

DISSERTATION

COMPUTATIONAL THINKING: AN INVESTIGATION OF THE EXISTING

SCHOLARSHIP AND RESEARCH

Submitted by

Andrea Elizabeth Weinberg

School of Education

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2013

Doctoral Committee:

 Advisor: R. Brian Cobb

 Leonard Albright

Paul Kehle
 Jerry Vaske

Copyright by Andrea Elizabeth Weinberg 2013

All Rights Reserved

ii

 ABSTRACT

COMPUTATIONAL THINKING: AN INVESTIGATION OF THE EXISTING

SCHOLARSHIP AND RESEARCH

Despite the prevalence of computing and technology in our everyday lives and in almost

every discipline and profession, student interest and enrollment in computer science courses is

declining. In response, computer science education in K-12 schools and universities is

undergoing a transformation. Computational thinking has been proposed as a universal way of

thinking with benefits for everyone, not just computer scientists. The focus on computational

thinking moves beyond computer literacy, or the familiarity with software, to a way of thinking

that benefits everyone. Many see computational thinking as a way to introduce students to

computer science concepts and ways of thinking and to motivate student interest in computer

science.

The first part of this dissertation describes a study in which the researcher systematically

examined the literature and scholarship on computational thinking since 2006. The aim was to

explore nature and extent of the entire body of literature and to examine the theory and research

evidence on computational thinking. Findings reveal that there has been a steady increase in the

popularity of the concept of computational thinking, but it is not yet developed to the point

where it can be studied in a meaningful way. An examination of the research evidence on

computational thinking found inadequacies in the conceptual characteristics and the reporting of

studies. Weaknesses were identified in the theoretical conceptualization of interventions,

definitions of key concepts, intervention descriptions, research designs, and the presentation of

findings. Recommendations for bolstering the research evidence around this burgeoning concept

iii

are presented, including collaboration between computer scientists and educational researchers to

apply social science research methods to conduct robust studies of computational thinking

interventions.

The second part of this dissertation describes how computational thinking is currently

incorporated into K-12 educational settings. The bulk of the literature on computational thinking

describes ways in which programs promote this way of thinking in students. The K-12 programs

that encourage computational thinking are classified, described, and discussed in a way that is

intended to be meaningful for K-12 educators and educational researchers. Potential barriers and

factors that might enable educators to use each category of interventions are discussed.

iv

TABLE OF CONTENTS

Chapter 1: Introduction ... 7	

Purpose of the Dissertation ... 11	

Brief Overview of the Organization of the Dissertation ... 12	

References ... 15	

Chapter 2: Computational Thinking: An Investigation of the Eixsting Scholarship And Research

... 16	

Introduction ... 16	

Method .. 21	

Search Strategy and Sources ... 22	

Inclusion/Exclusion Criteria and Process ... 24	

Substantive Coding ... 25	

Findings .. 26	

Question 1: What are the demographic characteristics of the entire set of literature? 26	

Year of Publication. .. 26	

Author Characteristics. ... 27	

Target Populations. ... 27	

Question 2: What kind of taxonomy might characterize this entire set of literature? 29	

Question 3: What is the nature of the studies that have been conducted? 30	

v

Question 4: How do study authors define computational thinking, and how do these align

with the CSTA and Google definitions? .. 32	

Question 5: Of the empirical studies, how many were intervention studies and how many

were not? What kinds of interventions are being explored and tested? 34	

Question 6: What outcomes are examined in studies and how are they measured? 35	

Limitations .. 38	

Conclusions, Discussion, and Recommendations ... 40	

References ... 47	

Chapter 3: Computational Thinking: What Is It, How Do We Teach It, and How Do We Assess

It? .. 50	

Introduction ... 50	

The Origins of Computational Thinking ... 52	

Defining Computational Thinking .. 53	

Computational Thinking in the K-12 Classroom .. 55	

Technology-Free Computational Thinking ... 56	

Programming Games or Robots .. 57	

Initial Learning Environments ... 58	

Integrating Computational Thinking with Other Disciplines 60	

Computational Thinking for the Researcher ... 62	

Conclusion .. 65	

References ... 68	

vi

Chapter 4: Conclusion ... 73	

Lessons Learned & Insights Gained ... 73	

Barriers to Systematic Review in Computer Science Education 73	

Need for Collaboration .. 75	

Challenges Not Unique to Computer Science ... 77	

Next Steps ... 77	

References ... 80	

Appendix A: Committee Approved Manuscript Outlines .. 82	

Appendix B: Computer Science Education Call for Papers & Author Guidelines 85	

Appendix C: SIGCSE Submission Requirements and Call for Participation 88	

Appendix D: Boolean Logic ... 94	

Appendix E: Coding Sheet .. 95	

7

CHAPTER 1: INTRODUCTION

It is nearly impossible to overemphasize the role of computing and technology in our

everyday lives; computers, computational devices, and technology are so pervasive that that

civic, economic, and personal participation are predicated on technological skills and knowledge.

Reliance on technology goes beyond the daily use of digital electronics and technological

applications in the ‘hard sciences’. Technology is essential in fields are diverse as agriculture,

business, journalism, and social sciences. The influence of computing and technology

applications extends beyond the borders and boundaries of the industrialized nations; they are

used to help understand and address social problems across the world. In order for nations,

including the U.S., to remain economically competitive in the increasingly global environment, a

highly educated workforce skilled in computer science and technology is essential.

Academic and career achievement in an increasing number of disciplines is dependent on

the ability to apply technology, yet many students are ill-equipped to meet this challenge. Many

have noted the misalignment between computer science education and the ever-increasing digital

world in which we live. A recent report published by the Association for Computing Machinery

points out that K-12 computer science education paradoxically shrinking as the functions,

influences, and significance of computer science in society are expanding (Wilson, Sudol,

Stephenson, & Stehlik, 2010). In the five years prior to this report’s release, the number of

computer science courses taught in secondary courses decreased by almost 20%, and high

schools offering Advanced Placement Computer Science courses decreased by 35%. The field of

computer science education is currently not keeping pace with the expanding technological

environment.

8

A number of human capital issues currently exist in computer science. Foremost among

these is the need for more computer science graduates. There is a lack of diversity among

computer science graduates as evidenced by the underrepresentation of minority and female

students in graduate computer science programs (Computing Research Association, 2010). A

second issue is the scarcity of opportunities for U.S. students develop computational skills and

explore how computational competencies may propel them toward careers of interest (Computer

Science Teachers Association [CSTA], 2005, 2009). Course offerings are limited, teachers often

are not adequately trained, rigorous high school computer science courses are rare, and

introductory courses are often unappealing and unattractive (Repenning, Webb, & Ioannidou,

2010). Innovation is needed to develop curriculum for use in a wide range of computer science

courses, along with professional development opportunities to prepare teachers to meet the needs

of students (Wilson & Harsha, 2009).

One tangible direction for change can be found in the computational thinking movement.

With the seminal article in 2006, Wing attempted to liken computational thinking to the basic

skills of reading, writing, and arithmetic. It is believed that computational thinking would enable

individuals to more effectively navigate today’s society where technology is unavoidable. First, a

focus on computational thinking in K-12 education would encourage equitable access to

technological skills, devices, and other resources because it would enhance personal

empowerment as individuals are taught how to apply computational thinking to their daily lives.

Second, incorporating computational thinking into K-12 education would raise student interest in

information technology, computer science, and other technologically oriented professions. Third,

an increase would help maintain and enhance the competitiveness of the U.S. from an economic

9

standpoint by better preparing students to enter the internationally competitive work force

(Committee for the Workshops on Computational Thinking, 2010).

Examples of computational thinking are all around us. Sorting is a common example of

computational thinking. Both sorting a list and using a sorted list involve computational thinking.

By sorting items, we are able to locate items quickly and efficiently. In addition, duplicate items

are easy to locate because they end up side-by-side, and extreme cases or potential data entry

errors are easily identified because they are at the beginning or end of the list. Lists can be sorted

a number of ways (e.g., alphabetically, numerically). A variety of methods (algorithms) can be

used to sort items, and each of these methods requires computational thinking. A description of

three of these methods follows. The selection sort method involves the following process: the

item with the smallest (or largest) value is located and put it in the first position, then the next-

smallest (or largest) item is found and put it in the second position, and so on until the entire list

is sorted. Throughout this process, the list is divided into two parts: the part of the list that has

been sorted and the part that has not yet been put in order. A second method is the quicksort, in

which the list is divided into two smaller sub-lists, then these sub-lists are recursively sorted. For

example, if a stack of nametags is to be alphabetized, one might use the last names on the

nametags to 1) create two stacks: A-N and M-Z, 2) separate the A-N stack into A-G and H-N, 3)

separate the A-G stack into A-C and D-G, 4) put the A-C stack in alphabetical order. This

process would continue for all sub-lists until all the nametags were in order. Another method is

the bubble sort, which involves moving through the list repeatedly, each time comparing two

side-by-side objects at a time and swapping the pair when one is in the wrong order. When one

moves through the entire list without making any swaps, the list is in order.

10

After a list has been sorted, multiple methods can be used to find an individual item. A

linear approach involves beginning the search at the top and moving down the list until the item

of interest is found. A binary search begins in the middle of the sorted list. If the item of interest

is located above the middle value, then the middle value in the top half of the items is located.

This value is compared to the item of interest, and the process repeats until the item of interest is

found on the list.

This description of sorting and locating an item on a sorted list is intended to provide an

example of how we might consider the world in computational terms. This exemplifies the

description of computational thinking offered by the Value of Computational Thinking Across

Grade Levels, which says

[Computational thinking] begins with learning to see opportunities to compute
something, and it develops to include such considerations as computational complexity,
utility of approximate solutions, computational resource implications of different
algorithms, selection of appropriate data structures and the ease of coding, maintaining,
and using the resulting program. Computational thinking is applicable across disciplinary
domains because it takes place at a level of abstraction where similarities and differences
can be seen in terms of the computational strategies available. A person skilled in
computational thinking is able to harness the power of computing to gain insights. At its
best, computational thinking is multi-disciplinary and cross-disciplinary thinking with an
emphasis on the benefits of computational strategies to augment human insights.
Computational thinking is a way of looking at the world in terms of how information can
be generated, related, analyzed, represented, and shared courses (Cozzens, Kehle, &
Garfunkel, 2010).

The need to sorting a list and locate an item on the list is not a practice that is exclusive to any

single discipline or category of disciplines. The need to conduct these activities extends to all

disciplines and to tasks one might face in their daily personal lives. This example is one of many

that could be used to demonstrate the need to better understand how computational thinking

skills are learned and taught.

11

Purpose of the Dissertation

The purpose of this dissertation is to conduct a disciplined review of computational

thinking literature, to examine the nature and extent of research evidence found within this

literature, and to offer suggestions that could enable educators and researchers to collaborate and

in efforts to both incorporate computational thinking into K-12 classrooms and study how

students learn to think computationally. This current inquiry is driven by the need of researchers,

scholars, and educators to have a unified understanding of the definition and a theoretical model

or framework underpinning the concept of computational thinking to use as a starting point in

developing and studying computational thinking interventions, the development quantitative

measures of computational thinking to assess the success of these interventions, and to

thoughtfully examine programs and interventions intended to promote computational thinking

competencies.

Within the context of the recently NSF-funded (VCTAL) project, the National Science

Foundation (NSF) expressed interest in providing support for the full development of an

instrument to measure computational thinking. Both the VCTAL reviewers and the NSF Project

Officer described the lack of an instrument or process to assess computational thinking, which

makes this a fertile topic to consider. This exploratory research will set the stage for future

efforts to enhance the rigor, strength, and visibility of both the theoretical model and the

computational thinking assessment instrument.

12

Brief Overview of the Organization of the Dissertation

At the recommendation of my advisor and with the approval of my committee, this

dissertation is presented as a set of two journal-ready manuscripts bracketed by an introduction

and a conclusion. Manuscript ideas were presented to committee members at the Dissertation

Proposal meeting, and modifications were made to the scope and direction as a result of this

meeting. Outlines were prepared and approved by all committee members (Appendix A). A brief

description of each chapter follows.

Chapter 2: Computational Thinking: An Investigation of the Existing Scholarship and

Research

Chapter 2 is a manuscript written for the Computer Science Education journal. This

journal’s most recent call for papers and instructions for authors can be found in Appendix B.

Computer Science Education is one of very few journals devoted to computer science teaching

and learning. It publishes historical analysis and theoretical, analytical, or philosophical

material. The study described in this manuscript study takes a systematic, disciplined approach

as it first provides a broad look at the computational thinking literature, and then examines the

nature and extent of research evidence found within this literature. The aims are to survey all of

the scholarship on computational thinking from 2006 to June 2011, and to conduct a review to

identify the nature and extent of the research evidence within this body of literature.

First, all the literature and scholarship on computational thinking since 2006 was

examined and used to answer questions about the authors and the characteristics of each piece in

order to better understand the literature base as a whole. To accomplish this, articles and

publications on computational thinking were identified using search terms derived from the two

most concrete and widely accepted descriptions of computational thinking available. A variety of

13

bibliographic databases were searched, hand searches performed, as well as other electronic

searches. A systematic screening process was used to determine eligibility for inclusion. If

articles met the initial subject and date screening criteria, they were included in the literature

map. Each of these articles was coded using a primary coding framework in which demographic

information and data related to the primary purpose of the article was extracted.

Second, those computational thinking articles that describe research or evaluation studies

were scrutinized further. A secondary coding framework was applied to this subset of the

literature. Details of conceptual and methodological features were coded. No attempts are made

to systematically appraise the studies, nor are findings synthesized across the studies. For these

reasons, inclusion criteria for the scoping review can be quite broad; any article that includes

data can be included, regardless of methods employed or study quality. Findings were described

and conclusions were drawn in each section, and overall implications were discussed in the

manuscript’s conclusion.

Chapter 3: Computational Thinking: What Is It, How Do We Teach It, and How Do We

Assess It?

The second manuscript was driven in large part by the findings from the first. It is applied

in nature and will be submitted to SIGCSE for consideration to present the paper at the 2013

SIGCSE Conference. The call for participation and formatting instructions are included in

Appendix C. This manuscript is intended to serve as an introduction to computational thinking

for ‘the rest of us’. In this case, ‘the rest of us’ includes elementary teachers, secondary teachers,

school administrators, and educational researchers. This paper is intended to reach the audience

who needs to be involved in the next step, which includes improving access to computer science

and computational thinking in K-12 schools. This manuscript includes a discussion of the

14

concept of computational thinking and its origins, an introduction to various programs and

initiatives that aim to encourage computational thinking in classrooms, and a final section

targeting educational researchers that discusses how computational thinking is and/or could be

studied.

Chapter 4: Conclusion

Chapter 4 includes a brief synthesis and discussion of the key findings related to

computational thinking. Following a discussion of this dissertation’s limitations and the lessons

learned, the researcher offers recommendations for the field of computer science education.

Finally, potential next steps for the researcher and others interested in the computer science

education field are presented.

15

REFERENCES

Committee for the Workshops on Computational Thinking. (2010). Report of a workshop on the
scope and nature of computational thinking. Washington, D.C.: National Academies
Press.

Computer Science Teachers Association (CSTA). (2005) The new educational imperative:
Improving high school computer science education. Retrieved November 15, 2010 from
http://csta.acm.org/communications/sub/DocsPresentationFiles/White Paper07_06.pdf

Computer Science Teachers Association (CSTA). (2009). High school computer science survey.
Retrieved November 15, 2010 from Research/sub/CSTAResearch.html

Computing Research Association (CRA). (2010). CRA Taulbee Survey. Retrieved November 11,
2010 from http://cra.org/resources/taulbee/

Repenning, A., Webb, D., Ioannidou, A. (2010). Scalable game design and the development of a
checklist for getting computational thinking into public schools. Proceedings of the 41st ACM
Technical Symposium on Computer Science Education (pp. 265-269). New York, NY. doi:
10.1145/1734263.1734357

Wilson, C., Harsha, P. (2009). IT policy: The long road to computer science education reform.
Communications of the ACM, 52(9), 33-35. doi: 10.1145/1562164.1562178

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to
teach K-12 computer science in the digital age. (Research Report). Retrieved from the
Association for Computing Machinery website:
http://www.acm.org/runningonempty/fullreport.pdf

16

CHAPTER 2: COMPUTATIONAL THINKING: AN INVESTIGATION OF THE EIXSTING

SCHOLARSHIP AND RESEARCH

Introduction

Computers and technology are virtually everywhere. They influence nearly every aspect

of our personal, professional, and civic lives including how we communicate, navigate through

our physical environment, disseminate and acquire knowledge, and how we collect, store, and

analyze information. Academic and career achievement in an increasing number of disciplines is

dependent on the ability to use technology, yet most students are ill-equipped to face this

challenge. Opportunities for U.S. students to develop computational skills and learn basic

technology concepts are scarce. Course offerings are limited and introductory computer science

courses at the high school and university levels are often unappealing and unattractive

(Computer Science Teachers Association [CSTA], 2009; Computing Research Association,

2010; Repenning, Webb, & Ioannidou, 2010; Stephenson, Gal-Ezer, Haberman, & Verno, 2005).

Rigorous, engaging high school computer science courses are rare and K-12 courses often

consist of little more than teaching students how to operate computer applications or software

(Wilson, Sudol, Stephenson, & Stehlik, 2010).

