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 ABSTRACT 
 
 

COMPUTATIONAL THINKING: AN INVESTIGATION OF THE EXISTING 

SCHOLARSHIP AND RESEARCH 

 
Despite the prevalence of computing and technology in our everyday lives and in almost 

every discipline and profession, student interest and enrollment in computer science courses is 

declining. In response, computer science education in K-12 schools and universities is 

undergoing a transformation. Computational thinking has been proposed as a universal way of 

thinking with benefits for everyone, not just computer scientists. The focus on computational 

thinking moves beyond computer literacy, or the familiarity with software, to a way of thinking 

that benefits everyone. Many see computational thinking as a way to introduce students to 

computer science concepts and ways of thinking and to motivate student interest in computer 

science. 

The first part of this dissertation describes a study in which the researcher systematically 

examined the literature and scholarship on computational thinking since 2006. The aim was to 

explore nature and extent of the entire body of literature and to examine the theory and research 

evidence on computational thinking. Findings reveal that there has been a steady increase in the 

popularity of the concept of computational thinking, but it is not yet developed to the point 

where it can be studied in a meaningful way.  An examination of the research evidence on 

computational thinking found inadequacies in the conceptual characteristics and the reporting of 

studies. Weaknesses were identified in the theoretical conceptualization of interventions, 

definitions of key concepts, intervention descriptions, research designs, and the presentation of 

findings.  Recommendations for bolstering the research evidence around this burgeoning concept 
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are presented, including collaboration between computer scientists and educational researchers to 

apply social science research methods to conduct robust studies of computational thinking 

interventions.   

The second part of this dissertation describes how computational thinking is currently 

incorporated into K-12 educational settings. The bulk of the literature on computational thinking 

describes ways in which programs promote this way of thinking in students. The K-12 programs 

that encourage computational thinking are classified, described, and discussed in a way that is 

intended to be meaningful for K-12 educators and educational researchers. Potential barriers and 

factors that might enable educators to use each category of interventions are discussed.  



iv 
  

TABLE OF CONTENTS 
 
 
 

Chapter 1: Introduction ................................................................................................................... 7	
  

Purpose of the Dissertation ............................................................................................... 11	
  

Brief Overview of the Organization of the Dissertation ................................................... 12	
  

References ......................................................................................................................... 15	
  

Chapter 2: Computational Thinking: An Investigation of the Eixsting Scholarship And Research

....................................................................................................................................................... 16	
  

Introduction ....................................................................................................................... 16	
  

Method .............................................................................................................................. 21	
  

Search Strategy and Sources ............................................................................................. 22	
  

Inclusion/Exclusion Criteria and Process ......................................................................... 24	
  

Substantive Coding ........................................................................................................... 25	
  

Findings ............................................................................................................................ 26	
  

Question 1: What are the demographic characteristics of the entire set of literature? ..... 26	
  

Year of Publication. .............................................................................................. 26	
  

Author Characteristics. ......................................................................................... 27	
  

Target Populations. ............................................................................................... 27	
  

Question 2: What kind of taxonomy might characterize this entire set of literature? ...... 29	
  

Question 3: What is the nature of the studies that have been conducted? ........................ 30	
  



v 
  

Question 4: How do study authors define computational thinking, and how do these align 

with the CSTA and Google definitions? .................................................................. 32	
  

Question 5: Of the empirical studies, how many were intervention studies and how many 

were not? What kinds of interventions are being explored and tested? ................... 34	
  

Question 6: What outcomes are examined in studies and how are they measured? ......... 35	
  

Limitations ........................................................................................................................ 38	
  

Conclusions, Discussion, and Recommendations ............................................................. 40	
  

References ......................................................................................................................... 47	
  

Chapter 3: Computational Thinking: What Is It, How Do We Teach It, and How Do We Assess 

It? .................................................................................................................................................. 50	
  

Introduction ....................................................................................................................... 50	
  

The Origins of Computational Thinking ........................................................................... 52	
  

Defining Computational Thinking .................................................................................... 53	
  

Computational Thinking in the K-12 Classroom .............................................................. 55	
  

Technology-Free Computational Thinking ......................................................... 56	
  

Programming Games or Robots .......................................................................... 57	
  

Initial Learning Environments ............................................................................. 58	
  

Integrating Computational Thinking with Other Disciplines .............................. 60	
  

Computational Thinking for the Researcher ..................................................................... 62	
  

Conclusion ........................................................................................................................ 65	
  

References ......................................................................................................................... 68	
  



vi 
  

Chapter 4: Conclusion ................................................................................................................... 73	
  

Lessons Learned & Insights Gained ................................................................................. 73	
  

Barriers to Systematic Review in Computer Science Education ........................ 73	
  

Need for Collaboration ........................................................................................ 75	
  

Challenges Not Unique to Computer Science ..................................................... 77	
  

Next Steps ......................................................................................................................... 77	
  

References ......................................................................................................................... 80	
  

Appendix A: Committee Approved Manuscript Outlines ............................................................ 82	
  

Appendix B: Computer Science Education Call for Papers & Author Guidelines ....................... 85	
  

Appendix C: SIGCSE Submission Requirements and Call for Participation ............................... 88	
  

Appendix D: Boolean Logic ......................................................................................................... 94	
  

Appendix E: Coding Sheet ............................................................................................................ 95	
  



7 
  

CHAPTER 1: INTRODUCTION 

 

It is nearly impossible to overemphasize the role of computing and technology in our 

everyday lives; computers, computational devices, and technology are so pervasive that that 

civic, economic, and personal participation are predicated on technological skills and knowledge. 

Reliance on technology goes beyond the daily use of digital electronics and technological 

applications in the ‘hard sciences’. Technology is essential in fields are diverse as agriculture, 

business, journalism, and social sciences. The influence of computing and technology 

applications extends beyond the borders and boundaries of the industrialized nations; they are 

used to help understand and address social problems across the world. In order for nations, 

including the U.S., to remain economically competitive in the increasingly global environment, a 

highly educated workforce skilled in computer science and technology is essential.  

Academic and career achievement in an increasing number of disciplines is dependent on 

the ability to apply technology, yet many students are ill-equipped to meet this challenge. Many 

have noted the misalignment between computer science education and the ever-increasing digital 

world in which we live. A recent report published by the Association for Computing Machinery 

points out that K-12 computer science education paradoxically shrinking as the functions, 

influences, and significance of computer science in society are expanding (Wilson, Sudol, 

Stephenson, & Stehlik, 2010). In the five years prior to this report’s release, the number of 

computer science courses taught in secondary courses decreased by almost 20%, and high 

schools offering Advanced Placement Computer Science courses decreased by 35%. The field of 

computer science education is currently not keeping pace with the expanding technological 

environment.    
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A number of human capital issues currently exist in computer science. Foremost among 

these is the need for more computer science graduates. There is a lack of diversity among 

computer science graduates as evidenced by the underrepresentation of minority and female 

students in graduate computer science programs (Computing Research Association, 2010). A 

second issue is the scarcity of opportunities for U.S. students develop computational skills and 

explore how computational competencies may propel them toward careers of interest (Computer 

Science Teachers Association [CSTA], 2005, 2009). Course offerings are limited, teachers often 

are not adequately trained, rigorous high school computer science courses are rare, and 

introductory courses are often unappealing and unattractive (Repenning, Webb, & Ioannidou, 

2010). Innovation is needed to develop curriculum for use in a wide range of computer science 

courses, along with professional development opportunities to prepare teachers to meet the needs 

of students (Wilson & Harsha, 2009).  

One tangible direction for change can be found in the computational thinking movement. 

With the seminal article in 2006, Wing attempted to liken computational thinking to the basic 

skills of reading, writing, and arithmetic.  It is believed that computational thinking would enable 

individuals to more effectively navigate today’s society where technology is unavoidable. First, a 

focus on computational thinking in K-12 education would encourage equitable access to 

technological skills, devices, and other resources because it would enhance personal 

empowerment as individuals are taught how to apply computational thinking to their daily lives. 

Second, incorporating computational thinking into K-12 education would raise student interest in 

information technology, computer science, and other technologically oriented professions. Third, 

an increase would help maintain and enhance the competitiveness of the U.S. from an economic 
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standpoint by better preparing students to enter the internationally competitive work force 

(Committee for the Workshops on Computational Thinking, 2010). 

Examples of computational thinking are all around us.  Sorting is a common example of 

computational thinking. Both sorting a list and using a sorted list involve computational thinking. 

By sorting items, we are able to locate items quickly and efficiently. In addition, duplicate items 

are easy to locate because they end up side-by-side, and extreme cases or potential data entry 

errors are easily identified because they are at the beginning or end of the list. Lists can be sorted 

a number of ways (e.g., alphabetically, numerically). A variety of methods (algorithms) can be 

used to sort items, and each of these methods requires computational thinking. A description of 

three of these methods follows. The selection sort method involves the following process: the 

item with the smallest (or largest) value is located and put it in the first position, then the next-

smallest (or largest) item is found and put it in the second position, and so on until the entire list 

is sorted. Throughout this process, the list is divided into two parts: the part of the list that has 

been sorted and the part that has not yet been put in order. A second method is the quicksort, in 

which the list is divided into two smaller sub-lists, then these sub-lists are recursively sorted. For 

example, if a stack of nametags is to be alphabetized, one might use the last names on the 

nametags to 1) create two stacks: A-N and M-Z, 2) separate the A-N stack into A-G and H-N, 3) 

separate the A-G stack into A-C and D-G, 4) put the A-C stack in alphabetical order. This 

process would continue for all sub-lists until all the nametags were in order. Another method is 

the bubble sort, which involves moving through the list repeatedly, each time comparing two 

side-by-side objects at a time and swapping the pair when one is in the wrong order. When one 

moves through the entire list without making any swaps, the list is in order.  
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After a list has been sorted, multiple methods can be used to find an individual item.  A 

linear approach involves beginning the search at the top and moving down the list until the item 

of interest is found. A binary search begins in the middle of the sorted list. If the item of interest 

is located above the middle value, then the middle value in the top half of the items is located. 

This value is compared to the item of interest, and the process repeats until the item of interest is 

found on the list. 

This description of sorting and locating an item on a sorted list is intended to provide an 

example of how we might consider the world in computational terms. This exemplifies the 

description of computational thinking offered by the Value of Computational Thinking Across 

Grade Levels, which says  

[Computational thinking] begins with learning to see opportunities to compute 
something, and it develops to include such considerations as computational complexity, 
utility of approximate solutions, computational resource implications of different 
algorithms, selection of appropriate data structures and the ease of coding, maintaining, 
and using the resulting program. Computational thinking is applicable across disciplinary 
domains because it takes place at a level of abstraction where similarities and differences 
can be seen in terms of the computational strategies available. A person skilled in 
computational thinking is able to harness the power of computing to gain insights. At its 
best, computational thinking is multi-disciplinary and cross-disciplinary thinking with an 
emphasis on the benefits of computational strategies to augment human insights.  
Computational thinking is a way of looking at the world in terms of how information can 
be generated, related, analyzed, represented, and shared courses (Cozzens, Kehle, & 
Garfunkel, 2010). 

 

The need to sorting a list and locate an item on the list is not a practice that is exclusive to any 

single discipline or category of disciplines. The need to conduct these activities extends to all 

disciplines and to tasks one might face in their daily personal lives. This example is one of many 

that could be used to demonstrate the need to better understand how computational thinking 

skills are learned and taught.  
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Purpose of the Dissertation 

The purpose of this dissertation is to conduct a disciplined review of computational 

thinking literature, to examine the nature and extent of research evidence found within this 

literature, and to offer suggestions that could enable educators and researchers to collaborate and 

in efforts to both incorporate computational thinking into K-12 classrooms and study how 

students learn to think computationally. This current inquiry is driven by the need of researchers, 

scholars, and educators to have a unified understanding of the definition and a theoretical model 

or framework underpinning the concept of computational thinking to use as a starting point in 

developing and studying computational thinking interventions, the development quantitative 

measures of computational thinking to assess the success of these interventions, and to 

thoughtfully examine programs and interventions intended to promote computational thinking 

competencies. 

Within the context of the recently NSF-funded (VCTAL) project, the National Science 

Foundation (NSF) expressed interest in providing support for the full development of an 

instrument to measure computational thinking. Both the VCTAL reviewers and the NSF Project 

Officer described the lack of an instrument or process to assess computational thinking, which 

makes this a fertile topic to consider. This exploratory research will set the stage for future 

efforts to enhance the rigor, strength, and visibility of both the theoretical model and the 

computational thinking assessment instrument.   
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Brief Overview of the Organization of the Dissertation 

At the recommendation of my advisor and with the approval of my committee, this 

dissertation is presented as a set of two journal-ready manuscripts bracketed by an introduction 

and a conclusion. Manuscript ideas were presented to committee members at the Dissertation 

Proposal meeting, and modifications were made to the scope and direction as a result of this 

meeting. Outlines were prepared and approved by all committee members (Appendix A). A brief 

description of each chapter follows. 

Chapter 2: Computational Thinking: An Investigation of the Existing Scholarship and 

Research  

Chapter 2 is a manuscript written for the Computer Science Education journal. This 

journal’s most recent call for papers and instructions for authors can be found in Appendix B. 

Computer Science Education is one of very few journals devoted to computer science teaching 

and learning.  It publishes historical analysis and theoretical, analytical, or philosophical 

material. The study described in this manuscript study takes a systematic, disciplined approach 

as it first provides a broad look at the computational thinking literature, and then examines the 

nature and extent of research evidence found within this literature.  The aims are to survey all of 

the scholarship on computational thinking from 2006 to June 2011, and to conduct a review to 

identify the nature and extent of the research evidence within this body of literature.  

First, all the literature and scholarship on computational thinking since 2006 was 

examined and used to answer questions about the authors and the characteristics of each piece in 

order to better understand the literature base as a whole. To accomplish this, articles and 

publications on computational thinking were identified using search terms derived from the two 

most concrete and widely accepted descriptions of computational thinking available. A variety of 
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bibliographic databases were searched, hand searches performed, as well as other electronic 

searches. A systematic screening process was used to determine eligibility for inclusion. If 

articles met the initial subject and date screening criteria, they were included in the literature 

map. Each of these articles was coded using a primary coding framework in which demographic 

information and data related to the primary purpose of the article was extracted. 

