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INTRODUCTION 

SUBJECT 

Analyses of climatic fluctuations by using the data of 
annual flows and derived effective annual precipita­
tions2 from many river gauging stations around the 
world are the subject of this paper. 

Many efforts have been made in the part either to 
discover the regularity or to prove the randomness3 
in the fluctuations of some climatic or hydrologic events 
on annual basis. The analysis here is intended to add 
some new elements to this old problem. 

SELECTION OF PHENOMENA FOR THE STUDY 

OF FLUCTUATIONS 

The study of climatic fluctuations was restricted to 
time series of annual flows and effective annual preci­
pitations, because they are considered here as relatively 
the most reliable series for investigation of climatic 
changes related to the water resources problems. The 
run-off at a river gauging station integrates the effects 
of climatic factors on large areas, and some bias inherent 
to point measurements ( of rainfall, temperature, and 
similar) is thus eliminated. The analysis of data of 
rainfall, temperature, tree rings, sediment deposits 
(varves) and others has shown either inconsistency4 and 
non-homogeneity5 in data, difficult to correct, or a 
built-in dependence model (biological model in tree 
rings, or sedimentation model in varves }, which does 
not exist in data of annual flows and effective annual 
precipitation. 

BASIC APPROACH 

Generally, two opposite standpoints may he distin­
guished among the results of studies of climatic fluc• 
tuations , with many positions between the two opposite 
views. 

Approach of oscillatory movements 

This standpoint is based on assumptions that moon 
effect, sun-spot fluctuations and other solar activities, 
cosmic effects, persistence in ocean and air-mass move• 
ments, and the like, create a persistent or even oscillatory 
movement of high and low values, which combined with 
random effects make the future values of a time series 
depend on the previous ones. The hidden periodicities 
are often being advanced from investigation of small 
samples of climatic factors. The non-significance of 
differences between parameters of observed and sto• 
chastic time series is usually neglected by this 
standpoint. 

Approach of randomness and stochastic processes 

This standpoint starts from the fact that the natural 
fluctuations of annual values are very close to random 
sequence, if some influences of known re ression effects 
are eliminated. The examples of these effects are: 
storage of water and heat in oceans, atmosphere, earth; 
regression effect created by the methods used in defining 
the time series ; end effect of the time unit used ; 
especially retardation of water due to water storage in 
river basins in annual flow fluctuations ; etc. Very small 
departures, considered as non-significant, of computed 
statistical parameters from those of the random series 
or series derived from random time series by stochastic 
processes are emphasized by this point of view. The 
fact that those statistical parameters have consistent 

I. Th.is research in fluctuations of annual run•off was sponsored originally 
by the United States National Bureau of Standards and the United States 
Geological Survey; it is now sponsored by the United States ational 
Science Foundation. 

2. Effective annual precipitation defined as total annual precipitation 
minus total annual evapotranspiration in a river basin. 

3. Randomness is deffned here in classical way, that there is no systematic 
link between successive values of an infinite time series. 

4. Inconsistency is defined here as systematic errors due to measuring or 
computational techniques. 

5. Non-homogeneity is defined here either as man-made effects, or accidents 
in nature (fires, land-slides) which change the measured values in compa­
rison with the virgin values. 
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departures in the same direction from the same sta­
tistical parameters of random or stochastic series is 
neglected in this standpoint, even though those 
departures can he considered non-significant. 

Many scientists agree that the random component in 
series of annual flows and effective annual precipitation 
is very high, hut add that something exists beyond the 
known storage effects, because of that consistency in 
departures of statistical parameters between the 
observed and random or stochastic time series. 

The controversy lies mainly in the way that these 
departures are explained and related to some physical 
or non-physical causes. 

The approach of this paper is the analysis of the 
mentioned departures between the time series of 
observed annual flows, or derived effective annual pre­
cipitations, and the random or stochastic time series, 
and the explanations for these departures, which divide 
the two standpoints. 

The use of the moving average by smoothing the 
original time series in order to study the fluctuations 
of a phenomenon is avoided in this study. From the 
studies of Slutzky (1937) it is well known that its use 
creates, of itself, fluctuations which may lead to 
erroneous conclusions. The random series becomes sto­
chastic (non-random) series, when the method of the 
moving average is used. The series will be used here 
with their unchanged member values. 

The random time series is considered in this paper 
as bench mark or yardstick series. The stochastic series 
as derived from random series by known processes are 
a further extension of bench mark random series. 

STATISTICAL TECHNIQUES USED 

The following statistical parameters were selected for 
use in this paper : 
1. Serial correlation coefficients and correlograms. They 

give a simple method of studying the dependence in 
successive terms of a time series. They are conve­
nient, and especially the first serial correlation 
coefficient, when the absolute values of serial corre­
lation coefficients are small. This is the case usually 
with time series of annual river flows and effective 
annual precipitations. 

2. Range. It is defined for a part of time series as the 
difference between previous maximum and previous 
minimum on the cumulative curve of departures. 

DATA USED 

Data used consists of annual flows and of stored water 
in river basins at the end of water years for 140 river 
gauging stations from many parts of the world, and 
namely: 72 from the United States of America, 13 from 
Canada, 37 from Europe, 10 from Australia, 1 from 
New Zealand, 4 from Africa, 2 from Japan and 1 from 
the Middle East. 
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The sizes of river basins range from 2.5 km2 to 

2.5 million km2, hut the majority are from 800 to 
80,000 km2. The annual average flows are in the range 
of 2.8-2,800 m.3/sec., with an average yield up to 
30 lit./sec./km.2. 

The length of records is 40-150 years. Seven stations 
of long record are specially studied: River Gota at 
Sjotorp-Vanersborg (Sweden), 150 years; River Rhine 
at Basle (Switzerland), 150 years; River Nemunas at 
Smolininkai (Lithuania, U.S.S.R.), 132 years; River 
Danube at Orshava in Iron Gates (Rumania), 120 years; 
St. Lawrence River, at Ogdensburg, New York (U.S.A.), 
97 years; River Mississippi at St. Louis, Missouri 
(U.S.A.), 96 years; and River Neva at Petrokrepost 
(U.S.S.R.), 76 years. 

DETERMINATION OF El<'FECTIVE 
ANNUAL PRECIPITATIONS 

FIRST APPROXIMATION DETERMINATION 

OF EFFECTIVE ANNUAL PRECIPITATION 

The effective annual precipitation is defined here as : 

Pe=P;-E1 =Vi+We-Wb=V;-l!.W; (1) 

where Pe = effective annual precipitation for a given 
water year and a river basin (net available water in 
each water year for a river basin, or net input of water 
from atmosphere into a basin); Pi = total annual preci­
pitation on that river basin and for a given water year; 
E; = total annual evapotranspiration (total water 
losses from the basin, from surface and underground 
waters, into the atmosphere); V; = annual water flow 
volume of a river for a given water year ; W b = total 
stored water in a river basin at the end of a water year ; 
We = total stored water in a river basin at the beginning 
of the corresponding water year; AW; = difference of 
stored water for the end and beginning of a water year 
(positive in wet water years, negative in dry water 
years). 