To empower learners to effectively face modern challenges, the US education system

must reconsider how computer science is introduced and taught. Undergraduate courses in an

array of disciplines have begun to be overhauled to introduce computer science concepts in

compelling ways (e.g., Anewalt, 2008; Heines, Greher, Ruthmann, & Reilly, 2011; Martin et al.,

2009). Changes at the K-12 levels have been much more subtle, but there are signs that an

increased focus on computer science has begun to catch hold. While computer science is neither

17

a core subject nor a requirement for graduation in any state, nine states now allow computer

science courses to count toward graduation requirements in mathematics or science.

Efforts to advance computer science education at the federal, state, and corporate levels

advocate a focus on computational thinking. The concept of computational thinking was

popularized by Janette Wing in 2006, and the argument that computational thinking is a

fundamental and universal skill has been embraced by the computer science community. The

National Science Foundation’s Computing Education for the 21st Century (CE21) and CISE

Pathways to Revitalized Undergraduate Computing Education (CPATH) funding competitions

encourage projects that develop computational thinking competencies. The College Board is

currently testing a new Advanced Placement course, Computer Science: Principles, around a set

of six Computational Thinking Practices. This course will advance students’ understanding of

computational thinking in order to advance efforts to develop a more competitive 21st century

workforce (The College Board, 2011). Most recently, computational thinking was used as a

common thread to link the three levels of K-12 learning standards developed by the Computer

Science Teachers Association (CSTA, 2011a).

There has been much discourse in recent years about the precise definition of

computational thinking (Bundy, 2007; Denning, 2007; Garcia, Lewis, Dougherty, & Jadud,

2010; Henderson, 2009; Committee for the Workshops on Computational Thinking, 2010; Wing,

2006), and the definition continues to be emergent. The National Academies convened

workshops in 2009 and 2010 to explore the scope, nature, and pedagogical aspects of

computational thinking. While no consensus on these aspects of computational thinking was

reached, workshop participants agreed on the existence of computational thinking as a mode of

thought with a distinctive character (Committee for the Workshops on Computational Thinking,

18

2010), and subsequent reports of these workshops widely disseminated the arguments and

perspectives of prominent comptuer science education experts.

 Two definitions for computational thinking stand out at this point. The first is offered by

the CSTA, who defines computational thinking as a problem solving process that includes (a)

formulating problems in a way that enables us to use a computer and other tools to help solve

them, (b) logically organizing and analyzing data, (c) representing data through abstractions,

such as models and simulations, (d) automating solutions through algorithmic thinking, (e)

identifying, analyzing, and implementing possible solutions with the goal of achieving the most

efficient and effective combination of steps and resources, and (f) generalizing and transferring

this problem-solving process to a wide variety of problems (2011b). This definition underwent a

review process that included a survey of over 700 experts including computer science teachers,

researchers, and practitioners. The vast majority of respondents (n=697, 82%) indicated their

agreement or strong agreement when asked if CSTA’s definition captured the fundamental

elements of computational thinking, and a further 9% indicated that the definition was sufficient

to use to build consensus in the computer science education community. A second prominent

definition is offered by Google’s Exploring Computational Thinking initiative, the first large-

scale program to provide an operational definition, disseminate resources, and promote

discussion among K-12 educators about computational thinking. Google describes a process that

includes four computational thinking techniques: decomposition, pattern recognition, pattern

generalization and abstraction, and algorithm design (Google, 2011). Both of these definitions

depict computational thinking as a series of skills and techniques that prepares a problem for

computation, and conceptual parallels can be drawn between components of each definition, as

seen in Table 1.

19

Table 1.
Computational Thinking Definitions

The Computer Science Teachers Association’s
Operational Definition of Computational Thinking

Google’s Exploring Computational
Thinking Techniques

• Formulating problems in a way that enables us to use

a computer and other tools to help solve them
Decomposition

• Logically organizing and analyzing data Pattern Recognition

• Representing data through abstractions, such as

models and simulations
Pattern Generalization and Abstraction

• Automating solutions through algorithmic thinking

• Identifying, analyzing, and implementing possible

solutions with the goal of achieving the most efficient

and effective combination of steps and resources

Algorithm Design

• Generalizing and transferring this problem-solving

process to a wide variety of problems

The CSTA’s operational definition of computational thinking includes initial step that

describes formulating problems so technology can be used to help solve them is similar to

Google’s concept of decomposition, which involves taking a large, complex problem and

breaking it down into smaller and easier/more manageable ones. CSTA next describes the logical

organization and analysis of data, which has parallels to Google’s pattern recognition, or the

ability to find similarities or differences that help “make predictions or lead to shortcuts”

(Google, 2011). Representing data through abstractions is similar to pattern generalization and

abstraction, or the ability to remove the details of a problem in order to make a solution that

works to solve similar problems. This involves filtering out unnecessary details and designing a

solution that can be used to solve similar problems. The CSTA’s next two steps of using

20

algorithmic thinking to automate solutions and the analysis of possibilities in order to determine

an efficient and effective solution are similar to Google’s algorithm design, which is described as

involves the development of a step-by-step strategy or set of instructions for completing or

solving a similar problem. The CSTA definition extends one step beyond this to include the idea

of generalizing and transferring this process to diverse problems.

While both represent a processes, each suggests that the individual concepts can be

approached and introduced as discrete concepts or skills. Computational thinking is not a stand-

alone subject, but rather inherently interdisciplinary in nature because the set of skills and

techniques are used help address problems in any discipline.

This recent emphasis on computational thinking has resulted in a surge of literature

devoted to the discussion or study of its concepts. So far, there is no evidence of attempts to

aggregate, scrutinize, or analyze this body of literature. This study focuses on computational

thinking in education. The purpose is to represent the nature of empirical and theoretical

literature at a point in time and identify recommendations for future research directions in

computational thinking, and promote dialogue about computational thinking. It is intended to be

used to computer science educators, policymakers, and researchers as they make decisions that

could influence practice, policy, and future research directions.

This review employs a systematic, disciplined approach as it first provides a broad look

at the computational thinking literature, and then comprehensively examines the nature and

extent of research evidence found within this literature. The broad overview of the computational

thinking scholarship offers a preliminary assessment of the scope and size of the literature base.

It looks broadly at all literature produced on computational thinking and its domains since the

term computational thinking was introduced by Janette Wing in 2006. In addition, the

21

comprehensive study described in this paper examines the empirical studies discovered and

creates a descriptive “map” of research conducted on the topic. The aim is to examine the studies

that have been conducted around interventions to help researchers and educators understand

computational thinking and its domains. No synthesis of findings or formal assessments of

quality are included, but instead this review provides an overview of the evaluation and research

that have been conducted to date.

This type of review was conducted for a variety of reasons. The desire to employ a

systematic and transparent process to conduct this review was paramount. Prior to conducting

this study, the author had extensive knowledge of the extant literature on computational thinking,

so was aware that a rigorous meta-analysis was not an appropriate approach. The research

amassed on computational thinking topics does not consist of a sufficient number of

heterogeneous research studies that meet the highly selective inclusion guidelines for the

statistical analyses conducted in a meta-analysis (Swanson & Deshler, 203). A scoping review

was chosen because of the broad map of evidence and literature it create as it explores the extent

of the literature in a domain and helps to identify the potential scope of a future systematic

review to synthesize the findings (Armstrong, Hall, Doyle, & Walters, 2011).

Method

The aim is to isolate the literature on computational thinking in education and provide a

meaningful and comprehensive description of the literature around this concept. The following

questions are addressed in this review:

(1) What are the demographic characteristics of the entire set of literature?

(2) What kind of taxonomy might characterize this entire set of literature?

22

(3) What is the focus of the studies that have been conducted?

(4) How do study authors define computational thinking, and how do these align with the CSTA

and Google definitions?

(5) What kinds of interventions are being described and tested?

(6) What outcomes are examined in studies and how are they measured?

A systematic process was used to identify articles and papers on computational thinking.

The search parameters and procedures were established a priori, and a thorough, objective, and

reproducible search was conducted. The guidelines established by the Cochrane Collaboration

and its Cochrane Information Retrieval Methods Group were used as a guide (Hammerstrom,

Wade, & Jorgensen, 2010).

Search Strategy and Sources

Search terms were established after an extensive review of the literature and consultations

with a content expert, an academic librarian, and a methodologist experienced in systematic

reviews. The review presented in this paper relied on a both the CSTA (2011b) and Google

Exploring Computational Thinking definitions to arrive at search terms. Search terms extracted

from each of these are considered a “domain” of computational thinking for this study. Because

of the interdisciplinary nature of computational thinking the search also included the

combination of computer science and other disciplinary areas. Search terms used include the

following: computational thinking, thinking, interdisciplinary, multidisciplinary, mathematics,

science, biology, physics, reading, writing, journalism, music, art, problem decomposition,

pattern recognition, abstraction, algorithm, data representation, simulation, recursive. The

23

phrase computer science education was included to filter unrelated articles.

These search terms were entered along with the data-range parameters (2006 – June

2011) into the following relevant electronic bibliographic databases: ACM Digital Library, ERIC

(EBSCO and ProQuest), Web of Science, PsychInfo, ITicse, and Digital Dissertations. This

resulted in 6,906 titles and abstracts. The concept was popularized in 2006, and the search was

conducted in June 2011, which explains both end of the date-range parameters. Two institutional

repositories were searched, but neither resulted in any additional abstracts: Directory of Open

Access Repositories, and the Register of Open Access Repositories. There is no reliable way to

obtain information about studies that have been conducted but never published (Hammerstrom,

et al., 2010), but because of the importance of locating unpublished works and studies extensive

non-database searches were conducted. Hand searches were conducted in two journals

(Computer Science Education and Journal on Educational Resources in Computing) and in the

Koli Calling proceedings. Papers presented at and published in the Koli Calling proceedings are

not included in any electronic database, so the entire contents of the 2006-2011 proceedings for

this computing education conference were examined. Hand searches resulted in 49 additional

titles and abstracts to include, all from the Koli Calling proceedings. In an attempt to identify

ongoing studies, the National Science Foundation list of ongoing projects was searched. While

numerous projects that might eventually produce literature relevant to this study were identified,

there were no additional papers available at the time of this review. Finally, a Google search for

unpublished works resulted in 16 additional pieces of literature considered for inclusion.

These search procedures combined resulted in a total of 6,971 article titles to import into

EndNote (Figure 1). Before the inclusion and exclusion criteria could be applied, duplicates

were removed. An automatic search for duplicates was hindered by the fact that many identical

24

papers were published in conference proceedings and in the governing body’s journals; these

were not automatically identified as duplicates because of the variation in the publication venue.

After automatic and hand searches for duplicates, a total of 3,465 citations and abstracts were

imported into the Evidence for Policy and Practice Information and Co-ordinating Centre’s

(EPPI-Centre) EPPI-Reviewer 4 (Thomas, Brunton, & Grazosi, 2010).

Figure 1: Search, Review, and Coding Proceure

Inclusion/Exclusion Criteria and Process

All abstracts went through an initial screening process where inclusion and exclusion

criteria were applied. Any article that was outside of the date range was excluded, as were

articles not related to computer science. If the phrase “computational thinking” was not included

in the abstract, it was still eligible for inclusion if it was explicit about its intent to address one of

Initial Search
Databases

(6,906
articles)

Institutional
Repositories
(0 articles)

Hand
Searches

(49 articles)

Internet Web
Search (16

articles)

Delete
Duplicates

3,465
articles

Abstract
Screen 638 articles

Full Text
Review 164 articles

Empirical
Studies 58 studies

Round 1
coding

Round 2
coding

Questions 1&2

Questions 3, 4, 5, & 6

25

the computational thinking domains identified in this study’s search terms. There was no attempt

to interpret the intent or otherwise deduce what outcomes could come of articles that described

interventions; if the connection to computational thinking or one of the domains was not made

explicit, the article was excluded. For example, the incorporation of real-world applications or

programming environments like Scratch, Greenfoot, or Alice did not lead to automatic inclusion.

While interventions that include these programming environments could be used to promote

computational thinking skills, the author must have clearly made a connection to computational

thinking or one of the domains specified in the definitions used for this study. Papers that

introduce panel discussions, talks, video presentations, workshops, tutorials, posters, and other

similar conference events were excluded. While there is valuable information in these sessions,

the written explanations are brief and arguments too incomplete to be included in a meaningful

way.

It was not always possible to ascertain from the abstract if the article should be included.

In these cases, the full text article was obtained and reviewed to determine if the piece met the

screening criteria for inclusion. At the conclusion of the abstract screening, 638 papers remained

and moved on to the full text review stage before substantive coding began. An additional 474

papers were screened out with the full text reviews, which left 164 full text papers that advanced

to the substantive coding phases in which relevant characteristics of the articles were coded.

Substantive Coding

Substantive coding occurred in two rounds. The first round extracted demographic

information on all articles. The second substantive round of coding examined the subset of the

literature that included any paper or article that reported on data. The second round of coding

addressed this study’s research questions.

26

Findings

The findings from the first round of coding of the entire set of 164 articles on the topic of

are used to answer research questions 1 and 2. A subset of these is examined more closely with a

second round of coding. The literature included in this subset includes all reports of research

related to computational thinking. Each of these studies was coded for: study design, population,

type of intervention, outcomes, measures, and definitions of computational thinking used by

studies. Since no attempts were made to statistically analyze the findings, all studies were

included regardless of their methods, design, or quality.

Research Question 1: What are the demographic characteristics of the entire set of

literature?

Year of Publication. The scholarship on computational thinking increased steadily from

2006 until June 2011 (Figure 2). This trend reflects its rise in popularity of the concept, and it is

reasonable to assume this trend will continue given the recent focus on computational thinking at

the national level (e.g., CSTA, NSF, Google).

*Note: only papers published Jan-June 2011 are included

Figure 2. Computational thinking literature by year of publication (2006 – June 2011)

9 14

29

41
47

24

0
10
20
30
40
50
60

2006 2007 2008 2009 2010 2011*

N
um

be
r o

f A
rti

cl
es

27

Author Characteristics. Two author characteristics were examined: the institutional

affiliation of the primary author and area of expertise of all authors. An examination of the

affiliation for the first author found that 38 (22%) of the 164 computational thinking articles

were written by a primary author outside of North America. Regions include the Middle East

(n=8), South America (n=1), Asia (n=10), Oceania (n= 2), and Europe (n=17). Randolph

(2008) found that 55% of the studies in computer science were written by authors outside of

North America. The term computational thinking was introduced in the United States, so it is not

unexpected to find that the proportion of computational thinking scholarship produced abroad is

lower than the proportion of internationally produced papers on computer science education

(Randolph, 2008). It appears the emphasis on computational thinking or its domains is in the

United States is not mirrored by other regions of the world.

The area of expertise of authors was primarily computer science. Only 46 (28%) articles

included one or more authors with expertise in an area outside of computer science. These other

areas include education, fine arts, other science (physics, biology, etc.), and engineering. Of

those, 30 articles (18%) had one or more authors with expertise in education. Four articles had

authors with expertise in evaluation or educational research. Since this review is focused on

education, it is notable that so few authors have a background or expertise in education.

Target Populations. As seen in Table 2, there has been a considerable amount of

literature aimed at the larger computer science and computer science education community

(n=31, 19%), but the bulk of the literature has focused on students within a specific age range.

To date, the scholarship on computational thinking has been distributed fairly evenly between the

K-12 (n=69, 42%) and undergraduate (76, 46%) levels. A considerable amount of attention has

been paid to undergraduate education, and this is likely in direct proportion to the number of

28

undergraduate courses offered compared to the course offerings in K-12 settings. This proportion

will shift given recent finding initiatives like National Science Foundation’s Computing

Education for the 21st Century (CE21), the CS10K project with its aim to have 10,000 teachers in

10,000 high schools teaching a new computer science curriculum by 2015 (Astrachan, Cuny,

Stephenson, & Wilson, 2011), the attention to computational thinking in large-scale K-12

computer science advocacy efforts by organizations like CSTA and Google, and the emphasis on

computational thinking in the newly developed AP CS Principles course. While the computer

science community has been advocating for the expansion of computer science in K-12, it is only

recently that policies and initiatives such as these have focused their attention on computer

science and computational thinking at the K-12 levels. For example, it is reasonable to assume

that there will be a substantial increase in the proportion of literature pertaining to K-12 in

upcoming years.

Table 2.
Populations targeted by computational thinking literature

Articles

N (%)

K-12 Students 28 (17%)

Elementary Students (K-5) 8 (5%)

Middle School Students (6-8) 13 (8%)

High School Students (9-12) 20 (12%)

Undergraduate Students 76 (46%)

 Graduate Students 4 (2%)

Teachers or Instructors 10 (6%)

Computer Science Education Community 31 (19%)
Note: The total exceeds 164 because some studies targeted multiple populations

29

Research Question 2: What kind of taxonomy might characterize this entire set of

literature?

A grounded, iterative process was used to develop a six-fold taxonomy to classify the

articles and papers. The first category in the taxonomy, Curriculum Description, includes

articles that explain a lesson, curriculum, activity, or course that is used to promote

computational thinking or one of its domains. The purpose is to share ideas with other computer

science educators to improve the computer science education environment and community. The

distinguishing feature of Program Descriptions is that the intervention or idea described goes

beyond the individual classroom level and is implemented on a larger scale – across a university,

for example. Evaluations seek to make a judgment of the merit, worth, or value of a program or

process (Scriven, 1991). Articles were placed in this category if the author indicated that the

primary aim for the paper was to convey the results of a study focused on a specific program or

intervention. Evaluation papers could also fit in either the Curriculum Description or Program

Description categories if it were not for the emphasis on the evaluation methods and findings.