Second, those computational thinking articles that describe research or evaluation studies 

were scrutinized further. A secondary coding framework was applied to this subset of the 

literature. Details of conceptual and methodological features were coded. No attempts are made 

to systematically appraise the studies, nor are findings synthesized across the studies. For these 

reasons, inclusion criteria for the scoping review can be quite broad; any article that includes 

data can be included, regardless of methods employed or study quality. Findings were described 

and conclusions were drawn in each section, and overall implications were discussed in the 

manuscript’s conclusion. 

Chapter 3: Computational Thinking: What Is It, How Do We Teach It, and How Do We 

Assess It?  

The second manuscript was driven in large part by the findings from the first. It is applied 

in nature and will be submitted to SIGCSE for consideration to present the paper at the 2013 

SIGCSE Conference. The call for participation and formatting instructions are included in 

Appendix C. This manuscript is intended to serve as an introduction to computational thinking 

for ‘the rest of us’. In this case, ‘the rest of us’ includes elementary teachers, secondary teachers, 

school administrators, and educational researchers. This paper is intended to reach the audience 

who needs to be involved in the next step, which includes improving access to computer science 

and computational thinking in K-12 schools. This manuscript includes a discussion of the 
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concept of computational thinking and its origins, an introduction to various programs and 

initiatives that aim to encourage computational thinking in classrooms, and a final section 

targeting educational researchers that discusses how computational thinking is and/or could be 

studied.  

Chapter 4: Conclusion 

Chapter 4 includes a brief synthesis and discussion of the key findings related to 

computational thinking. Following a discussion of this dissertation’s limitations and the lessons 

learned, the researcher offers recommendations for the field of computer science education.  

Finally, potential next steps for the researcher and others interested in the computer science 

education field are presented. 
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CHAPTER 2: COMPUTATIONAL THINKING: AN INVESTIGATION OF THE EIXSTING 

SCHOLARSHIP AND RESEARCH  

 

Introduction 

Computers and technology are virtually everywhere. They influence nearly every aspect 

of our personal, professional, and civic lives including how we communicate, navigate through 

our physical environment, disseminate and acquire knowledge, and how we collect, store, and 

analyze information.  Academic and career achievement in an increasing number of disciplines is 

dependent on the ability to use technology, yet most students are ill-equipped to face this 

challenge. Opportunities for U.S. students to develop computational skills and learn basic 

technology concepts are scarce.  Course offerings are limited and introductory computer science 

courses at the high school and university levels are often unappealing and unattractive 

(Computer Science Teachers Association [CSTA], 2009; Computing Research Association, 

2010; Repenning, Webb, & Ioannidou, 2010; Stephenson, Gal-Ezer, Haberman, & Verno, 2005). 

Rigorous, engaging high school computer science courses are rare and K-12 courses often 

consist of little more than teaching students how to operate computer applications or software 

(Wilson, Sudol, Stephenson, & Stehlik, 2010).    

To empower learners to effectively face modern challenges, the US education system 

must reconsider how computer science is introduced and taught. Undergraduate courses in an 

array of disciplines have begun to be overhauled to introduce computer science concepts in 

compelling ways (e.g., Anewalt, 2008; Heines, Greher, Ruthmann, & Reilly, 2011; Martin et al., 

2009).  Changes at the K-12 levels have been much more subtle, but there are signs that an 

increased focus on computer science has begun to catch hold. While computer science is neither 
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a core subject nor a requirement for graduation in any state, nine states now allow computer 

science courses to count toward graduation requirements in mathematics or science.  

Efforts to advance computer science education at the federal, state, and corporate levels 

advocate a focus on computational thinking. The concept of computational thinking was 

popularized by Janette Wing in 2006, and the argument that computational thinking is a 

fundamental and universal skill has been embraced by the computer science community. The 

National Science Foundation’s Computing Education for the 21st Century (CE21) and CISE 

Pathways to Revitalized Undergraduate Computing Education (CPATH) funding competitions 

encourage projects that develop computational thinking competencies. The College Board is 

currently testing a new Advanced Placement course, Computer Science: Principles, around a set 

of six Computational Thinking Practices. This course will advance students’ understanding of 

computational thinking in order to advance efforts to develop a more competitive 21st century 

workforce (The College Board, 2011).  Most recently, computational thinking was used as a 

common thread to link the three levels of K-12 learning standards developed by the Computer 

Science Teachers Association (CSTA, 2011a).   

There has been much discourse in recent years about the precise definition of 

computational thinking (Bundy, 2007; Denning, 2007; Garcia, Lewis, Dougherty, & Jadud, 

2010; Henderson, 2009; Committee for the Workshops on Computational Thinking, 2010; Wing, 

2006), and the definition continues to be emergent. The National Academies convened 

workshops in 2009 and 2010 to explore the scope, nature, and pedagogical aspects of 

computational thinking. While no consensus on these aspects of computational thinking was 

reached, workshop participants agreed on the existence of computational thinking as a mode of 

thought with a distinctive character (Committee for the Workshops on Computational Thinking, 
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2010), and subsequent reports of these workshops widely disseminated the arguments and 

perspectives of prominent comptuer science education experts. 

 Two definitions for computational thinking stand out at this point. The first is offered by 

the CSTA, who defines computational thinking as a problem solving process that includes (a) 

formulating problems in a way that enables us to use a computer and other tools to help solve 

them, (b) logically organizing and analyzing data, (c) representing data through abstractions, 

such as models and simulations, (d) automating solutions through algorithmic thinking, (e) 

identifying, analyzing, and implementing possible solutions with the goal of achieving the most 

efficient and effective combination of steps and resources, and (f) generalizing and transferring 

this problem-solving process to a wide variety of problems (2011b). This definition underwent a 

review process that included a survey of over 700 experts including computer science teachers, 

researchers, and practitioners. The vast majority of respondents (n=697, 82%) indicated their 

agreement or strong agreement when asked if CSTA’s definition captured the fundamental 

elements of computational thinking, and a further 9% indicated that the definition was sufficient 

to use to build consensus in the computer science education community.  A second prominent 

definition is offered by Google’s Exploring Computational Thinking initiative, the first large-

scale program to provide an operational definition, disseminate resources, and promote 

discussion among K-12 educators about computational thinking. Google describes a process that 

includes four computational thinking techniques: decomposition, pattern recognition, pattern 

generalization and abstraction, and algorithm design (Google, 2011). Both of these definitions 

depict computational thinking as a series of skills and techniques that prepares a problem for 

computation, and conceptual parallels can be drawn between components of each definition, as 

seen in Table 1.   



19 
  

Table 1.  
Computational Thinking Definitions  

The Computer Science Teachers Association’s 
Operational Definition of Computational Thinking 

Google’s Exploring Computational 
Thinking Techniques 

• Formulating problems in a way that enables us to use 

a computer and other tools to help solve them 
Decomposition 

• Logically organizing and analyzing data Pattern Recognition 

• Representing data through abstractions, such as 

models and simulations 
Pattern Generalization and Abstraction 

• Automating solutions through algorithmic thinking 

• Identifying, analyzing, and implementing possible 

solutions with the goal of achieving the most efficient 

and effective combination of steps and resources 

Algorithm Design 

• Generalizing and transferring this problem-solving 

process to a wide variety of problems 
 

 

The CSTA’s operational definition of computational thinking includes initial step that 

describes formulating problems so technology can be used to help solve them is similar to 

Google’s concept of decomposition, which  involves taking a large, complex problem and 

breaking it down into smaller and easier/more manageable ones. CSTA next describes the logical 

organization and analysis of data, which has parallels to Google’s pattern recognition, or the 

ability to find similarities or differences that help “make predictions or lead to shortcuts” 

(Google, 2011).  Representing data through abstractions is similar to pattern generalization and 

abstraction, or the ability to remove the details of a problem in order to make a solution that 

works to solve similar problems. This involves filtering out unnecessary details and designing a 

solution that can be used to solve similar problems. The CSTA’s next two steps of using 
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algorithmic thinking to automate solutions and the analysis of possibilities in order to determine 

an efficient and effective solution are similar to Google’s algorithm design, which is described as 

involves the development of a step-by-step strategy or set of instructions for completing or 

solving a similar problem. The CSTA definition extends one step beyond this to include the idea 

of generalizing and transferring this process to diverse problems. 

While both represent a processes, each suggests that the individual concepts can be 

approached and introduced as discrete concepts or skills.  Computational thinking is not a stand-

alone subject, but rather inherently interdisciplinary in nature because the set of skills and 

techniques are used help address problems in any discipline. 

This recent emphasis on computational thinking has resulted in a surge of literature 

devoted to the discussion or study of its concepts.  So far, there is no evidence of attempts to 

aggregate, scrutinize, or analyze this body of literature. This study focuses on computational 

thinking in education.  The purpose is to represent the nature of empirical and theoretical 

literature at a point in time and identify recommendations for future research directions in 

computational thinking, and promote dialogue about computational thinking. It is intended to be 

used to computer science educators, policymakers, and researchers as they make decisions that 

could influence practice, policy, and future research directions. 

This review employs a systematic, disciplined approach as it first provides a broad look 

at the computational thinking literature, and then comprehensively examines the nature and 

extent of research evidence found within this literature. The broad overview of the computational 

thinking scholarship offers a preliminary assessment of the scope and size of the literature base. 

It looks broadly at all literature produced on computational thinking and its domains since the 

term computational thinking was introduced by Janette Wing in 2006.  In addition, the 
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comprehensive study described in this paper examines the empirical studies discovered and 

creates a descriptive “map” of research conducted on the topic. The aim is to examine the studies 

that have been conducted around interventions to help researchers and educators understand 

computational thinking and its domains. No synthesis of findings or formal assessments of 

quality are included, but instead this review provides an overview of the evaluation and research 

that have been conducted to date.  

This type of review was conducted for a variety of reasons. The desire to employ a 

systematic and transparent process to conduct this review was paramount. Prior to conducting 

this study, the author had extensive knowledge of the extant literature on computational thinking, 

so was aware that a rigorous meta-analysis was not an appropriate approach. The research 

amassed on computational thinking topics does not consist of a sufficient number of 

heterogeneous research studies that meet the highly selective inclusion guidelines for the 

statistical analyses conducted in a meta-analysis (Swanson & Deshler, 203).  A scoping review 

was chosen because of the broad map of evidence and literature it create as it explores the extent 

of the literature in a domain and helps to identify the potential scope of a future systematic 

review to synthesize the findings (Armstrong, Hall, Doyle, & Walters, 2011). 

 

Method 

The aim is to isolate the literature on computational thinking in education and provide a 

meaningful and comprehensive description of the literature around this concept. The following 

questions are addressed in this review:  

(1) What are the demographic characteristics of the entire set of literature? 

(2) What kind of taxonomy might characterize this entire set of literature? 
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(3) What is the focus of the studies that have been conducted? 

(4) How do study authors define computational thinking, and how do these align with the CSTA 

and Google definitions? 

(5) What kinds of interventions are being described and tested? 

(6) What outcomes are examined in studies and how are they measured?  

 

A systematic process was used to identify articles and papers on computational thinking. 

The search parameters and procedures were established a priori, and a thorough, objective, and 

reproducible search was conducted. The guidelines established by the Cochrane Collaboration 

and its Cochrane Information Retrieval Methods Group were used as a guide (Hammerstrom, 

Wade, & Jorgensen, 2010).  

 

Search Strategy and Sources 

Search terms were established after an extensive review of the literature and consultations 

with a content expert, an academic librarian, and a methodologist experienced in systematic 

reviews. The review presented in this paper relied on a both the CSTA (2011b) and Google 

Exploring Computational Thinking definitions to arrive at search terms. Search terms extracted 

from each of these are considered a “domain” of computational thinking for this study. Because 

of the interdisciplinary nature of computational thinking the search also included the 

combination of computer science and other disciplinary areas. Search terms used include the 

following: computational thinking, thinking, interdisciplinary, multidisciplinary, mathematics, 

science, biology, physics, reading, writing, journalism, music, art, problem decomposition, 

pattern recognition, abstraction, algorithm, data representation, simulation, recursive. The 
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phrase computer science education was included to filter unrelated articles.  

These search terms were entered along with the data-range parameters (2006 – June 

2011) into the following relevant electronic bibliographic databases: ACM Digital Library, ERIC 

(EBSCO and ProQuest), Web of Science, PsychInfo, ITicse, and Digital Dissertations. This 

resulted in 6,906 titles and abstracts. The concept was popularized in 2006, and the search was 

conducted in June 2011, which explains both end of the date-range parameters. Two institutional 

repositories were searched, but neither resulted in any additional abstracts: Directory of Open 

Access Repositories, and the Register of Open Access Repositories.  There is no reliable way to 

obtain information about studies that have been conducted but never published (Hammerstrom, 

et al., 2010), but because of the importance of locating unpublished works and studies extensive 

non-database searches were conducted.  Hand searches were conducted in two journals 

(Computer Science Education and Journal on Educational Resources in Computing) and in the 

Koli Calling proceedings. Papers presented at and published in the Koli Calling proceedings are 

not included in any electronic database, so the entire contents of the 2006-2011 proceedings for 

this computing education conference were examined.  Hand searches resulted in 49 additional 

titles and abstracts to include, all from the Koli Calling proceedings. In an attempt to identify 

ongoing studies, the National Science Foundation list of ongoing projects was searched. While 

numerous projects that might eventually produce literature relevant to this study were identified, 

there were no additional papers available at the time of this review. Finally, a Google search for 

unpublished works resulted in 16 additional pieces of literature considered for inclusion.  

These search procedures combined resulted in a total of 6,971 article titles to import into 

EndNote (Figure 1).  Before the inclusion and exclusion criteria could be applied, duplicates 

were removed. An automatic search for duplicates was hindered by the fact that many identical 
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papers were published in conference proceedings and in the governing body’s journals; these 

were not automatically identified as duplicates because of the variation in the publication venue. 

After automatic and hand searches for duplicates, a total of 3,465 citations and abstracts were 

imported into the Evidence for Policy and Practice Information and Co-ordinating Centre’s  

(EPPI-Centre) EPPI-Reviewer 4 (Thomas, Brunton, & Grazosi, 2010).  