As there are usually great errors in the determination 
of P; and E; for a river basin, starting from precipitation 
and evaporation measurements on limited number of 
individual points, the effective annual precipitation 
was obtained for this paper exclusively by using W b 

and We, or their difference AW;. The value of AW; 
was determined for the approximate values W band We. 

The mean flow recession curve of average daily or 
average monthly flows was determined for each station, 
and for the season around the end or beginning of 
water years, and they were approximated by exponential 
functions, either of the type Q = Q0 e-ct, or of the type 

Q = Q0 e-ct", with Q0 the initial discharge, Q (any 
discharge of recession curve), and t (time) as variables, 
with c, or c and n, the parameters which characterize 
the equations of mean flow recession curves. The inte-
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FIG. I. Determination of the mean recession curve of Ashley 
Creek, Utah, by using monthly flows, for the purpose of compi­
ling the water carry-overs from one water to another. 

gration of the above functions of mean recession curves, 
from given Q0 for t = 0, to t = infinite give the volume 
of water W, or the stored water in a river basin. In this 
case, W b or We are functions ( for given c, or for given c 
and n) of the discharge Q0 at the end of a water year, 
if this end occurs during a recession curve period (for 
the United States, Europe and Canada the end was on 
30 September, and the beginning of the next water 
year on 1 October). In case a flood wave (rising level 
especially) occurs at the end of a water year, a special 
procedure was followed to obtain the stored water 
volume W. 

The illustration of this method of determining W is 
given in Fig. 1 (Ashley Creek, Utah). The recession curve 
of monthly flows is a straight line in semi-log paper, 
with the average c-value equal to 0.25 X 10-e for the 
simple exponential function. In this case the integration 
of the volume from t = 0 and Q0 to t = infinity gives 
W = Q0/c, or in this example W = 4.0 X 10-1 Q0 , 

with Q0 = discharge on 1 October. By using equation (1) 
for each water year, as Pe = V; - ti W;, the effective 
annual precipitations were computed as a first approxi­
mation for all river gauging stations and for all water 
years. 

The computed series of annual flows in modular 

coefficients as Ui = ;:, where Va = average annual 

flows, and derived series of effective annual precipita­

tions in modular coefficients as Y; = Pe, are used as 
Va 

basic time series for analyses of climatic patterns. 
As the effective annual precipitations represent the 

net input of water in a river basin for a water year, this 
is the water volume after the storage effects of the 
surface and underground reservoirs and other storage 
capacities in a river basin were excluded. As they 

represent annual flows without a carry-over of water 
from year to year, the interdependence among the 
successive values of effective annual precipitations 
should he smaller than for the annual flows, as will he 
he shown later. 

TRUE VALUES 

OF EFFECTIVE ANNUAL PRECIPITATIONS 

The true value of the effective annual precipitations, is, 
however, 

Pt= Vi - 6.W; ± (E; + I;+ H; + G;) (2) 

where E; = random error in annual flows (usually 
small for annual river flows) ; I; = inconsistency or 
systematic errors, produced by measuring and compu· 
tation techniques, in general given as trends or jumps, 
or their combination; H; = non-homogeneity or change 
in the virgin flow, produced by different man-made 
influences or accidents in the river basin ; G1 = error 
in determining ti W; approximately by using in this 
study the average recession curves, instead of a recession 
curve for each individual water year and gauging station. 

The experience shows that the influence of I;, H 0 

and G; may be important, and that these factors and 
errors cannot be often neglected in treating the fluctua­
tions of annual flow and of effective annual precipitation. 

In some cases the patterns in fluctuations of flows 
determined as dependence of successive values of time 
series could be explained partly by the inconsistency 
and non-homogeneity in data. The sufficient accuracy 
of computed members of the two time series V; and ti W 1 

should not be assumed a priori. 

RELATION 

OF EFFECTIVE ANNUAL PRECIPITATIONS 

AND ANNUAL RIVER FLOWS 

Assuming that an input of water in all storage capacities 
in a river basin is random, and that the outflow of 
stored water follows an exponential function (which is 
close to reality for most of underground and uncontrolled 
surface storage spaces), the output of water will be a 
stochastic time series of the type 

where b0 , bi, b, ... are monotonically decreasing and 
a:, 

positive coefficients, with L b1 = 1. This equation is 
0 

valid also, if the Y; values are non-random, but an 
approximate exponential outflow law may be applied 
to storage capacities of a river basin, In nearly all cases, 
due to a fast outflow of water from storage spaces, the 
infinite series on the right side of equation (3) may be 
replaced by m members. Practically m does not pass 
10 (the case of annual flows of the St. Lawrence River 
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at Ogdensburg, New York, with a tremendous storage 
m-1 

capacity of Great Lakes). In this case :E bj = 1, 
0 

neglecting the insignificant tail beyond (m -1) value 
of bj. 

The property of equation (3) is that the standard 
deviation of U series becomes smaller than that of Y 
series under given four conditions for b coefficients. 
Equation (3) is a general type of linear equation for 
moving average model (Markov chains), and this type 
of moving average attenuates the extremes of Y series 
in producing U series. 

As the effective annual precipitation is the difference 
of precipitation Pi and evapotranspiration Ei, the pro­
perties of Y series, therefore, depend on both series Pi 
and E1. Because Pi and Ei are usually dependent among 
them, and particularly when the ratio of effective and 

al . . . Pe 1 Ei . II th h tot prec1p1tat1on p = - - 1s sma , e c aracter-
f pi 

istics of Y series depend on three factors: Pi, Ei, and 
Ei = f(Pi)• If Pi values would be of random sequence 
or close to it, and if Ei = f (Pi) were of a complex 
relationship (not a simple linear function), the Y series 
would be non-random. Therefore, Ei plays an important 
effect on the type of time series which can approximate 
the series of effective annual precipitation. 

PATTERNS IN CLIMATIC FLUCTUATIONS 
MEASURED BY FIRST SERIAL 
CORRELATION COEFFICIENT 
OF BOTH ANNUAL FLOWS 
AND EFFECTIVE 
ANNUAL PRECIPITATIONS 

FREQUENCY DISTRIBUTIONS 

OF FIRST SERIAL CORRELATION COEFFICIENT 

Procedure 

The first serial correlation coefficient, defined as the 
correlation coefficient of successive pairs of annual flows 
or effective annual precipitations, was used as a measure 
of dependence of successive values in the two time series 
(flow and precipitation), or as an index of the possible 
climatic fluctuation patterns. 

