illustration, assume that a water

quality random variable (̂ p) normally distributed with

mean ii =1.0 and variance a = 0.2, and that observations 
P P

are made without error. In this case, MS = «>. Let a = 0.01,

8 = 0.10, and n = 10. Tables of noncentral t show 0 = 3.3.

Solving equation (IV.26) for k gives k = 1.66.

In other words, given the statistical criteria, o and

8, and a sample size of 10, the mean would need to change

from 1.0 to 1.66 before this test would detect it with the

stated confidence and power. With observation error, things

2 2would have to change even more. For MS = 1.0, = 2 * a . I nm p

this case, k = 1.93. Similarly, for MS = 0.1, k = 3.19. In 

other words, the mean would have to shift by a factor of 

3.19 to be detected. Figure IV.12 shows the percent change 

in mean needed [(k-l)*100] vs. MS for = 1.0, = 0.2, a

= 0.01, 8 - 0.10, and various values of n.

The non-central t distribution can be used to relate C

and k for a given n, a, and The non-central distribution

is given by:



This is a simple and very specific example, but it is 

not hard to see how this procedure could be extended to 

other monitoring objectives. For example, one could 

similarly determine the trend magnitude a monitoring system 

is capable of detecting, given n, a, 1-|3, and MS.
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io m entteiing sansltlvlty 
* n m ZO « •O

Figure IV.12 Change in mean necessary before detection by 
a two sample t test with confidencé 0.99 and 
power 0.90 as a function of monitoring 
sensitivity.



V. STATISTICAL ANALYSIS OF CENSORED WATER QUALITY DATA

The previous chapters have presented a case for not 

censoring data. However, there are many existing data 

records which have previously been censored. This chapter 

presents methods for analyzing such data. It should be 

emphasized that if future data is not censored, the type of 

data analysis procedures presented here will not be neces-

sary. Example problems for many of these methods are 

provided in Appendix A. These examples should not be used to 

infer properties of the methods, but serve only to 

demonstrate numerical applications.

A. The censored data problem

When observations fall below (or above) a certain 

limiting level and the actual values below (or above) this 

"limit" are unknown, the sample is said to be type I cen-

sored. When the values of a fixed fraction of a sample are 

not known, it is said to be type II censored. In the former 

case, the censoring level is known and the fraction of 

sample censored is random, while in the latter, the censor-

ing level is random and the fraction censored is known, 

usually in advance of taking the sample. It is routinely
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assumed by the data user that uncensored observations are 

made with high precision.

Type II censoring occurs frequently in life testing, 

where the experiment is terminated after a fixed number of 

deaths. This is important in medical research, and has 

consequently received a great deal of attention. In this 

case, methods derived from order statistics are appropriate, 

and there is a temptation to use those results for type I 

censoring as well. Many methods for type I and type II 

censoring are asymptotically equivalent. However, small 

sample properties of these methods may be quite different. 

Also, the knowledge of the censoring level cannot be used in 

type II methods.

Water quality data with "not detected" (ND) results are 

type I censored on the left. The level of censoring is 

determined by the analytical chemist and is based on the 

confidence with which analytical signal can be discerned 

from noise. Samples taken over time may be censored at 

different levels as changes in analytical technology alter 

the precision of a method. This type of sample is referred 

to as multiply censored.

The statistical literature contains censored data 

analysis procedures useful for virtually every problem found 

in water quality. Many are summarized in several books (Cox 

and Oakes, 1984; Miller, 1981; and Kalbfleisch and Prentice, 

1980) which include worked examples. These methods were 

developed for failure time and survival analysis, which



produces data that is type II censored on the right. Some 

work may be necessary to modify particular methods so that 

they can be used for water quality data. Also, many dis-

tributions found in survival analysis are not commonly used 

for water quality data analysis. The following is a survey 

of censored data methods pertinent to water quality data 

analysis. Modifications for left type I censored data have 

been made. Numerical examples of many, using samples from 

normally and lognormally distributed populations, are 

provided in appendix A. Portions of tables necessary for the 

completion of examples are also provided.

B. Estimation of the mean and variance
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1. Assigning a value to censored observations

"Assigning a value" refers to using a number in place of 

ND, including 0, the detection limit, or a random number. 

The data is then treated as if it were not censored. For 

example, the sample mean and variance includeing these 

assigned values are used to estimate the mean and variance. 

Gilbert and Kinnison(1981) have pointed out that assigning a 

fixed constant, such as zero or the detection limit, 

produces biased estimates. Gilliom and Helsel(1984), in 

extensive Monte Carlo simulations using synthetic water 

quality samples, found assigning a constant less suitable 

than several other estimators. It should not be used unless 

censoring is insignificant; that is, unless the fraction
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Gilliom and Helsel(1984) investigated assigning a 

random number to the censored results. Assignment of normal, 

log-normal, and uniform random numbers were simulated with a 

variety of distributions. For the normal case, normal scores 

are calculated for results above the LOD and plotted on 

normal probability paper. A least squares fit to the normal 

plot is extrapolated into the "less than" region. Values 

were assigned to censored results based on the plotting 

position.

(V.l) Normal Score = F ^[r/(n+l)] 

where F  ̂ is the Inverse normal CDF, and r/(n+l) is the 

plotting position, with r the rank of the given observation. 

Extrapolated values of less than zero are readjusted to 

zero. The method for lognormal numbers is the same except 

that data is log transformed prior to plotting. The method 

for uniform numbers is similar. Random uniform numbers from 

the range of zero to the detection limit are assigned to the 

censored data. Examples of assigning normal, lognormal, and 

uniform random numbers appear in appendix A.l.

censored is small, or the censoring level is much less than

the mean. An example of this method is provided in appendix

A. 1.



2. Estimation of the mean and variance for samples 

from normal distributions with type I censoring
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a. Maximum likelihood estimation (MLE)

Maximum likelihood estimation (MLE) of the mean and 

variance of a type I censored sample from a normal popula-

tion has been studied extensively (Cohen

1957,1959,1961a,1961b; Gupta, 1952; Hald, 1949; Halperin 

,1952). Properties which make MLE desirable are discussed in 

Kendall and Stuart(1979). To summarize, if a single suffi-

cient statistic exists, the MLE is a function of it. If a 

minimum variance bound(MVB) estimator exists, and the MLE 

exists, then the MLE is unique and MVB. For type I censor-

ing, no single sufficient statistic exists. In this case, 

the MLE is not unique, but is asymptotically normal, effi-

cient, and consistent.

The likelihood function (L) for a random sample with 

type I (possibly multiple) censoring on the left is:

(V.2) L - ni=i{F(a^;e)>ni^i/(x,0) 

where the a^ are the set of censoring levels (fixed 

constants), F(x,0) is the population cumulative density 

function (CDF) of X with parameter set 0, :f(x,0) is the

population probability density function (PDF), and r of n 

observations are censored. When the sample is from a normal 

population.
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(V.3) /(x;e) = f{xm,a^) = (27tâ ) % x p {-HI {x~n) / a ]̂  ) ]

then,

(V.4) L «

•exp{-zJ“ Ĵi[ ix^-fi)/a]^}

(V.5) In L « Z^^^ln{F[(a.-//)/ff]} - Ji(n-r)ln(2 no^)-

(V.6) a(lnL)/0;/ = (a.-ii)/a]/{aF[ (a.-/̂ )/(7]}

. -2„n-r, .+ o I^_^(X^-Ai)

= 0

(V.7) d{lnL)/da =  ̂{a .-a/) a"^/[ (a .-;ti)/a ]

/Fl{a^-u)/a] - (n-r)/a + (x̂ -;u )^/a^

= 0

Rearranging equation (V.6) and substituting the sample 

estimates pt and a for p and a gives:

(V.8) p = - [a/{n-r)]l:f[{a^-p}/a]/F[(a^-p)/o]

Similarly, equation (V.7) gives:

(V.9) ¿2 = [S^ + {X^-p)^]{l +

[l/(n-r) ]Z[ (a.-/i)/a]/[ (a .-/i)/a]/F[ (a -̂Ai)/a]} -1

Where Z is the s\im over all censored values, X is the mean c o
2

of the observed values and is the sample variance of the 

observed values:

(V.IO) = 2x^/(n-r)

(V.ll) = Z(x. - X^)^/(n-r)

Because they are not linear functions of the sample, 

finding the solution to (V.8) and (V.9) is an iterative 

process. MLE methods found in the literature may differ 

because of the manner of solution to those equations. Some
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include tables which obviate the need for an iterative 

approach (see Cohen, 1961b). Currently, tables exist only 

for small samples (n < 20). Wolynetz(1979a) has provided a 

computerized solution.

Cohen(1961a, 1961b) has computed the asymptotic 

covariance matrix and efficiency of the MLE estimators. Part 

of his results are reproduced as Figures V.l and V.2. The 

efficiencies of these estimators are relative to uncensored 

samples. The efficiency of the variance estimate 

deteriorates more rapidly than that for the mean. This is 

because the most important observations for the variance, 

one tail, are missing (Saw,1961). Also, [x and a become 

progressively more correlated as censoring increases.

The small sample properties of MLE have not been 

studied extensively. A misleading characteristic with regard 

to small sample estimation is that the variance of the 

estimator actually decreases as the sample becomes progres-

sively (> 50%) censored. This is because there are fewer 

observations to work with and the number of likely outcomes 

actually decreases. Based on a small number of simulations, 

Saw(1961) noted that the MLE was biased for small samples. 

An example of MLE estimation for normal data can be found in 

appendix A.

The covariance matrix of MLE of the mean and variance 

estimates is given by the inverse of the matrix of negative 

second derivatives of the likelihood function with respect 

to each estimated parameter. From Wolynetz(1979a):
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(V.12) Var [fi a] ' =

r -a^ln(L)/3;i^ -d^ln{L) /dfida 1 ^

I -d^ln{L)/dadfi -a^ln(L)/3a^ J 

a^ln(L)/a^^ = -(n-r)/a^ - Z^[(•)/(•)/F{•)

+ y^(•)/F^(•)]/a^

(V.13)

(V.14) a^ln(L)/aa^

Z„{[(•)/(•)/F(•)]^+(•)^/(•)/F(.)}/^^

(V.15) d ln{L) /d(ida /a^ -

Z { ( O ^ / i O / F i O  + i O / ^ i O / F ^ i , ) } / ^ ^c
2

when evaluated at the MLE for n and a , and where ( • ) =

/a.

A class of estimators which are linear functions of the 

sample were developed to overcome the computational dif-

ficulties of the MLE estimates. Some of these have quite 

high efficiencies in comparison with MLE estimators. For 

samples censored at the same fixed point, there is 

Saw(1961):

(V.16) ¡1 = - a/(.)/[l-F(-){f"^-)]}

{l-f(.)/t(l-F(-)f"^(-)> ^

where a is the censoring level, (•) = r/n, f ( •) is the 

standard normal value corresponding to the area r/n, and 

F(«) is approximated by r/n, and r is the number censored 

out of a sample size of n. This is based on a least squares 

approach. The asymptotic efficiency of this estimate is 

within 955fe of the asymptotic efficiency of athe MLE es-

timate.
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Figure V .1 Asymptotic efficiency relative to uncensored 
data for MLE estimation of the sample mean of 
a normal distribution.

O
D*D

froetlon e«n«or̂ d

Figure V.2 Asymptotic efficiency relative to uncensored 
data for MLE estimation of the sample standard 
deviation of a normal distribution.



b. Linear estimators

Persson and Rootzen( 1977) proposed estimators for (i and 

a based on a combination of MLE and the method of moments. 

Starting with equation (V.3) above, approximate F[(a-A<)/a] 

with r/n, then letting r = F ^(r/n),

(V.17) In L = In(^) + rln[F(r)] - X(n-r) ln( 2;:â )

Let - fi = (x̂  - a) + (a-^)

Then approximate {a-fi)/a with z:

(V.18) In L = In(^) + rlnF(r) - H(n-r) ln{ 2k(7̂  ) - 

HZ[(x^ - a + za)/a]^

Maximizing In(L) then results in:

(V.19) = H{[r/(n-r)]E(x^-a) +

{[r/(n-r)]^[Z(x^-a)]^+[4/(n-r)]Z(x^-a)2}j^}

= Ji{F~^r/n) (X^-a) + {[F~^r/n) (X^-a) ] ̂

+ [4/(n-r)]E(x^-a)2}^)

where rml refers to "reduced maximum likelihood". By defini-

tion, (a-fi)/a = T, so approximate the mean by : a - ra

101

rml

'''•2°' 'rml ' « -

Here, “̂rml asymptotically unbiased there-

fore Persson and Rootzen(1977) derived estimators which are

corrected for bias:

(V.21) ^ g2 _ {(n/(n-r))/(r/n)F"^(r/n)

- [n/(n-r)]2[/(r/n)]2}a2^^ 

(V.22) ¡1 = Xq - [n/(n-r)]/(r/n)<7^j^^



The asymptotic efficiency of ix and a are shown in Figures 

(V.l) and (V.2). An example of the use of Persson and 

Rootzen's method can be found in appendix A.l.

4. Estimation of the mean and variance for lognormally 

distributed samples with type censoring 

The two parameter lognormal (LN) distribution has the

PDF:

(V.23) /(x;ii,a) = (2na^x) ^exp{-Ji[(ln x -fjL)/a]̂ }

Where n and a are the expected value and variance, respec-

tively, of y, the transformed variable:

(V.24) Y = ln(x)

Y is normally distributed. The expected value and variance 

of X are given by Aitchison and Brown (1957):

(V.25) o = exp(/i + a^/2)

(V.26) = exp{2/: + <7̂ ) [ exp { )  - 1]

102

a. Estimation of n and a
2

Maximum likelihood estimation of (x and a for the uncensored 

case is equivalent to the normal case except that the obser-

vations are log transformed. The estimates and their 

variances are given by:

(V.27) ¡X = Iln(X^)/n

(V.28) = Z[ln(X^-M3^/(n-l)

(V.29) Var(M = a^/n 

(V.30) Var(^^) = 2a^/n
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Aitchison and Brown (1957) considered several methods 

for estimation from complete samples, and Gilbert and Kin- 

nison (1981) described their use for estimation from cen-

sored samples. The method of quantiles (Aitchison and Brown, 

1957) yields:

(V.31)  ̂= (VgglniXgj) - Vqjln(Xq2)}/(Vq2-Vqi)

(V.32) a = (ln(Xq2 ) " in(Xg^)}/(v^2 ~ v^^) 

where and v^2 quantiles corresponding to percentiles

ql and q2 from the standard normal distribution, and x̂ ^̂  and 

Xq2 sre the sample values corresponding to those quantiles. 

Maximum efficiency occurs when the quantiles are symmetri-

cally placed, then = -v*̂ , and q = q^ = 1 - q2 .

(V.33) ¡1 = Ji(ln(x^_q) + In(Xg)}

(V.34) = îi(ln(x^_g) - ln(Xq)}/Vj_g

The asymptotic efficiencies of (V.33) and (V.34) are 

reproduced from Aitchison and Brown (1957) as Figure V.3. 

Censoring may restrict the choice of q. Optimal choices are 

0.27 and 0.07 for fi and a respectively. Censoring which 

exceeds those values force non-optimal choices of q and 

censoring exceeding 50% forces asymmetric choices of q̂  ̂ and

‘Ï2*
The graphical method (Aitchison and Brown, 1957) con-

sists of plotting the observed points on log probability 

paper. Then,

(V.35) M = ln(x 5q )

(V.36) a = ln{Ji(x_5Q/x^^g + x ^^/x g^)}

where the subscripts refer to percentile values. This method



is risky when more than 16^ of the sample is censored (Gil-

bert and Kinnison, 1981).

2
b. Estimation of a and

MLE, method of quantiles, method of moments, and
2

graphical methods for estimation of o and 8 for the lognor-

mal distribution are described by Aitchison and Brown(1957). 

The MLE estimate due to Finney(1941) requires a computer, as 

a practical matter. Gilliom and Helsel(1984) use MLE to find 

fi and o, and find a and 8 from equations (V.25) and (V.26). 

Similarly, for the methods of quantiles and the graphical 

method for a and 8> one can estimate ii and a and make the 

same transformation. The efficiency of the method of quan-

tiles relative to MLE is shown in Figure V.4. Examples of 

MLE and probability plot estimation for LN data is provided 

in appendix A.l.

C. Goodness of fit tests
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General concepts

Gilbert and Kinnison(1981) point out the importance of 

knowing the underlying distribution before using any dis-

tribution dependent methods.