These were not dual coded. The fourth category is Research. These are distinguished from

evaluations by their focus on informing theory or contributing to the larger knowledge base

rather than being focused on a single program or intervention. The next two categories are

closely related. Philosophy papers are intended to create or promote debate about computational

thinking in the broad computer science or computer science education communities. Works in

this category might aim to share a perspective on an issue within the field or describe how CT

applies to other disciplines. The sixth category in this taxonomy is Opinion, in which authors

share their perspectives or outlook on a computational thinking topic. These are generally not

peer-reviewed and the primary intent is for a single author to share their views on a topic.

30

The distribution of computational thinking literature across the six categories can be seen

in Figure 3. The majority of the articles (n=78, 48%) described a curriculum, lesson, activity, or

a course and 11 (7%) described larger programs. Approximately one fifth of the articles (n=37,

23%) were philosophical articles intended to promote discussion or debate around computational

thinking. Research (n=19, 12%) and Evaluation (n=9, 5%) pieces reported on data that was

collected as part of a study. The remaining 10 (6%) articles were written by individuals who

were sharing their perspective on computational thinking.

Figure 3. Distribution of computational thinking literature 2006 – June 2011.

To further characterize the literature, each was coded for the inclusion of study findings.

In all, 58 papers included an explanation of a study, including the participants, methods, and a

presentation of findings. All 28 articles in the Research and Evaluation categories included data,

as did the 26 papers presenting curriculum descriptions included data, and four of the 12 program

descriptions.

Research Question 3: What is the nature of the studies that have been conducted?

All reports of research or articles that included data on outcomes related to an

intervention were examined, and methodological and conceptual details were extracted to answer

78

37
19

12 9 10

Curriculum
Description

Philosophy Research Program
Description

Evaluation Opinion
0	

20	

40	

60	

80	

100	

N
um

be
r	
 o

f	
 A
rti

cl
es

31

research questions 3-6. An examination of study designs offers a cursory estimate of the

methodological rigor of the research scholarship. The majority of studies (n=43, 74%) used

some type of within-subjects or one-group design in which outcomes were examined for the

treatment group only; no control groups were included (Table 3). The most common design

employed was the one-group post-test only design (n=21, 36%). This is perhaps the weakest of

all possible designs. Without a pretest it is difficult to ascertain if a change occurred, and the

absence of a control group makes it impossible to know what might have occurred without the

intervention (Shadish, Cook, & Campbell, 2002). Fifteen one-group studies (26%) included a

pretest measure, which adds a small amount of strength to the design, but does not allow the

researcher to make causal statements about the influence of the intervention.

Table 3.
Research and evaluation designs used to explore computational thinking

All Studies

N (%)

Within Subjects

Post only 21 (36%)

Pre/Post 15 (26%)

Repeated Measures 7 (12%)

Between Subjects

Post only 2 (3%)

Pre/Post 2 (3%)

Repeated Measures 1 (1%)

Correlational 4 (7%)

Causal Comparative 2 (3%)

Qualitative 10 (17%)

Did not include human participants 2 (3%)

TOTAL 66

Note: The total exceeds 58 because some studies used multiple designs

32

Quasi experimental studies that include a treatment and a control group (between-

subjects designs) are necessary if the aim is to make causal statements about treatment effects.

Only 3 (5%) of the studies included in this review are quasi-experimental studies. Of those, two

included only a post-test measure, an improvement over a within-subjects design, but still a weak

design. The incorporation of repeated measures bolsters both within subjects and between

subjects designs. This was done in 8 (14%) of the studies. Correlational and causal comparative

designs are also considered to be fairly weak research designs because the results remain open to

many alternative explanations. Six described studies that employed two or more designs.

Research Question 4: How do study authors define computational thinking, and how do

these align with the CSTA and Google definitions?

The conceptual feature explored were the computational thinking definitions used by

authors in each of the studies. Each definition of computational thinking used and cited within

the studies was examined. A large portion of the studies (n=25, 43%) did not include the term

‘computational thinking’, but focused one of or more of the computational thinking domains

such as algorithmic thinking, problem solving, reduction, abstraction, recursive thinking,

interdisciplinary application of computer science, or data reduction. Of the remaining 33 studies

that do mention computational thinking, six (10%) use the term computational thinking but

provide no definition, citation, or indication of what the phrase means either within the context

of their study or to computer science education in general.

Several studies (n=12, 21%) simply cite Wing’s 2006 paper without including an

explanation or definition. While Wing popularized the term in this seminal piece, the description

provided is not sufficient for use as an operational definition within a study. The page-long

description was an appropriate and adequate introduction to the concept, but its use as a

33

definition within a study of computational thinking is not sufficient. In that situation it is far too

vague and non-specific to allow the researcher or the consumer of the research an understanding

of what the phrase means. Quite simply, it is too broad a definition to be used to describe

something that is the target of a single intervention.

Only fifteen (26%) studies include a definition of computational thinking. The detail and

comprehensiveness of these seven definitions varied dramatically, but the definition included

provided the reader with some understanding of what the phrase meant in the context of the

study. These definitions included were compared to the definitions provided by Google and the

CSTA. Of the 15 studies, nine offered definitions that were exceedingly vague compared to the

processes described by Google and CSTA. These vague definitions are superficial descriptions

of computational thinking as a “way of thinking”, a “fundamental skill”, or a “way of solving

problems”. They provide the reader little indication of what this mode of thought entails, and

how the intervention described in the study might address it.

Four studies that define computational thinking go beyond these superficial descriptions

and explain specific skills or concepts that comprise computational thinking. Each of the skills

mentioned in these four studies overlap with those included in Google and the CSTA’s definition

(i.e. abstraction, decomposition, formulating problems). Two study authors address the need to

operationalize computational thinking so it can be more meaningfully investigated. One of these

authors included a laundry list of definitions provided by eight various authors, and explained

that none of these was sufficient to operationalize the concept. The other author described a

study in which the aim was to define computational thinking.

34

Research Question 5: Of the empirical studies, how many were intervention studies and

how many were not? What kinds of interventions are being explored and tested?

The majority of the interventions studied were classroom-level interventions

implemented in the traditional school settings (n=35, 60%). Further analysis of these curricula

described for formal and informal settings found that the most common intervention in a school

setting was an entire course redesign with the aim to infuse computational thinking across the

entire semester or year (Table 4). Twelve of these redesigned courses were computer science

courses, and six were courses focused on other disciplines such as science or mathematics.

Other interventions included short computational thinking units or modules (n=3, 5%), activities

or games (n=9, 8%), or a novel approach to teaching a computational thinking concept intended

to be used in a traditional classroom setting.

Table 4.
Types of classroom-level curricula

Articles

N (%)

Course Focused on Computational Thinking 18 (51%)

Short Computational Thinking Units or Modules 3 (5%)

Activities or Games 9 (26%)

Approach to Teaching a Concept 3 (5%)

Computational thinking interventions used in out of school settings (n=8, 14%) were

similar in nature, but were offered to students in informal settings such as summer camps or after

school programs (e.g., Egan & Lederman, 2011). Another group targeted by computational

thinking programs is teachers (n=6, 10%). Given the emphasis on incorporating computer

35

science and computational thinking into non-computer science classrooms and the push to

improve computer science teacher preparation, this is not surprising. Perhaps recent funding

opportunities (e.g., CS10K) paired with the K-12 policy focus on computational thinking (i.e.,

AP, CSTE) will result in an increase in the proportion of interventions that fall into this category

will increase dramatically in upcoming years. The 13 (22%) studies that explored how

individuals think or learn or sought to understand differences in computational thinking skills

among groups (e.g. between computer science professionals and novice computer science

students) did not include an intervention. Some interventions aimed to influence individuals in

multiple groups or settings (i.e., teachers, classrooms)

Research Question 6: What outcomes are examined in studies and how are they measured?

Of the studies that included an outcome or a dependent variable, many examined more

than one. Some studies described numerous outcomes or measures, but did not report data or

findings for each of the outcomes. In those cases, the only findings reported were significant

ones. Some studies (correlational studies, for example) did not include a dependent variable. The

outcomes examined fell into six major categories (Table 5). Examples of attitudinal outcomes

include attitudes toward computing, attitudes toward other disciplines (i.e. mathematics and

science), perceptions of computer scientists or computer science careers.

36

Table 5.
Outcomes examined in computational thinking studies

Articles

N (%)

Attitudes 23 (40%)

Skills/Knowledge 23 (40%)

Course Achievement 2 (3%)

Future Plans 5 (9%)

“did you like it” 21 (36%)

Course Enrollment 2 (3%)

None 13 (24%)
Note: The total exceeds 58 because some studies include multiple outcomes

Skills or knowledge outcomes were employed often. In some studies, the skills or

knowledge were related directly to the intervention and the outcome examined in others studies

was something more generally or not as directly related. A third common category of outcomes,

seen predominately in evaluation studies, is the “did you like it” outcome. These differ from

attitudinal outcomes because attitude outcomes require that one looks outside of the intervention

and into one’s feelings or perceptions of a larger idea – like computer science or mathematics.

“Did you like it” outcomes are exclusively interested in or target participant perceptions of the

intervention being studied. Outcomes related to students’ future career or academic plans (e.g.,

intent to pursue a career or degree in CS, take future CS courses) were not commonly used, nor

were those related to course achievement (final grade in the course) or subsequent course

enrollment. Thirteen studies included no outcome variable.

Outcomes were assessed using a variety of measures across the various studies (Table 6).

Questionnaires were by far the most commonly employed measure (n=34, 59%). These were

37

used to collect data on many of the attitudinal outcomes and a number of studies used them to

explore skills and knowledge gains (e.g. Kafura & Tatar, 2011). Self-assessments of knowledge

gain are often flawed and are not as strong as other types of measures of knowledge and skills

acquisition (Dunning, Heath, & Suls, 2004). More traditional measures of skills and knowledge

including teacher or research made tests (n=14, 24%) or standardized or established tests that

have undergone measurement of their reliability and/or validity (n=4, 7%) were used in some

studies. Student work created as part of the course was used as a measure in 11 (19%), often

paired with qualitative data analysis. Final course grades (n=3, 5%) and existing records (n=5,

9%) were used as measures of success, as were observations (n=11, 19%), interviews (n=6,

10%), and other measures including reflections, mentor ratings, focus groups, and computer-

logged data.

Table 6.
Measures used in computational thinking studies

 Studies
N (%)

Questionnaire 41 (61%)

Course Grades 3 (4%)

Teacher or Researcher Made Test 15 (22%)

Student Work 13 (19%)

Existing Records 4 (6%)

Standardized or Established Tests 5 (7%)

Interviews 7 (10%)

Observation 11 (16%)

Other 7 (10%)
Note: The total exceeds 58 because some studies used multiple measures

38

The methods used for data analysis were also examined. If multiple analysis methods

were used within a study, each method was coded. The findings are displayed in Table 7. The

majority of the studies used less robust descriptive (n=36, 62%) or qualitative (n=36, 62%)

methods to analyze and represent the data. Only 8 (14%) of the studies used inferential statistics

to report findings. Three used Pearson correlation, three used a t-test, one used ANOVA statistic,

one a chi-square, and one reported z-test scores. One study used multiple analysis methods.

Another reported to have several statistically significant findings, but did not give information on

the statistical analysis method used. Only one of the eight studies that used inferential statistics

included a discussion of the effect size.

Table 7.
Data Analysis Method Used

 Studies
 N (%)

Inferential 8 (14%)

Descriptive 36 (62%)

Qualitative 38 (69%)
Note: The total exceeds 58 because some studies used multiple data analysis methods

Limitations

There are several limitations to this study. The first arose in the development of a search

protocol and gathering all the literature and studies on computational thinking was a challenge.

The initial challenge was the lack of a widely agreed upon definition or structure of

computational thinking. While there is agreement about the existence of CT as a mode of

thought, there is no general understanding of the content or structure of computational thinking

39

and great variation exists among the various definitions. Strides have been made because of

events like the February 2009 workshop on the scope and nature of computational thinking

hosted by the National Research Council (Committee for the Workshops on Computational Thinking,

2010), but general agreement remains elusive.

Another limitation arises from the fact that conference proceedings are the primary outlet

for communicating about the computer science field (Moed & Visser, 2007). It is not a problem

that the bulk of the studies and articles examined were published in conference proceedings. The

emphasis on conferences is not surprising given the nature of computer science. In a field driven

by innovation and a race to be the first to discover something new, only to have to immediately

pursue the next new thing, time to publication is an important consideration. A National

Research Council study (Snyder, 1994) found the median time from initial submission to

publication in journals to be 31 months and in conference proceedings 7 months. The proportion

of computer sciences literature published in this venue is markedly higher than the 8% of social

science and 21% of science publications that are found in conference proceedings (Bourke &

Butler, 1996). In other fields, conference proceedings are not held in as high esteem as academic

journals, methodological quality is often lower in conference papers, and publication bias is seen

when the proportion of non-significant to significant findings are compared for these two types

of outlets. Journal manuscripts are more likely to include non-significant findings in other fields

(Snyder, 1994). This is not the case for CS education publications where a study of the

methodological quality of articles found no differences in the methodological quality of articles

published in computer science education journals and those published in computer science

education conference proceedings. Computer science conference papers have a “much, much”

higher citation rate than social science conference papers (Heeks, 2010), which is further

40

evidence of the approval of this dissemination method in the field. The limitation arises when

information is shared at conferences in the form of panels, presentations, and talks. In this study,

descriptions of almost 300 such sessions were excluded because the published descriptions did

not include enough detail on the session’s content to allow for data to be extracted.

Two forms of publication bias, present in all reviews of this nature, are an additional

limitation. Editorial publication bias is introduced when editors or reviewers reject manuscripts

because of statistically non-significant results. Authorial bias refers to the failure to submit

manuscripts that report on neutral or negative findings (Randolph & Bednarik, 2008). Since

authorial bias is the most common form of publication bias (Lee, Boyd, Holroyd-Leduc,

Bacchetti, & Bero, 2006; Olson et al., 2002), authorial bias is more of a threat to the validity of

these findings.

Conclusions, Discussion, and Recommendations

The study described in this paper explored all of the literature on computational thinking

between 2006 and June 2011. It described the demographic characteristics of this literature base

and examined how well researchers exploring computational thinking align their methods,

design, and analysis with commonly accepted definitions and standards for methodological rigor.

Wing’s seminal paper was undoubtedly influential in the computer science education community

and a nod to Wing’s introduction of the concept into the common language and modern thought

of computer science educators is an appropriate reference. That said, the community continues to

wrestle with a concrete definition for the phrase computational thinking. Until there is a

universally accepted comprehensive understanding of what CT is , it is reasonable to expect that

studies examining computational thinking explicitly state their definition of the phrase so readers

41

can understand more about the intervention and its intent, or the focus of the research when there

happens to be no intervention.

According to Hemmendinger (2010), most of the current definitions of computational

thinking currently offered lack precision and fail to provide sufficient examples, often making

the concept misunderstood or misconstrued. There has been much discourse in recent years about

the precise definition of computational thinking (Bundy, 2007; Denning, 2007; Garcia, et al.,

2010; Henderson, 2009; Committee for the Workshops on Computational Thinking, 2010; Wing,

2006). Wing (2006) introduced computational thinking as “reformulating a seemingly difficult

problem into one we know how to solve, perhaps by reduction, embedding, transformation, or

simulation” (p. 33). This definition is widely relied upon in projects that aim to promote

computational thinking skills (i.e., Good et al., 2008; Hambrusch, Hoffmann, Korb, Haugan, &

Hosking, 2009), but there has been little offered in the literature in the way of interpretation,

further articulation, or constructive critique. The continued use of this broad, nonspecific

definition and lack of elucidation could indicate that while there is acceptance of the idea that

computer science is in need of a redesign, there is little understanding of the concept of

computational thinking. It must be said that none of these articles claims to be focused on

defining computational thinking. Given that computational thinking is such an ambiguous

concept, it is problematic that these studies claim to be studying it, but provide no concrete

definition. Only one study (Basawapatna, 2011) acknowledges the ambiguous nature of the

concept and the need to provide a concrete description of how computational thinking is defined

within the context of the study.

The intent of this review is to identify research trends and make recommendations to

improve computational thinking and computer science education research practice. Reliable,

42

generalizable methods were used to conduct this study, and two major conclusions were reached.

First, computational thinking is far too underdeveloped a concept to be examined as a study’s

outcome in any meaningful way. Its use as a primary intervention target and outcome measure is

problematic. Given the underdeveloped nature, one has to ask if it is inappropriate under any

circumstances for a study to offer no definition or description of the intervention target, but

particularly the case in studies reviewed that claim to target computational thinking, and yet fail

to define it or describe how their intervention targets computational thinking or to offer any

theoretical framework that explains how their chosen outcome measure is linked to

computational thinking. There has been widespread agreement about the existence of the

concept, but only recently have there been efforts to define it in a way that could lead to its

operationalization and use as a general construct within studies.