The unbiased first serial correlation coefficient is given 
in classical statistical books as : 

N l N-1 N-1 
LUiUi+ 1--- L U1 L Ui+ 1 
1 N-1 1 1 

Tj = -------:-,---- - - ----
(N-2) Si Si +i 

(4) 

where Ui denotes any member of annual flow time 
series (Yi of effective annual precipitations), Ui + 1 is 
the next member to Ui, so that (Ui, Ui + 1) represents 
the successive pairs of members of the time series, 
N = total number of members in a time series, N - 1 
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is total number of correlated pairs, s; is the standard 
deviation of (N - 1) first members, and Si + 1 is the 
standard deviation of (N -1) last members of the time 
series, with r1 = first serial correlation coefficient. 

The unbiased standard deviation is given in classical 
books of statistics as : 

Iii = [-1- N ~ 1 U!i _ 1 (NL 1 u,)2Jy. (S) 
N-2 1 (N - 2) (N -1) 1 

For Si + i, ui is replaced by ui + l• 

The digital computer was used to determine the first 
serial correlation coefficients for all 140 stations, and s; 
and Si+ 1 through equation (5) were used in this compu­
tation. The r1 values were determined for both series : 
U (annual river flows), and Y (effective annual precip­
itations). 

For a pure random time series (fluctuation of a 
random variable), considered as an open series (or that 
N - 1 pairs are used for the computation of the first 
serial correlation coefficient) in contrast with a circular 
time series for which the last term is supposed to be 
succeeded by the first term of the series (in which case 
there are N pairs), R. L. Anderson (1941) gives the 
expected value with the symbol E(r1) (the mean value 
of r1 distribution) of the first serial correlation coefficient 
for circular time series as : 

1 
E(r1)=--­

N-l 
(6) 

and the variance of distribution of first serial correlation 
coefficient as 

N-2 
varr = 1 

(N -1)1 
(7) 

which both converge toward zero by an increase of N. 
For N :::::.. 40 the open time series gives r1 values close 
to those of circular series. As the practical minimum 
of years is 40 (Nmin = 40), the maximum value of E(r1) 
is -0.0256, which is close to zero. The standard 
deviation Sr of r1 is maximum for N minimum. In case 
of Nmin = 40 it is sr(max) = 0.158, which is a relatively 
high value. For the maximum value of N = 150 years 
in the study of 140 stations, sr(min) = 0.082, also a 
rather large value. Therefore, it is to be expected that 
the values of r1 for many stations, under the assumption 
of random fluctuations, would cover a relatively large 
range, both positive and negative values, with the mean 
close to zero. 

The legth of time series for 140 stations is different, 
with the mean value Nm= 55, and extremes 37 and 150. 
The cumulative frequency distributions of 140 values 
of first serial correlation ocefficient for both U series 
and Y series are given in Fig. 2. The theoretical cumu­
lative frequency distribution of random time series is 
plotted also, for Nm = 55, with the mean -0.018 and 
standard deviation 0.135. 
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Results 

Many values of r1 are negative: 16 (or 11.4 per cent) 
for U series, and 26 (or 18.6 per cent) for Y series. The 
approximate corrections for carry-over has nearly 
doubled the number of negative r1 values in Y series as 
compared with U series. The mean r1 value for U series 
is 0.176 and that for Y series 0.130. The difference 
represents 35 per cent of the value for Y series. The 
water carry-over in river basins is thus the cause of at 
least 35 per cent of the mean positive value of first serial 
correlation coefficient of U series. The median values are 
0.160 and 0.115 respectively, with difference being 39 per 
cent of the median value for Y series. Therefore, one­
third to two-fifths of positive first serial correlation coeffi­
cient of series of annual flows is explained by the water 
storage effect in river basins. 

The first serial correlation coefficients of log Ui (or 
log Yi) have shown the same patterns as the first serial 
correlation coefficients of Ui (or Yi)· The differences 
between r1 values for log Ui series and Ui series (or for 
log Yi series and Yi series) are relatively small, and 
either positive or negative. There is no clear pattern to 
he distinguished among two sets of r1 values (Ui versus 
log Ui, Yi versus log Yi)• 

The difference between the first serial correlation 
coefficients of U series and of Y series increases with 

. f w . . f h . an mcrease o parameter A , given m eet, as t e ratio 

of mean annual carry-over (W) to the area of river 

basin (A). Generally the greater : the greater is the 

difference r1(U) - r1(Y). 
A general trend is also derived, when the specific 

yield of river basins, q in lit./km. 2, is related to the 
decrease of the first serial correlation coefficients of U 
series to the corresponding value of Y series. The 
smaller the specific yield, the greater is, on the average, 
this difference of r1 values. This can he easily explained 
by the fact that for given topographical and geological 
conditions in a river basin, for its given area, the 
available space for underground and surface water 
storage in relation to mean annual run-off is greater 
on the average in dry climates (small specific yields) 
than in humid climates (great specific yields). 

Fig. 2 shows, that the slope of curves (1) and (2) in 
the range of 20-95 per cent of probability can he well 
fitted by straight lines, or by normal probability 
function. The slope of both these curves is the same and 
is equal to the slope of the cumulative distribution of 
an infinite set of random time series with N = 55 ( equal 
to mean length of series U and Y). 

The results of the analysis of 140 stations show that 
the arid regions have on the average the greater values 
of r1 for both U and Y series than the humid regions. 
The example of the region of the Upper Colorado River 
Basin and around it (14 stations) shows this trend 
clearly, as given in Fig. 3. The legend of the figure 
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FIG. 2. Cumulative frequency distributions of first serial corre­
lation coefficients (r1 ) for 140 river stations, using carthesian­
probability scales : (1) Ui series, computed; (2) Yi series, 
computed; (3) random series for N = 55; (4) Ui series, fitting 
a straight line for range 20-95 per cent ; (5) Yi series, fitting a 
straight line for 20-95 per cent range of cumulative frequency. 

explains all plotted cumulative curves. The difference 
of median r1 values of this semi-arid region and of 
140 stations are 0.064 for U series, and 0.069 for 
Y series. 

Example of effect of carry-over 

As an example of a significant impact of water carry­
over from one water year to another on the first serial 

@ 
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FIG. 3. Cumulative frequency distributions of first serial 
correlation coefficient : (1) for series of 140 stations and annual 
flows; (2) same as under (1) but for effective annual precip­
itation; (3) for random series, Nm = 55; (4) line parallel to 
line 3 through r = 0.16; (5) same as (4) through r = 0.115; 
(6) for series of 14 stations of Upper Colorado and annual 
flows; (7) same as under (6) but for effective annual precip­
itation; (8) for random series, Nm = 47; (9) line parallel to 
line 8 through r = 0.22; (10) same as (9) through r = 0.18. 
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correlation coefficient is the case of St. Lawrence River 
at Ogdensburg, New York. For the period of observa­
tions of 97 years, from 1860 to 1957, the first serial 
correlation coefficient of actual annual flows for 
St. Lawrence is 0.705. When the effect of stored water 
in the Great Lakes was taken into consideration, the 
first serial correlation coefficient of the effective annual 
precipitation was dropped to 0.094. If the stored water 
in the St. Lawrence River Basin outside the Great 
Lakes, which means in the small lakes, river and in 
the underground, would be taken into consideration 
also, then the first serial correlation coefficient of 0.094 
would probably be decreased still further. 