Water quality random variables are believed by many to 

be lognormally or normally distributed. A goodness of fit 

test is needed for verification. Reasons for this belief are 

based on the distribution of elements in the earth's crust 

(Ahrens,1965), and the distribution of properties affecting
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Figure V.3 A|ymptotic efficiency relative to MLE of and
for a sample from a lognormal distribution 

by the method of quantiles (After Aitchison 
and Brown, 1957).

Figure V.4 A|ymptotic efficiency relative to MLE of o and
for a sample from a lognormal distribution 

by the method of quantiles (After Aitchison 
and Brown, 1957).



106

the movement of substances in the environment (Shaw,1961; 

Vistelius,1960). Gilliom and Helsel(1984) state that sub-

stances subject to similar transport processes will tend to 

have similarly shaped frequency distribution.

More formal studies of the distribution of water 

quality random variables Include Ward and McBride (1984). 

They noted that dissolved oxygen and pH were normally dis-

tributed while flow, fecal coliform and turbidity were log 

normally distributed in the Waikato River at Mercer, New 

Zealand. Gilbert and Kinnison(1981) stated that radionuclide 

concentrations in the environment were log normally dis-

tributed. Gilliom, et.al.(1984) state that the lognormal 

distribution describes the distribution of many water 

quality random variables. Lettenmaier(1982) notes that fecal 

coliform in streams are often log normally distributed. 

Hirsch et.^.,(1982) found total phosphorus to be positively 

skewed and total dissolved solids to be nearly symmetric 

(skewness = 0.07 for 260 observations) for the Klamath river 

in Oregon from 1972 to 1979.

Gilliom and Helsel(1984) studied the distribution of 

trace elements in streams at 482 locations. The coefficient 

of variation ranged from 0.15 to 3.2. The coefficient of 

skewness ranged from -0.8 to 5.2 with a median value of 1.8. 

Six percent of the data sets were negatively skewed. They 

surmised that four parent distributions would adequately 

describe water quality trace elements: lognormal, con-

taminated lognormal, gamma (r), and the delta distribution.
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There Is also a strong argument for particular vari-

ables being left-skewed or symmetric. The concentration of 

trace metals in natural waters is limited on the high end by 

solubility. Such distributions are not uncommon (Skogerboe, 

1986).

The "goodness of fit" problem refers to the testing of:

(V.37) H : F(x) = F ( x )  vs. H : F(x)*F (x)O O 3 0

where F(x) is unknown and F^(x) is a presumed distribution.

If F^ is completely specified, as in "F^ is normally dis-

2 2tributed with a mean of fi and variance a , [N{/z,ct )]", is

referred to as a simple hypothesis. When ti and a must be 

estimated from the sample, is a composite hypothesis.

Goodness of fit tests are selected on the basis of the 

type of hypothesis (simple or composite) to be tested, and 

the alternatives one expects to encounter. A desirable 

property of a goodness of fit test includes high power 

against particular alternatives. Often, no single goodness 

of fit test will be optimal against all possible alterna-

tives, and it may be desirable to use several tests which 

have high power for different alternatives. A scheme for 

testing water quality data for goodness of fit might take 

the form:

1) Test whether the distribution is skewed or 
symmetrical

2) Test symmetric distributions for normal vs. other 
symmetric distributions

3) Test skewed distributions for log-normal vs. other 
skewed distributions

In addition, one might wish to test against F(x) being of
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the same form as but with different parameters. Several 

tests converging on the same conclusion may be taken as 

strong support for a given hypothesis (Ward and McBride, 

1986).

Shapiro, ^.^.(1968) conducted simulations using 

sample sizes from 10 to 50 to assess the power of several 

goodness of fit tests for normality against twelve families 

of alternate distributions. For uncensored data, tests 

suitable for case (1) above include Shapiro-Wilks and skew-

ness tests against long tailed alternatives, and Shapiro- 

Wilks against short tailed alternatives. Gilbert and Kin- 

nison (1981) and others recommend probability plotting. For 

case (2), Shapiro-Wilks, skewness, kurtosis, and the studen- 

tized range are most sensitive to long tailed alternatives, 

while Shapiro-Wilks, kurtosis, and studentized range are 

sensitive to short tailed alternatives (Shapiro, 

^.^.,1968). However, when alternatives become very close 

to normal, (such as T distribution with 10 or more degrees 

of freedom), none of these perform well. The kurtosis test 

for normality may be the best under that circumstance. 

Kolmolgorov-Smirnov(KS) and Cramer-von Mises(CM) perform 

poorly for both case 1 and 2. The chi-squared (CS) test 

performs erratically in that large changes in power occurred 

for relatively minor changes in the alternate distribution.

Case (3) may be the most difficult to assess as little 

is known about the power of commonly used tests when testing 

for log-normal vs. other skewed distributions. One might



proceed by testing log transformed data for normality 

against other log transformed skewed distributions. One 

could note the general form of such distributions, and use 

the guidelines provided for case 2.

Shapiro et.^.,(1968) also evaluated the effectiveness 

of tests intended for simple hypotheses when the parameters 

were misspecified. They found that KS, CM, and CS performed 

very poorly in that minor misspecification of /z and a for a 

normal distribution resulted in a high rate of rejection of 

the null hypothesis. The rate of rejection was comparable to 

cases where the sampled distribution was extremely non-

normal. This led Shapiro, ^.^.(1968) to remark that this 

"throws into doubt their usefulness as practical statistical 

test procedures".

The Shapiro-Wilks test for normality is based on the 

regression of sample order statistics on their expected 

values. A correlation coefficient close to one Indicates a 

good fit. This test has not been modified to accommodate 

censoring, though it is theoretically possible to do so.
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2. Tests for censored data

A few goodness of fit tests have been modified for use 

with censored data, and for most of these, only large sample 

properties have been investigated.



a. Relative quartile range

Gilliom and Helsel(1984) develop means of estimating 

the form of the distribution using the relative quartile 

range (rqr) of the uncensored portion of the sample, and 

they assess the performance of a variety of estimators using 

small samples. Their index is:

(V.38) rqr = ( ,

where and X^^ are the sample 75th and 25th percentiles,

respectively based only on the uncensored portion of the 

sample. This statistic is not used to test a distribution 

related hypothesis, but is Instead used to match sample 

properties with the most efficient estimators for population 

properties (mean, variance, median).
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b. Chi-Squared(CS) test

The CS test is a distribution free test based on the 

statistic:

(V.39) = i:(n^-nP^^)2/nP^.

where n^ are the number of observations out of n falling in 

interval i and P^ is the probability of a given observation 

falling in that interval. The n^ are approximately multi- 

nomlally distributed provided there are at least 5 observa-

tions in each interval (Kendall and Stuart, 1979), and
2

asymptotically normal. The variable x is asymptotically

distributed as chi-squared with k-1 degrees of freedom. The
2 2null hypothesis is rejected if z > » where 1-a isi “ Of y jC“ X

the confidence level of the test.
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For the composite hypothesis, the must be estimated
2

from the data. Under this circumstance, x is chi-squared

with between k-1 and k-s-1 degrees of freedom, where s is

the number of parameters estimated (Kendall and Stuart,

1979). Also, the s parameters must be maximum likelihood

estimates, or asymptotically both normal and efficient

(Larson and Marx,1981). The null hypothesis should be

2 2rejected when x exceeds Shapiro, et.al.(1968)

recommend not using this test for composite hypotheses.

The power of the CS test is a rather complicated func-

tion of the choice of the k intervals. Equi-probable and 

equal size intervals have been examined. Kendall and Stuart 

(1979) recommend equal probability intervals with at least 5 

observations per interval (to preserve the multinomial 

assumption) . The choice of intervals must not be made with 

reference to the sample form. In other words, the null 

hypothesis must be stated prior to inferring the form of the 

distribution from the observations.

The choice of k can be made to maximize power against 

specified alternatives. However, censoring of the sample 

constrains this, and optimal choices may not be available. 

For equi-probable intervals, Kendall and Stuart (1979) 

recommend using:

(V.40) k = b(V2(n-l)/(T^+F"^(P^)

P^ is the (asymptotic) desired power, F is the standard

normal CDF, r = F , ?■ ., and b is a constant between 2 ando (1-a)

4. For example, if P^ = 0.80, a = 0.05, and b = 3, =
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F ^(0.95) -11.64, F (0.80) 0.84, and

3 {V2 (n-1) / (1.64+0.84 ) } = 2.4(n-l)^^®. With the constraint 

that there be 5 observations per class, n > 63 and k - 12. 

If more than about 10% of the sample were censored, this 

choice would not be possible.

Determining the asymptotic power of the test requires 

tables of the non-central CS distribution and specification 

of the alternative distribution (see Patnaik, 1949). Kendall 

and Stuart (1979) recommend testing the deviations (n̂ -̂P̂ ) 

for independence. Regular patterns of deviations may result 

from particular types of violations of the null hypothesis. 

The CS test has been criticized because there is a loss of 

information when observations are grouped.

c. Komolgorov-Smirnov(KS) test

The KS test is based on the statistic:

(V.41) = Sup(|S^(x.)-F^(x.)I), S^(x^) = i/n

Where "Sup" is the superior member, or largest of the ele-

ments in the brackets, S^ is the empirical sample CDF, and 

the Xĵ  are the ordered observations with x̂  ̂ being the smal-

lest. The KS test is distribution free as D^ depends only on 

differences between expected and observed CDF's. Because all 

observations are considered, more sample Information is used

than with the CS test. H is rejected when D exceedso n

d(o,n). Tables of d(a,n) can be found in CRC (1985). The KS 

test is consistent against any alternative and is more 

powerful than CS for continuous distributions, requiring
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about as many samples to achieve the same power

(asymptotically) as the CS test. For the composite case,

where location and scale parameters must be estimated,

will depend on the form of but not its parameters and the

test is therefore not distribution free. Not much is known

about the distribution of d for this case (Kendall anda

Stuart, 1979).

Barr and Davidson (1973) modified the KS statistic to 

accommodate right type I censored data. For a simple 

hypothesis,

(V.42) = sup(|Sj^(x.)-F^(x^) I ,

|Sn (T)-F^(T)I)

where T is the censoring level, and F^(T) is the fraction

observed of sample size N under H . Here S„(x.) = i/N, S„{T)o N 1 N

= (l+j)/N, and x^ is the largest uncensored observation. The 

determination of D„ _ is different from that of D„ for the 

uncensored case in that there are fewer comparisons. Tables 

of Djj ^ for N < 25 and F^(T) < 1 prepared by Dufour and Maag 

(1978) are reproduced as Table V.l. Generally, full sample 

KS table values are greater than those for censored samples. 

Dufour and Maag (1978) provide approximate formulas for 

sample sizes greater than 25:

(V.43) D.'M T « “ - 0.19/NN , T , a T , a

for 0.01 < a < 0.20 and F (T)  ̂0.25o
*

where is the asymptotic value for d which can be found

in Table 1 of Koziol and Byar (1975), which is reproduced as



For left censoring,
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Table V.2. For this paper, truncation is equivalent to type

I censoring.

(V.44) °N,T = sup{|Sj,(x^)-F^(x.)|,

|Sjj(T)-F^(T)|}

where Sjj(T) = (j-l)/N, and x^ is the smallest uncensored

observation. When using tables, let F^(T) = 1 - F^(T^),

where F^(T^) is that calculated for right censored data. The 

power of this test can be found from a formula given by 

Steck (1971).

d. Cramer-von Mises(CM) test

The CM statistic is based on the same principle as KS, 

that is, deviations of the sample CDF from the hypothesized 

CDF. The basic form for uncensored data is (Durbin and 

Knott, 1972):

(V.45) = nj^(Fj^(x) - FQ(x)}^dFQ(x)

or alternatively,
2 ^ 2 

(V.46) W = Z [(i-)i)/n - F(x,)] + l/(12n)n i=l
where empirical (sample) CDF. Pettitt and

Stephens(1976) modified this to accommodate right type I 

censoring:

(V.47) = Z^^j[(2i-l)/2n - F^(x^]^ - R(4R^-1)/(12n^)

+ nF^(T)[R^/n^ - F^(T)R/n + F^(T)^/3] 

where the sum is from 1 to R, and R is the number of uncen-

sored observations, F (x. ) *= i/n, F (T) is the value of theo i o



CDF at the right censoring level under and is the i

ordered observation.
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th

Pettitt and Stephens(1976) tabulated percentage points 
2

of W for the simple asymptotic case where the fraction 
P

censored is 1-P. Pettitt(1976) tabulated percentage points 
2

of pW for the normal composite case for the asymptotic
2

solution, and W for sample sizes less than 100. Theser n

tables are reproduced as Table V.3.

For left censoring the sum is taken from i = r+1 to i =

n where x is the smallest uncensored observation. Also, r

replace F^(T) with 1 - F^(T) so that it will continue to 

reflect the fraction observed under H^. Examples of the 

goodness of fit tests described in this section can be found 

in appendix A.2.

D. Two sample tests

The two sample test refers to comparisons between 

separate samples. Comparisons may be made on the basis of a 

distribution or a particular parameter. Goodness of fit 

tests may be modified to test whether two samples have come 

from the same distribution. For example, Hollander and 

Wolfe(1973) describe the use of the KS test for comparing 

two unknown distributions when data is left censored at the 

same fixed point, and the censoring level is less than the 

smallest uncensored observation. Censored data is considered 

tied for this application.
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Table V.l Significance points for D 
(After Dufour and Maag, 1978) N,T'

Significance level a
N I 0.15 O-l 0.^ 0.025 0.^

10 0.1 0.1358 0.1608 0.2135 0.2403 0.3070
0.2 * 0.2234 0.2693 0.3192 0.3663
0.3 0.2583 0.2935 0.3155 0.3564 0.4169
0.4 0.2992 0.3114 0.3570 * 0.4388
0.5 0.3090 0.3378 0.3855 0.4151 0.4631
0.6 0.3260 0.3546 * 0.4309 0.4775
0.7 0.3359 0.3636 0.4005 0.4392 0.4850
0.8 0.3402 0.3673 0.4061 0.4439 0.4883
0.9 0.3422 0.3686 0.4088 0.4455 0.4889

1 0.3425 0.3687 0.4092 0.4456 0.4889

0.2 a = 0.2534 d = 0. 20" a = 0.1460 d = 0.20^
0.4 0.0276. 0.40 0.0215 0.40^
0.6 0.0504 0.40~ 0.0433 0.40

15 0.1 0.1138 0.1300 0.1721 0.1936 0.2398
0.2 0.1805 * 0.2198 0.2577 0.2959
0.3 0.2164 * 0.2652 * 0.3345
0.4 0.2399 * 0.2943 0.3319 0.3635
0.5 0.2568 0.2814 0.3134 0.3472 0.3818
0.6 0.2688 0.2921 0.3292 0.3573 0.3965
0.7 0.2779 * 0.3336 0.3652 0.4003
0.8 0.2805 0.3028 0.3358 0.3670 0.4027
0.9 0.2823 0.3037 0.3375 0.3678 0.4042

1 0.2823 0.3040 0.3376 0.3679 0.4042

0.2 a = 0.1143 d = 0.200" a = 0.0791 d = 0.200^
0.3 0.0278 0.300 0.0230 0.300^
0.3 0.1182 0.233 0.0944 0.233|r
0.4 0.1003 0.267 0.0857 0.267^
0.7 0.1019 0.300" 0.0970 0.300
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Table V.l (continued)

20

25

0.1 0.1015 0.1152 0.1475 0.1672 0.2041
0.2 0.1525 0.1695 * 0.2189 0.2575
0.3 0.1888 0.2024 0.2336 0.2575 0.2947
0.4 0.2075 0.2280 0.2563 0.2858 0.3168
0.5 0.2244 0.2462 0.2744 0.3006 0.3353
0.6 0.2359 0.2541 0.2857 0.3116 0.3457
0.7 0.2424 0.2607 0.2914 0.3174 *
0.8 0.2451 0.2636 0.2935 0.3198 0.3515
0.9 0.2458 0.2646 0.2941 0.3206 0.3524

1 0.2459 0.2647 0.2941 0.3206 0.3524

0.2 a = 0.0549 d = 0.20'~ a = 0.0433 d = 0.20^
0.7 0.0101 0.35' 0.0096 0.35

0.1 » 0.1048 0.1266 0.1497 0.1811
0.2 0.1403 0.1591 0.1755 * 0.2268
0.3 0.1692 0.1826 0.2107 0.2316 0.2617
0.4 0.1885 0.2038 0.2330 0.2554 0.2846
0.5 0.2018 * 0.2471 0.2707 *
0.6 0.2110 0.2294 0.2560 * 0.3103
0.7 0.2177 0.2343 0.2608 0.2856 0.3141
0.8 0.2198 0.2371 0.2634 0.2872 0.3163
0.9 0.2206 0.2376 0.2640 0.2879 0.3166