 

 

Figure 1: Search, Review, and Coding Proceure 

 

Inclusion/Exclusion Criteria and Process 

All abstracts went through an initial screening process where inclusion and exclusion 

criteria were applied. Any article that was outside of the date range was excluded, as were 

articles not related to computer science. If the phrase “computational thinking” was not included 

in the abstract, it was still eligible for inclusion if it was explicit about its intent to address one of 

Initial Search 
Databases 

(6,906 
articles) 

Institutional 
Repositories 
(0 articles) 

Hand 
Searches  

(49 articles) 

Internet Web 
Search (16 

articles) 

Delete 
Duplicates 

3,465 
articles 

Abstract 
Screen 638 articles 

Full Text 
Review 164 articles 

Empirical 
Studies 58 studies 

Round 1 
coding 

Round 2 
coding 

Questions 1&2 

Questions 3, 4, 5, & 6 



25 
  

the computational thinking domains identified in this study’s search terms. There was no attempt 

to interpret the intent or otherwise deduce what outcomes could come of articles that described 

interventions; if the connection to computational thinking or one of the domains was not made 

explicit, the article was excluded. For example, the incorporation of real-world applications or 

programming environments like Scratch, Greenfoot, or Alice did not lead to automatic inclusion. 

While interventions that include these programming environments could be used to promote 

computational thinking skills, the author must have clearly made a connection to computational 

thinking or one of the domains specified in the definitions used for this study.  Papers that 

introduce panel discussions, talks, video presentations, workshops, tutorials, posters, and other 

similar conference events were excluded. While there is valuable information in these sessions, 

the written explanations are brief and arguments too incomplete to be included in a meaningful 

way.  

It was not always possible to ascertain from the abstract if the article should be included. 

In these cases, the full text article was obtained and reviewed to determine if the piece met the 

screening criteria for inclusion. At the conclusion of the abstract screening, 638 papers remained 

and moved on to the full text review stage before substantive coding began. An additional 474 

papers were screened out with the full text reviews, which left 164 full text papers that advanced 

to the substantive coding phases in which relevant characteristics of the articles were coded. 

Substantive Coding 

Substantive coding occurred in two rounds. The first round extracted demographic 

information on all articles. The second substantive round of coding examined the subset of the 

literature that included any paper or article that reported on data. The second round of coding 

addressed this study’s research questions.   
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Findings 

The findings from the first round of coding of the entire set of 164 articles on the topic of 

are used to answer research questions 1 and 2. A subset of these is examined more closely with a 

second round of coding. The literature included in this subset includes all reports of research 

related to computational thinking. Each of these studies was coded for: study design, population, 

type of intervention, outcomes, measures, and definitions of computational thinking used by 

studies. Since no attempts were made to statistically analyze the findings, all studies were 

included regardless of their methods, design, or quality.  

Research Question 1: What are the demographic characteristics of the entire set of 

literature? 

Year of Publication.  The scholarship on computational thinking increased steadily from 

2006 until June 2011 (Figure 2). This trend reflects its rise in popularity of the concept, and it is 

reasonable to assume this trend will continue given the recent focus on computational thinking at 

the national level (e.g., CSTA, NSF, Google).  

 

 
*Note: only papers published Jan-June 2011 are included 

Figure 2. Computational thinking literature by year of publication (2006 – June 2011) 
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Author Characteristics.  Two author characteristics were examined: the institutional 

affiliation of the primary author and area of expertise of all authors. An examination of the 

affiliation for the first author found that 38 (22%) of the 164 computational thinking articles 

were written by a primary author outside of North America.  Regions include the Middle East 

(n=8), South America (n=1), Asia (n=10), Oceania (n= 2), and Europe (n=17).  Randolph 

(2008) found that 55% of the studies in computer science were written by authors outside of 

North America. The term computational thinking was introduced in the United States, so it is not 

unexpected to find that the proportion of computational thinking scholarship produced abroad is 

lower than the proportion of internationally produced papers on computer science education 

(Randolph, 2008). It appears the emphasis on computational thinking or its domains is in the 

United States is not mirrored by other regions of the world.  

The area of expertise of authors was primarily computer science. Only 46 (28%) articles 

included one or more authors with expertise in an area outside of computer science. These other 

areas include education, fine arts, other science (physics, biology, etc.), and engineering. Of 

those, 30 articles (18%) had one or more authors with expertise in education. Four articles had 

authors with expertise in evaluation or educational research. Since this review is focused on 

education, it is notable that so few authors have a background or expertise in education.  

Target Populations.  As seen in Table 2, there has been a considerable amount of 

literature aimed at the larger computer science and computer science education community 

(n=31, 19%), but the bulk of the literature has focused on students within a specific age range.  

To date, the scholarship on computational thinking has been distributed fairly evenly between the 

K-12 (n=69, 42%) and undergraduate (76, 46%) levels. A considerable amount of attention has 

been paid to undergraduate education, and this is likely in direct proportion to the number of 
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undergraduate courses offered compared to the course offerings in K-12 settings. This proportion 

will shift given  recent finding initiatives like National Science Foundation’s Computing 

Education for the 21st Century (CE21), the CS10K project with its aim to have 10,000 teachers in 

10,000 high schools teaching a new computer science curriculum by 2015 (Astrachan, Cuny, 

Stephenson, & Wilson, 2011), the attention to computational thinking in large-scale K-12 

computer science advocacy efforts by organizations like CSTA and Google, and the emphasis on 

computational thinking in the newly developed AP CS Principles course. While the computer 

science community has been advocating for the expansion of computer science in K-12, it is only 

recently that policies and initiatives such as these have focused their attention on computer 

science and computational thinking at the K-12 levels. For example, it is reasonable to assume 

that there will be a substantial increase in the proportion of literature pertaining to K-12 in 

upcoming years. 

Table 2.  
Populations targeted by computational thinking literature 

 

Articles 

N (%) 

K-12 Students 28 (17%) 

Elementary Students (K-5) 8 (5%) 

Middle School Students (6-8) 13 (8%) 

High School Students (9-12) 20 (12%) 

Undergraduate Students  76 (46%) 

 Graduate Students 4 (2%) 

Teachers or Instructors 10 (6%) 

Computer Science  Education Community 31 (19%) 
Note: The total exceeds 164 because some studies targeted multiple populations 
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Research Question 2: What kind of taxonomy might characterize this entire set of 

literature? 

A grounded, iterative process was used to develop a six-fold taxonomy to classify the 

articles and papers. The first category in the taxonomy, Curriculum Description, includes 

articles that explain a lesson, curriculum, activity, or course that is used to promote 

computational thinking or one of its domains.  The purpose is to share ideas with other computer 

science educators to improve the computer science education environment and community. The 

distinguishing feature of Program Descriptions is that the intervention or idea described goes 

beyond the individual classroom level and is implemented on a larger scale – across a university, 

for example. Evaluations seek to make a judgment of the merit, worth, or value of a program or 

process (Scriven, 1991). Articles were placed in this category if the author indicated that the 

primary aim for the paper was to convey the results of a study focused on a specific program or 

intervention. Evaluation papers could also fit in either the Curriculum Description or Program 

Description categories if it were not for the emphasis on the evaluation methods and findings. 

These were not dual coded. The fourth category is Research. These are distinguished from 

evaluations by their focus on informing theory or contributing to the larger knowledge base 

rather than being focused on a single program or intervention. The next two categories are 

closely related. Philosophy papers are intended to create or promote debate about computational 

thinking in the broad computer science or computer science education communities.  Works in 

this category might aim to share a perspective on an issue within the field or describe how CT 

applies to other disciplines. The sixth category in this taxonomy is Opinion, in which authors 

share their perspectives or outlook on a computational thinking topic. These are generally not 

peer-reviewed and the primary intent is for a single author to share their views on a topic.  
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The distribution of computational thinking literature across the six categories can be seen 

in Figure 3. The majority of the articles (n=78, 48%) described a curriculum, lesson, activity, or 

a course and 11 (7%) described larger programs.  Approximately one fifth of the articles (n=37, 

23%) were philosophical articles intended to promote discussion or debate around computational 

thinking. Research (n=19, 12%) and Evaluation (n=9, 5%) pieces reported on data that was 

collected as part of a study. The remaining 10 (6%) articles were written by individuals who 

were sharing their perspective on computational thinking.  

 

 

Figure 3. Distribution of computational thinking literature 2006 – June 2011. 

 

To further characterize the literature, each was coded for the inclusion of study findings. 

In all, 58 papers included an explanation of a study, including the participants, methods, and a 

presentation of findings. All 28 articles in the Research and Evaluation categories included data, 

as did the 26 papers presenting curriculum descriptions included data, and four of the 12 program 

descriptions. 

Research Question 3: What is the nature of the studies that have been conducted? 

All reports of research or articles that included data on outcomes related to an 

intervention were examined, and methodological and conceptual details were extracted to answer 
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research questions 3-6. An examination of study designs offers a cursory estimate of the 

methodological rigor of the research scholarship. The majority of studies (n=43, 74%) used 

some type of within-subjects or one-group design in which outcomes were examined for the 

treatment group only; no control groups were included (Table 3). The most common design 

employed was the one-group  post-test only design (n=21, 36%). This is perhaps the weakest of 

all possible designs. Without a pretest it is difficult to ascertain if a change occurred, and the 

absence of a control group makes it impossible to know what might have occurred without the 

intervention (Shadish, Cook, & Campbell, 2002). Fifteen one-group studies (26%) included a 

pretest measure, which adds a small amount of strength to the design, but does not allow the 

researcher to make causal statements about the influence of the intervention.  

Table 3.  
Research and evaluation designs used to explore computational thinking  

 

 

All Studies 

N (%) 

Within Subjects 

Post only 21 (36%) 

Pre/Post 15 (26%) 

Repeated Measures 7 (12%) 

Between Subjects 

Post only 2 (3%) 

Pre/Post 2 (3%) 

Repeated Measures 1 (1%) 

Correlational 4 (7%) 

Causal Comparative 2 (3%) 

Qualitative 10 (17%) 

Did not include human participants 2 (3%) 

TOTAL 66 

Note: The total exceeds 58 because some studies used multiple designs 
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Quasi experimental studies that include a treatment and a control group (between-

subjects designs) are necessary if the aim is to make causal statements about treatment effects. 

Only 3 (5%) of the studies included in this review are quasi-experimental studies. Of those, two 

included only a post-test measure, an improvement over a within-subjects design, but still a weak 

design.  The incorporation of repeated measures bolsters both within subjects and between 

subjects designs. This was done in 8 (14%) of the studies. Correlational and causal comparative 

designs are also considered to be fairly weak research designs because the results remain open to 

many alternative explanations. Six described studies that employed two or more designs.  

Research Question 4: How do study authors define computational thinking, and how do 

these align with the CSTA and Google definitions?  

The conceptual feature explored were the computational thinking definitions used by 

authors in each of the studies. Each definition of computational thinking used and cited within 

the studies was examined. A large portion of the studies (n=25, 43%) did not include the term 

‘computational thinking’, but focused one of or more of the computational thinking domains 

such as algorithmic thinking, problem solving, reduction, abstraction, recursive thinking, 

interdisciplinary application of computer science, or data reduction. Of the remaining 33 studies 

that do mention computational thinking, six (10%)  use the term computational thinking but 

provide no definition, citation, or indication of what the phrase means either within the context 

of their study or to computer science education in general.  

Several studies (n=12, 21%) simply cite Wing’s 2006 paper without including an 

explanation or definition. While Wing popularized the term in this seminal piece, the description 

provided is not sufficient for use as an operational definition within a study. The page-long 

description was an appropriate and adequate introduction to the concept, but its use as a 
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definition within a study of computational thinking is not sufficient. In that situation it is far too 

vague and non-specific to allow the researcher or the consumer of the research an understanding 

of what the phrase means. Quite simply, it is too broad a definition to be used to describe 

something that is the target of a single intervention.  

Only fifteen (26%) studies include a definition of computational thinking. The detail and 

comprehensiveness of these seven definitions varied dramatically, but the definition included 

provided the reader with some understanding of what the phrase meant in the context of the 

study. These definitions included were compared to the definitions provided by Google and the 

CSTA. Of the 15 studies, nine offered definitions that were exceedingly vague compared to the 

processes described by Google and CSTA. These vague definitions are superficial descriptions 

of computational thinking as a “way of thinking”, a “fundamental skill”, or a “way of solving 

problems”. They provide the reader little indication of what this mode of thought entails, and 

how the intervention described in the study might address it.   

Four studies that define computational thinking go beyond these superficial descriptions 

and explain specific skills or concepts that comprise computational thinking. Each of the skills 

mentioned in these four studies overlap with those included in Google and the CSTA’s definition 

(i.e. abstraction, decomposition, formulating problems). Two study authors address the need to 

operationalize computational thinking so it can be more meaningfully investigated. One of these 

authors included a laundry list of definitions provided by eight various authors, and explained 

that none of these was sufficient to operationalize the concept. The other author described a 

study in which the aim was to define computational thinking. 
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Research Question 5: Of the empirical studies, how many were intervention studies and 

how many were not? What kinds of interventions are being explored and tested? 

The majority of the interventions studied were classroom-level interventions 

implemented in the traditional school settings (n=35, 60%). Further analysis of these curricula 

described for formal and informal settings found that the most common intervention in a school 

setting was an entire course redesign with the aim to infuse computational thinking across the 

entire semester or year (Table 4). Twelve of these redesigned courses were computer science 

courses, and six were courses focused on other disciplines such as science or mathematics.  

Other interventions included short computational thinking units or modules (n=3, 5%), activities 

or games (n=9, 8%), or a novel approach to teaching a computational thinking concept intended 

to be used in a traditional classroom setting.  

 

Table 4.  
Types of classroom-level curricula 

 

Articles 

N (%) 

Course Focused on Computational Thinking 18 (51%) 

Short Computational Thinking Units or Modules 3 (5%) 

Activities or Games 9 (26%) 

Approach to Teaching a Concept 3 (5%) 

 

Computational thinking interventions used in out of school settings (n=8, 14%) were 

similar in nature, but were offered to students in informal settings such as summer camps or after 

school programs (e.g., Egan & Lederman, 2011). Another group targeted by computational 

thinking programs is teachers (n=6, 10%).  Given the emphasis on incorporating computer 
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science and computational thinking into non-computer science classrooms and the push to 

improve computer science teacher preparation, this is not surprising. Perhaps recent funding 

opportunities (e.g., CS10K) paired with the K-12 policy focus on computational thinking (i.e., 

AP, CSTE) will result in an increase in the proportion of interventions that fall into this category 

will increase dramatically in upcoming years. The 13 (22%) studies that explored how 

individuals think or learn or sought to understand differences in computational thinking skills 

among groups (e.g. between computer science professionals and novice computer science 

students) did not include an intervention. Some interventions aimed to influence individuals in 

multiple groups or settings (i.e., teachers, classrooms) 

 

Research Question 6: What outcomes are examined in studies and how are they measured? 