Discussion of results and conclusions 

From the comparison of the distributions represented 
in Figs. 2 and 3 the following may be derived : 

1. Cumulative frequency distributions of U series and 
Y series either for 140 or 14 stations (Upper Colo­
rado) are very close to the straight lines ( extremes 
excluded) on arithmetic-probability paper; or their 
first serial correlation coefficients are normally 
distributed. 

2. Slopes of these lines, which represent the standard 
deviation of first serial correlation coefficient distri­
butions, are also very close (at least for probabilities 
in the range 10-90 per cent) to the slopes of cumu­
lative distributions of coefficients of random time 
series which have the same lengths as the mean 
length for U series and Y series. 

3. Difference between the frequency distribution of 
first serial correlation coefficients for U and Y series, 
and the frequency distribution of random time series 
is only in the mean values of coefficients. The U 
and Y series have positive mean values of r1, while 
the means of random series are negative but practi­
cally close to zero. 

4. Differences between the means of first serial corre­
lation coefficients for U and Y series, on one side, 
and the mean for corresponding random time series 
for 140 stations selected from many parts of the 
world are: 

U series: Ar1(U) = 0.160 + 0.018 = 0.178 

Y series: Ar1(Y) = 0.115 + 0.018 = 0.133 

or the sequence of effective annual precipitations 
are much closer to random series than the sequence 
of annual flows. 

5. Main problem in detecting the patterns in fluctua­
tions of annual flows and of effective annual precip­
itations by an analysis o_f distributions of first 
serial correlation coefficients is the interpretation of 
these differences in the means or medians of first 
serial correlation coefficients, first of U and Y series 
versus the random time series, and then of differ­
ences between U and Y series. 
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6. It seems that the arid and semi-arid regions have 
a greater difference between observed series and 
random series than the humid regions, as will be 
shown later in regional distributions of the first 
serial correlation coefficient. 

7. Factors which cause the mean first serial correlation 
coefficients to be greater than zero in humid regions 
are more pronounced and emphasized in the semi­
arid and arid regions. A complex relationship 
between evapotranspiration and precipitation in 
arid regions, as well as a complex law of evaporation 
of rainfall in the air before the rain falls on the earth 
in arid regions, may be partly responsible for this 
difference. 

8. There are departures at the extremes of distributions 
of first serial correlation coefficients from the straight 
line passed through the median values with the 
slopes of corresponding random time series. Effects 
of glaciers and snow carry-over from year to year, 
sampling departures, and the use of mean length N 
of observed series for deriving the parameters of 
first serial correlation coefficient distributions for 
random time series may be partly responsible for 
these departures. 

9. Supposing that the figures for U and Y series are 
true values, it can be concluded that the first serial 
correlation coefficients are substantially decreased 
by excluding the water carry-over from year to year. 
The carry-over is responsible for one large part of 
the greater values of median or mean first serial 
correlation coefficients of U series than those of 
random time series. 

10. Equation (2) points out that the difference between 
the given values of effective annual precipitation 
and the true values of effective annual precipitations 
can be caused also by four types of errors : random 
errors, inconsistency, non-homogeneity, and the 
errors in determining the carry-over from year to 
year, apart from the carry-over effect (AW). The 
random errors only increase the standard deviation 
of the random time series. Random errors in annual 
flows are small and can be practically neglected. 
Any inconsistency ( errors in one side which can 
change from place to place in time series or any 
inconsistency in the form of trends or jumps), and 
any non-homogeneity of data, and any error in 
computing the carry-over in a river basin, increase 
on the average the first serial correlation coefficients 
(Yevdjevich, in preparation, 1962). 

REGIONAL DISTRIBUTION 

OF FIRST SERIAL CORRELATION COEFFICIENT 

Fig. 4 shows the position of 72 river gauging stations 
in the United States. It is an example of regional distri­
bution of first serial correlation coefficient. The solid 
lines divide 14 hydrological regions as designated by 
the United States Geological Survey. There are two 



Climatic fluctuations studied by ruing annual flows and effective annual precipitations 

FIG. 4. Regional distribution of first serial correlation coefficient for annual flows (upper figure) and effective annual precipi­
tations (lower figure) for 72 river gauging stations in the United States. 

figures for each station: the upper figure is the first 
serial correlation coefficients for the annual flows, and 
the lower figure is the first serial correlation coefficients 
for the effective annual precipitations. Taking the 
effective annual precipitations as a measure, all stations 
having the first serial correlation coefficient greater 
than +o.10, and all stations having the first serial 
correlation coefficients lower than + 0.10 are specially 
marked. The negative first serial correlation coefficient 
for the effective annual precipitations are given an addi­
tional sign. There are 48 stations which have the first 
serial correlation coefficient of Y series above and 37 sta­
tions below + 0.10. There are 14 stations with negative 
first serial correlation coefficients. 

The general conclusions from the results represented 
in Fig. 4 are : 
1. The humid regions of the east and the west of the 

United States more frequently have the first serial 
correlation coefficients for the effective annual preci­
pitation below +0.10 than above +0.10. 

2. The dry regions in the Middle West and in the Rocky 
Mountains more frequently have the first serial 
correlation coefficients of the effective annual preci­
pitations above +0.10 than below + 0.10. The regions 

around the Gulf of Mexico would he considered as 
approximately having the same number of stations 
with first serial correlation coefficients above or 
below + 0.10. 

It can he concluded from this approximate analysis, 
that stations in arid regions are more likely to have 
greater first serial correlation coefficients for the 
effective annual precipitation than stations in humid 
regions. 

It seems a quite attractive conclusion that, before 
any climatic reason is studied for explaining this differ­
ence in first serial correlation coefficients between arid 
and humid regions, or before any climatic reason is 
advanced for the positive mean first serial correlation 
coefficients in effective annual precipitation the effects 
of inconsistency, non-homogeneity, and errors in deter­
mining the volumes of carry-over should he first taken 
into consideration. 

The man-made changes are very likely to affect more 
the flows of an arid region than of a humid region. 
However, the complex relationship relating the evapo­
ration and precipitation, either in the air during rainfall, 
or especially on the earth surface, may he the other 
important factor affecting the above differences. 
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PATTERNS IN FLUCTUATIONS 
MEASURED BY CORRELOGRAMS 

DEFINITION, GENERAL REMARKS 

AND PROCEDURE 

Definition 

The correlogram is defined as a graph of discrete points 
relating the serial correlation coefficients and the lag 
between successive correlated pairs of members of a 
time series. 