Intervention research needs a strong basis of qualitative and quantitative research

underpinning it. It is insufficient to provide only anecdotal evidence of claims, which is the type

of evidence produced in the bulk of studies examined in this review. This type of data is useful

for hypothesis generation, but can never confirm a hypothesis. The first step using a concept like

computational thinking this is to conduct of qualitative research to articulate its theoretical

components. The Computer Science Teachers Association’s recently published definition can be

used as a launching point for these efforts. The second step, the quantitative research, examines

causal connections between the operational theoretical concepts. This includes the modification

of existing measures or the development of new measures to assess each of the theoretical

concepts that comprise the construct. These steps must be taken before robust studies addressing

computational thinking can be conducted. Very little judgment or criticism about computational

thinking has occurred; so far it is largely taken at face value. Perhaps the computer science

43

education community should place more emphasis exploring the concept and taking further steps

to arrive at a consensus about a theoretical framework that can be used to describe it.

The second conclusion that arose from this study relates to the quality of initial research

and evaluation studies examining the efficacy of interventions that purport to improve

computational thinking. The studies have, as a group, far too weak characteristics to allow for

decent estimates of causal judgment. While the aim was not to report on the quality of the

studies, it is evident that the rigor is lacking. This lack of rigor is apparent in both the conduct of

the studies and in the reporting of them. The standards for reporting on studies of educational

intervention in this field differ from those that have been established in other educational

disciplines. There seems to be a laissez faire culture within computer science education that

accepts research and evaluation studies that lack conceptual and methodological rigor. While

there is no single set of standards that all of educational research relies on, there are some clear

commonalities among the frequently cited standards (e.g. AERA, 2008; Ragin, Nagel, & White,

2004; National Center for Dissemination of Disability Research, 2012; Shavelson & Towne, 2002).

Evidence of robust research designs in the computational thinking literature is non-

existent. The commonly relied upon designs (single group posttest only or single group

pretest/posttest) are vulnerable to multiple threats to internal validity. Quality studies employ

systematic designs and are underpinned by explicit theoretical or conceptual frameworks to

address significant questions that will contribute to the knowledge base. Furthermore, controls

for counterfactuals and threats to internal validity that threaten causal connections are vital

components of studies that aim to make causal claims.

The majority of the computational thinking research and evaluation studies relied

exclusively or in large part on measures of student attitudes toward the intervention or self-report

44

of learning. In order to meet standards for educational research, measurement instruments

should have psychometric information provided about them, and reliability and validity statistics

should be presented. The research methods and instruments to measure variables of interest must

be fully conceptualized and appropriate to address the research question. Studies that rely on

perceptions of the intervention or on self-report of learning do little to inform the larger field and

are overly focused on the context in which the study is conducted.

The reporting standards that are evident in the field are insufficient. Authors should be

encouraged to provide sufficient detail about the intervention, the procedures, the participants,

and the theoretical underpinnings that drive the study. In the articles scrutinized for this paper,

there was often very little substantive information on the intervention included. Sampling

procedures were not thoroughly described, and results and findings were not included for all

outcomes described. All aspects of studies should be presented, not just the portions of the study

that reveal positive findings. The omission of results hints at a bias toward reporting only

positive findings. Furthermore, written reports must provide sufficient information to reproduce

or replicate the study, which includes a description of the intervention, the sample, the methods,

and present the findings from all aspects of the study. Beyond these methodological features,

written reports should describe the philosophical assumptions made, the study’s limitations, and

present the implications of the study on the rest of the field. The portion of computer science

education research represented in this study do not adequately meet these commonly describe

upon standards for the conduct research and evaluation studies, nor for reporting. A discussion of

what the computer science education research and evaluation standards could/should be would

strengthen the quality of research in the field by encouraging reflection on research’s role in

advancing computational thinking and computer science education. If the computer science

45

community maintains different expectations regarding research quality, these should be

articulated and discussed publicly and shared with the larger community.

The lack of attention to details such as measurement of outcomes and the definition of

constructs suggest a lack of appreciation and understanding of the complexity of social science

research. These are not trivial aspects of educational research. Lack of theoretical framework is

further evidence that these researchers are unfamiliar with ambiguities that are inherent in

educational research. This is not the first call for computer science education to make

improvements to their research practice. Randolph (2007) made a series of recommendations,

and improvements are not yet apparent. Continued reliance on weak designs, ill- or non-defined

concepts or interventions, and vague reports of the findings will do nothing to advance

computational thinking and computer science education to where it wants to be – in K-12

classrooms across the country. In order to make evidence-based decisions, a collection of quality

research studies must exist. By following the established educational research standards as well

as the recommendations set forth by researchers who have examined the body of literature in the

field (i.e. Randolph, 2007, the current study), the computer science education community will

slowly amass the evidence it needs to establish its place in the K-12 curriculum.

This review captures the literature from the introduction of computational thinking into

the common language of computer science educators. Judging by the limited quality of the

designs, very little rigorous examination of computational thinking and how it can best be

introduced, encourage, and fostered in students. This review will serve as a baseline for future

projects that examine the body of work and evidence on computational thinking. In addition,

hopefully it will encourage the community of researchers interested in computational thinking to

apply rigorous methods that will allow for generalization to other settings. Policymakers could

46

encourage projects that employ rigorous methods to study the computational thinning efforts

agencies, like the National Science Foundation, are encouraging. All this in the hope that it won’t

be long until it is possible to conduct a disciplined inquiry that synthesizes and critiques the

empirical literature – much like Randolph has done with the CS educational research – to derive

or come up with suggestions which the field can advance. Through this current review, it has

become clear that there currently are not enough empirical studies to conduct a quantitative

review of the literature.

47

REFERENCES

American Educational Research Association (AERA). (2011). Definition of scientifically based
research. Retrieved January 26, 2011, 2011, from
http://www.aera.net/Default.aspx?id=6790

Anewalt, K. (2008). Making CS0 fun: an active learning approach using toys, games and Alice.
Journal of Computing Sciences in Colleges, 23(3), 98-105.

Astrachan, O., Cuny, J., Stephenson, C., & Wilson, C. (2011). The CS10K Project: Mobilizing
the Community to Transform High School Computing. New York: Assoc Computing
Machinery.

Bourke, P., & Butler, L. (1996). Publication types, citation rates and evaluation. Scientometrics,
37(3), 473-494.

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical
Computing, 1(2), 67-69.

Committee for the Workshops on Computational Thinking. (2010). Report of a workshop on the
scope and nature of computational thinking. Washington, D.C.: National Academies
Press.

Computer Science Teachers Association (CSTA) (2005). The new educational imperative:
Improving high school computer science education. Retrieved November 15, 2010 from
http://www.nsf.gov/cgi-bin/good-
bye?http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.
pdf

Computer Science Teachers Association (CSTA) (2009). High school computer science survey
Retrieved November 15, 2010, from http://www.nsf.gov/cgi-bin/good-
bye?http://csta.acm.org/Research/sub/CSTAResearch.html

Computer Science Teachers Association (CSTA) (2011a). K-12 Computer Science Standards:
Revised. New York.

Computer Science Teachers Association (CSTA) (2011b). Operational definition of
computational thinking for K-12 education Retrieved November 11, 2011, from
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Computing Research Association. (2010). CRA Taulbee Survey Retrieved November 11, 2010,
from http://www.cra.org/resources/taulbee/

Denning, P. (2007). Computing is a natural science. Communications of the ACM, 50(7), 18. doi:
10.1145/1272516.1272529.

48

Dunning, D., Heath, C., & Suls, J. (2004). Flawed self-assessment: Implications for health,
education, and the workplace. Psychological Science in the Public Interest, 5(3), 69-106.
doi: 10.1111/j.1529-1006.2004.00018.x

Garcia, D. D., Lewis, C. M., Dougherty, J. P., & Jadud, M. C. (2010). If _________, you might
be a computational thinker! Proceedings of the 41t ACM technical symposium on
computer science education. (pp. 263-264). Milwaukee, WI. doi:
10.1145/1734263.1734355

Good, J., Romero, P., du Boulay, B., Reid, H., Howland, K., & Robertson, J. (2008). An
embodied interface for teaching computational thinking. Paper presented at the
International Conference on Intelligent User Interfaces (IUI 2008).

Google. (2011). Exploring Computational Thinking, from
http://www.google.com/edu/computational-thinking/

Hambrusch, S., Hoffmann, C., Korb, J., Haugan, M., & Hosking, A. (2009). A multidisciplinary
approach towards computational thinking for science majors. ACM SIGCSE Bulletin,
41(1), 183-187.

Hammerstrom, K., Wade, A., & Jorgensen, A. K. (2010). Searching for studies: A guide to
information retrieval for Campbell Systematic Reviews. Campbell Systematic Reviews
2010: Supplement 1, 74. Retrieved from
http://www.campbellcollaboration.org/news_/new_information_retrieval_guide.php
doi:10.4073/csrs.2010.1

Heeks, R. (2010, April 28). ICT4D conference papers: Impact and publication priority [web log
post]. Retrieved from http://ict4dblog.wordpress.com/tag/ict4d-conferences/

Heines, J., Greher, G., Ruthmann, S., & Reilly, B. (2011). Two Approaches to Interdisciplinary
Computing+ Music Courses. Computer, 44(12), 25-32. doi: 10.1109/MC.2011.355

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4-7. doi:
10.1145/1805724.1805725

Henderson, P. B. (2009). Ubiquitous Computational Thinking. Computer, 42(10), 100-102. doi:
10.1109/MC.2009.334

Martin, F., Greher, G., Heines, J., Jeffers, J., Kim, H. J., Kuhn, S., . . . Yanco, H. (2009). Joining
computing and the arts at a mid-size university. Journal of Computing Sciences in
Colleges, 24(6), 87-94.

Moed, H. F., & Visser, M. S. (2007). Developing bibliometric indicators of research
performance in computer science: an exploratory study. (CWTS Report 2007-01).
Retrieved from the Centre for Science and Technology Studies website: http://www.
cwts.nl/pdf/NWO_Inf_Final_Report_V_210207. pdf.

49

National Center for Dissemination of Disability Research. (2005). What are the standards for
quality research? (Technical Brief No. 9) Retrieved January 26, 2012 from
http://www.ncddr.org/kt/products/focus/focus9/

Ragin, C. C., Nagel, J., & White, P. (2004). Workshop on Scientific Foundations of Qualitative
Research. Washington, DC: National Science Foundation.

Randolph, J. J. (2007). Computer science education research at the crossroads: A
methodological review of computer science education research, 2000--2005. (Doctoral
dissertation) Retrieved from http://0-
search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=co
okie,ip,url,cpid&custid=s4640792&db=psyh&AN=2008-99011-125&site=ehost-live
Available from EBSCOhost psyh database.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of
a checklist for getting computational thinking into public schools. Proceedings of the 41st
ACM technical symposium on Computer science education (pp. 265-269). New York.
doi: 10.1145/1734263.1734357

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental
designs for generalized causal inference. Boston: Houghton Mifflin.

Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific research in education. Washington, DC:
National Academies Press.

Snyder, L. (1994). Academic careers for experimental computer scientists and engineers.
Washington, DC: National Academies Press.

Thomas, J., Brunton, J., & Grazosi, S. (Producer). (2010). EPPI-Reviewer 4: Software for
research synthesis.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to
teach K-12 computer science in the digital age. (Research Report). Retrieved from the
Association for Computing Machinery website:
http://www.acm.org/runningonempty/fullreport.pdf

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

50

CHAPTER 3: COMPUTATIONAL THINKING: WHAT IS IT, HOW DO WE TEACH IT,

AND HOW DO WE ASSESS IT?

Introduction

Recent reports paint a bleak picture of K-12 computer science education. States have few

standards focused on the conceptual facets that underpin computer science (e.g., an

understanding of algorithm), but instead emphasize lower level skill-based concepts (e.g., using

technology in other learning activities) (Wilson, Sudon, Stephenson, & Stehlik, 2010). The

Computer Science Teachers Association (CSTA) proposed a national model for computer

science standards (Tucker, Deek, Jones, McCowan, Stephenson, & Verno, 2006), but there is

great disparity among the states in the adoption of these standards. Only 14 states have adopted

the standards to a significant degree. Furthermore, no states require students to complete a

computer science course, and only nine allow these courses to count toward the mathematics or

science credits required for graduation (Wilson et al., 2010). The number of pre-Advanced

Placement (AP) and AP computer science courses offered in high schools has declined (Gal-Ezer

& Stephenson, 2009), and tremendous inequality is seen in minority student participation in AP

computer science tests (Goode, 2011). This lack of access to engaging and rigorous curriculum

could be one cause of the lack of student interest in computer science.

While the policy debates around computer science education continue, the reality

persists: computing and technology are, and will remain, an integral part of our society and the

future. This makes the need for computer science education reform undeniable, and the

discipline appears to be headed in a clear and fairly unified direction. This tangible direction for

change can be found in the computational thinking movement. Beginning with a seminal article

51

by Janette Wing in 2006, many have begun to liken computational thinking to the basic skills of

reading, writing, and arithmetic.

A focus on computational thinking in K-12 education would enable individuals to more

effectively navigate today’s society as well as encourage equitable access to technological skills,

devices, and other resources. As individuals are taught how to apply computational thinking to

their daily lives, personal empowerment is enhanced. This emphasis would raise student interest

in information technology, computer science, and other technologically oriented professions;

thus, it would enhance the competitiveness of the U.S. from an economic standpoint by better

preparing students to enter the internationally competitive work force (Committee for the

Workshops on Computational Thinking, 2010).

Support for computational thinking is evidenced by at least three national initiatives.

First, the curriculum for the new AP Computer Science Principles course is constructed around

six Computational Thinking Practices (Astrachan, Cuny, Stephenson, & Wilson, 2011). Second,

the National Science Foundation’s Computing Education for the 21st Century (CE21) funding

program encourages projects that develop computational thinking competencies (National

Science Foundation, 2011). Third, the CSTA uses computational thinking as a common thread to

link the three levels (i.e., elementary, middle, and high school) of learning standards that it

recommended for K-12 computer science (Tucker et al., 2006).

If the ideas and projects that have arisen from these recent discussions are to take root,

the computer science education community must appeal to those outside of the field to join in the

campaign to overhaul K-12 computer science. The first step to doing this is to introduce the

concepts, the programs, and the initiatives that are currently powering the efforts. Many who

teach computer science in high schools do not have degrees in computer science or information

52

technology, and it can be reasonably assumed that there are very few, if any, computer scientists

in the teaching profession at the elementary level. This paper is intended to serve as an

introduction to computational thinking for ‘the rest of us’. In this case, ‘the rest of us’ includes

elementary teachers, secondary teachers, school administrators, and educational researchers. This

paper is intended to reach the audience who needs to be involved in the next step, which includes

improving access to computer science and computational thinking in K-12 schools.

The Origins of Computational Thinking

Computational thinking was first mentioned by Papert to suggest a way to efficiently

apply novel approaches to problem solving (1996). Wing expanded on Papert’s ideas and

popularized the term ‘computational thinking’ in a brief but compelling article in 2006 where it

is described as a “fundamental skill for everyone, not just for computer scientists” (Wing, 2006,

p. 35). Wing likened the skill to reading, writing, and arithmetic and asserted that with

computational thinking, humans have the capability to solve problems and design systems that

would be otherwise impossible. This mirrors the sentiments of Pfeiffer that “computers are

thinking aids of enormous potentialities. Merely having them around is enough to change the

way we think” (Pfeiffer, 1962). Other well-known computer scientists have also suggested that

computer science be a part of all students’ education. For example, Perlis argued in 1962 that all

students should learn to program as part of their undergraduate education. Perlis believed

exposing students to programming would allow them a new computational perspective on topics

such as calculus and economics (Perlis, 1962). While the sole emphasis on programming is not

generally seen in today’s conceptualizations of computation thinking, the importance of

exploring how computation can enhance other disciplines remains essential.

53

Computational thinking has ties to procedural thinking, algorithmic thinking, recursive

thinking, and critical thinking. Procedural literacy means understanding the limitations and the

possibilities of specific computing tools. Algorithmic thinking, popularized in the 1950’s and

1960’s, is the process of solving problems by exactly defining instructions using step-by-step

procedures. These procedures give identical results when carried out by any human or suitable

machine (Dening, 2003). Recursive thinking is solving large problems by breaking them down

into smaller problems that have identical forms. Finally, critical thinking is “the art of analyzing

and evaluating thinking with a view to improving it” (Paul & Elder, 2001, p. 4). Computational

thinking includes all of these concepts, and more.

Defining Computational Thinking

Perhaps the most influential contribution since the introduction of computational thinking

is the operational definition recently released by the CSTA in collaboration with The

International Society for Technology in Education (ISTE) and leaders in education and industry.

This definition describes computational thinking as a problem-solving process that includes, but

is not limited to, the following characteristics: “(1) formulating problems in a way that enables us

to use a computer and other tools to help solve them, (2) logically organizing and analyzing data,

(3)representing data through abstractions such as models and simulations, (4) automating

solutions through algorithmic thinking (a series of ordered steps), (5) identifying, analyzing, and

implementing possible solutions with the goal of achieving the most efficient and effective

combination of steps and resources, and (6) generalizing and transferring this problem solving

process to a wide variety of problems” (Computer Science Teachers Association, 2011b). A

formal process for obtaining reactions to this definition showed broad support for this definition

by computer science educators and professionals.