Of the studies that included an outcome or a dependent variable, many examined more 

than one. Some studies described numerous outcomes or measures, but did not report data or 

findings for each of the outcomes. In those cases, the only findings reported were significant 

ones. Some studies (correlational studies, for example) did not include a dependent variable. The 

outcomes examined fell into six major categories (Table 5). Examples of attitudinal outcomes 

include attitudes toward computing, attitudes toward other disciplines (i.e. mathematics and 

science), perceptions of computer scientists or computer science careers.  
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Table 5.  
Outcomes examined in computational thinking studies 

 
Articles 

N (%) 

Attitudes 23 (40%) 

Skills/Knowledge 23 (40%) 

Course Achievement 2 (3%) 

Future Plans 5 (9%) 

“did you like it” 21 (36%) 

Course Enrollment 2 (3%) 

None  13 (24%) 
Note: The total exceeds 58 because some studies include multiple outcomes 

Skills or knowledge outcomes were employed often. In some studies, the skills or 

knowledge were related directly to the intervention and the outcome examined in others studies 

was something more generally or not as directly related. A third common category of outcomes, 

seen predominately in evaluation studies, is the “did you like it” outcome. These differ from 

attitudinal outcomes because attitude outcomes require that one looks outside of the intervention 

and into one’s feelings or perceptions of a larger idea – like computer science or mathematics. 

“Did you like it” outcomes are exclusively interested in or target participant perceptions of the 

intervention being studied. Outcomes related to students’ future career or academic plans (e.g., 

intent to pursue a career or degree in CS, take future CS courses) were not commonly used, nor 

were those related to course achievement (final grade in the course) or subsequent course 

enrollment. Thirteen studies included no outcome variable.  

Outcomes were assessed using a variety of measures across the various studies (Table 6). 

Questionnaires were by far the most commonly employed measure (n=34, 59%). These were 
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used to collect data on many of the attitudinal outcomes and a number of studies used them to 

explore skills and knowledge gains (e.g. Kafura & Tatar, 2011). Self-assessments of knowledge 

gain are often flawed and are not as strong as other types of measures of knowledge and skills 

acquisition (Dunning, Heath, & Suls, 2004). More traditional measures of skills and knowledge 

including teacher or research made tests (n=14, 24%) or standardized or established tests that 

have undergone measurement of their reliability and/or validity (n=4, 7%) were used in some 

studies. Student work created as part of the course was used as a measure in 11 (19%), often 

paired with qualitative data analysis. Final course grades (n=3, 5%) and existing records (n=5, 

9%) were used as measures of success, as were observations (n=11, 19%), interviews (n=6, 

10%), and other measures including reflections, mentor ratings, focus groups, and computer-

logged data. 

Table 6.  
Measures used in computational thinking studies 

 Studies 
N (%) 

Questionnaire 41 (61%) 

Course Grades 3 (4%) 

Teacher or Researcher Made Test 15 (22%) 

Student Work 13 (19%) 

Existing Records 4 (6%) 

Standardized or Established Tests 5 (7%) 

Interviews 7 (10%) 

Observation 11 (16%) 

Other 7 (10%) 
Note: The total exceeds 58 because some studies used multiple measures 
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The methods used for data analysis were also examined. If multiple analysis methods 

were used within a study, each method was coded. The findings are displayed in Table 7. The 

majority of the studies used less robust descriptive (n=36, 62%) or qualitative (n=36, 62%) 

methods to analyze and represent the data. Only 8 (14%) of the studies used inferential statistics 

to report findings. Three used Pearson correlation, three used a t-test, one used ANOVA statistic, 

one a chi-square, and one reported z-test scores. One study used multiple analysis methods. 

Another reported to have several statistically significant findings, but did not give information on 

the statistical analysis method used. Only one of the eight studies that used inferential statistics 

included a discussion of the effect size. 

Table 7.   
Data Analysis Method Used  

 Studies   
    N (%) 

Inferential 8 (14%) 

Descriptive 36 (62%) 

Qualitative 38 (69%) 
Note: The total exceeds 58 because some studies used multiple data analysis methods 

 

Limitations 

There are several limitations to this study. The first arose in the development of a search 

protocol and gathering all the literature and studies on computational thinking was a challenge. 

The initial challenge was the lack of a widely agreed upon definition or structure of 

computational thinking. While there is agreement about the existence of CT as a mode of 

thought, there is no general understanding of the content or structure of computational thinking 
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and great variation exists among the various definitions. Strides have been made because of 

events like the February 2009 workshop on the scope and nature of computational thinking 

hosted by the National Research Council (Committee for the Workshops on Computational Thinking, 

2010), but general agreement remains elusive.  

Another limitation arises from the fact that conference proceedings are the primary outlet 

for communicating about the computer science field (Moed & Visser, 2007). It is not a problem 

that the bulk of the studies and articles examined were published in conference proceedings. The 

emphasis on conferences is not surprising given the nature of computer science. In a field driven 

by innovation and a race to be the first to discover something new, only to have to immediately 

pursue the next new thing, time to publication is an important consideration. A National 

Research Council study (Snyder, 1994) found the median time from initial submission to 

publication in journals to be 31 months and in conference proceedings 7 months.  The proportion 

of computer sciences literature published in this venue is markedly higher than the 8% of social 

science and 21% of science publications that are found in conference proceedings (Bourke & 

Butler, 1996).  In other fields, conference proceedings are not held in as high esteem as academic 

journals, methodological quality is often lower in conference papers, and publication bias is seen 

when the proportion of non-significant to significant findings are compared for these two types 

of outlets. Journal manuscripts are more likely to include non-significant findings in other fields 

(Snyder, 1994). This is not the case for CS education publications where a study of the 

methodological quality of articles found no differences in the methodological quality of articles 

published in computer science education journals and those published in computer science 

education conference proceedings. Computer science conference papers have a “much, much” 

higher citation rate than social science conference papers (Heeks, 2010), which is further 
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evidence of the approval of this dissemination method in the field. The limitation arises when 

information is shared at conferences in the form of panels, presentations, and talks. In this study, 

descriptions of almost 300 such sessions were excluded because the published descriptions did 

not include enough detail on the session’s content to allow for data to be extracted.  

Two forms of publication bias, present in all reviews of this nature, are an additional 

limitation. Editorial publication bias is introduced when editors or reviewers reject manuscripts 

because of statistically non-significant results. Authorial bias refers to the failure to submit 

manuscripts that report on neutral or negative findings (Randolph & Bednarik, 2008). Since 

authorial bias is the most common form of publication bias (Lee, Boyd, Holroyd-Leduc, 

Bacchetti, & Bero, 2006; Olson et al., 2002), authorial bias is more of a threat to the validity of 

these findings. 

Conclusions, Discussion, and Recommendations 

The study described in this paper explored all of the literature on computational thinking 

between 2006 and June 2011. It described the demographic characteristics of this literature base 

and examined how well researchers exploring computational thinking align their methods, 

design, and analysis with commonly accepted definitions and standards for methodological rigor.   

Wing’s seminal paper was undoubtedly influential in the computer science education community 

and a nod to Wing’s introduction of the concept into the common language and modern thought 

of computer science educators is an appropriate reference. That said, the community continues to 

wrestle with a concrete definition for the phrase computational thinking. Until there is a 

universally accepted comprehensive understanding of what CT is , it is reasonable to expect that 

studies examining computational thinking explicitly state their definition of the phrase so readers 
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can understand more about the intervention and its intent, or the focus of the research when there 

happens to be no intervention. 

According to Hemmendinger (2010), most of the current definitions of computational 

thinking currently offered lack precision and fail to provide sufficient examples, often making 

the concept misunderstood or misconstrued. There has been much discourse in recent years about 

the precise definition of computational thinking (Bundy, 2007; Denning, 2007; Garcia, et al., 

2010; Henderson, 2009; Committee for the Workshops on Computational Thinking, 2010; Wing, 

2006). Wing (2006) introduced computational thinking as “reformulating a seemingly difficult 

problem into one we know how to solve, perhaps by reduction, embedding, transformation, or 

simulation” (p. 33). This definition is widely relied upon in projects that aim to promote 

computational thinking skills (i.e., Good et al., 2008; Hambrusch, Hoffmann, Korb, Haugan, & 

Hosking, 2009), but there has been little offered in the literature in the way of interpretation, 

further articulation, or constructive critique.  The continued use of this broad, nonspecific 

definition and lack of elucidation could indicate that while there is acceptance of the idea that 

computer science is in need of a redesign, there is little understanding of the concept of 

computational thinking. It must be said that none of these articles claims to be focused on 

defining computational thinking. Given that computational thinking is such an ambiguous 

concept, it is problematic that these studies claim to be studying it, but provide no concrete 

definition. Only one study (Basawapatna, 2011) acknowledges the ambiguous nature of the 

concept and the need to provide a concrete description of how computational thinking is defined 

within the context of the study.   

The intent of this review is to identify research trends and make recommendations to 

improve computational thinking and computer science education research practice. Reliable, 
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generalizable methods were used to conduct this study, and two major conclusions were reached. 

First, computational thinking is far too underdeveloped a concept to be examined as a study’s 

outcome in any meaningful way. Its use as a primary intervention target and outcome measure is 

problematic.  Given the underdeveloped nature, one has to ask if it is inappropriate under any 

circumstances for a study to offer no definition or description of the intervention target, but 

particularly the case in studies reviewed that claim to target computational thinking, and yet fail 

to define it or describe how their intervention targets computational thinking or to offer any 

theoretical framework that explains how their chosen outcome measure is linked to 

computational thinking. There has been widespread agreement about the existence of the 

concept, but only recently have there been efforts to define it in a way that could lead to its 

operationalization and use as a general construct within studies.  

Intervention research needs a strong basis of qualitative and quantitative research 

underpinning it. It is insufficient to provide only anecdotal evidence of claims, which is the type 

of evidence produced in the bulk of studies examined in this review. This type of data is useful 

for hypothesis generation, but can never confirm a hypothesis. The first step using a concept like 

computational thinking this is to conduct of qualitative research to articulate its theoretical 

components. The Computer Science Teachers Association’s recently published definition can be 

used as a launching point for these efforts. The second step, the quantitative research, examines 

causal connections between the operational theoretical concepts. This includes the modification 

of existing measures or the development of new measures to assess each of the theoretical 

concepts that comprise the construct.  These steps must be taken before robust studies addressing 

computational thinking can be conducted. Very little judgment or criticism about computational 

thinking has occurred; so far it is largely taken at face value. Perhaps the computer science 



43 
  

education community should place more emphasis exploring the concept and taking further steps 

to arrive at a consensus about a theoretical framework that can be used to describe it.  

The second conclusion that arose from this study relates to the quality of initial research 

and evaluation studies examining the efficacy of interventions that purport to improve 

computational thinking. The studies have, as a group, far too weak characteristics to allow for 

decent estimates of causal judgment. While the aim was not to report on the quality of the 

studies, it is evident that the rigor is lacking. This lack of rigor is apparent in both the conduct of 

the studies and in the reporting of them. The standards for reporting on studies of educational 

intervention in this field differ from those that have been established in other educational 

disciplines. There seems to be a laissez faire culture within computer science education that 

accepts research and evaluation studies that lack conceptual and methodological rigor. While 

there is no single set of standards that all of educational research relies on, there are some clear 

commonalities among the frequently cited standards (e.g. AERA, 2008; Ragin, Nagel, & White,  

2004; National Center for Dissemination of Disability Research, 2012; Shavelson & Towne, 2002).  

Evidence of robust research designs in the computational thinking literature is non-

existent. The commonly relied upon designs (single group posttest only or single group 

pretest/posttest) are vulnerable to multiple threats to internal validity. Quality studies employ 

systematic designs and are underpinned by explicit theoretical or conceptual frameworks to 

address significant questions that will contribute to the knowledge base. Furthermore, controls 

for counterfactuals and threats to internal validity that threaten causal connections are vital 

components of studies that aim to make causal claims. 

The majority of the computational thinking research and evaluation studies relied 

exclusively or in large part on measures of student attitudes toward the intervention or self-report 
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of learning.  In order to meet standards for educational research, measurement instruments 

should have psychometric information provided about them, and reliability and validity statistics 

should be presented. The research methods and instruments to measure variables of interest must 

be fully conceptualized and appropriate to address the research question. Studies that rely on 

perceptions of the intervention or on self-report of learning do little to inform the larger field and 

are overly focused on the context in which the study is conducted.  

The reporting standards that are evident in the field are insufficient. Authors should be 

encouraged to provide sufficient detail about the intervention, the procedures, the participants, 

and the theoretical underpinnings that drive the study. In the articles scrutinized for this paper, 

there was often very little substantive information on the intervention included. Sampling 

procedures were not thoroughly described, and results and findings were not included for all 

outcomes described. All aspects of studies should be presented, not just the portions of the study 

that reveal positive findings. The omission of results hints at a bias toward reporting only 

positive findings.  Furthermore, written reports must provide sufficient information to reproduce 

or replicate the study, which includes a description of the intervention, the sample, the methods, 

and present the findings from all aspects of the study. Beyond these methodological features, 

written reports should describe the philosophical assumptions made, the study’s limitations, and 

present the implications of the study on the rest of the field. The portion of computer science 

education research represented in this study do not adequately meet these commonly describe 

upon standards for the conduct research and evaluation studies, nor for reporting. A discussion of 

what the computer science education research and evaluation standards could/should be would 

strengthen the quality of research in the field by encouraging reflection on research’s role in 

advancing computational thinking and computer science education. If the computer science 
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community maintains different expectations regarding research quality, these should be 

articulated and discussed publicly and shared with the larger community.  

The lack of attention to details such as measurement of outcomes and the definition of 

constructs suggest a lack of appreciation and understanding of the complexity of social science 

research. These are not trivial aspects of educational research. Lack of theoretical framework is 

further evidence that these researchers are unfamiliar with ambiguities that are inherent in 

educational research.  This is not the first call for computer science education to make 

improvements to their research practice.  Randolph (2007) made a series of recommendations, 

and improvements are not yet apparent. Continued reliance on weak designs, ill- or non-defined 

concepts or interventions, and vague reports of the findings will do nothing to advance 

computational thinking and computer science education to where it wants to be – in K-12 

classrooms across the country. In order to make evidence-based decisions, a collection of quality 

research studies must exist. By following the established educational research standards as well 

as the recommendations set forth by researchers who have examined the body of literature in the 

field (i.e. Randolph, 2007, the current study), the computer science education community will 

slowly amass the evidence it needs to establish its place in the K-12 curriculum.   