General remarks 

The correlogram is a measure and an indicator of 
independence or of the type of dependence among the 
members of a time series. A random time series, if it 
is sufficiently long, has a random sequence of coefficients 
in correlogram, but the serial correlation coefficients 
are confined within the confidence limits of a given 
probability. 

The confidence limits on 95 per cent level for random 
time series were computed by using equation (8). 

According to R. L. Anderson (1941), the confidence 
limits for random time series for 95 per cent level are 
approximately 

-1 ± l.64y'N-k-2 
R •/ -96 

.- N-k-1 
(8) 

with the meaning that 5 per cent of the points of corre­
logram should be on the average outside the confidence 
limits. 

-0 . 1 

~ 0.2 
\ /'" 

\ / 
\ / -0.3 

\/ 

FIG. 5. Correlogram for River Gota at Sjotorp-Vanersborg. 
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Procedure 

The serial correlation coefficients for the annual flows 
and effective annual precipitations were compiled by 
using the following equations, similar to equations (4) 
and (5) in which r1 is replaced by rk and unity by k: 

N-k 1 N-k N-k 
~ U;Ui+k- - - ~ U; ~ U; +k 

N-k 1 1 
Tk = ------:::-::---::-----:----------

(N - k - l)si Sr+ k 
(9) 

with 

s;i= ~ U;2- - - ~ U; 1 [N-k 1 (N-k )]a 
N-k-1 1 N-k 1 

(10) 

and for s'; + k the value i in equation (10) is replaced 
by i + k. 

The computation of these unbiased serial correlation 
N 

coefficients was carried out up to m ..c::. 
4

, where N = 
length of time series, by using a digital computer. 

RESULTS 

Correlograms for individual river stations 
with long records 

From seven river stations of long record, already 
mentioned above, and whose correlograms are computed 
and studied, only three will be given here. 

Fig- 5 gives the correlogram for the River Gota at 
Sjotorp-Vanersborg (Sweden), N = 150 years; Fig. 6 

k 
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FIG. 6. Correlogram for River Rhine at Basie. 

for the River Rhine at Basle (Switzerland), N = 
150 years ; and Fig. 7 for the St. Lawrence River at 
Ogdensburg, New York (U.S.A.), N = 97 years. The 
correlograms are given for both U and Y series, with 
confidence limit on 95 per cent level computed by 
equation (8), and similarly for 90 per cent level. The 
confidence limits of Tk ± 4Q, where Tk = any correla­
tion coefficient of lag k, and Q = probable error of Tk, 

are also given. 
For the River Gl>ta, Y series, the last value for 

k = 37 excluded, only two values of rk(k = 2, k = 21) 
exceed the 95 per cent confidence interval. The value 
r1 = 0.0093 of Y series is very close to the expected 
value of random series of r1 = -0.0067. By correction 
of water carry-over in river basin, the value r1 = 0.463 
of U series is reduced to value r1 = 0.0093 of Y series. 

For the River Rhine the correlograms of both series 
lie practically inside the confidence interval of 95 per 
cent level, because only two or three values of Tk exceed 
the limits. The r1 = 0.076 of U series is reduced to 
r1 = 0.015 of Y series by eliminating the effect of carry· 
over. The expected value of random series is r1 = 0.0067. 

The St. Lawrence River has three Tk values of Y series 
correlogram exceeding the confidence limits of 95 per 
cent level. The U series has a correlogram with signi­
ficant positive Tk values from r1 - r •. The r1 = 0.705 of 
U series is reduced by excluding river basin carry-over 
to r, = 0.094 of Y series. 

Mean correlogram Jor 140 river gauging stations 

As time series are of different length N, and the 

number m of computed Tk is ~' the mean number for 

each Tk is either n = 140 (up to k = 10), or smaller 
than 140, with only n = 2 fork = 37. The confidence 
limits are averaged in the same way, by summing up 
the limits for all stations and dividing the sum by the 
number n of the stations for a given lag k. Fig. 8 gives 
also the number n of Tk values for each k which were 

.. 

· ---------._ ( r. • . 0 

,.. r, (U) ' •• , 

.3 0 I 

Fig. 8 gives the average correlogram for 140 river gauging -•-• 
stations, obtained by us·ing the mean value of each Tk. FIG. 7. Correlogram for the St. Lawrence River at Ogdensburg. 
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FIG. 8. Mean correlogram for 140 river stations, with mean confidence intervals (rk 4Q), R (95 per cent) and R (90 per 
cent), with number n for each rk, and the standard deviation Sk of rk values around the mean value r k. 

used in computing the mean values, as well as the 
standard deviations s(U) and s(Y) of rk values around 
the mean for each k. The confidence limits decrease 
with k, because of the averaging process, but theoreti­
cally the confidence limits should increase with an 
increase of k. 

DISCUSSION AND CONCLUSIONS OF RESULTS 

The analysis of correlograms, either of long-record 
stations or of the mean correlogram for 140 stations, 
points to the following : 
1. The long-record stations (76-150 years of observa­

tions), regardless of some inherent inconsistency and 
non-homogeneity in data, have correlograms of 
Y series very close to random time series, because 
the number of rk values exceeding the confidence 
limits is of the order of expected exceedances under­
lying the definition of limits. 

2. The r1 values of U series for seven long-record stations 
are mostly significantly different from zero, while 
this is not the case for Y series. 

3. The St. Lawrence River is a typical example of the 
effect of water carry-over on the correlogram. The 
relationship of correlograms of U and Y series 
suggests the model of U and Y relationship of a 
moving average type, as expressed by equation (3), 
with bj coefficients monotonically decreasing positive 
values, with their sum unity. 
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4. The long-record stations do not show any significant 
periodic movement (sun-spots, for example). 

5. The mean correlogram for 140 stations clearly points 
out, that the values of rk, except the mean value of 
r1(U), are insignificantly different from zero, or from 
a random time series. The mean value of r1(U) is 
greatly influenced by the effect of water carry-over. 

6. The mean correlogram shows that neither the sun­
spot average period of 11 years, nor the double sun­
spot average period are of a significant influence on 
the effective annual precipitations. The lags 23-27 are, 
however, a little greater than zero (up to r = 0.10), 
but are inside the confidence interval. 

7. Regardless which confidence limits are used (95 per 
cent level, 90 per cent level, rk ± 4Q), the correlo­
grams of effective annual precipitations are not 
significantly different from random time series. If 
there would be a significant trend in climate changes 
all over the world, the correlogram would show this 
trend. 

PATTERNS IN FLUCTUATIONS MEASURED 
BY RANGE 

DEFINITION OF RANGE 

The maximum range for a time series of length N and 
for the period N is defined as the difference of the 
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FIG. 9. Cumulation curve of departures of virgin annual flows (expressed as modular coefficients U;) of Upper Colorado 

River at Lee Ferry, Arizona, from the mean U = I, for 64 years, with maximum range Rmax, two adjusted ranges 
R 1a and R 2a, and maximum ranges R 1 and R 2 for two periods of n = 32 years. 

maximum and minimum values on the cumulative 
curve of departures. 