54

What sets computational thinking apart is its applicability across all disciplines. It is a

unifying principle with ties not only to computer science, but also to all disciplines from the

sciences to the humanities (Lu & Fletcher, 2009; Wing, 2006). Computational thinking goes

beyond computer literacy, which is the efficient use of technology, and also beyond fluency,

which is focused on skills that enable to use technology. Computational thinking includes

analytical skills that enhance how one approaches a problem and an appreciation for how

computing can augment a person’s abilities and enhance efficiency.

Although computational thinking was quick to catch on in the computer science

education community, most current definitions of computational thinking are vague and lacking

in detail and examples (Hemmendinger, 2010). An early definition offered by The Center for

Computational Thinking at Carnegie Mellon describes computational thinking as 1) a way of

solving problems and designing systems that draws on concepts fundamental to computer

science; 2) means creating and making use of different levels of abstraction to understand and

solve problems more effectively; 3) means thinking algorithmically and with the ability to apply

mathematical concepts to develop more efficient, fair, and secure solutions; and 4) means

understanding the consequences of scale, not only for reasons of efficiency, but also for

economic and social reasons.

This, and similar definitions, were sufficient to promote and foster widespread agreement

of its importance within the community, but did not satisfy the field’s desire to have a detailed

and practical definition of computational thinking. Recent efforts have focused on developing a

more concrete definition. The National Academies convened a workshop with the sole aim to

explore the scope and nature of computational thinking in early 2009 (Committee for the

55

Workshops on Computational Thinking, 2010). While no consensus was reached, significant

progress was made in clarifying the various perspectives on computational thinking.

Many, like Wing, believe computational thinking to be a revolutionary concept, one as

important to a solid educational foundation as are reading, writing, and arithmetic (Bundy, 2007)

(Day, 2011). Others believe its potential and significance are overstated (Denning, 2009;

Hemmendinger, 2010), and some have voiced concern that by joining forces with other

disciplines computer science might be diluting either one or both of the participating disciplines

(Cassel, 2011; Jacobs, 2009). Both the praise and the criticism for computational thinking could

perhaps be tempered by reflecting on a historical quote by Pfeiffer in 1962: “Computers are too

important to overrate or underrate. There is no real point in sensationalizing or exaggerating

activities which are striking enough without embellishment. There is no point in belittling

either.” (Pfeiffer, 1962). For the time being, computational thinking appears to be a unifying

force in the computer science education community, but it seems prudent to heed these warnings

to remain realistic about its potential to influence K-12 education.

Computational Thinking in the K-12 Classroom

Wing concluded the seminal piece on computational thinking by summoning computer

science teachers to “spread the joy, awe, and power of computer science, aiming to make

computational thinking commonplace” (Wing, 2006, p. 35). Almost immediately the computer

science education community and scholars began to explore how it might be integrated into the

existing computer science curriculum and applied in other disciplines.

The effective use of technology in the classroom to engage students in computing has

been a source of debate for decades. Papert commented that the phrase “technology and

education” too often implies “inventing new gadgets to teach the same old stuff in a thinly

56

disguised version of the same old way” (1996, p.138). In 2000 Garofalio and colleagues argued

that simply using technology to teach the same topics that could be explained without technology

“belies the usefulness of technology” (Garofalo, Drier, Harper, Timmerman, & Shockey, 2000),

and this belief persists today (Bull, 2005).Computational thinking is not about learning computer

skills or how to solve problems like computers, nor is it learning how to use a piece of

technology. Instead, computational thinking develops all critical skills of humans to solve

problems (Wing, 2006). On the surface, this approach to computer science could be at least

partially immune to many of the criticisms of how technology has historically been applied in K-

12 classrooms.

Scholars and educators who are focused on computational thinking have taken a number

of approaches as they strive to create tools and curricula that are applicable to K-12 students. The

following brief explanation of some of these approaches is intended to provide an overview for

K-12 teachers to use as they contemplate how they might best incorporate computational

thinking concepts into classrooms.

Technology-Free Computational Thinking

An assortment of activities and curricula that are not reliant on computers or other

technology have recently been developed. The most significant challenge to teaching computer

science in K-12 settings is rapidly changing technology (Gal-Ezer & Stephenson, 2009), and the

incorporation of activities that promote computational thinking without technology are a way to

address this challenge. There are materials and ideas in this category that are appropriate for the

full range of K-12 students.

Computer Science Unplugged is a compilation of free activities to introduce students of

all ages to the central concepts in computer science without the use of a computer (Bell,

57

Alexander, Freeman, & Grimley, 2009; Bell, Fellows, & Witten, 2002). One of the primary aims

is to demonstrate to students that computer science is more than programming. A curriculum kit

of Computer Science Unplugged materials are offered through The National Center for Women

and Information Technology (NCWIT). This kit, Computer Science-in-a-box: Unplug Your

Curriculum (National Center for Women & Information Technology, 2011), introduces essential

elements of computer science to 9-14 year old students. Lessons that introduce how computers

work while simultaneously teaching math and science concepts. The Value of Computational

Thinking across Grade Levels (VCTAL) project is developing an innovative mix of twelve

instructional modules designed to encourage computational thinking in high school students for

grades 9-12. The modules and lessons are activity-based and can be used in computer science,

science, mathematics, history, or other courses (Cozzens, Kehle, & Garfunkel, 2010).

Since one of the barriers to computer science and computational thinking is technology, it

is reasonable to think that the technology-free options would appeal to many classroom teachers.

This approach may have additional appeal to those who are not technologically savvy themselves

or who lack the proper training. It might also be attractive to those who do not have easy access

to computers for all students.

Programming Games or Robots

Another approach to introduce K-12 students to concepts in computer science and

computational thinking is the use of games and robots to introduce computer science and

computational thinking concepts. The belief is that games and robots will motivate students to

broaden participation in computer science courses and careers, for they simultaneously instill an

understanding of the targeted concepts and promote student interest in computing. The iDreams

project is an effort to engage middle school students in computer science with game design.

58

iDreams created the Scalable Game Design curriculum in which students create a Frogger-like

game while learning increasingly sophisticated concepts (Ioannidou, Bennett, Repenning, Koh,

& Basawapatna, 2011). TangibleK Robotics is a program that introduces computational thinking

to young children (Bers, 2010). Students in preschool to second grade construct robotic artifacts

and program them to respond to some stimuli. For example, a young child might build a car and

program it to follow a light. Modular Robotics, a spin-off company from Carnegie Mellon

University’s Center for Computational Thinking, is creating kits used to create robots for use in

science centers and community museums. The robots require no programming, but instead

consist of magnetic cubes that snap together. The order and configuration in which the cubes are

put together determines how the robot behaves (Modular Robotics, 2011).

The downside to using games and robots is the training and specialized technology

required to use these tools. Most gaming or robotics-based programs and tools that encourage

computational thinking are offered in out of school settings (Hardnett, 2008; Modular Robotics,

2011). A few projects, like iDreams, offer summer workshops to train teachers to use the

curriculum and the game design module (Ioannidou, Bennett, Repenning, Koh, & Basawapatna,

2011).

Initial Learning Environments

Initial learning environments (ILE’s) are a third approach to incorporating computational

thinking in the K-12 classroom. These environments support novice programmers by allowing

the direct manipulation of objects or through visualizations to support learning. While they are

primarily used to learn basic programming concepts, some projects focus on the teaching and

learning of computational thinking skills using ILE’s. Sontag (2009) describes the Critical

Thinking with Alice model which uses the Alice 3D graphics programming environment to teach

59

critical thinking, a fundamental facet of computational thinking. The model is applicable for

students in grades 5-8, and is tied not only to curriculum standards, but also to 21st century skills.

An example unit is situated in a social studies context where students learn computational

concepts as they create a 3D animated world in Alice. The animation is based on primary source

information about land disputes between Native Americans and settlers during the California

Gold Rush of the 1850’s. An advantage to this model is the existence of tutorials for teachers

and for students as they learn Alice together, so there is limited prerequisite knowledge required.

A group of computer scientists at Hamburg University (Rick, Ludwig, Meyer, Rehder, &

Schirmer, 2010) applied Greenfoot, an ILE, to a business informatics context with middle school

students. Students were introduced to computational thinking concepts as they used the visual

simulation framework to develop their own “micro world” that consisted of an airport baggage

handling system. In addition to these widely-known ILE’s, some projects develop their own

language. One such language is Toque, a cooking-based programming language where cooking

scenarios are used as programming metaphors (Tarkan et al., 2010) to teach computational

thinking skills.

One downside to ILE’s and other approaches that require the use of technology is the

inconsistency among schools in relation to the availability of technology. Hardware requirements

for computers to run initial learning environments are small compared to the technology

available in most school systems, but some schools may have older computers that might not

have adequate capacity to operate the ILE’s. A second potential concern is scheduling time in a

shared computer lab. Not all teachers have ready access to a classroom of computers. A third

issue can arise when programs need to be installed or downloaded onto school-owned computers.

Most schools have policies to prohibit teachers or students from doing this, so teachers must

60

request that a technology specialist or systems administrator within the district download or

install the necessary software. This process might be prohibitive for some teachers.

Integrating Computational Thinking with Other Disciplines

Another approach to introducing computational thinking concepts to K-12 students is the

integration of computational thinking within other disciplines. The CSTA believes all teachers

are capable of incorporating computational thinking into their classrooms. To aid in this, they

have created a series called Computational Thinking Learning Experiences, which are short

lessons designed to give teachers concrete examples of how computational thinking can be

introduced in various content areas and grade levels. These are intended to get teachers thinking

about computational thinking and how it can be infused into the classroom. They are not an all-

inclusive resource for integrating computational thinking.

Google engineers and classroom teachers collaborated to create curriculum models,

resources, and a community to help teachers incorporate computational thinking into classrooms.

Exploring Computational Thinking (ECT) makes classroom-ready lessons, (including teacher

editions, student worksheets, and applicable programs) available to teachers online. Lessons are

searchable by subject and grade level, and educators are invited to share their own materials and

discuss computational thinking with others using a discussion forum.

Several examples of courses or programs introduce computational thinking in liberal arts

contexts. A three-week Musicomputation course for 11-17 year old students teaches the

mathematical principles that underlie computer science and applies these to musical composition

(Meyers, Cole, Korth, & Pluta, 2009). Other programs that integrate music and computational

thinking skills exist at the secondary (Peterson & Hickman, 2008) and undergraduate

(Ruthmann, Heines, Greher, Laidler, & Saulters, 2010) levels. The Inter Interactive Multimedia

61

program integrates computational thinking into a middle school classroom alongside expository

writing and interactive journalism (Wolz, Stone, Pearson, Pulimood, & Swizer, 2011; Wolz,

Stone, Pulimood, & Pearson, 2011).

Science and mathematics are perhaps the most natural disciplines in which to integrate

computational thinking. Numerous undergraduate level courses incorporate computational

thinking with biology (Khuri, 2008; Matthews, Adams, & Goos, 2010; Qun, 2009; Robbins,

Senseman, & Pate, 2011) or general science (Hambrusch, Hoffman, Korb, & Haugan, 2009).

One initiative to bring computational thinking into K-12 classrooms is Computational Thinking

for the Sciences, a three-day summer workshop for high school teachers to learn how to

incorporate computational thinking into their mathematics and science classrooms (Ahamed, et

al., 2010). Other programs offer computational thinking lessons that can be incorporated into

classrooms (i.e., VCTAL, ECT), but so far there is no evidence of a completely integrated science

and computational thinking course at the K-12 level. Given the increasing prevalence of this type

of course at the undergraduate level, it is reasonable to assume a class of this sort of course could

be on the horizon for high schools.

A significant advantage to this approach is that the context used to illustrate computer

science and computational thinking concepts is directly related to the other discipline that is

contributing to the course (e.g. music, journalism). This application of computer science to

another discipline allows students to see links between the different disciplines, and hopefully

encourages them to examine the connections between computer science and other disciplines. A

limitation for K-12 teachers is, again, lack of training and resources.

62

Computational Thinking for the Researcher

The secondary audience of this paper is the educational researcher interested in

computational thinking interventions or how students learn to think computationally. In order to

support ongoing improvement, it is important to learn what good teaching practice is and how to

best facilitate the student construction of knowledge. There has been discussion about the

pedagogical approaches to teaching and integrating computational thinking in K-12 settings; rich

descriptions of the interventions and approaches are often provided. An examination of these K-

12 programs shows evidence of the ongoing debate around the role of programming and

technology within the introduction and promotion of computational thinking skills. While some

believe computational thinking should be taught through programming, technology, and software

applications with a focus on core computing concepts, others disagree (Committee for the

Workshops on Computational Thinking, 2010). Lu and Fletcher (2009), for example, believe

exposure to programming can be detrimental to efforts to broaden participation in computer

science. They believe that “programming is to Computer Science what proof construction is to

mathematics, and what literary analysis to English” (Lu & Fletcher, 2009, p. 260). Others do not

think computer hardware or software is necessary. These and similar discussions are motivating

for those interested in developing a research agenda focused on computational thinking.

Those acquainted with conducting research within other STEM education disciplines are

familiar with the complex array of factors that contribute to student learning. Narrow

assessments of content knowledge are over-aligned with the intervention, and indirect measures

such as student engagement, attitude, or motivation fail to adequately document any changes in

the skills knowledge acquired by students. There is a need to conceive and develop alternative

63

ways to assess the success of STEM education interventions, and for computer science to adapt

these techniques to shape its own research methods (Fincher, Tenenberg, & Robins, 2011).

There are numerous impediments to researching computational thinking at this point, but

none are insurmountable or permanent. The first barrier to researching computational thinking is

the lack of a common definition. A recent review of the empirical literature on computational

thinking found that less than a quarter of studies included a definition of this term (Weinberg,

2012). The remainder simply cited Wing’s original definition or provided no explanation or

operational definition of what the phrase meant in the context in their study at all. There is a

clear need to have both a validated definition, as well as a theoretical model to underpin the

concept of computational thinking. These must exist to serve as a starting point in the

development measures of computational thinking to assess the success of computational thinking

interventions. Only then can researchers begin to thoughtfully examine programs and

interventions intended to promote computational thinking competencies. According to

Hemmendinger (2010), the definitions of computational thinking which are currently offered

lack precision and fail to provide sufficient examples. The fact that a six-year-old concept

remains a bit abstract is not surprising. Great strides have been made in fleshing out a definition,

but it is important for the researcher studying the concept to be specific about what the phrase

means in the context of each study.

A second, related, barrier is that computational thinking is a latent variable. It cannot be

directly observed but instead must be inferred from other variables that are observed or directly

measured. In order for a measure of computational thinking to be developed, a solid theoretical

definition of computational thinking must exist (Netemeyer, Bearden, & Sharma, 2003). The

thorough articulation of a variable’s definition is perhaps the most difficult step in the process of

64

preparing a measure of that variable or concept (Haynes, Nelson, & Blaine, 1999). The work that

has been done to explore computational thinking is promising in this regard.

A third barrier is the lack of rigorous empirical research conducted to explore computer

science education in general (Randolph, 2008), and even less has been done to explore how

students learn to think computationally (Weinberg, 2012). Most studies of computational

thinking so far have used qualitative or descriptive methods. The use of qualitative or descriptive

methods is not a condemnation of a study, but paired with outcomes that too often are focused on

reactions to specific programmatic components (e.g., lessons, activities), limits the usefulness of

these studies to the larger community. In order to move closer to determining how

computational thinking can be assessed and used to advance these fields of study, research

should examine outcomes that could be generalizable to a variety contexts and programs.

Instead of asking “did you like it,” researchers should instead explore how to measure

computational thinking skills and competencies.

At least one group has made significant progress toward addressing these barriers. The

Scalable Game Design Project (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011)

studied computational thinking patterns in students as they learned by designing games. The

computational thinking concepts introduced were explicitly defined. To assess student learning,

students were asked to transfer the computational thinking concepts learned in one context (game

design) to another context (mathematical modeling). This group has developed an online

assessment tool to measure the degree of transfer of understanding of the computational thinking

concepts (patterns) to real-world situations (Marshall, 2011). Results of a large-scale analysis of

data related to this assessment tool are forthcoming. This approach appears promising, and

researchers interested in computational thinking will be watching this project closely.

65

Conclusion

Computational thinking has taken a strong hold in the computer science education

community and beyond, but great strides must be made before it can be institutionalized across

the entire K-12 system. One significant hurdle is teacher training. Opportunities for teachers to

receive professional development or training in computational thinking are fairly limited. Most

training programs are offered regionally or on a small scale. For example, Exploring Computer

Science offers a week-long professional development program for teachers, along with a

coaching program to provide ongoing support (Exploring Computer Science, 2011). Carnegie

Mellon partners with several industry partners to offer Explorations in Computer Science for

High School Educators (CS4HS) workshops each summer. This program provides materials and

training for teachers to use to emphasize computational thinking. It was expanded to include

workshops at other universities as well (Blum, Cortina, Lazowska, & Wise, 2010)

Currently, there are no a teacher certification programs available in the United States

(Margolis, 2008), and there is only one computer science teaching methods course (Yadav,

Zhou, Mayfield, Hambrusch, & Korb, 2011), and this course had only one student during the

2010-11 school year. There is broad recognition that K-12 teachers need training to effectively

introduce computational thinking concepts in the classroom using any of the approaches

described in this paper. The National Science Foundation has initiated the CS10K project, an

effort to have 10,000 qualified high school teachers in 10,000 high schools teaching a new

curriculum by 2015 (Astrachan, Barnes, & Garcia, 2011). The NSF’s Computing Education for

the 21st Century (CE21) program has expressed its interest in supporting programs that align with

the CS10K initiative.