1 0.2207 0.2377 0.2640 0.2879 0.3166

0.1 a = 0.1913 d * O.IO'" o = 0.1155 d = 0.10^
0.2 0.0278 0.20 0.0240 0.20^
0.5 0.1028 0.22 0.0965 0.22^
0.5 0.0109 0.30' 0.0099 0.30^
0.6 0.0264 0.28' 0.0249 0.28

Points of discontinuity; the exact probabilities (a) and 
critical points (d) are given at the end of the table 
for each N.
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Table V.2 Percentage points for the Kolmogorov-Smirnov 
statistic for censored data. (After Koziol 
Byar, 1975)

TA»Lt I—Percentage points for the cumulative <iislrU>ution G t  of the truncated Kolmogorov^SminiOv statisic Dt jor ivunc". 
<»on Urn« T sr

CunuLATIVE 
PuoiA»1 CITY

Tr uncat ion ti ne

.1 0 .2 0 .3 0 .9 0 .5 0 .6 0 .7 0 .80 .90 1 .0 0

0 .0 1 0 0 .1 5 8 7 0 .2 2 3 2 0 ,2 7 1 7 0 .3 1 1 5 0 .3 9 5 9 0 .3 7 9 7 0 .3 9 9 9 0 .9 2 0 9 0 .9 3 6 2 0 .9 9 1 0
0 .0 2 5 0 .1 7 6 1 0 .2 9 7 3 0 .3 0 0 6 0 .3 9 9 1 0 .3 8 1 0 0 .9 1 2 5 0 .9 3 9 9 0 .95 1 2 0 .97 6 9 0 .9 8 0 6
0 .0 5 0 0 .1 9 3 8 0 .2 7 1 8 0 .3 2 9 0 0 .3 7 7 1 0 .9 1 6 8 0 .9 5 0 9 0 .9 7 8 5 0 .50 1 1 0 .5 1 5 0 0 .5 1 9 6
0 .1 0 0 0 .2 1 8 2 0 .3 0 5 9 0 .3 7 0 0 0 .9 2 1 9 0 .9 6 5 2 0 .50 1 9 0 .5 3 1 1 0 .559 0 0 .56 8 3 0 .5 7 1 2
0 .15C 0 .2 3 7 6 0 .3 3 2 1 0 .9 0 1 5 0 .9 5 7 1 0 .5 0 2 9 0 ,5 9 0 9 0 .5 7 1 5 0 .59 9 5 0 .50 8 2 0 .6 1 0 5
0 .2X 0 .2 5 5 0 0 .3 5 5 9 0 .9 2 9 7 0 .9 8 8 3 0 .5 3 5 3 0 .5 7 5 6 0 .60 6 9 0 ,530 0 0 .6 9 2 8 0 ,6 9 9 8
0 .2 5 0 0 ,2 7 1 6 0 .3 7 8 5 0 .9 5 6 2 0 .5 1 7 6 0 .5 5 7 5 0 .5 0 7 9 0 .6 3 9 8 0 .66 2 6 0 .57 9 8 0 ,6 7 6 9
0 .3 0 0 0 .2 8 7 8 0 .9 0 0 5 0 .9 8 2 0 0 .5 9 6 0 0 .5 9 7 5 0 ,6 3 9 1 0 .6 7 1 3 0 .693 8 0 .70 5 9 0 .7 0 5 7
0 .3 5 0 0 .30iil 0 .9 2 2 5 0 .5 0 7 8 0 .5 7 9 3 0 .5 2 7 5 0 .6 6 9 9 0 .7 0 2 3 0 .72 9 5 0 .73 5 3 0 .7 3 6 5
O.WO 0 .3 2 0 7 0 .9 9 9 9 0 .5 3 3 9 0 .6 0 2 9 0 .6 5 7 6 0 .7 0 0 8 0 .7 3 3 3 0 .755 1 0 .76 5 2 0 .7 6 5 2
0 .K50 0 .3 3 7 9 0 .9 6 8 1 0 .5 6 0 8 0 .6 3 2 2 0 .6 8 8 5 0 .7 3 2 3 0 .7 5 9 9 0 .78 5 3 0 .7 9 5 6 0 .7 9 6 9
0 .5 0 0 0 ,3 5 5 9 0 .9 9 2 3 0 .5 8 8 9 0 .S627 0 .7 2 0 9 0 .7 6 9 9 0 .7 9 7 5 0.8183 0 .8 2 7 0 0 .8 2 7 6
0 .5 5 0 0 .3 7 5 0 0 .5 1 8 0 0 .6 1 8 5 0 .5 9 9 9 0 .7 5 9 1 0 .7 9 9 2 0 .8 3 1 5 0 .851 8 0 .85 9 7 0 .8 6 0 2
0 .6 0 0 0 .3 9 5 6 0 .5 9 5 5 0 .6 5 0 3 0 .7 2 9 3 0 .7 8 9 9 0 .8 3 5 6 0 .8 5 7 8 0 .88 7 2 0 .8 9 9 9 0 .8 9 9 8
0 .6 5 0 0 .9 1 8 1 0 .5 7 5 5 0 ,6 8 9 9 0 .7 6 6 5 0 .8 2 8 7 0 .8 7 9 8 0 ,9 0 5 8 0.9259 0 .9 3 1 8 0 .9 3 2 1
0 .7 0 0 0 .9 9 3 1 0 .6 0 8 8 0 .7 2 3 1 0 .8 0 7 8 0 .8 7 1 5 0 .9 1 8 0 0 .9 9 9 5 0 .96 7 3 0 .97 2 9 0 .9 7 3 1
0 .7 5 0 0 .9 7 1 9 0 .6 9 6 5 0 ,7 6 6 3 0 .8 5 9 9 0 .9 1 9 5 0 .9 6 6 5 0 .9 9 7 5 1.0192 1 .01 9 0 1 .01 9 2
0 .8 0 0 0 .5 0 9 5 0 .6 9 0 5 0 .8 1 6 8 0 .9 0 8 5 0 .9 7 5 6 1 .02 2 9 1 .053 3 1,0687 1 .072 7 1 .07 2 7
0 .8 5 0 0 ,5 9 9 9 0 .7 9 9 3 0 .8 7 3 9 0 ,9 7 9 6 1 .0 9 3 8 1 .09 1 9 1 .12 0 8 1 .139 8 1 ,13 7 9 1 .1 3 7 9
0 .9 0 0 0 .5 9 3 5 0 .8 1 5 5 0 .9 5 9 7 1 .0 6 1 5 1 .1 3 3 9 1 .18 1 3 1 .20 9 9 1 .221 5 1 .22 3 8 1 .2 2 3 8
0 .9 5 0 0 .6 8 2 5 0 ,9 2 6 8 1 .0 8 6 8 1 .1 9 7 5 1 .2 7 3 1 1 .32 1 1 1 .3 9 7 1 1 .356 8 1 .35 3 1 1 .3 5 8 1
0 .9 7 5 0 .7 5 8 9 1 .0 2 8 2 1 .2 0 2 9 1 .3 2 0 9 1 ,3 9 9 7 1 .9 9 7 6 1 .97 1 7 1 .9799 1 .98 0 2 1 .9 8 0 2
0 .9 9 0 0 .8 5 1 2 1 .1 5 0 5 1 .3 9 1 9 1 .9 6 9 6 1 .5 5 2 0 1 .5 9 9 6 1 .6 2 1 9 1 .627 2 1 .6 2 7 6 1 .6 2 7 5
0 .9 9 5 0 .9 1 5 7 1 .2 3 6 1 1 .93 9 9 1 .5 7 3 5 i;658 3 1 .70 5 6 1 .725 8 1 .7306 1 .730 8 1 .73 0 8
0 .9 9 9 1 .05 2 3 1 .9 1 7 1 1 .6 9 5 6 1 .7 9 3 1 1 .8 8 2 8 1 .92 9 2 1 .996 9 1.9999 1 .99 9 5 1 ,999 5
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Table V,3 Percentage points for the Cramer-von Mises 
statistic for censored data. (After Pettit 
and Stephens, 1976; and Pettit, 1976).

Percent-
age

Table 1. Percentage points of p 

Value of p

points 0-50 0-55 0-00 0-05 0-70 0-75 0-80 0-85 0-90 0-95
1 0-0080 0-0095 0-0112 0-0130 0-0149 0-0167 0-0187 0-0206 0-0211 0-0240
2-5 00101 0-0120 0-0141 0-0163 0-0186 0-0210 0-0233 0-0250 0-0250 0-0294
5 0-0120 0-0150 0-0170 0-0202 0-0230 0-0258 0-0286 0-0312 0-0314 0-0356

10 0-0160 0-0197 0-0230 0-0204 0-0298 0-0333 0 0367 0-0399 0-0426 0-0450
60 0-0530 0-00)9 0-0707 0-0793 0-0877 0-0957 0-1030 0-1093 0-1147 0-1178
90 0-1890 0-2153 0-2407 0-2045 0-2861 0-3048 0-3205 0-3327 0-3412 0-3402
95 0-2579 0-2931 0-3209 0-3581 0-3861 0-4102 0-4298 0-4446 0-4548 0-4599
97 5 0-3295 0-3742 0-4107 0-4558 0-4906 0-5201 0-5439 0-5616 0-5733 0-5791
99 0-4271 0-4847 0-5393 0 5891 0-0330 0-0701 0-6997 0-7212 0-7352 0-7419

Table 1. Asymptotic percentage points o f Cramir-von Mises statistics for 
testing normality with censored data

0)* =

a p =  0-5 p =  0-75 p = 0-9 p = 0-75 p =  0-85
\

p =  0-95
0-50 0-017 0-035 0-045 0-019 0-033 0-046
0-bo 0-032 0-003 0-082 0-037 0-001 0-083
0-90 0-037 0-073 0-094 0-044 0-070 0-095
0 95 0-046 0-089 0-114 0-055 0-087 0-116
0-975 0 054 0 105 0-135 0-006 0-104 0 138
0-90 0-005 0-127 0-163 0-081 0-120 0-166

Table 2. Empirical percentage points o f rl?’« based on 6000 samples
for  n < 60 and 2000 samples for n > 60

(a) Percentage points of

95 %  point 90 % point
f-------

r 0-9n r ~ 0-75n r = 0-5n
r

r =; 0-9?i r = 0-75n r =
>

0*5n
n JIL o ML o ML G SIL G ML G ML G

20 0-092 0-100 0-071 0 078 0-043 0-048 0-070 0-081 0-058 0-062 0-034 0-034
40 0-095 0-102 0-073 0-082 0-044 0-048 0-078 0-083 0-060 0-065 0-035 0-035
60 0-095 0-101 0-073 0-081 0-044 0-048 0-079 0-083 0-060 0-005 0-036 0-036
80 0-093 0-100 0-071 0-083 0-048 0-048 0-078 0-084 0-060 0-058 0-038 0-036

100 0-095 0-100 0-073 0-082 0-047 0-047 0-082 0-085 0-062 0-065 0-038 0-037
00 0-114 0-089 0-Q46 0-094 0-073 0-037



Often, in water quality, one is concerned with testing 

whether a random variable from one location exceeds that 

from another. One way to accomplish this is to compare 

sample means and their confidence intervals using the 

methods of section V.B. Another more general method is to 

test non-parametrically whether a sample from one distribu-

tion tends to exceed that from another.
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I,- Halperin's extension of the Wilcoxon-Mann-Whitney test

Halperin(1960) proposed an extension of the Wilcoxon-

Mann-Whitney test to samples censored at the same fixed

point. The test considers the case where independent samples

of size n and m are taken from populations with CDF's

denoted by Gy(y) respectively. Observations

greater than some point T (or less than, in the case of

detection limit censoring) are not observed. The number of

observations censored from F and G are denoted r and r ,n m
respectively. The null hypothesis is that the samples come 

from identical populations versus the alternative that F 

exceeds G. That is,

(V.48) H

H

Fjj(z) = Gy(z) vs.

Fĵ (z) > Gyiz)

The test is carried out as follows.

Arrange all (n-r^) and (m-r ) uncensored samples in 
ascending order.

- Compute = [(m-r ) / 2 ] * ( 2 n + l + m - r ) - S  c m  m

S = sum of ranks of the uncensored Y's in 
the sequence of all uncensored 
observations.
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Reject H for U  ̂U (a, o c c

where U (a) can be found for small sample sizes (n and mw

both less than 8) and test sizes 0.05 and 0.01 in tables

from Halperin(1960). These tables, partially reproduced as

Table V.4, provide upper tail areas when censoring is on the

left. For large samples, is approximately normal with
2

mean ¡î and variance a The following formulas can be used
2

to calculate n and a , and standard normal tables can then c c

be used to conduct the test.

(V.49) n - m*n*(m+n-r)•(m+n+r-1)/[2•(m+n)•(m+n-1)]
2
= m*n*(m+n-r)•(A+B+C-D)/[4•(m+n)]

A = [(m+n-r)^-l]/[3{m+n-l)3

B = (m-1)(m+n-r-1){n + (2n+l)r/(m+n+2) +

r(r-l)(n-l)/[(m+n-2)(m+n-3)])/(m+n-1)

C = n+(2n+l)r/(m+n-1) + r(r-l)(n-1)/[(m+n-1)(m+n-2)]
2 2D = mn(m+n-r)(m+n+r-1) /[(m+n)(m+n-1) ]

where r = r + r .m n

The statistic U is identical to the Wilcoxon-Mann-c

Whitney U statistic plus a correction for ties equal to the

product of the number of uncensored Y's and censored X

observations. The test was shown by Halperin( 1960) to be

consistent. That is, as m and n tend to infinity, the

probability that U is in the critical region when H isc d

true approaches 1. No assumptions are made as to the form of 

F and G. Other properties of the test have not been 

published.
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Table V.4 Percentage points for Halperin's two sample 
statistic for censored data (After Halperin, 
1960) .