Fig. 9 gives the cumulative curve of departures for 
modular coefficients U; of virgin annual flows of the 
Upper Colorado River at Lee Ferry. The maximum range 
for N = 64 years is defined as Rmu = Smu - Smin, 
where S represents the values of the cumulative curve 
of departures. According to H. E. Hurst (1951), the 
maximum range for annual flows can be conceived as 
the maximum accumulated storage when there is never 
a deficit in outflow (equal to the mean discharge), or 
as the maximum deficit, where there is never any 
storage, or as the sum of accumulated storage and deficit, 
when both storage and deficit exist. 

The basic characteristics for the above definition of 
range is the use of departures from the mean value of 
flows for N years, also, for the determination of range 
for shorter periods than N. 

In a broader sense, any constant value U0 different 
from unity may be used to determine departures and 
the corresponding ranges. 

The adjusted maximum range is defined by W. Feller 
(1951) as the difference of maximum and minimum of 
the cumulative curve of departures, but with the 
changing mean. If a period has a length of n years, 
smaller than N, the mean of period n is used for comput­
ing the departures and the adjusted range. An example 
of this maximum adjusted range is given in Fig. 9 for 
two periods of n = 32 years (first half and second half 

of the total period). The lines of means U, and U, are 
plotted, and by using lines parallel to them Smu and 
Smin are obtained for both half periods, and then the 
adjusted ranges R'a and R'a are determined. The use 

of the mean U = 1 for determining the ranges for 
both 32-year periods gives the maximum range values 
R, and R., also shown in Fig. 9. 

All .these definitions of ranges, based on ff = 1, or 
any U0 , or as the adjusted range can he used, depending 

on the type of problem at hand. In using the range as 
a statistical technique for comparing the observed series 
with the random series the range defined on the basis 
of the mean for the period of observation of N years 
will be used here, though the basic study (Slutzky, 1937) 
from which this paper is derived discusses all concepts 
of range. 

DISTRIBUTION OF RANGE OF DIFFERENT PERIODS 

FOR RANDOM TIME SERIES 

General distribution function 

Let a period of length of n years be fixed for study 
(i.e., 5 years, 10 years, 25 years, etc.). Let also the 
total period of N years he divided in m smaller n year 
periods, so that m.n + n1 = N, where n, < n is a 
residual. If the range was determined for each of m 
periods on the basis of the mean for the total period N, 
there would he m values of the maximum range, one 
for each of n year periods. The distribution of these 
maximum ranges may he conceived as a statistical 
technique for analysis of fluctuations. 

Fig. 10 shows the eight values of R, for n = 8 years 
for the Upper Colorado River at Lee Ferry. There is a 
distribution of R,-values, in this case ranging from 0.82 
to 1.65. This corresponds to a fixed value n = 8, and 
for the mean as basic reference for computing the 
departures. 

Assuming n as a variable, the reference value U0 also 
as a variable, a general four variables function 

F (R,p, n, Uo) = 0 (II) 

with p = probability of the range R for given n and 
given U0 , can he determined either analytically (by 
using some approximation), or by numerical procedures 
in the case of a random series, or a stochastic series, 
with known basic distribution of U; (or Y;). 
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FIG. 10. Determination of ranges for eight periods, each 8 years long, for the homogeneous sample of annual river flows 
(reduced to depletion conditions in 1954-57) of Upper Colorado River at Lee Ferry, Arizona. 

Distribution of ranges of random series as yardstick Distribution of range of a random series Jor small n 
distribution 

The range distribution theoretically developed for 
random series was used here as a yardstick to compare 
with the range distribution of annual flows and of 
effective annual precipitations. 

The range distribution for both random and observed 
series was defined here by three statistical parameters : 
mean, coefficient of variation and skew coefficient. If 
the three parameters for given n and U = 1 do not 
differ for the compared random and observed series in 
a significant manner, it is assumed that observed series 
is close to random series. 

Distribution of range for a random series and large n 

The . asymptotic values for expected mean and for 
variance of the range of random series is given by 
W. Feller (1951) 

Rn= 1.5958 •. , sy; ~ 1.6 sy; (12) 

and 

S•n = var (Rn) = 4s•n ( (ln2 - ~)= 0.2182 s•n (13) 

where s = standard deviation of time series of length N ; 
n = length of period for which the mean range and 

variance of range are determined, Rn is the expected 
mean of range for period of length n, and Sn• is the 
variance of the range distribution. 

It follows from equations (12) and (13) that the 
asymptotic value of the coefficient of variation of 
range distributions is a ,constant equal to 0.292. 

The condition for the application of equations (12) 
and (13) is a large n value. 
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In case the random variable is normally distributed, 
the mean range for n = 1 is 

(14) 

and variance of R, 

s1 2 100 
_ ( 2) ;z = )o (R, - R,)• p 1 (R1) dR1 = l -; = 0.363 (15) 

where R1/s and S, 1/s' represent the mean and variance 
of a standardized variable with variance unity. When 
equations (14) and (15) are applied to modular coeffi­
cients, Ui and Yi with mean unity and variance s•, then 

R1 = 0.80 s ; and S1 • = 0.363 s2 

The range is a truncated distribution of half the 
normal distribution, with a skew coefficient 

Cs=(2-i)(1t 
2 

2)2'3 

~0.995 

The distribution of R1 is given in Fig. 11. 
For n = 2 the probability of range Rs is 

2 -R1
1/4 

p 2 (R2) = y; e 

r ~ 
R'/yz e -12/2 dt _ - R1

1 /4 ~ R1 e -1•12 dt] 
. / +V 2 e • ; - (16) 

o V 21t o V 21t 

where t = a standardized variable ; R1 = any range for 
n = 2 ; p2(R1) = probability of a given range Ra, 

The distribution of R2 and its statistical parameters 
are computed by numerical integration of equation (16), 
and the distribution is shown in Fig. 11. 
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FIG. 11. Probability density distribution of ranges for n = l, 
2, 3, 4, and 5 for random time series of standardized normal 
variate. 

-The distributions and statistical parameters for R,, 
R,, and R5 are also expressed in similar forms as equa· 
tion (16), then numerically integrated or computed, 
and the distributions are shown in Fig. 11, and para· 
meters in Fig. 12. 

A. A. Anis and E. H. Lloyd (1953) give the mean 
value of the range for finite small n as 

(17) 

with i integers from 1 to n.1 As an example, for n = 4, 

R, = 2.22166. The values R1 computed by equation (17) 
are given in Fig. 12, curve (3). 