This review captures the literature from the introduction of computational thinking into 

the common language of computer science educators. Judging by the limited quality of the 

designs, very little rigorous examination of computational thinking and how it can best be 

introduced, encourage, and fostered in students. This review will serve as a baseline for future 

projects that examine the body of work and evidence on computational thinking. In addition, 

hopefully it will encourage the community of researchers interested in computational thinking to 

apply rigorous methods that will allow for generalization to other settings. Policymakers could 
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encourage projects that employ rigorous methods to study the computational thinning efforts 

agencies, like the National Science Foundation, are encouraging. All this in the hope that it won’t 

be long until it is possible to conduct a disciplined inquiry that synthesizes and critiques the 

empirical literature – much like Randolph has done with the CS educational research – to derive 

or come up with suggestions which the field can advance. Through this current review, it has 

become clear that there currently are not enough empirical studies to conduct a quantitative 

review of the literature.  
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CHAPTER 3: COMPUTATIONAL THINKING: WHAT IS IT, HOW DO WE TEACH IT, 

AND HOW DO WE ASSESS IT? 

 

 
Introduction 

Recent reports paint a bleak picture of K-12 computer science education. States have few 

standards focused on the conceptual facets that underpin computer science (e.g., an 

understanding of algorithm), but instead emphasize lower level skill-based concepts (e.g., using 

technology in other learning activities) (Wilson, Sudon, Stephenson, & Stehlik, 2010). The 

Computer Science Teachers Association (CSTA) proposed a national model for computer 

science standards (Tucker, Deek, Jones, McCowan, Stephenson, & Verno, 2006), but there is 

great disparity among the states in the adoption of these standards. Only 14 states have adopted 

the standards to a significant degree. Furthermore, no states require students to complete a 

computer science course, and only nine allow these courses to count toward the mathematics or 

science credits required for graduation (Wilson et al., 2010). The number of pre-Advanced 

Placement (AP) and AP computer science courses offered in high schools has declined (Gal-Ezer 

& Stephenson, 2009), and tremendous inequality is seen in minority student participation in AP 

computer science tests (Goode, 2011). This lack of access to engaging and rigorous curriculum 

could be one cause of the lack of student interest in computer science.  

While the policy debates around computer science education continue, the reality 

persists: computing and technology are, and will remain, an integral part of our society and the 

future. This makes the need for computer science education reform undeniable, and the 

discipline appears to be headed in a clear and fairly unified direction. This tangible direction for 

change can be found in the computational thinking movement. Beginning with a seminal article 
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by Janette Wing in 2006, many have begun to liken computational thinking to the basic skills of 

reading, writing, and arithmetic.  

A focus on computational thinking in K-12 education would enable individuals to more 

effectively navigate today’s society as well as encourage equitable access to technological skills, 

devices, and other resources. As individuals are taught how to apply computational thinking to 

their daily lives, personal empowerment is enhanced. This emphasis would raise student interest 

in information technology, computer science, and other technologically oriented professions; 

thus, it would enhance the competitiveness of the U.S. from an economic standpoint by better 

preparing students to enter the internationally competitive work force (Committee for the 

Workshops on Computational Thinking, 2010).  

Support for computational thinking is evidenced by at least three national initiatives. 

First, the curriculum for the new AP Computer Science Principles course is constructed around 

six Computational Thinking Practices (Astrachan, Cuny, Stephenson, & Wilson, 2011). Second, 

the National Science Foundation’s Computing Education for the 21st Century (CE21) funding 

program encourages projects that develop computational thinking competencies (National 

Science Foundation, 2011). Third, the CSTA uses computational thinking as a common thread to 

link the three levels (i.e., elementary, middle, and high school) of learning standards that it 

recommended for K-12 computer science (Tucker et al., 2006).  

If the ideas and projects that have arisen from these recent discussions are to take root, 

the computer science education community must appeal to those outside of the field to join in the 

campaign to overhaul K-12 computer science. The first step to doing this is to introduce the 

concepts, the programs, and the initiatives that are currently powering the efforts. Many who 

teach computer science in high schools do not have degrees in computer science or information 
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technology, and it can be reasonably assumed that there are very few, if any, computer scientists 

in the teaching profession at the elementary level.  This paper is intended to serve as an 

introduction to computational thinking for ‘the rest of us’. In this case, ‘the rest of us’ includes 

elementary teachers, secondary teachers, school administrators, and educational researchers. This 

paper is intended to reach the audience who needs to be involved in the next step, which includes 

improving access to computer science and computational thinking in K-12 schools. 

The Origins of Computational Thinking 

Computational thinking was first mentioned by Papert to suggest a way to efficiently 

apply novel approaches to problem solving (1996). Wing expanded on Papert’s ideas and 

popularized the term ‘computational thinking’ in a brief but compelling article in 2006 where it 

is described as a “fundamental skill for everyone, not just for computer scientists” (Wing, 2006, 

p. 35). Wing likened the skill to reading, writing, and arithmetic and asserted that with 

computational thinking, humans have the capability to solve problems and design systems that 

would be otherwise impossible. This mirrors the sentiments of Pfeiffer that “computers are 

thinking aids of enormous potentialities. Merely having them around is enough to change the 

way we think” (Pfeiffer, 1962). Other well-known computer scientists have also suggested that 

computer science be a part of all students’ education. For example, Perlis argued in 1962 that all 

students should learn to program as part of their undergraduate education. Perlis believed 

exposing students to programming would allow them a new computational perspective on topics 

such as calculus and economics (Perlis, 1962). While the sole emphasis on programming is not 

generally seen in today’s conceptualizations of computation thinking, the importance of 

exploring how computation can enhance other disciplines remains essential.   
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Computational thinking has ties to procedural thinking, algorithmic thinking, recursive 

thinking, and critical thinking. Procedural literacy means understanding the limitations and the 

possibilities of specific computing tools. Algorithmic thinking, popularized in the 1950’s and 

1960’s, is the process of solving problems by exactly defining instructions using step-by-step 

procedures. These procedures give identical results when carried out by any human or suitable 

machine (Dening, 2003). Recursive thinking is solving large problems by breaking them down 

into smaller problems that have identical forms. Finally, critical thinking is “the art of analyzing 

and evaluating thinking with a view to improving it” (Paul & Elder, 2001, p. 4). Computational 

thinking includes all of these concepts, and more. 

Defining Computational Thinking 

Perhaps the most influential contribution since the introduction of computational thinking 

is the operational definition recently released by the CSTA in collaboration with The 

International Society for Technology in Education (ISTE) and leaders in education and industry. 

This definition describes computational thinking as a problem-solving process that includes, but 

is not limited to, the following characteristics: “(1) formulating problems in a way that enables us 

to use a computer and other tools to help solve them, (2) logically organizing and analyzing data, 

(3)representing data through abstractions such as models and simulations, (4) automating 

solutions through algorithmic thinking (a series of ordered steps), (5) identifying, analyzing, and 

implementing possible solutions with the goal of achieving the most efficient and effective 

combination of steps and resources, and (6) generalizing and transferring this problem solving 

process to a wide variety of problems” (Computer Science Teachers Association, 2011b). A 

formal process for obtaining reactions to this definition showed broad support for this definition 

by computer science educators and professionals. 
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What sets computational thinking apart is its applicability across all disciplines. It is a 

unifying principle with ties not only to computer science, but also to all disciplines from the 

sciences to the humanities (Lu & Fletcher, 2009; Wing, 2006). Computational thinking goes 

beyond computer literacy, which is the efficient use of technology, and also beyond fluency, 

which is focused on skills that enable to use technology. Computational thinking includes 

analytical skills that enhance how one approaches a problem and an appreciation for how 

computing can augment a person’s abilities and enhance efficiency.  

Although computational thinking was quick to catch on in the computer science 

education community, most current definitions of computational thinking are vague and lacking 

in detail and examples (Hemmendinger, 2010). An early definition offered by The Center for 

Computational Thinking at Carnegie Mellon describes computational thinking as 1) a way of 

solving problems and designing systems that draws on concepts fundamental to computer 

science; 2) means creating and making use of different levels of abstraction to understand and 

solve problems more effectively; 3) means thinking algorithmically and with the ability to apply 

mathematical concepts to develop more efficient, fair, and secure solutions; and 4) means 

understanding the consequences of scale, not only for reasons of efficiency, but also for 

economic and social reasons.   

This, and similar definitions, were sufficient to promote and foster widespread agreement 

of its importance within the community, but did not satisfy the field’s desire to have a detailed 

and practical definition of computational thinking.  Recent efforts have focused on developing a 

more concrete definition. The National Academies convened a workshop with the sole aim to 

explore the scope and nature of computational thinking in early 2009 (Committee for the 
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Workshops on Computational Thinking, 2010). While no consensus was reached, significant 

progress was made in clarifying the various perspectives on computational thinking.  

Many, like Wing, believe computational thinking to be a revolutionary concept, one as 

important to a solid educational foundation as are reading, writing, and arithmetic (Bundy, 2007) 

(Day, 2011). Others believe its potential and significance are overstated (Denning, 2009; 

Hemmendinger, 2010), and some have voiced concern that by joining forces with other 

disciplines computer science might be diluting either one or both of the participating disciplines  

(Cassel, 2011; Jacobs, 2009).  Both the praise and the criticism for computational thinking could 

perhaps be tempered by reflecting on a historical quote by Pfeiffer in 1962:  “Computers are too 

important to overrate or underrate. There is no real point in sensationalizing or exaggerating 

activities which are striking enough without embellishment. There is no point in belittling 

either.” (Pfeiffer, 1962). For the time being, computational thinking appears to be a unifying 

force in the computer science education community, but it seems prudent to heed these warnings 

to remain realistic about its potential to influence K-12 education. 

Computational Thinking in the K-12 Classroom 

Wing concluded the seminal piece on computational thinking by summoning computer 

science teachers to “spread the joy, awe, and power of computer science, aiming to make 

computational thinking commonplace” (Wing, 2006, p. 35). Almost immediately the computer 

science education community and scholars began to explore how it might be integrated into the 

existing computer science curriculum and applied in other disciplines.  

The effective use of technology in the classroom to engage students in computing has 

been a source of debate for decades. Papert commented that the phrase “technology and 

education” too often implies “inventing new gadgets to teach the same old stuff in a thinly 
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disguised version of the same old way” (1996, p.138). In 2000 Garofalio and colleagues argued 

that simply using technology to teach the same topics that could be explained without technology 

“belies the usefulness of technology” (Garofalo, Drier, Harper, Timmerman, & Shockey, 2000), 

and this belief persists today (Bull, 2005).Computational thinking is not about learning computer 

skills or how to solve problems like computers, nor is it learning how to use a piece of 

technology. Instead, computational thinking develops all critical skills of humans to solve 

problems (Wing, 2006). On the surface, this approach to computer science could be at least 

partially immune to many of the criticisms of how technology has historically been applied in K-

12 classrooms. 

Scholars and educators who are focused on computational thinking have taken a number 

of approaches as they strive to create tools and curricula that are applicable to K-12 students. The 

following brief explanation of some of these approaches is intended to provide an overview for 

K-12 teachers to use as they contemplate how they might best incorporate computational 

thinking concepts into classrooms. 

Technology-Free Computational Thinking 

An assortment of activities and curricula that are not reliant on computers or other 

technology have recently been developed. The most significant challenge to teaching computer 

science in K-12 settings is rapidly changing technology (Gal-Ezer & Stephenson, 2009), and the 

incorporation of activities that promote computational thinking without technology are a way to 

address this challenge. There are materials and ideas in this category that are appropriate for the 

full range of K-12 students.  

Computer Science Unplugged is a compilation of free activities to introduce students of 

all ages to the central concepts in computer science without the use of a computer (Bell, 
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Alexander, Freeman, & Grimley, 2009; Bell, Fellows, & Witten, 2002). One of the primary aims 

is to demonstrate to students that computer science is more than programming. A curriculum kit 

of Computer Science Unplugged materials are offered through The National Center for Women 

and Information Technology (NCWIT). This kit, Computer Science-in-a-box: Unplug Your 

Curriculum (National Center for Women & Information Technology, 2011), introduces essential 

elements of computer science to 9-14 year old students. Lessons that introduce how computers 

work while simultaneously teaching math and science concepts. The Value of Computational 

Thinking across Grade Levels (VCTAL) project is developing an innovative mix of twelve 

instructional modules designed to encourage computational thinking in high school students for 

grades 9-12. The modules and lessons are activity-based and can be used in computer science, 

science, mathematics, history, or other courses (Cozzens, Kehle, & Garfunkel, 2010).  

Since one of the barriers to computer science and computational thinking is technology, it 

is reasonable to think that the technology-free options would appeal to many classroom teachers. 

This approach may have additional appeal to those who are not technologically savvy themselves 

or who lack the proper training. It might also be attractive to those who do not have easy access 

to computers for all students.  

Programming Games or Robots 

Another approach to introduce K-12 students to concepts in computer science and 

computational thinking is the use of games and robots to introduce computer science and 

computational thinking concepts. The belief is that games and robots will motivate students to 

broaden participation in computer science courses and careers, for they simultaneously instill an 

understanding of the targeted concepts and promote student interest in computing. The iDreams 

project is an effort to engage middle school students in computer science with game design. 
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iDreams created the Scalable Game Design curriculum in which students create a Frogger-like 

game while learning increasingly sophisticated concepts (Ioannidou, Bennett, Repenning, Koh, 

& Basawapatna, 2011). TangibleK Robotics is a program that introduces computational thinking 

to young children (Bers, 2010). Students in preschool to second grade construct robotic artifacts 

and program them to respond to some stimuli. For example, a young child might build a car and 

program it to follow a light. Modular Robotics, a spin-off company from Carnegie Mellon 

University’s Center for Computational Thinking, is creating kits used to create robots for use in 

science centers and community museums. The robots require no programming, but instead 

consist of magnetic cubes that snap together. The order and configuration in which the cubes are 

put together determines how the robot behaves (Modular Robotics, 2011).  

The downside to using games and robots is the training and specialized technology 

required to use these tools. Most gaming or robotics-based programs and tools that encourage 

computational thinking are offered in out of school settings (Hardnett, 2008; Modular Robotics, 

2011). A few projects, like iDreams, offer summer workshops to train teachers to use the 

curriculum and the game design module (Ioannidou, Bennett, Repenning, Koh, & Basawapatna, 

2011).  