(n-=6)

r/m 1 2 3 4 5 6 7 8

0 0(.1-13) 0(.03C) 2(.018) 4(.057) 5(.041) 7(.047) 9(.051) 11 (.054)
1 0(.143) 0(.03G) 2(.048) 4(.057) 5(.041) 7(.047) 9(.051) 11 (.054)
2 0(.2SG) 0(.03G) 2(.018) 4(.0G2) 5 (.013) 7(.049) 9(.052) 11 (.050)
3 0(.4L’ 9) 0(.107) 2(,000) 3(.048) 5(.052) 7(.055) 9(.058) 10(.045)
4 0(.o7l) 0(.214) 0(.048) 2(.043) 4 (.043) 6(.048) 8(.050) 10(.052)
5 0(.714) 0(.357) 0(.119) 2(.071) 3 (.033) 6(.037) 7(.041) 9(.045)
6 0(.857) 0(.53G) 0(.238) 0(.071) 2(.039) 5(.04G) 6(.042) 8(.042)
7 0(.750) 0(.417) 0(.1C7) 0(.04o) 3(.0o3) 5(.0ol) 7(.043)
8 0(.CG7) 0(.333) 0(.121) 0(.030) 4(.054) C(.048)
9 O(.GOO) 0(.273) 0(.091) 3(.070) 4 (.039)

10 0(.545) 0(.227) 0(.070) 3(.055)
11 0(.500) 0(.192) 0(.055)
12 0(.4G2) 0(.165)
13 0(.429)

(n -7 )

r/m 1 2 3 4 5 6 7 8

0 0(.125) 1(.056) 3(.058) 5(.055) 7(.053) 9(.051) 11 (.049) 13(.047)
1 0(.125) K.050) 3(.058) 5(.055) 7(.053) 9(.051) 11 (.049) 13(.047)
2 0(.250) 0(.028) 2(.042) 5(.0G1) 7(.057) 9(.05G) 1K.051) 13(.048)
3 0(.375) 0(.083) 2(.058) 4(.052) 6(.047) 8(.044) 11 (.057) 13(.053)
4 0(.500) 0(.1G7) 0(.033) 3(.038) 6(.059) 8(.052) 10(.051) 12(.047)
5 0(.625) 0(.278) 0(.083) 2 (.045) 5(.052) 7(.050) 9(.045) 12(.05G)
6 0(.750) 0(.417) 0(.167) 0(.045) 3(.045) G(.049) 8(.047) 11 (.055)
7 0(.875) 0(.583) 0(.292) O(.IOG) 3(.071) 5(.053) 7(.045) 10(.054)
8 0(.778) 0(,4G7) 0(.212) 0(.071) 3(.055) 6(.051) 8(.044)
9 0(.700) 0(.382) 0(.159) 0(.049) 4(.059) 7(.050)

10 0(.036) 0(.318) 0(.122) 0(.035) 4(.044)
11 0(.583) 0(.2G9) 0(.09G) 0(.02G)
12 0(.538) 0(.230) 0(.077)
13 0(.500) 0(.200)
14 0(.4G7)

(n-8)

r/m 1 2 3 4 5 6 7 8

0 O (.lll) K.044) 3(.042) G(.055) 8(.047) 11 (.054) 13(.047) 16(.052)
1 O (.lll) K.044) 3(.042) 6(.055) 8(.047) 11 (.054) 13(.047) 16(.052)
2 0(.222) l(.OGO) 2(.053) 5(.040) 8(.050) 10(.043) 13(.049) 16(.055)
3 0(,333) 0(.0G7) K.042) 5(.047) 7(.041) 10(0.49) 13(.054) 15(.047)
4 0(.444) 0(.133) 0(.024) 4(.047) 7(.051) 9(.043) 12(.050) 15(.054)
5 0(.55G) 0(.222) O(.OGl) 3(.051) G(.051) 8(.042) 11 (.040) 14(.050)
G 0(.6G7) 0(.333) 0(.121) 0(.030) 5(.051) 8(.055) 10 (.04 5) 13(.051)
7 0(.778) 0(.4G7) 0(.212) 0(.071) 3(.044) 7(.054) 9(.050) 12(.054)
8 0(.889) 0(.G22) 0(.339) 0(.144) 0(.044) 4(.047) 8(.053) 10(.047)
9 0(.800) 0(.509) 0(.255) 0(.098) 4(.070) 5(.045) 9(.051)

10 0(,727) 0(.424) O(.IOG) 0(.070) 4(.051) 8(.057)
11 0(.6G7) 0(.359) 0(.154) 0(.026) 4(.038)
12 0(.G15) 0(.308) 0(.123) 0(.038)
13 0(.571) 0(.2G7) O(.IOO)
14 0(.533) 0(.233)
15 0(.500)
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2. Gehan's extension of the WiIcoxon-Mann-Whitney

Gehan(1965) extended the Wilcoxon test to situations 

which include type I, type II, and multiply censored samples 

when both samples have the same type of censoring. The test 

statistic is computed by comparing all possible pairs of 

samples drawn from the two population. For left censoring,

(V.50) W = SÛ .̂, i  ̂ j.

13
= -1 for ^i

or

uncensored < uncensored 

censored < uncensored

= 0 for *i uncensored = Yj uncensored

or *i and Y^ both censored

or ^i censored > Y^ uncensored

or X.
1
uncensored < Y^ censored

= +1 for ^i uncensored > Yj uncensored

or ^i uncensored > Y , censored 
J

There are nm possible comparisons. The statistic W reduces 

to Halperin's(1960) U when both samples are censored at the 

same fixed point. The statistic W is asymptotically normal 

with mean zero and variance equal to:

(V.51) Var(W) = nm{Zk^K^_^(K^_j+1) + H^K^(K^+1)

+ Zk^(n+m-K^-L^_^)(n+m-3K^_^-k^-L^_^-l)}

/[(n+m)(n+m-1)]

The above sums are from 1 to the number of uncensored obser-

vations .

Kj = Zk^

^ 3 - ill

where the sums are from 1 to j.
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= number of uncensored observations at 
rank i In the ordering of distinct 
uncensored observations

Ij. = number of left censored observations 
with values less than observations at 
rank 1 but greater than observations at 
rank 1 + 1.

For left censored data with no ties among the uncensored 

observations, all k^ = 1 (then K̂. = j) and 1̂  = 0. The 

normal approximation can be used for both n and m  ̂ 5, and 

at least four of the 10 observations uncensored 

(Gehan, 1965) . Tables for n and m up to 8 and a - 0.01 and 

0.05 are provided by Haseman and Hoel(1974) and partially 

reproduced as Table V.5. W is also consistent (Gehan, 1965). 

Examples of Halperin's and Gehan's two sample tests can be 

found in appendix A.3.

E. Tests for trend

1̂. General concepts

There are many methods available for detecting trends 

in censored data. Tests for independence in which one vari-

able is time may also be used as a test for independence 

between two samples. The following section contains a 

description of the most well known methods. Many are recent 

developments and there has not been much work which compares 

them under conditions often encountered with water quality 

data. Also, few of these methods are computationally simple, 

and a computer is often required.



Table V.5 Percentage points for Gehan's two sample
statistic for censored data (After Haseman and 
Hoel, 1974).

"2 "
7

E / B j  1 2 € 3 1 5 1 I

1.1 0 0 . 1 2 9 0 0 . 0 2 8 0 0 . 0 0 8 1 0 . 0 0 6 3 0 . 0 0 9 4 0 . 0 0 7 6 0 . 0 0 9 7 0 . 0 0 7
1 0 . 0 9 6 1 0 . 0 1 7 2 0 . 0 1 2 4 0 . 0 1 5 5 0 . 0 1 1 7 0 . 0 1 3 8 0 . 0 1 0

2 0 . 0 3 3 4 0 . 0 3 6 6 0 . 0 3 7 8 0 . 0 3 7 11 0 . 0 4 9 13 0 . 0 4 7
3 0 . 0 9 8 5 0 . 0 5 5 7 0 . 0 5 3 9 0 . 0 6 1 12 0 . 0 6 4 14 0 . 0 6 0

2 0 . 9 0 . 2 9 0 0 . 0 2 8 0 0 . 0 0 8 1 0 . 0 0 6 3 0 . 0 0 9 4 0 . 0 0 7 6 . 9 0 . 0 0 9 7 . 5 0 . 0 0 7
1 . 5 0 . 0 8 3 1 0 . 0 1 7 2 0 . 0 1 2 4 0 . 0 1 4 5 0 . 0 1 0 7 0 . 0 1 3 a 0 . 0 1 0

2 . 5 0 . 0 4 2 5 0 . 0 4 8 7 0 . 0 4 9 9 0 . 0 4 8 11 0 . 0 4 7 1 3 . 5 0 . 0 4 9
3 0 . 0 9 5 . 5 0 . 0 6 1 7 . 5 0 . 0 5 7 9 . 5 0 . 0 5 4 1 1 . 9 0 . 0 5 1 14 0 . 0 5 8

3 1 0 . 3 7 9 1 0 . 0 8 3 0 0 . 0 0 8 2 0 . 0 0 9 3 0 . 0 0 8 4 0 . 0 0 6 6 0 . 0 0 9 7 0 . 0 0 7
2 0 . 0 3 3 3 0 . 0 2 1 4 0 . 0 1 5 5 0 . 0 1 1 7 0 . 0 1 3 8 0 . 0 1 0
3 0 . 0 9 8 4 0 . 0 3 3 6 0 . 0 3 5 8 0 . 0 3 6 11 0 . 0 4 8 13 0 . 0 4 7

5 0 . 0 5 5 7 0 . 0 5 2 9 0 . 0 5 0 12 0 . 0 6 3 14 0 . 0 5 9
4 1 . 9 0 . 9 2 0 . 1 6 7 1 . 5 0 . 0 3 3 0 0 . 0 0 3 3 0 . 0 0 5 5 0 . 0 0 9 6 . 9 0 . 0 0 9 8 0 . 0 0 9

4 0 . 0 8 3 2 . 5 0 . 0 1 5 3 . 5 0 . 0 1 0 5 . 5 0 . 0 1 2 7 0 . 0 1 1 8 . 5 0 . 0 1 1
4 . 5 0 . 0 3 9 7 0 . 0 4 0 9 0 . 0 4 1 11 0 . 0 4 1 1 3 . 5 0 . 0 4 9
5 . 5 0 . 0 5 2 7 . 5 0 . 0 5 6 9 . 5 0 . 0 5 3 1 1 . 9 0 . 0 5 2 14 0 . 0 5 4

9 2 0 . 6 2 9 3 0 . 2 7 8 3 0 . 0 8 3 2 0 . 0 1 5 3 0 . 0 0 8 5 0 . 0 0 9 6 0 . 0 0 8 8 0 . 0 0 9
5 0 . 0 4 5 4 0 . 0 1 4 6 0 . 0 1 6 7 0 . 0 1 2 9 0 . 0 1 3
6 0 . 0 7 6 7 0 . 0 4 5 9 0 . 0 4 5 11 0 . 0 4 6 13 0 . 0 4 4

8 0 . 0 6 4 10 0 . 0 6 3 12 0 . 0 5 9 14 0 . 0 5 7
6 2 . 9 0 . 7 9 4 0 . 4 1 7 4 . 5 0 . 1 6 7 4 0 . 0 4 5 2 . 5 0 . 0 0 8 4 . 5 0 . 0 0 8 7 0 . 0 0 9 8 0 . 0 0 7

7 . 5 0 . 1 0 6 6 0 . 0 2 7 5 . 5 0 . 0 1 1 7 . 9 0 . 0 1 3 8 . 5 0 . 0 1 0
7 0 . 0 4 5 9 . 5 0 . 0 4 3 1 1 . 9 0 . 0 4 4 1 3 . 5 2 . 0 4 5
8 0 . 0 6 4 10 0 . 0 6 0 12 0 . 0 5 3 14 0 . 0 5 0

7 3 0 . 8 7 9 5 0 . 9 8 3 6 0 . 2 9 2 6 0 . 1 0 6 5 0 . 0 2 7 3 0 . 0 0 4 7 0 . 0 0 8 8 0 . 0 0 8
9 0 . 0 7 1 7 0 . 0 1 6 8 0 . 0 1 0 9 0 . 0 1 1

9 0 . 0 4 1 11 0 . 0 3 9 13 0 . 0 3 8
10 0 . 0 5 3 12 0 . 0 5 1 14 0 . 0 5 0

8 6 0 . 7 7 8 7 . 5 0 . 4 6 7 8 0 . 2 1 2 7 - 5 0 . 0 7 1 6 0 . 0 1 6 3 . 9 0 . 0 0 2 9 . 5 0 . 0 0 8
1 0 . 5 0 . 0 4 9 8 0 . 0 1 0 10 0 . 0 1 2
1 1 . 5 0 . 0 8 2 12 0 . 0 4 3 14 0 . 0 4 8

13 0 . 0 5 1 15 0 . 0 6 1
9 9 0 . 7 10 0 . 3 8 2 10 0 . 1 5 9 9 0 . 0 4 9 27 0 . 0 1 0 9 0 . 0 0 7

14 0 . 1 2 2 12 0 . 0 3 5 10 0 . 0 1 3
13 0 . 0 5 9 15 0 . 0 4 8

16 0 . 0 6 1
10 1 12 0 . 6 3 6 1 2 . 5 0 . 3 1 8 12 0 . 1 2 2 1 0 . 9 0 . 0 3 5 8 0 . 0 0 7

16 0 . 0 9 6 1 3 . 5 0 . 0 2 6
1 4 . 5 0 . 0 4 4
1 5 . 5 0 . 0 6 3

11 15 0 . 5 8 3 15 0 . 2 6 9 14 0 . 0 9 6 12 0 . 0 2 6
18 0 . 0 7 7

12 18 0 . 5 3 8 1 7 . 9 0 . 2 3 1 16 0 . 0 7 7
13 21 0 . 5 0 0 20 0 . 2 0 0
14 24 0 . 4 6 7

to
cn



This section is arranged in order from the most general 

to the most specific types of tests. The most general tests 

are non-parametric and distribution free. These include rank 

tests for independence in time. More specific tests are 

parametric and distribution free. Tests for trend of this 

type estimate a slope parameter and consider the hypothesis 

that the slope is significantly different from zero. No 

assumption is made regarding the distribution of random 

fluctuations. More specific are tests for trend which assume 

a particular distribution for the error term. Examples of 

many of these may be found in appendix A.4.

2. Rank methods

Rank methods for trend have been derived from rank 

tests for independence, where one of the covariates is timé. 

Rank methods rely on the rank of a result relative to the 

other observations rather than its actual value. Data cen-

sored at the same fixed point are considered to be "tied" in 

rank. Assigning ranks to multiply censored data presents a 

problem. The following is a description of several rank 

methods for censored data.
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a. Mann-Kendall test

The Mann-Kendall 

hypothesis :

(V.52)

vs. H

test for trend considers

H^: Data are randomly distributed in time

the

Data are not randomly distributed in time
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This is a non-pararaetric hypothesis test. The Mann-Kendall 

statistic is computed as follows:

1) Arrange all observations in order of occurrence

2) Count the number of times Xĵ  < X^, where k and 1 are 

the time indices, for all k < 1

The total count, Mann's T, is asymptotically normal under 

with mean n(n-l)/4 and variance n(n-l)(2n+5)/72. The 

asymptotic approximation is sufficient for sample sizes 

larger than 10. Tables for smaller sample sizes can be found 

in Mann(1945). The table values are found by computing T for 

all permutations of n distinct values, and calculating the 

mean and variance of the T values.

If data are censored at the same fixed point, and the 

censoring level is the smallest value of the data set, 

consider all censored results to be tied. Then compute:

(V.53) E(T) = n(n-l)/4 - r(r-l)/4

Var(T) = n(n-l)(2n+5)/72 - r(r-1)(2r+5)/72 

where r is the number of tied observations. This test as-

sumes that the samples are independent. It is consistent and 

unbiased for the situation where the probability of X^ > X̂. 

for any pair (i,j) is H- When there are no ties, the 

asymptotic efficiency of T relative to a test of sig-

nificance of the slope in a linear trend, given normally 

distributed errors, is 98%.(Kendall and Stuart, 1979).

The Mann-Kendall test is based on Kendall's K statis-

tic. This statistic is computed as:

(V.54) K = 2 sgn(Xj-Xj^) for all j k.
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= +1 for Xj >

= 0 for Xj =

= -1 for Xj < Xĵ

K is asymptotically normal with a mean of 0 and variance of

n(n-l)(2n+5)/18. Tables for small samples (n<40) are 

provided by Hollander and Wolfe(1973). Both Mann's and 

Kendall's test are similar to a sign test in that the rela-

tive position of two observations, and not the magnitude of 

their difference is considered. These tests are similar to 

Spearman's p which takes into account the relative dif-

ference in ranks between two observations. The p statistic 

is equivalent to a linear correlation coefficient based on 

ranks.

b. Hoeffding's test

Hoeffding's test considers more alternatives to random-

ness than do Mann's, Kendall's, or Spearman's tests. It 

considers the hypothesis (Hollander and Wolfe, 1973):

(V.55) H^: P(X S X and Y  ̂y) = P(X s x)P(Y s y)

for all X and y. The test statistic (D) is calculated as 

follows:
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(V.56) D = [Q - 2(n-2)R + (n-2)(n-3)S]

/[n(n-D(n-2)(n-3)(n-4)]

n is sample size, = rank of ” rank of ,

c. = number of pairs (X , Y ) where (X < X.) and

(Ya < Y^)
,n= Za^,«(XaX,).0(YaY,)

0(u,v) = 1, if U < V

= 0 otherwise 
n

Q = Z(r^-l)(r,-2)(s.-l)(s^-2) 
i=l  ̂ ^ ^ ^
n
I(r^-2)(s^-2)Cj

i=l
n

S = Zc^(c^-l)
i=l

The statistic D is distributed as d(a,n), tables of which 

are provided by Hollander and Wolfe(1973). When there are 

ties, use average ranks (of the tied observations) and

recalculate ĉ :̂
,n

(V.57) c^ = Z“=l^^^a^i^^^^a^i^ '

0(u,v) = 1, if U < V

= a if u = V 

= 0 otherwise

For large samples (n > 9), use B instead of D where B = D + 

l/(36n) and is distributed as b(a). Tables for b(a) can also 

be found in Hollander and Wolfe(1973). Reject H^ if ;r̂ nB/2 > 

b(a) .
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c. Seasonal Kendall test

For X = rXji . . . XjJ

IXnl
• I

• =‘npJ
n * number of years of data, p = number of seasons per year 

R = matrix of ranks, where ranks are assigned separately to 

each season. Ties are assigned midranks.