The comparison of the mean values of the range 
distribution for different small n is given for three types 
of values: (a) asymptotic values according to equa­
tion (12); tb) values obtained by numerical integration 
of exact distributions, equations (14), (15), (16) and 
similar; and (c) values ob_tained from analytical expres­
sion of equation (17). Though there are some depar­
tures among the curves (b) and (c), it could be 
assumed that equation (17) approximates closely the 
exact values given by curve ( b) for very small n. 
The asymptotic values depart greatly from the 
exact values for very small n. For n = 1 the 
asymptotic value is double the exact value for the 
mean range. 
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FIG. 12. The statistical parameters of range distribution of 
random time se~es of normal variable for small n (1-10) : 

I. Mean range (R/s), asymptotic values. 
2. Exact values of mean range, obtained by numerical inte-

gration. 
3. Mean range obtained by formula, given by Anis and Lloyd. 
4. Exact values of coefficient of variation. 
5. Exact values of skew coefficient. 

DISTRIBUTION OF MAXIMUM RANGE 

OF EFFECTIVE ANNUAL PRECIPITATION 

FOR 14 RIVER GAUGING STATIONS 

OF THE UPPER COLORADO RIVER BASIN 

AND AROUND IT 

Procedure 

The cumulative curves of !::.. Yi departures were plotted 
and the ranges for n = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25 were 
determined for as many periods m of length n as they 
may be included in the total length N for each station, 
without overlapping of periods of length n. While the 
number m of R values were greater for R1 ( equal to 

1. The authors (Anis and Lloyd, 1953) give the coefficient of equation (17) 
· both as V 2/rt, and l/V2rt, and A. A. Anis in two successive 

papers (Biometrica, vol. 42, 1955, p. 96-101, and vol. 43, 1956, p. 79-84) 
. gives always the value of coefficient as 1/V i;. The author of this 

paper has found out that to his approach the value of V 2/rr of equation 
(17) was correct. 
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N -1), the number m decreased with an increase 
of n, so that for Ru this number was either one (N < 50) 
or two (N ~ 50) for each station. 

The values Ri were divided by the standard deviation 
of Y series of the corresponding station, so that all values 
R 
- for all stations refer to a unique standardized variable 
s 
with the variance s• = 1. This procedure enabled the 
pulling together of values R for given n of all 14 sta­
tions in one large sample (size 646 for R1, and size 28 
for Ru), 

Results 

The distributions of ranges for 14 stations, with all 
corresponding values pulled together, are given in 
Fig. 13, and for the first five values of n (1, 2, 3, 4, 5) 
the distributions of ranges of random series (Fig. 11) 
are plotted also. 

The computed values of mean, coefficient of variation 
and skew coefficient are plotted in Fig. 14. The corres­
ponding statistical parameters for random series are 
plotted in this figure also, and specifically: (a) mean 
and coefficient of variation of R-distribution for asymp­
totic range values ; ( b) mean, coefficient of variation and 
skew coefficient for five values of n, computed by 
numerical integration of range distribution; and (c) the 
mean, computed by equation (17). 

Comparison of Y series and random series 

Fig. 13 shows that the distributions of ranges for 14 river 
gauging stations for small n are very close to distri­
butions of ranges of random series. 

Though the values m (sample sizes for R distributions) 
are large for R1 to Rh the sampling stability of range is, 
however, r elatively small. This is mainly due to the fact 
that the concurrent values of Y series (values for the 
same water year) of 14 stations in the Upper Colorado 
River Basin and around, pulled together, are not 
independent among them. 

It can also be seen from the comparison of distri­
butions in Fig. 13, that both the mean and the standard 
deviation of range distributions of Y series increase 
constantly with an increase of n, as it is the case with a 
random series. 

Taking into consideration the following factors: 
(a) regional sampling ; ( b) errors in the computation of 
carry-overs from one water year to another; and espe­
cially (c) non-homogeneity of data (created by man• 
made changes in river basins), it can be assumed here 
that the distributions of range of the effective annual 
precipitations in the Upper Colorado River Basin are 
very close to those of random time series. 

The comparison of statistical parameters of range 
distributions of Y series for 14 river gauging stations 
in the Upper Colorado River Basin and around it, with 
the statistical parameters of range distributions of ran-
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dom series shows that the mean values of ranges of 
Y series are nearly identical with mean values of range 
of random series, because the curves (2) and (4) of 
Fig. 14 are very close, at least for values n = 2 - 15. 

The asymptotic values of mean range, curve (1) 
in Fig. 16, are much larger than the values of the mean 
ranges of Y series. The mean ranges computed by 
equation (17) approximate well the computed mean 
ranges of Y series. 

The comparison of the coefficients of variation of 
range distributions of Y series with those of random 
series shows that the departures between them are not 
great, curves (5) and (7), Fig. 14, while the asymptotic 
constant value, curve (6), is much smaller than the 
observed values. 

The comparison of skew coefficients of range distri­
butions of Y series with those of random time series 
shows, in the limits of the sampling instability of the 
third statistical moment of distributions of Y series, 
that the closeness of two curves, (7) and (8), Fig. 14, 
is sufficiently good to derive the conclusion that even 
the skew coefficients are very close for the two range 
distributions. 

RANGE DISTRIBUTIONS 

FOR SEVEN LONG-RECORD RIVER STATIONS 

Dependence }actor 

Assuming that only the coefficients b0 through bm _ 1 

(first m values) in equation (3) are significantly different 
from zero, then according to Cramer (1935) 

m-k ;m-1 
rk = :E bjbj + k :E bj2 

0 0 

(18) 

The value 

D = ( 1: m ~ 1 
bj' y/2 (19) 

is defined here as the dependence factor of a time series. 
Then (Yevdjevich, in preparation) m-1 

D 2 = 1 + 2 :E rk (20) 

With D = Vl + 2ri, when only r1 is significantly 
different from zero, and approximately D 1 = 1/(1-r 1) 
when several other rk values are significantly different 
from zero. 

Dividing the mean range values, or other parameters 
of range distributions by D, the series of different 
dependence factors may be compared. 

Comparison of parameters of range distribution 
Jor seven long-record stations with random series 

Fig. 15 shows the mean relative range R, divided by 
the product D X s ( dependence factor of series multi­
plied by standard deviation of U or Y series), for seven 
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Fie. 13. Distributions of ranges for random time series (for n = 1, 2, 3, 4, 5), and for 14 river gauging stations from Upper 
Colorado River Basin and around it, for n = 1, 2, 3, 4, 5, 7, 10, 15, 20 and 25, for all 14 stations pulled together as a unique 
standardized variate of Y series (modular coefficients) of effective annual precipitations : 
1. Random series. 
2. Upper Colorado River Basin. 
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FIG. 14. Comparison of statistical parameters of range distri­
butions for effective annual precipitations (Y series) of 14 river 
gauging stations in Upper Colorado River Basin and around 
it, with those of random time series : 
1. Asymptotic values (1. 6 n) of the expected mean of 

random series. 
2. Exact values of means for random series. 
3. Values of means for random series computed by equa-

tion (23). 
4. Means of range distributions for 14 river gauging stations. 
5. Exact values of coefficient of variation for random series. 
6. Asymptotic constant value for coefficient of variation for 

random series. 
7. Coefficient of variation of range distributions for 14 river 

gauging stations. 
8. Exact values of skew coefficients for range distributions of 

random series. 
9. Skew coefficients of range distributions for 14 river gauging 

stations. 

rivers in relation to n. The curves for these rivers are 
compared with series (D = 1): (a) asymptotic values 
of mean range, given by Feller; (b) mean ranges given 
by Anis-Lloyd formula, equation (17); and (c) mean 
ranges obtained by numerical integrations. The depen­
dence factors are given for each river and U and Y 
series respectively. 