Initial Learning Environments 

Initial learning environments (ILE’s) are a third approach to incorporating computational 

thinking in the K-12 classroom.  These environments support novice programmers by allowing 

the direct manipulation of objects or through visualizations to support learning. While they are 

primarily used to learn basic programming concepts, some projects focus on the teaching and 

learning of computational thinking skills using ILE’s. Sontag (2009) describes the Critical 

Thinking with Alice model which uses the Alice 3D graphics programming environment to teach 
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critical thinking, a fundamental facet of computational thinking. The model is applicable for 

students in grades 5-8, and is tied not only to curriculum standards, but also to 21st century skills. 

An example unit is situated in a social studies context where students learn computational 

concepts as they create a 3D animated world in Alice. The animation is based on primary source 

information about land disputes between Native Americans and settlers during the California 

Gold Rush of the 1850’s.  An advantage to this model is the existence of tutorials for teachers 

and for students as they learn Alice together, so there is limited prerequisite knowledge required.  

A group of computer scientists at Hamburg University (Rick, Ludwig, Meyer, Rehder, & 

Schirmer, 2010) applied Greenfoot, an ILE, to a business informatics context with middle school 

students. Students were introduced to computational thinking concepts as they used the visual 

simulation framework to develop their own “micro world” that consisted of an airport baggage 

handling system. In addition to these widely-known ILE’s, some projects develop their own 

language. One such language is Toque, a cooking-based programming language where cooking 

scenarios are used as programming metaphors (Tarkan et al., 2010) to teach computational 

thinking skills. 

One downside to ILE’s and other approaches that require the use of technology is the 

inconsistency among schools in relation to the availability of technology. Hardware requirements 

for computers to run initial learning environments are small compared to the technology 

available in most school systems, but some schools may have older computers that might not 

have adequate capacity to operate the ILE’s. A second potential concern is scheduling time in a 

shared computer lab. Not all teachers have ready access to a classroom of computers. A third 

issue can arise when programs need to be installed or downloaded onto school-owned computers. 

Most schools have policies to prohibit teachers or students from doing this, so teachers must 
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request that a technology specialist or systems administrator within the district download or 

install the necessary software. This process might be prohibitive for some teachers. 

Integrating Computational Thinking with Other Disciplines 

Another approach to introducing computational thinking concepts to K-12 students is the 

integration of computational thinking within other disciplines. The CSTA believes all teachers 

are capable of incorporating computational thinking into their classrooms. To aid in this, they 

have created a series called Computational Thinking Learning Experiences, which are short 

lessons designed to give teachers concrete examples of how computational thinking can be 

introduced in various content areas and grade levels. These are intended to get teachers thinking 

about computational thinking and how it can be infused into the classroom. They are not an all-

inclusive resource for integrating computational thinking.  

Google engineers and classroom teachers collaborated to create curriculum models, 

resources, and a community to help teachers incorporate computational thinking into classrooms. 

Exploring Computational Thinking (ECT) makes classroom-ready lessons, (including teacher 

editions, student worksheets, and applicable programs) available to teachers online. Lessons are 

searchable by subject and grade level, and educators are invited to share their own materials and 

discuss computational thinking with others using a discussion forum.  

Several examples of courses or programs introduce computational thinking in liberal arts 

contexts. A three-week Musicomputation course for 11-17 year old students teaches the 

mathematical principles that underlie computer science and applies these to musical composition 

(Meyers, Cole, Korth, & Pluta, 2009). Other programs that integrate music and computational 

thinking skills exist at the secondary (Peterson & Hickman, 2008) and undergraduate 

(Ruthmann, Heines, Greher, Laidler, & Saulters, 2010) levels. The Inter Interactive Multimedia 
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program integrates computational thinking into a middle school classroom alongside expository 

writing and interactive journalism (Wolz, Stone, Pearson, Pulimood, & Swizer, 2011; Wolz, 

Stone, Pulimood, & Pearson, 2011).  

Science and mathematics are perhaps the most natural disciplines in which to integrate 

computational thinking. Numerous undergraduate level courses incorporate computational 

thinking with biology (Khuri, 2008; Matthews, Adams, & Goos, 2010; Qun, 2009; Robbins, 

Senseman, & Pate, 2011) or general science (Hambrusch, Hoffman, Korb, & Haugan, 2009). 

One initiative to bring computational thinking into K-12 classrooms is Computational Thinking 

for the Sciences, a three-day summer workshop for high school teachers to learn how to 

incorporate computational thinking into their mathematics and science classrooms (Ahamed, et 

al., 2010). Other programs offer computational thinking lessons that can be incorporated into 

classrooms (i.e., VCTAL, ECT), but so far there is no evidence of a completely integrated science 

and computational thinking course at the K-12 level. Given the increasing prevalence of this type 

of course at the undergraduate level, it is reasonable to assume a class of this sort of course could 

be on the horizon for high schools.  

A significant advantage to this approach is that the context used to illustrate computer 

science and computational thinking concepts is directly related to the other discipline that is 

contributing to the course (e.g. music, journalism). This application of computer science to 

another discipline allows students to see links between the different disciplines, and hopefully 

encourages them to examine the connections between computer science and other disciplines.  A 

limitation for K-12 teachers is, again, lack of training and resources.  
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Computational Thinking for the Researcher 

The secondary audience of this paper is the educational researcher interested in 

computational thinking interventions or how students learn to think computationally. In order to 

support ongoing improvement, it is important to learn what good teaching practice is and how to 

best facilitate the student construction of knowledge.  There has been discussion about the 

pedagogical approaches to teaching and integrating computational thinking in K-12 settings; rich 

descriptions of the interventions and approaches are often provided. An examination of these K-

12 programs shows evidence of the ongoing debate around the role of programming and 

technology within the introduction and promotion of computational thinking skills. While some 

believe computational thinking should be taught through programming, technology, and software 

applications with a focus on core computing concepts, others disagree (Committee for the 

Workshops on Computational Thinking, 2010). Lu and Fletcher (2009), for example, believe 

exposure to programming can be detrimental to efforts to broaden participation in computer 

science. They believe that “programming is to Computer Science what proof construction is to 

mathematics, and what literary analysis to English” (Lu & Fletcher, 2009, p. 260).  Others do not 

think computer hardware or software is necessary. These and similar discussions are motivating 

for those interested in developing a research agenda focused on computational thinking. 

Those acquainted with conducting research within other STEM education disciplines are 

familiar with the complex array of factors that contribute to student learning. Narrow 

assessments of content knowledge are over-aligned with the intervention, and indirect measures 

such as student engagement, attitude, or motivation fail to adequately document any changes in 

the skills knowledge acquired by students. There is a need to conceive and develop alternative 
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ways to assess the success of STEM education interventions, and for computer science to adapt 

these techniques to shape its own research methods (Fincher, Tenenberg, & Robins, 2011).  

There are numerous impediments to researching computational thinking at this point, but 

none are insurmountable or permanent. The first barrier to researching computational thinking is 

the lack of a common definition. A recent review of the empirical literature on computational 

thinking found that less than a quarter of studies included a definition of this term (Weinberg, 

2012). The remainder simply cited Wing’s original definition or provided no explanation or 

operational definition of what the phrase meant in the context in their study at all. There is a 

clear need to have both a validated definition, as well as a theoretical model to underpin the 

concept of computational thinking.  These must exist to serve as a starting point in the 

development measures of computational thinking to assess the success of computational thinking 

interventions. Only then can researchers begin to thoughtfully examine programs and 

interventions intended to promote computational thinking competencies. According to 

Hemmendinger (2010), the definitions of computational thinking which are currently offered 

lack precision and fail to provide sufficient examples. The fact that a six-year-old concept 

remains a bit abstract is not surprising. Great strides have been made in fleshing out a definition, 

but it is important for the researcher studying the concept to be specific about what the phrase 

means in the context of each study. 

A second, related, barrier is that computational thinking is a latent variable. It cannot be 

directly observed but instead must be inferred from other variables that are observed or directly 

measured. In order for a measure of computational thinking to be developed, a solid theoretical 

definition of computational thinking must exist (Netemeyer, Bearden, & Sharma, 2003). The 

thorough articulation of a variable’s definition is perhaps the most difficult step in the process of 
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preparing a measure of that variable or concept (Haynes, Nelson, & Blaine, 1999). The work that 

has been done to explore computational thinking is promising in this regard.  

A third barrier is the lack of rigorous empirical research conducted to explore computer 

science education in general (Randolph, 2008), and even less has been done to explore how 

students learn to think computationally (Weinberg, 2012). Most studies of computational 

thinking so far have used qualitative or descriptive methods. The use of qualitative or descriptive 

methods is not a condemnation of a study, but paired with outcomes that too often are focused on 

reactions to specific programmatic components (e.g., lessons, activities), limits the usefulness of 

these studies to the larger community.  In order to move closer to determining how 

computational thinking can be assessed and used to advance these fields of study, research 

should examine outcomes that could be generalizable to a variety contexts and programs.  

Instead of asking “did you like it,” researchers should instead explore how to measure 

computational thinking skills and competencies. 

At least one group has made significant progress toward addressing these barriers. The 

Scalable Game Design Project (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011) 

studied computational thinking patterns in students as they learned by designing games. The 

computational thinking concepts introduced were explicitly defined. To assess student learning, 

students were asked to transfer the computational thinking concepts learned in one context (game 

design) to another context (mathematical modeling). This group has developed an online 

assessment tool to measure the degree of transfer of understanding of the computational thinking 

concepts (patterns) to real-world situations (Marshall, 2011). Results of a large-scale analysis of 

data related to this assessment tool are forthcoming. This approach appears promising, and 

researchers interested in computational thinking will be watching this project closely. 
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Conclusion 

Computational thinking has taken a strong hold in the computer science education 

community and beyond, but great strides must be made before it can be institutionalized across 

the entire K-12 system. One significant hurdle is teacher training. Opportunities for teachers to 

receive professional development or training in computational thinking are fairly limited. Most 

training programs are offered regionally or on a small scale. For example, Exploring Computer 

Science offers a week-long professional development program for teachers, along with a 

coaching program to provide ongoing support (Exploring Computer Science, 2011). Carnegie 

Mellon partners with several industry partners to offer Explorations in Computer Science for 

High School Educators (CS4HS) workshops each summer. This program provides materials and 

training for teachers to use to emphasize computational thinking. It was expanded to include 

workshops at other universities as well (Blum, Cortina, Lazowska, & Wise, 2010) 

Currently, there are no a teacher certification programs available in the United States 

(Margolis, 2008), and there is only one computer science teaching methods course (Yadav, 

Zhou, Mayfield, Hambrusch, & Korb, 2011), and this course had only one student during the 

2010-11 school year.  There is broad recognition that K-12 teachers need training to effectively 

introduce computational thinking concepts in the classroom using any of the approaches 

described in this paper. The National Science Foundation has initiated the CS10K project, an 

effort to have 10,000 qualified high school teachers in 10,000 high schools teaching a new 

curriculum by 2015 (Astrachan, Barnes, & Garcia, 2011).  The NSF’s Computing Education for 

the 21st Century (CE21) program has expressed its interest in supporting programs that align with 

the CS10K initiative.   
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The lack of emphasis placed on computer science at the policy level is another 

impediment to its incorporation into the K-12 curriculum. Until computer science courses are 

required for graduation, or at least allowed to count as a mathematics or science credit, the 

computer science standards mean very little and the emphasis placed on computer science will 

continue to be weak.  Numerous advocacy groups and organizations have surfaced in recent 

years to address this obstacle. The Association for Computing Machinery (ACM), in 

collaboration with various corporate sponsors, has spearheaded a variety of initiatives to advance 

computer science education. It formed the Education Policy Committee in 2007 to engage 

policymakers in conversations about computer science education. The Computer Science 

Teachers Association, introduced in 2005, promotes and supports computer science in K-12 

schools. Finally, the National Center for Women in Information Technology (NCWIT) aims to 

increase the participation of girls and women in computing by “(1) building a learning 

community, (2) creating and sharing research-backed resources, data, and research, and (3) 

providing a unified, amplified voice.”   

A clear and comprehensive definition of computational thinking will enable those outside 

of computer science to begin to come ‘on board’ and not only support, but also participate in 

efforts to increase students’ exposure to computer science and computational thinking. It is easy 

to support a theoretical idea like computational thinking, but much more difficult to participate in 

the efforts without a clear understanding of what the movement is about. The computer science 

education community has made great strides toward the widespread adoption of a concrete, 

articulate, and understandable definition, so it is time to accelerate efforts to share that with the 

larger community of K-12 educators and educational researchers. 
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Computer science educators need to recruit others. In order to do this, they must make 

their goals understandable to those to whom they are appealing. The CSTA has done some of 

this with their publications. There are many resources available for teachers, and as of yet these 

have not yet been shared outside of the computer science education community other than by the 

schools that are involved in program development.  

By introducing computational thinking and computer science into the K-12 curriculum, 

students will acquire skills that allow them full participation in our increasingly technological 

society and to broaden the variety of careers and academic programs that are available to them. 
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CHAPTER 4: CONCLUSION 

With this dissertation project, I set out to survey the entire body of literature on 

computational thinking, identify the nature and extent of the research evidence on computational 

thinking, and introduce computational thinking to K-12 educators and educational researchers 

who might wish to incorporate the concept into their own classrooms or research.  Within this 

final section, I will present several insights gained from this dissertation, reflect on the directions 

computer science education might move to advance the field, and present the next steps I will 

take in my pursuit to better understand and conduct research on computer science education and 

computational thinking.  

Lessons Learned & Insights Gained 

In addition to the knowledge gained from the systematic identification and examination 

of the literature on computational thinking, several lessons were learned and key insights gained. 

A few of those will be presented and discussed here.   

Barriers to Systematic Review in Computer Science Education 

 Significant barriers exist for those who wish to conduct a systematic examination of the 

literature within the field of computer science education.  Popular databases such as ERIC or 

EBSCO allow the user to conduct a search and save all of the identified articles as a batch, or 

list. This entire batch, including all fields associated with each article, can be imported into a 

bibliographic software or systematic review web application. The Association for Computing 

Machinery (ACM) maintains a digital library which serves as the primary database where 

computer science and computer science education literature can be found.  This digital library 

presented numerous challenges during this review. First, the ACM database does not have the 

capacity to export search results into an external location in batches. The export of citations and 
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abstracts to a bibliographic software (e.g. EndNote) or systematic review web application (e.g. 