(V.58) = [n + 1 +^isgn(Xjg-X^g)]/2

Compute a Kendall statistic for each season.

(V.59) Sg = sgn(Xjg-X^g), g = 1,2

S' is asymptotically normal with mean 0 and

(V.60) variance = . , g # hg g *'g,h g,h

where = [n(n-l)(2n+5)-l”  ̂t,(t .-1)(2t .+5))/18

This test is robust against serial correlation, non-

normality, and censoring. However, it requires large samples 

(the author recommends 10 years of monthly data). An earlier 

test, (Hirsch 1982) is better for small samples (say

two years of monthly data) but is not robust against serial

correlation. The earlier test assumes that a , - 0. Agh
Fortran listing for this test can be found in Crawford, 

(1983). Power curves for the earlier test with 

censoring can be found in Hirsch (1982).

Rank tests are simple to apply. Small sample statistics

can easily be calculated by hand. Large samples require no



special tables (except for Hoeffding's statistic). Even 

though information is said to be lost by the use of ranks, 

some are asymptotically highly efficient. A disadvantage of 

rank tests arises with multiply censored data or when there 

are observations smaller than censored observations. When 

this occurs, there is no simple way to assign ranks, e.g., a 

result of "< 5" is not necessarily larger than a result of 

"2" or one of "< 2".

3. Distribution free parametric methods for censored data

The following methods, developed for survival and 

failure time analysis, make no assumptions about censored 

data being tied. In addition, parameter estimates for a 

linear (or higher order) model are provided. (A "seasonal 

slope estimator" is described for the rank test developed by 

Hirsch 1982).

The problem in the linear case is to determine whether 

the slope estimate for a linear trend model is significant. 

We have:

(V.61) Y = XB + e , e « IID(0,cr̂ )

X = fl T] . B' = [B^

= (t̂ , d } are observed, 

d = 0 for censored data, and 1 otherwise
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Y is the n X 1 vector of observations coded by d̂ ,̂ and X is 

the n X 2 design matrix. When testing for a linear trend in 

time, T is a vector of times of observation, and e is a 

vector of Independently distributed random fluctuations.
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a. Miller estimators

Miller estimators are described in Miller(1981) . The 

slope and intercept are estimated using weighted, uncensored 

data. The weights depend on the "product limit" (PL) es-

timate, which is the empirical CDF for a censored sample. 

For left, type I censored data, the PL estimator is defined 

as:

(V.62) F(i) = n^:J[j/{j+1)]^^, 

where j is the rank of the observation, F(n) is defined as 

1.0, and the smallest observation is always defined as 

uncensored (for purposes of calculating F(i)). Note that 

jumps in the PL estimator do not occur at censored observa-

tions. Miller(1981) proposed that 

(V.63) /(B^)

be minimized with respect to B. Here, the w^ are the jumps

in the PL estimator based on residuals of the previous

estimate of B. That is, the PL estimator is based on jumps

in the empirical (PL) CDF of Z, where

(V.64) = Y. - b^ - b^X.

and b^ and b^ are estimates of B^ and B^, respectively.

Because the order of the z. are not affected by b , one can1 o
use:

(V.65) z^ = - b^X.

The process of minimizing (V.63) "can be tedious" 

(Miller, 1981). A modified procedure is suggested. As an 

initial estimate of B, use ordinary least squares (OLS) for 

the data which is not censored. Then subsequent estimates
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are given by:

.2(V.66) = Iw^yi(x.-X^)/Ew.(x^-X^)

bo = Zw^(yi-B^X^)

where = Z^w^x^, and the subscript u refers to uncensored 

observations.

The ranks and therefore the of the sample are func-

tions of bĵ . For censored observations, the PL estimate of 

F(i) does not change and the are zero. One iterates until 

a stable solution is obtained. There may be situations where 

the iteration oscillates between two values. Miller recom-

mends using their average when this occurs. The variance of 

bĵ is given by:

(V.67) Var(b^) = Zw^(y^-b^-x^b^)/Zw^(x^-X^)^

b. Buckley-James estimator

The Buckley-James estimator (Buckley and James, 1979) 

replaces censored observations with:

(V.68) Y^(bj) = bjX^ +

where the sum is over all Zĵ  < z^, and F(Zĵ ) is as before 

(PL estimate for the residuals). Then, b^, b^, and Var(b^) 

are then estimated using ordinary least squares (OLS), where 

the data consists of uncensored Y values and Y values from 

equation (V.68).

4. Maximum likelihood for normally distributed data

The maximum likelihood solution to the linear model is 

analogous to that for estimating the mean and variance of a
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distribution. From equation (V.2), the likelihood function 

for a censored sample is:

(V.69) L «c -nj^iFia^)

ln(L) « ZiZiln[f(Y^)]+Z^^^ln[F(a^)] 

where r is the number of censored observations, and â. is 

the censoring point of the j censored observation. For the 

normal distribution,

(V.70) /(Y^) = (2;:a^)"^exp{-Ji[ (Y.-B^-BjX^)/a]^}

= Jf(Yi)dy,

where the integral is from -<» to a^ then.

(V.71) aln{L)/3B,

(V.72) 8ln(L)/3B,

(V.73) aln(L)/3a

- Z^[/(•)/F(•)]/a = 0

- Zc[X^/(-)/[F(.)]/a = 0

= -{n-r)/a + Z^(Y^- B^-B^X^ ) ̂/cr'

- Zc[(-)/(*)/F(*)}]/a = 0

where u refers to uncensored and c to censored observations, 

and (.) = (a^-B^-B^X^)/a.

The covariance matrix of parameter estimates is given 

by the inverse of the matrix of negative second derivatives 

of the likelihood function with respect to each estimated 

parameter. From Wolynetz(1979b):
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(V.74) Var [b  b 
o  1

a]> =

l̂n(L)/3B̂^ -a l̂n(L)/3B̂ 3B̂ -a l̂n(L)/3B̂

l̂n(L)/3B̂aB̂ -a l̂n(L)/3B̂^ -a l̂n(L)/3B̂

l̂n(L)/a<7aB„ -al̂n(L)/aa3B, -a l̂n(L)/3CT̂

(V.75)  âln(L)/3B̂  ̂= -(n-r)/â - Ê[(-)/(*)

/F(-)+/̂(-)/F̂(*)]/â

(V.76)  âln(L)/5B̂  ̂=

-  {X̂[(.)/(•)/F(•)(•)/F̂{•)]}

(V.77) âln{L)/a(T̂ = -Iu(Yi-Bo-B̂ X̂ )̂ /â-(n-r)/(T2

- Zj.{[ (•)/{• )/F(-)]̂+(-)̂/(-)/F(-)}/â

(V.78) a ln(L)/aB â(7

- Ẑ{( • )̂/( • )/F( • ) + ( • )/̂( • )/F̂( . ) )/<7̂

(V.79) a IniD/aB âa ■z X, (Y.-B -B,X. )/a' i' 1 o 1 a'

- Ẑ(X̂[( • )̂/( • )/F( • )M • )/̂{ • )/F̂( • ) ]}/cT̂

(V.80) a in(L)/aB,aB = 1 o -z X,/(t‘i

- Zc{X̂[(-)/{*)/F(-)+X̂/̂(-)/F̂-)]}/tT̂

Methods for solving this set of equations include a 

Newton-Raphson approach (Nelder and Wedderburn, 1972), a 

modification of this approach termed "iteratively re-

weighted least squares" (IRLS) (Stirling, 1984), and 

expectation-maximization  (EM)  (Dempster 1977; 

Wolynetz, 1979b; Schmee and Hahn, 1979).

a. IRLS

The IRLS approach is based on:

(V.81)  = (X'(«)“̂X'î

(V.82) i = g - [ainL(Y)/a73]/(âlnL/a73̂)
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*  2 2 W is diagonal with elements -3 lnL(y^)/3rj

2 = XB

For censored data,

(V.83) = 7j^-a[/(.)/F(-) + (-)]"^

(V.84) w, =

(V.85) 2̂

For uncensored data,

= y

(V.86) = 1/a^

The solution is iterative, as successive estimates of 8 

result in new values for Z. A usual initial estimate is that 

obtained from OLS using only uncensored observations, 

b. Expectation maximization (EM)

The EM method is OLS with censored observations 

replaced by:
*

(V.87) = new Y for censored observation

= E{Y^/y.<a.)

= - aZ[/(.)/F(•)]/{n-r),

= bo + b^X^ - .)/F(•)

This method is also Iterative, as successive solutions to jŜ
*

from the normal equations result in new estimates for Y . 

Wolynetz(1979b) has provided a fortran program for its 

solution assuming a normal distribution. This method is 

analogous to the distribution free method of Buckley and 

James, with known / and F replacing that of the PL estimator 

(Miller, 1981).
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5. Comparisons

Stirling (1984) found that the IRLS method converged 

faster than the EM method. Miller and Halperin (1982) com-

pared several distribution free methods. They concluded that 

the Buckley and James method was the most reliable for the 

linear model. The method of Miller (1976) had methodological 

weaknesses related to the censoring pattern. Censoring 

patterns for water quality data tend to be heavily con-

centrated on the low end, while that for survival data tends 

to be more random. Though theoretical justification for the 

Buckley-James model is lacking, its usefulness has been 

justified by Monte-Carlo simulations.

McLeish(1983) stated that the Buckley-James method was 

a poor minimizer of the objective function (equation V.63). 

They suggest a modification of the Miller method.

Schmee and Hahn (1979) have developed a method of 

regression analysis for censored data in which data is 

grouped to form subsamples. For example, if there are 

several years of data, with several samples per year, one 

estimates the mean level for each year (using a method for 

censored data). Annual mean values are then regressed 

against time.

Zeger and Brookmeyer (1986) developed a method for 

regression analysis with serially correlated censored data 

which combines elements of MLE estimation for censored data 

with likelihood considerations for autoregressive models.



VI SUMMARY AND CONCLUSIONS

A . Summary

Water quality management relies on information obtained 

from monitoring systems. For a variety of reasons, there is 

a great deal of concern with chemical substances which are 

present at levels too low to be measured precisely. Some of 

this concern is a consequence of poorly understood human 

health risks posed by many of these substances. It is widely 

believed that significant risk is incurred by any exposure. 

It has been suggested (Dowd, 1986) that drinking water 

standards be based on the ability of a measurement system to 

detect. A second aspect of this concern is a result of 

management's desire to obtain as much usable Information as 

possible for a given amount of monitoring resources. This 

may mean spatially extending a monitoring network far from a 

point source. On a time scale, earliest possible detection 

is implied.

Obtaining information from a monitoring system which is 

operating at the fringes of analytical capabilities is not 

straightforward. This thesis is a discussion of the kinds of 

concerns one should have when statistically analyzing water 

quality data from such a system. Two general approaches are
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discussed. The traditional approach is to regard all 

measurements as precise or imprecise. Precise results are 

simply numerical responses, for which statistical analysis 

may lead to valid and sound monitoring information. Im-

precise results are reported as "ND", or not detected, with 

criteria for reporting based on categories of measurement 

precision. Data records which contain both precise and 

imprecise results may be analyzed using methods developed 

for censored data.

There are several problems with regarding data as ND or 

a single numerical result. One is that definitions of the 

limit of detection are not, nor indeed can be, standardized. 

What is deemed sufficient precision for one purpose may not 

be for a different purpose. Such a definition should be 

limited in purpose to its role as one of the fundamental 

performance characteristics of an analytical method. In this 

context, a standard definition, such as the lUPAC defini-

tion, makes sense in that it allows fair comparison between 

different analytical methods.

More generally, one should view all measurements as 

having some degree of imprecision rather than categorize 

data into distinct groups. Here, one attempts to consider 

all Information produced by the measurement system. This 

includes, in addition to a numerical result, some estimate 

of data quality as well. This practice has been recommended 

by the American Chemical Society (1980).
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A second problem with reporting ND is that data users 

may be mislead into thinking that measurements which are 

reported are made with high precision. This may or may not 

be the case. It was shown that data below the LOD does not 

resemble the population which was being measured. In this 

regard, censoring achieves its purpose. However, it was also 

shown that results between the LOD and LOQ may also not 

resemble the population from which they were taken. Report-

ing all results plus the observation error helps to 

eliminate misinterpretations of this variety.

Finally, a third problem with censoring is that it 

filters information from data. This is intuitively obvious, 

and is demonstrated for the example of estimating a mean 

from a set of measurements. It was demonstrated for the 

problem of trend detection by Gilliom (1984).

There are a variety of options for analyzing data for 

which observation error has been estimated. In this thesis, 

a noise model was used which is appropriate for measurements 

made near limits of detection. Models of this sort are 

useful for focusing error reduction efforts. In the case of 

measurement error, calibration design is one area where data 

precision can be Improved at low cost.

It is conceivable that such a model could also be used 

for more than illustrative purposes. Data analysis would be 

improved if it were demonstrated that an error model ac-

curately described actual data. For example, better use 

could be made of methods like SIDF in an effort to get at



141

population parameters as opposed to descriptions of the 

population of measurements. For real data, however, many 

factors which influence data precision are not constant,

i.e., the measurement system cannot be assumed to be in a 

state of statistical control. Reasons for this abound, 

including data which are generated by more than one 

laboratory, and changes in measurement technology or 

procedures. There is an effort being made to deal with some 

of these problems. (For example, see Buonaccorsi, 1986b).

The influence of calibration design and some aspects of 

the statistical structure of measurements (as opposed to the 

population) are discussed. Measurement system - population 

combinations can be characterized as dominated by observa-

tion error, or relatively error free. It was shown that 

information can be obtained from systems which would be 1005K 

censored with current practices. In addition, two methods 

for including observation error in an estimate of population 

variance are described. These are based on the POE estimate 

of variance and Satterthwaite's method as described by 

Gaylor and Hopper (1969).

Some additional uses can be made of this type of infor-

mation. Monitoring systems can be classified according to 

their ability to detect changes in water quality. Sensitive 

systems are capable of detecting slight changes, while 

insensitive systems are dominated by observation error. 

Systems with low sensitivity produce results which are 

distributed differently from the underlying population.
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For moderate degrees of insensitivity, subtracting 

components of variance due to observation error will produce 

good estimates of population variance, reducing the size of 

a confidence or tolerance interval. Subtracting components 

of variance is not useful for highly insensitive systems 

because of the high variance of the estimators used and the 

likelihood of negative variance estimates. Consideration of 

monitoring system sensitivity can lead to quantitative 

estimates of the magnitude of change they are capable of 

detecting.

To be useful, estimates of observation error must 

include all the sources of uncertainty in a monitoring 

system. It would be straightforward to develop a model for 

total error by including terms for sampling and sample 

preparation error.

Sometimes there is no choice but to use methods for 

censored data. When using these methods, it should be kept 

in mind that there can be significant observation error in 

the numbers which are reported. Also, many of these methods 

are sensitive to the underlying distribution. This refers to 

the distribution of measurements

While many methods are available, their properties for 

water quality applications have not been studied or compared 

to any great extent (with the exception of methods discussed 

by Gilliom and Helsel (1984) and Kirsch ^.^.(1982)). Also, 

the point of censoring should depend on the eventual use to 

be made of the data.



B. Conclusions

The following conclusions are supported by this thesis.

Water quality data should not be censored 

Censoring presumes that nothing is known about results 

below the censoring level (usually the LCD) and that all 

results above the LCD are reliable. Neither of these hold 

for water quality data.

2. Water quality results are probability statements

Information from water quality analyses are random 

variables. These include values which are descriptions of 

the measurement system, such as the LCD, LOQ, and relative 

error. It is usually not sound, from a data analysis 

perspective to regard them as constant.
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3. Water quality measurements differ from the population

Observation error can significantly alter the statisti-

cal properties of a water quality random variable. Data with 

significant observation error will have statistical 

properties characteristic of the error.



4. Estimate monitoring system sensitivity

The ability of a monitoring system to achieve its objec-

tives can be limited by system error. A quantitative assess-

ment should be made of the impact of this error on statisti-

cal data analysis.

5. Methods for previously censored data are available

The literature contains methods for censored data and 

for many water quality statistical problems. These methods 

are useful when data has previously been censored and no 

information regarding such results is available. Some 

modification of published methods may be necessary due to 

differences between survival or failure time data and water 

quality data.

C. Recommendations
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1. Report all results (do not censor)

The task of obtaining information from water quality 

would be simplified and improved if data were not censored. 

This requires that standard samples in the neighborhood of 

the LOD be analyzed.