66

The lack of emphasis placed on computer science at the policy level is another

impediment to its incorporation into the K-12 curriculum. Until computer science courses are

required for graduation, or at least allowed to count as a mathematics or science credit, the

computer science standards mean very little and the emphasis placed on computer science will

continue to be weak. Numerous advocacy groups and organizations have surfaced in recent

years to address this obstacle. The Association for Computing Machinery (ACM), in

collaboration with various corporate sponsors, has spearheaded a variety of initiatives to advance

computer science education. It formed the Education Policy Committee in 2007 to engage

policymakers in conversations about computer science education. The Computer Science

Teachers Association, introduced in 2005, promotes and supports computer science in K-12

schools. Finally, the National Center for Women in Information Technology (NCWIT) aims to

increase the participation of girls and women in computing by “(1) building a learning

community, (2) creating and sharing research-backed resources, data, and research, and (3)

providing a unified, amplified voice.”

A clear and comprehensive definition of computational thinking will enable those outside

of computer science to begin to come ‘on board’ and not only support, but also participate in

efforts to increase students’ exposure to computer science and computational thinking. It is easy

to support a theoretical idea like computational thinking, but much more difficult to participate in

the efforts without a clear understanding of what the movement is about. The computer science

education community has made great strides toward the widespread adoption of a concrete,

articulate, and understandable definition, so it is time to accelerate efforts to share that with the

larger community of K-12 educators and educational researchers.

67

Computer science educators need to recruit others. In order to do this, they must make

their goals understandable to those to whom they are appealing. The CSTA has done some of

this with their publications. There are many resources available for teachers, and as of yet these

have not yet been shared outside of the computer science education community other than by the

schools that are involved in program development.

By introducing computational thinking and computer science into the K-12 curriculum,

students will acquire skills that allow them full participation in our increasingly technological

society and to broaden the variety of careers and academic programs that are available to them.

68

REFERENCES

Ahamed, S. I., Brylow, D., Ge, R., Madiraju, P., Merrill, S. J., Struble, C. A. & Early, J. P.
(2010). Computational thinking for the sciences: A three day workshop for high school
science teachers. SIGCSE 10: Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, (pp. 42-46). Milwaukee, Wisconsin.
doi:10.1145/1734263.1734277

Computer Science Teachers Association (CSTA) (2011b). Operational definition of
computational thinking for K-12 education. Retrieved November 11, 2011, from
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Astrachan, O., Barnes, T. and Garcia, D. D. (2011).CS principles: Piloting a new course at
national scale. SIGCSE '11 Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, (pp. 397-398). Dallas, TX. doi: 10.1145/1953163.1953281

Astrachan, O., Cuny, J., Stephenson, C. and Wilson, C. (2011).The CS10K project: Mobilizing
the community to transform high school computing. SIGCSE '11 Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education, (pp. 85-86). Dallas, TX.
doi: 10.1145/1953163.1953193

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C. & Marshall, K. S. (2011).
Recognizing computational thinking patterns. SIGCSE '11 Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, (pp. 245-250). Dallas, TX. doi:
10.1145/1953163.1953241

Bell, T., Alexander, J., Freeman, I. & Grimley, M. (2009). Computer science unplugged: School
students doing real computing without computers. New Zealand Journal of Applied
Computing and Information Technology, 13(1), 20-29.

Bell, T., Fellows, M. & Witten, I. (2002). Computer Science Unplugged [website].
http://csunplugged.org.

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young
children. Early Childhood Research and Practice, (2)2. Retrieved from
http://ecrp.uiuc.edu/v12n2/bers.html

Blum, L., Cortina, T. J., Lazowska, E. & Wise, J. (2008). The expansion of CS4HS: An outreach
program for high school teachers. SIGCSE '08 Proceedings of the 39th ACM Technical
Symposium on Computer Science Education, (pp. 377-378). Portland, OR. doi:
10.1145/1352135.1352263

Bull, G. (2005). Children, Computers, and Powerful Ideas. Contemporary Issues in Technology
and Teacher Education, 5(3/4), 349-352.

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical
Computing, 1(2), 67-69.

69

Cassel, L. N. (2011). Interdisciplinary computing is the answer: Now, what was the question?
ACM Inroads, 2 (1), 4-6.

Committee for the Workshops on Computational Thinking. (2010). Report of a workshop on the
scope and nature of computational thinking. Washington, D.C.: National Academies
Press.

Cozzens, M., Kehle, P., & Garfunkel, S. (2010). The Value of Computational Thinking Across
Grade Levels (VCTAL). National Science Foundation: 09-602. Discovery Research K-
12., Rugters University.

Day, C. (2011). Computational thinking is becoming one of the three R's. Computing in Science
and Engineering, 13(1), 88-88.

Denning, P. J. (2003). Encyclopedia of Computer science. John Wiley and Sons Ltd., Chichester,
UK.

Denning, P. J. (2009). The profession of IT: Beyond computational thinking. Communications of
the ACM, 52(6), 28-30. doi: 10.1145/1516046.1516054

Exploring Computer Science (2011). Exploring Computer Scinece: A K-12/University
partnership. [website]. http://www.exploringcs.org/.

Fincher, S., Tenenberg, J., & Robins, A. (2011). Research design: necessary bricolage. ICER
‘11: Proceedings of the Seventh International Workshop on Computing Education
Research. Providence, RI. doi: 10.1145/2016911.2016919

Gal-Ezer, J., &Stephenson, C. (2009). The current state of computer science in U.S. high
schools: A report from two national surveys. Journal for Computing Teachers, Spring
2009. Retrieved November 14, 2011 from
http://csta.acm.org/Research/sub/Projects/ResearchFiles/StateofCSEDHighSchool.pdf

Garofalo, J., Drier, H., Harper, S., Timmerman, M. A., & Shockey, T. (2000). Promoting
appropriate uses of technology in mathematics teacher preparation. Contemporary Issues
in Technology and Teacher Education, 1 (1), 66-88.

Goode, J. (2011). Comparing the state rates of APCS participation & enrollment by race. (CSTA
Report). Retreived from Computer Science Teachers of America website:
http://csta.acm.org/Research/sub/CSTAResearch.html

Hambrusch, S., Hoffman, C., Korb, J. T. and Haugan, M. (2009). Teaching computational
thinking to science teachers.

70

Hardnett, C. R. (2008). Gaming for middle school students: building virtual worlds. GDCSE ‘08:
Proceedings of the third internatinal conference on game development in Computer
Science Education, (pp. 21-25). doi: 10.1145/1463673.1463678

Haynes, S., Nelson, K. and Blaine, D. (1999). Psychometric issues in assessment research. In P.
C. Kendall, J. N. Butcher, & G. N. Holmbeck (Eds.), Handbook of research methods in
clinical psychology (pp. 125-154).

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4-7. doi:
10.1145/1805724.1805725

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H. & Basawapatna, A. (2011).
Computational Thinking Patterns. [website]
http://scalablegamedesign.cs.colorado.edu/wiki/Category:Computational_Thinking_Patte
rns

Jacobs, J. A. (2009, November 22). Interdisciplinary hype. The Chronicle of Higher Education.
Retrieved from http://chronicle.com/article/Interdisciplinary-Hype/49191/

Khuri, S. (2008). A bioinformatics track in computer science. SIGCSE 08: Proceedings of the
39th SIGCSE Technical Symposium on Computer Science Education., (pp. 508-512). doi:
10.1145/1352135.1352305

Lu, J. J., Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE 09:
Proceedings of the 40th SIGCSE Technical Symposium on Computer Science Education,
(pp. 260-264). Chatanooga, TN. doi: 10.1145/1508865.1508959

Margolis, J. (2008). Stuck in the shallow end: Education, race, and computing. The MIT Press:
Cambridge, MA.

Marshall, K. S. (2011). Was that CT? Assessing Computational Thinking Patterns through
Video-Based Prompts. Proceedings of the Annual Meeting of the American Educational
Research Association. New Orleans, LA.

Matthews, K. E., Adams, P. & Goos, M. (2010). Using the principles of BIO2010 to develop an
introductory, interdisciplinary course for biology students. CBE-Life Scicences
Education, 9(3), 290-297. doi: 0.1187/cbe.10-03-0034

Meyers, A. L., Cole, M. C., Korth, E. & Pluta, S. (2009). Musicomputation: Teaching computer
science to teenage musicians. Proceedings of the Seventh ACM Conference on Creativity
and Cognition, (pp. 29-38). Berkeley, CA. doi: 10.1145/1640233.1640241

Modular Robotics (2011). Modular robotics: Cubelets. Retrieved November 3, 2011 from
http://www.modrobotics.com/

National Center for Women & Information Technology (2011). Computer science-in-a-box:
Unplug your curriculum. Retreived October 11, 2012 from
http://www.ncwit.org/sites/default/files/resources/computerscience-in-a-box.pdf

71

National Science Foundation (2011). Computing Education for the 21st Century (CE21)
program solicitation (NSF 10-619). Washington, DC.

Netemeyer, R., Bearden, W. and Sharma, S. (2003). Scaling procedures: Issues and
applications. Los Angeles: Sage Publications.

Papert, S. (1996). An exploration in the space of mathematics education. International Journal of
Computers for Mathematical Learning, 1(1). 95-123.

Paul, R. & Elder, L. 2001.The Miniature Guide to Critical Thinking-Concepts and Tools.
Retreived September 2, 2011 from
http://www.criticalthinking.org/files/Concepts_Tools.pdf

Perlis, A. J. (1962). The Computer in the University. Cambridge, MA: MIT Press.

Peterson, J. & Hickman, C. (2008). Algorithmic music composition as an introduction to
computing. Journal of Computing in Small Colleges, 24(1). 212-218.

Pfeiffer, J. (1962). The thinking machine. Philadephia, PA: Lippincott.

Qin, H. (2009). Teaching computational thinking through bioinformatics to biology students.
Proceedings of the 40th ACM Technical Symposium on Computer Science Education, (pp.
188-191). Chatanooga, TN. doi: 10.1145/1508865.1508932

Randolph, J. J. (2008). A methodological review of the program evaluations in K-12 computer
science education. Informatics in Education, 7(2), 237-258.

Rick, D., Ludwig, J., Meyer, S., Rehder, C. & Schirmer, I. (2010). Introduction to business
informatics with Greenfoot using the example of airport baggage handling. In
Proceedings of the Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, (pp. 68-69). Berlin, Germany. doi:
0.1145/1930464.1930474

Robbins, K. A., Senseman, D. M. & Pate, P. E. (2011). Teaching biologists to compute using
data visualization. In Proceedings of the Proceedings of the 42nd ACM technical
symposium on Computer science education, (pp. 335-340). Dallas, TX. doi:
10.1145/1953163.1953265

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., & Saulters, C. I. (2010). Teaching
computational thinking through musical live coding in scratch. SIGCSE 10: Proceedings
of the 41st ACM Technical Symposium on Computer Science Education, (pp. 42-46).
Milwaukee, Wisconsin. doi: 10.1145/1734263.1734384

Sontag, M. (2009). Critical thinking with Alice: a curriculum design model for middle school
teachers. ALICE ’09: Proceedings of the 2009 Alice Symposium, (Article No. 2).
Durham, NC. Doi: 10.1145/1878513.1878515.

72

Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E. M., Walsh, G., & Atrash, Z.
(2010). Toque: designing a cooking-based programming language for and with children.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.
2417-2426). Atlanta, Georgia. doi: 10.1145/1753326.1753692

Tucker, A., Deek, F. P., Jones, J., McCowan, D., Stephenson, C. & Verno, A. (2006). A model
curriculum for K-12 comptuer science: Final report of the ACM K-12 task force
curriculum committee. Retreived from :
http://www.acm.org/education/education/curric_vols/k12final1022.pdf.

Weinberg, A. E. (2012). Computational Thinking: An Investigation of the Existing Scholarship
and Research. Unpublished manuscript.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to
teach K-12 computer science in the digital age. (Research Report). Retrieved from the
Association for Computing Machinery website:
http://www.acm.org/runningonempty/fullreport.pdf

 Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011). Computational
Thinking and Expository Writing in the Middle School. ACM Transactions on
Computing Education (TOCE), 11(2), Article No. 9. doi: 10.1145/1993069.1993073

Wolz, U., Stone, M., Pulimood, S. M. & Pearson, K. (2010). Computational thinking via
interactive journalism in middle school. SIGCSE 10: Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, (pp. 239-243). Milwaukee,
Wisconsin. doi: 10.1145/1734263.1734345

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S. and Korb, J. T. 2011. Introducing
Computational Thinking in Education Courses. IGCSE '11 Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, (pp. 465-470). Dallas, TX. doi:
10.1145/1953163.1953297

73

CHAPTER 4: CONCLUSION

With this dissertation project, I set out to survey the entire body of literature on

computational thinking, identify the nature and extent of the research evidence on computational

thinking, and introduce computational thinking to K-12 educators and educational researchers

who might wish to incorporate the concept into their own classrooms or research. Within this

final section, I will present several insights gained from this dissertation, reflect on the directions

computer science education might move to advance the field, and present the next steps I will

take in my pursuit to better understand and conduct research on computer science education and

computational thinking.

Lessons Learned & Insights Gained

In addition to the knowledge gained from the systematic identification and examination

of the literature on computational thinking, several lessons were learned and key insights gained.

A few of those will be presented and discussed here.

Barriers to Systematic Review in Computer Science Education

 Significant barriers exist for those who wish to conduct a systematic examination of the

literature within the field of computer science education. Popular databases such as ERIC or

EBSCO allow the user to conduct a search and save all of the identified articles as a batch, or

list. This entire batch, including all fields associated with each article, can be imported into a

bibliographic software or systematic review web application. The Association for Computing

Machinery (ACM) maintains a digital library which serves as the primary database where

computer science and computer science education literature can be found. This digital library

presented numerous challenges during this review. First, the ACM database does not have the

capacity to export search results into an external location in batches. The export of citations and

74

abstracts to a bibliographic software (e.g. EndNote) or systematic review web application (e.g.

EPPI Reviewer-4, RefWorks) is an essential step in conducting a systematic examination of a

body of literature, particularly when the intent is to code or categorize it. When a search is

conducted in the ACM Digital Library and the list of articles is produced, each citation must be

individually opened and to the external location (i.e., EndNote or EPPI Reviewer-4). The digital

library has a “Binder” feature that allows citations to be saved, but this offers no advantage over

the direct export when the second major challenge is taken into consideration. The absence of

abstracts in exported citations is a second challenge with the ACM Digital library. To have both

citations and abstracts for review, a five step process had to be completed for each of the over

7,000 citations. Each was 1) opened individually, 2) imported into EndNote, 3) the abstract text

was manually highlighted and cut, 4) the EndNote reference file was opened manually, and 5)

the abstract text was pasted into the appropriate EndNote field. Numerous processes were

attempted, and this was the least time-intensive.

A third limitation to a systematic review using the ACM Digital Library is that it does not

allow behaviors that appear to be automated. During this project, the repetitive process necessary

to obtain citation information for each article appeared automated; the process described above

caught the ACM’s attention and access to the digital library was repeatedly blocked. Each time

this occurred, an email was sent to the ACM Digital Library staff with a request to reinstate

access and searching privileges. At times it took multiple days for access to be reinstated. This

time consuming import process, combined with the accessibility issues were a substantial

hindrance and a barrier to this and subsequent reviews.

A fourth limitation to the ACM Digital Library is that many articles are included more

than one time in different publication formats. For example, an article would appear identically

75

in a conference proceeding and also in a journal. Inconsistencies in how the citation fields were

included within each of the publication sources or slight variations in the title prevented these

from being recognized in an automatic search for duplicate records. A manual search through the

citations was required to identify and eliminate duplicates.

While these challenges are not insurmountable, they turn a process that should require a

relatively small time commitment into an activity that takes days or even weeks rather than

hours. Neither academic librarian at Colorado State University nor staff members at the ACM

Digital Library was able to offer suggestions to improve the process. The academic librarians

were surprised at the lack of sophistication or features available.

Because of these substantial limitations, it is not surprising there have been so few

reviews of literature in Computer Science education. Only one dissertation (Randolph, 2007) and

three articles (Randolph, Julnes, Sutinen, & Lehman, 2008; Randolph, Julnes, Bednarik, &

Sutinen, 2007; Valentine, 2004) describe reviews of computer science education research and

evaluation studies, and three of these describe different components of a study that examined a

single set of articles.

Need for Collaboration

 The need for collaboration between computer science experts and educational or social

science researchers is the second major insight gained. The computer science education

community as a whole does not seem to be aware that its research is not up to par with

educational research in other disciplines. Computer science education articles and studies are

written by computer scientists, who approach research from a vastly different perspective than a

social scientist might. Computer science has its foundation in mathematics and logic, which is

distinct from the social sciences in terms of the degree of certainty that is the result of research.

76

Logic and mathematics, and therefore computers science, claims are based on the simplest of all

objects of investigation: abstract objects such as propositions and numbers (Dodig-Crnkovic,

2002). Research methods and data analysis are clear-cut and the resulting findings are rarely

questioned and studies are not often replicated by other researchers. Admittedly, there are

aspects of Computer Science that extend into the realm of natural sciences (e.g. artificial

intelligence uses physics, biology, possibly even psychology), but these forays into the natural

and social sciences do not prepare the computer scientists for social science research. The social

sciences are much more complex than this, and require the research to rely on theoretical

frameworks and provide links to existing research. The thorough articulation of a variable’s

definition is perhaps the most difficult step in the process of preparing a measure of that variable

or concept (Haynes, Nelson, & Blaine, 1999).