EPPI Reviewer-4, RefWorks) is an essential step in conducting a systematic examination of a 

body of literature, particularly when the intent is to code or categorize it. When a search is 

conducted in the ACM Digital Library and the list of articles is produced, each citation must be 

individually opened and to the external location (i.e., EndNote or EPPI Reviewer-4). The digital 

library has a “Binder” feature that allows citations to be saved, but this offers no advantage over 

the direct export when the second major challenge is taken into consideration. The absence of 

abstracts in exported citations is a second challenge with the ACM Digital library. To have both 

citations and abstracts for review, a five step process had to be completed for each of the over 

7,000 citations. Each was 1) opened individually, 2) imported into EndNote, 3) the abstract text 

was manually highlighted and cut, 4) the EndNote reference file was opened manually, and 5) 

the abstract text was pasted into the appropriate EndNote field. Numerous processes were 

attempted, and this was the least time-intensive.  

A third limitation to a systematic review using the ACM Digital Library is that it does not 

allow behaviors that appear to be automated. During this project, the repetitive process necessary 

to obtain citation information for each article appeared automated; the process described above 

caught the ACM’s attention and access to the digital library was repeatedly blocked. Each time 

this occurred, an email was sent to the ACM Digital Library staff with a request to reinstate 

access and searching privileges. At times it took multiple days for access to be reinstated. This 

time consuming import process, combined with the accessibility issues were a substantial 

hindrance and a barrier to this and subsequent reviews.   

A fourth limitation to the ACM Digital Library is that many articles are included more 

than one time in different publication formats. For example, an article would appear identically 
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in a conference proceeding and also in a journal. Inconsistencies in how the citation fields were 

included within each of the publication sources or slight variations in the title prevented these 

from being recognized in an automatic search for duplicate records. A manual search through the 

citations was required to identify and eliminate duplicates.  

While these challenges are not insurmountable, they turn a process that should require a 

relatively small time commitment into an activity that takes days or even weeks rather than 

hours. Neither academic librarian at Colorado State University nor staff members at the ACM 

Digital Library was able to offer suggestions to improve the process. The academic librarians 

were surprised at the lack of sophistication or features available.  

Because of these substantial limitations, it is not surprising there have been so few 

reviews of literature in Computer Science education. Only one dissertation (Randolph, 2007) and 

three articles (Randolph, Julnes, Sutinen, & Lehman, 2008; Randolph, Julnes, Bednarik, & 

Sutinen, 2007; Valentine, 2004) describe reviews of computer science education research and 

evaluation studies, and three of these describe different components of a study that examined a 

single set of articles.  

Need for Collaboration 

 The need for collaboration between computer science experts and educational or social 

science researchers is the second major insight gained. The computer science education 

community as a whole does not seem to be aware that its research is not up to par with 

educational research in other disciplines. Computer science education articles and studies are 

written by computer scientists, who approach research from a vastly different perspective than a 

social scientist might. Computer science has its foundation in mathematics and logic, which is 

distinct from the social sciences in terms of the degree of certainty that is the result of research. 
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Logic and mathematics, and therefore computers science, claims  are based on the simplest of all 

objects of investigation: abstract objects such as propositions and numbers (Dodig-Crnkovic, 

2002).  Research methods and data analysis are clear-cut and the resulting findings are rarely 

questioned and studies are not often replicated by other researchers. Admittedly, there are 

aspects of Computer Science that extend into the realm of natural sciences (e.g. artificial 

intelligence uses physics, biology, possibly even  psychology), but  these forays into the natural 

and social sciences do not prepare the computer scientists for social science research. The social 

sciences are much more complex than this, and require the research to rely on theoretical 

frameworks and provide links to existing research. The thorough articulation of a variable’s 

definition is perhaps the most difficult step in the process of preparing a measure of that variable 

or concept (Haynes, Nelson, & Blaine, 1999).   

These issues signify the need for collaboration with social scientists and educators. The 

claims made about the need for and efficacy of computer science interventions bring along with 

them a responsibility to understand the social science discipline and the acceptable research 

methods required to produce credible evidence. This begins with an understanding of what an 

intervention study is and all that must go into it, including design, measurement, and analysis 

considerations. If claims of efficacy are to be made, the psychometric properties of constructs 

(e.g. computational thinking) and subconstructs must be articulated. The measures must be 

theoretically aligned with the intervention and have undergone rigorous development and testing 

procedures to ensure their reliability and validity, and design techniques must be considered as 

the study is developed.  
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Challenges Not Unique to Computer Science 

A third and final insight gained is that the challenges computer science education 

currently faces mirror what other disciplines have experienced. The problems the field is 

encountering mirror what engineering education experienced some years ago as it struggled to 

find its place in schools, and to learn to conduct educational research that was considered robust 

and credible. While this is not a topic that came out in either of the manuscripts, it is an area of 

investigation that I embarked upon when I began to ponder how computer science educators 

might come to realize the need to make changes to how research is being conducted in their area 

of interest.  

Next Steps 

I embarked on this effort with the realization that the establishment of a theoretical model 

of computational thinking is a precursor to widespread pedagogical reform. Researchers and 

curriculum developers focused on encouraging computational thinking must assess this concept 

to determine the effectiveness of the proposed interventions. Computational thinking is a latent 

variable, one that cannot be directly observed but instead must be inferred from other variables 

that are observed or directly measured. In order for a measure of computational thinking to be 

developed, a solid theoretical definition of computational thinking must exist (Netemeyer, 

Bearden, & Sharma, 2003). This dissertation was conducted, in part, to explore the theoretical 

models and measures used by researchers studying computational thinking so that I could 

continue to refine how computational thinking is being studied as an outcome variable in the 

current The Value of Computational Thinking Across Grade Levels 9-12 (VCTAL) study and in 

future studies where the concept is quantitatively measured or assessed.  
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The concept is not as advanced as I believed when I began this project. The recent 

introduction of an operational definition by the CSTA is a positive step, but should be seen as a 

launching point for the development of measures to assess computational thinking rather than an 

endpoint in the development of this concept. I would like to develop alternative ways to assess 

the success of STEM education interventions, including those that target computational thinking. 

Narrow assessments of content knowledge are over-aligned with the intervention, and indirect 

measures such as student engagement, attitude, or motivation fail to adequately document any 

changes in the skills or knowledge acquired by students. The assessment of computational 

thinking will target a generalizable skill that is fostered by some STEM education interventions.  

Finally, instead of continuing to focus exclusively on the narrow area of computational 

thinking, I intend to take a step back and examine at the entire field of computer science 

education.  I will closely examine the history and development of engineering education in K-12 

settings and apply the lessons learned in this field to the context of Computer Science Education. 

I intend to first produce a manuscript that explores the possibilities of incorporating some of the 

ideas into a NSF Proposal submission. I believe that the field can be advanced by acquiring an 

understanding of how other disciplines created a niche for themselves in the K-12 curriculum. 

One concrete idea arose from researcher conducted by Borrego (2007) in which researchers 

described the conceptual difficulties encountered by engineers as they attempted to shift their 

perspective to that of an Engineering Educator. This study offered suggestions to help engineers 

overcome difficulties and conduct robust social science research. I intend to propose a similar 

study, and to propose a training session at a computer science education conference to share my 

results and share knowledge with computer scientists that will allow them to begin to apply 
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social science research methods in their field. It is through these next steps that I hope to 

influence the computer science education field. 
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APPENDIX A: COMMITTEE APPROVED MANUSCRIPT OUTLINES 

Manuscript #1: A Literature Map And Scoping Review Of Computational Thinking  
Target Journal: Computer Science Education 

I. Introduction/background 

This study takes a systematic, disciplined approach as it first provides a broad look at the 
computational thinking literature, and then systematically examines the nature and extent of 
research evidence found within this literature.  

II. Aims 
A. To create a literature map of computational thinking from 2006-2011 
B. To conduct a scoping review to identify the nature and extent of the research evidence 

on interventions intended to promote computational thinking. 

III. Method 
A. Study Identification 

1.  Search Terms (terms 1-4 derived from Google’s Exploring CT site, terms 5-9 are 
from Computer Science Teachers’ Association’s definition of Computational 
Thinking. Further search terms will be identified using database thesauruses) Some 
terms  may be added post hoc based on increased familiarity with the literature 

a. problem decomposition 
b. pattern recognition 
c. pattern generalization to define abstractions or models 

i. algorithm design 
d. data analysis and visualization. 
e. data organization 
f. data representation 
g. simulations 
h. any integration of computer science with other disciplines 

B. Sources 
1.   Major Bibliographic Databases 

a. ERIC 
b. PsychInfo 
c. ACM digital library 

2. Conference Proceedings 
a. The Association for Computing Machinery’s (ACM) SIGCSE Technical 

Symposium  
b. Innovation and Technology in Computer Science Education Conference 

(ITiCSE) 
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c. Koli Calling: Finnish/Baltic Sea Conference on Computer Science 
Education 

3. Google Scholar 

4. Hand Search 
a. Prominent CS education journals: Computer Science Education, Journal of 

Research on Computing Education, The Journal of Information Technology 
Education 

b. Reference lists and citation searches 

5. Search for Grey Literature 
a. technical reports, working papers, blogs 

C. Inclusion Criteria 
1. Computational Thinking Education or Computer Science Education 
2. Time frame: 2006-2011 
3. English language  
4. Some criteria may be added post hoc based on increased familiarity with the 

literature 

D. Screening Process  (A sub-set of the articles will be examined by another individual and 
IRR will be calculated) 

1. Step 1: Title 
2. Step 2: Abstract 
3. Step 3: Full Article 

E. Coding Framework 
1.Primary Coding Framework (literature map) – Extract the following from all  

a. Purpose – Categorized using a modification of Valentine’s (2004) 
framework. This existing framework includes: Experimental, Marco Polo, 
Philosophy, Tools, Nifty, John Henry 

b. Author – name, affiliation, area of expertise 
c. Year of Publication 
d. Computational Thinking definition 
e. Computational Thinking domains/topics 
f. Other data TBD – possibly bibliometrics such as citation analysis 

2. Secondary Coding Framework (scoping review)- Only reports of studies that 
involve human participants will be included in the secondary coding process.  

a. Conceptual Features 
i. Intervention description 

ii. Theoretical framework 
b. Methodological Features 

i. Research design 
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ii. Research question 
iii. Participant description 
iv. Participant sampling design 
v. # of participants 

vi. Duration of intervention 
vii. Outcomes examined 

viii. Measures employed 
c. Study Findings 

IV. Findings 
A. Literature Map 
B. Scoping Review 

V. Implications & discussion 
 
 

Manuscript #2:  Computational Thinking Research: things I’ve learned so far 
This paper will be driven in large part by the findings of Manuscript 1.  It will be applied in 
nature and will be submitted to be presented at the 2013 SIGCSE conference 

I. Introduction to CS Education and CT 

A. Past 

B. Present 

C. (Presumed) future 

II. The current state of CS and CT educational research 

III. Challenges to CS Research and Evaluation 

IV. Opportunities in CS an CT Research and Evaluation 

V. Promising directions 

A. Outcomes 

B. Measures 

VI. Next Steps 

VII. Conclusion 
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APPENDIX B: COMPUTER SCIENCE EDUCATION CALL FOR PAPERS & AUTHOR 

GUIDELINES 

 

Computer Science Education aims to publish high-quality 
papers with a specific focus on teaching and learning within 
the computing discipline that are accessible and of interest to 
educators, researchers and practitioners alike. 
Depending on their special interests, those working in the field 
may draw on subject areas as diverse as statistics, educational 
theory and the cognitive sciences in addition to technical 
computing knowledge. 
Papers may present work at different scales, from 
classroom-based empirical studies through evaluative comparisons 
of pedagogic approaches across institutions or countries and of 
different types from the practical to the theoretical. 
The Journal is not dedicated to any single research orientation. 
Studies based on qualitative data, such as case studies, historical 
analysis and theoretical, analytical or philosophical material, are 
equally highly regarded as studies based on quantitative data and 
experimental methods. It is expected that all papers should inform 
the reader of the methods and goals of the research; present and 
contextualise results, and draw clear conclusions. 
 
Editors: 
Sally Fincher, University of Kent, UK 
Laurie Murphy, Pacific Lutheran University,USA 
Editorial Board: 
Carl Alphonce, University at Buffalo, USA 
Mordechai Ben-Ari, Weizmann Institute of Science, Israel 
Andrew Bernat, Computing Research Association, USA 
Dennis Bouvier, Southern Illinois University Edwardsville, USA 
David Carrington, University of Queensland, Australia 
Michael Caspersen, University of Aarhus,Denmark 
Michael Clancy, University of California, USA 
Tony Clear, Auckland University of Technology, New Zealand 
Nell Dale, University of Texas at Austin, USA 
Gerald Engel, University of Connecticut at Storrs, USA 
John Fulcher, University of Wollongong, Australia 
Judith Gersting, University of Hawaii at Hilo, USA 
Yifat Ben-David Kolikant, The Hebrew University of Jerusalem, Israel 
W. Michael McCracken, Georgia Institute of Technology, USA 
Helen Sharp, Open University, UK 
Steve Wolfman, University of British Columbia, Canada 
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The Editors would like to invite you to submit your article to 
Computer Science Education 
Articles for consideration should be written in English and e-mailed electronically in 
Word or PDF format to the Editors Sally Fincher and Laurie Murphy at 
cse.editors@gmail.com 
Please ensure your article includes an abstract of 100-500 words. Papers should 
normally be around 7000 words in length, but longer or shorter articles may be 
considered. For further instructions please visit the journal homepage at 
www.tandf.co.uk/journals/cse and click on the ‘instructions for authors’ tab. 
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APPENDIX C: SIGCSE SUBMISSION REQUIREMENTS AND CALL FOR 

PARTICIPATION 

 

Formatting Requirements for all 
Paper, Panel, and Special Session Submissions 

The requirements listed in this section apply to all papers, panels, and special sessions: 

• Title: The title should be centered, Arial or Helvetica, bold, 18 point, and Initial Letters Capitalized 
Like This. 

• Author information: The author's name(s) should be centered using Arial or Helvetica 12 point. 
The affiliation and address should be Arial or Helvetica 10 point, and email should be Arial or 
Helvetica 12 point. Two or more authors may be listed side by side. If co-authors are at the same 
institution and share most information, you may use only one address. Please see the templates 
for examples. 

o SPECIAL NOTE FOR PANEL SUBMISSIONS: Indicate which of the panelists is the 
moderator by placing the word "Moderator" in parentheses after her/his name. 

• Paper size: You should format your submission for 8.5 x11-inch paper. 
• Margins: Top and bottom margins should be 1 inch, left and right margins should be 0.75 inch. 

This is for every page including the first. 
• Columns: Text should be presented in two columns each 3.33 inches wide. There should be a 

0.33 inch space between the columns. The two columns on the last page should be the same 
length approximately. 