The possibility of misinterpretation of an imprecise 

result can be reduced by careful presentation of monitoring 

information. The key is to keep in mind that analytical 

results are probability statements and should be presented 

as such.



2. Estimate and report observation error

Estimating the sources and magnitude of observation 

error serves several purposes. Identification of sources of 

uncertainty can properly focus efforts to reduce error. 

Secondly, when estimates of observation error are available, 

statistical methods which make use of this type of informa-

tion can be used. This can lead to improved monitoring 

information.

Finally, Information regarding observation error 

enables assessment of a monitoring system with regard to 

monitoring objectives. It is difficult to conceive of a 

monitoring system which is capable of meeting its objectives 

when this type of information has not been provided.

Estimates of observation error due to measurement can 

be extracted from the calibration information. Estimates of 

other sources of error may require additional effort and 

cost.
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3. Apply above results to data which is consistent with the 
statistical characteristics of water quality data

Most of the discussion in this thesis is limited to 

independent samples from normal or lognormally distributed 

populations. In water quality, one must often deal with 

other distributions and seasonally or serially correlated 

data.



4. Study properties of methods for censored data

This thesis reviews a number of statistical methods 

which can be useful for water quality data with results of 

ND. However, the discussion is necessarily brief. Most of 

these have not been critically evaluated or compared. Excep-

tions include the methods evaluated by Gilliom and Helsel 

(1984) and by Hirsch (1982). Before other methods can

be used reliably, their properties in situations representa-

tive of water quality problems should be the subject of 

further study. For example, it would be useful to compare 

the many tests for trend which are available.
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D. Closing discussion

There is a need to statistically analyze water quality 

data in order to meet the evolving information needs of 

water quality management. Consequently, a discussion of 

observation error in monitoring systems in general, and of 

analytical error near LCD's in particular, is needed. Infor-

mation users and producers should communicate more closely 

regarding water quality objectives. Information users should 

be concerned about data precision. Analysts should adhere to 

recommendations regarding the reporting of precision es-

timates, especially when imprecision is unavoidable.

Water quality managers have not created much demand for 

this type of information for a number of reasons. The cost
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of an adequate quality assurance program can exceed the cost 

of analysis associated with monitoring alone. However, even 

a minimal quality assurance and quality control effort, 

combined with calibration results, would provide useful 

information. It should be noted that money spent on a 

monitoring system which fails to meet its objectives is 

money wasted. Data records which contain only ND's are not 

uncommon, and do not relate much information about the 

process being monitored. Data records which contain impreci-

sion that has not been acknowledged may lead to false in-

ferences, wasted expense, and embarrassment (Skogerboe and 

Koirtyohann, 1976).

In addition, there is a lack of statistical methodology 

which takes into account data precision. Information 

produced by an active quality assurance effort is not often 

utilized in a systematic fashion. It is not uncommon to see 

an analysis repeated because the result did not match the 

expectations of the data user, rather than for any objective 

criteria. As such, additional work is needed to evaluate a 

system error approach to reporting laboratory results and 

its ultimate usefulness in statistical analysis. The poten-

tial to improve water quality information generated by a 

monitoring program appears promising and worthy of addi-

tional research. Hopefully, this thesis will further enhance 

a dialogue concerning information needs and monitoring 

objectives between water quality managers and the analysts 

who generate the data.
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Appendix A. Numerical examples for censored data methods

A.l Estimation of the mean and variance from censored 
samples

.1 Assign zero or the detection limit 

.2 Assign uniform random numbers 

.3 Assign normal random numbers 

.4 Assign lognormal random numbers

.5 Maximum likelihood for normally distributed data 

.6 Linear estimator for normally distributed data 

.7 Maximum likelihood for lognormally distributed data 

.8 Probability plot for lognormally distributed data

A.2 Goodness of fit tests for censored samples

.1 Chi-squared 

.2 Kolmogorov-Smirnov 

.3 Cramer-Von Mises

A.3 Two sample tests for censored samples

.1 Halperin's extension of Wilcoxon-Mann-Whitney 

.2 Gehan's extension of Wilcoxon-Mann-Whitney

A.4 Tests for trend

1 Mann and Kendall's rank tests
2 Hoeffding
3 Miller estimators
4 Buckley-James
5 Iteratively reweighted least squares
6 Expectation maximization
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A.l Estimation of the mean and variance from censored 
samples

Appendix A.l contains numerical examples of methods 

which can be used to estimate the mean and variance of 

censored samples. The purpose of the examples is to il-

lustrate the use of the methods described in Chapter V. The 

data used are shown in Table A.l. Set 1 was generated from a 

normal distribution with a mean and variance of 5, and was 

used in examples A.1.1, A.1.2, A.1.3, A.1.4, A.1.5, and 

A.1.6. Set 2 is simply the natural log of set 1 and was used 

in examples A.1.7, and A.1.8.

Table A.l

Set 1 Set 2

6.27 1.84
7.18 1.97
<5 <1.61
<5 <1.61
5.14 1.64
<5 <1.61
6.03 1.80
<5 <1.61
<5 <1.61
<5 <1.61
<5 <1.61
<5 <1.61
7.65 2.03
<5 <1.61
<5 <1.61
8.33 2.12
10.36 2.34
<5 <1.61
5.19 1.65
5.75 1.75
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A,1.1 Assign zero or the detection limit

Data set 1 in Table A.l.
Method Introduced on page 94 of text

Result Assign 0 Assign

6.27 6.27 6.27
7.18 7.18 7.18
<5 0.0 5.0
<5 0.0 5.0
5.14 5.14 5.14
<5 0.0 5.0
6.03 6.03 6.03
<5 0.0 5.0
<5 0.0 5.0
<5 0.0 5.0
<5 0.0 5.0
<5 0.0 5.0
7.65 7.65 7.65
<5 0.0 5.0
<5 0.0 5.0
8.33 8.33 8.33
10.36 10.36 10.36
<5 0.0 5.0
5.19 5.19 5.19
5.75 5.75 5.75

estimate of sample mean;

61.9/20 = 3.10

estimate of sample variance:

= 13.54

116.9/20 = 5.85

= 2.14

Note that these methods are biased in that zero is too small 
for all of the censored points, and five is too large. The 
properties of this method when used for multiply censored 
data have not been studied.
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A.1.2 Assign uniform random numbers

Data set 1 in Table A.l.
Method introduced on page 95 of text

Result Uniform(0,5)Random Number New Data Set

6.27 6.27
7.18 7.18
<5 2.78 2.78
<5 0.74 0.74
5.14 5.14
<5 4.92 4.92
6.03 6.03
<5 2.82 2.82
<5 1.26 1.26
<5 2.44 2.44
<5 0.71 0.71
<5 2.04 2.04
7.65 7.65
<5 4.78 4.78
<5 2.32 2.32

8.33 8.33
10.36 10.36
<5 4.81 4.81

5.19 5.19
5.75 5.75

estimate of sample mean = 91.52/20 

= 4.58

estimate of sample variance = 7.06

The properties of this method when used for multiply cen-
sored data have not been studied.



This method is introduced on page 95 of text. Figure A.l is 
a normal probability plot of the data. Normal scores were 
assigned using equation V.l on page 95 of the text. "New 
results" are the ordinate corresponding to a normal score of 
Figure A.l.
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A.1.3 Assign normal random numbers

Data set 1 in Table A.l.

Result Ordered Results Normal Score New Result Assign

6.27 <5 -1.665 -1.539 0.0
7.18 <5 -1.311 -0.325 0.0
<5 <5 -1.067 0.51 0.51
<5 <5 -0.878 1.16 1.16
5.14 <5 -0.713 1.72 1.72
<5 <5 -0.565 2.23 2.23

6.03 <5 -0.432 2.69 2.69
<5 <5 -0.303 3.13 3.13
<5 <5 -0.179 3.56 3.56
<5 <5 -0.060 3.96 3.96
<5 <5 0.060 4.38 4.38
<5 5.14 0.179
7.65 5.19 0.303
<5 5.75 0.432
<5 6.03 0.565

8.33 6.27 0.713
10.36 7.18 0.878
<5 7.65 1.067
5.19 8.33 1.311
5.75 10.36 1.665

slope of probability plot = 3.428

Intercept of probability plot = 4.169

estimate of sample mean = 85.24/20 = 4.26

estimate of sample variance = 8.41

The properties of this method when used for multiply cen-
sored data have not been studied. Multiple censoring may
present .a problem with ranking. Also note that "new results"
of less than zero are reassigned zero.

Wolynetz (1979a) provides a computer program which
computes /( •)/[l-F(-)] (the reciprocal of the Mills' ratio),
where i(•) and F(*) are values of the PDF and CDF, respec-
tively, for a standard normal distribution, and (•) is the
normal score . This program can be used to find normal scores
for this method. One can choose (•) , compute /(•)/[1-F(•)]
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with the program, solve for F(*) and compare the result with 
r/(n+l), incrementing (•) until program values agree with 
the chosen {♦)•



This method is introduced on page 95 of text. Figure A.2 is 
a normal probability plot of the log transformed data. 
Normal scores were assigned using equation V.l on page 95 of 
the text. "New results" are the ordinates corresponding to 
normal scores of Figure A.2.
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A.1.4 Assign lognormal random numbers

Data set 1 in Table A.l.

Natural Log 
of Result Ordered Results Normal Score New Result

1.84 <1.61 -1.665 0.75
1.97 <1.61 -1.311 0.91

<1.61 <1.61 -1.067 1.03
<1.61 <1.61 -0.878 1.12
1.64 <1.61 -0.713 1.20

<1.61 <1.61 -0.565 1.27
1.80 <1.61 -0.432 1.33

<1.61 <1.61 -0.303 1.39
<1.61 <1.61 -0.179 1.45
<1.61 <1.61 -0.060 1.50
<1.61 <1.61 0.060 1.56
<1.61 1.64 0.179
2.03 1.65 0.303

<1.61 1.75 0.432
<1.61 1.80 0.565
2.12 1.84 0.713
2.34 1.97 0.878

<1.61 2.03 1.067
1.65 2.12 1.311
1.75 2.34 1.665

slope of probability plot 
Intercept of probability plot

new sample mean (of logs) 
new sample variance (of logs)

= 0.471 
= 1.532

= 1.533 
= 0.176

transformation to population mean and variance: 

a = exp(1.533 + 0.176/2) = 5.06

6^ * exp(2-1.533 + 0.176)•[exp(0.176)-1] = 4.92

Multiple censoring may present a problem with ranking. Also 
note that "new results" of less than zero cannot occur.
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normal score

u>o

Figure A.l Normal probability plot

normal score

Figure A.2 Lognormal probability plot
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A.1.5 Maximum likelihood for normally distributed data

Data set 1 in Table A.l, n = 2 0 ,  r = l l ,  n-r = 9 
This method is based on equations V.8 - V.ll (page 97)

iteration
= 61.89/9
= 6.88

S2 = 23.17/9o = 2.57

(a-ii}/a =(5.00-6.88)/0.219 = -1.175

/[(a-^)/a] = 0.200 F[(a-Ai)/CT] = 0.120

2) 1 = X^-(ar/(n-r) )/( {a-^)/a)/F( (a-l) ia)

= 6.88-{l.60)(11/9)(0.200/0.120) = 3

(a-fi) /a =(5.00-3.62)/!.60 = 0.861

/[ {a-̂ i)/a] = 0.275 F[{a-n)/a] - 0.805
‘2a = [S^+(X^-ii)^]{l + [r/(n-r)][(a-M/a] 

•/[ (a-^)/a]/F[ (a-h/o-i 

= [2.57 + (6.88-3.62)^]

•[1 + (11/9)(0.861)(0.275/0.805)]“

= 9.704

{a-n)/a = (5.00-3.62)/3.115 = 0.142

/[ (a-ii)/a] = 0.395 F[(a-/i)/a] = 0.556

3) 1 = 6.88-(3.115)(11/9)(0.395/0.556) =

(a-Ai)/a =(5.00-4.18)/3.115 = 0.265

/[ {a-l)/a’i = 0.385 F[(a-//)/a] = 0.605
-2a = [2.57 + (6.88-4.18)^]

•[1 + (11/9)(0.265)(0.385/0.605)]

= 8.17

(a-n)/a =(5.00-4.18)/2.858 = 0.287

/[(a-^)/a] = 0.383 F[(a-;z)/CT] = 0.613

-1
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4 ) (1

{a-fi)/a

6.88-(2.858)(11/9)(0.383/0.613) = 4.70 

(5.00-4.70)72.858 = 0.105

/[(a-;/)/a] = 0.397 F[(a~Ai)/a] = 0.542
2-2a

(a-(jL)/a 

/[ (a-ii)/a] 

5) fx

{a-n)/a

[2.57 + (6.88-4.70) ]

•[1 + (11/9)(0.105)(0.397/0.542)]

6.69

(5.00-4.70)72.587 = 0.116 

0.396 F[(a-Ai)/or] = 0.546 

6.88-(2.587)(11/9)(0.396/0.546) = 4.59 

(5.00-4.59)72.587 = 0.160

f[(a-ii)/a} = 0.394 F[{a~n)/a} = 0.564
2

,-l

{a-ii)/o

6)  ju

(a-Ai)/ff

/[(a-ii)/a]
2̂a

= [2.57 + (6.88-4.59) ]

•[1 + (11/9)(0.160)(0.394/0.564)]

= 6.84

= (5.00-4.59)72.615 = 0.157

= 0.394 F[(a-Ai)/a] = 0.562

= 6.88-(2.615)(11/9)(0.394/0.562) » 4.64

=(5.00-4.64)72.615 = 0.138

= 0.395 F[(a-Ai)/a] = 0.555
2 ,= [2.57 + (6.88-4.64) ]

•[1 + ( 11/9)(0.138) (0.395/0.555) ] 

= 6.62

Assume ii = 4.64 and

-1

- 6.62

Six iterations were used for this example. The number re-
quired depends on convergent criteria and sample size. Small 
samples may take longer. The computer program developed by 
Wolynetz (1979a) is based on this method. This method can be 
used with multiply censored data.
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This method is based on equations V.19 through V.22 on page 
101 of the text.

r=ll, r/n=0.55, n-r = 9, /{0.55)=0.343, F"^(0.55)=0.126 

observed mean = 61.92/9 = 6.88

A.1.6 Linear estimator for normally distributed data

Data set 1 in Table A.l

I(X^ - a)

rml

= 54.87

= H[F"^(r/n)(X^-a) +

{[F‘^r/n) (X^-a)]2 + 

[4/{n-r)]I(x^-a)2}^}

0 . 5 { • [ ( 0 . 1 2 6 ) ( 6 . 8 8  -  5 . 0 0 ) ]  

+ ( [ ( 0 . 1 2 6 ) ( 6 . 8 8  -  5 . 0 0 ) ] ^  

+ ( 4 / 9 ) ( 5 4 . 8 7 ) }°'®} = 2 .61

'2a = - ([n/(n-r)]f(r/n)F ^(r/n)

- [n/(n-r)]2[f(r/n)]2}(r2^^ 

= 2.57 - {(20/9)(0.343)(0.126)

- (20/9)^(0.343)^}(2.61)^

= 5.87

tJ- ~  ]/(r/n)(7^jjjj^

= 6.88 - (20/9)(0.343)(2.61)

= 4.89

The advantage of this method oyer that no iterations
are required. This is because n and are functions of the 
data only, and not of the estimates.