These issues signify the need for collaboration with social scientists and educators. The

claims made about the need for and efficacy of computer science interventions bring along with

them a responsibility to understand the social science discipline and the acceptable research

methods required to produce credible evidence. This begins with an understanding of what an

intervention study is and all that must go into it, including design, measurement, and analysis

considerations. If claims of efficacy are to be made, the psychometric properties of constructs

(e.g. computational thinking) and subconstructs must be articulated. The measures must be

theoretically aligned with the intervention and have undergone rigorous development and testing

procedures to ensure their reliability and validity, and design techniques must be considered as

the study is developed.

77

Challenges Not Unique to Computer Science

A third and final insight gained is that the challenges computer science education

currently faces mirror what other disciplines have experienced. The problems the field is

encountering mirror what engineering education experienced some years ago as it struggled to

find its place in schools, and to learn to conduct educational research that was considered robust

and credible. While this is not a topic that came out in either of the manuscripts, it is an area of

investigation that I embarked upon when I began to ponder how computer science educators

might come to realize the need to make changes to how research is being conducted in their area

of interest.

Next Steps

I embarked on this effort with the realization that the establishment of a theoretical model

of computational thinking is a precursor to widespread pedagogical reform. Researchers and

curriculum developers focused on encouraging computational thinking must assess this concept

to determine the effectiveness of the proposed interventions. Computational thinking is a latent

variable, one that cannot be directly observed but instead must be inferred from other variables

that are observed or directly measured. In order for a measure of computational thinking to be

developed, a solid theoretical definition of computational thinking must exist (Netemeyer,

Bearden, & Sharma, 2003). This dissertation was conducted, in part, to explore the theoretical

models and measures used by researchers studying computational thinking so that I could

continue to refine how computational thinking is being studied as an outcome variable in the

current The Value of Computational Thinking Across Grade Levels 9-12 (VCTAL) study and in

future studies where the concept is quantitatively measured or assessed.

78

The concept is not as advanced as I believed when I began this project. The recent

introduction of an operational definition by the CSTA is a positive step, but should be seen as a

launching point for the development of measures to assess computational thinking rather than an

endpoint in the development of this concept. I would like to develop alternative ways to assess

the success of STEM education interventions, including those that target computational thinking.

Narrow assessments of content knowledge are over-aligned with the intervention, and indirect

measures such as student engagement, attitude, or motivation fail to adequately document any

changes in the skills or knowledge acquired by students. The assessment of computational

thinking will target a generalizable skill that is fostered by some STEM education interventions.

Finally, instead of continuing to focus exclusively on the narrow area of computational

thinking, I intend to take a step back and examine at the entire field of computer science

education. I will closely examine the history and development of engineering education in K-12

settings and apply the lessons learned in this field to the context of Computer Science Education.

I intend to first produce a manuscript that explores the possibilities of incorporating some of the

ideas into a NSF Proposal submission. I believe that the field can be advanced by acquiring an

understanding of how other disciplines created a niche for themselves in the K-12 curriculum.

One concrete idea arose from researcher conducted by Borrego (2007) in which researchers

described the conceptual difficulties encountered by engineers as they attempted to shift their

perspective to that of an Engineering Educator. This study offered suggestions to help engineers

overcome difficulties and conduct robust social science research. I intend to propose a similar

study, and to propose a training session at a computer science education conference to share my

results and share knowledge with computer scientists that will allow them to begin to apply

79

social science research methods in their field. It is through these next steps that I hope to

influence the computer science education field.

80

REFERENCES

Computer Science Teachers Association (CSTA). (2005) The new educational imperative:
Improving high school computer science education. Retrieved November 15, 2010 from
http://csta.acm.org/communications/sub/DocsPresentationFiles/White Paper07_06.pdf

Computing Research Association (CRA). (2010). CRA Taulbee Survey. Retrieved November 11,
2010 from http://cra.org/resources/taulbee/

Borrego, M. (2007) Conceptual difficulties experienced by trained engineers learning
educational research methods. Journal of Engineering Education, 96(2), 91.

Borrego, M. (2007). Conceptual difficulties experienced by trained engineers learning
educational research methods

Dodig-Crnkovic, G. (2002). Scientific methods in computer science. Proceedings of the
Conference for the Promotion of Research in IT. Vasteras, Sweden.

Haynes, S. Nelson, K., & Blaine. (1999). Psychometric issues in assessment research. In P. C.
Kendall, J. N. Butcher, & G. N. Holmbeck (Eds.), Handbook of research methods in
clinical psychology (2nd ed.). (pp. 125-154). Hoboken, NJ: John Wiley & Sons.

Netermeyer, R. Bearden, W., Sharma, S. (2003). Scaling procedures: Issues and applications.
Los Angeles: Sage Publications, Inc.

Randolph, J. J. (2007). Computer science education research at the crossroads: A
methodological review of computer science education research, 2000--2005. (Doctoral
dissertation) Retrieved from http://0-
search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=co
okie,ip,url,cpid&custid=s4640792&db=psyh&AN=2008-99011-125&site=ehost-live
Available from EBSCOhost psyh database.

Randolph, J., J., G., Sutinen, E., & Lehman, S. (2008). A Methodological Review of Computer
Science Education Research. Journal of Information Technology Education, 7, 135-162.

Randolph, J. J., Julnes, G., Bednarik, R., & Sutinen, E. (2007). A Comparison of the
Methodological Quality of Articles in Computer Science Education Journals and
Conference Proceedings. Computer Science Education, 17(4), 263-274.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of
a checklist for getting computational thinking into public schools. Proceedings of the 41st
ACM technical symposium on computer science education (pp. 265-269). New York. doi:
10.1145/1734263.1734357

Valentine, D. W. (2004). CS educational research: a meta-analysis of SIGCSE technical
symposium proceedings. Proceedings of the 35th SIGCSE technical symposium on
comptuer science education (pp. 255-259). Norfolk, VA. doi: 10.1145/971300.971391

81

Wilson, C., & Harsha, P. (2009). IT policy The long road to Computer Science education reform.
Communications of the ACM, 52(9), 33-35.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to
teach K-12 computer science in the digital age. (Research Report). Retrieved from the
Association for Computing Machinery website:
http://www.acm.org/runningonempty/fullreport.pdf

82

APPENDIX A: COMMITTEE APPROVED MANUSCRIPT OUTLINES

Manuscript #1: A Literature Map And Scoping Review Of Computational Thinking
Target Journal: Computer Science Education

I. Introduction/background

This study takes a systematic, disciplined approach as it first provides a broad look at the
computational thinking literature, and then systematically examines the nature and extent of
research evidence found within this literature.

II. Aims
A. To create a literature map of computational thinking from 2006-2011
B. To conduct a scoping review to identify the nature and extent of the research evidence

on interventions intended to promote computational thinking.

III. Method
A. Study Identification

1. Search Terms (terms 1-4 derived from Google’s Exploring CT site, terms 5-9 are
from Computer Science Teachers’ Association’s definition of Computational
Thinking. Further search terms will be identified using database thesauruses) Some
terms may be added post hoc based on increased familiarity with the literature

a. problem decomposition
b. pattern recognition
c. pattern generalization to define abstractions or models

i. algorithm design
d. data analysis and visualization.
e. data organization
f. data representation
g. simulations
h. any integration of computer science with other disciplines

B. Sources
1. Major Bibliographic Databases

a. ERIC
b. PsychInfo
c. ACM digital library

2. Conference Proceedings
a. The Association for Computing Machinery’s (ACM) SIGCSE Technical

Symposium
b. Innovation and Technology in Computer Science Education Conference

(ITiCSE)

83

c. Koli Calling: Finnish/Baltic Sea Conference on Computer Science
Education

3. Google Scholar

4. Hand Search
a. Prominent CS education journals: Computer Science Education, Journal of

Research on Computing Education, The Journal of Information Technology
Education

b. Reference lists and citation searches

5. Search for Grey Literature
a. technical reports, working papers, blogs

C. Inclusion Criteria
1. Computational Thinking Education or Computer Science Education
2. Time frame: 2006-2011
3. English language
4. Some criteria may be added post hoc based on increased familiarity with the

literature

D. Screening Process (A sub-set of the articles will be examined by another individual and
IRR will be calculated)

1. Step 1: Title
2. Step 2: Abstract
3. Step 3: Full Article

E. Coding Framework
1.Primary Coding Framework (literature map) – Extract the following from all

a. Purpose – Categorized using a modification of Valentine’s (2004)
framework. This existing framework includes: Experimental, Marco Polo,
Philosophy, Tools, Nifty, John Henry

b. Author – name, affiliation, area of expertise
c. Year of Publication
d. Computational Thinking definition
e. Computational Thinking domains/topics
f. Other data TBD – possibly bibliometrics such as citation analysis

2. Secondary Coding Framework (scoping review)- Only reports of studies that
involve human participants will be included in the secondary coding process.

a. Conceptual Features
i. Intervention description

ii. Theoretical framework
b. Methodological Features

i. Research design

84

ii. Research question
iii. Participant description
iv. Participant sampling design
v. # of participants

vi. Duration of intervention
vii. Outcomes examined

viii. Measures employed
c. Study Findings

IV. Findings
A. Literature Map
B. Scoping Review

V. Implications & discussion

Manuscript #2: Computational Thinking Research: things I’ve learned so far
This paper will be driven in large part by the findings of Manuscript 1. It will be applied in
nature and will be submitted to be presented at the 2013 SIGCSE conference

I. Introduction to CS Education and CT

A. Past

B. Present

C. (Presumed) future

II. The current state of CS and CT educational research

III. Challenges to CS Research and Evaluation

IV. Opportunities in CS an CT Research and Evaluation

V. Promising directions

A. Outcomes

B. Measures

VI. Next Steps

VII. Conclusion

85

APPENDIX B: COMPUTER SCIENCE EDUCATION CALL FOR PAPERS & AUTHOR

GUIDELINES

Computer Science Education aims to publish high-quality
papers with a specific focus on teaching and learning within
the computing discipline that are accessible and of interest to
educators, researchers and practitioners alike.
Depending on their special interests, those working in the field
may draw on subject areas as diverse as statistics, educational
theory and the cognitive sciences in addition to technical
computing knowledge.
Papers may present work at different scales, from
classroom-based empirical studies through evaluative comparisons
of pedagogic approaches across institutions or countries and of
different types from the practical to the theoretical.
The Journal is not dedicated to any single research orientation.
Studies based on qualitative data, such as case studies, historical
analysis and theoretical, analytical or philosophical material, are
equally highly regarded as studies based on quantitative data and
experimental methods. It is expected that all papers should inform
the reader of the methods and goals of the research; present and
contextualise results, and draw clear conclusions.

Editors:
Sally Fincher, University of Kent, UK
Laurie Murphy, Pacific Lutheran University,USA
Editorial Board:
Carl Alphonce, University at Buffalo, USA
Mordechai Ben-Ari, Weizmann Institute of Science, Israel
Andrew Bernat, Computing Research Association, USA
Dennis Bouvier, Southern Illinois University Edwardsville, USA
David Carrington, University of Queensland, Australia
Michael Caspersen, University of Aarhus,Denmark
Michael Clancy, University of California, USA
Tony Clear, Auckland University of Technology, New Zealand
Nell Dale, University of Texas at Austin, USA
Gerald Engel, University of Connecticut at Storrs, USA
John Fulcher, University of Wollongong, Australia
Judith Gersting, University of Hawaii at Hilo, USA
Yifat Ben-David Kolikant, The Hebrew University of Jerusalem, Israel
W. Michael McCracken, Georgia Institute of Technology, USA
Helen Sharp, Open University, UK
Steve Wolfman, University of British Columbia, Canada

86

The Editors would like to invite you to submit your article to
Computer Science Education
Articles for consideration should be written in English and e-mailed electronically in
Word or PDF format to the Editors Sally Fincher and Laurie Murphy at
cse.editors@gmail.com
Please ensure your article includes an abstract of 100-500 words. Papers should
normally be around 7000 words in length, but longer or shorter articles may be
considered. For further instructions please visit the journal homepage at
www.tandf.co.uk/journals/cse and click on the ‘instructions for authors’ tab.

Instructions	
 for	
 authors	

Papers	
 must	
 be	
 original.	
 Please	
 send	
 your	
 manuscripts	
 in	
 Word	
 or	
 PDF	
 format	
 tothe	

Editors	
 by	
 email	
 .All	
 articles	
 from	
 authors	
 in	
 the	
 USA,	
 Canada,	
 and	
 South	
 America	

should	
 be	
 sent	
 to:	
 Laurie	
 Murphy,	
 Associate	
 Professor,	
 Department	
 of	
 Computer	

Science	
 and	
 Computer	
 Engineering,	
 Pacific	
 Lutheran	
 University:	

cse.editors@gmail.com	

Manuscripts	
 from	
 all	
 other	
 areas	
 should	
 be	
 sent	
 to:	
 Sally	
 Fincher,	
 Computing	

Laboratory,	
 University	
 of	
 Kent	
 at	
 Canterbury,	
 UK:	
 cse.editors@gmail.com	

Papers	
 should	
 normally	
 be	
 around	
 7000	
 words	
 in	
 length,	
 but	
 longer	
 or	
 shorter	

articles	
 may	
 be	
 considered.	

	

Manuscripts	
 should	
 be	
 typed	
 on	
 one	
 side	
 of	
 paper	
 with	
 double	
 spacing	
 and	
 a	

wide	
 margin	
 to	
 the	
 left.	
 All	
 pages	
 should	
 be	
 numbered.	
 All	
 submissions	
 must	
 be	

properly	
 formatted	
 for	
 reviewing	
 (see	
 Publication	
 Manual	
 of	
 the	
 American	

Psychological	
 Association,	
 5th	
 edition,	
 2001,	
 for	
 instructions).	
 Authors'	
 names	
 and	

institutions	
 should	
 be	
 typed	
 on	
 a	
 separate	
 page.	
 The	
 full	
 postal	
 and	
 email	
 address	
 of	

the	
 author	
 who	
 will	
 check	
 proofs	
 and	
 receive	
 correspondence	
 and	
 offprints	
 should	

also	
 be	
 included.	

Each	
 paper	
 should	
 include	
 an	
 abstract	
 of	
 100	
 to	
 150	
 words	
 on	
 a	
 separate	
 page.	

Style	
 guidelines	

Any	
 consistent	
 spelling	
 style	
 may	
 be	
 used.	
 Please	
 follow	
 the	
 APA	
 manual	
 for	

punctuation.	

LaTeX	
 template	
 (Please	
 save	
 the	
 LaTeX	
 template	
 to	
 your	
 hard	
 drive	
 and	
 open	
 it	
 	
 for	

use	
 by	
 clicking	
 on	
 the	
 icon	
 in	
 Windows	
 Explorer)	

	

For	
 information	
 about	
 writing	
 an	
 article,	
 preparing	
 your	
 manuscript	
 and	
 general	

Guidance	
 for	
 authors,	
 please	
 visit	
 the	
 Author	
 Services	
 section	
 of	
 our	
 website.	

If	
 you	
 have	
 any	
 questions	
 about	
 references	
 or	
 formatting	
 your	
 article,	
 please	
 contact	

authorqueries@tandf.co.uk	
 (please	
 mention	
 the	
 journal	
 title	
 in	
 your	

email).	

	

87

Word	
 templates	

Word	
 templates	
 are	
 available	
 for	
 this	
 journal.	
 If	
 you	
 are	
 not	
 able	
 to	
 use	
 the	
 template	

via	
 the	
 links	
 or	
 if	
 you	
 have	
 any	
 other	
 queries,	
 please	
 contact	

authortemplate@tandf.co.uk	

	

Tables	
 and	
 captions	
 to	
 illustrations.	
 Tables	
 must	
 be	
 on	
 separate	
 pages	
 and	
 not	
 	

included	
 as	
 part	
 of	
 the	
 text.	
 The	
 captions	
 to	
 illustrations	
 should	
 be	
 gathered	

together	
 on	
 a	
 separate	
 page.	
 Tables	
 and	
 Figures	
 should	
 be	
 numbered	
 consecutively	

by	
 Arabic	
 numerals.	
 The	
 approximate	
 position	
 of	
 tables	
 and	
 figures	
 should	
 be	

indicated	
 in	
 the	
 manuscript.	
 Captions	
 should	
 include	
 keys	
 to	
 any	
 symbols	
 used.	

	

Figures.	
 Please	
 supply	
 one	
 set	
 of	
 artwork	
 in	
 a	
 finished	
 form,	
 suitable	
 for	

reproduction.	
 Figures	
 will	
 not	
 normally	
 be	
 redrawn	
 by	
 the	
 publisher.	