• Section heads: Section heads are flush left, Times Roman, bold, 12 point, ALL CAPITALS, and 
numbered starting at 1. There should be an additional 6 points of white space above the section 
head. 

• Subsection heads: If your paper has subsections, they are flush left, Times Roman, bold, 12 
point, and subnumbered (for example, 1.1). Initial letters of the subsection heading should be 
capitalized. There should be an additional 6 points of white space above the subsection head 
unless it immediately follows a section head. (Please see the templates for examples.) 

• Subsubsections: If your paper has subsubsections, they are flush left, Times Roman, italics, 11 
point, with initial letters capitalized, and subnumbered (for example, 1.1.2 or 1.2.3.4). There 
should be an additional 6 points of white space above the subsubsection heading, unless it 
immediately follows a subsection heading. 

• Text: All text including abstract should be single spaced, full justification, Times Roman, and 9 
point. 

• References: Use the standard Communications of the ACM format for references. That is, 
references should be a numbered list at the end of the article, ordered alphabetically by first 
author, and referenced by numbers in square brackets, like this [1]. Use commas for multiple 
citations like this [3,4]. The reference section has a regular section head (i.e., numbered, ALL 
CAPITALS, Times Roman, bold, 12 point), and the references are 9 point Times Roman but with 
ragged right justification. 
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• Copyright Space: Leave 1.5 inches of blank space at the bottom of the left column of the first 
page for the copyright notice. Use a placeholder copyright notice with the number X-XXXXX-XX-
X/XX/X for your submission. Please see the templates for examples. 

• Required Sections: The following unnumbered sections are required at the beginning of the 
document in the following order: 

• Abstract: The abstract should be a short description of the work described in the document. The 
title of the section ("ABSTRACT") should be formatted as a section head (i.e., flush left, Times 
Roman, bold, 12 point, ALL CAPITALS). 

• Categories and Subject Descriptors: The ACM Computing Classification Scheme is available 
at acm.org/class/1998/ Most submissions are likely to use category K.3.2 Computer and 
Information Science Education. The title of this section ("Categories and Subject Descriptors") 
should be formatted as a subsection head (i.e., flush left, Times Roman, bold, 12 point, Initial 
Letters Capitalized). 

• General Terms: This section is limited to the following 16 terms: Algorithms, Management, 
Measurement, Documentation, Performance, Design, Economics, Reliability, Experimentation, 
Security, Human Factors, Standardization, Languages, Theory, Legal Aspects, Verification. The 
title of this section ("General Terms") should be formatted as a subsection head. 

• Keywords: This section is your choice of words you would like your publication to be indexed by. 
The title of this section ("Keywords") should be formatted as a subsection head. 

• Other Requirements: Do NOT use page numbers or headers/footers. Use a blank line between 
paragraphs. 

New ACM Reference guidelines. 

Elements (in most cases): 

1. Author(s) 
2. Year of publication 
3. Title of 'document' - use initial caps on keywords and end in period. 
4. Name of Site in italics if given, and followed by period. 
5. Date accessed - Use 'Retrieved' followed by date as Month, DD, YYYY followed by 'from' 
6. Address - Given as '{http|ftp|telnet}://path' and underlined. 

Note: a web address should never be given for a formally published document whose citation is complete 
or for which there is a DOI. Only give a web address for informal works or online-only works or resources 
that cannot otherwise be found by citation and/or DOI. Author Home page URLs or Institutional 
Repository URLs are not the way to cite formally published literature. If citing a formally published online-
only publication, use the format for that genre and add elements 5 and 6 above. 

Examples: 
H. Thornburg. 2001. Introduction to Bayesian Statistics. Retrieved March 2, 

2005 from http://ccrma.stanford.edu/~jos/bayes/bayes.html  
  
Rafal Ablamowicz and Bertfried Fauser. 2007. CLIFFORD: a Maple 11 Package for 
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Clifford Algebra Computations, version 11. Retrieved February 28, 2008 from 

http://math.tntech.edu/rafal/cliff11/index.html  
  
Poker-Edge.Com. 2006. Stats and Analysis. Retrieved June 7, 2006 from 

http://www.poker-edge.com/stats.php 

Page Limits 
All submission must adhere to the following page limits: 

• Paper: 6 (Increased from 5 starting with SIGCSE 2011) 
• Panel: 2 
• Special Session: 2 

Copyright/Permission forms 
All authors of accepted papers will need to submit a signed copyright form with the FINAL document. 

All authors of accepted panels or special sessions will need to submit a signed permission form with the 
FINAL document. 

Information will be sent to authors after notification of acceptance by the program committee. 

Templates and Samples 
Templates for submissions can be found at the ACM SIG Proceedings website. LaTeX users 

should use option #2 (tighter alternate style) when formatting your document. 
Questions? 

Contact the Publications chair: 
  
Brad Miller 
Luther College 
sigcse12-publications@cs.holycross.edu 
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Call for Participation 

SIGCSE 2013: The Changing Face of Computing 
The 44th ACM Technical Symposium on Computer Science Education 

March 6-9, 2013, Denver, Colorado, USA 
http://www.sigcse.org/sigcse2013/ 
SIGCSE 2013 continues our long tradition of bringing together colleagues from around the 
world to present papers, panels, posters, special sessions, and workshops, and to discuss 
computer science education in birds-of-a-feather sessions and informal settings. The SIGCSE 
Technical Symposium addresses problems common among educators working to develop, 
implement and/or evaluate computing programs, curricula, and courses. The symposium 
provides a forum for sharing new ideas for syllabi, laboratories, and other elements of teaching 
and pedagogy, at all levels of instruction. 

Submissions in line with the conference theme, 'The Changing Face of Computing', are ideal. 
The theme focuses our attention on how computing is changing, and how we must change in 
education to address the changes in computing. 

PAPERS 

Papers describe an educational research project, classroom experience, teaching technique, 
curricular initiative, or pedagogical tool. Two versions of a submission are required: a full 
version having author names and affiliations and an anonymous version for use in reviewing. 
Papers will undergo a blind reviewing process and must not exceed six pages. Authors will have 
approximately 25 minutes for their presentations, including questions and answers. 

PANELS 

Panels present multiple perspectives on a specific topic. To allow each panelist sufficient time to 
present his or her perspective and still enable audience participation, a panel will normally have 
at most four panelists, including one moderator. Panel submissions should include a list of the 
panelists, their affiliations, and a description of the topic, with brief position statements from 
panelists. Proposals with more than four panelists must provide a statement connecting the extra 
panelist to the effectiveness of the panel and must convincingly show that each panelist will be 
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able to speak, and the audience able to respond, within the session time. Panel abstracts must not 
exceed two pages. A panel session is approximately 75 minutes. 

SPECIAL SESSIONS 

Special sessions are your opportunity to customize and experiment with the SIGCSE conference 
format. Possible special sessions include a seminar on a new topic, a committee report, or a 
forum on curriculum issues. More generally, they must be 75 minutes in length, held in standard 
conference spaces, and justifiably distinct from the panel, paper, and poster tracks. Within those 
constraints, the form is yours to design. Special session abstracts must not exceed two pages. 

WORKSHOPS 

Workshops offer participants opportunities to learn new techniques and technologies designed to 
foster education, scholarship, and collaborations. A workshop proposal (including abstract) must 
not exceed two pages. Proposals must specify equipment needs (e.g., participant-supplied 
laptops, room configurations, and A/V equipment) and any limitation on the number of 
participants. Workshops are scheduled for a three-hour session and do not conflict with the 
technical sessions. 

BIRDS OF A FEATHER SESSIONS 

Birds of a Feather (BOF) sessions provide an environment for colleagues with similar interests to 
meet for informal discussions. A maximum one-page description (including abstract) is 
requested to describe the informal discussion topic. A/V equipment will not be provided for 
these sessions. Approximately 45 minutes are allocated to each BOF topic. 

POSTERS 

Posters describe computer science education materials or research, particularly works in 
progress. Proposals (including abstract) are limited to two pages. Poster demonstrations are 
scheduled to permit one-on-one discussion with conference attendees, typically during session 
breaks. Prepared handouts are encouraged in order to share your work. 
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STUDENT RESEARCH COMPETITION 

Research from all areas of computer science is considered for awards in two categories of 
competition: graduate and undergraduate. All submissions must represent a student's individual 
research contribution and a student must be an ACM student member to qualify for awards and 
travel grants. Entry due date is September 30, 2 
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APPENDIX D: BOOLEAN LOGIC 

 

The following logic was used to search the websites and databases described in Chapter 2. 

 

• (computational thinking) 

 

• (computer science education) AND (thinking)   

 

• (computer science education) AND (interdisciplinary OR multidisciplinary) 

 

• (computer science education) AND (mathematics OR science OR biology OR physics 

OR reading OR writing OR journalism OR music OR art) 

 

• (computer science education) AND ((problem decomposition) OR (pattern recognition) 

OR (pattern generalization) OR (abstraction) OR (algorithm design) OR (data analysis 

and visualization) OR (data organization) OR (data representation) OR (simulation) OR 

(recursive thinking)) *Note: ACM Digital Library search was conducted with (computer 

science education) AND (1 search term at a time) 
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APPENDIX E: CODING SHEET 

 

Screening	
  Criteria	
  

1. Is	
  the	
  literature	
  dated	
  January	
  2006-­‐June	
  30,	
  2011?	
  
a. Yes	
  –	
  Proceed	
  with	
  screen	
  
b. No	
  –	
  EXCLUDE	
  

2. Is	
  the	
  literature	
  focused	
  on	
  computational	
  thinking	
  or	
  one	
  of	
  the	
  CT	
  domains	
  specified	
  in	
  the	
  search	
  
terms?	
  

a. Yes	
  –	
  Proceed	
  	
  
b. No	
  –	
  EXCLUDE	
  	
  

3. Is	
  the	
  literature	
  focused	
  on	
  education?	
  
c. Yes	
  –	
  Proceed	
  	
  
d. No	
  –	
  EXCLUDE	
  	
  

4. Is	
  the	
  literature	
  introduce	
  a	
  conference	
  session,	
  tutorial,	
  poster,	
  event	
  
e. Yes	
  –	
  EXCLUDE	
  
f. No	
  –	
  Proceed	
  

Substantive	
  Coding	
  	
  

Round	
  1:	
  

1. Year	
  of	
  Publication	
  
a. 2006	
  
b. 2007	
  
c. 2008	
  
d. 2009	
  
e. 2010	
  
f. 2011	
  

	
  
2. Institutional	
  affiliation	
  of	
  the	
  primary	
  author?	
  	
  

a. United	
  States	
  	
  
b. International	
  	
  

i. Country:____(list	
  all)______	
  
	
  

3. What	
  is	
  the	
  area	
  of	
  expertise	
  of	
  each	
  author?	
  
a. Computer	
  Science	
  
b. Education	
  
c. Other	
  area(s)	
  ____(list	
  all)_____	
  

	
  
4. What	
  population	
  is	
  the	
  article	
  focused	
  on?	
  

a. K-­‐12	
  
b. Elementary	
  (K-­‐5)	
  
c. Middle	
  (6-­‐8)	
  
d. High	
  School	
  (9-­‐12)	
  
e. Undergraduate	
  
f. Graduate	
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5. What	
  type	
  is	
  the	
  primary	
  purpose	
  of	
  the	
  article?	
  
a. Opinion	
  
b. Program	
  Evaluation	
  
c. Description	
  of	
  a	
  Curriculum,	
  Lesson,	
  or	
  Course	
  
d. Research	
  
e. Philosophy	
  
f. Literature	
  Review	
  
g. Program	
  Description	
  

	
  
6. Does	
  the	
  article	
  include	
  data?	
  

a. No	
  –	
  STOP	
  coding	
  	
  	
  
b. Yes	
  –	
  Include	
  in	
  Substantive	
  Coding	
  Round	
  2	
  

	
  
	
  

Round	
  2:	
  

1. What	
  research	
  methods	
  were	
  used?	
  
a. Experimental/quasiexperimental	
  
b. Correlation	
  
c. Nonexperimental	
  
d. Survey	
  
e. Qualitative	
  
f. Causal	
  comparative	
  
g. Did	
  not	
  include	
  human	
  subjects	
  
h. No	
  intervention	
  

	
  
2. What	
  research	
  design	
  was	
  used	
  

a. Post	
  only	
  (one	
  group)	
  
b. Post	
  only	
  (treatment/control)	
  
c. Pre/Post	
  (one	
  group)	
  
d. Pre/Post	
  (treatment/control)	
  
e. Repeated	
  measures	
  (one	
  group)	
  
f. Repeated	
  measures	
  (treatment/control)	
  
g. Other	
  
h. Correlational	
  
i. Causal	
  comparative	
  
j. Multi	
  methods	
  (also	
  indicate	
  each	
  method	
  a-­‐i)	
  

	
  
3. What	
  type	
  of	
  intervention	
  was	
  explored?	
  

a. Student	
  instruction	
  (in	
  class)	
  
b. Teacher	
  instruction	
  
c. Out	
  of	
  school	
  time	
  
d. Other	
  
e. None	
  

	
  
4. What	
  outcome(s)	
  were	
  examined?	
  

a. Attitudes	
  (student)	
  
b. Attitudes	
  (teacher)	
  
c. Skills/knowledge	
  
d. Course	
  achievement	
  
e. Future	
  plans	
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f. Teaching	
  practices	
  
g. “did	
  you	
  like	
  it”	
  
h. None	
  
i. Other	
  

	
  
5. Measures	
  (select	
  all	
  that	
  apply)	
  

a. Questionnaire	
  
b. Course	
  grades	
  
c. Teacher/researcher	
  made	
  test	
  
d. Student	
  work	
  
e. Existing	
  records	
  
f. Standardized	
  or	
  established	
  tests	
  
g. Interviews	
  
h. Observation	
  
i. Other	
  ________________	
  
j. Multiple	
  measures	
  (also	
  indicate	
  each	
  measure	
  a-­‐i)	
  

	
  
6. Type	
  of	
  Analysis	
  

a. Inferential	
  
b. Descriptive	
  
c. Qualitative	
  

	
  
7. Computational	
  Thinking	
  Definition	
  

a. Cites	
  Wing	
  –	
  no	
  definition	
  included	
  
b. Defines	
  CT	
  
c. Phrase	
  CT	
  not	
  used	
  
d. CT	
  phrase	
  used,	
  but	
  no	
  definition	
  or	
  citation	
  provided	
  

	
  