This method is identical to MLE for normally distributed 
data except for the transformations given by equations V.25 
and V.26 in the text.

n = 20, r = 11, n-r = 9

168

A.1.7 Maximum likelihood for lognormally distributed data

Data set 2 in Table A.l.

iteration

o
.2
ô

1) X

s-{

(a-A£ ) /or 

/[(a-¿)/¿]

= 17.14/9 = 1.904 

= 0.430/9 = 0.0478 

={1.610-1.904)/0.219 = -1.342 

= 0.162 F[(a-iz)/a] = 0.0898

2 ) ti

(a-/i)/a

/[ (a-//) /a] 
«2

= X^-[ar/{n-r)]/[(a-ii)/a]/F[(a-//)/cr] 

= 1 . 9 0 4 - ( 0 . 2 1 9 ) ( 1 1 / 9 ) ( 0 . 1 6 2 / 0 . 0 8 9 8 )

= 1 . 422

= ( 1 . 6 1 0 - 1 . 4 2 2 ) / 0 . 219 = 0 . 85 8  

= 0 . 2 7 6  F[(a-A¡)/í7] = 0 . 80 5

= [S^+(X^-¿)^](l+[r/(n-r)][(a-¿)/a]

/[(a-A)/a]/F[(a-;/)/í7]} -1

,-l

(a-;u)/a

/r(a-¿)/á]

3) I

(a-ii)/a

= [0.0478 + (1.904-1.422) ]

•[1 + (11/9)(0.858)(0.276/0.805)]

= 0.206

= (1.610-1.422)/0.4542 = 0.414 

= 0.366 F[(a-At)/ff] = 0.660 

= 1.904-(0.454)(11/9)(0.366/0.660) = 1.592 

=(1.610-1.592)/0.454 = 0.0397

/[(a-ii)/<7] = 0.399 F[(a-/i)/a] = 0.516
»2
a = [0.0478 + (1.904-1.592) ]
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(a-ß)/a

/[{a-ß)/ä]

4) ß

{a-ß)/a

/[ (a-¿¡)/á] 
-2

{a-ß)/o 

/[ia-ß)/ä] 

5) ß

{a-ß)/a

[1 + (11/9)(0.0397)(0.399/0.516)]

= 0.140

= (1.610-1.592)/0.374 

= 0.0481

= 0.399 F[(a-Ai)/a] = 0.519

= 1.904-(0.374)(11/9)(0.399/0.519) = 1.553 

=(1.610-1.553)/0.374 = 0.152 

= 0.394 F[(a-A£)/a] = 0.560

= [0.0478 + (1.904-1.553)^]-

[1 + (11/9)(0.152)(0.394/0.560)]

= 0.151

=(1.610-1.553)/0.389 = 0.147 

= 0.395 F[(a-At)/ä] = 0.558

= 1.904-(0.389)(11/9)(0.395/0.558) = 1.567 

= (1.610-1.567)/0.389 = 0.111

-1

-1

f[{a-ß)/a] = 0.397 F[(a-/z)/a] = 0.544
2'2a

,-l

{a-ß)/a

/ [  ( )  /er ] 

6) ß

{a-ß)/a

= [0.0478 + (1.904-1.567) ]•

[1 + (11/9)(0.111)(0.398/0.544)]

= 0.147

= (1.610-1.567)/0.383 = 0.112 

= 0.396 F[{a-ß)/a] = 0.545

= 1.904-(0.3783(11/9)(0.396/0.545) = 1.564 

= (1.610-1.564)/0.383 = 0.120

:f[{a-ß)/a] = 0.396 F[(a-Ai)/cr] = 0.548
*2er = [0.0478 + (1.904-1.546) ]•

[1 + (11/9)(0.120)(0.396/0.548)] -1

= 0.148
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Assume // = 1.56 , and a = 0.148 

Estimate of the population mean:

a = expd .56 + 0.148/2)

= 5.12

Estimate of the population variance:

~ 2
|3 = exp(2-1.56 + 0.148) • [exp(0.148)-l]

= 4.19

By adding the transformation noted, the computer program 
developed by Wolynetz (1979a) can be used for this method.
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A.1.8 Probability plot for lognormally distributed data

Data set 2 in Table A.l.

X

Ai

= 1.53

a = ln[0.50.(XQ 16'‘’̂ 0.84'^^0 . 50̂  ̂

0.50 = exp(1.53) = exp(1.05) ^0.84
a = 0.475

transformation to population mean: 

o = exp(1.53 + 0.475/2)

= 6.86

transformation to population variance:

P  = exp[2-1.53 + (0.475)^]•[exp(0.475)^-1]

= 6.76

This method is based on equations V.35 and V.36 in the text, 
Figure A. 2 is the probability plot used for the example, 
This method is similar to A.1.4.
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A.2 Goodness of fit tests for censored samples

Appendix A.2 contains examples of goodness of fit tests 

for censored samples. The data is shown with each example. 

Methods include the chi-squared, the Kolmolgorov-Smirnov, 

and Cramer-Von Mises tests. Descriptions of these are given 

in section V.C of the text. Each test is of the simple 

hypothesis:

H^: F(x) is normally distributed
with mean 1.0 and variance 1.0

vs. H^: F(x) is not distributed as 
described
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A .2.1 Chi-Squared

X ranked X interval numb. numb.exp. (n.-n )^/(nP.)

1.35 <0.5 <0.5 6 6.17 0.0046
1.81 <0.5
<0.5 <0.5 0.5 to 1 6 3.83 1.2294
0.68 <0.5
0.88 <0.5 1 to 1.5 3 3.83 0.1798
<0.5 <0.5
1.24 0.60 1.5 to 2 3 3.83 0.1798
1.53 0.61
<0.5 0.68 >2.19 2 2.34 0.0494
<0.5 0.72
<0.5 0.88
0.60 0.89
2.07 1.12
0.61 1.24
<0.5 1.35
2.49 1.53
4.00 1.81
0.72 2.07
0.89 2.49
1.12 4.00

sum = 1.643

Xn ji = 9.488, therefore accept HU . 90,4 O

Note that n. < 5 in some cases, therefore the test is in-
valid. This ̂ method is based on equation V.39 in the text. 
Although this example is a test for normality, it can be 
used for any distribution. Assumptions inherent in the test 
require that there be at least five observations per inter-
val. Power considerations suggest that there be as many 
Intervals as possible. This can be difficult for small 
samples, especially when they are censored.
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A.2.2 Kolmogorov-Smirnov

X ordered Sn(X.) D1 D2

1.35 <0.5
1.81 <0.5
<0.5 <0.5
0.68 <0.5
0.88 <0.5 F^(T) = 0.3085
<0.5 <0.5 o

1.24 0.6 0.35 0.25 0.344 0.0054 -0.0946
1.53 0.61 0.4 0.3 0.348 0.0517 -0.0483
<0.5 0.68 0.45 0.35 0.374 0.0755 -0.0245
<0.5 0.72 0.5 0.4 0.389 0.1103 0.0103
<0.5 0.88 0.55 0.45 0.452 0.0978 -0.0022
0.6 0.89 0.6 0.5 0.456 0.1438 0.0438

2.07 1.12 0.65 0.55 0.547 0.1022 0.0022
0.61 1.24 0.7 0.6 0.594 0.1052 0.0052
<0.5 1.35 0.75 0.65 0.636 0.1132 0.0132
2.49 1.53 0.8 0.7 0.701 0.0981 -0.0019
4.00 1.81 0.85 0.75 0.791 0.059 -0.041
0.72 2.07 0.9 0.8 0.857 0.0423 -0.0577
0.89 2.49 0.95 0.85 0.931 0.0181 -0.0819
1.12 4.00 1.00 0.9 0.998 0.0013 -0.0987

maximum = 0.1438

*^0.05,20 = 0.2336 for F (T) = o' 0.30

Therefore Accept

True significance level > 0.15

This method is based on equation V.44 and Table V.l of 
chapter V.
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X Rank F (X. )-o'-a' [Fo(Xi)-(21-l)/2n]2

1.35 15 0.6368 0.007779
1.81 17 0.7910 0.001156
<0.5 1-6
0.68 9 0.3745 0.0101
0.88 11 0.4522 0.005299
<0.5 1-6
1.24 14 0.5948 0.006432
1.53 16 0.7019 0.005344
<0.5 1-6
<0.5 1-6
<0.5 1-6
0.60 7 0.3446 0.000384
2.07 18 0.8577 0.000299
0.61 8 0.3483 0.000713
<0.5 1-6
2.49 19 0.9319 0.000047
4.00 20 0.9987 0.000562
0.72 10 0.3897 0.00728
0.89 12 0.5478 0.0141
1.12 13 0.00596

sum = 0.0655

S = 7, R = 13 F^(T) = p = 1-F^(0.50) = 1-0.3815 = 0.6915

Above Sum - R(4R^-1)/12n^ + np{R^/n^-pR/n^+p^/3)

= 0.0655 - 13*(4*169-l)/4800 +

+ 20*(0.6915)(169/400-(0.6915)•13/20+(0.6915)

= 0.06868

Table value for _ _Ww • /
Therefore, accept H

= 0.386, for a = 0.05

True significance level approximately 0.50

This test is based on equation V.47 and Table V.3 of chapter 
V.
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A.3 Two sample tests for censored samples

Appendix A. 3 contains examples for Halperin's (1960) and

Gehan's (1965) two sample tests. Each considers the

hypothesis:

H : F (z) = G (z) o x'  ̂ y

vs. H: F ( z ) > G ( z )  o X  '  y

These are single tail hypotheses. The data used for the 

examples are shown in Table A. 2. Set 1 was used for the

Halperin test and set 2 for the Gehan test. Note that the

only difference between the two is that the Halperin samples 

are censored at the same fixed point, while the Gehan sample 

Y is multiply censored.

Table A.2 Data for Two Sample Tests

Set 1 Set 2
Sample X Sample Y Sample X Sampl

6.27 <4 6.27 <4
7.18 13.95 7.18 13.95
<5 <4 <5 <5
<5 10.11 <5 10.11
5.14 6.78 5.14 6.78
<5 <4 <5 <6
6.03 8.83 6.03 8.83
<5 <4 <5 <5
<5 <4 <5 <4
<5 5.23 <5 5.23
<5 <4 <5 <5
<5 10.88 <5 10.88
7.65 4.75 7.65 4.75
<5 <4 <5 <3
<5 4.64 <5 4.64
8.33 <4 8.33 <6

10.36 7.91 10.36 7.91
<5 <4 <5 <5
5.19 7.52 5.19 7.52
5.74 <4 5.74 <5
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A.3.1 Halperin extension of Wilcoxon-Mann-Whitney

S = Sum of ranks of uncensored Y's in the sequence of 
all uncensored observations.

= 1 + 2 + 5 + 9 + 1 1 + 1 3 + 1 5 + 1 6 + 1 8 + 1 9 =  109

= [ (m-rjjj)/2] (2n+l+m-rjjj) - S

= t(20-10)/2][(2)(20)+l+20-10) - 109 = 146

iz = mn{m+n-r) (m+n+r-1)/[2 (m+n) (m+n-1) ]
C

= (20)(20)(40-21)(61-l)/[2(40)(39)] = 146.15
2

a = mn(m+n-r)(A+B+C-D)/[4(m+n)]
w

= (20)(20)(40-21)(3.077+404.9+47.5-449.7)/[4(40)]

= 274.4

where A = [(m+n-r)^-l]/[3(m+n-l)]

= [(40-21)^-l]/[3(40-l)] = 3.077 

B = (m-1)(m+n-r-1)(n + (2n+l)r/(m+n+2) +

r(r-1)(n-1)/[(m+n-2)(m+n-3)]}/(m+n-1)

= (19)(40-21-1)(20+(41)(21)/(40+2)+(21)(21-1)(20-1)/

[(40-2)(40-3)]}/(40-l) = 404.9 

C = n+(2n+l)r/(m+n-1) + r(r-1)(n-1)/[(m+n-1)(m+n-2)]

= 20 + (40+1)21/(40-1) + 21(21-1)(19)/[(40-1)(40-2)]

= 47.462
2 2D = mn(m+n-r)(m+n+r-1) /[(m+n)(m+n-1) ]

= (20)(20)(40-21)(40+21-1)^/[40(40-1)^)

= 449.7

At the 99% confidence level for a single tail test, reject 
if Z > 2.33. The Z value is given by:

Z = (U^ -n)/a^ = (146.00 - 146.15)/16.6
w  W  w

= -0.00904

Therefore H cannot be rejected. This test is based on 
equation V.49 in the text.
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A.3.2 Gehan's extension of Wilcoxon-Mann-Whitney 

Test: Fĵ (z) = G^iz) vs.

H Fjj(z) > Gy(z) vs.

Uncensored Values Ranks

4.64 (Y) 1 Kj - 3
4.75 (Y) 2
5.14 (X) 3 All k, = 1
5.19 (X) 4 1

5.23 (Y) 5 1, = 0; L
5.75 (X) 6 I 1

6.03 (X) 7 1, = 16; L
6.27 (X) 8
6.78 (Y) 9 ^6 = 2; L
7.18 (X) 10
7.52 (Y) 11 all other 1
7.65 (X) 12
7.91 (Y) 13 n = m = 20
8.33 (X) 14
8.83 (Y) 15
10.11 (Y) 16
10.36 (X) 17
10.88 (Y) 18
13.95 (Y) 19

uncensored < Y . uncensored 
r X^ censored ^^Y^ uncensored

54--1 = -54
Ó: 8 - 8

uncensored = Y. uncensored 
X^ and Y. both^censored 
X^ censored > Y . uncensored 
X^ uncensored <^Y^ censored

0- 0 = 0
or 110 0
or 22 0
or 6 0

X .1or
uncensored > Y. uncensored
X. uncensored i Y. censored 
i 3

36-+ 1 = 36
90 90

sum 20*20 = 400 64
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nm/[(n+m)(n+m-1)] = 20^/(40^-40)

= 0.2564

Ik^K^_l(Ki_i+l) = 0+2+6+12+20+30+42+(7)(8)+(8)(9)+(9)(10) 

+(10)(11)+(11)(12)+(12)(13)+(13)(14)

+(14)(15)+(15)(16)+(16)(17)+(17)(18)+(18)(19) 

= 2280

Z1^K.(K^+1) = (16)(2))(3) + (2)(6)(7) = 180

Ik.(n+m-K^-L._^)(n+m-3K^_^-k^-L._^-l)

= (39)(38)+(38)(35)+(21)(16)+(20)(13)+(19)(10) 

+(18)(7)+(15)(2)+(14)(-1)+(13)(-4)+(12)(-7) 

+(11)(-10)+(10)(-13)+(9)(-16)+(8)(-19)+

+(7)(-22)+(6)(-25)+(5)(-28)+(4)(-31)

= 2500

Var(W) = rm(Ik^K^_j(K^_^+l) + H^K^(K^+1)

+ Ik.(n+m-K^-L^_^)(n+m-3K^_^-k^-L^_^-l)}

/[(n+m)(n+m-1)]

= 0.2564(2280 + 180 + 2500) = 1271.7 

Standard Deviation = 35.7

Assuming normality, (64 - 0)/35.7 = 1.793 For a one sided 
test, the probability that the test statistic will exceed 
1.793 under H is about 0.96. Therefore accept H . The 
significance level of the test is about (1-0.96) = 0.*̂ 4. We 
could reject H at the 953s confidence level. This example is 
based on equations V.50 and V.51 in the text.
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A.4 Tests for trend

Appendix A.4 provides examples of tests for trend which can 

be used with censored data. The data used is shown in Table

A.3. Table A.3 also contains the OLS estimates of B and B,o 1
based on the uncensored observations which are used as 

initial estimates for the iterative methods.