As	
 an	
 author,	
 you	
 are	
 required	
 to	
 secure	
 permission	
 if	
 you	
 want	
 to	
 reproduce	

any	
 figure,	
 table,	
 or	
 extract	
 from	
 the	
 text	
 of	
 another	
 source.	
 This	
 applies	
 to	

direct	
 reproduction	
 as	
 well	
 as	
 "derivative	
 reproduction"	
 (where	
 you	
 have	
 created	

a	
 new	
 figure	
 or	
 table	
 which	
 derives	
 substantially	
 from	
 a	
 copyrighted	
 source).	
 For	

further	
 information	
 and	
 FAQs,	
 please	
 see	

http://journalauthors.tandf.co.uk/preparation/permission.asp	
 Citations	
 of	
 other	

work	
 should	
 be	
 limited	
 to	
 those	
 strictly	
 necessary	
 for	
 the	
 argument.	
 Any	
 quotations	

should	
 be	
 brief,	
 and	
 accompanied	
 by	
 precise	
 references.	

	

Proofs	
 will	
 be	
 sent	
 to	
 authors	
 if	
 there	
 is	
 sufficient	
 time	
 to	
 do	
 so.	
 They	
 should	
 be	

corrected	
 and	
 returned	
 to	
 the	
 Publisher	
 within	
 three	
 days.	
 Major	
 alterations	
 to	
 the	

text	
 cannot	
 be	
 accepted.	

Free	
 article	
 access.	
 Corresponding	
 authors	
 will	
 receive	
 free	
 online	
 access	
 to	
 their	

article	
 through	
 the	
 journal	
 website	
 and	
 a	
 complimentary	
 copy	
 of	
 the	
 issue	

containing	
 their	
 article.	
 Reprints	
 of	
 articles	
 published	
 in	
 this	
 journal	
 can	
 be	

purchased	
 through	
 Rightslink®	
 when	
 proofs	
 are	
 received.	
 If	
 you	
 have	
 any	
 queries,	

please	
 contact	
 our	
 reprints	
 department	
 at	
 reprints@tandf.co.uk	

Copyright:	
 It	
 is	
 a	
 condition	
 of	
 publication	
 that	
 authors	
 assign	
 copyright	
 or	
 license	

the	
 publication	
 rights	
 in	
 their	
 articles,	
 including	
 abstracts,	
 to	
 Taylor	
 &	

Francis.	
 This	
 enables	
 us	
 to	
 ensure	
 full	
 copyright	
 protection	
 and	
 to	
 disseminate	

the	
 article,	
 and	
 of	
 course	
 the	
 Journal,	
 to	
 the	
 widest	
 possible	
 readership	
 in	
 print	

and	
 electronic	
 formats	
 as	
 appropriate.	
 Authors	
 retain	
 many	
 rights	
 under	
 the	

Taylor	
 &	
 Francis	
 rights	
 policies,	
 which	
 can	
 be	
 found	
 at	

http://journalauthors.tandf.co.uk/preparation/copyright.asp.	
 Authors	
 are	

themselves	
 responsible	
 for	
 obtaining	
 permission	
 to	
 reproduce	
 copyright	
 material	

from	
 other	
 sources.	
 Visit	
 our	
 Author	
 Services	
 website	
 for	
 further	
 resources	
 and	

guides	
 to	
 the	
 complete	
 publication	
 process	
 and	
 beyond.	

88

APPENDIX C: SIGCSE SUBMISSION REQUIREMENTS AND CALL FOR

PARTICIPATION

Formatting Requirements for all
Paper, Panel, and Special Session Submissions

The requirements listed in this section apply to all papers, panels, and special sessions:

• Title: The title should be centered, Arial or Helvetica, bold, 18 point, and Initial Letters Capitalized
Like This.

• Author information: The author's name(s) should be centered using Arial or Helvetica 12 point.
The affiliation and address should be Arial or Helvetica 10 point, and email should be Arial or
Helvetica 12 point. Two or more authors may be listed side by side. If co-authors are at the same
institution and share most information, you may use only one address. Please see the templates
for examples.

o SPECIAL NOTE FOR PANEL SUBMISSIONS: Indicate which of the panelists is the
moderator by placing the word "Moderator" in parentheses after her/his name.

• Paper size: You should format your submission for 8.5 x11-inch paper.
• Margins: Top and bottom margins should be 1 inch, left and right margins should be 0.75 inch.

This is for every page including the first.
• Columns: Text should be presented in two columns each 3.33 inches wide. There should be a

0.33 inch space between the columns. The two columns on the last page should be the same
length approximately.

• Section heads: Section heads are flush left, Times Roman, bold, 12 point, ALL CAPITALS, and
numbered starting at 1. There should be an additional 6 points of white space above the section
head.

• Subsection heads: If your paper has subsections, they are flush left, Times Roman, bold, 12
point, and subnumbered (for example, 1.1). Initial letters of the subsection heading should be
capitalized. There should be an additional 6 points of white space above the subsection head
unless it immediately follows a section head. (Please see the templates for examples.)

• Subsubsections: If your paper has subsubsections, they are flush left, Times Roman, italics, 11
point, with initial letters capitalized, and subnumbered (for example, 1.1.2 or 1.2.3.4). There
should be an additional 6 points of white space above the subsubsection heading, unless it
immediately follows a subsection heading.

• Text: All text including abstract should be single spaced, full justification, Times Roman, and 9
point.

• References: Use the standard Communications of the ACM format for references. That is,
references should be a numbered list at the end of the article, ordered alphabetically by first
author, and referenced by numbers in square brackets, like this [1]. Use commas for multiple
citations like this [3,4]. The reference section has a regular section head (i.e., numbered, ALL
CAPITALS, Times Roman, bold, 12 point), and the references are 9 point Times Roman but with
ragged right justification.

89

• Copyright Space: Leave 1.5 inches of blank space at the bottom of the left column of the first
page for the copyright notice. Use a placeholder copyright notice with the number X-XXXXX-XX-
X/XX/X for your submission. Please see the templates for examples.

• Required Sections: The following unnumbered sections are required at the beginning of the
document in the following order:

• Abstract: The abstract should be a short description of the work described in the document. The
title of the section ("ABSTRACT") should be formatted as a section head (i.e., flush left, Times
Roman, bold, 12 point, ALL CAPITALS).

• Categories and Subject Descriptors: The ACM Computing Classification Scheme is available
at acm.org/class/1998/ Most submissions are likely to use category K.3.2 Computer and
Information Science Education. The title of this section ("Categories and Subject Descriptors")
should be formatted as a subsection head (i.e., flush left, Times Roman, bold, 12 point, Initial
Letters Capitalized).

• General Terms: This section is limited to the following 16 terms: Algorithms, Management,
Measurement, Documentation, Performance, Design, Economics, Reliability, Experimentation,
Security, Human Factors, Standardization, Languages, Theory, Legal Aspects, Verification. The
title of this section ("General Terms") should be formatted as a subsection head.

• Keywords: This section is your choice of words you would like your publication to be indexed by.
The title of this section ("Keywords") should be formatted as a subsection head.

• Other Requirements: Do NOT use page numbers or headers/footers. Use a blank line between
paragraphs.

New ACM Reference guidelines.

Elements (in most cases):

1. Author(s)
2. Year of publication
3. Title of 'document' - use initial caps on keywords and end in period.
4. Name of Site in italics if given, and followed by period.
5. Date accessed - Use 'Retrieved' followed by date as Month, DD, YYYY followed by 'from'
6. Address - Given as '{http|ftp|telnet}://path' and underlined.

Note: a web address should never be given for a formally published document whose citation is complete
or for which there is a DOI. Only give a web address for informal works or online-only works or resources
that cannot otherwise be found by citation and/or DOI. Author Home page URLs or Institutional
Repository URLs are not the way to cite formally published literature. If citing a formally published online-
only publication, use the format for that genre and add elements 5 and 6 above.

Examples:
H. Thornburg. 2001. Introduction to Bayesian Statistics. Retrieved March 2,

2005 from http://ccrma.stanford.edu/~jos/bayes/bayes.html

Rafal Ablamowicz and Bertfried Fauser. 2007. CLIFFORD: a Maple 11 Package for

90

Clifford Algebra Computations, version 11. Retrieved February 28, 2008 from

http://math.tntech.edu/rafal/cliff11/index.html

Poker-Edge.Com. 2006. Stats and Analysis. Retrieved June 7, 2006 from

http://www.poker-edge.com/stats.php

Page Limits
All submission must adhere to the following page limits:

• Paper: 6 (Increased from 5 starting with SIGCSE 2011)
• Panel: 2
• Special Session: 2

Copyright/Permission forms
All authors of accepted papers will need to submit a signed copyright form with the FINAL document.

All authors of accepted panels or special sessions will need to submit a signed permission form with the
FINAL document.

Information will be sent to authors after notification of acceptance by the program committee.

Templates and Samples
Templates for submissions can be found at the ACM SIG Proceedings website. LaTeX users

should use option #2 (tighter alternate style) when formatting your document.
Questions?

Contact the Publications chair:

Brad Miller
Luther College
sigcse12-publications@cs.holycross.edu

91

Call for Participation

SIGCSE 2013: The Changing Face of Computing
The 44th ACM Technical Symposium on Computer Science Education

March 6-9, 2013, Denver, Colorado, USA
http://www.sigcse.org/sigcse2013/
SIGCSE 2013 continues our long tradition of bringing together colleagues from around the
world to present papers, panels, posters, special sessions, and workshops, and to discuss
computer science education in birds-of-a-feather sessions and informal settings. The SIGCSE
Technical Symposium addresses problems common among educators working to develop,
implement and/or evaluate computing programs, curricula, and courses. The symposium
provides a forum for sharing new ideas for syllabi, laboratories, and other elements of teaching
and pedagogy, at all levels of instruction.

Submissions in line with the conference theme, 'The Changing Face of Computing', are ideal.
The theme focuses our attention on how computing is changing, and how we must change in
education to address the changes in computing.

PAPERS

Papers describe an educational research project, classroom experience, teaching technique,
curricular initiative, or pedagogical tool. Two versions of a submission are required: a full
version having author names and affiliations and an anonymous version for use in reviewing.
Papers will undergo a blind reviewing process and must not exceed six pages. Authors will have
approximately 25 minutes for their presentations, including questions and answers.

PANELS

Panels present multiple perspectives on a specific topic. To allow each panelist sufficient time to
present his or her perspective and still enable audience participation, a panel will normally have
at most four panelists, including one moderator. Panel submissions should include a list of the
panelists, their affiliations, and a description of the topic, with brief position statements from
panelists. Proposals with more than four panelists must provide a statement connecting the extra
panelist to the effectiveness of the panel and must convincingly show that each panelist will be

92

able to speak, and the audience able to respond, within the session time. Panel abstracts must not
exceed two pages. A panel session is approximately 75 minutes.

SPECIAL SESSIONS

Special sessions are your opportunity to customize and experiment with the SIGCSE conference
format. Possible special sessions include a seminar on a new topic, a committee report, or a
forum on curriculum issues. More generally, they must be 75 minutes in length, held in standard
conference spaces, and justifiably distinct from the panel, paper, and poster tracks. Within those
constraints, the form is yours to design. Special session abstracts must not exceed two pages.

WORKSHOPS

Workshops offer participants opportunities to learn new techniques and technologies designed to
foster education, scholarship, and collaborations. A workshop proposal (including abstract) must
not exceed two pages. Proposals must specify equipment needs (e.g., participant-supplied
laptops, room configurations, and A/V equipment) and any limitation on the number of
participants. Workshops are scheduled for a three-hour session and do not conflict with the
technical sessions.

BIRDS OF A FEATHER SESSIONS

Birds of a Feather (BOF) sessions provide an environment for colleagues with similar interests to
meet for informal discussions. A maximum one-page description (including abstract) is
requested to describe the informal discussion topic. A/V equipment will not be provided for
these sessions. Approximately 45 minutes are allocated to each BOF topic.

POSTERS

Posters describe computer science education materials or research, particularly works in
progress. Proposals (including abstract) are limited to two pages. Poster demonstrations are
scheduled to permit one-on-one discussion with conference attendees, typically during session
breaks. Prepared handouts are encouraged in order to share your work.

93

STUDENT RESEARCH COMPETITION

Research from all areas of computer science is considered for awards in two categories of
competition: graduate and undergraduate. All submissions must represent a student's individual
research contribution and a student must be an ACM student member to qualify for awards and
travel grants. Entry due date is September 30, 2

94

APPENDIX D: BOOLEAN LOGIC

The following logic was used to search the websites and databases described in Chapter 2.

• (computational thinking)

• (computer science education) AND (thinking)

• (computer science education) AND (interdisciplinary OR multidisciplinary)

• (computer science education) AND (mathematics OR science OR biology OR physics

OR reading OR writing OR journalism OR music OR art)

• (computer science education) AND ((problem decomposition) OR (pattern recognition)

OR (pattern generalization) OR (abstraction) OR (algorithm design) OR (data analysis

and visualization) OR (data organization) OR (data representation) OR (simulation) OR

(recursive thinking)) *Note: ACM Digital Library search was conducted with (computer

science education) AND (1 search term at a time)

95

APPENDIX E: CODING SHEET

Screening	
 Criteria	

1. Is	
 the	
 literature	
 dated	
 January	
 2006-­‐June	
 30,	
 2011?	

a. Yes	
 –	
 Proceed	
 with	
 screen	

b. No	
 –	
 EXCLUDE	

2. Is	
 the	
 literature	
 focused	
 on	
 computational	
 thinking	
 or	
 one	
 of	
 the	
 CT	
 domains	
 specified	
 in	
 the	
 search	

terms?	

a. Yes	
 –	
 Proceed	
 	

b. No	
 –	
 EXCLUDE	
 	

3. Is	
 the	
 literature	
 focused	
 on	
 education?	

c. Yes	
 –	
 Proceed	
 	

d. No	
 –	
 EXCLUDE	
 	

4. Is	
 the	
 literature	
 introduce	
 a	
 conference	
 session,	
 tutorial,	
 poster,	
 event	

e. Yes	
 –	
 EXCLUDE	

f. No	
 –	
 Proceed	

Substantive	
 Coding	
 	

Round	
 1:	

1. Year	
 of	
 Publication	

a. 2006	

b. 2007	

c. 2008	

d. 2009	

e. 2010	

f. 2011	

	

2. Institutional	
 affiliation	
 of	
 the	
 primary	
 author?	
 	

a. United	
 States	
 	

b. International	
 	

i. Country:____(list	
 all)______	

	

3. What	
 is	
 the	
 area	
 of	
 expertise	
 of	
 each	
 author?	

a. Computer	
 Science	

b. Education	

c. Other	
 area(s)	
 ____(list	
 all)_____	

	

4. What	
 population	
 is	
 the	
 article	
 focused	
 on?	

a. K-­‐12	

b. Elementary	
 (K-­‐5)	

c. Middle	
 (6-­‐8)	

d. High	
 School	
 (9-­‐12)	

e. Undergraduate	

f. Graduate	

	

	

96

5. What	
 type	
 is	
 the	
 primary	
 purpose	
 of	
 the	
 article?	

a. Opinion	

b. Program	
 Evaluation	

c. Description	
 of	
 a	
 Curriculum,	
 Lesson,	
 or	
 Course	

d. Research	

e. Philosophy	

f. Literature	
 Review	

g. Program	
 Description	

	

6. Does	
 the	
 article	
 include	
 data?	

a. No	
 –	
 STOP	
 coding	
 	
 	

b. Yes	
 –	
 Include	
 in	
 Substantive	
 Coding	
 Round	
 2	

	

	

Round	
 2:	

1. What	
 research	
 methods	
 were	
 used?	

a. Experimental/quasiexperimental	

b. Correlation	

c. Nonexperimental	

d. Survey	

e. Qualitative	

f. Causal	
 comparative	

g. Did	
 not	
 include	
 human	
 subjects	

h. No	
 intervention	

	

2. What	
 research	
 design	
 was	
 used	

a. Post	
 only	
 (one	
 group)	

b. Post	
 only	
 (treatment/control)	

c. Pre/Post	
 (one	
 group)	

d. Pre/Post	
 (treatment/control)	

e. Repeated	
 measures	
 (one	
 group)	

f. Repeated	
 measures	
 (treatment/control)	

g. Other	

h. Correlational	

i. Causal	
 comparative	

j. Multi	
 methods	
 (also	
 indicate	
 each	
 method	
 a-­‐i)	

	

3. What	
 type	
 of	
 intervention	
 was	
 explored?	

a. Student	
 instruction	
 (in	
 class)	

b. Teacher	
 instruction	

c. Out	
 of	
 school	
 time	

d. Other	

e. None	

	

4. What	
 outcome(s)	
 were	
 examined?	

a. Attitudes	
 (student)	

b. Attitudes	
 (teacher)	

c. Skills/knowledge	

d. Course	
 achievement	

e. Future	
 plans	

97

f. Teaching	
 practices	

g. “did	
 you	
 like	
 it”	

h. None	

i. Other	

	

5. Measures	
 (select	
 all	
 that	
 apply)	

a. Questionnaire	

b. Course	
 grades	

c. Teacher/researcher	
 made	
 test	

d. Student	
 work	

e. Existing	
 records	

f. Standardized	
 or	
 established	
 tests	

g. Interviews	

h. Observation	

i. Other	

j. Multiple	
 measures	
 (also	
 indicate	
 each	
 measure	
 a-­‐i)	

	

6. Type	
 of	
 Analysis	

a. Inferential	

b. Descriptive	

c. Qualitative	

	

7. Computational	
 Thinking	
 Definition	

a. Cites	
 Wing	
 –	
 no	
 definition	
 included	

b. Defines	
 CT	

c. Phrase	
 CT	
 not	
 used	

d. CT	
 phrase	
 used,	
 but	
 no	
 definition	
 or	
 citation	
 provided	

	