The upper graph of Fig. 15, with relatively small 
D values (close to unity), clearly points out that the 
computed mean ranges for seven rivers are very close 
to the corresponding values of random time series for 
small n. For the Danube (120 years), the G6ta 
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FIG. 15. Comparison of mean ranges divided by D X s (depen­
dence factor multiplied by standard deviation) for seven rivers 
with long records, for both Yi end Ui series, with the asymp­
totic mean values (Feller), mean values for small n (Anis­
Lloyd), and for mean values determined by numerical inte­
gration of exact range distributions. 

(150 years), and the Rhine (150 years) it is difficult 
either to distinguish their mean ranges from the ranges 
of random series. 

The lower graph shows that the greater is D (St. 
Lawrence) the greater is the departure of that series 
from the corresponding values of random series. 

As distributions of U and Y series are skewed, the 
departures evidenced in Fig. 15 may be partly attributed 
to the skewness effect. 

Fig. 16 shows a comparison between the coefficient 
of variation of range distributions, as function of n, 
with the same parameter of range distribution of random 
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FIG. 16. Comparison of coefficient of variation of ranges for 
seven rivers with long records, for both Y; and U; series, 
with the asymptotic constant value Cu = 0.292 (Feller) and 
the coefficients of variation, determined by numerical inte­
gration of exact distribution of ranges. 

series. There are two lines for random series : asymptotic 
constant value Cv = 0.292 of this coefficient, as given 
by Feller, and the values obtained by numerical inte­
gration of exact probability distribution functions. It 
points out that for small values of D the Y series 
approaches sufficiently close the random series. 

GENERAL CONCLUSIONS 

The analysis of hydrological characteristics in fluctua­
tion of annual river flows and derived effective annual 

precipitations leads to the following conclusions : 
1. Distribution of first serial correlation coefficient, 

correlogram analysis, and distribution of maximum 
range have shown that the sequence of effective 
annual precipitations is very close to random 
sequence. 

2. Most of dependence between the successive values 
of annual flows can he explained: (a) by changing 
of water carry-over from one water year to another 
in the form of different water storage in a river basin ; 
(b) by non-homogeneity in data; (c) by some syste· 
matic errors in compilation of annual flows ; and 
(d) by error from regional sampling. After these 
factors are taken care of the room left for the causes 
of this linkage, which come either from the atmos­
phere or solar activities, remains small. 

3. Dependence between successive values of effective 
annual precipitations can he explained: (a) by data 
inconsistency, data non-homogeneity, and error in 
computation of water carry-over in the corresponding 
river basin ; ( b) by an assumed complex relationship 
of evaporation and evapotranspiration to precipi­
tation (non-linear relationship); (c) by a regression 
effect of stored moisture in atmosphere; (d) by 
regional sampling errors; and (e) by selection of the 
beginning of a water year. 

4. There is no statistical evidence that the fluctuations 
of annual flows or effective annual precipitations may 
he composed of hidden periodicities, or of some 
regular patterns in the fluctuations, which can he 
extrapolated in the future with a reasonable expec­
tancy that they would occur and would he verified 
by future flow records. 

5. There is no evidence that the climatic factors as 
related to water resources have been changed signi­
ficantly in the last 150 years. 

6. Reliable forecasts of future annual flows ( of order 
two to five years or more) by methods which are 
based on extrapolation or regular patterns in annual 
flow fluctuations (for instance, of hidden periodicities, 
or sun-spot cycles) do not seem possible. 

7. Non-homogeneity (or inconsistency) in data of annual 
flows is an important hydrological characteristic of 
many river basins. It affects substantially the cha­
racteristics of available records of river flows, making 
the dependence of flows and effective precipitations 
greater than it would he without it. This is usually 
also the case with other series of climatic factors, 
related to water resources. 

8. Carry-over of water from one water year to the next 
is an important hydrological characteristic of river 
basins, which greatly affects the linkage between 
the successive values of annual flows. 
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RESUME 

:ttude des fluctuations climatiques au moyen des debits 
annuels et des precipitations annuelles effectives 
(V. M. Y evdjevich) 

La presente communication traite des fluctuations , dans 
les bassins fluviaux, tant des debits annuels que des 
precipitations effectives annuelles que l'on en deduit. 
Les valeurs des precipitations annuelles effectives (pre· 
cipitation moins evapotranspiration) sont obtenues en 
corrigeant les debits annuels pour tenir compte des 
reports d'eau en fin d'annee. Les donnees de base 
comprennent les valeurs des debits annuels enregistres 
dans 140 stations fluviales de mesure situees dans de 
nombreu~es regions du monde. Les caracteristiques sta· 
tistiques des series de debits annuels et des precipitations 
annuelles effectives sont rapprochees des caracteristiques 
de series chronologiques aleatoires, OU de series derivees 
de series chronologiques aleatoires. Les techniques 
appliquees consistent a etablir des coefficients de corre• 
lation, avec des correlogrammes et les amplitudes des 
ecarts accumules a partir de la moyenne. La presente 

analyse indique qu'une partie importante de la difference 
qui apparait entre les debits annuels observes et les 
series chronologiques aleatoires peut s'expliquer par les 
effets de regression du report d'eau, de neige et de glace 
en fin d'annee. Une autre partie de cette difference, en 
ce qui concerne les debits annuels et Jes precipitations 
annuelles effectives, peut etre attribuee au.:' etreurs 
systematiques et au manque d'homogeneite des donnees 
et a des rapports complexes entre !'evaporation ou 
l'evapotranspiration et la precipitation. L' ensemble de 
ces facteurs explique en grande partie la difference 
constatee, un petit reste pouvant etre considere comme 
representant l'effet d'autres facteurs qui peuvent influer 
sur la persistance des fluctuations climatiques. La suite 
des precipitations annuelles effectives est tres proche 
des fluctuations aleatoires. Aucune donnee statistique 
ne montre que le climat, dans ses rapports avec les 
ressources hydrauliques disponibles, a change ct'une 
maniere significative depuis cent cinquante ans, a en 
juger du moins par les fluctuations des debits fluviaux 
annuels. 
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