Table A.3 Data for trend detection examples

sums

X Y d d(X-X)^ ^(x-x)

1 1.35 1 90.25 -12.825
2 1.81 1 72.25 -15.385
3 <2 0 0 0
4 <2 0 0 0
5 <2 0 0 0
6 <2 0 0 0
7 1.24 1 12.25 -4.34
8 1.53 1 6.25 -3.825
9 <1 0 0 0

10 <1 0 0 0
11 <1 0 0 0
12 <1 0 0 0
13 2.07 1 6.25 5.175
14 <0.5 0 0 0
15 <0.5 0 0 0
16 2.49 1 30.25 13.695
17 4 1 42.25 26
18 <0.2 0 0 0
19 <0.2 0 0 0
20 1.12 1 90.25 10.64

84 15.61 8 350 19.15

B^-start = 19.15/350 = 0.054671

B -start o = 7 - Bj X = 15.61/8 - (0.0547)(84/8) = 1.377

var-start = 0.868558

The data for rank tests is singly censored at 0.5, whereas 
the data for other examples is censored as above.
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A.4.1 Mann and Kendall's rank tests

time Y rank of Y Mann's T Kendall's K

1 1.35 15 5 -9
2 1.81 17 3 -12
3 <0.5 <7 12 12
4 0.68 9 9 2
5 0.88 11 7 -1
6 <0.5 <7 10 10
7 1.24 14 4 -5
8 1.53 16 3 -6
9 <0.5 <7 8 8
10 <0.5 <7 8 8
11 <0.5 <7 8 8
12 0.6 7 7 6
13 2.07 18 2 -3
14 0.61 8 5 4
15 <0.5 <7 5 5
16 2.49 19 1 -2
17 4 20 0 -3
18 0.72 10 2 2
19 0.89 12 1 1
20 1 . 12 13 0 0

100 25

E(Mann Score) = (20)(19)/4 - (6)(5)/4
E(Kendall's K) =

Var(Mann's T) = [(20)(19)(40+5)/72-(6)(5)(12+5)]/7:
230.4166

Var(Kendall's K) = [(20)(19)(40+5)/18- (6)(5)(12+5)],
= 921.6666

Mann's Z value: (100 - 87.5)7(230.7)^ = 0.822974

Kendall 's Z value: (25)/(921 .667)^ = 0.823479

Level of Test 0.21 for a Mann single tail test 
0.42 for a Kendall two tailed test

Mann's and Kendall's tests for independence in time are 
based on equations V.53 and V.54 in the text. These tests 
may not be applicable to multiply censored samples (see 
discussion in the text). The examples make use of the large 
sample approximation to normality.
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ime y rank of Y c S R S

1 1.35 15 0 0 0 0
2 1.81 17 1 0 0 0
3 <0.5 3.5 0 7.5 0 0
4 0.68 9 1 336 14 0
5 0.88 11 2 1080 54 2
6 <0.5 3.5 0.5 75 3 -0.25
7 1.24 14 4 4680 240 12
8 1.53 16 6 8820 504 30
9 <0.5 3.5 1 210 10.5 0
10 <0.5 3.5 1.5 270 18 0.75
11 <0.5 3.5 2 337.5 27 2
12 0.6 7 5 3300 250 20
13 2.07 18 12 35904 2112 132
14 0.61 8 6 6552 432 30
15 <0.5 3.5 2.5 682.5 48.75 3.75
16 2.49 19 15 64260 3570 210
17 4 20 16 82080 4320 240
18 0.72 10 9 19584 1152 72
19 0.89 12 11 33660 1870 110
20 1.12 13 12 45144 2376 132

306982.5 17001.25 996.25

D = [Q-2(n-2)R+(n-2)(n-3)S]/[n(n-l)(n-2)(n-3)(n-4)]

= [306982.5 - 2(18)(17001.25) + 18(17)(996.25)]

/[(20)(19)(18)(17)(16)]

=  - 0 . 0 0 0 1 1

B statistic = (20;î /2) (D+l/(36n) )

= 1.242954

b(a=0.05) from table A.26 in Hollander and Wolfe(1973)

= 2.85

Therefore, accept Ho at the 95Si level 

Actual level approximately 0.40

This example is based on equations V.55 through V.57 in the 
text. As with other rank tests, there may be some problem 
when samples are multiply censored.
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A.4.3 Miller estimators

First Iteration: Initial Slope Estimate = 0.054671

ranked z X Y d F(PL) wi
3.070593 17 4 1 1 0.05882
1.835987 3 2 0 1 0.06274
1.781316 4 2 0 1 0.06274
1.726645 5 2 0 1 0.06274
1.700658 2 1.81 1 0.941176 0.06274
1.671974 6 2 0 0.941176 0.06274
1.615264 16 2.49 1 0.878431 0.10457
1.359277 13 2.07 1 0.815686 0.26144
1.295329 1 1.35 1 0.752941 0.26144
1.092632 8 1.53 1 0.690196
0.857303 7 1.24 1 0.627450
0. 507961 9 1 0 0.627450
0.45329 10 1 0 0.627450
0.398619 11 1 0 0.627450
0. 343948 12 1 0 0.627450
0.02658 20 1.12 1 0.522875

-0. 26539 14 0.5 0 0.522875
-0. 32006 15 0.5 0 0.522875
-0. 78407 18 0.2 1 0.522875
-0. 83874 19 0.2 0 0.261438

X—u Y—u W(x-X— -u' w(Y-bjX) w(Y-io-xil

17 4 0.386136 0.602845 0.1806 36.0419
2 1.81 9.706765 -1.41255 0.1067 4.1841

16 2.49 0.153106 0.244053 0.1013 14.5209
13 2.07 0.129730 -0.18675 0.0852 9.2689
1 1.35 11.33034 -1.13826 0.0812 1.7891
8 1.53 2.600575 -0.61803 0.0685 3.9755
7 1.24 5.785357 -0.96449 0.0896 2.3297
20 1.12 8.088068 1.628638 0.0069 4.4214
18 0.2 5.441223 0.238540 -0.219 0.4717

Sums: 43.62130 -1.60604 0.5011 77.00

= 14.438

New slope estimate = -1.606/43.62 = -0.03681

New intercept estimate = 0.5011

Estimate of the variance of = 77.004/43.62 = 1.765
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Miller Estimator: Fourth Iteration

Slope Estimate: -0.02777

ranked z X Y d F(PL) wi
4.47209 17 4 1 1 0.05
2.93432 16 2.49 1 0.95 0.05
2.43101 13 2.07 1 0.9 0.06429
2 .16662 6 2 0 0.9 0.06429
2. 13885 5 2 0 0.9 0.06429
2 .11108 4 2 0 0.9 0.06429
2 .08331 3 2 0 0.9 0.06429
1.86554 2 1.81 1 0.835714 0.28929
1.75216 8 1.53 1 0.771428 0.28929
1.6754 20 1.12 1 0.707142

1.43439 7 1.24 1 0.642857
1 .37777 1 1.35 1 0.578571
1.33324 12 1 0 0.578571
1.30547 11 1 0 0.578571
1.2777 10 1 0 0.578571
1.24993 9 1 0 0.578571
0.91655 15 0.5 0 0.578571
0. 88878 14 0.5 0 0.578571
0.72763 19 0.2 0 0.578571
0.69986 18 0.2 1 0.289285

X~u Y~u w(x-X— — -u' WY(x-X^ w(Y“b )

17 4 2.204005 1.327857 0.2236 16.959
16 2.49 1.590077 0.702091 0.1467 3.7770
13 2.07 0.447803 0.351213 0.1562 1.5170
2 1.81 4.493670 -0.97282 0.1199 0.1865
8 1.53 0.358262 -0.23219 0.1126 0.0737
20 1.12 5.973160 0.694028 0.1077 0.0266
7 1.24 0.726068 -0.26789 0.0922 0.0316
1 1.35 25.34807 -3.65569 0.3985 0.0664

18 0.2 16.88233 0.441987 0.2024 1.4799

sums : 58.02345 -1.61143 1.560109 24. 11

Xu = 10.361

New' slope estimate = -1.61143/58 .02345 = -0.02777

New intercept estimate = 1.560109

Estimate of the variance of = 24.11/58.02345 = 0.4157

This example is based on equations V.62 through V.67 in 
the text.
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A.4.4 Buckley-James

Initial Iteration: = 0.054671

X y d z F(z) w wz/F(z) sums (Zĵ <z ) new y

17 4 1 3.07 1.0 0.0588 0.1806 4
3 2 0 1.83 1.0 0.280 0.444
4 2 0 1.78 1.0 0.499
5 2 0 1.72 1.0 0.553
2 1.81 1 1.70 0.941 0.0627 0.1067 1.81
6 2 0 1.67 0.941 0.184 0.512
16 2.49 1 1.61 0.878 0.0627 0.1013 2.49
13 2.07 1 1.35 0.815 0.0627 0.0852 2.07
1 1.35 1 1.29 0.752 0.0627 0.0812 1.35
8 1.53 1 1.09 0.690 0.0627 0.0685 1.53
7 1.24 1 0.85 0.627 0.1045 0.0537 1.24
9 1 0 0.50 0.627 -0.345 0.146
10 1 0 0.4 0.627 0.201
11 1 0 0.39 0.627 0.256
12 1 0 0.34 0.627 0.311
20 1.12 1 0.0 0.522 0.2614 0.0027 1.12
14 0.5 0 -0.2 0.522 -0.419 0.346
15 0.5 0 -0.3 0.522 0.400
18 0.2 0 -0.7 0.522 0.564
19 0.2 1 -0.8 0.261 0.2614 -0.219 0.2

New B^ = 0.024701

Final Iteration; B^ = 0.006225

X Y d z liz) w wz/F(z) sums (Zĵ <ẑ ) new Y

17 4 1 3.89 1 0.05 0.1947 4
16 2.49 1 2.39 0.95 0.05 0.1195 2.49
13 2.07 1 1.98 0.9 0.05 0.1278 2.07
3 2 0 1.98 0.9 0.76181 0.2562
4 2 0 1.97 0.9 0.3109
5 2 0 1.96 0.9 0.3655
6 2 0 1.96 0.9 0.4202
2 1.81 1 1.79 0.835 0.064 0.1155 1.81
8 1.53 1 1.48 0.771 0.064 0.0951 1.53
1 1.35 1 1.34 0.707 0.064 0.0863 1.35
7 1.24 1 1.19 0.642 0.064 0.0769 1.24

20 1.12 1 0.99 0.578 0.064 0.2879 1.12
9 1 0 0.94 0.578 0.04086 0.0726
10 1 0 0.93 0.578 0.1273
11 1 0 0.93 0.578 0.1820
12 1 0 0.92 0.578 0.2366
14 0.5 0 0.41 0.578 0.3460
15 0.5 0 0.40 0.578 0.4006
18 0.2 0 0.08 0.578 0.5647
19 0.2 1 0.08 0.289 0.289 0.0236
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New B, = 0.006225, New B = 0.925096,1 o

Variance of the slope = 0.001646

This test for trend is based on equation V.68 in the text, 
and OLS estimation using the new set of data. This method 
can be used for multiply censored samples. It is the dis-
tribution free equivalent of the EM method. Only two itera-
tions are shown (the first and the last), whereas several 
were needed. This method requires a computer as a practical 
matter.
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A.4.5 Iteratively reweighted least squares

Initial Iteration: B, = 0.0547, = 1.377, = 0.8686

(•) F( • ) l(') ^i ^i îi
NA NA NA NA 1.35 1.151
NA NA NA NA 1.81 1.151

0.492 0.684 0.353 1.541 0.617 0.600
0.433 0.67 0.363 1.596 0.640 0.608
0.374 0.64 0.371 1.650 0.675 0.639
0.316 0.63 0.379 1.705 0.690 0.637

NA NA NA NA 1.24 1.151
NA NA NA NA 1.53 1.151

-0.932 0.176 0.258 1.869 0.125 0.903
-0.991 0.16 0.244 1.924 0.178 0.937
-1.049 0.15 0.229 1.978 0.047 0.851
-1.108 0.13 0.215 2.033 0.342 1.053

NA NA NA NA 2.07 1 .151
-1.762 0.039 0.084 2.142 -0.176 1.001
-1.821 0.034 0.075 2.197 -0.054 1.064

NA NA NA NA 2.49 1.151
NA NA NA NA 4 1 . 151

-2.318 0.01 0.027 2.361 -0.015 1.223
-2.377 0.0087 0.023 2.416 -0.345 1.055
-1.449 0.24 0.139 2.470 1.12 1.151

Result: Bl = -0 .00472, B = 1.046 o , = 9,.82

13th Iteration: B^ = -0. 00564, Bo = 0.615, = 2

( • ) F{ • ) f ( • ) ^i ^i îi
NA NA NA NA 1.35 0.421
NA NA NA NA 1.81 0.421

0.894 0.81 0.267 0.598 -0.634 0.170
0.898 0.82 0.266 0.592 -0.641 0.167
0.902 0.82 0.265 0.587 -0.644 0.167
0.906 0.82 0.264 0.581 -0.647 0.167
NA NA NA NA 1.24 0.421
NA NA NA NA 1.53 0.421

0.268 0.61 0.384 0.564 -1.125 0.239
0.272 0.61 0.384 0.559 -1.124 0.239
0.276 0.61 0.384 0.553 -1.124 0.240
0.279 0.61 0.383 0.547 -1.124 0.241
NA NA NA NA 2.07 0.421

-0.037 0.48 0.398 0.536 -1.383 0.278
-0.033 0.49 0.398 0.530 -1.421 0.268

NA NA NA NA 2.49 0.421
NA NA NA NA 4 0.421

-0.216 0.41 0.389 0.514 -1.563 0.294
-0.212 0.42 0.390 0.508 -1.622 0.280

NA NA NA NA 1.12 0.421
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= -0.00564,Result

Slope Variance = 0.00445

B = 0.615, Variance = 2.29 o

(same as EM method)

This method is based on equations V.81 through V.86 in the 
text. It is not practical without a computer. It can be used 
with multiply censored data.
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Initial Iteration: B = 0.05467, B, = 1.377, Var. = 0.8686o 1

A.4.6 Expectation maximization

Standardized
NA

Y F(std.Y)
NA

f(std.Y) 
NA

new Y 
1.35

NA NA NA 1.81
0.492 0.688 0.353 1.062
0.433 0.666 0.363 1.087
0.374 0.644 0.371 1.112
0.316 0.626 0.379 1.140

NA NA NA 1.24
NA NA NA 1.53

-0.93 0.176 0.258 0.501
-0.99 0.161 0.244 0.511
-1.05 0.147 0.229 0.521
-1.10 0.134 0.215 0.532

NA NA NA 2.07
-1.76 0.039 0.084 0.135
-1.82 0.034 0.075 0.138

NA NA NA 2.49
NA NA NA 4

-2.31 0.01 0.027 -0.16
-2.37 0.008 0.023 -0.11

NA NA NA 1.12
Result: B^ = -0. 01234, B = 1. o 233, Var. = 2.091

13th Iteration: B^ = -0.00566 , B^ = 0.6297, Var.

Standardized
NA

Y F(std.Y) 
NA

i(std.Y)
NA

new Y 
1.35

NA NA NA 1.81
0.914 0.820 0.263 0.127
0.918 0.821 0.262 0.123
0.922 0.822 0.261 0.120
0.925 0.823 0.260 0.116

NA NA NA 1.24
NA NA NA 1.53

0.278 0.609 0.384 -0.38
0.281 0.611 0.383 -0.38
0.285 0.612 0.383 -0.38
0.289 0.613 0.382 -0.38

NA NA NA 2.07
-0.03 0.487 0.398 -0.69
-0.03 0.488 0.398 -0.69

NA NA NA 2.49
NA NA NA 4

-0.22 0.415 0.389 -0.90
-0.21 0.416 0.389 -0.90

NA NA NA 1.12

Slope variance 
This method is

= 0.00445
based on equations V.87 and V.88 in the text
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Appendix B. Example of subtracting components of variance

An example is provided of the use of Satterthwaite' s

improved degrees of freedom for calculating a confidence

interval for a population mean. The sample is assumed to

come from a normal population and has homogenous measurement

error. Here, X is normally distributed with mean ti and 
P P

2variance a and X is normally distributed with mean fi and 
P P
2 2variance + a (e) The sample consists of 4 replicate

measurements each of four samples. The sample of measure-

ments is:

X = X, =

~2

^1 =  1.5 1.1 1.8 1 . 0  x ^ . =  1.350

^ 2 =2.5 2.4 1.7 2.9 2.375

^3 =  2.0 1.7 2.9 2 . 2 2 . 2 0 0

^4 =  2.4 2.0 1.6 2 . 1 2.025

e ) =  ZZ(X-X^.)^/[n(n-l)3

=  (0.410 +  0.747 +  0.780 + 0.327)

=  0.189
2

r
m =  I(X..-X..) ^ /(n-1)

=  0 . 2 0 1

Q =  0.201/(0.189/4) =  4.261
A 2 2
/ =  ( Q  -  1 )  / [ Q / / j  +  l/Zg]

X, = 1.988

= (4.261-l)^/{4.261^/3 + 1/12)

= 1.733
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A confidence interval is given by:

Cl = X ± t(l-a/2,hapS/(n)^

= 1.988 ± (5.00)(0.201 - 0.189/4)^/2 

for a = 0.05

= [1.008, 2.968]
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Appendix C. PDF's used in the simulation studies
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Concentration

Figure C.l PDF used in simulation studies with R = 1.0 
and FC:FBQ = 1,1.

Figure C.2 PDF used in simulation studies with R = 0.1
and FC:FBQ = 1,1.



194

Figure C.3 PDF used in simulation studies with R = 0.01 
and FC:FBQ = 1,1.

O
CL

Figure C.4 PDF used in simulation studies with R = 0.001
and FC:FBQ = 1.0,1.0
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Figure C.5 PDF used in simulation studies with R = 1.0 
and FC:FBQ = 0.5,1.

Figure C.6 PDF used in simulation studies with R = 0.1
and FC:FBQ = 0.5,1.
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Figure C.7 PDF used in simulation studies with R = 0.01 
FC:FBQ =0.5, 1.0

Figure C.8 PDF used in simulation studies with R = 0.001 and
FC:FBQ = 0.5,1.
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L.OQ.

concentration 
-- 5.0

Figure C.9 PDF used In simulation studies with 
FC':FBQ = 0, 0.5.


